
VU Research Portal

Resource allocation in grid computing

Koole, Ger; Righter, Rhonda

published in
Journal of Scheduling
2007

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Koole, G., & Righter, R. (2007). Resource allocation in grid computing. Journal of Scheduling.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

https://research.vu.nl/en/publications/587ba8ff-7d1e-4173-9068-da75139ee9c2

J Sched
DOI 10.1007/s10951-007-0018-8

Resource allocation in grid computing

Ger Koole · Rhonda Righter

Received: 22 December 2005 / Accepted: 24 April 2007
© Springer Science+Business Media, LLC 2007

Abstract Grid computing, in which a network of comput-
ers is integrated to create a very fast virtual computer, is
becoming ever more prevalent. Examples include the Tera-
Grid and Planet-lab.org, as well as applications on the ex-
isting Internet that take advantage of unused computing and
storage capacity of idle desktop machines, such as Kazaa,
SETI@home, Climateprediction.net, and Einstein@home.
Grid computing permits a network of computers to act as
a very fast virtual computer. With many alternative com-
puters available, each with varying extra capacity, and each
of which may connect or disconnect from the grid at any
time, it may make sense to send the same task to more than
one computer. The application can then use the output of
whichever computer finishes the task first. Thus, the impor-
tant issue of the dynamic assignment of tasks to individual
computers is complicated in grid computing by the option
of assigning multiple copies of the same task to different
computers.

We show that under fairly mild and often reasonable
conditions, maximizing task replication stochastically max-
imizes the number of task completions by any time. That is,
it is better to do the same task on as many computers as pos-
sible, rather than assigning different tasks to individual com-
puters. We show maximal task replication is optimal when
tasks have identical size and processing times have a NWU

G. Koole
Department of Mathematics, Vrije Universiteit, De Boelelaan
1081a, 1081 HV Amsterdam, The Netherlands
e-mail: Koole@cs.vu.nl

R. Righter (�)
Department of Industrial Engineering and Operations Research,
University of California, Berkeley, CA 94720, USA
e-mail: RRighter@IEOR.Berkeley.edu

(New Worse than Used; defined later) distribution. Comput-
ers may be heterogeneous and their speeds may vary ran-
domly, as is the case in grid computing environments. We
also show that maximal task replication, along with a cμ

rule, stochastically maximizes the successful task comple-
tion process when task processing times are exponential and
depend on both the task and computer, and tasks have dif-
ferent probabilities of completing successfully.

Keywords Grid computing · Task replication · Stochastic
scheduling

1 Introduction

Grid computing, in which a network of computers is inte-
grated to create a very fast virtual computer, is becoming
ever more prevalent (Foster and Kesselman 1999). Exam-
ples include networks such as the TeraGrid, a transconti-
nental supercomputer set up at universities and government
laboratories and supported by NSF, applications on the ex-
isting Internet that take advantage of unused computing and
storage capacity of idle desktop machines such as Kazaa,
BitTorrent, SETI@home, stardust@home, Einstein@home,
Climateprediction.net, and CERN’s LHC@home (Large
Hadron Collider), and ad hoc networks within universities
or laboratories. Even Amazon is offering a grid computation
service, EC2 (Elastic Computer Cloud). Computer makers
are “grid-enabling” their new machines by implementing the
Globus Toolkit (globus.org), a set of open-source software
tools to support grid computing, and researchers are find-
ing it easier to take advantage of “public computing” with
new software platforms such as BOINC (Berkeley Open In-
frastructure for Network Computing—boinc.berkeley.edu).

