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Abstract

This dissertation considers decentralized optimization and its applications. On the one hand, we

address privacy preservation for decentralized optimization, where N agents cooperatively minimize the

sum of N convex functions private to these individual agents. In most existing decentralized optimization

approaches, participating agents exchange and disclose states explicitly, which may not be desirable when

the states contain sensitive information of individual agents. The problem is more acute when adversaries

exist which try to steal information from other participating agents. To address this issue, we first propose

two privacy-preserving decentralized optimization approaches based on ADMM (alternating direction method

of multipliers) and subgradient method, respectively, by leveraging partially homomorphic cryptography. To

our knowledge, this is the first time that cryptographic techniques are incorporated in a fully decentralized

setting to enable privacy preservation in decentralized optimization in the absence of any third party or

aggregator. To facilitate the incorporation of encryption in a fully decentralized manner, we also introduce a

new ADMM which allows time-varying penalty matrices and rigorously prove that it has a convergence rate

of O(1/t). However, given that encryption-based algorithms unavoidably bring about extra computational

and communication overhead in real-time optimization [61], we then propose another novel privacy solution

for decentralized optimization based on function decomposition and ADMM which enables privacy without

incurring large communication/computational overhead.

On the other hand, we address the application of decentralized optimization to the event localization

problem, which plays a fundamental role in many wireless sensor network applications such as environ-

mental monitoring, homeland security, medical treatment, and health care. The event localization problem

is essentially a non-convex and non-smooth problem. We address such a problem in two ways. First, a

completely decentralized solution based on augmented Lagrangian methods and ADMM is proposed to

solve the non-smooth and non-convex problem directly, rather than using conventional convex relaxation

techniques. However, this algorithm requires the target event to be within the convex hull of the deployed
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sensors. To address this issue, we propose another two scalable distributed algorithms based on ADMM and

convex relaxation, which do not require the target event to be within the convex hull of the deployed sensors.

Simulation results confirm effectiveness of the proposed algorithms.
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Chapter 1

Introduction

Intensive applications and problems in statistics, machine leaning, multi-agent systems, and power

grids can be modeled in the framework of optimization. Some examples include the sparse linear regression

[77], event localization [78], wide-area oscillation monitoring [83], etc. Although these problems arise in

various domains, they share some universal characteristics such as data being collected or stored in different

local agents. Given this distributed manner, it is natural to look to decentralized optimization in which data are

processed in a decentralized and cooperative manner.

This dissertation addresses decentralized optimization and its application to event localization.

In recent years, numerous algorithms were proposed for decentralized optimization such as distributed

(sub)gradient based algorithms [69,86,87], augmented Lagrangian methods (ALM) [44,47], and the alternating

direction method of multipliers (ADMM) as well as its variants [16, 44, 47, 64, 65], etc. However, most of

these approaches require agents to exchange and disclose their states explicitly to neighboring agents in

every iteration, which may not be desirable when the estimates contain sensitive information of individual

agents. To address this privacy issue, this dissertation will first develop privacy-preserving decentralized

optimization algorithms. Then, this dissertation will address the application of decentralized optimization to

the event localization problem, which plays a fundamental role in many wireless sensor network applications

such as environmental monitoring [15], target tracking [21], underwater detection [50], and acoustic gunfire

localization [34], [105]. The following two sections will introduce the two topics in more depth.
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1.1 Decentralized optimization

The problem of decentralized optimization has attracted remarkable attention in recent years due to

its wide applications in various domains, ranging from multi-agent systems [69, 86, 87], machine learning

[23, 123, 134], statistics [67, 77], communications and networking [69, 78, 86, 87], to power grids [35, 83]. In

these applications, data are collected and processed in a decentralized and cooperative manner among multiple

agents. Such a decentralized manner of processing provides several key advantages over its conventional

computing-server based counterpart. For example, it leads to enhanced scalability and flexibility, and brings

higher robustness to the problems of network traffic bottleneck and single point of failure.

Typical decentralized optimization algorithms include distributed (sub)gradient based algorithms

[69,86,87], augmented Lagrangian methods (ALM) [44,47], and the alternating direction method of multipliers

(ADMM) as well as its variants [16, 44, 47, 64, 65], etc. In (sub)gradient based solutions, (sub)gradient

computations and averaging among neighbors are conducted iteratively to achieve convergence to the minimum.

In augmented Lagrangian and ADMM based solutions, iterative Lagrangian minimization is employed, which,

coupled with dual variable update, guarantees that all agents agree on the minimization solution.

However, most of the aforementioned decentralized approaches require agents to exchange and

disclose their states explicitly to neighboring agents in every iteration [16, 47, 64, 65, 86]. This brings about

serious privacy concerns in many practical applications [61]. For example, in projection based source

localization, intermediate states are positions of points lying on the circles centered at individual nodes’

positions [101], and thus a node may infer the exact position of a neighboring node using three intermediate

states, which is undesirable when agents want to keep their position private [4]. In the rendezvous problem

where a group of individuals want to meet at an agreed time and place [63], exchanging explicit states

may leak their initial locations which may need to be kept secret instead [80]. Other examples include the

agreement problem [24], where a group of individuals want to reach consensus on a subject without leaking

their individual opinions to others [80], and the regression problem [77], where individual agent’s training

data may contain sensitive information (e.g., salary, medical record) and should be kept private. In addition,

exchanging explicit states without encryption is susceptible to eavesdroppers which try to intercept and steal

information from exchanged messages.

To enable privacy preservation in decentralized optimization, one commonly used approach is dif-

ferential privacy [42, 54, 89], which adds carefully-designed noise to exchanged states or objective functions

to cover sensitive information. However, the added noise also unavoidably compromises the accuracy of

2



optimization results, leading to a trade-off between privacy and accuracy [42, 54, 89]. In fact, as indicated

in [89], even when no noise perturbation is added, differential-privacy based approaches may fail to converge

to the accurate optimal solution. It is worth noting that although some differential-privacy based optimization

approaches can converge to the optimal solution in the mean-square sense with the assistance of a third party

such as a cloud (e.g., [38], [39]), those results are not applicable to the completely decentralized setting

discussed here where no third parties or aggregators exist. Observability-based design has been proposed

for privacy preservation in linear multi-agent networks [5, 96]. By properly designing the weights for the

communication graph, agents’ information will not be revealed to non-neighboring agents. However, this

approach cannot protect the privacy of the direct neighbors of compromised agents and it is susceptible to

external eavesdroppers. Another approach to enabling privacy preservation is encryption. However, despite

successful applications in cloud based control and optimization [29,104,111,122], conventional cryptographic

techniques cannot be applied directly in a completely decentralized setting without the assistance of aggre-

gators/third parties (note that traditional secure multi-party computation schemes like fully homomorphic

encryption [33] and Yao’s garbled circuit [125] are computationally too heavy to be practical for real-time

optimization [61]). Other privacy-preserving optimization approaches include [31, 74] which protect privacy

via perturbing problems or states.

To enable privacy preservation without compromising the optimality of the solution, this dissertation

first proposes a novel approach that enables privacy-preservation in decentralized optimization through incor-

porating partially homomorphic cryptography in existing optimization algorithms. We show that cryptographic

techniques can be incorporated in a fully decentralized manner to enable privacy-preservation in decentralized

optimization in the absence of any third party or aggregator. This is significant in that, to our knowledge, all

existing cryptographic based optimization approaches rely on the assistance of a third-party or aggregator to

protect the privacy of all parties. However, given that encryption unavoidably brings about significant extra

computational and communication overhead in real-time optimization [61], this dissertation also proposes a

novel privacy solution for decentralized optimization based on function decomposition which enables privacy

without incurring large communication/computational overhead. Our contributions can be summarized as

follows:

1. A privacy-preserving decentralized optimization approach is proposed based on ADMM and partially

homomorphic cryptography. To facilitate the incorporation of homomorphic encryption in ADMM in a

fully decentralized manner, we also propose a new ADMM which allows time-varying penalty matrices

and rigorously characterize its convergence rate of O(1/t).

3



2. A privacy-preserving decentralized optimization approach based on subgradient method and partially

homomorphic cryptography is proposed, which can be used in time-varying networks.

3. A novel privacy-preserving decentralized optimization approach is proposed based on ADMM and

function decomposition. Compared with encryption-based approaches which suffer from heavy com-

putational and communication burden, the proposed approach incurs little extra computational and

communication overhead; In addition, we prove that when the global objective function is strongly con-

vex, proximal Jacobian ADMM can achieve Q-linear convergence rate even if local objective functions

are only convex, which generalizes existing results on proximal Jacobian ADMM requiring strongly

convex local objective functions to achieve Q-linear convergence rate.

4. In contrast to differential-privacy based optimization approaches [42, 54, 89], our work can enable

privacy preservation without sacrificing accuracy.

1.2 Event localization

With the ability to transmit/receive information and fuse data, smart sensors enabled and greatly

advanced numerous applications such as environmental monitoring [15], target tracking [21], underwater

detection [50], and acoustic gunfire localization [34], [105]. Among these applications, event localization is a

significant and essential component or even the ultimate goal. Taking the gunfire localization as an example,

if some threat sources or impulsive events (e.g., shooting or explosion) occur, it is of imperative importance

to localize these threat sources to make prompt reactions (e.g., giving warning, providing aid). A typical

example is the PinPointTM mobile acoustic localization sensor network [18, 25], which provides the capability

for detection and localization of impulsive threat events on battlefields. In fact, sensor network based event

localization has received significant attentions and plenty of techniques have been proposed in the literature,

using either angle-of-arrival measurements [32, 57, 100], time-of-arrival (ToA) (including time-difference-of-

arrival, i.e., TDoA) measurements [51, 124], or received signal strength (RSS) [13, 79, 101, 113–115, 126, 135].

There are also some work that discussed the event localization problem based on noisy range measurements

directly, which can be obtained based on ToA, TDoA, or RSS information [10, 30, 56, 91, 92]. Generally

speaking, these existing methods for event localization formulate the localization problem as a maximum

likelihood estimation problem [91] or a least squares problem [126], which is solved by minimizing the

non-convex objective function iteratively [13] or by applying various convex relaxations [124].
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From the implementation point of view, existing event localization algorithms can be cast into two

categories: centralized approaches and distributed approaches. Centralized approaches always gather (noisy)

measurements (e.g., range measurements) obtained by all sensors to a processing center, which then estimates

the event location using a certain centralized optimization algorithm. Typical centralized methods include the

parallel projection method [56], convex relaxation plus semidefinite programming (SDP) or second-order cone

programming method [30,91,92,113,114,124,126]. However, a severe shortcoming of centralized localization

algorithms is that the computation complexity at the processing center might be quite high which poses

great challenges for low-cost sensor nodes with limited computational capabilities. In addition, the required

communication to collect all measurements to a single central node may be problematic due to possible traffic

bottleneck and severe constraints on communication ranges. Moreover, once the central node fails due to, e.g.,

attacks or power depletion, the entire network slips into a state of paralysis. Therefore, techniques solving the

event localization problem in a distributed way are crucial for sensor network based event localization.

In contrast to centralized algorithms, distributed localization algorithms are designed to run the

computation over the entire network instead of on a processing center. In general, distributed algorithms are

often established on massive parallelism or sequential calculations and mutual collaboration [9]. So compared

with centralized algorithms, distributed designs have better scalability, flexibility, and failure resilience. One

typical distributed approach for event localization is projection-based algorithms. For example, Blatt and

coauthors in [13] proposed a projection-onto-convex-sets (POCS) method which solves the event localization

problem via projecting an initial estimate to sensing disks that center at individual sensors’ positions. The

authors in [101] proposed a nearest local minimum (PONLM) method that projects initial estimates to sensing

circles rather than disks, which improved the performance of event localization. The authors in [115] proposed

a boundary-of-convex-sets algorithm, with convergence guaranteed in the case of two anchor sensors. Wang

and coauthors [112] recently proposed a recursive weighted least squares (RWLS) algorithm which takes

information reliability into account by adding weighting factors of the previous estimates in each iteration.

However, these projection-based algorithms update local estimates sequentially, which requires a global

updating order and hence is not amenable for parallelization. The sequential nature entails a reschedule of

global updating order whenever the network topology changes, due to e.g., a sensor’s joining or leaving the

network, and hence is not as flexible as parallel algorithms. To address this issue, Zhang and coauthors [135]

proposed a parallel distributed alternating projection algorithm (DAPA) which formulates the event localization

problem as a ring intersection problem. However, this approach does not work well when the target event lies

outside the convex hull of sensors.
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In this dissertation, we address the event localization problem by applying the alternating direction

method of multipliers [16], which has been proven extremely suitable in distributed convex optimization

and some non-convex problems [73, 107, 120]. We used ADMM because it has several advantages. First,

ADMM has a fast convergence speed in both primal and dual iterations [64]. By incorporating a quadratic

regularization term, ADMM has been shown to be able to obtain satisfactory convergence speed even in

ill-conditioned dual functions [65]. Secondly, from the implementation point of view, not only is ADMM

easy to parallelize and implement, but it is also robust to noise and computation errors [106]. Our proposed

algorithms takes full advantages of ADMM which decomposes a general optimization problem into multiple

local optimization subproblems with each subproblem solved by an individual part. Through cooperations in

the computation process among neighboring sensors, a consistent estimate of the event position across the

entire network can be achieved. Our main contributions for the event localization problem are summarized as

follows:

1. An algorithm is applied to directly solve the general non-smooth and non-convex event localization

problem without using convex relaxation. The avoidance of convex relaxation is significant in that

convex relaxation based methods generally suffer from high computational complexity. The proposed

algorithm takes full advantages of alternating direction method of multipliers and accomplishes the

event localization in a decentralized way. Therefore, compared with centralized approach in which a

processing center performs the whole heavy computation, the algorithm is highly scalable, flexible,

robust to network topology changes, and thus is more favorable in practical implement;

2. Two distributed event localization algorithms based on ADMM and convex relaxation are proposed.

Compared with existing centralized SDP relaxation based algorithms for event localization, the two

algorithms divide the computation on a central node to different clusters to avoid possible center

failure and traffic bottleneck, and in the mean time, guarantee consistency of the estimates across all

clusters among which only limited communications are available. Furthermore, the two algorithms take

advantages of SDP relaxation to avoid the convex hull problem compared with existing projection-based

algorithms. Moreover, the algorithms are proven to converge with a convergence rate of O(1/t) where t

is the iteration time.

The rest of this dissertation is organized as follows: Chapter 2 gives more details on two typical

decentralized optimization algorithms and the homomorphic Paillier cryptosystem, which is used to enable

privacy-preservation in decentralized optimization. Chapter 3 and Chapter 4 propose a privacy-preserving
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decentralized optimization algorithm based on ADMM and subgradient method, respectively, by leveraging

partially homomorphic cryptography. Chapter 5 proposes a novel privacy-preserving decentralized optimization

algorithm based on ADMM and function decomposition. Chapter 6 and Chapter 7 address the application of

ADMM to the event localization problem. Finally, we conclude our findings in Chapter 8.

It is worth noting that this dissertation interpolates material from four papers by the author [129–132].

Chapter 3 uses materials from Ref [129], Chapter 4 uses materials from Ref [131], Chapter 6 uses materials

from Ref [132], and Chapter 7 uses materials from Ref [130].
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Chapter 2

Background and Preliminaries

2.1 Typical Decentralized Optimization Algorithms

2.1.1 Alternating Direction Method of Multipliers

ADMM is an algorithm which is suitable to solve problems in the following form [16]:

min
x,z

f(x) + g(z)

subject to Cx+ Fz = c.

(2.1)

where x ∈ Rn, z ∈ Rm, C ∈ Rp×n, F ∈ Rp×m, c ∈ Rp, and f(x) and g(z) are convex functions. To get

the optimal value p∗ = inf{f(x) + g(z) | Cx+ Fz = c} for problem (2.1), one can first form an augmented

Lagrangian function:

Lρ(x, z,λ) = f(x) + g(z) + λT (Cx+ Fz − c) +
ρ

2
‖ Cx+ Fz − c ‖2,

where λ is the Lagrange multiplier associated with the constraint Cx+ Fz = c and ρ > 0 is a predefined

penalty parameter. Then ADMM solves problem (2.1) by updating x, z,λ in the following sequence: first an
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x-minimization step (2.2), then a z-minimization step (2.3), and finally a dual variable update (2.4):

xk+1 = argminxLρ(x, zk,λk), (2.2)

zk+1 = argminzLρ(xk+1, z,λk), (2.3)

λk+1 = λk + ρ(Cxk+1 + Fzk+1 − c). (2.4)

Under the assumptions that both f and g are closed, proper, convex, and the Lagrange function

L(x, z,λ) = f(x)+g(z)+λT (Cx+Fz−c) has a saddle point, ADMM has primary residual convergence,

i.e., Cxk + Fzk − c → 0, objective convergence, i.e., pk = f(xk) + g(zk) → p∗, and dual residual

convergence, i.e., ρCTF (zk − zk−1) → 0 when k → ∞. Variations and extensions to standard ADMM

algorithm can refer to proximal ADMM [26], linearized ADMM [66], weighted ADMM [64], etc.

2.1.2 Subgradient Method

Given a function f(x) : Rn → R. To minimize f , the subgradient method takes the following

iteration [17]:

xk+1 = xk − αkdk.

Here xk is the kth iterate, αk > 0 is the step size, and dk is a subgradient of f at xk. The subgradient method

is very simple. Under the assumptions that the step size αk is diminishing ( lim
k→∞

αk = 0,
∑∞
k=1 αk =∞) and

function f is convex, the subgradient method is guaranteed to converge to the optimal value [17].

A typical extension to subgradient method is projected subgradient method which solves a constrained

convex optimization problem as follows:

min
x

f(x)

subject to x ∈ X

where X is a convex set. The projected subgradient method takes the following iteration [17]:

xk+1 = PX (xk − αkdk).

Here PX [·] denotes the projection operation onto the set X , i.e., PX [r] = argmin
y∈X

‖ y − r ‖. In addition,

when the objective function f is a sum of N ≥ 2 individual functions, the (projected) subgradient method can
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be easily implemented in a decentralized manner (c.f. [86, 87]).

2.2 Paillier Cryptosystem

The Paillier cryptosystem is a public-key cryptosystem which uses a pair of keys: a public key and a

private key. The public key can be disseminated publicly and used by any person to encrypt a message, but the

message can only be decrypted by the private key. The Paillier cryptosystem includes three algorithms, which

are detailed below:

Paillier cryptosystem
Key generation:

1. Choose two large prime numbers p and q of equal bit-length and compute n = pq.

2. Let g = n+ 1.

3. Let λ = φ(n) = (p− 1)(q − 1), where φ(·) is the Euler’s totient function.

4. Let µ = φ(n)−1 mod n which is the modular multiplicative inverse of φ(n).

5. The public key kp for encryption is (n, g).

6. The private key ks for decryption is (λ, µ).

Encryption (c = E(m)): Recall the definitions of Zn = {z|z ∈ Z, 0 ≤ z < n} and Z∗n = {z|z ∈ Z, 0 ≤
z < n, gcd(z, n) = 1}.

1. Choose a random r ∈ Z∗n.

2. The ciphertext is given by c = gm · rn mod n2, where m ∈ Zn, c ∈ Z∗n2 .

Decryption (m = D(c)):

1. Define the integer division function L(µ) = µ−1
n .

2. The plaintext is m = L(cλ mod n2) · µ mod n.

A notable feature of Paillier cryptosystem is that it is additively homomorphic, i.e., the ciphertext of

m1 +m2 can be obtained from the ciphertext of m1 and m2 directly when 0 ≤ m1 +m2 < n holds:

E(m1, r1) · E(m2, r2) = E(m1 +m2, r1r2), (2.5)

E(m)k = E(km), k ∈ Z+. (2.6)

Due to the existence of random r, the Paillier cryptosystem is resistant to the dictionary attack [36]. Since r1
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and r2 play no role in the decryption process, (2.5) can be simplified as

E(m1) · E(m2) = E(m1 +m2). (2.7)
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Chapter 3

Privacy-preserving Decentralized

Optimization Based on ADMM

3.1 Introduction

An important class of decentralized optimization problems is to minimize an objective function

that is the sum of N convex functions private to N individual agents [54, 69, 86, 87]. Such decentralized

optimization has been playing key roles in applications as diverse as rendezvous in multi-agent systems [63],

spectrum sensing in cognitive networks [128], support vector machine [23] and classification [134] in machine

learning, online learning [123], data regression in statistics [77], source localization in sensor networks [130],

and monitoring of smart grids [83]. This chapter considers such a decentralized problem in which N agents

cooperatively solve an unconstrained optimization:

min
x̃

N∑
i=1

fi(x̃), (3.1)

where variable x̃ ∈ RD is common to all agents, function fi : RD → R is the local objective function

of agent i. We propose a new privacy-preserving decentralized optimization approach based on ADMM

and partially homomorphic cryptography to solve (3.1) in this chapter. To facilitate the incorporation of

homomorphic encryption in ADMM in a fully decentralized manner, we also propose a new ADMM which

allows time-varying penalty matrices and rigorously characterize its convergence rate of O(1/t).
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It is worth noting that privacy has different meanings under different settings. For example, in

the distributed optimization literature, privacy has been defined as the non-disclosure of agents’ states

[38], objective functions or subgradients [71, 89, 123]. In this chapter, we define privacy as preserving the

confidentiality of agents’ intermediate states, gradients of objective functions, and objective functions. We

protect the privacy of objective functions through protecting intermediate states. In fact, if left unprotected,

intermediate states could be used by an adversary to infer the gradients or even objective functions of other

nodes through, e.g., data mining techniques. For example, in the regression problem in [77], the objective

functions take the form fi(x̃) = 1
2 ‖ si − Bix̃ ‖

2
2, in which si and Bi are raw data containing sensitive

information such as salary and medical record. When the subgradient method in [86] is used to solve the

optimization problem min
x̃

N∑
i=1

fi(x̃), agent i updates its intermediate states in the following way:

xk+1
i =

N∑
j=1

aijx
k
j − αkOfi(xki )

where aij are weights, αk is the stepsize, and Ofi(x) = BTi Bix − BTi si is the gradient. In this case, an

adversary can infer Ofi(xki ) based on exchanged intermediate states xi if the weights aij and stepsize αk

are publicly known. We consider two adversaries in this chapter: Honest-but-curious adversaries are agents

who follow all protocol steps correctly but are curious and collect all intermediate and input/output data in an

attempt to learn some information about other participating agents [62]. External eavesdroppers are adversaries

who steal information through wiretapping all communication channels and intercepting exchanged messages

between agents. Protecting agents’ intermediate states can avoid eavesdroppers from inferring any information

in optimization.

Organization: The rest of this chapter is organized as follows: Sec. 3.2 first presents the conventional

ADMM solution to (3.1), and then introduces a new ADMM which allows time-varying penalty matrices with

guaranteed convergence. Based on the new ADMM and partially homomorphic cryptography, a completely

decentralized privacy-preserving approach to solving problem (3.1) is proposed in Sec. 3.3. Rigorous analysis

of the guaranteed privacy of the approach are addressed in Sec. 3.4 and its implementation details are discussed

in Sec. 3.5. Numerical simulation results are given in Sec. 3.6 and Sec. 3.7 to confirm the effectiveness and

computational efficiency of the proposed approach. In the end, we draw summaries in Sec. 3.8.
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3.2 A New ADMM with Time-varying Penalty Matrices

In this section, we propose a new ADMM with time-varying penalty matrices for (3.1), which is

key for enabling the incorporation of partially homomorphic cryptography in a completely decentralized

optimization problem for privacy protection.

3.2.1 Problem Formulation

We assume that each fi in (3.1) is private and only known to agent i, and all N agents form a

bidirectional connected network. Using the graph theory [14], we represent the communication pattern of

a multi-agent network by a graph G = {V,E}, where V denotes the set of agents and E denotes the set of

communication links (undirected edges) between agents. Denote the total number of communication links in

E as |E|. If there exists a communication link between agents i and j, we say that agent j is a neighbor of i

(agent i is a neighbor of j as well) and denote the communication link as ei,j ∈ E if i < j is true or ej,i ∈ E

if i > j is true. Moreover, we denote the set of all neighboring agents of i as Ni (we consider agent i to be a

neighbor of itself in this chapter, i.e., i ∈ Ni, but ei,i /∈ E).

3.2.2 Proximal Jacobian ADMM

To solve (3.1) in a decentralized manner, we reformulate (3.1) as follows (which avoids using dummy

variables in conventional ADMM [103]):

min
xi∈RD, i∈{1,2,...,N}

N∑
i=1

fi(xi)

subject to xi = xj , ∀ei,j ∈ E,

(3.2)

where xi is considered as a copy of x and belongs to agent i. To solve (3.2), each agent first exchanges its

current state xi with its neighbors. Then it carries out local computations based on its private local objective

function fi and the received state information from neighbors to update its state. Iterating these computations

will make every agent reach consensus on a solution that is optimal to (3.1) when (3.1) is convex. Detailed

implementation of the ADMM algorithm based on Jacobian update is elaborated as follows [26]:

 xt+1
i = argmin

xi

L(xt1,x
t
2, ...,x

t
i−1,xi,x

t
i+1, ...,x

t
N ,λ

t) +
γi
2
‖ xi − xti ‖2, (3.3)

λt+1
i,j = λti,j + ρ(xt+1

i − xt+1
j ), ∀j ∈ Ni (3.4)
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for i = 1, 2, ..., N . Here, t is the iteration index, γi > 0 (i = 1, 2, ..., N) are proximal coefficients, and L is

the augmented Lagrangian function

L(x,λ) =

N∑
i=1

fi(xi) +
∑
ei,j∈E

(λTi,j(xi − xj) +
ρ

2
‖ xi − xj ‖2). (3.5)

In (3.5), x = [xT1 ,x
T
2 , ...,x

T
N ]T ∈ RND is the augmented state, λi,j is the Lagrange multiplier corresponding

to the constraint xi = xj , and all λi,j for ei,j ∈ E are stacked into λ ∈ R|E|D. ρ is the penalty parameter,

which is a positive constant scalar.

The above ADMM algorithm cannot protect the privacy of participating agents as states are exchanged

and disclosed explicitly among neighboring agents. To facilitate privacy design, we propose a new ADMM with

time-varying penalty matrices in the following subsection, which will enable the integration of homomorphic

cryptography and decentralized optimization in Sec. 3.3.

3.2.3 ADMM with Time-varying Penalty Matrices

Motivated by the fact that ADMM allows time-varying penalty matrices [45, 58], we present in the

following an ADMM with time-varying penalty matrices. It is worth noting that [45, 58] deal with a two-block

(N = 2) problem. While in this chapter, we consider a more general problem with N ≥ 3 blocks, whose

convergence is more difficult to analyze. The generalization from N = 2 to N ≥ 3 is highly non-trivial.

In fact, as indicated in [22], a direct extension from two-block to multi-block convex minimization is not

necessarily convergent.

We first reformulate (3.1) in a more compact form:

min
x

f(x)

subject to Ax = 0,

(3.6)

where x = [xT1 ,x
T
2 , ...,x

T
N ]T ∈ RND, f(x) =

N∑
i=1

fi(xi), and A = [am,n] ⊗ ID ∈ R|E|D×ND is the

edge-node incidence matrix of graph G as defined in [118], with its |E|D rows corresponding to the |E|

communication links and the ND columns corresponding to the N agents. The symbol ⊗ denotes Kronecker
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product. The am,n element is defined as

am,n =


1 if the mth edge originates from agent n,

−1 if the mth edge terminates at agent n,

0 otherwise.

Here we define that each edge ei,j originates from agent i and terminates at agent j.

Let λi,j be the Lagrange multiplier corresponding to the constraint xi = xj , then we can form an

augmented Lagrangian function of problem (3.6) as

L(x,λ,ρ) =

N∑
i=1

fi(xi) +
∑
ei,j∈E

(λTi,j(xi − xj) +
ρi,j
2
‖ xi − xj ‖2), (3.7)

or in a more compact form:

L(x,λ,ρ) = f(x) + λTAx+
1

2
‖ Ax ‖2ρ, (3.8)

where λ = [λi,j ]ij,ei,j∈E ∈ R|E|D is the augmented Lagrange multiplier,

ρ = diag{ρi,jID}ij,ei,j∈E ∈ R|E|D×|E|D, ρi,j > 0

is the time-varying penalty matrix, and ‖ Ax ‖2ρ= xTATρAx.

Note that if ρi,jID is the mth block in ρ, then ei,j is the mth edge in E, i.e., for the one-dimensional

case, am,i = 1 and am,j = −1, and for high dimensional cases, the (m, i)th block of A is ID and the (m, j)th

block of A is −ID.

Now, inspired by [45], we propose a new ADMM which allows time-varying penalty matrices based

on Jacobian update [99]:


xt+1
i = argmin

xi

L(xt1,x
t
2, ...,x

t
i−1,xi,x

t
i+1, ...,x

t
N ,λ

t,ρt) +
γi
2
‖ xi − xti ‖2, (3.9)

ρti,j → ρt+1
i,j , (3.10)

λt+1
i,j = λti,j + ρt+1

i,j (xt+1
i − xt+1

j ), ∀j ∈ Ni (3.11)

for i = 1, 2, ..., N . It is worth noting that although the communication graph is undirected, we introduce both

λi,j and λj,i for ei,j ∈ E in (3.4) and (3.11) to unify the algorithm description. More specifically, we set
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λ0
i,j = ρ0

i,j(x
0
i − x0

j ) at t = 0 such that λti,j = −λtj,i holds for all i = 1, 2, · · · , N, j ∈ Ni. In this way, we

can unify the update rule of agent i without separating i > j and i < j for j ∈ Ni, as shown in (3.13).

Remark 1. The proximal Jacobian ADMM (3.3)-(3.4) can be considered as a special case of (3.9)-(3.11)

by assigning the same and constant weight ρi,j = ρ to different equality constraints xi = xj . Different

from the ADMM which uses the same ρ (which might be time-varying in, e.g., the two-block optimization

problem [48]) for all equality constraints, the new approach uses different and time-varying ρi,j for different

equality constraints xi = xj . As indicated later, this is key for enabling privacy preservation.

Remark 2. We did not use Gauss-Seidel update [118], which requires a predefined global order and hence as

indicated in [26], is not amenable to parallelism. Different from [26] which has a constant penalty parameter,

we intentionally introduce time-varying penalty matrix to enable privacy preservation. Despite enabling

new capabilities in privacy protection (with the assistance of partially homomorphic Paillier encryption),

introducing time-varying penalty matrix also reduces convergence rate to O(1/t), in contrast to the o(1/t)

rate in [26]. Besides giving new capabilities in privacy and different result in convergence rate, the novel

idea of intentional time-varying penalty matrix also leads to difference in theoretical analysis in comparison

with [26].

It is obvious that the new ADMM (3.9)-(3.11) can be implemented in a decentralized manner. The

detailed implementation procedure is outlined in Algorithm 1.

Remark 3. A weighted ADMM which also assigns different weights to different equality constraints is

proposed in [64]. However, the weights in [64] are constant while Algorithm 1 allows time-varying weights in

each iteration, which, as shown later, is key to enable the integration of partially homomorphic cryptography

with decentralized optimization.

3.2.4 Convergence Analysis

In this subsection, we rigorously prove the convergence of Algorithm 1 under the following standard

assumptions [118]:

Assumption 1. Each private local function fi : RD → R is convex and continuously differentiable.

Assumption 2. Problem (3.6) has an optimal solution, i.e., the Lagrangian function

L(x,λ) = f(x) + λTAx (3.15)
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Algorithm 1
Initial Setup: Each agent i initializes x0

i , ρ0
i,j .

Input: xti, λ
t−1
i,j , ρti,j

Output: xt+1
i , λti,j , ρ

t+1
i,j

1. Each agent i sends xti, ρ
t
i,j to its neighboring agents, and then set ρti,j = min{ρti,j , ρtj,i}. It is clear that

ρti,j = ρtj,i holds.

