28 research outputs found

    Performance analysis of queueing systems with resequencing

    Get PDF
    2014 - 2015The service sector lies at the heart of industrialized nations and continues to serve as a major contributor to the world economy. Over the years, the service industry has given rise to an enor- mous amount of technological, scienti c, and managerial chal- lenges. Among all challenges, operational service quality, service efficiency, and the tradeoffs between the two have always been at the center of service managers' attention and are likely to be so more in the future. Queueing theory attempts to address these challenges from a mathematical perspective. Every service station of a queueing network is characterized by two major components: the external arrival process and the service process. The external arrival process governs the timing of service request arrivals to that station from outside, and the service process concerns the duration of service transactions in that station... [edited by author]XIV n.s

    Analysis of discrete-time queueing systems with multidimensional state space

    Get PDF

    Analysis of discrete-time queueing systems with vacations

    Get PDF

    Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis

    Get PDF
    A single-chain nested fork-join queuing network (FJQN) model of mobility airfield ground processing is proposed. In order to analyze the queuing network model, advances on two fronts are made. First, a general technique for decomposing nested FJQNs with probabilistic forks is proposed, which consists of incorporating feedback loops into the embedded Markov chain of the synchronization station, then using Marie\u27s Method to decompose the network. Numerical studies show this strategy to be effective, with less than two percent relative error in the approximate performance measures in most realistic cases. The second contribution is the identification of a quick, efficient method for solving for the stationary probabilities of the λn/Ck/r/N queue. Unpreconditioned Conjugate Gradient Squared is shown to be the method of choice in the context of decomposition using Marie\u27s Method, thus broadening the class of networks where the method is of practical use. The mobility airfield model is analyzed using the strategies described above, and accurate approximations of airfield performance measures are obtained in a fraction of the time needed for a simulation study. The proposed airfield modeling approach is especially effective for quick-look studies and sensitivity analysis

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Analysis of generic discrete-time buffer models with irregular packet arrival patterns

    Get PDF
    De kwaliteit van de multimediadiensten die worden aangeboden over de huidige breedband-communicatienetwerken, wordt in hoge mate bepaald door de performantie van de buffers die zich in de diverse netwerkele-menten (zoals schakelknooppunten, routers, modems, toegangsmultiplexers, netwerkinter- faces, ...) bevinden. In dit proefschrift bestuderen we de performantie van een dergelijke buffer met behulp van een geschikt stochastisch discrete-tijd wachtlijnmodel, waarbij we het geval van meerdere uitgangskanalen en (niet noodzakelijk identieke) pakketbronnen beschouwen, en de pakkettransmissietijden in eerste instantie één slot bedragen. De grillige, of gecorreleerde, aard van een pakketstroom die door een bron wordt gegenereerd, wordt gekarakteriseerd aan de hand van een algemeen D-BMAP (discrete-batch Markovian arrival process), wat een generiek kader creëert voor het beschrijven van een superpositie van dergelijke informatiestromen. In een later stadium breiden we onze studie uit tot het geval van transmissietijden met een algemene verdeling, waarbij we ons beperken tot een buffer met één enkel uitgangskanaal. De analyse van deze wachtlijnmodellen gebeurt hoofdzakelijk aan de hand van een particuliere wiskundig-analytische aanpak waarbij uitvoerig gebruik gemaakt wordt van probabiliteitsgenererende functies, die er toe leidt dat de diverse performantiematen (min of meer expliciet) kunnen worden uitgedrukt als functie van de systeemparameters. Dit resul-teert op zijn beurt in efficiënte en accurate berekeningsalgoritmen voor deze grootheden, die op relatief eenvoudige wijze geïmplementeerd kunnen worden

    Resource allocation in grid computing

    Get PDF
    Grid computing, in which a network of computers is integrated to create a very fast virtual computer, is becoming ever more prevalent. Examples include the TeraGrid and Planet-lab.org, as well as applications on the existing Internet that take advantage of unused computing and storage capacity of idle desktop machines, such as Kazaa, SETI@home, Climateprediction.net, and Einstein@home. Grid computing permits a network of computers to act as a very fast virtual computer. With many alternative computers available, each with varying extra capacity, and each of which may connect or disconnect from the grid at any time, it may make sense to send the same task to more than one computer. The application can then use the output of whichever computer finishes the task first. Thus, the important issue of the dynamic assignment of tasks to individual computers is complicated in grid computing by the option of assigning multiple copies of the same task to different computers. We show that under fairly mild and often reasonable conditions, maximizing task replication stochastically maximizes the number of task completions by any time. That is, it is better to do the same task on as many computers as possible, rather than assigning different tasks to individual computers. We show maximal task replication is optimal when tasks have identical size and processing times have a NWU (New Worse than Used; defined later) distribution. Computers may be heterogeneous and their speeds may vary randomly, as is the case in grid computing environments. We also show that maximal task replication, along with a c μ rule, stochastically maximizes the successful task completion process when task processing times are exponential and depend on both the task and computer, and tasks have different probabilities of completing successfully
    corecore