J Sched

Grid computing creates a fast virtual computer from a
network of computers by using their idle cycles. Although
grid computing is a successor to distributed computing, the
computing environments are fundamentally different. For
distributed computing, resources are homogeneous and are
reserved, leading to guaranteed processing capacity. On the
other hand, grid environments are highly unpredictable. The
computers are heterogeneous, their capacities are typically
unknown and changing over time, and they may connect and
disconnect from the grid at any time. For example, the statis-
tical study of Dobber et al. (2006) found that for the Planet-
lab grid test bed environment, processing times of identical
tasks on the computers of the grid showed a strong hetero-
geneity across different hosts and across time for the same
host. In such an unpredictable environment, it may make
sense to send the same task to more than one computer. The
application can then use the output of whichever computer
finishes the task first. As Cirne (2002) states for MyGrid,
“The key is to avoid having the job waiting for a task that
runs on a slow/loaded machine. Task replication is our an-
swer for this problem.” In addition to reducing total process-
ing time on average, task replication is also very robust in
terms of working well across a wide range of conditions, be-
cause unavailable or heavily loaded computers are basically
ignored. Task replication is also easier and more practical to
implement than alternative load-balancing schemes that at-
tempt to monitor and predict the rapidly changing capacities
of different computers. Yet another advantage of task repli-
cation is that tasks can be guaranteed to complete in FIFO
(first-in first-out) order, making synchronization simple.

In our basic model with general processing time distri-
butions, we assume that different tasks are identical in the
sense that they will take the same amount of time to com-
plete on some canonical computer that is perfectly and to-
tally available to process the task. For example, tasks may be
performing the same subroutine on different data. Thus, all
randomness in task processing times comes from the com-
puters because they may become more heavily loaded with
higher priority (perhaps locally generated) jobs, and, there-
fore, the processing time for a task assigned to a computer
is the same regardless of which task it is, and which tasks
are assigned to other computers. There is an environmen-
tal state that may affect computer speeds and availabilities,
and the arrival process. We assume that, given the environ-
mental state, the processing time of the same task on dif-
ferent computers is independent and identically distributed.
This is reasonable in a grid environment, in which differ-
ent computers are at different locations. Processing times on
the same computer may be dependent and can vary with
the environmental state. Thus, we can model the regime
switching of computer speeds that was observed in planet
lab data by Dobber et al. (2006). Our assumptions about
task processing times, depending on the computer and the

environment rather than the task, are consistent with the op-
eration of Single-Program-Multiple-Data (SPMD) parallel
programs, with applications in computational fluid dynam-
ics, environmental and economic modeling, image process-
ing, and dynamic programming. They are also reasonable
in the case of randomized algorithms, simulations, Monte-
Carlo integration, and search engines. We also assume com-
munication delays can either be ignored, which is realistic
when computation times are significantly longer than com-
munication times, and is generally the case for applications
in which grid computing makes sense, or they can be in-
corporated into the processing times. And we assume that
there is no cost for preempting a task that doesn’t com-
plete on a processor with another task. This assumption also
seems reasonable in grid environments, in which the reason
one computer takes longer than another to process the same
task is because it is either unavailable or busy with its own,
higher priority, work. The arrival process may be an arbi-
trary point process, as long as it is independent of the policy.
We show that, when task processing times have NWU (New
Worse than Used) distributions, maximizing task replication
stochastically maximizes the number of completed tasks by
any time. That is, it is better to do the same task on as many
computers as possible, rather than assigning different tasks
to individual computers. NWU (and stochastic maximiza-
tion) will be defined precisely later, but having NWU task
processing times basically means that the time to finish a
task that has just been assigned to a computer is stochasti-
cally smaller than the remaining time to finish a task that
was assigned to a computer some time ago. This again is
reasonable in a grid environment, where a computer that is
taking a long time to process a task is probably unavailable
or busy with other tasks, and will not get to our task for a
while. We also show a complementary result, that when task
processing times have NBU (New Better than Used) distrib-
utions, and there are two computers, we should not replicate
tasks, except, perhaps, when there is only one task present.
Note that our optimal policies are independent of the envi-
ronmental state, so they remain optimal even when the state
is unobserved. Thus, monitoring costs may be reduced.