2. Each agent i updates λti,j as follows for j ∈ Ni

λti,j = λt−1
i,j + ρti,j(x

t
i − xtj). (3.12)

It is clear that λti,j = −λtj,i holds (note that when t = 0, we set λ0
i,j = ρ0

i,j(x
0
i − x0

j )).

3. All agents update their local vectors in parallel:

xt+1
i ∈ argminxifi(xi) +

γi
2
‖ xi − xti ‖2 +

∑
j∈Ni

((λti,j)
Txi +

ρti,j
2
‖ xi − xtj ‖2). (3.13)

Here we added two proximal terms
ρti,i
2 ‖ xi−x

t
i ‖2 and γi

2 ‖ xi−x
t
i ‖2 to accommodate the influence

of xti. For all γi > 0, ρti,i is set to

ρti,i = 1−
∑

j∈Ni,j 6=i

ρti,j . (3.14)

4. Each agent i updates ρt+1
i,j for all j ∈ Ni and sets t = t+ 1. The detailed update rule for ρi,j will be

elaborated later in Theorem 1.

has a saddle point (x∗,λ∗) such that

L(x∗,λ) ≤ L(x∗,λ∗) ≤ L(x,λ∗)

holds for all x ∈ RND and λ ∈ R|E|D.

Denote the iterating results in the kth step in Algorithm 1 as follows:

xk = [xkT1 ,xkT2 , ...,xkTN ]T ∈ RND,

λk = [λki,j ]ij,ei,j∈E ∈ R|E|D,

ρk = diag{ρki,jID}ij,ei,j∈E ∈ R|E|D×|E|D.
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Further augment the coefficients γi (i = 1, 2, ..., N) in (3.13) into the matrix form

QP = diag{γ1, γ2, . . . , γN} ⊗ ID ∈ RND×ND,

and augment ρki,j into the following matrix form

QkC = diag{
∑
j∈N1

ρk1,j ,
∑
j∈N2

ρk2,j , . . . ,
∑
j∈NN

ρkN,j} ⊗ ID,

and QkC ∈ RND×ND. By plugging (3.14) into QkC , we have QkC = IND, i.e., QkC is an identity matrix.

Now we are in position to give the main results of this subsection:

Theorem 1. Under Assumption 1 and Assumption 2, Algorithm 1 is guaranteed to converge to an optimal

solution to (3.6) if the following two conditions are met:

Condition A: The sequence {ρk} satisfies

0 ≺ ρ0 � ρk � ρk+1 � ρ̄, ∀k ≥ 0,

where ρ0 � 0 means that ρ0 is positive definite, and similarly ρk � ρk+1 means that ρk+1 − ρk is positive

semi-definite.

Condition B: QP +QkC � AT ρ̄A.

Proof: The proof is provided in the Appendix A.1. �

Theorem 2. The convergence rate of Algorithm 1 is O(1/t), where t is the iteration time.

Proof: The proof is provided in the Appendix A.2. �

3.3 Privacy-Preserving Decentralized Optimization

Algorithm 1 requires agents to exchange and disclose states explicitly in each iteration among

neighboring agents to reach consensus on the final optimal solution. In this section, we combine partially

homomorphic cryptography with Algorithm 1 to propose a privacy-preserving approach for decentralized

optimization. We first give the definition of privacy used in this chapter.

Definition 1. A mechanismM :M(X ) → Y is defined to be privacy preserving if the input X cannot be

uniquely derived from the output Y .
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This definition of privacy is inspired by the privacy-preservation definitions in [19, 27, 41, 68, 71, 123]

which take advantages of the fact that if a system of equations has infinite number of solutions, it is impossible

to derive the exact value of the original input data from the output data. Therefore, privacy preservation is

achieved (see, e.g, Part 4.2.2 in [41]). Next, we introduce our privacy-preserving approach based on the Paillier

cryptosystem in Sec. 2.2. We combine Paillier cryptosystem with Algorithm 1 to enable privacy preservation

in the decentralized solving of optimization problem (3.1). First, note that solving (3.13) amounts to solving

the following problem:

Ofi(xi) +
∑
j∈Ni

(λti,j + ρti,j(xi − xtj)) + γi(xi − xti) = 0. (3.16)

Let λi =
∑
j∈Ni

λi,j , then (3.16) reduces to the following equation

Ofi(xi) + (
∑
j∈Ni

ρti,j + γi)xi + λti −
∑
j∈Ni

ρti,jx
t
j − γixti = 0. (3.17)

Given that we have set ρti,i = 1−
∑

j∈Ni,j 6=i
ρti,j in (3.14), we can further reduce (3.17) to

Ofi(xi) + (1 + γi)xi + λti −
∑
j∈Ni

ρti,j(x
t
j − xti)− (1 + γi)x

t
i = 0. (3.18)

By constructing ρti,j , i 6= j as the product of two random positive numbers, i.e., ρti,j = bti�j × btj�i =

ρtj,i, with bti�j only known to agent i and btj�i only known to agent j, we can propose a privacy-preserving

solution to (3.1) based on Algorithm 1, which is described in Algorithm 2.

Several remarks are in order:

1. The only situation that a neighbor knows the state of agent i is when xti = xtj is true for j ∈ Ni.

Otherwise, agent i’s state xti is encrypted and will not be revealed to its neighbors.

2. Agent i’s state xti and its intermediate communication data btj�i(x
t
j−xti) will not be revealed to outside

eavesdroppers, since they are encrypted.

3. The state of agent j ∈ Ni will not be revealed to agent i, because the decrypted message obtained by

agent i is btj�i(x
t
j − xti) with btj�i only known to agent j and varying in each iteration.

4. We encrypt Ei(−xti) because it is much easier to compute addition in ciphertext. The issue regarding

encryption of signed values using Paillier will be addressed in Sec. 3.5.
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Algorithm 2
Initial Setup: Each agent initializes x0

i .
Input: xti, λ

t−1
i,j

Output: xt+1
i , λti,j

1. Agent i encrypts −xti with its public key kpi:

xti → Ei(−xti).

Here the subscript i denotes encryption using the public key of agent i.

2. Agent i sends Ei(−xti) and its public key kpi to neighboring agents.

3. Agent j ∈ Ni encrypts xtj with agent i’s public key kpi:

xtj → Ei(xtj).

4. Agent j ∈ Ni computes the difference directly in ciphertext:

Ei(xtj − xti) = Ei(xtj) · Ei(−xti).

5. Agent j ∈ Ni computes the btj�i-weighted difference in ciphertext:

Ei(btj�i(xtj − xti)) = (Ei(xtj − xti))b
t
j�i .

6. Agent j ∈ Ni sends Ei(btj�i(xtj − xti)) back to agent i.

7. Agent i decrypts the message received from j with its private key ksi and multiples the result with bti�j
to get ρti,j(x

t
j − xti).

8. Computing (3.12), agent i obtains λti,j .

9. Computing (3.18), agent i obtains xt+1
i .

10. Each agent updates bti�j to bt+1
i�j and sets t = t+ 1.

5. Paillier encryption cannot be performed on vectors directly. For vector messages xti ∈ RD, each element

of the vector (a real number) has to be encrypted separately. For notation convenience, we still denote it

in the same way as scalars, e.g., Ei(−xti).

6. Paillier cryptosystem only works for integers, so additional steps have to be taken to convert real values

in optimization to integers. This may lead to quantization errors. A common workaround is to scale the

real value before quantization, as discussed in detail in Sec. 3.5.

7. By incorporating Paillier cryptosystem, it is obvious that the computation complexity and communication

load will increase. However, we argue that the privacy provided matters more than this disadvantage
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when privacy is of primary concern. Furthermore, our experimental results on Raspberry Pi boards

confirm that the added communication and computation overhead is fully manageable on embedded

microcontrollers (cf. Sec. 3.7).

8. Our approach is more suitable for small and medium sized optimization problems such as the power

system monitoring problem [117] addressed in our prior work.

The key to achieve privacy preservation is to construct ρti,j , i 6= j as the product of two random

positive numbers bti�j and btj�i, with bti�j generated by and only known to agent i and btj�i generated by and

only known to agent j. Next we show that the privacy preservation mechanism does not affect the convergence

to the optimal solution.

Theorem 3. The privacy-preserving algorithm 2 will generate a solution in an ε ball around the optimum if

bti�j , b
t
j�i, and γi are updated in the following way (where ε depends on the quantization error):

1. bti�j is randomly chosen from [bt−1
i�j , b̄i�j ], with b̄i�j > 0 denoting a predetermined constant only known

to agent i;

2. γi is chosen randomly in the interval [Nb̄2, ¯̄b], with b̄ > max{b̄i�j} denoting a predetermined positive

constant known to everyone and ¯̄b a threshold chosen arbitrarily by agent i and only known to agent i.

Proof: It can be easily obtained that if bti�j is updated following 1, and γi is updated following 2,

then Condition A and Condition B in Theorem 1 will be met automatically. Therefore, the states in algorithm

2 should converge to the optimal solution. However, since Paillier cryptosystem only works on unsigned

integers, it requires converting real-valued states to integers using e.g., fixed-point arithmetic encoding [2]

(after scaled by a large number Nmax, cf. Sec. 3.5), which leads to quantization errors. The quantization errors

lead to numerical errors on the final solution and hence the “ε-ball” statement in Theorem 3. It is worth noting

that the numerical error here is no different from the conventional quantization errors met by all algorithms

when implemented in practice on a computer. A quantized analysis of the ε-ball is usually notoriously involved

and hence we refer interested readers to [136] which is dedicated to this problem. Furthermore, we would like

to emphasize that this quantization error can be made arbitrarily small by using an arbitrarily large Nmax. In

fact, our simulation results in Sec. 3.6.2 showed that under Nmax = 106, the final error was on the order of

10−14. �
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3.4 Privacy Analysis

As indicated in the introduction, our approach aims to protect the privacy of agents’ intermediate

states xtis and gradients of fis as well as the objective functions. In this section, we rigorously prove that these

private information cannot be inferred by honest-but-curious adversaries and external eavesdroppers, which

are commonly used attack models in privacy studies [62] (cf. definition in Sec. 3.1). It is worth noting that the

form of each agent’s local objective function can also be totally blind to others, e.g., whether it is a quadratic,

exponential, or other forms of convex functions is only known to an agent itself.

As indicated in Sec. 3.3, our approach in Algorithm 2 guarantees that state information is not leaked

to any neighbor in one iteration. However, would some information get leaked over time? More specifically, if

an honest-but-curious adversary observes carefully its communications with neighbors over several steps, can

it put together all the received information to infer its neighbor’s state?

We can rigorously prove that an honest-but-curious adversary cannot infer the exact states of its

neighbors even by collecting samples from multiple steps.

Theorem 4. Assume that all agents follow Algorithm 2. Then agent j’s exact state value xkj cannot be inferred

by an honest-but-curious agent i unless xki = xkj is true.

Proof: Suppose that an honest-but-curious agent i collects information from K iterations to infer

the information of a neighboring agent j. From the perspective of adversary agent i, the measurements

(corresponding to neighboring agent j) seen in each iteration k are yk = bki�jb
k
j�i(x

k
j −xki ) (k = 0, 1, ...,K),

i.e., adversary agent i can establish (K + 1)D equations based on received information:



y0 = b0i�jb
0
j�i(x

0
j − x0

i ),

y1 = b1i�jb
1
j�i(x

1
j − x1

i ),

...

yK−1 = bK−1
i�j b

K−1
j�i (xK−1

j − xK−1
i ),

yK = bKi�jb
K
j�i(x

K
j − xKi ).

(3.19)

To the adversary agent i, in the system of equations (3.19), yk, bki�j ,x
k
i (k = 0, 1, 2, ...,K) are

known, but xkj , b
k
j�i (k = 0, 1, 2, ...,K) are unknown. So the above system of (K + 1)D equations contains

(K + 1)D +K + 1 unknown variables. It is clear that adversary agent i cannot solve the system of equations

(3.19) to infer the exact values of unknowns xkj and bkj�i (k = 0, 1, 2, ...,K) of agent j. It is worth noting that
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if for some time index k, xkj = xki happens to be true, then adversary agent i will be able to know that agent j

has the same state at this time index based on the fact that yk is 0. �

Using a similar way of reasoning, we can obtain that an honest-but-curious adversary agent i cannot

infer the exact gradient of objective function fj from a neighboring agent j at any point when agent j has

another legitimate neighbor other than the honest-but curious neighbor i.

Theorem 5. In Algorithm 2, the exact gradient of fj at any point cannot be inferred by an honest-but-curious

agent i if agent j has another legitimate neighbor.

Proof: Suppose that an honest-but-curious adversary agent i collects information from K iterations to

infer the gradient of function fj of a neighboring agent j. The adversary agent i can establish KD equations

corresponding to the gradient of fj by making use of the fact that the update rule (3.18) is publicly known, i.e.,



Ofj(x
1
j ) + (1 + γj)x

1
j + λ0

j −
∑
m∈Nj

ρ0
j,m(x0

m − x0
j )− (1 + γj)x

0
j = 0,

Ofj(x
2
j ) + (1 + γj)x

2
j + λ1

j −
∑
m∈Nj

ρ1
j,m(x1

m − x1
j )− (1 + γj)x

1
j = 0,

...

Ofj(x
K−1
j ) + (1 + γj)x

K−1
j + λK−2

j −
∑
m∈Nj

ρK−2
j,m (xK−2

m − xK−2
j )− (1 + γj)x

K−2
j = 0,

Ofj(x
K
j ) + (1 + γj)x

K
j + λK−1

j −
∑
m∈Nj

ρK−1
j,m (xK−1

m − xK−1
j )− (1 + γj)x

K−1
j = 0.

(3.20)

In the system of KD equations (3.20), Ofj(xkj ) (k = 1, 2, ...,K), γj , and xkj (k = 0, 1, 2, ...,K) are

unknown to adversary agent i. Parameters λkj and
∑

m∈Nj
ρkj,m(xkm−xkj ) (k = 0, 1, 2, ...,K − 1) are known to

adversary agent i only when agent j has agent i as the only neighbor. Otherwise, λkj and
∑

m∈Nj
ρkj,m(xkm−xkj )

(k = 0, 1, 2, ...,K−1) are unknown to adversary agent i. Noting that λk+1
j = λkj −

∑
m∈Nj

ρk+1
j,m (xk+1

m −xk+1
j )

and λ0
j = −

∑
m∈Nj

ρ0
j,m(x0

m−x0
j ), we can see that the above system of KD equations contains 3KD+D+1

unknowns when agent j has more than one neighbor. Therefore, adversary agent i cannot infer the exact values

of Ofj(xkj ) by solving (3.20).

It is worth noting that after the optimization converges, adversary agent i can have another piece of
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information according to the KKT conditions [26]:

Ofj(x
∗
j ) = −λ∗j (3.21)

where x∗j denotes the optimal solution and λ∗j denotes the optimal multiplier. However, since λ∗j is known to

adversary agent i only when agent j has agent i as the only neighbor, we have that adversary agent i cannot

infer the exact value of fj at any point when agent j has another legitimate neighbor besides an honest-but

curious neighbor i. �

Using a similar way of reasoning, we have the following corollary corresponding to the situation

where agent j has honest-but-curious agent i as the only neighbor.

Corollary 1. In Algorithm 2, the exact gradient of fj at the optimal solution can be inferred by an honest-but-

curious agent i if agent j has adversary agent i as the only neighbor. However, at any other point, the gradient

of fj is uninferrable by the adversary agent i.

Proof: Following a similar line of reasoning of Theorem 5, we can obtain the above Corollary. �

Based on Theorem 4, Theorem 5, and Corollary 1, we can obtain that agent i cannot infer agent j’s

local objective function fj .

Corollary 2. In Algorithm 2, agent j’s local objective function fj cannot be inferred by an honest-but-curious

agent i.

Proof: According to Theorem 4, Theorem 5, and Corollary 1, the intermediate states and correspond-

ing gradients of fj cannot be inferred by adversary i. Therefore, adversary i cannot infer agent j’s local

objective function fj as well. �

Furthermore, we have that an external eavesdropper cannot infer any private information of all agents.

Corollary 3. All agents’ intermediate states, gradients of objective functions, and objective functions cannot

be inferred by an external eavesdropper.

Proof: Since all exchanged messages are encrypted and that cracking the encryption is practically

infeasible [36], an external eavesdropper cannot learn anything by intercepting these messages. Therefore, it

cannot infer any agent’s intermediate states, gradients of objective functions, and objective functions. �

From the above analysis, it is obvious that agent j’s private information cannot be uniquely derived

by adversaries. However, an honest-but-curious neighbor i can still get some range information about the
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state xkj and this range information will become tighter as xkj converges to the optimal solution as k →∞ (cf.

the simulation results in Fig. 3.4). We argue that this is completely unavoidable for any privacy-preserving

approaches because all agents have to agree on the same final state, upon which the privacy of xkj will disappear.

In fact, this is also acknowledged in [54], which shows that the privacy of xkj will vanish as k →∞ and the

noise variance converges to zero at the state corresponding to the optimal solution. It is worth noting that

when the constraint is of a form different from consensus, it may be possible to protect the privacy of xkj when

k →∞. However, how to incorporate the proposed privacy mechanism in decentralized optimization under

non-consensus constraint is difficult and could be addressed in future work.

Remark 4. It is worth noting that an adversary agent i can combine systems of equations (3.19) and (3.20)

to infer the information of a neighboring agent j. However, this will not increase the ability of adversary agent

i because the combination will not change the fact that the number of unknowns is greater than the number of

establishable relevant equations. In addition, if all other agents collude to infer xkj of agent j, these agents

can be considered as one agent which amounts to having a network consisting of two agents.

Remark 5. From Theorem 4, we can see that in decentralized optimization, an agent’s information will not be

disclosed to other agents no matter how many neighbors it has. This is in distinct difference from the average

consensus problem in [80, 98] where privacy cannot be protected for an agent if it has an honest-but-curious

adversary as the only neighbor.

3.5 Implementation Details

In this section, we discuss several technical issues that have to be addressed in the implementation of

Algorithm 2.

1. In modern communication, a real number is represented by a floating point number, while encryption

techniques only work for unsigned integers. To deal with this problem, we uniformly multiplied each

element of the vector message xti ∈ RD (in floating point representation) by a sufficiently large number

Nmax and round off the fractional part during the encryption to convert it to an integer. After decryption,

the result is divided by Nmax. This process is conducted in each iteration and this quantization brings

an error upper-bounded by 1
Nmax

. In implementation, Nmax can be chosen according to the used data

structure.

2. As indicated in 1, encryption techniques only work for unsigned integers. In our implementation all
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integer values are stored in fix-length integers (i.e., long int in C) and negative values are left in 2’s

complement format. Encryption and intermediate computations are carried out as if the underlying data

were unsigned. When the final message is decrypted, the overflown bits (bits outside the fixed length)

are discarded and the remaining binary number is treated as a signed integer which is later converted

back to a real value.

3.6 Numerical Simulations

In this section, we first illustrate the efficiency of the proposed approach using C/C++ implementations.

Then we compare our approach with the algorithm in [54] and the algorithm in [71]. The open-source C

implementation of the Paillier cryptosystem [12] is used in our simulations. We conducted numerical

experiments on the following global objective function

f(x̃) =

N∑
i=1

1

pi
‖ Hix̃− θi ‖2, (3.22)

which makes the optimization problem (3.1) become

min
x̃

N∑
i=1

1

pi
‖ Hix̃− θi ‖2 (3.23)

with θi ∈ RD, Hi = hiID (hi ∈ R), and pi > 0 (pi ∈ R). Hence, each agent i deals with a private local

objective function

fi(xi) =
1

pi
‖ Hixi − θi ‖2,∀i ∈ {1, 2, . . . , N}. (3.24)

We used the above function (3.22) because it is easy to verify whether the obtained solution is the minimal

value of the original optimization problem, which should be
∑N
i=1

2hi
pi
θi∑N

i=1

2h2
i

pi

. Furthermore, (3.22) makes it easy to

compare with [54], whose verification is also based on (3.22).

In the implementation, the parameters are set as follows: Nmax was set to 106 to convert each element

in xi to a 64-bit integer during intermediate computations. bti�j was also scaled up in the same way and

represented by a 64-bit integer. The encryption and decryption keys were chosen as 256-bit long.
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3.6.1 Evaluation of Our Approach

We implemented Algorithm 2 on different network topologies, all of which gave the right optimal

solution. Simulation results confirmed that our approach always converged to the optimal solution of (3.23).

Fig. 3.2 visualizes the evolution of xi (i = 1, 2, ..., 6) in one specific run where the network deployment

is illustrated in Fig. 3.1. In Fig. 3.2, xij (i = 1, 2, ..., 6, j = 1, 2) denotes the jth element of xi. All

xi (i = 1, 2, ..., 6) converged to the optimal solution [38.5; 407
6 ]. In this run, b̄ was set to 0.65 and γis

were set to 3. Fig. 3.3 visualizes the encrypted weighted differences (in ciphertext) E1(bt2�1(xt21 − xt11)),

agent communication 

link

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

Figure 3.1: A network of six agents (N = 6).
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Figure 3.2: The evolution of xi (i = 1, 2, ..., 6) in Algorithm 2.
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E1(bt4�1(xt41 − xt11)), and E1(bt6�1(xt61 − xt11)). It is worth noting that although the states of all agents have

converged after about 40 iterations, the encrypted weighted differences (in ciphertext) still appeared random to

an outside eavesdropper.
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Figure 3.3: The evolution of the encrypted weighted differences (in ciphertext) E1(bt2�1(xt21 − xt11)),
E1(bt4�1(xt41 − xt11)), and E1(bt6�1(xt61 − xt11)) in Algorithm 2.

We also simulated an honest-but-curious adversary who tries to estimate its neighbors’ intermediate

states and gradients in order to estimate the objective function. We considered the worse case of two agents

(A and B) where agent B is the honest-but-curious adversary and intends to estimate the objective function

fA of agent A. The individual local objective functions are the same as (3.24) with θi ∈ R. Because agent

B knows the constraints on agent A’s generation of btA�B and γA (cf. Theorem 3), it generates estimates of

btA�B and γA in the same random way. Then it obtained a series of estimated xtA and OfA(xtA) according to

(3.20). Finally, agent B used the estimated xtA and OfA(xtA) to estimate fA.

Fig. 3.4 and Fig. 3.5 show the estimated xA and fA in 2,000 trials when agent B used simple linear

regression to estimate OfA(x). Fig. 3.5 suggests that agent B cannot get a good estimate of fA. Moreover,

it is worth noting that all these estimated functions give the same optimal solution as fA to the optimization

problem (3.23).

In addition, the encryption/decryption computation took about 1ms for each agent to communicate

with one neighbor at each iteration on a 3.6 GHz CPU, which is manageable in small or medium sized real-time

optimization problems such as the power system monitoring problem [117] addressed in our prior work. For

29



0 10 20 30 40 50

Iteration

-5000

0

5000

S
ta

te

Actual xA

Estimated states of xA in 2000 trials

Figure 3.4: Estimated states of xA in 2,000 trials.

Figure 3.5: Estimated functions of fA in 2,000 trials.
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large sized optimization problems like machine learning with extremely large dimensions, the approach may

be computationally too heavy due to the underlying Paillier encryption scheme.

3.6.2 Comparison with the algorithm in [54]

We then compared our approach with the differential-privacy based privacy-preserving optimization

algorithm in [54]. Under the communication topology in Fig. 3.1, we simulated the algorithm in [54] under

seven different privacy levels: ε = 0.2, 1, 10, 20, 30, 50, 100. The global function we used for comparison was

(3.22) with pi (i = 1, 2, .., 6) fixed to 2, hi (i = 1, 2, .., 6) fixed to 1, and θi = [0.1 × (i − 1) + 0.1; 0.1 ×

(i − 1) + 0.2]. The domain of optimization was set to X = {(x, y) ∈ R2|x2 + y2 ≤ 1} for the algorithm

in [54]. Note that the optimal solution [0.35; 0.45] resided in X . Parameter settings for the algorithm in [54]

are detailed as follows: n = 2, c = 0.5, q = 0.8, p = 0.9, and

aij =



0.2 j ∈ Ni\i,

0 j /∈ Ni,

1−
∑

j∈Ni\i

aij i = j,

(3.25)

for i = 1, 2, ..., 6. Here Ni\i denotes all values except i in set Ni. Furthermore, we used the performance

index d in [54] to quantify the optimization error, which was computed as the average value of squared

distances with respect to the optimal solution over M runs [54], i.e.,

d =

6∑
i=1

M∑
k=1

‖ xki − [0.35; 0.45] ‖2

6M

with xki the obtained solution of agent i in the kth run.

Simulation results from 5,000 runs showed that our approach converged to [0.35; 0.45] with an error

d = 3.14 × 10−14, which is negligible compared with the simulation results under the algorithm in [54]

(cf. Fig. 3.6, where each differential privacy level was implemented for 5,000 times). The results confirm

the trade-off between privacy and accuracy for differential-privacy based approaches and demonstrate the

advantages of our approach in terms of optimization accuracy.

31



0 20 40 60 80 100
ǫ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

d

the algorithm in [54]

Algorithm 2

Figure 3.6: The comparison of Algorithm 2 with the algorithm in [54] in terms of optimization error.

3.6.3 Comparison with the algorithm in [71]

We also compared our approach with the privacy-preserving optimization algorithm in [71]. The

network communication topology used for comparison is still the one in Fig. 3.1 and the global objective

function used is (3.22) with pi (i = 1, 2, .., 6) fixed to 2, hi (i = 1, 2, .., 6) fixed to 1, and θi ∈ R2. The

adjacency matrix of network graph is defined in (3.25) for the algorithm in [71]. Moreover, we let every agent

update at each iteration and ci = 1 (i = 1, ..., 6) for [71]. The initial states are set to the same values for both

algorithms.

Fig. 3.7 and Fig. 3.8 show the evolution of xi in our approach and the algorithm in [71] respectively.

It is clear that our approach converged faster than the algorithm in [71].

3.7 Implementation on Raspberry PI boards

We also implemented our privacy-preserving approach on twelve Raspberry Pi boards to confirm the

efficiency of the approach in real-world physical systems. Each board has 64-bit ARMv8 CPU and 1 GB RAM

(cf. Fig. 3.9). The optimization problem (3.23) was used in implementation with pi (i = 1, 2, .., 6) fixed to 2,

hi (i = 1, 2, .., 6) fixed to 1, and θi ∈ R. In the implementation, “libpaillier-0.8” library [3] was used to realize

the Paillier encryption and decryption process, “sys/socket.h” C library was used to conduct communication

through Wi-Fi, and “pthread” C library was used to generate multiple parallel threads to realize parallelism in
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Figure 3.7: The evolution of xi in Algorithm 2.
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Figure 3.8: The evolution of xi in the algorithm of [71].
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multi-agent networks. The encryption and decryption keys were chosen as 512-bit long.

Implementation results confirmed that our approach always converged to the optimal solution. Fig.

3.10 visualizes the evolution of xi (i = 1, 2, ..., 12) in one specific implementation where the network topology

used is a cycle graph. We can see that each xi converged to the optimal solution 188.417.

Figure 3.9: The twelve Raspberry Pi boards
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Figure 3.10: The evolution of xi of Algorithm 2 in the experimental verification using Raspberry Pi boards.
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3.8 Summaries

In this chapter, we presented a privacy-preserving decentralized optimization approach by proposing

a new ADMM and leveraging partially homomorphic cryptography. By incorporating Paillier cryptosystem

into the newly proposed decentralized ADMM, our approach provides guarantee for privacy preservation

without compromising the solution in the absence of any aggregator or third party. This is in sharp contrast

to differential-privacy based approaches which protect privacy through injecting noise and are subject to a

fundamental trade-off between privacy and accuracy. Different from the privacy-preserving optimization

approach in [71] which only protects the privacy of gradients, our approach preserves the privacy of both

intermediate states and gradients. In addition, [71] assumes that an adversary does not have access to the

adjacency matrix of the network graph while our approach does not need this assumption.Theoretical analysis

confirms that an honest-but-curious adversary cannot infer the information of neighboring agents even by

recording and analyzing the information exchanged in multiple iterations. The new ADMM allows time-

varying penalty matrices and have a theoretically guaranteed convergence rate of O(1/t), which makes it of

mathematical interest by itself. Numerical and experimental results are given to confirm the effectiveness and

efficiency of the proposed approach.
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Chapter 4

Privacy-preserving Decentralized

Optimization Based on Subgradient

Method

4.1 Introduction

This chapter considers a decentralized problem in which N agents cooperatively solve a constrained

optimization over a time-varying network topology. Such optimization problem have found applications in

domains as diverse as source localization in sensor networks [78], spectrum sensing in cognitive networks [128],

support vector machine in machine learning [23], cooperative control [87], data regression in statistics

[67, 77], and the monitoring of power systems [35, 83]. In this chapter, we propose an approach that enables

privacy-preservation in decentralized optimization through incorporating partially homomorphic cryptography

in subgradient method. We show that by employing the convergence property of subgradient method,

cryptographic techniques can be incorporated in a fully decentralized manner to enable privacy-preservation in

decentralized optimization in the absence of any third party or aggregator.

We also consider the two types of adversaries defined in 3.1 in this chapter, which are Honest-but-

curious adversaries who follow all protocol steps correctly but are curious and collect all intermediate and

input/output data in an attempt to learn some information about other participating agents [36,62] and External

eavesdroppers who steal information through wiretapping all communication channels and intercepting
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exchanged messages between agents. In addition, we define privacy as preserving the confidentiality of agents’

intermediate states and objective functions in this chapter.

The rest of this chapter is organized as follows: Sec. 4.2 reviews the constrained decentralized

optimization problem. Based on the Paillier cryptosystem, a completely decentralized privacy-preserving

approach is proposed in Sec. 4.3. Rigorous analysis of the guaranteed privacy under the approach is addressed

in Sec. 4.4 and its implementation details are discussed in Sec. 4.5. Sec. 4.6 discusses its application to the

average consensus problem. Numerical simulation results are given in Sec. 4.7 to confirm the effectiveness

and computational efficiency of the proposed approach. In the end, we draw summaries in Sec. 4.8.

4.2 Preliminaries

4.2.1 Constrained Decentralized Optimization

4.2.1.1 Optimization Model

The problem of constrained decentralized optimization can be formulated in the following form:

min
x̃

N∑
i=1

fi(x̃)

subject to x̃ ∈ X ,

(4.1)

where X ⊆ RD is a closed convex set common to all agents, and function fi : RD → R is the local objective

function private to (only known to) agent i. Note that here fi is convex but not necessarily differentiable

everywhere.

Remark 6. In practical applications, the solutions to an unconstrained optimization problem should be finite.

Therefore, we can easily reformulate an unconstrained optimization problem as a constrained optimization

problem by setting a large enough constraint set X .

The constrained optimization problem has been widely used. Here we give some typical examples.

Example 1: In source localization, N sensors cooperatively localize the position of a source using

noisy range measurements with respect to the source from distributedly deployed sensors. When the source is

located in the convex hull of deployed sensors, a classical approach is to turn the localization problem into the
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problem of finding a point common to a set of closed convex sets Xi [78], which can be formulated as follows:

min
x

1

2

N∑
i=1

‖ x− PXi [x] ‖2

where i = 1, 2, ..., N is the index of deployed sensors and

Xi = {x ∈ RD| ‖ x− pi ‖2≤ r2
i }.

Here, pi is the position of sensor i and ri is the range measurement of the source with respect to sensor i.

PXi [·] denotes the projection operation onto the set Xi, i.e., PXi [r] = argmin
y∈Xi

‖ y − r ‖.

Example 2: In cooperative control, a typical problem is to guarantee that a group of agents reach a

common decision or agreement formulated as follows [54, 87]:

min
x

N∑
i=1

1

2
‖ x− θi ‖2

subject to x ∈ X ,

(4.2)

where θi (i = 1, 2, ..., N) are known parameters, and x is the unknown vector.

Example 3: In statistical analysis, many problems have the constrained optimization formulation in

(4.1):

Simple linear regression

min
γ0,γ1

N∑
i=1

‖ yi − γ0 − γ1xi ‖2,

where yi and xi are known parameters, γ0 and γ1 are unknown variables.

Logistic regression [67]

min
x,c

1

N

N∑
i=1

log(1 + exp(−bi(xTai + c))) + τ ‖ x ‖1,

where bi, ai, and τ are known parameters, c and x are unknown variables.

Other examples can be found in power systems [83], compressive spectrum sensing [128], and

machine leaning [23, 123, 134].
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4.2.1.2 Decentralized Algorithm [87]

A decentralized solution to the constrained optimization problem (4.1) is the projected subgradient

algorithm in [87]. In the projected subgradient algorithm, each agent i updates its estimate by first fusing the

estimates from its neighbors, then taking a subgradient step, and finally projecting to the closed convex set X ,

i.e.,

vki =

N∑
j=1

akijx
k
j , (4.3)

xk+1
i = PX [vki − αkdki ]. (4.4)

Here, aij is a nonnegative weight assigned to xj by agent i, PX [·] denotes the projection operation onto the

set X , i.e., PX [r] = argmin
y∈X

‖ y − r ‖, αk > 0 is a stepsize, and dki is a subgradient of fi at x = vki .

4.2.1.3 Convergence Analysis

According to [87], the algorithm (4.3)-(4.4) is guaranteed to converge under the following three

assumptions when the stepsize αk satisfies
∑
k

αk =∞ and
∑
k

α2
k <∞:

Assumption 3. There exists a scalar 0 < η < 1 such that for all k ≥ 0 and i = 1, 2, ..., N :

1. akii ≥ η.

2. akij ≥ η for all j ∈ N k
i . Here N k

i denotes the set of all neighboring agents of i at time instant k.

3. akij = 0 for all j /∈ N k
i ∪ {i}.

4.
N∑
j=1

akij = 1.

5. akij = akji.

Note that the N agents may form a time-varying network, i.e., the neighbors of agent i may change

with time.

Assumption 4. The graph (V,E∞) is strongly connected, where

E∞ = {eij |eij ∈ Ek for infinitely many indices k}.
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Here, Ek denotes the set of communication links (undirected edges) at time instant k, and eij ∈ Ek

denotes that agents i and j are neighbors (directly connected) at time instant k. Note that here we denote a

communication link as eij if i < j is true or as eji otherwise.

Assumption 5. There exists an integer B ≥ 1 such that for each eij ∈ E∞, agent j sends its estimate to

agent i at least once every B consecutive time slots.

A typical way to choose αk is αk = T1

k+T2
, where 0 < T1 <∞ and 0 < T2 <∞.

4.3 Privacy-preserving Decentralized Optimization

In the algorithm (4.3)-(4.4) for the constrained optimization problem (4.1), to reach consensus on the

final optimal solution, agents exchange and disclose estimates (states) explicitly in each iteration to neighboring

agents, which leads to privacy breaches. Such information exchange is also vulnerable to eavesdropping

attacks which aim to steal information by intercepting exchanged messages. In this section, we introduce

a completely decentralized and third-party free approach to enable privacy-preservation in the constrained

decentralized optimization problem. More specifically, we will propose an interaction protocol which enables

an easy integration of partially homomorphic cryptography with the algorithm (4.3)-(4.4) to enable privacy-

preservation without the assistance of any aggregator or third party. The definition of privacy is given in

Definition 1.

To this end, we first rewrite (4.3) as follows

vki = xki +

N∑
j=1,j 6=i

akij(x
k
j − xki ). (4.5)

The key idea of our privacy-preserving mechanism is to construct akij , i 6= j, j ∈ N k
i as the product

of two random positive numbers, i.e., akij = bki�j × bkj�i = akji, with bki�j generated by and only known to

agent i, and bkj�i generated by and only known to agent j when agent i and agent j can communicate with

each other at time instant k. It is worth noting that if agent i and agent j cannot communicate with each other

at time instant k, akij and akji are set to 0 directly. Next we give in detail our privacy-preserving solution to the

constrained-decentralized-optimization problem in (4.1), which is described in Algorithm 3.

Several remarks are in order:
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Algorithm 3
Initial Setup: Each agent initializes x0

i .
Input: xki
Output: xk+1

i

1. Agent i encrypts −xki with its public key kpi:

xki → Ei(−xki ).

Here the subscript i denotes encryption using the public key of agent i.

2. Agent i sends Ei(−xki ) and its public key kpi to its neighboring agents.

3. Agent j ∈ N k
i encrypts xkj with agent i’s public key kpi:

xkj → Ei(xkj ).

4. Agent j ∈ N k
i computes the difference directly in ciphertext:

Ei(xkj − xki ) = Ei(xkj ) · Ei(−xki ).

5. Agent j ∈ N k
i computes the bkj�i-weighted difference in ciphertext:

Ei(bkj�i(xkj − xki )) = (Ei(xkj − xki ))b
k
j�i .

6. Agent j ∈ N k
i sends Ei(bkj�i(xkj − xki )) back to agent i.

7. Agent i decrypts the message received from j with its private key ksi and multiples the result with bki�j
to get akij(x

k
j − xki ).

8. Computing (4.5), agent i obtains vki .

9. Computing (4.4), agent i obtains xk+1
i .

10. Each agent updates bki�j to bk+1
i�j and sets k = k + 1.

1. Agent i’s state xki and its intermediate communication data bkj�i(x
k
j − xki ) will not be revealed to

outside eavesdroppers, since they are encrypted.

2. The state of agent j ∈ N k
i will not be revealed to agent i, because the decrypted message obtained by

agent i is bkj�i(x
k
j − xki ) with bkj�i only known to agent j and varying in each iteration.

3. We encrypt Ei(−xki ) because it is much easier to compute addition in ciphertext. The issue regarding

encryption of signed values using Paillier will be addressed in Sec. 4.5.

4. Paillier encryption cannot be performed on vectors directly. For vector messages xki ∈ RD, each

element of the vector has to be encrypted separately. For notational convenience, we still denote it in the
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same way as scalars, e.g., Ei(−xki ).

5. Paillier cryptosystem only works for integers, so additional steps have to be taken to convert real values

in optimization to integers. This may lead to quantization errors. A common workaround is to scale a

real value before quantization, as discussed in detail in Sec. 4.5.

6. The proposed approach requires agents to update synchronously and it may fail to converge if applied to

asynchronous networks directly.

In Algorithm 3, steps 1 to 7 constitute the core of our approach to incorporating Paillier cryptosystem

in privacy-preserving optimization in a fully decentralized manner. In fact, it can also be seen that the only

net effect of our privacy-preserving mechanism is random and time-varying coefficients akij in (4.5). Next we

show that the privacy-preserving mechanism does not affect the convergence of the algorithm to its optimal

solution.

Theorem 6. The convergence of the privacy-preserving Algorithm 3 is guaranteed if Assumptions 4 and

5 hold, all bki�j are randomly chosen from [
√
η,
√

1−η
N−1 ] with 0 < η < 1/N , and the stepsize αk satisfies∑

k

αk =∞ and
∑
k

α2
k <∞.

Proof: We show that Assumption 3 will be met if all bki�j are randomly chosen from [
√
η,
√

1−η
N−1 ]

with 0 < η < 1/N . First, since akij and akji are set to 0 directly when j /∈ N k
i , and to akij = bki�jb

k
j�i =

bkj�ib
k
i�j = akji when j ∈ N k

i , it is clear that conditions 3) and 5) in Assumption 3 are satisfied. (Note that

bki�j and bkj�i are unknown to agents j and i respectively, so akij and akji are equal but unknown to both agent i

and agent j.) Next, rewriting (4.5) as

vki = (1−
N∑

j=1,j 6=i

akij)x
k
i +

N∑
j=1,j 6=i

akijx
k
j

we have that akii = 1 −
N∑

j=1,j 6=i
akij is always true under the update rule and hence the condition 4) of

Assumption 3 is satisfied. When j ∈ N k
i , bki�j and bkj�i are chosen from the interval [

√
η,
√

1−η
N−1 ], so we

have η ≤ akij = bki�jb
k
j�i ≤

1−η
N−1 and further akii = 1−

N∑
j=1,j 6=i

akij ≥ 1− (N − 1)×
√

1−η
N−1 ×

√
1−η
N−1 = η,

i.e., akij ≥ η and akii ≥ η for 0 < η < 1/N . Therefore, the conditions 1) and 2) in Assumption 3 are also

satisfied. So we have Theorem 6. �

Remark 7. It is worth noting that in Algorithm 3, if the state of agent i and agent j, i.e., xki and xkj happen to

be equal to each other, then agent i will be able to know this based on the fact that the obtained akij(x
k
j − xki )
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in step 7 is zero. This fact that agent i and agent j being equal is inferable from zero akij(x
k
j − xki ) can be

covered by allowing bki�j and bkj�i to be set to zero randomly. In this case, agents i and j’s mutual link is

intentionally abandoned and they are not neighbors any more at this specific time instant. Because they are

not neighbors at this time instant, having akij = 0 in this case is still consistent with the conditions 2 and 3 in

Assumption 3. Therefore, following a similar derivation as Theorem 6, we can easily get that the network will

converge to the optimal solution as long as there exists an integer B ≥ 1 such that for each eij ∈ E∞, bki�j

and bkj�i are both nonzero for at least once every B consecutive time slots.

Remark 8. According to [87], when the weights akij are identical and time-invariant, i.e., all equal to 1/N ,

the convergence rate of algorithm (4.3)-(4.4) is geometric, i.e., there exists a λ ∈ (0, 1) and some positive

constant C such that ‖ xk − x∗ ‖≤ Cλk holds for all k [88]. When akij are time-varying, according

to [87], the convergence rate is mainly determined by the rate at which the transition matrix Φ(k, s) =

A(s)A(s + 1)...A(k − 1)Ak converges to 1
N 1T1, where 1 represents a column vector of all ones and the

(i, j)th entry of Ak is equal to akij . So next we analyze the influence of the privacy-preserving mechanism

on convergence rate by analyzing the influence of random akij on the convergence of Φ(k, s). Note that the

convergence of the transition matrix Φ(k, s) is established in [87]:

|[Φ(k, s)]ji −
1

N
| ≤ 2

1 + η−B0

1− ηB0
(1− ηB0)(k−s)/B0 ,

where B0 = (N − 1)B with B defined in Assumption 5 and N the total number of agents. It is clear that

a greater η leads to a higher convergence speed. However, from Theorem 6 we know that all akij should be

randomly chosen in [η, 1−η
N−1 ], and hence to provide stronger privacy protection, η should be set smaller to

ensure that weights akij can randomly vary in a larger range. Therefore, there is a trade-off in choosing η: a

smaller η leads to stronger privacy protection but a lower convergence speed.

4.4 Privacy Analysis

In this section, we rigorously prove that each agent’s private information, e.g., immediate estimate

(state) xkj and private local objective function fj , cannot be inferred by honest-but-curious adversaries and

external eavesdroppers, which are commonly-used attack models in privacy studies [36,62] (cf. definitions

in Sec. 4.1). It is worth noting that the form of each agent’s local objective function fj can also be totally

inaccessible to others, i.e., whether it is a quadratic, exponential, or other forms of convex functions is only
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known to an agent itself. In addition, the distribution of bj�i is private to agent j itself.

As indicated in Sec. 4.3, our approach in Algorithm 3 guarantees that state information is not leaked to

any neighbors in one iteration. However, would some information get leaked to an honest-but-curious adversary

over time? More specifically, if an honest-but-curious adversary observes carefully its communications with

neighbors over several steps, can it put together all the received information to infer its neighbor’s state?

We can rigorously prove that an honest-but-curious adversary cannot infer the states of its neighbors

even by collecting samples from multiple steps.

Theorem 7. In Algorithm 3, an agent j’s state xkj cannot be inferred by an honest-but-curious neighboring

agent i.

Proof: Suppose that an honest-but-curious agent i collects information from K iterations to infer

the information of a neighboring agent j. From the perspective of the adversary agent i, the measurement

(corresponding to neighboring agent j) seen in each iteration k is yk = bki�jb
k
j�i(x

k
j−xki ) (k = 0, 1, 2, ...,K),

i.e., based on received information, the adversary agent i can establish (K + 1)D equations with respect to the

state of agent j:



y0 = b0i�jb
0
j�i(x

0
j − x0

i ),

y1 = b1i�jb
1
j�i(x

1
j − x1

i ),

...

yK = bKi�jb
K
j�i(x

K
j − xKi ).

(4.6)

To the adversary agent i, in the system of equations (4.6), yk, bki�j , x
k
i (k = 0, 1, 2, ...,K) are

known, but xkj , b
k
j�i (k = 0, 1, 2, ...,K) are unknown. So the above system of (K + 1)D equations contains

(K + 1)D + K + 1 unknown variables. It is clear that the adversary agent i cannot solve the system of

equations to infer the unknowns xkj or bkj�i (k = 0, 1, 2, ...,K) of agent j. �

Based on a similar line of reasoning, we can obtain that an honest-but-curious agent i cannot infer

the private information of function fj from a neighboring agent j either.

Corollary 4. In Algorithm 3, agent j’s private local function fj will not be revealed to an honest-but-curious

agent i.

Proof: Suppose that an honest-but-curious agent i collects information from K iterations to infer the

function fj of a neighboring agent j. The adversary agent i can establish KD equations with respect to fj by
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making use of the fact that the update rule (4.4) is publicly known, i.e.,



x1
j = PX [v0

j − α0d
0
j ],

x2
j = PX [v1

j − α1d
1
j ],

...

xKj = PX [vK−1
j − αK−1d

K−1
j ].

(4.7)

We discuss (4.7) under two cases. Case 1): When agent j has more than one neighbor, the values of vkj , d
k
j

(k = 0, 1, 2, ...,K − 1), and xkj (k = 1, 2, ...,K) are unknown to adversary agent i. So the above system of

KD equations contains 3KD unknown variables; Case 2): When agent j has agent i as its only neighbor,

then another set of equations vkj = xkj − yk (k = 1, 2, ...,K − 1) are accessible to agent i, and hence in

combination with the equations in (4.7), agent i has access to (2K − 1)D equations with 3KD unknowns. In

neither case can adversary agent i infer fj . �

Similarly, we have that an external eavesdropper cannot infer any private information of an agent.

Corollary 5. Every agent’s intermediate states and objective functions cannot be inferred by an external

eavesdropper.

Proof: Since all exchanged messages are encrypted and that cracking the encryption is practically

infeasible [36], an external eavesdropper cannot learn anything by intercepting exchanged messages. Therefore,

it cannot infer any agents’ intermediate states or objective functions. �

From the above analysis, it is obvious that agent j’s private information cannot be uniquely derived

by adversaries. However, an honest-but-curious neighbor i can still get some range information about the

state xkj and this estimated range will become tighter as xkj converges to the optimal value as k → ∞ (cf.

the simulation results in Fig. 4.8). We argue that this is completely unavoidable for any privacy-preserving

approaches where all agents have to agree on the same final state, upon which the privacy of xkj disappears. In

fact, this is also acknowledged in [54], which shows that the privacy of xkj will vanish as k →∞.

Remark 9. It is worth noting that an adversary agent i can combine systems of equations (4.6) and (4.7) to

infer the information of a neighboring agent j. However, this will not enhance the ability of adversary agent i

because the combination will not change the fact that the number of unknowns is greater than the number of

establishable relevant equations.

45



Remark 10. From Theorem 7, we can see that in decentralized optimization, an agent’s information will

not be disclosed to other agents no matter how many neighbors it has. This is in distinct difference from

the average consensus problem in [75, 80, 98] where privacy cannot be protected for an agent if it has the

honest-but-curious adversary as the only neighbor. This shows the disparate difference between decentralized

optimization and the linear consensus problem.

4.5 Implementation Details

In this section, we recapitulate several technical issues that have to be addressed in the implementation

of Algorithm 3, which are same to the implementation of Algorithm 2.

1. In modern communication, a real number is represented by a floating point number, while encryption

techniques only work for unsigned integers. To deal with this problem, we uniformly multiplied each

element of the vector message xki ∈ RD (in floating point representation) by a sufficiently large number

Nmax and round off the fractional part during the encryption to convert it to an integer. After decryption,

the result is divided by Nmax. This process is conducted in each iteration and this quantization brings

an error upper-bounded by 1
Nmax

.

2. As indicated in 1, encryption techniques only work for unsigned integers. In our implementation all

integer values are stored in fix-length integers (i.e., long int in C) and negative values are left in 2’s

complement format. Encryption and intermediate computations are carried out as if the underlying data

were unsigned. When the final message is decrypted, the overflown bits (bits outside the fixed length)

are discarded and the remaining binary number is treated as a signed integer which is later converted

back to a real value.

4.6 Application to Average Consensus

Average consensus addresses the distributed computation of the mathematical mean of participating

agents’ states. In recent years, it has found applications in domains as diverse as automatic control, social

sciences, signal processing, robotics, and optimization [93]. In this section, we show that the average

consensus problem can be formulated as a constrained optimization problem, which, in turn, can be solved

using Algorithm 3 with privacy guarantee for participating agents.
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Assume that participating agents have scalar states βi for i = 1, 2, ..., N . Then the problem of reach-

ing average consensus, i.e., β̄ = 1
N

N∑
i=1

βi, on every agent, can be formulated as the following decentralized

optimization problem:

min
x

N∑
i=1

1

2
(x− βi)2

subject to x ∈ X .

(4.8)

Here X is assumed to be large enough to contain the average consensus value β̄.

Theorem 8. A network of N agents with individual states βi (i = 1, 2, ..., N) can distributedly compute the

average β̄ by solving (4.8) using Algorithm 3 if Assumptions 4 and 5 hold, all bki�j are randomly chosen from

[
√
η,
√

1−η
N−1 ] with 0 < η < 1/N , and the stepsize αk satisfies

∑
k

αk =∞ and
∑
k

α2
k <∞.

Proof: The proof can be obtained following a similar line of reasoning of Theorem 6 and hence is

omitted here. �

In addition, we have that an honest-but-curious agent i cannot infer the state of any other agents.

Theorem 9. Agent j’s private state βj cannot be inferred by an honest-but-curious neighboring agent i if the

network is composed of more than two agents, i.e., N > 2, and the stepsize αk satisfies αk 6= 1 for all k ≥ 0.

Proof: The proof can be obtained following a similar line of reasoning of Theorem 7 and hence is

omitted here. �

Remark 11. The condition αk 6= 1 for all k ≥ 0 is easy to satisfy. For example, the commonly used form of

αk = T1

k+T2
(0 < T1 < T2 <∞) in [17, 84] naturally satisfies this condition.

Remark 12. It is worth noting that in average consensus, the update rule of dkj , i.e., dkj = vkj − βj , can

be known to every participating agent. This is different from the general constrained optimization problem

(4.1), where fj and the update rule of dkj are completely private to agent j. Therefore, average consensus

requires a stronger condition for privacy-preservation, i.e., N > 2 and αk 6= 1 for all k ≥ 0. However, the

condition N > 2 is still less restrictive than the condition of requiring at least two neighbors in existing

data-obfuscation based privacy-preserving average consensus results [75, 80]. In addition, as all exchanged

messages are encrypted, our approach is also resilient to outside eavesdroppers, which will fail existing

approaches in [75, 80].
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4.7 Numerical Simulations

In this section, we first illustrate the efficiency of the proposed privacy-preserving approach using

C/C++ implementations. Then we compare our privacy-preserving average consensus approach with existing

results in [80] and [75]. We used the open-source C implementation of the Paillier cryptosystem [12] in our

simulations.

In the implementation, Nmax was set to 106 to convert each element in xi to a 64-bit integer during

intermediate computations. bki�j and bkj�i were also scaled up in the same way and represented by 64-bit

integers. The encryption and decryption keys were chosen as 256-bit long.

4.7.1 Evaluation of Algorithm 3

We evaluated the effectiveness of Algorithm 3 using the source localization problem (cf. Example

1), agreement problem (cf. Example 2), and a least square problem (cf. Example 3), which are typical and

important applications of the decentralized optimization problem (4.1).

4.7.1.1 Source Localization

We implemented Algorithm 3 under different source localization setups with sensors randomly

distributed in the plane [0, 100] × [0, 100] and a source located at [50; 45]. Simulation results confirmed

that Algorithm 3 always converged to the source position when the source was located in the convex hull

of all sensors. Fig. 4.2 visualizes the evolution of xi (i = 1, 2, 3, 4) in one specific run where the network

deployment is illustrated in Fig. 4.1. In Fig. 4.2, xij (i = 1, 2, 3, 4, j = 1, 2) denotes the jth element of xi.

All xi (i = 1, 2, 3, 4) converged to the source position [50; 45]. Fig. 4.3 visualizes the encrypted weighted

differences (in ciphertext) E1(bk2�1(xk21 −xk11)), E1(bk3�1(xk31 −xk11)), and E1(bk4�1(xk41 −xk11)). It is worth

noting that although the estimates of all agents have converged after about 30 iterations, the encrypted weighted

differences (in ciphertext) still appeared random to an outside eavesdropper. For Paillier cryptosystem, if the

encryption/decryption key-length is n-bit, the size of ciphertexts will be 2n [20]. Since we use 256-bit key, the

ciphertext is 512-bit, i.e. as large as 2512.

4.7.1.2 Agreement Problem

We next implemented Algorithm 3 under different network topologies to solve the agreement problem

in Example 2. Simulation results confirmed that Algorithm 3 always converged to the optimal solution

N∑
i=1

θi

N .
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Figure 4.1: Source localization setup used in one simulation run.
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Figure 4.2: The evolution of xi (i = 1, 2, 3, 4) in Algorithm 3.
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Figure 4.3: The evolution of the encrypted wighted differences (in ciphertext) E1(bk2�1(xk21 − xk11)),
E1(bk3�1(xk31 − xk11)), and E1(bk4�1(xk41 − xk11)).

Fig. 4.5 visualizes the evolution of xi (i = 1, 2, ..., 6) in one specific run where the network communication

topology is given in Fig. 4.4 and αk was set to αk = 1
k+2 . In Fig. 4.5, xij (i = 1, 2, ..., 6, j = 1, 2) denotes

the jth element of xi. All xi (i = 1, 2, ..., 6) converged to the optimal value [48.5; 373
6 ].
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link

agent 1

agent 2

agent 3

agent 4

agent 5

agent 6

Figure 4.4: A network of six agents (N = 6).
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Figure 4.5: The evolution of xi (i = 1, 2, ..., 6) in Algorithm 3.

4.7.1.3 Least Squares Problem

We also implemented Algorithm 3 to solve the simple linear regression problem in Example 3.

Simulation results confirmed that Algorithm 3 always converged to the optimal solution. However, the

convergence speed was lower than the source localization problem and the agreement problem. Simulation

results also suggested that the convergence rate was sensitive to the stepsize αk. Fig. 4.6 visualizes the

evolution of γi0 and γi1 (i = 1, 2, ..., 6) in one specific run where the network communication topology is given

in Fig. 4.4, αk was set to αk = 10
k+20 , xi was set to xi = i, yi was set to yi = 2× i− 16, and the constrained

set was set to γ2
0 + γ2

1 ≤ 5002. γi0 and γi1 (i = 1, 2, ..., 6) denote the intermediate states γ0 and γ1 of agent i,

respectively. All γi0 and γi1 (i = 1, 2, ..., 6) converged to their respective optimal values, i.e., 2 and −16.

4.7.1.4 The Effect of Encryption and Decryption Key-length and Network Size

We also considered the influence of encryption and decryption key-length and network size on

Algorithm 3 (based on the agreement problem). We simulated two all-to-all networks with 6 and 51 agents,

respectively. Both 256-bit and 2048-bit keys are evaluated. Table 4.1 gives the average computation time of

encryption and decryption for each agent to communicate with all its neighbors in each iteration on a 3.6 GHz

CPU with 15.6 GB RAM. Fig. 4.7 visualizes the evolution of xi (i = 1, 2, ..., 51) in the all-to-all network

with 51 agents using 2048-bit keys. We can see that the average computation time increased with increased

key-length and network size.
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Figure 4.6: The evolution of γi0 and γi1 (i = 1, 2, ..., 6) in Algorithm 3.

Table 4.1: Average encryption and decryption computation time

network size key-length (bit) average time (s)

6 256 0.005
2048 0.193

51 256 0.042
2048 1.763
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Figure 4.7: The evolution of xi (i = 1, 2, ..., 51) in Algorithm 3.
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4.7.1.5 The Trade-off between Convergence Speed and Privacy

In this part, we first simulated an honest-but-curious adversary who tried to estimate its neighbors’

intermediate states under different η values to illustrate the strengths of enabled privacy under different values

of η. Then we simulated the convergence speed of Algorithm 3 under different η values. All simulation results

were obtained based on the agreement problem.

Assume that agent 2 in Fig. 4.4 is an honest-but-curious adversary who intends to estimate the

intermediate states of agent 1. The individual local objective functions are the same as in (4.2) with θi ∈ R.

Because agent 2 knows the constraints on agent 1’s generation of b1�2, i.e., b1�2 is randomly chosen from

[
√
η,
√

1−η
N−1 ] with 0 < η < 1/N (cf. Theorem 6), it generated estimates of b1�2 by using a guessed stochastic

distribution of b1�2. We conservatively assume that agent 2 knows the probability distribution of b1�2, which

gives it an edge in estimating b1�2. Then agent 2 obtained a series of estimated xk1 according to (4.6). For

example, after agent 2 obtained yk = bk2�1b
k
1�2(xk1 − xk2) at iteration k, it generated an estimate of bk1�2

(denoted as b̄k1�2), and then it estimated xk1 as xk1 = xk2 + yk

b̄k1�2b
k
2�1

.

Fig. 4.8 shows the estimated x1 in 500 trials under different η values when b1�2 follows uniform

distribution. It can be seen that a smaller η leads to less accurate estimation and hence better privacy protection,

confirming the statement in Remark 8. In addition, it can be seen that agent 2 cannot accurately estimate x1

initially. However, as x1 converges to the optimal value, agent 2 will be able to estimate the value that every

agent agrees on, confirming the statement right above Remark 9.

We use the root mean square error (RMSE) to quantify the error between intermediate states and the

optimal value, which is denoted as ERRRMSE:

ERRRMSE =

√√√√√ L∑
j=1

N∑
i=1

‖ xij − x∗ ‖2

LN
,

where L is the number of Monte Carlo trials, N is the number of agents, xij is the intermediate state of agent

i in the jth Monte Carlo trial, and x∗ is the optimal value. Fig. 4.9(a) visualizes the evolution of ERRRMSE

under different η values when the network topology is given in Fig. 4.4 (L = 500) and Fig. 4.9(b) visualizes

the evolution of ERRRMSE under different η values in an all-to-all network with 51 agents (L = 500). It can

be seen that to reach the same ERRRMSE, a smaller η incurs more iterations for convergence, confirming

the statement in Remark 8. Because our approach requires a small η to enable strong privacy protection, it

sacrifices the convergence speed in this sense.
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(a) η = 0.05 (b) η = 0.01

(c) η = 0.005 (d) η = 0.001

Figure 4.8: An adversary’s estimation of the intermediate state of agent 1. The green line is the actual
intermediate state x1 of agent 1, the blue “+” are estimated states of x1 by agent 2 in 500 trials.
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Figure 4.9: The evolution of ERRRMSE under different η values in Algorithm 3.
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4.7.2 Privacy-preserving average consensus

Using the network communication topology in Fig. 4.4, we compared our privacy-preserving

average consensus approach with the algorithms in [80] and [75]. We set the states βi of the six agents to

{1, 2, 3, 4, 5, 6} respectively. The weights were set as follows:

aij =



0.2 j ∈ Ni,

0 j /∈ Ni ∪ {i},

1−
∑
j∈Ni

aij i = j,

(4.9)

The internal state and the exchanged state are denoted as xki and x+k
i for the algorithms in [80] and [75].

Fig. 4.10 visualizes the evolution of xi (i = 1, 2, ..., 6) under the proposed approach in one specific

run where αk was set to αk = 1
k+2 . It can be see than all xi converged to the exact average value 3.5,

confirming the effectiveness of the proposed approach.

It is worth noting that the convergence speed of the privacy-preserving average consensus approach

can be increased by judiciously designing the stepsize αk. For example, simulation results suggested that

using the αk below, convergence to the average can be made much faster (cf. the evolution of xi in Fig. 4.11).

αk =


10

k + 20
k < 30,

1

k + 1000
k ≥ 30.

(4.10)

Since our approach encrypts all exchanged messages, an outside eavesdropper cannot learn anything

by intercepting these messages. In contrast, the algorithms in [80] and [75] cannot protect the privacy of

participating agents against an external eavesdropper that can intercept all exchanged messages, as confirmed

by our numerical simulation results below. Without loss of generality, we assume that an outside eavesdropper

is interested in learning the state β1 of agent 1 and builds the following observer to estimate β1:

zk+1 = zk + x
+(k+1)
1 − (a11x

+k
1 +

∑
j∈N1

a1jx
+k
j ) (4.11)

with the initial value of z set to z0 = x+0
1 . As mentioned earlier, in (4.11) x1 and x+

1 denote the internal

and exchanged states, respectively. Fig. 4.12 visualizes the evolution of xi (i = 1, 2, ..., 6) as well as the
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Figure 4.10: The evolution of xi (i = 1, 2, ..., 6) under the proposed privacy-preserving average consensus
approach when αk was set to αk = 1

k+2 in Algorithm 3.
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Figure 4.11: The evolution of xi (i = 1, 2, ..., 6) under the proposed privacy-preserving average consensus
approach when αk was set according to (4.10) in Algorithm 3.
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eavesdropper’s observer state zk under the approach in [80]. It can be seen that the eavesdropper can accurately

estimate the internal state x1. The same conclusion can be drawn for the approach in [75], which is confirmed

vulnerable to eavesdropping attacks (cf. Fig. 4.13).
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Figure 4.12: The evolution of xi (i = 1, 2, ..., 6) and zk under the algorithm in [80].
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Figure 4.13: The evolution of xi (i = 1, 2, ..., 6) and zk under the algorithm in [75].

57



4.8 Summaries

In this chapter, we proposed a novel approach to enabling privacy-preservation in decentralized

optimization based on the integration of partially homomorphic cryptography with subgradient method. By

leveraging Paillier cryptosystem and the convergence properties of subgradient method, i.e., robustness to

random coupling weights, our approach provides privacy guarantee without compromising the optimality of

optimization in the absence of an aggregator or third party. Theoretical analysis confirms that an honest-but-

curious adversary cannot infer the information of neighboring agents even by recording and analyzing the

information exchanged in multiple iterations. The approach is also applicable to average consensus which has

found extensive applications in fields as diverse as distributed computing, robotic networks, and power grids.

Numerical simulation results confirmed the effectiveness and low computational complexity of the proposed

approach.
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Chapter 5

Privacy-preserving Decentralized

Optimization using Function

Decomposition

This chapter proposes a function-decomposition based privacy-preserving approach for the decen-

tralized optimization problem (3.1) using Jacobian ADMM. Compared with encryption-based approaches

which suffer from heavy computational and communication burden, the proposed approach incurs little extra

computational and communication overhead. We also prove that when the global objective function is strongly

convex, proximal Jacobian ADMM can achieve Q-linear convergence rate1 even when local individual ob-

jective functions are only convex, which generalizes existing results on proximal Jacobian ADMM requiring

strongly convex local objective functions to achieve Q-linear convergence rate.

In this chapter, we also consider the two types of adversaries defined in 3.1, which are Honest-but-

curious adversaries [36, 62] and External eavesdroppers. In addition, we define privacy as preserving the

confidentiality of agents’ objective functions in this chapter.