We also consider a model with exponential task process-
ing times, and nonidentical tasks. (Exponential random vari-
ables are both NBU and NWU, and, in particular, new and
used are stochastically indistinguishable.) For this model the
processing rates may vary across both computers and tasks,
and may vary according to some environmental state. Also,
tasks that complete may not complete correctly. All process-
ing times are assumed to be independent (conditioned on the
state), regardless of which task is assigned to which com-
puter. That is, though some tasks may require more steps
than others, and computers may vary in terms of their ba-
sic speeds, such that the mean time to process a task on a
computer depends on both the task and the computer, the

J Sched

variability in processing times is again due to the computer
and the environmental state, and not the task. For our ex-
ponential model, maximal replication of each task is again
optimal. In addition, tasks should be ordered so that at any
time the task with the largest product of success probabil-
ity and intrinsic processing rate should be replicated on all
computers (the cμ rule). In contrast, when processing times
are geometric, Borst et al. (2003) showed that different tasks
should be assigned to different computers as much as pos-
sible, i.e., task replication should be minimized, subject to
using all available computers. We discuss this apparent con-
tradiction later.

Another application of our model is in an R&D environ-
ment, in which multiple teams may pursue the same research
idea independently. In the presence of high variability across
research teams, it may be optimal to have different teams si-
multaneously pursue the same (most promising) idea.

2 Heterogeneous tasks with exponential processing
times

In the exponential case there is a set of parallel indepen-
dent computers with different speeds, and tasks have dif-
ferent sizes, so that when a task of type i is processed on
computer j its processing time is exponentially distributed
with rate μiνj (s), where s is an environmental state in some
state space S. Roughly, we can think of νj (s) as the speed of
processor j in state s and 1/μi as the size of a task of type i.
The environmental state includes information affecting the
computer speeds and the arrival processes as described be-
low, but is independent of which tasks are currently present
and the policy. In some of these states some computers may
be unavailable (νj (s) = 0). The environmental state allows
us to model the regime switching effect of computers that
is observed in practice (Dobber et al. 2006), as well as de-
pendencies across computers. There is a chance that a task
may not be completed correctly by a computer, for exam-
ple, a randomized algorithm may not converge, or the ma-
chine is interrupted in a way that corrupts the data for the
task. The probability of successful completion for a task of
type i in all states is ci , and whether a given task is success-
ful on a given computer is independent of any other suc-
cesses of that task or other tasks. Arrivals form a general
Markov arrival process (MAP). That is, there is an environ-
mental continuous-time Markov chain with transition rates
αxy from state x to state y, and such that type i arrivals oc-
cur at x to y transitions of the Markov chain with probabil-
ity βi

xy . Such processes are dense in the class of arbitrary
arrival processes (Asmussen and Koole 1993). All other en-
vironmental state changes also occur according to Markov
processes and are independent of the decisions made. We as-
sume all transition rates are bounded with a common bound

for all states. The same task may be assigned to more than
one computer, in which case the task is considered com-
plete the first time its processing time is finished on a com-
puter and the completion on that computer is successful. If
the completion is unsuccessful, the task is either lost (loss
model), or can be restarted on the same computer (retrial
model). When a computer becomes available, either because
it has finished processing a task or because the environmen-
tal state has changed, any task, including copies of those al-
ready being processed on other computers, may be assigned
to it. Processing times of the same task on different com-
puters are assumed to be independent. Processing times on
the same computer may be dependent; indeed, the state may
include information on past processing times. Once the task
is completed (loss model), or successfully completed (re-
trial model), all versions are immediately removed from the
system. Let Nt be the cumulative number of successful task
completions by time t .

We assume idling (not using an available computer) is
permitted. We also assume that tasks may be preempted at
any time without penalty. This requires a high-speed net-
work, which is often the case, and is generally required
for grid computing, anyway. With these assumptions the
optimal policy is the cμ rule, so the only time preemp-
tions will occur is when tasks complete, or when a task
with higher priority than any task present arrives, or when
a computer becomes unavailable because of an environmen-
tal state change. For tasks of the same type, we may assume
first-come first-served (FCFS) service, without loss of gen-
erality. Note that this policy is independent of the environ-
mental state, so it is still optimal when the environmental
state is unknown (and, in practice, the environment need not
be monitored).