The rest of this Chapter is organized as follows: Sec. 5.1 presents the proximal Jacobian ADMM

solution to (3.1). Then a completely decentralized privacy-preserving approach to problem (3.1) is proposed

in Sec. 5.2. Rigorous analysis of the guaranteed privacy and convergence is addressed in Sec. 5.3 and Sec.

1For a sequence {xk} converging to x∗ in some norm, Q-linear convergence rate is achieved if there exists a λ ∈ (0, 1) such that
‖ xk+1 − x∗ ‖≤ λ ‖ xk − x∗ ‖ holds for all k [85].
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5.4, respectively. Numerical simulation results are provided in Sec. 5.5 to confirm the effectiveness of the

proposed approach. In the end, we draw summaries in Sec. 5.6.

5.1 Background

The decentralized problem (3.1) can be formulated as follows: each fi in (3.1) is private and only

known to agent i, and all N agents form a bidirectional connected network, which is denoted by a graph

G = (V,E). V denotes the set of agents, E denotes the set of communication links (undirected edges)

between agents, and |E| denotes the number of communication links (undirected edges) in E. If there exists

a communication link between agents i and j, we say that agent i and agent j are neighbors and the link is

denoted as ei,j ∈ E if i < j is true or ej,i ∈ E otherwise. Moreover, the set of all neighboring agents of i is

denoted as Ni and the number of agents in Ni is denoted as Ni. Then problem (3.1) can be rewritten as

min
xi∈RD, i∈{1,2,...,N}

N∑
i=1

fi(xi)

subject to xi = xj , ∀ei,j ∈ E,

(5.1)

where xi is a copy of x̃ belonging to agent i.

In the conventional proximal Jacobian ADMM [26], each agent uses the following update to coopera-

tively find the optimal solution to (3.1):


xk+1
i = argmin

xi

fi(xi) +
γiρ

2
‖ xi − xki ‖2 +

∑
j∈Ni

(λkTi,j (xi − xkj ) +
ρ

2
‖ xi − xkj ‖2) (5.2)

λk+1
i,j = λki,j + ρτ(xk+1

i − xk+1
j ), ∀j ∈ Ni (5.3)

Here, k is the iteration index, γi > 0 (i = 1, 2, . . . , N) are proximal coefficients, τ > 0 is a damping

parameter, ρ is the penalty parameter, which is a positive constant scalar. λi,j and λj,i are Lagrange multipliers

corresponding to the constraint xi = xj , ei,j ∈ E. Here, both λi,j and λj,i are introduced for the constraint

xi = xj , ei,j ∈ E in (5.2)-(5.3) to unify the algorithm description. By setting λ0
i,j = ρ(x0

i − x0
j ) at t = 0,

we have λki,j = −λkj,i for all i = 1, 2, · · · , N, j ∈ Ni. In this way, we unify the update rule of agent i without

separating i > j and i < j for j ∈ Ni, as is clear in (5.2).

The conventional proximal Jacobian ADMM is effective in solving (3.1). However, it cannot protect

the privacy of participating agents’ gradients as states xki are exchanged and disclosed explicitly among

neighboring agents. Adversaries can easily derive Ofi(xki ) using the update rules in (5.2) and (5.3) by
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Figure 5.1: Function-decomposition based privacy-preserving decentralized optimization. (a) Before function
decomposition. (b) After function decomposition.

leveraging the knowledge of γi.

5.2 Privacy-preserving Decentralized Optimization

The key idea of our approach to enabling privacy-preservation is to randomly decompose each fi into

two parts fαki and fβki under the constraint fi = fαki + fβki . The index k of functions fαki and fβki indicates

that functions fαki and fβki can be time-varying. However, it should be noticed that the sum of fαki and fβki is

time invariant and always equals to fi. We let the function fαki succeed the role of the original function fi in

inter-agent interactions while the other function fβki involves only by interacting with fαki , as shown in Fig.

5.1.

After the function decomposition, problem (3.1) can be rewritten as

min
xαi ,x

β
i ∈RD, i∈{1,2,...,N}

N∑
i=1

(fαki (xαi ) + fβki (xβi ))

subject to xαi = xαj , ∀ei,j ∈ E,

xαi = xβi , ∀i ∈ V,

(5.4)
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and the associated augmented Lagrangian function is:

Lkρ(x,λ) =

N∑
i=1

(fαki (xαi ) + fβki (xβi )) +
∑
ei,j∈E

(λαTi,j (xαi − xαj ) +
ρ

2
‖ xαi − xαj ‖2)

+
∑
i∈V

(λαβTi,i (xαi − x
β
i ) +

ρ

2
‖ xαi − x

β
i ‖

2),

(5.5)

where x = [xαT1 ,xβT1 ,xαT2 ,xβT2 , . . . ,xαTN ,xβTN ]T ∈ R2DN is the augmented state. λαi,j is the Lagrange

multiplier corresponding to the constraint xαi = xαj , λαβi,i is the Lagrange multiplier corresponding to the

constraint xαi = xβi , and all λαi,j and λαβi,i are stacked into λ. ρ is the penalty parameter, which is a positive

constant scalar. It is worth noting that agent i does not need to know the associated augmented Lagrangian

function (i.e., other agents’ objective functions) to update its states xαi and xβi , as shown below in (5.6) and

(5.7).

Based on Jacobian update, we can solve (5.4) by applying the following iterations for i = 1, 2, . . . , N :



x
α(k+1)
i = argmin

xαi

γαi ρ

2
‖ xαi − xαki ‖2 +Lk+1

ρ (xαk1 ,xβk1 , . . . ,xαi ,x
βk
i , . . . ,xαkN ,xβkN ,λk)

= argmin
xαi

f
α(k+1)
i (xαi ) +

γαi ρ

2
‖ xαi − xαki ‖2 +

∑
j∈Ni

(λαkTi,j (xαi − xαkj ) +
ρ

2
‖ xαi − xαkj ‖2)

+λαβkTi,i (xαi − x
βk
i ) +

ρ

2
‖ xαi − x

βk
i ‖

2, (5.6)

x
β(k+1)
i = argmin

xβi

γβi ρ

2
‖ xβi − x

βk
i ‖

2 +Lk+1
ρ (xαk1 ,xβk1 , . . . ,xαki ,xβi , . . . ,x

αk
N ,xβkN ,λk)

= argmin
xβi

f
β(k+1)
i (xβi ) +

γβi ρ

2
‖ xβi − x

βk
i ‖

2 +λβαkTi,i (xβi − x
αk
i ) +

ρ

2
‖ xβi − x

αk
i ‖2, (5.7)

λ
α(k+1)
i,j = λαki,j + τρ(x

α(k+1)
i − xα(k+1)

j ), ∀j ∈ Ni (5.8)

λ
αβ(k+1)
i,i = λαβki,i + τρ(x

α(k+1)
i − xβ(k+1)

i ), (5.9)

λ
βα(k+1)
i,i = λβαki,i + τρ(x

β(k+1)
i − xα(k+1)

i ). (5.10)

Here τ ∈ (0, 1) is a damping parameter, and both λαi,j and λαj,i are introduced for the constraint

xαi = xαj , ei,j ∈ E in (5.6)-(5.10) to unify the algorithm description. Similarly, both λαβi,i and λβαi,i are

introduced for the constraint xαi = xβi in (5.6)-(5.10) to unify the algorithm description. Our privacy-

preserving function-decomposition based algorithm is given in Algorithm 4.

Remark 13. Different from [65] which also considers dynamic decentralized optimization, our dynamics are

added purposely to enable privacy-preservation. In addition, we use Jacobian update instead of introducing
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Algorithm 4
Initial Setup: For all i = 1, 2, . . . , N , agent i initializes xα0

i and xβ0
i , and exchanges xα0

i with neighboring
agents. Then agent i sets λα0

i,j = xα0
i − xα0

j , λαβ0
i,i = xα0

i − x
β0
i , and λβα0

i,i = xβ0
i − xα0

i .
Input: xαki , λαki,j , λαβki,i , xβki , λβαki,i .

Output: xα(k+1)
i , λα(k+1)

i,j , λαβ(k+1)
i,i , xβ(k+1)

i , λβα(k+1)
i,i .

1. For all i = 1, 2, . . . , N , agent i constructs fα(k+1)
i and fβ(k+1)

i under the constraint fi = f
α(k+1)
i +

f
β(k+1)
i ;

2. For all i = 1, 2, . . . , N , agent i updates xα(k+1)
i and xβ(k+1)

i according to the update rules in (5.6) and
(5.7), respectively;

3. For all i = 1, 2, . . . , N , agent i sends xα(k+1)
i to neighboring agents;

4. For all i = 1, 2, . . . , N , agent i computes λα(k+1)
i,j , λαβ(k+1)

i,i and λβα(k+1)
i,i according to (5.8)-(5.10);

5. Set k to k + 1, and go to 1.

splitting variables which increases the number of variables and constraints of the problem.

5.3 Privacy Analysis

In this section, we rigorously prove that each agent’s gradient of local objective function Ofj cannot

be inferred by honest-but-curious adversaries and external eavesdroppers.

Theorem 10. In Algorithm 4, agent j’s gradient of local objective function Ofj at any point except the optimal

solution will not be revealed to an honest-but-curious agent i.

Proof. Suppose that an honest-but-curious adversary agent i collects information from K iterations to infer

the gradient Ofj of a neighboring agent j. The adversary agent i can establish 2DK equations relevant to Ofj
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by making use of the fact that the update rules of (5.6) and (5.7) are publicly known, i.e.,



Ofα1
j (xα1

j ) + (γαj +Nj + 1)ρxα1
j − γαj ρxα0

j +
∑
m∈Nj

(λα0
j,m − ρxα0

m ) + λαβ0
j,j − ρx

β0
j = 0

Ofβ1
j (xβ1

j ) + (γβj + 1)ρxβ1
j − γ

β
j ρx

β0
j + λβα0

j,j − ρx
α0
j = 0

...

OfαKj (xαKj ) + (γαj +Nj + 1)ρxαKj − γαj ρx
α(K−1)
j

+
∑
m∈Nj

(λ
α(K−1)
j,m − ρxα(K−1)

m ) + λ
αβ(K−1)
j,j − ρxβ(K−1)

j = 0

OfβKj (xβKj ) + (γβj + 1)ρxβKj − γβj ρx
β(K−1)
j + λ

βα(K−1)
j,j − ρxα(K−1)

j = 0

(5.11)

In the system of 2DK equations (5.11), Ofαkj (xαkj ) (k = 1, 2, . . . ,K), Ofβkj (xβkj ) (k = 1, 2, . . . ,K), γαj ,

γβj , and xβkj (k = 0, 1, 2, . . . ,K) are unknown to adversary agent i. Parameters xαkm ,m 6= j and λαkj,m,m 6= j

are known to adversary agent i only when agent m and agent i are neighbors. So the above system of 2DK

equations contains at least 3DK +D + 2 unknown variables, and adversary agent i cannot infer the gradient

of local objective function Ofj by solving (5.11). Following the same line of argument, we can also obtain that

an adversary agent i cannot solve a subset of equations in (5.11) to determine the gradient information either.

It is worth noting that after the optimization algorithm converges, adversary agent i can have another

piece of information according to the KKT conditions [26]:

Ofj(x
∗
j ) = −

∑
m∈Nj

λα∗j,m. (5.12)

If agent j’s neighbors are also neighbors to the honest-but-curious agent i, the exact gradient of fj at the

optimal solution can be inferred by agent i. Therefore, agent j’s gradient of local objective function Ofj will

not be revealed to an honest-but-curious agent i at any point except the optimal solution.

Corollary 6. In Algorithm 4, agent j’s gradient of local objective function Ofj at any point except the optimal

solution will not be revealed to external eavesdroppers.

Proof. The proof can be obtained following a similar line of reasoning of Theorem 10. External eavesdroppers

can also establish the system of 2DK equations (5.11) to infer agent j’s gradient Ofj . However, in this case,

the number of unknowns, i.e., Ofαkj (xαkj ) (k = 1, 2, . . . ,K), Ofβkj (xβkj ) (k = 1, 2, . . . ,K), γαj , γβj , and

xβkj (k = 0, 1, 2, . . . ,K), adds up to 3DK+D+2, making the system of equations undetermined. Therefore,
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following the argument in the proof of Theorem 10, we can obtain that external eavesdroppers cannot infer the

gradient of local objective function Ofj at any point except the optimal solution.

Remark 14. It is worth noting that if multiple adversary agents cooperate to infer the information of agent j,

they can only establish a system of 2DK equations containing at least 3DK + D + 2 unknown variables

as well. Therefore, our algorithm can protect the privacy of agents against multiple honest-but-curious

adversaries and external eavesdroppers.

5.4 Convergence Analysis

In this section, we rigorously prove the convergence of Algorithm 4 under the following assumptions.

Assumption 6. Function f̄(x̃) =
∑N
i=1 fi(x̃) : RD → R is strongly convex and continuously differentiable,

i.e.,

(Of̄(x̃)− Of̄(ỹ))T (x̃− ỹ) ≥ mf̄ ‖ x̃− ỹ ‖2 .

Assumption 7. Each local function fi : RD → R is convex and continuously differentiable.

Assumption 8. Each local function fi : RD → R has Lipschitz continuous gradients, i.e.,

‖ Ofi(x̃)− Ofi(ỹ) ‖≤ Li ‖ x̃− ỹ ‖ .

Assumption 9. fαki is chosen under the following constraints:

1) fαki is convex and differentiable.

2) fβki = fi − fαki is convex and differentiable.

3) fαki has Lipschitz continuous gradients, i.e. there exists an L < +∞ such that

‖ Ofαki (x̃)− Ofαki (ỹ) ‖≤ L ‖ x̃− ỹ ‖ .

4) fβki = fi − fαki has Lipschitz continuous gradients, i.e. there exists an L < +∞ such that

‖ Ofβki (x̃)− Ofβki (ỹ) ‖≤ L ‖ x̃− ỹ ‖ .

5) lim
k→∞

fαki → fα∗i and fαki (x̃) is bounded when x̃ is bounded.
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Figure 5.2: Function-decomposition based privacy-preserving decentralized optimization equals to converting
the original network into a virtual network G′ = (V ′, E′) of 2N agents.

It is worth noting that under Assumption 7 and Assumption 8, fαki can be easily designed to

meet Assumption 9. A quick example is fαki (x̃) = bkTi x̃ where bki ∈ RD is time-varying, and satisfies

lim
k→∞

bki → b∗i and −∞ <‖ bki ‖<∞.

Because the function decomposition process amounts to converting the original network to a virtual

network G′ = (V ′, E′) of 2N agents, as shown in Fig. 5.2, we analyze the convergence of our algorithm

based on the virtual network G′ = (V ′, E′). To simplify and unify the notations, we relabel the local objective

functions fαki and fβki for all i = 1, 2, . . . , N as hk1 , h
k
2 , . . . , h

k
2N . We relabel the associated states xαki

and xβki for all i = 1, 2, . . . , N as xk1 ,x
k
2 , . . . ,x

k
2N . In addition, we relabel parameters γαi and γβi for all

i = 1, 2, . . . , N accordingly as γ1, γ2, . . . , γ2N . Then problem (5.4) can be rewritten as

min
xi∈RD, i∈{1,2,...,2N}

2N∑
i=1

hki (xi)

subject to Ax = 0

(5.13)

where x = [xT1 ,x
T
2 , . . . ,x

T
2N ]T ∈ R2DN and A = [am,l]⊗ ID ∈ RD|E′|×2DN is the edge-node incidence

matrix of graph G′ as defined in [118]. More specifically, am,l is determined as

am,l =


1 if the mth edge originates from agent l,

−1 if the mth edge terminates at agent l,

0 otherwise.
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We define each edge ei,j originating from i and terminating at j and denote an edge as ei,j ∈ E′ if i < j is

true or as ej,i ∈ E′ otherwise.

Denote the iterating results in the kth step in Algorithm 4 as follows:

xk = [xkT1 ,xkT2 , . . . ,xkT2N ]T ∈ R2DN ,

λk = [λki,j ]ij,ei,j∈E′ ∈ RD|E
′|,

yk = [xkT ,λkT ]T ∈ R(|E′|+2N)D

Further augment the coefficients γi (i = 1, 2, . . . , 2N) into the matrix form

U = diag{γ1, γ2, . . . , γ2N} ⊗ ID ∈ R2DN×2DN ,

and Ni into the matrix form

D̄ = diag{N1, N2, . . . , N2N} ⊗ ID ∈ R2DN×2DN .

Then we are in position to give the main results for this section:

Definition 2. (Restricted strongly convex with respect to a point x̃∗ [76]) A convex and differential function

f(x̃) is restricted strongly convex with respect to a point x̃∗ if the following holds for all x̃

(Of(x̃)− Of(x̃∗))T (x̃− x̃∗) ≥ mf ‖ x̃− x̃∗ ‖2 (5.14)

where mf > 0 is a constant.

Lemma 1. Define rk(x) : R2DN → R as

rk(x) = hk(x) +
ρ(1− τ)

2
‖ Ax ‖2

for 0 < τ < 1 where hk(x) =
2N∑
i=1

hki (xi), and h̄k(x̃) : RD → R is defined as

h̄k(x̃) =

2N∑
i=1

hki (x̃).

Let x∗ be the optimal solution to (5.13). If Assumptions 6, 7, 8, and 9 are satisfied, we have that rk(x) is
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restricted strongly convex with respect to the optimal solution x∗, i.e., the following holds for all x

(Or(x)− Or(x∗))T (x− x∗) ≥ mr ‖ x− x∗ ‖2 (5.15)

where

mr ≥ {
mf̄

2N
− 2Lυ,

Aminρ(1− τ)

1 + 1
υ2

}, (5.16)

for any υ ∈ (0,
mf̄

4NL ) with Amin the smallest nonzero eigenvalue of ATA, mf̄ given in Assumption 6, and L

given in Assumption 9.

Proof. Because h̄k(x̃) =
2N∑
i=1

hki (x̃) =
N∑
i=1

fi(x̃) = f̄(x̃) is strongly convex, and the matrixA here is the same

as the matrix Eo in [76], according to Lemma 1 in [76] and Appendix 1 in [102], we have the Lemma.

Lemma 2. Let x∗ be the optimal solution to (5.13), λk∗ be the optimal multiplier to (5.13) at iteration k, and

yk∗ be the augmented vector [x∗T ,λk∗T ]T . Further define Q = U + D̄ − ATA, H = diag{ρQ, 1
ρID|E′|},

Amax and Amin as the respective maximal and minimal nonzero eigenvalues of ATA. Then we have

‖ yk+1 − yk+1∗ ‖H≤
‖ yk − yk+1∗ ‖H√

1 + δ
(5.17)

if U + D̄ − ATA is positive semi-definite and Assumptions 6, 7, 8, and 9 are satisfied. In (5.17), ‖ x̃ ‖H=
√
x̃THx̃ and

δ = min{ (u− 1)τAmin

2uQmax
,

2mrρτ(u− 1)Amin

φ
} (5.18)

where u > 1 is an arbitrary constant, Qmax is the largest eigenvalue of Q, mr, L are given in Assumptions 6

and 9, respectively, and

φ = u(u− 1)L2 + ρ2τAminQmax(u− 1) + 2ρ2(1− τ)2uA2
max.

Proof. The results can be obtained following a similar line of reasoning in [65]. The detailed proof is given in

the Appendix B.

Lemma 3. Let x∗ be the optimal solution to (5.13), λk∗ be the optimal multiplier to (5.13) at iteration k, and

yk∗ be the augmented vector [x∗T ,λk∗T ]T . Further defineQ = U + D̄−ATA andH = diag{ρQ, 1
ρID|E′|}.

Then we have

‖ yk − yk+1∗ ‖H≤‖ yk − yk∗ ‖H +p(k) (5.19)
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if U + D̄ −ATA is positive semi-definite and Assumptions 6, 7, 8, and 9 are satisfied. In (5.19),

p(k) =
1√

ρτAmin
‖ Ohk+1(x∗)− Ohk(x∗) ‖ (5.20)

where hk(x) =
2N∑
i=1

hki (xi).

Proof. The results can be obtained following a similar line of reasoning in [65]. The detailed proof is given in

the Appendix B.

Lemma 4. Let x∗ be the optimal solution to (5.13), λk∗ be the optimal multiplier to (5.13) at iteration k, and

yk∗ be the augmented vector [x∗T ,λk∗T ]T . Further defineQ = U + D̄−ATA andH = diag{ρQ, 1
ρID|E′|}.

Then we have

‖ yk+1 − yk+1∗ ‖H≤
‖ yk − yk∗ ‖H√

1 + δ
+

p(k)√
1 + δ

(5.21)

if U + D̄ −ATA is positive semi-definite and Assumptions 6, 7, 8, and 9 are satisfied.

Proof. Combining (5.17) and (5.19), we obtain the result directly.

Lemma 4 indicates that ‖ yk+1 − yk+1∗ ‖H converges linearly to a neighborhood of 0. When the

local objective function is not dynamically changing, i.e. p(k) = 0, we have that the proximal Jacobian

ADMM has a Q-linear convergence rate without requiring all local objective functions to be strongly convex,

which gives us the following theorem.

Theorem 11. Algorithm 4 is guaranteed to converge to the optimal solution to (5.13) with a Q-linear

convergence rate if U + D̄ −ATA is positive semi-definite, Assumptions 6, 7, 8, and 9 are satisfied, and fαki

is time-invariant.

Proof. When fαki is time-invariant, we have p(k) = 0. Then from Lemma 4, we have the theorem.

Remark 15. [76] also achieves Q-linear convergence rate for ADMM under dummy variables. However, the

introduced dummy variables increase the requirement on computational and memory resources. Furthermore,

different from [52] which establishes R-linear2 convergence rate under a sufficiently small dual step-size, our

approach achieves a faster Q-linear convergence rate without such a constraint.

When fαki is time-variant, we have the following theorem.

2For a sequence {xk} converging to x∗ in some norm, R-linear convergence rate is achieved if there exists a λ ∈ (0, 1) and some
positive constant C such that ‖ xk − x∗ ‖≤ Cλk holds for all k [85].
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Theorem 12. Algorithm 4 is guaranteed to converge to the optimal solution to (5.13) if U + D̄ − ATA is

positive semi-definite and Assumptions 6, 7, 8, and 9 are satisfied.

Proof. The proof is provided in the Appendix B.

5.5 Numerical Simulations

In this section, we first illustrate the effectiveness of the proposed approach. Then we compare our

approach with the differential-privacy based algorithm in [54] and the encryption based algorithm in Chapter

3. We conducted numerical experiments on the following global objective function

f̃(x̃) =

N∑
i=1

1

2
‖ Hix̃− yi ‖2, (5.22)

which makes the optimization problem (3.1) become

min
x̃

N∑
i=1

1

2
‖ Hix̃− yi ‖2 (5.23)

with yi ∈ RD and Hi ∈ RD×D a diagonal matrix. Hence, each agent i deals with a private local objective

function

fi(xi) =
1

2
‖ Hixi − yi ‖2,∀i ∈ {1, 2, . . . , N}. (5.24)

We used the above function (5.22) because it is easy to verify whether the obtained solution is the minimal

value of the original optimization problem, which is (
∑N
i=1H

T
i Hi)

−1(
∑N
i=1Hiyi). Furthermore, (5.22)

makes it easy to compare with [54], whose verification is also based on (5.22).

5.5.1 Evaluation of Our Approach

To solve the optimization problem (5.22), fαki (x̃) was set to fαki (x̃) = (bki )T x̃ in all simulations,

where bki was set to bki = 1
k+1ci + di with ci ∈ RD and di ∈ RD being constants private to agent i. Fig.

5.4 visualizes the evolution of xαi1 and xβi1 (i = 1, 2, ..., 6) in one specific run where D = 2 and the network

deployment is illustrated in Fig. 5.3. Fig. 5.5 visualizes the evolution of xαi2 and xβi2 (i = 1, 2, ..., 6). Here,

xαij denotes the jth element of xαi and xβij denotes the jth element of xβi . All xαi and xβi (i = 1, 2, ..., 6)
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converged to the optimal solution.

agent communication 
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agent 4

agent 5

agent 6

Figure 5.3: A network of six agents (N = 6).
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Figure 5.4: The evolution of xαi1 and xβi1 (i = 1, 2, ..., 6) in one specific run.

5.5.2 Comparison with the algorithm in [54]

Under the network deployment in Fig. 5.3, we compared our privacy-preserving approach with the

differential-privacy based algorithm in [54]. We simulated the algorithm in [54] under seven different privacy

levels:

ε = 0.2, 1, 10, 20, 30, 50, 100.

In the objective function (5.22),Hi was set to the identity matrix and yi was set to yi = [0.1×(i−1)+0.1; 0.1×

(i−1)+0.2]. The domain of optimization for the algorithm in [54] was set to X = {(x, y) ∈ R2|x2 +y2 ≤ 1}.
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Figure 5.5: The evolution of xαi2 and xβi2 (i = 1, 2, ..., 6) in one specific run.

Note that the optimal solution [0.35; 0.45] resided in X . Detailed parameter settings for the algorithm in [54]

were given as n = 2, c = 0.5, q = 0.8, p = 0.9, and

aij =



0.2 j ∈ Ni,

0 j /∈ Ni, j 6= i,

1−
∑
j∈Ni

aij i = j,

(5.25)

for i = 1, 2, ..., 6. In addition, the performance index d in [54] was used to quantify the optimization error

here, which was computed as the average value of squared distances with respect to the optimal solution over

M runs [54], i.e.,

d =

6∑
i=1

M∑
l=1

‖ xli − [0.35; 0.45] ‖2

6M
.

Here xli is the obtained solution of agent i in the lth run. For our approach, xli was calculated as the average of

xαli and xβli .

Simulation results from 5,000 runs showed that our approach converged to [0.35; 0.45] with an error

d = 6.5× 10−6, which is negligible compared with the simulation results under the algorithm in [54] (cf. Fig.

5.6, where each differential privacy level was implemented for 5,000 times). The results confirm the trade-off

between privacy and accuracy in differential-privacy based approaches.
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Figure 5.6: The comparison of our approach with the algorithm in [54] in terms of optimization error.

5.5.3 Comparison with the algorithm in Chapter 3

We also compared our approach with the privacy-preserving optimization algorithm in Chapter 3,

which is based on ADMM and partially homomorphic encryption. The network communication topology

used for comparison is a ring network of 30 agents and the global objective function used is (5.22) with Hi

(i = 1, 2, .., 6) set to identity matrix and yi ∈ R2. The initial states were set to the same values for both

algorithms (xα0
i = xβ0

i = x0
i ). Fig. 5.7 visualizes the evolution of xαi and xβi in our approach whereas Fig.

5.8 visualizes the evolution of xi of the algorithm in Chapter 3 when b̄ in Chapter 3 was set to 1.5. It can

be seen that our encryption-free approach has comparable convergence rate with the partially homomorphic

encryption based algorithm in Chapter 3.

5.6 Summaries

In this chapter, we proposed a novel approach to enabling privacy-preservation in decentralized

optimization based on function decomposition, which neither compromises the optimality of optimization

nor relies on an aggregator or third party. Theoretical analysis confirms that an honest-but-curious adversary

cannot infer the information of neighboring agents even by recording and analyzing the information exchanged

in multiple iterations. In addition, our approach can also avoid an external eavesdropper from inferring

the information of participating agents. Compared with encryption-based approaches which suffer from

heavy computational and communication burden, the proposed approach incurs little extra computational
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Figure 5.8: The evolution of xi of the algorithm in Chapter 3.
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and communication overhead. Furthermore, we prove that when the global objective function is strongly

convex, proximal Jacobian ADMM can achieve Q-linear convergence rate even when local individual objective

functions are only convex, which generalizes existing proximal Jacobian ADMM results requiring local

objective functions to be strongly convex to achieve Q-linear convergence rate. Numerical simulation results

confirmed the effectiveness of the proposed approach.
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Chapter 6

Decentralized Non-convex Event

Localization via ADMM

Event localization plays a fundamental role in many wireless sensor network applications such as

environmental monitoring, homeland security, medical treatment, and health care, and it is essentially a

non-convex and non-smooth problem. In this chapter, we address such a problem in a completely decentralized

way based on augmented Lagrangian methods and alternating direction method of multipliers (ADMM). The

main contributions of this chapter are as follows:

1. An algorithm is applied to directly solve the general non-smooth and non-convex event localization

problem without using convex relaxation. The avoidance of convex relaxation is significant in that convex

relaxation based methods generally suffer from high computational complexity. It is worth noting that

recently results have emerged for ADMM in non-convex optimization [53, 72]. However, [53] requires

objective functions to have Lipschitz continuous derivatives and [72] requires objective functions to

be continuously differentiable and have bounded gradient, neither of which can be satisfied by the

non-smooth event localization problem considered in this chapter. Furthermore, the non-convex and

non-smooth optimization approach in [116] is not applicable to our problem either because it requires

some parts of the objective function to be restricted prox-regular1, which is not the case here;

1Restricted prox-regularity is defined in Definition 2 of [116]: For a lower semi-continuous function f , let M ∈ R+, f : RD →
R ∪ {∞}, and define the exclusion set SM := {x ∈ dom(f) :‖ d ‖> M, ∀d ∈ ∂f(x)}. f is called restricted prox-regular if, for any
M > 0 and bounded set T ⊆ domf , there exists γ > 0 such that f(y) + γ

2
‖ x − y ‖2≥ f(x) + 〈d,y − x〉, ∀x ∈ T\SM ,y ∈

T,d ∈ ∂f(x), ‖ d ‖≤M.
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2. The proposed algorithm takes full advantages of alternating direction method of multipliers which

decomposes a general optimization problem into multiple local optimization subproblems with each

subproblem solved by an individual sensor. Through cooperations in the computation process among

neighboring sensors, a consistent estimate of the event position across the entire network can be achieved.

Therefore, compared with centralized approach in which a processing center performs the whole heavy

computation, the algorithm is highly scalable, flexible, robust to network topology changes, and thus is

more favorable in practical implement;

3. Numerical simulations show that the proposed algorithm achieves better localization accuracy than

existing distributed projection-based approaches when the target is within the convex hull of localization

sensors. When the target is outside the convex hull, numerical simulations show that the proposed

approach has a higher probability to converge to the target event location than existing projection-based

approaches.

The rest of this chapter is organized as follows: Sec. 6.1 states the formulation of the problem.

To solve the problem, a decentralized algorithm is proposed in Sec. 6.2 and its convergence properties are

analyzed in Sec. 6.3. Sec. 6.4 gives numerical simulation results of the algorithm and its comparison with

existing results. In the end, a conclusion is made in Sec. 6.5.

6.1 Problem Statement

We suppose that the sensor network for event localization is composed of N sensors and the position

of sensor i is denoted as ai ∈ RD, where D (D ∈ {1, 2, 3}) is the dimension. If there exists a communication

link between sensors i and j, we say that sensors i and j can communicate and exchange information. We

further denote the unknown position of the target event as x ∈ RD. Then the noisy range ri between sensor i

and the target event is denoted as:

ri = di + vi,

where di =‖ x − ai ‖ denotes the real distance between sensor i and the target event, and vi denotes the

measurement noise.

Suppose that both ai and ri are available to sensor i and are private (i.e., ai and ri are only known to

sensor i). Furthermore, we assume that the sensor network is connected, i.e., there exists a (multi-hop) path
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between every pair of sensors in the network. The event localization problem addressed in this chapter is to

estimate the unknown event position x from available sensor positions ai and noisy range measurements ri

(i = 1, 2, . . . , N ) with respect to the target event.

Remark 16. The setting of not exchanging sensors’ positions makes great sense in practical applications.

For example, on the battlefield where soldiers wear sensor devices to locate gunfire, exchanging soldiers’

positions takes great risks of being intercepted to opponents or compromised teammate, which will put soldiers

in danger [6].

Assume that v = (v1, v2, ..., vN )T follows a standard Gaussian distribution and its covariance matrix

is a diagonal matrix with equal diagonal elements, then the position estimate of the target event x is the

solution to the following maximum likelihood problem [11]:

min
x

N∑
i=1

fi(x), (6.1)

where

fi(x) =

N∑
i=1

(‖ x− ai ‖ −ri)2. (6.2)

fi(x) in (6.2) is non-convex, non-smooth and does not satisfy the restricted prox-regular condition,

which invalidates the application of existing results [53,72,116]. In this chapter, we will show that by designing

the penalty parameter, we can address this non-convex and non-smooth problem (6.1) via ADMM directly

without using convex relaxation. We first propose the algorithm in the following section and then analyze its

convergence in Sec. 6.3.

6.2 Proposed Decentralized Algorithm

6.2.1 Problem Reformulation

To address problem (6.1) in a decentralized way via ADMM, first we denote the communication

pattern of the sensor network as an undirected graph G = {V,E} [14], where V is the set of N sensors and

E is the set of undirected edges (communication links) among the sensors. We assume that the undirected

network is connected. Let |E| be the total number of undirected edges. Then if there is an edge between
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sensors i and j, we denote it as ei,j ∈ E and say that sensor j is a neighboring sensor of i (sensor i is a

neighboring sensor of j as well). Note that here both ei,j and ej,i denote the same edge, so we only use the

expression of ei,j (if i < j) or ej,i (if j < i) to avoid repetition. We denoteNi as the neighboring set of sensor

i and Ni as the number of neighboring sensors in Ni. Assume that each sensor has an estimate of the target

event position x, denoted as xi. Then each sensor is associated with a local cost function fi(xi) and all local

cost functions are combined into the general problem in (6.1). We also suppose that the local cost function

fi is only known to sensor i since ai and ri are private and only available to sensor i. Therefore, to reach

consistency on the estimated target event position across the entire network, we need to impose the constraints

xi = zi,j and xj = zi,j if there exists an edge ei,j between sensors i and j. Here, zi,j(i < j) is an auxiliary

item. We use the constraint xi = zi,j instead of xi = z in [16] because the constraint xi = z requires a

central node to collect all xi for i = 1, 2, ..., N to update z whereas under constraint xi = zi,j individual

nodes can update zi,j in a decentralized way.

Now problem (6.1) can be reformulated as a distributed ADMM described as follows:

min
xi, i∈{1,2,...,N},zi,j

N∑
i=1

fi(xi)

subject to xi = zi,j , xj = zi,j , ∀ei,j ∈ E,

(6.3)

or in a more compact form:

min
x,z

f(x) + g(z)

subject to Cx+ Fz = 0,

(6.4)

where x = [xT1 ,x
T
2 , ...,x

T
N ]T , g(z) = 0 is the identical zero function, z = [zi,j ]ij,ei,j∈E , matrices C

and F are defined similarly to [103], which we recapitulate here: C = [C1;C2]; both C1 ∈ R|E|D×ND

and C2 ∈ R|E|D×ND consist of |E| × N blocks of D × D matrices. If there exists an edge ei,j between

sensors i and j, and zi,j is the qth block in z, then the (q, i)th block in C1 and (q, j)th block in C2 are

identity matrices ID for all q, i, and j. The other blocks in C1 and C2 are identical zero matrices OD. Matrix

F = [−I|E|D;−I|E|D] with I|E|D being an |E|D×|E|D identity matrix. It is worth noting that the constraints

xi = zi,j and xj = zi,j for all ei,j ∈ E imply that the feasible set of (6.4) is X = {x ∈ RD|Ax = 0},

where A = [am,n]⊗ ID ∈ R|E|D×ND is the edge-node incidence matrix of graph G as defined in [118]. The
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symbol ⊗ denotes Kronecker product. The am,n element is defined as

am,n =


1 if the mth edge originates from agent n,

−1 if the mth edge terminates at agent n,

0 otherwise.

Here we define that each edge ei,j originates from agent i and terminates at agent j.

In this reformulation, the imposed constraints xi = zi,j ,xj = zi,j ,∀ei,j ∈ E in (6.3) require neigh-

boring sensors to exchange copies of local estimated event positions. Through an exchange of intermediate

computational results, it is guaranteed that a consistency of individual local estimates of event positions xi

across the entire network can be achieved. Now we are in place to solve (6.3).

6.2.2 Proposed Algorithm

Let λii,j be the Lagrange multiplier relevant to the constraint xi = zi,j and λji,j be the Lagrange

multiplier relevant to the constraint xj = zi,j . Parameter ρi is the penalty parameter associated with sensor i

and ρi > 0. Then we can denote the regularized augmented Lagrangian function of problem (6.3) as

Lρ(x, z,λ) =

N∑
i=1

fi(xi) +
∑
ei,j∈E

(λiTi,j(xi − zi,j) + λjTi,j (xj − zi,j))

+
∑
ei,j∈E

(
ρi
2
‖ xi − zi,j ‖2 +

ρj
2
‖ xj − zi,j ‖2),

(6.5)

where λ is the shorthand notion for λii,j and λji,j , ρ = diag{ρi1DNi}i={1,2,...,N}, 1DNi is a column vector of

length DNi and all its entries are one. Applying ADMM, we can get the following three recursions:

xt+1 ∈ argminxLρt(x, zt,λt), (6.6)

zt+1 = argminzLρt(xt+1, z,λt), (6.7)

λt+1 = λt + ρt(Cxt+1 + Fzt+1). (6.8)

The function Lρt(x, zt,λt) in (6.6) may have more than one local minimum, so we use xt+1 ∈

argminxLρt(x, zt,λt) instead of xt+1 = argminxLρt(x, zt,λt). Here “argmin” is used to indicate finding

local minima. The above recursions from (6.6) to (6.8) can be realized in a decentralized way, which is

described in Algorithm 5.
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Algorithm 5
Initial Setup: Each sensor initializes x0

i , λi0i,j , λ
j0
i,j , ρ

0
i , and exchanges x0

i with neighboring sensors. Then it

sets z0
i,j =

x0
i+x

0
j

2 .
Input: xti, zti,j , λiti,j , λ

jt
i,j , ρ

t
i

Output: xt+1
i , zt+1

i,j , λi(t+1)
i,j , λj(t+1)

i,j , ρt+1
i

1. Each sensor updates its local vector xt+1
i :

xt+1
i ∈ argminxifi(xi) +

∑
j∈Ni,i<j

(λitTi,j xi +
ρti
2
‖ xi − zti,j ‖2)

+
∑

j∈Ni,i>j
(λitTj,i xi +

ρti
2
‖ xi − ztj,i ‖2).

To simplify and unify the above expression, we introduce three notions: we use λii,j to represent λij,i,
λji,j to represent λjj,i, and zi,j to represent zj,i in each sensor i. Then the above equation can be
rewritten as follows:

xt+1
i ∈ argminxifi(xi) +

∑
j∈Ni

(λitTi,j xi +
ρti
2
‖ xi − zti,j ‖2). (6.9)

2. Each sensor sends its local vector xt+1
i and ρti to neighboring sensors;

3. Each sensor computes zt+1
i,j for j ∈ Ni:

zt+1
i,j = argminzi,j − (λitTi,j + λjtTi,j )zi,j + (

ρti
2
‖ xt+1

i − zi,j ‖2 +
ρtj
2
‖ xt+1

j − zi,j ‖2). (6.10)

Note that here the values of zt+1
i,j computed by sensors i and j are the same. This problem is easy to

solve, whose approximate solution is:

zt+1
i,j =

1

ρti + ρtj
(ρtix

t+1
i + ρtjx

t+1
j + λiti,j + λjti,j); (6.11)

4. Each sensor computes for j ∈ Ni:

λ
i(t+1)
i,j = λiti,j + ρti(x

t+1
i − zt+1

i,j ), (6.12)

λ
j(t+1)
i,j = λjti,j + ρtj(x

t+1
j − zt+1

i,j ). (6.13)

Note that here the values of λi(t+1)
i,j and λj(t+1)

i,j computed by sensors i and j are the same;

5. Each sensor updates ρti → ρt+1
i . Detailed updating rules are given in Sec. 6.3;

6. Set t = t+ 1, and go to 1.
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Now our focus is to find a closed-form solution to subproblem (6.9). First, let us introduce a Lemma:

Lemma 5. Let A = {a1, ...,aN} be the set of N sensors’ positions and

Li(xi) = fi(xi) +
∑
j∈Ni

(λitTi,j xi +
ρti
2
‖ xi − zti,j ‖2). (6.14)

Then for any i = 1, 2, ..., N , the following statements are true:

Statement (1): Every ā ∈ A is not a local minimum of problem (6.1);

Statement (2): ai is not a local minimum of Li(xi) (i.e., ai will not be the solution to (6.9)) when ρti

is finite.

Proof: Statement (1) follows from Lemma 2.5 in [11] directly. The proof of Statement (2) can also be

obtained following the proof of Lemma 2.5 in [11]. First let us denote
∑
j∈Ni

(λitTi,j xi +
ρti
2 ‖ xi − z

t
i,j ‖2) by

gi(xi). Then (6.14) can be written as

Li(xi) = fi(xi) + gi(xi), (6.15)

Note that Li(xi) is not differentiable at ai. Nonetheless, the directional derivative of Li at every point xi in

the direction v ∈ RD exists and is given as follows [11]:

L′i(x̄i;v) =


OLi(x̄i)Tv, x̄i 6= ai,

Ogi(ai)Tv − 2ri ‖ v ‖, x̄i = ai.

(6.16)

Noting that gi is differentiable at ai, if Ogi(ai) 6= 0, using (6.16) we have

L′i(x̄i;−Ogi(ai)) = − ‖ Ogi(ai) ‖2 −2ri ‖ Ogi(ai) ‖< 0.

If Ogi(ai) = 0, then for every v 6= 0 we have

L′i(x̄i;v) = −2ri ‖ v ‖< 0.

So there always exists a descent direction at ai. Therefore, ai is not a local minimum of Li(xi). This

concludes the proof of statement (2). �

Next, we derive a closed-form solution (local minimum) to (6.9) by applying the zero-gradient
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condition [97] and the positive definite property of Hessian. First, let us find a solution to the zero-gradient

condition:

Ofi(x
t+1
i ) +

∑
j∈Ni

(λti,j + ρti(x
t+1
i − zti,j)) = 0, (6.17)

where

Ofi(xi) = 2(xi − ai)−
2ri(xi − ai)
‖ xi − ai ‖

, xi 6= ai.

It is worth noting that here our purpose is to find one solution (not all) that satisfies both the

zero-gradient condition [97] and the positive definite property of Hessian, i.e., one local minimum to (6.9).

Rewrite (6.17) as

∑
j∈Ni

ρti(x
t+1
i − zti,j +

λti,j
ρti

) = 2(ai − xt+1
i )(1− ri

‖ xt+1
i − ai ‖

). (6.18)

Now, we provide a solution to (6.18) under two situations.

S1: when
∑
j∈Ni

(zti,j −
λti,j
ρti

) − Niai 6= 0 holds, let us set xt+1
i = ai + ζµ with scalar ζ > 0 and

vector ‖ µ ‖= 1, then it is clear that (6.18) can be rewritten as [97]

∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai) = µ[ζ(2 +Niρ

t
i)− 2ri]

if ζ and µ are selected as follows

ζ =

2ri+ ‖
∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai) ‖

2 +Niρti
,

µ =

∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai)

‖
∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai) ‖

.

So we have that

xt+1
i = ai +

2ri+ ‖
∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai) ‖

2 +Niρti
·

∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai)

‖
∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai) ‖

(6.19)

is a solution to (6.18), i.e., a stationary point of Li.
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S2: when
∑
j∈Ni

(zti,j −
λti,j
ρti

)−Niai = 0 holds and ρti is a finite value, (6.18) is equal to

Niρ
t
i(x

t+1
i − ai) = 2(ai − xt+1

i )(1− ri

‖ xt+1
i − ai ‖

). (6.20)

It is easy to obtain that

xt+1
i ∈ {ai +

2ri
2 +Niρti

ε}, ‖ ε ‖= 1 (6.21)

is a solution to (6.18), i.e., a stationary point of Li.

A commonly used way to choose xt+1
i in this situation is to set xt+1

i = ai + 2ri
2+Niρti

xti−ai
‖xti−ai‖

.

Lemma 6. The stationary points provided in (6.19) and (6.21) are also local minima of Li, i.e., solutions to

(6.9) (under situation S1 and situation S2, respectively).

Proof: First, we prove that the point in (6.19) is a local minimum. Consider the Hessian of Li

(denoted by O2Li), i.e.,

(2 +Niρ
t
i)ID −

2ri
‖ xi − ai ‖

ID +
2ri(xi − ai)(xi − ai)T

‖ xi − ai ‖3
,

at xt+1
i in (6.19), we have

O2Li(x
t+1
i ) =

2ri(x
t+1
i − ai)(xt+1

i − ai)T

‖ xt+1
i − ai ‖3

+ (2 +Niρ
t
i)ID −

2ri(2 +Niρ
t
i)

2ri+ ‖
∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai) ‖

ID.

(6.22)

Since
∑
j∈Ni

(zti,j −
λti,j
ρti

)−Niai 6= 0, we have that

(2 +Niρ
t
i)ID −

2ri(2 +Niρ
t
i)

2ri+ ‖
∑
j∈Ni

ρti(z
t
i,j −

λti,j
ρti
− ai) ‖

ID (6.23)

is positive definite. In addition, because the matrix yyT is positive semidefinite, we have

2ri(x
t+1
i − ai)(xt+1

i − ai)T

‖ xt+1
i − ai ‖3

(6.24)

is positive semidefinite. A positive definite matrix plus a positive semidefinite matrix is positive definite. So

O2Li(x
t+1
i ) is positive definite and therefore xt+1

i in (6.19) is a local minimum of Li.
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For situation S2, first note that (6.14) can be rewritten as

L̄i(xi) = fi(xi) +
ρtiNi

2
‖ xi − bti ‖2 +cti, (6.25)

where bti =

∑
j∈Ni

(zti,j−
λti,j

ρt
i

)

Ni
and cti = −ρ

t
iNi
2 ‖ bti ‖2 +

∑
j∈Ni

‖ zti,j ‖2. When bti = ai (situation S2), (6.25)

can be rewritten as

L̄i(xi) =
2 + ρtiNi

2
‖ xi − ai ‖2 −2ri ‖ xi − ai ‖ +r2

i + cti. (6.26)

Function (6.26) is a simple quadratic function and it is clear that the minimum is reached at points that satisfy

‖ xi − ai ‖= 2ri
2+ρtiNi

. Since xt+1
i in (6.21) satisfies ‖ xt+1

i − ai ‖= 2ri
2+ρtiNi

, it is a local minimum of L̄i,

i.e., a local minimum of Li. �

In Algorithm 5, after each sensor obtains its local estimated event position xti in each iteration, it

sends a copy of xti to its neighboring sensors in Ni. This guarantees the consistency of individual estimates

across the entire network. In general, Algorithm 5 is highly scalable and flexible. However, if we consider

the required storage space in each sensor, we can find that each sensor i has to store the following values:

xi,xj , zi,j , ρ
t
i, ρ

t
j ,λ

i
i,j ,λ

j
i,j , Ni, which require a storage space of 4DNi +D +Ni + 2 if we simply assume

that any real number is stored by one storage cell. Note that these values are updated with iteration and hence

can be demanding in terms of required storage space. In the following, we simplify the algorithm to save

storage space in each sensor.

By substituting (6.12) and (6.13) into (6.11) [106], we get

zt+1
i,j =

1

ρti + ρtj
(ρtix

t+1
i + ρtjx

t+1
j + λ

i(t−1)
i,j + λ

j(t−1)
i,j + ρt−1

i (xti − zti,j) + ρt−1
j (xtj − zti,j)). (6.27)

Then by substituting (6.11) into zti,j again, we get

zt+1
i,j =

1

ρti + ρtj
(ρtix

t+1
i + ρtjx

t+1
j ), (6.28)

λ
i(t+1)
i,j + λ

j(t+1)
i,j = 0. (6.29)

From (6.28) and (6.29), we can simplify our algorithm by omitting the computation of zi,j and

λji,j ,∀j ∈ Ni in sensor i. First, we introduce a vector λi =
∑
j∈Ni

λii,j , which leads to (6.30) from the

85



relationship in (6.12)

λt+1
i = λti +

∑
j∈Ni

ρtiρ
t
j

ρti + ρtj
(xt+1
i − xt+1

j ). (6.30)

Then by substituting zti,j in (6.19) with (6.28) and substituting
∑
j∈Ni

λii,j in (6.19) with λi, we have

xt+1
i = ai +

2ri+ ‖
∑
j∈Ni

(
ρti

ρt−1
i +ρt−1

j

(ρt−1
i xti + ρt−1

j xtj)−
λti
Ni
− ρtiai) ‖

2 +Niρti

·

∑
j∈Ni

(
ρti

ρt−1
i +ρt−1

j

(ρt−1
i xti + ρt−1

j xtj)−
λti
Ni
− ρtiai)

‖
∑
j∈Ni

(
ρti

ρt−1
i +ρt−1

j

(ρt−1
i xti + ρt−1

j xtj)−
λti
Ni
− ρtiai) ‖

(6.31)

under situation S1, i.e., when
∑
j∈Ni

(
ρti

ρt−1
i +ρt−1

j

(ρt−1
i xti + ρt−1

j xtj)−
λti
Ni
− ρtiai) 6= 0 holds.

The simplified algorithm is described in Algorithm 6.

Algorithm 6
Initial Setup: Each sensor initializes x0

i , λ0
i , ρ0

i , and exchanges x0
i with neighboring sensors.

Input: xti, λti, ρti, ρ
t−1
i

Output: xt+1
i , λt+1

i , ρt+1
i

1. Each sensor updates its local vector xt+1
i in parallel according to the update rule in (6.31) or (6.21);

2. Each sensor sends its local vector xt+1
i and ρti to neighboring sensors in Ni;

3. Each sensor computes λt+1
i according to (6.30);

4. Each sensor updates ρti → ρt+1
i . Detailed updating rules are given in Sec. 6.3;

5. Set t = t+ 1, and go to 1.

From Algorithm 6, we can see that each sensor has to store the following values: xi, xj , ρti, ρ
t
j , ρ

t−1
i ,

ρt−1
j , λi, Ni, which require a storage space of DNi + 2Ni + 2D+ 3 that is less than Algorithm 5. We remark

that Algorithm 6 is a simplified version for Algorithm 5 in terms of the required storage space, and it differs

from Algorithm 5 only by streamlining the steps in the conventional ADMM algorithm.

In addition, if we set ρt+1
i = ρti = ρ̄, ∀i ∈ {1, 2, ..., N}, i.e., keep ρi as a constant, (6.30) and (6.31)

can be simplified as:

λt+1
i = λti +

ρ̄

2
(Nix

t+1
i −

∑
j∈Ni

xt+1
j ),
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xt+1
i = ai +

2ri+ ‖
∑
j∈Ni

(
ρ̄(xti+x

t
j)

2 − λti
Ni
− ρ̄ai) ‖

2 +Niρ̄
·

∑
j∈Ni

(
ρ̄(xti+x

t
j)

2 − λti
Ni
− ρ̄ai)

‖
∑
j∈Ni

(
ρ̄(xti+x

t
j)

2 − λti
Ni
− ρ̄ai) ‖

which require a even smaller storage space of DNi + 2D + 2 in Algorithm 6. Furthermore, neighboring

sensors only need to exchange local estimates of event position, which reduces the communication overhead.

The convergence performance of the algorithm under a constant penalty parameter ρ̄ is evaluated numerically

in Sec. 6.4. Theoretical convergence analysis is detailed in the following section.

6.3 Convergence Analysis

Since fi in the objective function is non-convex and non-continuously differentiable, no proof is

currently available for the convergence of Algorithm 5 if ρti is kept constant (the same case for Algorithm 6),

although simulation results show that the algorithm converges well under a constant ρti in Sec. 6.4. Inspired by

the results in [7,8,28], we propose to update ρti in a time-varying way. Here, by time-varying we mean that the

penalty parameter is updated at every iteration. We update the penalty parameter ρti according to the following

rule:

If the following relationship holds in Algorithm 5

‖
∑
j∈Ni

(xt+1
i − zt+1

i,j ) ‖∞≤ ε ‖
∑
j∈Ni

(xti − zti,j) ‖∞, (6.32)

or accordingly the following relationship holds in Algorithm 6

‖
∑
j∈Ni

ρtj
ρti + ρtj

(xt+1
i − xt+1

j ) ‖∞≤ ε ‖
∑
j∈Ni

ρt−1
j

ρt−1
i + ρt−1

j

(xti − xtj) ‖∞, (6.33)

then we update ρt+1
i as

ρt+1
i = max{ρtj , j ∈ Ni ∪ {i}}, (6.34)
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otherwise, we update ρt+1
i as

ρt+1
i = η(max{ρtj , j ∈ Ni ∪ {i}}), (6.35)

where ε resides in the interval [0, 1), η is larger than but close to 1. Here, ‖
∑
j∈Ni

(xt+1
i −zt+1

i,j ) ‖∞ is a measure

of the local primary gap. In the condition based update rule, (6.34) is used to keep the penalty parameter ρi as

consistent throughout the network as possible when the local primary gap decreases sufficiently, i.e., when

(6.32) holds, whereas (6.35) is used to reinforce the constraint xi = zi,j in the next update of xi if the local

primary gap does not decrease sufficiently enough. According to (6.9), we can see that a larger ρ implies a

stronger influence of the constraint xi = zi,j when updating xi.

In addition, the Lagrange multipliers and the search domain for xt+1
i are required to be bounded

[7, 8, 28]. Therefore, we substitute the update rule for Lagrange multipliers in (6.30) with the following form:

λt+1
i = PΩ[λti +

∑
j∈Ni

ρtiρ
t
j

ρti + ρtj
(xt+1
i − xt+1

j )], (6.36)

where PΩ denotes the projection on the interval Ω = [λmin,λmax], i.e.,

PΩ[λ]j =


[λmin]j , if [λ]j ≤ [λmin]j ;

[λmax]j , if [λ]j ≥ [λmax]j ;

[λ]j , otherwise,

and [λ]j is the jth element of vector λ. To prevent unwanted clippings, λmax should be large enough (λmin

should be small enough).

For the update rule in (6.17), we add a constraint set

Xi = {xi|fi(xi) ≤ f(x̄)},

where x̄ is some initial estimate such that f(x̄) ≤ ∞ is true. Therefore, (6.17) can be substituted by

PXi [xk+1
i −Gi(xk+1

i )]− xk+1
i = 0, (6.37)

where Gi(xk+1
i ) denotes the left side function of (6.17). Then we need to modify the update rule of xt+1

i for
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situation S1. Denote the solutions in (6.19) and (6.31) as ẋt+1
i , we have

xt+1
i =


ai +

(ri+
√
f(x̄))(ẋt+1

i −ai)
‖ẋt+1
i −ai‖

, ẋt+1
i /∈ Xi;

ẋt+1
i , ẋt+1

i ∈ Xi.
(6.38)

We first introduce two conclusions in [7] and [8], which help to conclude our theorem. (Note that

Algorithm 5 and Algorithm 6 using the rules in (6.32)-(6.38) are designed following the idea of Algorithm 3.1

in [7] and Algorithm 2 in [8].)

Lemma 7. (Theorem 3.2 in [8]) Let {xt} be a sequence generated by Algorithm 5 or Algorithm 6. Then at

least one of the following possibilities hold when Algorithm 5 and Algorithm 6 are updated following the

rules in (6.32)-(6.38): 1. The sequence admits a feasible limit point; 2. The sequence admits an infeasible

degenerate limit point.

Lemma 8. (Theorem 4.1 in [7]) Let {xt} be a sequence generated by Algorithm 5 or Algorithm 6 using

the rules in (6.32)-(6.38). Let x∗ be a limit point of {xt}. If the sequence of penalty parameter ρti,∀i ∈

{1, 2, ..., N} in (6.35) is bounded, the limit point {xt} is feasible.

Now we can conclude the convergence properties of our algorithms.

Theorem 13. If the Lagrange multipliers and penalty parameters in Algorithm 5 and Algorithm 6 are

updated following the rules in (6.32)-(6.38), Algorithm 5 and Algorithm 6 are guaranteed to admit a limit

point x∗ for any parameter choice, provided that they are chosen in the required range, i.e., ρ0
i > 0,

η > 1, 0 ≤ ε < 1, λmax > 0, and λmin < 0. In addition, the limit point is admissible provided that

lim
t→∞

ρti = ρ̂ < ∞,∀i ∈ {1, 2, ..., N} is true, i.e., all ρti are bounded, and the Lagrange multipliers are not

clipped.

Proof: The proof of Theorem 13 follows from conclusions in [7, 8]. First, note that Algorithm 5

and Algorithm 6 using the rules in (6.32)-(6.38) are designed following the idea of Algorithm 3.1 in [7] and

Algorithm 2 in [8], where x belongs to the set {X1×, ...,×XN}. Then according to Theorem 3.2 in [8], we

can get that Algorithm 5 and Algorithm 6 admit a limit point x∗. It is worth noting that in [8], the derivative

of the objective function (denoted by F (x) in [8]) should be continuous, while in our case, fi(xi) is non-

differentiable at xi = ai. However, this will not be a problem in our case, as explained as follows. From the

proof of Theorem 3.2 in [8], we can see that the continuity condition is used to guarantee ‖ lim
t→∞

F (xt)
‖ρt‖∞ ‖= 0,

when ‖ ρt ‖∞ tends to∞ as t→∞. Recalling Lemma 5, it is clear that the only possible situation that we
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will have xt+1
i tending to ai is when

∑
j∈Ni

(zti,j −
λti,j
ρti

) − Niai = 0 holds and ρti tends to∞. And in this

situation, we have ‖ lim
xti→ai

Ofi(xti) ‖= 2ri, which still guarantees ‖ lim
t→∞

F (xt)
‖ρt‖∞ ‖= 0. So Theorem 3.2 in [8]

holds for Algorithm 5 and Algorithm 6. When all ρti are bounded, and the Lagrange multipliers are not clipped,

according to Theorem 4.1 in [7], x∗ is a feasible limit point. This concludes the proof of Theorem 13. �

In general, ρ0
i should be set to a small value no more than 1 and η should be set slightly larger than

but close to 1, since a large ρti will slow down the convergence rate. The parameter ε resides in the interval

[0, 1), but it is suggested to be chosen slightly smaller than but close to 1 [97]. To prevent unwanted clippings,

λmax should be large enough and λmin should be small enough.

Remark 17. An important contribution of our algorithm with respect to the centralized optimization ap-

proaches in [7] and [8] is that our algorithm can be implemented in a completely decentralized manner. In

addition, [7] and [8] address smooth (continuously differentiable) objective functions whereas this chapter

extends the results to address the non-smooth event localization problem where the objective function is not

always differentiable.

Remark 18. It is worth noting that the target event localization problem considered here is different from the

self-cooperative localization problem in [28, 59, 106] where sensors with unknown positions are embedded

with computation capability to estimate their own positions by themselves. The differences are evident from the

following example. Suppose that there is only one target to localize. In the case of [28, 59, 106], the target will

be a sensor with unknown position and it estimates its own position alone in a centralized way based on all

information gathered from adjacent sensors, including their positions and corresponding range measurements.

Whereas in our case, the target is an event without any communication or computation capability and the

event position estimation process is conducted cooperatively in a decentralized way among the sensors.

6.4 Numerical Simulations

In this section, we first illustrated the effectiveness of the proposed algorithm under both time-varying

and constant penalty parameters. Then we compared our Algorithm 6 with existing results including the

PONLM algorithm [101], the PPM algorithm [56], and the DAPA algorithm [135]. It is worth noting that as

indicated in Sec. 6.2, Algorithm 6 differs from Algorithm 5 only by streamlining the steps in the conventional

ADMM algorithm. Therefore, Algorithm 5 and Algorithm 6 have the same performance. The Matlab code for

all simulations in this section can be found in [1].
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The following two performance indices ERRRMSE and INCRMSE are defined below for the conve-

nience of performance comparison:

Localization Error: we use the root mean square error (RMSE) to quantify the error between estimated

and true positions of the target event for every sensor, which is denoted as ERRRMSE:

ERRRMSE =

√√√√√ L∑
j=1

‖ xj − x∗ ‖2

L
,

where L is the number of Monte Carlo trials, xj is the estimated position in the jth Monte Carlo trial in a

certain sensor, and x∗ is the true position of the target event.

Localization Inconsistency: We also use the root mean square error (RMSE) to quantify the lo-

calization inconsistency (difference) in estimated event positions between N sensors, which is denoted as

INCRMSE:

INCRMSE =

√√√√√ L∑
k=1

N−1∑
i=1

N∑
j=i+1

‖ xi,k − xj,k ‖2

L
,

where L is the number of Monte Carlo trials, xi,k is the estimated position obtained from the ith sensor in the

kth Monte Carlo trial. Parameter N is the number of sensors.

6.4.1 Evaluation of the Proposed Algorithm with Respect to Penalty Parameters

A. The Convergence of Time-varying ρ: As indicated in [121], the number of sensors required

to achieve unique source identification is between 4 and 6, so we simulated Algorithm 6 under an event

localization setup with five sensors and a target event located at [7.5; 7.5]. We set the initial values of time-

varying penalty parameters as ρ0
i = 1,∀i ∈ {1, 2, ..., N}, and other parameters as ε = 0.99, η = 1.0001,

respectively. In addition, when ‖
∑
j∈Ni

ρtj
ρti+ρ

t
j
(xt+1
i − xt+1

j ) ‖∞≤ 10−12 holds, ρ stops iterating. We ran the

simulation for 1000 times with the sensors positions randomly chosen from [−15, 15]× [−15, 15]. Simulation

results showed that in all runs ρi converged to some finite value, no matter whether the target event was in or

outside the convex hull of the five sensors. Fig. 6.2 visualizes the evolution of ρi in one specific run where the

sensor positions are illustrated in Fig. 6.1 (we used the noise-free range measurements in this part).

B. Time-varying vs Constant Penalty Parameters: Because a constant penalty parameter can reduce
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Figure 6.1: Event localization setup used in one of the simulation runs. The values in [•] denote positions (x, y
coordinates) of sensors.
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Figure 6.2: The evolution of ρi.
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communication overhead and the storage space in each sensor, we simulated Algorithm 6 under a constant

penalty parameter ρ̄ = 1. Fig. 6.3 visualizes the distribution of estimated event positions from 1000 Monte

Carlo trials under a constant penalty parameter ρ̄ = 1 (Fig. 6.3b) and a time-varying ρ (Fig. 6.3a) with sensor

positions given in Fig. 6.1. The Gaussian standard noise deviation (measurement noise) was set to σi = 0.5.

The initial estimate x0
i was randomly chosen in [−100, 100]× [−100, 100] in each Monte Carlo trial. It can

be seen that performances are similar in the two cases.

5 6 7 8 9 10 11

X
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8

9

10

Y

sensor 1

sensor 2

sensor 3

sensor 4

sensor 5

actual position

(a) Time-varying ρ (b) Constant ρ̄

Figure 6.3: Estimated event positions distribution for 1000 Monte Carlo trials under the measurement noise
σi = 0.5.

We also evaluated the influence of the noise level on localization inconsistency of Algorithm 6 under

time-varying and constant penalty parameters. The results are summarized in Table 6.1 where each data

point is an average of 1000 Monte Carlo trials. They confirm that the proposed algorithm can achieve a good

consistency across the entire sensor network even under large measurement noises.

Table 6.1: INCRMSE of Algorithm 6 under different levels of measurement noise

σi Time-varying ρ Constant ρ̄
0.01 6.80× 10−15 2.42× 10−15

0.2 6.62× 10−15 2.46× 10−15

0.5 6.64× 10−15 2.50× 10−15

1 6.66× 10−15 2.61× 10−15

1.5 0.3858 0.3042
2 0.9778 0.8785
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6.4.2 Comparison with Projection-based Algorithms

In this subsection, we compared the proposed Algorithm 6 with the PONLM algorithm [101], the

DAPA algorithm [135], and the PPM algorithm [56]. For our algorithm, we set the initial values of parameters

as ρ0
i = 1,∀i ∈ {1, 2, ..., N}, ε = 0.99, and η = 1.0001 respectively. For DAPA, we set the same parameters

as in [135]: αi = 1
t+2 , βi = 1

t+1 , bi = 1, ξi = 3,∀i ∈ {1, 2, ..., N}. For PONLM, since it is sequential,

we set its updating order as 1 → 2 → ... → N . In addition, we made an equivalent transform from

energy measurements to range measurements for DAPA and PONLM in our simulations. Note that PPM is a

centralized algorithm and it requires a central node to collect and average local estimates from all sensors.

Therefore, in fact, PPM is not applicable to our event localization, but we still list its results here so that the

performance of our algorithm can be evaluated in context.

A. Convergence Performance: We used the event localization setup in Fig. 6.1 to compare the

convergence performance. Fig. 6.4 visualizes the evolution of the localization error with iteration time t. The

measurement noise was set to σi = 0.01, and each data point in Fig. 6.4 was an average of 1000 Monte Carlo

trials. The settings for initial estimates, iteration times, and random noisy range measurements were identical

for all algorithms in each Monte Carlo trial. From Fig. 6.4, we can see that Algorithm 6 has a comparable

performance with the centralized method PPM in terms of localization accuracy and convergence rate. It is

worth noting that although PONLM has the highest convergence rate, it requires sensors to update their local

estimates sequentially according to a globally predefined order. Therefore, it requires a much longer absolute

updating time than all the other three algorithms, especially when the number of sensors is large.
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Figure 6.4: The evolution of localization error under the event localization setup in Fig. 6.1.
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We also compared the convergence performance of our algorithm, PONLM, DAPA, and PPM in

a network of 50 sensors randomly placed in the field [−25, 25] × [−25, 25]. The sensors are assumed to

communicate only with two neighbors to form a ring network. Fig. 6.5 visualizes the evolution of the

localization error with iteration time t. The measurement noise was set to σi = 0.5, and each data point in

Fig. 6.5 was an average of 500 Monte Carlo trials. We can see that our Algorithm 6 still has a comparable

accuracy with the centralized version PPM while having a much faster convergence speed than DAPA. It

is worth noting that although PONLM has a high convergence rate, it requires sensors to update their local

estimates sequentially according to a globally predefined order. Therefore, it requires a much longer absolute

updating time than all the other three algorithms.

10
0

10
1

10
2

10
3

Number of iteration

10
-1

10
0

10
1

10
2

E
R

R
R

M
S

E

Our algorithm

DAPA

PPM

PONLM

Figure 6.5: The evolution of localization error in a ring network of 50 sensors
.

B. The Influence of Measurement Noise on Localization Error: We also varied the level of measure-

ment noise to check their influence on the localization error under the event localization setup in Fig. 6.1. The

iteration time was set to 1000. Fig. 6.6 summarizes the ERRRMSE of these algorithms under different σi with

each data point being an average of 1000 Monte Carlo trials. It can be seen that Algorithm 6 has a comparable

performance on the localization accuracy with the centralized method PPM. Furthermore, compared with

PONLM and DAPA, our proposed algorithm showed consistently better performance under different levels

of measurement noise. Moreover, when we used noise-free range measurements, the localization error of

Algorithm 6 is on the level of 10−15, which indicates that the algorithm can converge to the true target event

position.
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Figure 6.6: The influence of measurement noise on localization error.

C. The Influence of Initialization Settings: We randomly set different initial estimates to check its

influence to the four algorithms. We considered two situations: when the target event is in the convex hull of

sensors as illustrated in Fig. 6.1 and when the target event is outside the convex hull of sensors as illustrated in

Fig. 6.7. The event localization setup in Fig. 6.7 is inspired by the practical acoustic event localization system

in [18, 90].

event

sensor

event
[-5;200]

[0; 0]

[2.8; 2.5]

[2.8; -2.5]

[34;8.75]

[34;-8.75]

[25; 0][-59;0]

[-50; 8.75]

[-50;- 8.75]

communication 
link

Figure 6.7: Event localization setup used in simulations. The values in [•] denote positions (x, y coordinates)
of sensors.

When the target event is in the convex hull of sensors, all algorithms converged to the true target

event position irrespective of the initial estimate x0
i . However, when the target event is outside the convex hull

of sensors, DAPA did not converge to the true target event position in our simulations even if we set the initial
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Table 6.2: Algorithm 6 vs PPM under random initial estimates

Initial
Estimates

Algorithm 6 PPM

V1 V2
Correct

V1 V2
Correct

Hits Hits
Y3 9826 174 98.26% 8423 1577 84.23%
Y2 9941 59 99.41% 8766 1234 87.66%
Y1 9991 9 99.91% 9397 603 93.97%

estimates close to the true target event position. For example, it converged to [−15; 200] after 105 iterations

when x0
i = [−20; 180],∀i ∈ {1, 2, ..., 9}, while Algorithm 6 and PPM converged to [−5; 200] after 200

iterations. The failure of DAPA is understandable given that it always pursues the intersections of sensing rings,

which do not necessarily coincide with the true target event location. Table 6.2 gives the number of times that

Algorithm 6 and PPM converged to the true target event position [−5; 200] (denoted as V1) and another local

minimum [−4.9;−200] (denoted as V2) when the initial estimates of the nine sensors were randomly chosen

in the following three ranges in 10000 Monte Carlo trials, respectively: Y1 := {x ∈ R2| ‖ x− [−5; 200] ‖≤

300}, Y2 := {x ∈ R2| ‖ x− [−5; 200] ‖≤ 400}, and Y3 := {x ∈ R2| ‖ x− [−5; 200] ‖≤ 500}. It can be

seen that our proposed algorithm is more likely to converge to the true target event position. PONLM is not

applicable to the event localization setup in Fig. 6.7, since there exists no path that connects all nine sensors in

succession.

D. The Influence of Topology Changes: We simulated the influence of topology changes to Algorithm

6, the PONLM algorithm [101], and the DAPA algorithm [135] under the event localization setup in Fig. 6.1.

We supposed that each communication link in Fig. 6.1 has a fixed probability of packet loss in each iteration,

denoted as P . For Algorithm 6 and DAPA, if the packet on a communication link between two senors is

lost, then these two sensors can not exchange local estimates in this iteration. Specifically for Algorithm 6,

if a sensor does not receive any local estimates from its neighbors in some iteration time, it updates its local

estimate as xt+1
i = xti. For PONLM, if there exists one packet lose in the multi-hop path 1→ 2→ ...→ 5,

the update process is failed in this iteration. Therefore, the topology might change from iteration to iteration.

Fig. 6.8 visualizes the evolution of localization error of the three algorithms under the packet loss probability

of P = 5%. The measurement noise was set to σi = 0.01, and each data point was an average of 1000

Monte Carlo trials. We can see that Algorithm 6 has the smallest localization error in the presence of topology

changes caused by link failures. Fig. 6.9 visualizes the evolution of localization error of Algorithm 6 under

packet loss probabilities of P = 0%, P = 5%, P = 10%, P = 15%, P = 30%, and P = 50%, respectively.

It can be seen that Algorithm 6 reached high localization accuracy even under a high probability of packet loss,
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which indicates that Algorithm 6 is robust to network topology changes.
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Figure 6.8: The evolution of localization error of our algorithm, PONLM, and DAPA under a packet loss
probability of P = 5%.
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Figure 6.9: The evolution of localization error of Algorithm 6 under different packet loss probabilities.

Remark 19. In Algorithm 5 and Algorithm 6, the update of xti (local target event position estimate) at sensor

i is influenced by the local estimates from its neighbors due to the constraint xi = zi,j . The constraints

xi = zi,j and xj = zi,j drive the consistency of local estimates among neighboring sensors once they can

communicate. So the consistency among local estimates of all sensors can still be guaranteed whenever

neighboring sensors can exchange information under a connected communication pattern. This is in some
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Table 6.3: Complexity comparison among Algorithm 6, PONLM, and DAPA

Algorithm 6 PONLM DAPATime-varying ρ Constant ρ̄

Communication Load
N∑
i=1

(D + 1)Ni
N∑
i=1

DNi ND
N∑
i=1

DNi

Local Storage Space DNi + 2Ni + 2D + 3 DNi + 2D + 2 2D DNi + 3D +Ni + 2
Execution Time (every 1000 iterations) 0.02s 0.0066s 0.002s 0.008s

sense similar to the asynchronous ADMM, whose convergence is guaranteed for convex function [119]. Our

simulation results suggest a potential application of asynchronous ADMM in some non-convex and non-smooth

functions.

E. Complexity Comparison: Table 6.3 provides a comparison on the overall network communication

load per iteration, the required local storage space in each sensor, and the average computation complexity

per sensor per iteration of Algorithm 6, the PONLM algorithm [101], and the DAPA algorithm [135]. We

simply assume that any real number is stored by one storage cell. For computation complexity comparison,

we used the average execution time that each sensor spends for 1000 iterations. From Table 6.3, we can see

that Algorithm 6 with constant ρ̄ has comparable performance with DAPA. In addition, although algorithm

PONLM has the smallest communication overhead and local storage requirement, it requires sensors to update

their local estimates sequentially according to a globally predefined order and is not amendable to parallelism.

F. The influence of the number of sensors: In this part, we simulated the influence of the number of

sensors on our algorithm’s convergence rate and localization error. We considered 50 sensors randomly placed

in the field [−25, 25]× [−25, 25]. We formed a ring network by randomly choosing 5, 10, 25, and 50 sensors,

respectively. Fig. 6.10 visualizes the evolution of localization error of Algorithm 6 under these ring networks.

The measurement noise was set to σi = 0.5, and each data point in Fig. 6.10 was an average of 500 Monte

Carlo trials. Fig. 6.10 shows that with an increase in the number of sensors, the localization error decreases

monotonically while the convergent speed is only moderately affected in a non-monotonic way. Therefore, if

accuracy is of concern, then more sensors should be deployed. In addition, simulation results showed that

the probability of acquiring the true target event position was always 100% for the three cases of 10 sensors,

25 sensors, and 50 sensors, respectively (cf. Table 6.4), which is higher than the case with 5 sensors. This

is intuitive as the target event is more likely to be within the convex hull of all sensors when the number of

sensors increases.
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Figure 6.10: The evolution of localization error of Algorithm 6 under different numbers of sensors.

Table 6.4: Correct hits of Algorithm 6 under a ring topology composed of different numbers of sensors.

Number of Sensors Correct Hits Total Trials Percentage
5 973 1000 97.3%

10 1000 1000 100%
25 1000 1000 100%
50 1000 1000 100%

6.5 Summaries

In this chapter, we proposed a completely decentralized parallel algorithm which solves the non-

convex and non-smooth event localization problem directly without using convex relaxation. Simulation results

confirm that our algorithm has better localization accuracy compared with other projection-based algorithms

when the target event is in the convex hull of sensors. When the target event is outside the convex hull of

sensors, our algorithm has a higher probability to converge to the right target event position than existing

results. In addition, numerical simulations show that our algorithm has higher localization accuracy than

existing approaches even in the presence of topology changes.
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Chapter 7

Distributed Event Localization via

ADMM

This chapter is motivated by acoustic event localization which is crucial on battlefields [25]. In

such applications, the target event has no communication or computation capability, which differentiates the

problem from sensor localization problems in which the locations of sensors are estimated [106]. Furthermore,

in such applications, the target events lie outside the convex hull of deployed sensors, which renders existing

projection-based algorithms inappropriate. SDP relaxation based algorithms can avoid the convex hull problem

and are traditionally employed to solve the event localization problem [30,91,92,113,114,124,126]. However,

as far as we known, existing SDP relaxation based algorithms for event localization are all centralized, with a

central node collecting and processing all data, which makes them susceptible to processing center failure

and traffic bottleneck. In this chapter, we propose two distributed event localization approaches based on a

clustered architecture motivated by mobile acoustic localization applications such as the PinPointTM system

from BioMimetics Systems Inc. The PinPointTM mobile localization sensor network can be deployed as a

mobile infrastructure for impulsive threat event detection and localization [18, 25]. Each PinPointTM sensor is

a small omnidirectional microphone array which localizes impulsive acoustic events by correlating the ToA

measurements among its microphone cells. In fact, since each sensor has an integrated microphone array,

individual sensors are able to identify and localize a target event without assistance or cooperation with other

sensors. However, due to close distances between the microphone cells, the accuracy of individual sensors

is very limited and unsatisfactory, and collaboration among the sensors is necessary to improve localization
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accuracy [18, 25].

The above application motivated us to assume a localization architecture in which an entire network

is divided into several clusters. A cluster head (which can be a regular sensor) collects and fuses measurements

(e.g., noisy ranges) obtained from all members in its cluster. Two cluster heads in different clusters can

exchange information (the local estimates of target events) if a communication link is available between them;

otherwise they don’t have access to each other’s information. Based on the alternating direction method of

multipliers (ADMM), we propose two scalable distributed algorithms named GS-ADMM and J-ADMM which

do not require the target event to be within the convex hull of the deployed sensors. Our developed algorithms

can also be applied in some other applications where a cluster-based architecture is employed. A typical

example is the wide-area monitoring and control in large-scale power systems [83], [35]. To estimate the

electro-mechanical oscillation modes, a large number of phasor measurement units (PMU) have to be deployed

across a power network to conduct measurements. The measurements from PMUs have to be fused to diagnose

the inter-area oscillation modes. However, wide-area communication between PMUs is very expensive [43].

To fuse information across the PMUs without imposing heavy communication overhead, a similar structure as

ours is adopted in [83], [35]. Other examples on cluster-based architecture can be found in [55, 95, 109, 133].

The main contribution of this chapter is two ADMM-based distributed event localization algorithms,

i.e., GS-ADMM and J-ADMM. Compared with existing centralized SDP relaxation based algorithms for

event localization, the two algorithms divide the computation on a central node to different clusters to avoid

possible center failure and traffic bottleneck, and in the mean time, guarantee consistency of the estimates

across all clusters among which only limited communications are available. Furthermore, the two algorithms

take advantages of SDP relaxation to avoid the convex hull problem compared with existing projection-based

algorithms. Moreover, the algorithms are proven to converge with a convergence rate of O(1/t) where t is the

iteration time.

The rest of this chapter is organized as follows: Sec. 7.1 states the formulation of the problem. To

solve the problem, a convex relaxation is required and the method proposed by [106] is recapitulated in Sec.

7.2. In Sec. 7.3 , two algorithms named GS-ADMM and J-ADMM are proposed based on ADMM, with

their convergence properties analyzed in Sec. 7.4. Sec. 7.5 gives numerical simulation results. In the end, a

summary is made in Section 7.6.
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Figure 7.1: Cluster based event localization architecture (N = 4)

7.1 Problem Statement

Motivated by mobile acoustic event localization applications such as the PinPointTM event localization

sensor network [18, 25], we consider a localization sensor network divided into N clusters (cf. Fig. 7.1 for

the case N = 4). Denote the number of constituent sensors of cluster i as Ci (i = 1, 2, . . . , N ). We consider

localization in D (D ∈ {1, 2, 3}) dimensional Euclidean space and suppose that the position of the target

event is denoted as x ∈ RD. Denote the position of the kth sensor in the ith cluster as ai,k ∈ RD. The kth

sensor in the ith cluster can obtain a noisy range measurement ri,k of its distance with respect to a target event:

ri,k = di,k + vi,k

where di,k =‖ x− ai,k ‖ denotes the actual distance between the event position and the kth sensor of the ith

cluster, and vi,k is the Gaussian noise term.

Then the event localization problem amounts to estimating the unknown event location x using known

sensor positions ai,k and noisy range measurements ri,k (i = 1, 2, . . . , N, k = 1, 2, . . . , Ci). Still motivated

by acoustic event localization applications (e.g., the PinPointTM event localization sensor network [18,25]), we

assume that a cluster head exists in each cluster i, which can gather range measurements ri,k from all sensors

within the cluster. In addition, a cluster head can communicate and exchange information with the cluster head

of a neighboring cluster if there is a communication link between them (cf. Fig. 7.1). In this case, we also

say that these two clusters can communicate. We assume that the communication pattern forms a connected
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network, i.e., there is a (multi-hop) path (composed of multiple communication links connected in succession)

between any pair of cluster heads. For example, in Fig. 7.1, cluster 1 is able to exchange information with

clusters 2 and 3 (via cluster heads); cluster 2 can exchange information with clusters 1, 3, and 4 (via cluster

heads), etc. DenoteNi as the set of all neighboring clusters of cluster i, N̂i as the union of setNi and cluster i

itself, and Ni as the number of clusters in Ni.

As in most existing results, we use the maximum likelihood method for event localization [30, 91].

Let pi,k(di,k(x,ai,k)|ri,k) denote the measuring probability density function (PDF) for sensor k in cluster i

and assume that it is a log-concave function of unknown distance di,k [106], we can write this problem using

the maximum likelihood method (which is costly but efficient [11]):

x∗ML = argmaxx∈RD
N∑
i=1

Ci∑
k=1

lnpi,k(di,k(x,ai,k)|ri,k). (7.1)

7.2 Convex Relaxation

Problem (7.1) is non-convex and it is generally infeasible to find a global optimal solution [106]. So

a convex relaxation is needed to convert problem (7.1) into a convex optimization problem. Following the

idea of [106], we use an SDP based relaxation approach. However, it is worth noting that there are inherent

differences between the problem considered here and the sensor-position estimation problem in [106] where

each sensor with unknown position estimates its own position using embedded computation capability. The

differences are evident from the following example. Suppose that there is only one target to localize. In the

case of [106], the target will be a sensor with unknown position and it estimates its own position alone using

a centralized SDP based on all information gathered from adjacent sensors, including their positions and

corresponding range measurements. Whereas in our case, the target is an event without any communication or

computation capability and the event position estimation process is conducted cooperatively in a distributed

way among the clusters.

To facilitate the relaxation, we first define the following new variables: y = xTx, εi,k = d2
i,k. Then

we stack εi,k, k ∈ {1, 2, ..., Ci} into εi and further stack εi, i ∈ {1, 2, ..., N} into ε , [εT1 , ε
T
2 , ..., ε

T
N ]T . In

the same way we stack di,k into di and d , [dT1 ,d
T
2 , ...,d

T
N ]T . Then the cost function can be written as

f(d) = −
N∑
i=1

Ci∑
k=1

lnpi,k(di,k|ri,k).
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Consider the case of white zero-mean Gaussian noise, i.e., vi,k ∼ N (0, σ2
i,k), then the above problem

can be rewritten as

f(d) =

N∑
i=1

Ci∑
k=1

σ−2
i,k (d2

i,k − 2di,kri,k + r2
i,k) (7.2)

Without loss of generality, we can set the standard deviation σi,k in (7.2) to one. Now, problem (7.1)

can be relaxed into the following constrained optimization problem:

min
x,ε,d,y

f(d)

subject to y − 2xTai,k+ ‖ ai,k ‖2= εi,k, y = xTx,

εi,k = d2
i,k, di,k ≥ 0,

∀i ∈ {1, 2, ..., N}, k ∈ {1, 2, ..., Ci}.

(7.3)

However, in this case, the constraints of (7.3) still define a non-convex set [106]. Using Schur

complements [94], the following convex relaxation can be obtained:

min
x,ε,d,y

f(d)

subject to y − 2xTai,k+ ‖ ai,k ‖2= εi,k, εi,k ≥ 0, 1 di,k

di,k εi,k

 � 0, di,k ≥ 0,

∀i ∈ {1, 2, ..., N}, k ∈ {1, 2, ..., Ci},ID x

xT y

 � 0, y ≥ 0.

(7.4)

Problem (7.4) is a convex problem with inequality constraints [16]. We can rewrite the cost function

as

f(d, ε) =

N∑
i=1

Ci∑
k=1

σ−2
i,k (εi,k − 2di,kri,k + r2

i,k) (7.5)

by enforcing a change of variables εi,k = d2
i,k to further relax it to a semidefinite programming (SDP)

problem [106]. Now, we can propose ADMM based solutions for problem (7.4).
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7.3 Proposed Distributed Algorithms

7.3.1 Problem Reformulation

In distributed algorithms, neighboring nodes have to generate and exchange copies of local estimates

to ensure a consistent global estimation across all nodes. In our event localization architecture, a cluster is

treated as a normal node which solves a common event localization problem based on measurements obtained

by sensors within the cluster. And neighboring clusters exchange intermediate computational results (through

cluster heads) to guarantee that all clusters reach the same estimation value.

To better interpret our algorithms, we define a local vector

pi , (εTi ,d
T
i , yi,x

T
i )T ∈ R2Ci+D+1, i ∈ {1, 2, ..., N},

which is owned by cluster i.

We let p denote the stacked vector of pi and define a convex set

Pi , {pi|pi verifies (7.4)}.

Then problem (7.4) can be rewritten as

min
p

f(p)

subject to pi ∈ Pi, ∀i ∈ {1, 2, ..., N},
(7.6)

where, in our situation, f(p) is given as follows:

f(p) = −
N∑
i=1

Ci∑
k=1

ln pi,k(di,k|ri,k) =

N∑
i=1

fi(pi). (7.7)

7.3.2 ADMM based problem formulation

From the architecture in (7.7), it is easy to see that problem (7.6) can be divided into N subproblems,

which can be solved in a distributed way using ADMM by adding some constraints on pi. Next we present the

basic idea based on a graph-based formulation of the communication pattern.

Using graph theory [14], the communication pattern of cluster heads can be represented by G =

{V,E}, where the set V denotes the set of cluster heads, and E denotes the set of undirected edges (communi-
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cation links) between clusters. We use ei,j ∈ E, i < j to denote the link (if there is) between cluster heads i

and j. We use |E| to represent the total number of undirected edges. In our problem formulation, each cluster

is associated with a local cost function fi(pi), and all clusters work together to solve the problem in (7.6).

Assume that the local cost function fi is only known to cluster i, then to reach consistency (consensus) of

estimated position values among all clusters, we impose a constraint xi = xj if there exists an edge ei,j ∈ E

between clusters i and j. Introduce a matrix Ji = [0D×(2Ci+1), ID] ∈ RD×(2Ci+D+1), where ID denotes the

D dimensional identity matrix, then xi can be represented as xi = Jipi. So the constraint xi = xj can be

represented as Jipi = Jjpj .

Now we are able to rewrite problem (7.6) into a distributed ADMM form as follows:

min
pi, i∈{1,2,...,N}

N∑
i=1

fi(pi)

subject to Jipi = Jjpj , ∀ei,j ∈ E,

pi ∈ Pi, ∀i ∈ {1, 2, ..., N},

(7.8)

or in a more compact way:

min
p

f(p)

subject to AJp = 0, pi ∈ Pi, ∀i ∈ {1, 2, ..., N},
(7.9)

where p = [pT1 ,p
T
2 , ...,p

T
N ]T , J = diag{J1, J2, . . . , JN} ∈ R

ND×(
N∑
i=1

2Ci+D+1)
, and A = [am,n] ⊗ ID ∈

R|E|D×ND is the edge-node incidence matrix of graphG as defined in [118], with its |E|D rows corresponding

to the |E| communication links and the ND columns corresponding to the N agents. The symbol ⊗ denotes

Kronecker product. The am,n element is defined as

am,n =


1 if the mth edge originates from agent n,

−1 if the mth edge terminates at agent n,

0 otherwise.

(7.10)

Here we define that each edge ei,j originates from agent i and terminates at agent j.
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It can be easily verified that the incidence matrix A for Fig. 7.1 is

A =



ID −ID 0D 0D

0D ID −ID 0D

ID 0D −ID 0D

0D ID 0D −ID


. (7.11)

In this formulation, after each cluster obtains its local estimate pi, it sends the value Jipi (estimated

event position xi) to neighboring clusters. By adding the constraint Jipi = Jjpj ,∀i ∈ {1, 2, ..., N}, j ∈ Ni

as shown in (7.8), the consistency of individual event position Jipi (xi) estimated across the clusters is

guaranteed. Now we are in place to present our detailed algorithms to solve (7.8).

Remark 20. Note that although a normal way to apply ADMM to consensus problems is to create auxiliary

local variables (cf. [106]), we just put the constraint Jipi = Jjpj directly here. The reason that we omit the

auxiliary local variables is to save storage space at each cluster, since auxiliary local variables take additional

storage space. Furthermore, by adding the constraint Jipi = Jjpj , we can have both a sequential and a

parallel realization with convergence guaranteed, which will be detailed in the following subsection. This kind

of constraint and its induced ADMM algorithm is called extended ADMM, which is discussed and applied in

many recent work, e.g., [26, 82, 83, 118, 127].

7.3.3 Proposed Algorithms

Let λi,j be the Lagrange multiplier relevant to the constraint Jipi = Jjpj . Then the regularized

augmented Lagrangian function of problem (7.8) can be reformulated as

Lρ(p,λ) =

N∑
i=1

fi(pi) +
∑
ei,j∈E

(λTi,j(Jipi − Jjpj) +
ρ

2
‖ Jipi − Jjpj ‖2), (7.12)

where λi,j are stacked into λi for all j ∈ Ni and λi are stacked into λ for all i ∈ {1, 2, ..., N}.

Applying ADMM, we can get the following two updating recursions:

pt+1 = argminpi∈PiLρ(p,λ
t), (7.13)

λt+1
i,j = λti,j + ρ(Jip

t+1
i − Jjpt+1

j ). (7.14)
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Here, we can update p in two different ways. One way is based on the Gauss-Seidel update [37] in which

clusters update in a sequential order. The other way is the Jacobian scheme in which all clusters update in

parallel [99].

Gauss-Seidel update (GS-ADMM): We first consider an algorithm based on the Gauss-Seidel

update. Gauss-Seidel update for distributed ADMM has been explored theoretically and proven able to

converge in most cases for convex objective functions (see, e.g., [46, 52, 108]). GS-ADMM based solution for

distributed event localization can be described as follows:

Algorithm 7 GS-ADMM
Each cluster initializes p0

i , λ0
i,j .

Input: pti, λti,j
Output: pt+1

i , λt+1
i,j

1. All clusters update their local vectors in a sequential order and send their local vectors Jipt+1
i to

neighboring clusters in Ni immediately, where

pt+1
i = argminpi∈P(fi(pi) +

∑
j∈N̂i,j≥i

(λtTi,j(Jipi − Jjptj) +
ρ

2
‖ Jipi − Jjptj ‖2)

+
∑

j∈N̂i,j<i

(λtTi,j(Jipi − Jjpt+1
j ) +

ρ

2
‖ Jipi − Jjpt+1

j ‖2)).
(7.15)

Here we also consider the effect of Jipti when updating pt+1
i by adding a term ρ

2 ‖ Jipi − Jip
t
i ‖2.

Problem (7.15) with fi given in (7.5) is an SDP problem that can be solved by common convex toolboxes
such as Yalmip [70, 106], which is used in our simulations.

2. Each cluster computes

λt+1
i,j = λti,j + ρ(Jip

t+1
i − Jjpt+1

j ). (7.16)

3. Set t = t+ 1, and go to 1.

In GS-ADMM, all clusters update their local estimated position values in a sequential way just as

some projection-based algorithms. Sequential update can be used in small-size networks. For large-scale

networks, a parallel method is more appropriate. So we also propose another algorithm based on Jacobian

scheme which is amendable for parallelization.

Jacobian based ADMM (J-ADMM): Algorithm J-ADMM is motivated by the work in [26], which

proposed the Proximal Jacobian ADMM by adding some proximal terms when updating pi. We adopt the

same idea here and prove that if the proximal terms meet some additional requirements, convergence of this

algorithm can be guaranteed. The detailed procedure of J-ADMM is given as follows, with the convergence

analysis detailed in the following section.
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Algorithm 8 J-ADMM
Each cluster initializes p0

i , λ0
i,j .

Input: pti, λti,j
Output: pt+1

i , λt+1
i,j

1. Each cluster updates its local vector in parallel:

pt+1
i = argminpi∈Pfi(pi) +

∑
j∈N̂i

(λtTi,j(Jipi − Jjptj) +
ρ

2
‖ Jipi − Jjptj ‖2) +

ργi
2
‖ Jipi − Jipti ‖2

(7.17)

The last term of the above equality, i.e., ργi2 ‖ Jipi − Jip
t
i ‖2, is the proximal term we added where

γi ≥ 0 is a scalar. Problem (7.17) with fi given in (7.5) is an SDP problem that can be solved by
common convex toolboxes such as Yalmip [70, 106], which is used in our simulations.

2. Each cluster sends its local vector Jipt+1
i to neighboring clusters in Ni.

3. Each cluster computes

λt+1
i,j = λti,j + ρ(Jip

t+1
i − Jjpt+1

j ). (7.18)

4. Set t = t+ 1, and go to 1.

Remark 21. A distinct difference between GS-ADMM and J-ADMM is the way they update pi. In GS-ADMM,

each cluster updates its local estimated position value in a sequential way, which requires a globally predefined

order. Whereas in J-ADMM, all clusters update their local estimated position values simultaneously. We

remark that GS-ADMM is appropriate for small-scale sensor networks. But for large-scale networks, updating

in a sequential way may be quite time-consuming and parallel methods like J-ADMM are more appropriate. So

different updating methods should be chosen according to the size of networks and other practical concerns.

In fact, if we disregard the PinPointTM motivated application scenario, the proposed two algorithms

can be completely distributed to each sensor by allowing sensors to have access to neighboring sensors’

positions and range measurements with respect to the target event. However, we argue that this, in fact,

may cost more energy since each sensor has to solve an SDP problem. In addition, the required storage

overhead is larger since each sensor has to store neighboring sensors’ positions and range measurements.

Furthermore, consider a situation where two sensors can communicate with each other and have the same

neighbors. Then the position estimation process conducted at these two sensors are the same, which leads to

redundant processing of the same data. While in our clustered architecture, only cluster heads need to conduct

position estimation and in fact, each sensor in the cluster can take turns to be the cluster head, which is helpful

to average energy consumption. Compared with the iterative schemes, e.g., projection-based algorithms, where
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each sensor only has access to its own position and range measurement, our algorithms are insensitive to the

convex hull problem. And compared with centralized SDP-based algorithms, our clustered architecture is

robust to processing center failure or traffic bottleneck problems. In addition, the convex relaxation methods

used at each cluster can be further improved by using recent works such as [30, 91, 92, 113, 114, 124, 126].

7.4 Convergence Analysis

In this section, we analyze the convergence properties of GS-ADMM and J-ADMM. As our algorithms

are applications of distributed ADMM, the analysis benefits from many existing results on general distributed

ADMM [40, 82, 118].

7.4.1 Convergence Analysis of GS-ADMM

Let pk = [pkT1 ,pkT2 , ...,pkTN ]T and λk = [λki,j ]ij,ei,j∈E be the iterates generated by algorithm

GS-ADMM following (7.15) and (7.16). Assume that the initial problem (7.8) admits a solution (p∗,λ∗), i.e.,

the Lagrangian function L(p,λ) = f(p) + λTAJp has a saddle point (note: not the augmented Lagrangian

function), then the following theorem holds:

Theorem 14. Let p̄t+1 = 1
t+1

t∑
k=0

pk+1 be the average of pk up to iteration time t+ 1, then the followings

hold for all t:

(1)

0 ≤ L(p̄t+1,λ∗)− L(p∗,λ∗) ≤ c0
t+ 1

, (7.19)

(2) The sequence (pk1 ,p
k
2 , ...,p

k
N ) deduced by GS-ADMM converges to (p∗1,p

∗
2, ...,p

∗
N ), i.e., lim

k→∞
‖

pk − p∗ ‖= 0. In addition, we have J1p
∗
1 = J2p

∗
2 = ... = JNp

∗
N .

Here

c0 =
1

2ρ
‖ λ0 − λ∗ ‖2 +

ρ

2
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2), (7.20)

and H = min{0, A} (Hi,j = min{0, Ai,j}).
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Proof: (7.19) can be obtained following a way similar to Theorem 4.4 in [118]. A detailed proof is

given in Appendix C.1. To prove the second statement, recall that the objective function is

f(d) =

N∑
i=1

Ci∑
k=1

σ−2
i,k (d2

i,k − 2di,kri,k + r2
i,k).

Setting hi,k = σ−2
i,k (d2

i,k − 2di,kri,k + r2
i,k), we have f(d) =

N∑
i=1

Ci∑
k=1

hi,k. Note that hi,k is a quadratic

function and is strongly convex. Since the sum of strongly convex functions is still strongly convex, our

objective function f(d) is strongly convex. Further note that f(p) is equal to f(d) and the set Pi is convex

and closed. Therefore, our problem satisfies the requirements of both strongly convex objective function and

convex-and-closed constraint set in [40]. Now we proceed to prove the second statement. First, rewriting

AJp = 0 in the form of
N∑
i=1

[A]iJipi = 0, where [A]i denotes the columns of A associated with cluster i, we

can form a variational inequality MV I(Q,U) similar to (5)-(6) in [40]:

〈u− u∗,Q(u∗)〉 ≥ 0, ∀u ∈ U ,

where

u∗ :=



p∗1

p∗2

· · ·

p∗N

λ∗


, Q(u∗) :=



ξ∗1 + JT1 [A]T1 λ
∗

ξ∗2 + JT2 [A]T2 λ
∗

· · ·

ξ∗N + JTN [A]TNλ
∗

AJp


,

U :=

N∏
i=1

Pi × R|E|D.

Then following the proof of Lemma 4.1 in [40], we can get that (pk+1
1 , ...,pk+1

N ,λk+1) is a solution to

MV I(Q,U) if AJp = 0 and [A]iJip
k
i = [A]iJip

k+1
i hold. Secondly, following the proof of Lemma 4.2

in [40], we can get the following inequality:

〈λ∗ − λk, AJp〉 ≥
N∑
i=1

ωi ‖ pk+1
i − p∗i ‖2 +ρ ‖ AJpk+1 ‖2

+ρ

N∑
i=1

〈[A]iJipk+1
i − [A]iJip

∗
i ,

N∑
j=i+1

([A]jJjp
k
j − [A]jJjp

k+1
j )〉

−ρ
N∑
i=1

〈[A]iJipk+1
i − [A]iJip

∗
i ,

1

Ni
([A]iJip

k+1
i − [A]iJip

k
i )〉,
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where fi(pi) is strongly convex with modulus ωi. Thirdly, define an auxiliary block-diagonal matrix W :

W =



ρNJT1 [A]T1 [A]1J1 . . . 0 0

· · ·
. . . · · · · · ·

0 . . . ρNJTN [A]TN [A]NJN 0

0 . . . 0 ρ−1I


.

Then by following the idea of the proof of Lemma 4.3 in [40], the following inequality can be obtained:

‖ uk+1 − u∗ ‖2W≤‖ uk − u∗ ‖2W −2

N∑
i=1

ωi ‖ pk+1
i − p∗i ‖2 −ρ ‖ AJpk+1 ‖2

+3Nρ

N∑
i=1

‖ [A]iJip
k+1
i − [A]iJip

∗
i ‖2,

where

‖ u ‖2W :=‖ λ ‖2ρ−1 +ρN(‖ [A]1J1p1 ‖2 + ‖ [A]2J2p2 ‖2 +...+ ‖ [A]NJNpN ‖2).

Finally, when 0 < ρ < min
1≤i≤N

{ 2ωi
3N‖[A]iJi‖2 } holds, we can get the second statement following the proof of

Theorem 4.1 in [40]. �

Remark 22. Recall λk+1 = λk + ρAJpk+1, we can get

λk+1 = λk + ρAJpk+1 = λk−1 + ρAJ(pk+1 + pk) = ... = λ0 + ρAJ

k+1∑
i=1

pi.

When k →∞, we have λk+1 → λ∗. In other words, λ∗ = λ0 + ρAJ
∞∑
i=1

pi. So c0 can be represented as:

c0 =
ρ

2
‖ AJ

∞∑
i=1

pi ‖2 +
ρ

2
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2).

It is clear that c0 will increase with an increase in ρ, so if the iteration time t is fixed, L(p̄t+1,λ∗)−

L(p∗,λ∗) will also increase with an increase in ρ. That is to say, with ρ increasing, the iteration time to

reach convergence will increase, namely convergence rate will be slower. Although with an increase in ρ,

the convergence rate will decrease, ρ cannot be too small. This is because if ρ is too small, the constraint

Jipi = Jjpj is weak, which makes reaching consistency across clusters difficult. More detailed discussions
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on selecting ρ can be found in [52].

Directly following the statements in Theorem 14, we can obtain the following result on the conver-

gence speed:

Theorem 15. The convergence rate of GS-ADMM is O(1/t), where t is the iteration time.

Proof: The result can be obtained directly from the proof of Theorem 14 and is omitted. �

7.4.2 Convergence Analysis of J-ADMM

To analyze the convergence of J-ADMM, we first define several terms: Let pk = [pkT1 ,pkT2 , ...,pkTN ]T

and λk = [λki,j ]ij,ei,j∈E be the results for (7.17) and (7.18) for iteration k. Augment the coefficients γi of

proximal terms into a matrix QP = diag{γ1ID, γ2ID, ..., γNID} and introduce a positive definite diagonal

matrix QC = diag{N1ID, N2ID, ..., NNID}, where Ni is the number of clusters in Ni. Since QC and QP

are both diagonal matrices, we can define a new diagonal matrix Q̄ according to Q̄T Q̄ = QC + I +QP where

I is the identity matrix. It can be easily verified that Q̄ has the following form:

Q̄ = diag{γ′1ID, γ′2ID, ..., γ′NID}, (7.21)

with γ′i > 0 for i = 1, 2, . . . , N . Assuming that the original problem (7.8) admits a solution (p∗,λ∗), then we

have the following theorem:

Theorem 16. Let p̄t+1 = 1
t+1

t∑
k=0

pk+1 be the average of pk up to iteration time t + 1 and denote the

eigenvalues of ATA as αi. If γ′i ≥
√
αmax is true with αmax = max{αi}, then the following holds for all t:

(1)

0 ≤ L(p̄t+1,λ∗)− L(p∗,λ∗) ≤ c1
t+ 1

, (7.22)

where L(p,λ) = f(p) + λTAJp is the Lagrangian function, and

c1 =
1

2ρ
‖ λ0 − λ∗ ‖2 +

ρ

2
(‖ Q̄J(p0 − p∗) ‖2 . (7.23)

(2) The sequence (pk1 ,p
k
2 , ...,p

k
N ) deduced by J-ADMM converges to (p∗1,p

∗
2, ...,p

∗
N ), i.e., lim

k→∞
‖

pk − p∗ ‖= 0. In addition, we have J1p
∗
1 = J2p

∗
2 = ... = JNp

∗
N .
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Figure 7.2: Event localization architecture used in simulations. The values in [•] denote positions (x, y
coordinates) of sensors.

Proof: See Appendix C.2. �

From Theorem 16, we can easily obtain the following results on the convergence speed:

Theorem 17. The convergence rate of J-ADMM is O(1/t), where t is the iteration time.

Proof: The result can be obtained directly from the proof of Theorem 16 and is omitted. �

Since c0 and c1 are of the same form, Remark 22 for GS-ADMM also applies to the J-ADMM case.

Next, we use numerical results to evaluate the performance of GS-ADMM and J-ADMM.

7.5 Numerical Simulations

In this section, we illustrate effectiveness of the proposed approaches using comparison with existing

results. A typical type of distributed algorithms for event localization is the projection-based algorithms.

However, some projection-based algorithms, e.g., the DAPA algorithm in [135], is found in our simulations

not appropriate for the considered case where the target event lies outside the convex hull of sensors. More

specifically, we set the sensor localization architecture similar as in [18, 90], which considers a practical

acoustic event localization system (see Fig. 7.2 for the detailed spatial distribution of all sensor nodes). The

target event occurs at x = [−5; 200], which is far away from the nine sensors. Simulation results suggested

that DAPA did not work well in this architecture, even if we set the initial values close to the target event

and used the range measurements without noise, although it did work very well if the target event was set

in the convex hull of sensors. In the simulation, we used the same parameters for DAPA as in [135], i.e.,

α1 = ... = α9 = 1
t+2 , β1 = ... = β9 = 1

t+1 , b1 = ... = b9 = 1, and ξ1 = ... = ξ9 = 3.

Then we compared the localization performance of the proposed algorithms GS-ADMM and J-
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ADMM with two other projection-based algorithms: the PPM algorithm proposed in [56] and the PONLM

algorithm proposed in [101], which gave reasonable performance in the simulations. PPM is a parallel

projection method which requires a central node to average the local event location estimates obtained from

all sensors in every iteration. PONLM is a sequential projection-based algorithm which solves the event

localization problem by finding a point at the intersection of sensing circles. In fact, both PPM and PONLM

cannot be applied to the sensor network structure in Fig. 7.2, since there exists no central node or path that

connects all nine sensors in succession. We list their results here so that the performance of our algorithm

can be evaluated in context. Both localization error (differences between estimated and actual target event

positions) and localization consistency (differences in estimated positions between clusters) are compared

under different noise standard deviations σi,k. The convergence performance is evaluated by exploring the

evolution of the localization error with iteration time t.

To facilitate comparison, we first define two performance indices:

Localization Error: we use the root mean square error (RMSE) to quantify the error between estimated

and true positions for every cluster or sensor, which is denoted as ERRRMSE:

ERRRMSE =

√√√√√ L∑
j=1

‖ xj − x∗ ‖2

L
,

where L is the number of Monte Carlo trials, xj is the estimated position in the jth Monte Carlo trial in a

certain cluster or sensor, and x∗ is the true position of the target event.

Localization Inconsistency: We also use the root mean square error (RMSE) to quantify the lo-

calization inconsistency (difference) in estimated event positions between N clusters, which is denoted as

INCRMSE:

INCRMSE =

√√√√√ L∑
k=1

N−1∑
i=1

N∑
j=i+1

‖ xi,k − xj,k ‖2

L
,

where L is the number of Monte Carlo trials, xi,k is the estimated position obtained from the ith cluster in the

kth Monte Carlo trial. N is the number of clusters.
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7.5.1 Convergence performance

We compared the convergence performance of our sequential GS-ADMM algorithm, parallel J-

ADMM algorithm, the sequential PONLM algorithm in [101], and the parallel PPM algorithm in [56]. For

GS-ADMM and J-ADMM, we set ρ = 10−3. For PPM and PONLM, we set the initial point at [−50; 100]

(PPM and PONLM are sensitive to initialization settings, which will be shown later). We used the range

measurements without noise in this part. The simulation results are given in Fig. 7.3.

From Fig. 7.3, we can see that both GS-ADMM and J-ADMM reached an accuracy of 100 after

about 10 iterations, while PONLM took 25 iterations and PPM took about 150 iterations. Note that sensors

and clusters have to exchange local estimates in each iteration, so the required communication overhead is

heavier with an increase in iteration times. The same conclusion can be drawn for energy consumption. It is

worth noting that both PPM and PONLM can reach very high accuracies. However, in practical applications

like gunfire localization, the accuracy of 100 is sufficient [18].
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Figure 7.3: The evolution of localization error

Remark 23. In our simulations, we used the Sedumi solver in Yalmip, whose limited precision may lead to

approximate minima when solving subproblems (7.15) and (7.17). This may also lead to a low convergence

speed or even fluctuations after a certain number of iterations. In addition, SeDuMi may sometimes return the

message “Run into numerical problems”, which implies that it has terminated before it finds an approximate

optimal solution [110]. In this situation, we can transform semi-definite inequality constraints into definite

inequality constraints by introducing a constant positive definite term (e.g., 10−6) as indicated in [60].

However, such a transformation may bring fluctuations to the convergence process.
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7.5.2 The influence of noise level on ERRRMSE

In this section, we simulated the event localization algorithms under different levels of Guassian

noise standard deviation σi,k. For GS-ADMM and J-ADMM, we set ρ = 10−3. For PPM and PONLM, we

ran simulations under two cases: setting fixed initial values at [−50; 100] (denote as Fix in Table 7.1) and

setting random initial values in the area of 10000m × 10000m (denote as Ran in Table 7.1). The number of

iterations is fixed to 50 for GS-ADMM, J-ADMM, PONLM, and 200 for PPM. All simulation results are

summarized in Table 7.1 and Fig. 7.4. Each data point in Table 7.1 is an average of 100 Monte Carlo trials.

Table 7.1: ERRRMSE of GS-ADMM, J-ADMM, PPM, and PONLM under different measurement noise

σi,k GS-ADMM J-ADMM PPM PONLM
CL1 CL2 CL3 CL1 CL2 CL3 Fix Ran Fix Ran

0.00 0.3693 0.4848 0.5128 0.1146 0.2223 0.2964 0.2100 273.19 0.0338 304.52
0.01 0.5417 0.5443 0.5753 0.3546 0.3911 0.4385 0.2106 285.65 0.0498 269.86
0.02 0.5453 0.5862 0.5992 0.2766 0.3266 0.3779 0.2145 282.83 0.0865 307.95
0.05 0.6055 0.6723 0.7188 0.4987 0.5261 0.5724 0.2265 268.31 0.1895 278.84
0.10 1.0564 1.0942 1.1440 1.0562 1.0589 1.1017 0.2832 288.41 0.4019 243.67

From Table 7.1, we can see that both PPM and PONLM reached high localization accuracies under

fixed initial values. However, their performance deteriorated significantly when random initial values were

used. Therefore PPM and PONLM are sensitive to initial value settings. If the target event lies outside the

convex hull of sensors, the convergent values of PPM and PONLM may be far away from the true event

position. GS-ADMM and J-ADMM can avoid the convex hull problem, so every estimate lay close to the true

event position.

Fig. 7.4 visualizes the estimated event locations. Fig. 7.4 (a) and (b) show the localization results of

the proposed algorithms GS-ADMM and J-ADMM respectively from 100 Monte Carlo trials with ρ = 10−3.

Fig. 7.4 (c) and (d) show the results of PPM and PONLM respectively where the initial positions are chosen

randomly. It is clear that both GS-ADMM and J-ADMM performed better than PPM and PONLM when the

initial values are randomly chosen.

7.5.3 The influence of noise level on INCRMSE

Setting ρ = 10−3, we also evaluated the influence of noise level on INCRMSE of our proposed

algorithms. The results are summarized in Fig. 7.5.

Fig. 7.5 indicates that the proposed GS-ADMM and J-ADMM have small localization inconsistency

(INCRMSE) under different noise strength. In other words, our proposed algorithms GS-ADMM and J-ADMM
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Figure 7.5: The influence of measurement noise on localization inconsistency

can achieve good consistency across clusters even under large noise standard deviations. As indicated before,

consistency is of crucial importance in many applications.

7.6 Summaries

We proposed two ADMM based distributed event localization algorithms GS-ADMM and J-ADMM

that do not require the target event to be within the convex hull of the deployed sensors. Convergence properties

of the algorithms are analyzed theoretically. Numerical simulations showed that the proposed algorithms are

robust to measurement noises and insensitive to convex hull problem compared with existing projection-based

algorithms.

In addition, we would like to thank Dr. Andrea Simonetto for providing Matlab codes for his

paper [106].
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Chapter 8

Conclusions

In this dissertation, we addressed decentralized optimization and its application to the event localiza-

tion problem. We first presented a privacy-preserving decentralized optimization approach by proposing a

new ADMM and leveraging partially homomorphic cryptography. By incorporating Paillier cryptosystem

into the newly proposed decentralized ADMM, our approach provides guarantee for privacy preservation

without compromising the solution in the absence of any aggregator or third party. We then presented another

privacy-preserving decentralized optimization algorithm based on the integration of partially homomorphic

cryptography with subgradient method. Given that encryption-based algorithms unavoidably suffer from

significant computational and communication overhead, we also presented a privacy-preserving solution to

decentralized optimization using function decomposition. Theoretical analysis confirms that an honest-but-

curious adversary cannot infer the information of neighboring agents even by recording and analyzing the

information exchanged in multiple iterations. In sharp contrast to differential-privacy based approaches which

protect privacy through injecting noise and are subject to a fundamental trade-off between privacy and accuracy,

all algorithms can preserve privacy without sacrificing accuracy. Numerical and experimental results are given

to confirm the effectiveness and efficiency of the proposed algorithms.

We also addressed the application of decentralized optimization to the event localization problem.

We first proposed a completely decentralized parallel algorithm which solves the non-convex and non-smooth

event localization problem directly without using convex relaxation. Simulation results confirm that this

algorithm has better localization accuracy compared with other projection based algorithms when the target

event is in the convex hull of sensors. When the target event is outside the convex hull of sensors, this algorithm

has a higher probability to converge to the right target event position than existing results. We then proposed
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another two ADMM based distributed event localization algorithms GS-ADMM and J-ADMM that do not

require the target event to be within the convex hull of the deployed sensors. Convergence properties of

the algorithms are analyzed theoretically. Numerical simulations showed that the proposed algorithms are

robust to measurement noises and insensitive to convex hull problem compared with existing projection-based

algorithms.
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Appendix A Proofs of Theorems in Chapter 3

A.1 Proof of Theorem 1

The key idea to prove Theorem 1 is to show that Algorithm 1 converges to the saddle point of the

Lagrangian function L(x,λ) = f(x) + λTAx. To achieve this goal, we introduce a variational inequality

MV I(Q,U) first and prove that the solution ofMV I(Q,U) is also the saddle point of the Lagrangian function

L(x,λ) = f(x) + λTAx (which is formulated as Lemma 9). Then we introduce a sufficient condition for

solving MV I(Q,U) in Lemma 10. After the two steps, what is left is to prove that the iterates of Algorithm 1

satisfy the condition in Lemma 10 when k →∞, i.e., Algorithm 1 converges to the solution of MV I(Q,U)

(Theorem 18 and Theorem 19).

We form a variational inequality MV I(Q,U) similar to (5)-(6) in [40] first:

〈u− u∗,Q(u∗)〉 ≥ 0, ∀u, (1)

where

u∗ :=



x∗1

x∗2
...

x∗N

λ∗


, Q(u∗) :=



ξ∗1 + [A]T1 λ
∗

ξ∗2 + [A]T2 λ
∗

...

ξ∗N + [A]TNλ
∗

Ax∗


,

ξ∗i ∈ ∂fi(x∗i ),∀i ∈ {1, 2, ..., N}.

(2)

In (2), [A]i denotes the columns of matrix A that are associated with agent i. By recalling the first-order

necessary and sufficient condition for convex programming [40], it is easy to see that solving problem (3.6)

amounts to solving the above MV I(Q,U) [40]. Denote the solution set of MV I(Q,U) as U∗. Since fi is

convex, ∂fi(xi) is monotone, the MV I(Q,U) is solvable and U∗ is nonempty [40].

Next, we introduce several lemmas and theorems that contribute to the proof of Theorem 1.

Lemma 9. Each u∗ = (x∗,λ∗) in U∗ is also the saddle point of the Lagrangian function L(x,λ) =

f(x) + λTAx.

Proof: The results can be obtained from Part 2.1 in [47] directly. �
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Lemma 10. If Axk+1 = 0 and xk+1 = xk hold, then (xk+1
1 ,xk+1

2 , ...,xk+1
N ,λk+1) is a solution to

MV I(Q,U).

Proof: Using the definition of matrix A and the update rule of λk+1 in (3.11), we can see that the

assumption Axk+1 = 0 implies λk+1 = λk and xk+1
1 = xk+1

2 = ... = xk+1
N .

On the other hand, we know that xk+1
i is the optimizer of (3.13). By using the first-order optimality

condition, we get

(xi − xk+1
i )T (ξk+1

i +
∑
j∈Ni

(λki,j + ρki,j(x
k+1
i − xkj )) + γi(x

k+1
i − xki )) ≥ 0. (3)

where ξk+1
i ∈ ∂fi(xk+1

i ). Then based on the assumption xk+1 = xk, the fact λk+1 = λk, and the definition

of matrix A, we have (xi − xk+1
i )T (ξk+1

i + [A]Ti λ
k+1) ≥ 0. Therefore, (xk+1

1 ,xk+1
2 , ...,xk+1

N ,λk+1) is a

solution to MV I(Q,U). �

Lemma 10 provides a sufficient condition for solving MV I(Q,U). According to Lemma 9, we know

that the solution to MV I(Q,U) is also the saddle point of the Lagrangian function. Next, we prove that the

iterates in Algorithm 1 satisfy lim
k→∞

Axk+1 = 0 and lim
k→∞

xk+1 − xk = 0, i.e., Algorithm 1 converges to the

solution to MV I(Q,U). To achieve this goal, we first establish the relationship (4) about iterates k and k + 1

in Theorem 18, whose proof is mainly based on convex properties. Then based on the relationship, we further

prove lim
k→∞

Axk+1 = 0 and lim
k→∞

xk+1 − xk = 0 in Theorem 19.

Theorem 18. Let ρk satisfy Condition A, Q̄ , QP + QkC satisfy Condition B, and (x∗,λ∗) be the saddle

point of the Lagrangian function L(x,λ) = f(x) + λTAx, then we have

‖ λk+1 − λ∗ ‖2(ρk+1)−1 + ‖ xk+1 − x∗ ‖2Q̄≤‖ λ
k − λ∗ ‖2(ρk)−1 + ‖ xk − x∗ ‖2Q̄

− (‖ Axk+1 ‖2ρk + ‖ xk+1 − xk ‖2−ATρkA+Q̄)+ ‖ Axk+1 ‖2ρk+1 − ‖ Axk ‖2ρk .
(4)

To prove Theorem 18, we first introduce two lemmas:

Lemma 11. Let xk = [xkT1 ,xkT2 , ...,xkTN ]T and λk = [λki,j ]ij,ei,j∈E be the intermediate results of iteration

k in Algorithm 1, then the following inequality holds for all k:

f(x)− f(xk+1) + (x− xk+1)TATλk + (x− xk+1)TATρkAxk + (x− xk+1)T Q̄(xk+1 − xk) ≥ 0,

(5)

where Q̄ , QP +QkC .
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Proof: The proof follows from [130]. For completeness, we sketch the proof here. Denote by gi the

function

gki (xi) =
∑
j∈Ni

(λkTi,j xi +
ρki,j
2
‖ xi − xkj ‖2) +

γi
2
‖ xi − xki ‖2 . (6)

Using ξk+1
i ∈ ∂fi(xk+1

i ), we can get ξk+1
i +Ogi(x

k+1
i ) = 0 and (xi−xk+1

i )T [ξk+1
i +Ogi(x

k+1
i )] =

0 based on the fact that xk+1
i is the optimizer of gki + fi. On the other hand, as fi is convex, the following

relationship holds:

fi(xi) ≥ fi(xk+1
i ) + (xi − xk+1

i )T ξk+1
i .

Then we can get fi(xi)− fi(xk+1
i ) + (xi − xk+1

i )TOgi(x
k+1
i ) ≥ 0.

Substituting Ogi(xk+1
i ) with (6), we obtain

fi(xi)− fi(xk+1
i ) + (xi − xk+1

i )T · (
∑
j∈Ni

(λki,j + ρki,j(x
k+1
i − xkj )) + γi(x

k+1
i − xki )) ≥ 0.

Noting λi,i = 0 and λi,j = −λj,i, based on the definition of matrices A and ρ, we can rewrite the

above inequality as

fi(xi)− fi(xk+1
i ) + (xi − xk+1

i )T · ([A]Ti λ
k +

∑
j∈Ni

ρki,j(x
k+1
i − xkj ) + γi(x

k+1
i − xki )) ≥ 0. (7)

Summing both sides of (7) over i = 1, 2, . . . , N , and using

N∑
i=1

(xi − xk+1
i )T [A]Ti λ

k = (x− xk+1)TATλk,

N∑
i=1

(xi − xk+1
i )T

∑
j∈Ni

ρki,jx
k+1
i = (x− xk+1)TQkCx

k+1,

N∑
i=1

(xi − xk+1
i )T

∑
j∈Ni

ρki,jx
k
j = (x− xk+1)T (−ATρkA+QkC)xk,

N∑
i=1

(xi − xk+1
i )T γi(x

k+1
i − xki ) = (x− xk+1)TQP (xk+1 − xk),

we can get the lemma. �

Lemma 12. Let xk = [xkT1 ,xkT2 , ...,xkTN ]T and λk = [λki,j ]ij,ei,j∈E be the intermediate results of iteration
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k in Algorithm 1, then the following equality holds for all k:

− (xk+1)TAT (λk − λ∗)− (xk+1)TATρkAxk + (x∗ − xk+1)T Q̄(xk+1 − xk)

=
1

2
(‖ λk − λ∗ ‖2(ρk+1)−1 − ‖ λk+1 − λ∗ ‖2(ρk+1)−1) +

1

2
‖ λk+1 − λk ‖2(ρk+1)−1 −

1

2
‖ xk+1 − xk ‖2Q̄

− 1

2
‖ Axk+1 ‖2ρk −

1

2
‖ Axk ‖2ρk +

1

2
‖ A(xk+1 − xk) ‖2ρk −

1

2
(‖ xk+1 − x∗ ‖2Q̄ − ‖ x

k − x∗ ‖2Q̄).

(8)

Proof: For a scalar a, we have aT = a. Recall λk+1 = λk + ρk+1Axk+1 and notice that ρk+1 is a

positive definite diagonal matrix, we can get

(xk+1)TAT (λk − λ∗) = (λk+1 − λk)T (ρk+1)−1(λk − λ∗). (9)

On the other hand, since (x∗,λ∗) is the saddle point of the Lagrangian function (3.15), we can get

Ax∗ = 0 [118]. Moreover, the following equalities can be established by using algebraic manipulations:

(xk+1 − x∗)T Q̄(xk+1 − xk) =
1

2
‖ xk+1 − xk ‖2Q̄ +

1

2
(‖ xk+1 − x∗ ‖2Q̄ − ‖ x

k − x∗ ‖2Q̄), (10)

−x(k+1)TATρkAxk =
1

2
‖ A(xk+1 − xk) ‖2ρk −

1

2
‖ Axk+1 ‖2ρk −

1

2
‖ Axk ‖2ρk , (11)

(λk+1 − λk)T (ρk+1)−1(λk − λ∗) =
1

2
(‖ λk+1 − λ∗ ‖2(ρk+1)−1 − ‖ λk − λ∗ ‖2(ρk+1)−1)

− 1

2
‖ λk+1 − λk ‖2(ρk+1)−1 .

(12)

Then we can obtain (8) by plugging equalities (9)-(12) into the left hand side of (8). �

Now we can proceed to prove Theorem 18. By setting x = x∗ in (5), we can get

f(x∗)− f(xk+1) + (x∗ − xk+1)TATλk + (x∗ − xk+1)TATρkAxk + (x∗ − xk+1)T Q̄(xk+1 − xk) ≥ 0

Recalling Ax∗ = 0, the above inequality can be rewritten as

f(x∗)− f(xk+1)− x(k+1)TATλk − x(k+1)TATρkAxk + (x∗ − xk+1)T Q̄(xk+1 − xk) ≥ 0. (13)
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Now adding and subtracting the term λ∗TAxk+1 from the left hand side of (13) gives

f(x∗)− f(xk+1)− λ∗TAxk+1 − x(k+1)TAT (λk − λ∗)

− x(k+1)TATρkAxk + (x∗ − xk+1)T Q̄(xk+1 − xk) ≥ 0.

(14)

Using L(x,λ∗)− L(x∗,λ∗) ≥ 0 and Ax∗ = 0, we have

− x(k+1)TAT (λk − λ∗)− x(k+1)TATρkAxk + (x∗ − xk+1)T Q̄(xk+1 − xk)

≥ f(xk+1) + λ∗TAxk+1 − f(x∗) ≥ 0.

Now by plugging (8) into the left hand side of the above inequality, we can obtain

1
2 (‖ λk − λ∗ ‖2(ρk+1)−1 − ‖ λk+1 − λ∗ ‖2(ρk+1)−1) + 1

2 ‖ λ
k+1 − λk ‖2(ρk+1)−1 − 1

2 ‖ x
k+1 − xk ‖2

Q̄

− 1
2 ‖ Ax

k+1 ‖2ρk −
1
2 ‖ Ax

k ‖2ρk + 1
2 ‖ Ax

k+1 −Axk ‖2ρk −
1
2 ‖ x

k+1 − x∗ ‖2
Q̄

+ 1
2 ‖ x

k − x∗ ‖2
Q̄
≥ 0.

Noting ‖ λk+1 − λk ‖2(ρk+1)−1=‖ Axk+1 ‖2ρk+1 , the above inequality can be rewritten as

‖ λk+1 − λ∗ ‖2(ρk+1)−1 + ‖ xk+1 − x∗ ‖2Q̄≤‖ λ
k − λ∗ ‖2(ρk+1)−1 + ‖ xk − x∗ ‖2Q̄

−(‖ Axk+1 ‖2ρk + ‖ xk+1 − xk ‖2−ATρkA+Q̄)+ ‖ Axk+1 ‖2ρk+1 − ‖ Axk ‖2ρk .
(15)

Recall that from Condition A, ρk+1 � ρk and ρk (k = 1, 2, ...) are positive definite diagonal

matrices. So we have (ρk+1)−1 � (ρk)−1 [58], and consequently ‖ λk − λ∗ ‖2(ρk+1)−1�‖ λk − λ∗ ‖2(ρk)−1 ,

which proves Theorem 18. �

Theorem 18 established the relationship between iterates k and k + 1 in Algorithm 1. Based on this

relationship, we can have the following theorem which shows that Algorithm 1 converges to the solution to

MV I(Q,U).

Theorem 19. Let uk = (xk,λk) be the sequence generated by Algorithm 1, then we have

lim
k→∞

(‖ Axk+1 ‖2ρk + ‖ xk+1 − xk ‖2−ATρkA+Q̄) = 0. (16)
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Proof: Let αk =‖ λk − λ∗ ‖2(ρk)−1 + ‖ xk − x∗ ‖2
Q̄

. According to Theorem 18, we have

αk+1 ≤ αk+ ‖ Axk+1 ‖2ρk+1 − ‖ Axk ‖2ρk −(‖ Axk+1 ‖2ρk + ‖ xk+1 − xk ‖2−ATρkA+Q̄)

≤ ...

≤ α0+ ‖ Axk+1 ‖2ρk+1 − ‖ Ax0 ‖2ρ0 −
k∑
i=0

(‖ Axi+1 ‖2ρi + ‖ xi+1 − xi ‖2−ATρiA+Q̄)

≤ α0+ ‖ xk+1 − x∗ ‖2ATρk+1A −
k∑
i=0

(‖ Axi+1 ‖2ρi + ‖ xi+1 − xi ‖2−ATρiA+Q̄).

(17)

The last inequality comes from the fact that Ax∗ = 0 and ‖ Axk+1 − Ax∗ ‖2ρk+1 can be written as

‖ xk+1−x∗ ‖2ATρk+1A. Recall that ρ0 � ρk � ρk+1 � ρ̄ holds and Q̄−AT ρ̄A is positive definite. Moving

the term ‖ xk+1 − x∗ ‖2ATρk+1A to the left hand side of the above inequality, we have

lim
k→∞

(αk+1− ‖ xk+1 − x∗ ‖2ATρk+1A)

= lim
k→∞

(‖ λk+1 − λ∗ ‖2(ρk+1)−1 + ‖ xk+1 − x∗ ‖2Q̄−ATρk+1A) ≥ 0

(18)

Since α0 is positive and bounded and ‖ Axi+1 ‖2ρi + ‖ xi+1 − xi ‖2−ATρiA+Q̄
is nonnegative, following

Theorem 3 in [45], we have

lim
k→∞

(‖ Axk+1 ‖2ρk + ‖ xk+1 − xk ‖2−ATρkA+Q̄) = 0. (19)

�

Given that ρk satisfies Condition A and Q̄ satisfies Condition B, we have that both −ATρkA+ Q̄

and ρk are positive symmetric definite. Then according to Theorem 19, we have Axk+1 = 0 and xk+1 = xk

when k →∞.

Therefore, based on Lemma 10, we have that (xk+1,λk+1) in Algorithm 1 converges to a solution to

MV I(Q,U), i.e., a saddle point of the Lagrangian function (3.15) according to Lemma 9. Since the objective

function is convex, we can conclude Theorem 1 [118]. �
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A.2 Proof of Theorem 2

Now we prove that the convergence rate of Algorithm 1 is O(1/t). By plugging (8) into the left hand

side of (14), we can obtain

f(x∗)− f(xk+1)− λ∗TAxk+1 − 1

2
(‖ λk+1 − λ∗ ‖2(ρk+1)−1 − ‖ λk − λ∗ ‖2(ρk+1)−1)− 1

2
‖ Axk ‖2ρk

+
1

2
‖ λk+1 − λk ‖2(ρk+1)−1 +

1

2
‖ Axk+1 −Axk ‖2ρk −

1

2
‖ Axk+1 ‖2ρk −

1

2
‖ xk+1 − x∗ ‖2Q̄

+
1

2
‖ xk − x∗ ‖2Q̄ −

1

2
‖ xk+1 − xk ‖2Q̄≥ 0.

Summing both sides of the above inequality over k = 0, 1, ..., t, we have

(t+ 1)f(x∗)−
t∑

k=0

f(xk+1)− λ∗TA
t∑

k=0

xk+1 − 1

2
‖ λt+1 − λ∗ ‖2(ρt+1)−1 +

1

2
‖ λ0 − λ∗ ‖2(ρ1)−1

−
t∑

k=1

1

2
(‖ λk − λ∗ ‖2(ρk)−1 − ‖ λk − λ∗ ‖2(ρk+1)−1) +

1

2
‖ Axt+1 ‖2ρt+1 −

t∑
k=0

1

2
‖ Axk+1 ‖2ρk

−1

2
‖ Ax0 ‖2ρ0 −

1

2
‖ xt+1 − x∗ ‖2Q̄ +

1

2
‖ x0 − x∗ ‖2Q̄ −

t∑
k=0

1

2
‖ xk+1 − xk ‖2Q̄−ATρkA≥ 0.

Following the above inequality, It is easy to obtain

(t+ 1)f(x∗)−
t∑

k=0

f(xk+1)− λ∗TA
t∑

k=0

xk+1 +
1

2
‖ λ0 − λ∗ ‖2(ρ1)−1 +

1

2
‖ x0 − x∗ ‖2Q̄

+
1

2
‖ Axt+1 ‖2ρt+1 −

1

2
‖ Axt+1 ‖2ρt≥ 0.

Recall that in (19), we have proven lim
k→∞

‖ Axk+1 ‖2ρk= 0. Then the relationship ρ0 � ρk �

ρk+1 � ρ̄ implies

lim
t→∞

(
1

2
‖ Axt+1 ‖2ρt+1 −

1

2
‖ Axt+1 ‖2ρt) = 0.

Therefore, there exists some constant c such that

1

2
‖ Axt+1 ‖2ρt+1 −

1

2
‖ Axt+1 ‖2ρt≤ c.

On the other hand, as our function is convex, we have
∑t
k=0 f(xk+1) ≥ (t + 1)f(x̄t+1) where
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x̄t+1 = 1
t+1

∑t
k=0 x

k+1. Therefore, we have

(t+ 1)f(x∗)− (t+ 1)f(x̄t+1)− (t+ 1)λ∗TAx̄t+1 +
1

2
‖ λ0 − λ∗ ‖2(ρ1)−1 +

1

2
‖ x0 − x∗ ‖2Q̄ +c ≥ 0.

By dividing both sides by −(t+ 1), we can obtain

f(x̄t+1) + λ∗TAx̄t+1 − f(x∗) ≤ 1

t+ 1
(
1

2
‖ λ0 − λ∗ ‖2(ρ1)−1 +

1

2
‖ x0 − x∗ ‖2Q̄ +c).

Combining the above relationship with the Lagrangian function (3.15), we can conclude Theorem 2.

�
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Appendix B Proofs of Theorems in Chapter 5

B.1 Proof of Lemma 2

According to the update rules in (5.6) and (5.7) , we have

Ohk+1
i (xk+1

i ) +
∑
j∈Ni

(λki,j + ρ(xk+1
i − xkj )) + γiρ(xk+1

i − xki ) = 0 (20)

for all i = 1, 2, . . . , 2N .

Rewriting (20) in a compact form, we have

Ohk+1(xk+1) +ATλk + ρD̄xk+1 − ρ(D̄ −ATA)xk + ρU(xk+1 − xk) = 0 (21)

Adding and subtracting ρATAxk+1 from the left hand side of (21), we obtain

Ohk+1(xk+1) +ATλk + ρATAxk+1 + ρ(U + D̄ −ATA)(xk+1 − xk) = 0 (22)

Recall that λk+1 = λk+τρAxk+1 andQ = U+D̄−ATA hold, the above equality can be rewritten

as

Ohk+1(xk+1) + ρ(1− τ)ATAxk+1 +ATλk+1 + ρQ(xk+1 − xk) = 0 (23)

On the other hand, letting (x∗,λk+1∗) be the Karush-Kuhn-Tucker (KKT) points for (5.13) at

iteration k + 1, we have

−ATλk+1∗ = Ohk+1(x∗)

Ax∗ = 0

(24)

which yields

Ohk+1(x∗) +ATλk+1∗ + ρ(1− τ)ATAx∗ = 0 (25)

It is worth noting that there may be more than one λk+1∗ satisfying (24). However, there is only one unique

λk+1∗ lying in the column space of A [65]. In the following derivations, λk+1∗ indicates the one lying in the

column space of A.
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Subtracting (25) from (23), we obtain

Ohk+1(xk+1)− Ohk+1(x∗) + ρ(1− τ)ATA(xk+1 − x∗) = −AT (λk+1 − λk+1∗)− ρQ(xk+1 − xk)

(26)

Based on Lemma 1, we have that

rk+1(x) = hk+1(xk+1) +
ρ(1− τ)

2
‖ Ax ‖2

is restricted strongly convex with respect to x∗, i.e.,

(Ohk+1(xk+1)− Ohk+1(x∗) + ρ(1− τ)ATA(xk+1 − x∗))T (xk+1 − x∗) ≥ mr ‖ xk+1 − x∗ ‖2 (27)

Combing (26) and (27) leads to

−(xk+1 − x∗)TAT (λk+1 − λk+1∗)− ρ(xk+1 − x∗)TQT (xk+1 − xk) ≥ mr ‖ xk+1 − x∗ ‖2 (28)

Moreover, we have the following equalities by using algebraic manipulations:

(xk+1 − x∗)TQT (xk+1 − xk) =
1

2
‖ xk+1 − xk ‖2Q +

1

2
‖ xk+1 − x∗ ‖2Q −

1

2
‖ xk − x∗ ‖2Q, (29)

(xk+1 − x∗)TAT (λk+1 − λk+1∗) =
1

ρτ
(λk+1 − λk)T (λk+1 − λk+1∗)

=
1

2ρτ
‖ λk+1 − λk ‖2 − 1

2ρτ
‖ λk − λk+1∗ ‖2 +

1

2ρτ
‖ λk+1 − λk+1∗ ‖2

(30)

Then using the above equalities, (28) can be rewritten as

mr ‖ xk+1 − x∗ ‖2≤ −ρ
2
‖ xk+1 − x∗ ‖2Q −

1

2ρτ
‖ λk+1 − λk+1∗ ‖2

+
ρ

2
‖ xk − x∗ ‖2Q +

1

2ρτ
‖ λk − λk+1∗ ‖2 −ρ

2
‖ xk+1 − xk ‖2Q −

1

2ρτ
‖ λk+1 − λk ‖2

(31)

Recall that H = diag{ρQ, 1
ρτ ID|E′|} and yk = [xkT ,λkT ]T , the above inequality can be simplified

as

2mr ‖ xk+1 − x∗ ‖2≤‖ yk − yk+1∗ ‖2H − ‖ yk+1 − yk+1∗ ‖2H − ‖ yk+1 − yk ‖2H (32)
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On the other hand, observe that for any constant u > 1, it holds that [65]

(u− 1) ‖ a− b ‖2≥ (1− 1

u
) ‖ b ‖2 − ‖ a ‖2 (33)

So we have

(u− 1) ‖ Ohk+1(xk+1)− Ohk+1(x∗) ‖2

= (u− 1) ‖ AT (λk+1 − λk+1∗) + ρQT (xk+1 − xk) + ρ(1− τ)ATA(xk+1 − x∗) ‖2

≥ u− 1

u
‖ AT (λk+1 − λk+1∗) ‖2 − ‖ ρQT (xk+1 − xk) + ρ(1− τ)ATA(xk+1 − x∗) ‖2

(34)

Since λk+1 and λk+1∗ lie in the column space of of A, we have [65]

‖ AT (λk+1 − λk+1∗) ‖2≥ Amin ‖ λk+1 − λk+1∗ ‖2 (35)

and

‖ ρQT (xk+1 − xk) + ρ(1− τ)ATA(xk+1 − x∗) ‖2

≤ 2ρ2Qmax ‖ xk+1 − xk ‖2Q +2ρ2(1− τ)2A2
max ‖ xk+1 − x∗ ‖2

(36)

where Qmax is the largest eigenvalue of Q, Amin is the smallest nonzero eigenvalue of ATA, and Amax is the

largest eigenvalue of ATA.

In addition, we have

‖ Ohk+1(xk+1)− Ohk+1(x∗) ‖2≤ L2 ‖ xk+1 − x∗ ‖2

according to Assumption 9. Therefore, based on (34)-(36), we can obtain

(u− 1)L2 ‖ xk+1 − x∗ ‖2

≥ (u− 1)Amin

u
‖ λk+1 − λk+1∗ ‖2 −2ρ2Qmax ‖ xk+1 − xk ‖2Q −2ρ2(1− τ)2A2

max ‖ xk+1 − x∗ ‖2

(37)

Using algebraic manipulations, the above inequality can be rewritten as

(
uL2

ρτAmin
+

2ρ(1− τ)2uA2
max

(u− 1)τAmin
) ‖ xk+1 − x∗ ‖2 +

2uQmax

(u− 1)τAmin
ρ ‖ xk+1 − xk ‖2Q

≥ 1

ρτ
‖ λk+1 − λk+1∗ ‖2

(38)
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Adding
2uQmax

(u− 1)τAmin

1

ρτ
‖ λk+1 − λk ‖2

and

ρQmax ‖ xk+1 − x∗ ‖2

to the left hand side of the above inequality, and ρ ‖ xk+1 − x∗ ‖2Q to the right hand side of the above

inequality, we obtain the following inequality

2uQmax

(u− 1)τAmin
(ρ ‖ xk+1 − xk ‖2Q +

1

ρτ
‖ λk+1 − λk ‖2)

+ (
uL2

ρτAmin
+ ρQmax +

2ρ(1− τ)2uA2
max

(u− 1)τAmin
) ‖ xk+1 − x∗ ‖2

≥ 1

ρτ
‖ λk+1 − λk+1∗ ‖2 +ρ ‖ xk+1 − x∗ ‖2Q

(39)

based on the fact

ρ ‖ xk+1 − x∗ ‖2Q≤ ρQmax ‖ xk+1 − x∗ ‖2 .

Letting

δ = min{ (u− 1)τAmin

2uQmax
,

2mrρτ(u− 1)Amin

φ
} (40)

where

φ = u(u− 1)L2 + ρ2τAminQmax(u− 1) + 2ρ2(1− τ)2uA2
max

we have from (39)

1

δ
‖ yk+1 − yk ‖2H +

2mr

δ
‖ xk+1 − x∗ ‖2≥‖ yk+1 − yk+1∗ ‖2H (41)

Using (32) and (41), we can get

1

δ
‖ yk − yk+1∗ ‖2H −

1

δ
‖ yk+1 − yk+1∗ ‖2H≥‖ yk+1 − yk+1∗ ‖2H (42)

which proves Lemma 2.

135



B.2 Proof of Lemma 3

First, we have

‖ yk − yk+1∗ ‖H − ‖ yk − yk∗ ‖H≤‖ yk+1∗ − yk∗ ‖H (43)

On the other hand, we have

‖ yk+1∗ − yk∗ ‖H=
1
√
ρτ
‖ λk+1∗ − λk∗ ‖ (44)

‖ AT (λk+1∗ − λk∗) ‖=‖ Ohk+1(x∗)− Ohk(x∗) ‖ (45)

Therefore, using (35) one can obtain

‖ λk+1∗ − λk∗ ‖≤ 1√
Amin

‖ Ohk+1(x∗)− Ohk(x∗) ‖ (46)

Combing (43) to (46) leads to

‖ yk − yk+1∗ ‖H≤‖ yk − yk∗ ‖H +
1√

ρτAmin
‖ Ohk+1(x∗)− Ohk(x∗) ‖ (47)

which concludes the proof.

B.3 Proof of Theorem 12

From Lemma 4, we can obtain

√
1 + δ

k
‖ yk − yk∗ ‖H≤‖ y0 − y0∗ ‖H +

k−1∑
s=0

√
1 + δ

s
p(s) (48)

Dividing both sides of the above inequality by
√

1 + δ
k
, we have

‖ yk − yk∗ ‖H≤
‖ y0 − y0∗ ‖H
√

1 + δ
k

+

k−1∑
s=0

1
√

1 + δ
k−s p(s) (49)
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It is clear lim
k→∞

‖y0−y0∗‖H√
1+δ

k = 0 as δ > 0. Now our main goal reduces to proving lim
k→∞

∑k−1
s=0

1√
1+δ

k−s p(s) =

0. Recalling the relationship lim
k→∞

fαki → fα∗i from Assumption 9, we have lim
k→∞

hki → h∗i for all i =

1, 2, . . . , 2N . On the other hand, according to the definition of p(k) in (5.20), we know lim
k→∞

p(k) = 0 due to

the convergence of hk.

Therefore, we have that p(k) is bounded, i,e., there exists a B such that p(k) ≤ B is true for an

arbitrary k. In addition, we always have

∀ε1 > 0, ∃N1 ∈ N+, s.t. |p(k)| ≤ ε1, ∀k ≥ N1,

where N+ is the set of positive integers. Further letting η = 1√
1+δ

and F (k) =
∑k−1
s=0

1√
1+δ

k−s p(s), we can

obtain

F (k) =

k−1∑
s=0

ηk−sp(s)

=

N1∑
s=0

ηk−sp(s) +

k−1∑
s=N1+1

ηk−sp(s)

≤ B
N1∑
s=0

ηk−s + ε1

k−1∑
s=N1+1

ηk−s

= Bηk
η−N1 − η

1− η
+ ε1

η − ηk−N1−1

1− η

≤ Bηk η
−N1 − η
1− η

+ ε1
η

1− η

(50)

for k ≥ N1 + 2 and η ∈ (0, 1).

Therefore, we have lim
k→∞

Bηk η
−N1−η
1−η = 0 and

∀ε = ε1 > 0, ∃N2 ∈ N+,

s.t. |Bηk η
−N1 − η
1− η

| ≤ ε1, ∀k ≥ N2

(51)

Combining (50) and (51) leads to

∀ε = ε1 > 0, ∃N = max{N1, N2},

s.t. |F (k)| ≤ ε1 + ε1
η

1− η
=

1

1− η
ε1, ∀k ≥ N

(52)
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which proves lim
k→∞

F (k) = 0 and further

lim
k→∞

‖ yk − yk∗ ‖H= 0

based on (49). Given

‖ xk − x∗ ‖Q≤‖ yk − yk∗ ‖H

we have lim
k→∞

‖ xk − x∗ ‖Q= 0 as well, which concludes the proof.
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Appendix C Proofs of Theorems in Chapter 7

C.1 Proof of (7.19) in Theorem 14

To prove (7.19) in Theorem 14, we first introduce two lemmas:

Lemma 13. Let pk = [pkT1 ,pkT2 , ...,pkTN ]T and λk = [λki,j ]ij,ei,j∈E be the iterates generated by GS-ADMM

following (7.15) and (7.16), then the following inequality holds for all k:

f(p)− f(pk+1) + (p− pk+1)TJTATλk+1 + ρ(p− pk+1)TJT (−ATH +HTH + I)J(pk+1 − pk) ≥ 0,

∀p ∈ {[pT1 ,pT2 , ...,pTN ]T |pi ∈ Pi,∀i ∈ {1, 2, ..., N}},
(53)

where A is the edge-node incident matrix defined in (7.10), H = min{0, A}, and I is the identity matrix. (In

the following, we only consider p belonging to the set {[pT1 ,pT2 , ...,pTN ]T |pi ∈ Pi,∀i ∈ {1, 2, ..., N}}, so we

leave out this constraint in the following lemmas and proofs.)

Proof: Denote by gi the function

gki (pi) =
∑

j∈N̂i,j≥i

(λkTi,j (Jipi − Jjpkj ) +
ρ

2
‖ Jipi − Jjpkj ‖2)

+
∑

j∈N̂i,j<i

(λkTi,j (Jipi − Jjpk+1
j ) +

ρ

2
‖ Jipi − Jjpk+1

j ‖2).

(54)

From the update rule in (7.15), we know that pk+1
i is the optimizer of gki + fi in the closed and

convex set Pi. Since fi and gki are convex, and gki is differentiable, following the proof of Lemma 3.1 in [49]

(which is also mentioned in Lemma 1 in [81]), we can get

fi(pi)− fi(pk+1
i ) + (pi − pk+1

i )TOgi(p
k+1
i ) ≥ 0. (55)

Substituting Ogi(pk+1
i ) with (54), we have

fi(pi)− fi(pk+1
i ) + (pi − pk+1

i )T (
∑

j∈N̂i,j≥i

(JTi λ
k
i,j + ρJTi (Jip

k+1
i − Jjpkj )))

+ (pi − pk+1
i )T (

∑
j∈N̂i,j<i

(JTi λ
k
i,j + ρJTi (Jip

k+1
i − Jjpk+1

j ))) ≥ 0.
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Noting λi,i = 0, using (7.16) leads to

fi(pi)− fi(pk+1
i ) + (pi − pk+1

i )T (
∑
j∈Ni

JTi λ
k+1
i,j +

∑
j∈N̂i,j≥i

ρJTi (Jjp
k+1
j − Jjpkj )) ≥ 0.

Noting λi,j = −λj,i, from the definition of A, we can rewrite the above inequality as

fi(pi)− fi(pk+1
i ) + (pi − pk+1

i )T (JTi [A]Ti λ
k+1 +

∑
j∈N̂i,j≥i

ρJTi (Jjp
k+1
j − Jjpkj )) ≥ 0, (56)

here [A]i denotes the columns of A associated with cluster i.

Summing both sides of (56) over i = 1, 2, ..., N , and noticing that the following two equations

hold [118],

N∑
i=1

(pi − pk+1
i )TJTi [A]Ti λ

k+1 = (Jp− Jpk+1)TATλk+1,

N∑
i=1

(pi − pk+1
i )T (

∑
j∈N̂i,j≥i

ρJTi (Jjp
k+1
j − Jjpkj )) (57)

= ρ(Jp− Jpk+1)T [(−A+H)TH + I](Jpk+1 − Jpk),

we can get the lemma. �

Lemma 14. Let pk = [pkT1 ,pkT2 , ...,pkTN ]T and λk = [λki,j ]ij,ei,j∈E be the iterates generated by GS-ADMM

following (7.15) and (7.16), then the following equality holds for all k:

− (Jpk+1)TAT (λk+1 − λ∗) + ρ(Jp∗ − Jpk+1)T (HTH −ATH + I)J(pk+1 − pk)

= − 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2)− ρ

2
(‖ HJ(pk+1 − p∗) ‖2 − ‖ HJ(pk − p∗) ‖2)−

ρ

2
(‖ Jpk+1 − Jp∗ ‖2 − ‖ Jpk − Jp∗ ‖2)− ρ

2
‖ HJ(pk+1 − pk)−AJpk+1 ‖2 −ρ

2
‖ Jpk+1 − Jpk ‖2

(58)

Proof: Since for a scalar a, aT = a holds, and recall λk+1 = λk + ρAJpk+1, we can get

(pk+1)TJTAT (λk+1 − λ∗) =
1

ρ
(λk+1 − λk)T (λk+1 − λ∗). (59)

In addition, as (p∗,λ∗) is the saddle point of the Lagrangian function L(p,λ) = f(p) + λTAJp,
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we have AJp∗ = 0. So we can establish the following relationships using algebraic manipulation:

(λk+1 − λk)T (λk+1 − λ∗) =
1

2
‖ λk+1 − λk ‖2 +

1

2
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2), (60)

(pk+1 − p∗)TJT IJ(pk+1 − pk) =
1

2
‖ Jpk+1 − Jpk ‖2 +

1

2
(‖ Jpk+1 − Jp∗ ‖2 − ‖ Jpk − Jp∗ ‖2),

(61)

(pk+1 − p∗)TJTHTHJ(pk+1 − pk)

=
1

2
(‖ HJ(pk+1 − p∗) ‖2 − ‖ HJ(pk − p∗) ‖2) +

1

2
‖ HJ(pk+1 − pk) ‖2,

(62)

(pk+1 − p∗)TJTATHJ(pk+1 − pk)

=
1

2
‖ HJ(pk+1 − pk) ‖2 +

1

2ρ2
‖ λk+1 − λk ‖2 −1

2
‖ HJ(pk+1 − pk)−AJpk+1 ‖2 .

(63)

Then (58) can be proven by plugging equations (59) to (63) into the left part of (58). �

Now we proceed to prove Theorem 14. Set p = p∗ in (53), and recall AJp∗ = 0, then we have

f(p∗)− f(pk+1)− p(k+1)TJTATλk+1 + ρ(p∗ − pk+1)TJT (−ATH +HTH + I)J(pk+1 − pk) ≥ 0.

(64)

Adding and subtracting the term λ∗TAJpk+1 from the left side of (64), we can get

f(p∗)− f(pk+1)− λ∗TAJpk+1 − p(k+1)TJTAT (λk+1 − λ∗)+

ρ(p∗ − pk+1)TJT (−ATH +HTH + I)J(pk+1 − pk) ≥ 0.

Now by applying (58) into the above inequality, the following inequality can be obtained:

f(p∗)− f(pk+1)− λ∗TAJpk+1 − 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2)

−ρ
2

(‖ HJ(pk+1 − p∗) ‖2 − ‖ HJ(pk − p∗) ‖2)− ρ

2
(‖ Jpk+1 − Jp∗ ‖2 − ‖ Jpk − Jp∗ ‖2)

−ρ
2
‖ HJ(pk+1 − pk)−AJpk+1 ‖2 −ρ

2
‖ Jpk+1 − Jpk ‖2≥ 0.

Summing both sides of the inequality over k = 0, 1, ..., t, we can obtain the following result after
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some re-arrangement:

(t+ 1)f(p∗)−
t∑

k=0

f(pk+1)− λ∗TAJ
t∑

k=0

pk+1

+
ρ

2
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2) +

1

2ρ
‖ λ0 − λ∗ ‖2

≥
t∑

k=0

ρ

2
(‖ HJ(pk+1 − pk)−AJpk+1 ‖2) +

t∑
k=0

ρ

2
(‖ Jpk+1 − Jpk ‖2) +

1

2ρ
‖ λt+1 − λ∗ ‖2

+
ρ

2
(‖ HJ(pt+1 − p∗)+ ‖ Jpt+1 − Jp∗ ‖2) ≥ 0.

In addition, as our function is convex, we have
t∑

k=0

f(pk+1) ≥ (t+ 1)f(p̄t+1), then we can get

(t+ 1)f(p∗)− (t+ 1)f(p̄t+1)− (t+ 1)λ∗TAJ p̄t+1

+
ρ

2
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2) +

1

2ρ
‖ λ0 − λ∗ ‖2≥ 0

Dividing both sides by −(t+ 1) yields

f(p̄t+1) + λ∗TAJ p̄t+1 − f(p∗)

≤ ρ

2(t+ 1)
(‖ HJ(p0 − p∗) ‖2 + ‖ Jp0 − Jp∗ ‖2) +

1

(t+ 1)2ρ
‖ λ0 − λ∗ ‖2 .

(65)

Combining the above relationship (65) with the Lagrangian function L(p,λ) = f(p) + λTAJp,

(7.19) in Theorem 14 is proven. �

C.2 Proof of Theorem 16

To prove Theorem 16, we first introduce two lemmas:

Lemma 15. Let pk = [pkT1 ,pkT2 , ...,pkTN ]T and λk = [λki,j ]ij,ei,j∈E be the iterates generated by J-ADMM

following (7.17) and (7.18), then the following inequality holds for all k:

f(p)− f(pk+1) + (p− pk+1)TJTATλk+1 + ρ(p− pk+1)TJT (−ATA+ Q̄T Q̄)J(pk+1 − pk) ≥ 0,

(66)

where Q̄ is defined in (7.21).
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Proof: Denote by gi the function

gki (pi) =
∑
j∈N̂i

(λkTi,j (Jipi − Jjpkj ) +
ρ

2
‖ Jipi − Jjpkj ‖2) +

ργi
2
‖ Jipi − Jipki ‖2 . (67)

Then following the proof of Lemma 13, we can get

fi(pi)− fi(pk+1
i ) + (pi − pk+1

i )TJTi ([A]Ti λ
k+1 +

∑
j∈N̂i

ρJj(p
k+1
j − pkj ) + ργiJi(p

k+1
i − pki )) ≥ 0.

(68)

Summing both sides of the above relation over i = 1, 2, ...N , and noticing that the following two

equations hold,
N∑
i=1

(pi − pk+1
i )TJTi ρ(

∑
j∈N̂i

Jj(p
k+1
j − pkj ) + γiJi(p

k+1
i − pki ))

= ρ(p− pk+1)TJT [−ATA+QC + I +QP ]J(pk+1 − pk),

N∑
i=1

(pi − pk+1
i )TJTi [A]Ti λ

k+1 = (p− pk+1)TJTATλk+1,

we can get the lemma. �

Lemma 16. Let pk = [pkT1 ,pkT2 , ...,pkTN ]T and λk = [λki,j ]ij,ei,j∈E be the iterates generated by J-ADMM

following (7.17) and (7.18). Then the following equality holds for all k:

− (pk+1)TJTAT (λk+1 − λ∗) + ρ(p∗ − pk+1)TJT (−ATA+ Q̄T Q̄)J(pk+1 − pk)

= − 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2) +

ρ

2
(‖ AJ(pk+1 − p∗) ‖2 − ‖ AJ(pk − p∗) ‖2)

− ρ

2
(‖ Q̄J(pk+1 − p∗) ‖2 − ‖ Q̄J(pk − p∗) ‖2) +

ρ

2
‖ AJ(pk+1 − pk) ‖2 −ρ

2
‖ Q̄J(pk+1 − pk) ‖2

− 1

2ρ
‖ λk+1 − λk ‖2 .

(69)

Proof: The proof is similar to the proof of Lemma 14 and is omitted. �

Then following the proof of Theorem 14 (setting p = p∗ in (66) and applying (69)), we can obtain
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the following inequality:

f(p∗)− f(pk+1)− λ∗TAJpk+1 − 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2)

+
ρ

2
(‖ AJ(pk+1 − p∗) ‖2 − ‖ AJ(pk − p∗) ‖2)− ρ

2
(‖ Q̄J(pk+1 − p∗) ‖2 − ‖ Q̄J(pk − p∗) ‖2)

+
ρ

2
‖ AJ(pk+1 − pk) ‖2 −ρ

2
‖ Q̄J(pk+1 − pk) ‖2 − 1

2ρ
‖ λk+1 − λk ‖2≥ 0. (70)

Summing both sides of the above inequality over k = 0, 1, ..., t, we can get the following result after

some re-arrangement:

(t+ 1)f(p∗)−
t∑

k=0

f(pk+1)− λ∗TAJ
t∑

k=0

pk+1 +
ρ

2
‖ Q̄J(p0 − p∗) ‖2 +

1

2ρ
‖ λ0 − λ∗ ‖2

≥ ρ

2
‖ AJ(p0 − p∗) ‖2 +

1

2ρ
‖ λt+1 − λ∗ ‖2 +

t∑
k=0

ρ

2
(‖ Q̄J(pk+1 − pk) ‖2 − ‖ AJ(pk+1 − pk) ‖2)

+
ρ

2
(‖ Q̄J(pt+1 − p∗) ‖2 − ‖ AJ(pt+1 − p∗) ‖2) +

t∑
k=0

1

2ρ
‖ λk+1 − λk ‖2

≥
t∑

k=0

ρ

2
(‖ Q̄J(pk+1 − pk) ‖2 − ‖ A ‖2‖ Jpk+1 − Jpk ‖2)

+
ρ

2
(‖ Q̄J(pt+1 − p∗) ‖2 − ‖ A ‖2‖ Jpt+1 − Jp∗ ‖2).

Since ‖ A ‖2= αmax, Q̄ is a diagonal matrix with γ′i ≥
√
αmax, we can get that the right hand side

of the above inequality is greater than 0, which leads to

(t+ 1)f(p∗)−
t∑

k=0

f(pk+1)− λ∗TAJ
t∑

k=0

pk+1 +
ρ

2
‖ Q̄J(p0 − p∗) ‖2 +

1

2ρ
‖ λ0 − λ∗ ‖2≥ 0.

In addition, as our function is convex, we have
t∑

k=0

f(pk+1) ≥ (t+ 1)f(p̄t+1) and

(t+ 1)f(p∗)− (t+ 1)f(p̄t+1)− (t+ 1)λ∗TAJ p̄t+1 +
ρ

2
‖ Q̄J(p0 − p∗) ‖2 +

1

2ρ
‖ λ0 − λ∗ ‖2≥ 0.

By dividing both sides by −(t+ 1), we can obtain

f(p̄t+1) + λ∗TAJ p̄t+1 − f(p∗) ≤ 1

t+ 1
(

1

2ρ
‖ λ0 − λ∗ ‖2 +

ρ

2
‖ Q̄J(p0 − p∗) ‖2).

Combining the above relationship with the Lagrangian function L(p,λ) = f(p) + λTAJp, we can
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get statement (1) of Theorem 16.

In addition, from (70), we have

ρ

2
‖ AJ(pk+1 − pk) ‖2 −ρ

2
‖ Q̄J(pk+1 − pk) ‖2 − 1

2ρ
(‖ λk+1 − λ∗ ‖2 − ‖ λk − λ∗ ‖2)

+
ρ

2
(‖ AJ(pk+1 − p∗) ‖2 − ‖ AJ(pk − p∗) ‖2)− ρ

2
(‖ Q̄J(pk+1 − p∗) ‖2 − ‖ Q̄J(pk − p∗) ‖2)

− 1

2ρ
‖ λk+1 − λk ‖2≥ −f(p∗) + f(pk+1) + λ∗TAJpk+1 ≥ 0

Rewrite the above inequality as:

1

2ρ
‖ λk+1 − λ∗ ‖2 +

ρ

2
‖ J(pk+1 − p∗) ‖2Q̄T Q̄−ATA

≤ 1

2ρ
‖ λk − λ∗ ‖2 +

ρ

2
‖ J(pk − p∗) ‖2Q̄T Q̄−ATA −

1

2ρ
‖ λk+1 − λk ‖2 −ρ

2
‖ J(pk − pk) ‖2Q̄T Q̄−ATA

(71)

Then we have

lim
k→∞

(
1

2ρ
‖ λk+1 − λk ‖2 +

ρ

2
‖ J(pk − pk) ‖2Q̄T Q̄−ATA) = 0 (72)

Following a similar proof of Theorem 1, we can obtain statement (2) of Theorem 16. �
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