The optimality of the cμ rule for our model is consistent
with existing results, when task replication is not an option.
For parallel-machine scheduling with exponential process-
ing times and preemption permitted, the cμ rule (with the
task with the highest cμ assigned to the fastest machine) is
optimal for a variety of objective functions, interpretations
of c (e.g., holding cost, reward for completion, probability
of successful completion) and model extensions. See, e.g.,
Weiss and Pinedo (1980) and Liu and Righter (1997). The
proof below can be modified to show that the cμ rule is op-
timal for our general model above, but without replication,
and for our fairly general objective function. Because of the
exponential processing times, for our model with parallel
computers, always assigning the same task with the high-
est cμ on all available computers and taking the minimum
processing time is essentially equivalent to creating a sin-
gle computer with speed equal to the combined speed of the
available computers. Thus, given the optimality of maximal
replication (so all computers are working on the same task),
the optimality of the cμ rule for prioritizing tasks follows
from existing results.

J Sched

Let us recall some stochastic ordering definitions (e.g.,
Shaked and Shanthikumar, 1994). For two nonnegative con-
tinuous random variables X and Y , with respective distribu-
tions F and G, and F̄ (x) = 1−F(x) and Ḡ(x) = 1−G(x),
we say X ≥st Y , i.e., X is stochastically larger than Y ,
if E[h(X)] ≥ E[h(Y)] for all increasing functions h, or,
equivalently, if F̄ (t) ≥ Ḡ(t) for all t ≥ 0. Also, X ≥st Y

if and only if it is possible to construct two coupled ran-
dom variables, X̂ and Ŷ , so that X̂ =st X and Ŷ =st Y and
X̂ ≥ Ŷ with probability 1. It is this last definition that we
use in our proofs. For Xi an exponentially distributed ran-
dom variable with rate λi , Xi ≥st Xj ⇐⇒ λi ≤ λj , and
for Xi a Bernoulli random variable with probability pi ,
Xi ≥st Xj ⇐⇒ pi ≥ pj . When we say a policy π stochas-
tically maximizes the number of successful completions Nt

at time t , we mean that for any other policy ρ, Nπ
t ≥st N

ρ
t ,

where Nπ
t and N

ρ
t are the number of successful completions

at time t under policies π and ρ, respectively. Note that sto-
chastically maximizing Nt implies stochastically minimiz-
ing the makespan for a finite number of tasks. (We can set
up a Markov arrival process so that arrivals stop after some
given number of arrivals.)

We start with the loss model, in which unsuccessfully
completed tasks are lost. In this case, over the evolution
of the problem, we’ll need to keep track of tasks complet-
ing successfully (for our objective function) and also those
completing unsuccessfully (because they will no longer be
available for processing).

Theorem 2.1 For the loss model, in which unsuccessfully
completed tasks are lost, the policy that never idles and al-
ways assigns the task with the largest ciμi(s) to all available
computers stochastically maximizes Nt for all t ≥ 0.

Proof For simplicity we assume no environmental state, so
the arrival rate of tasks is always λ, and μi(s) ≡ μi , νj (s) ≡
νj . The extension to a random environmental state, though
notationally cumbersome, is straightforward.

We use uniformization, so we assume that (potential)
events occur according to a Poisson process with rate λ +
∑

j νj

∑
i μi , and, without loss of generality, we set that

rate equal to 1. Because we have a Markov system, we may
assume, without loss of generality, that decisions are made
only when (potential) events occur. Then an event is an ar-
rival with probability λ = λ/(λ + ∑

j νj

∑
i μi), and, if a

task of type i is being processed on computer j , the next
event is the completion of task i with probability νjμi . With
probability 1 − λ − ∑

j νjμt(j) the next event is a dummy
event with no state change, where t (j) is the task type cur-
rently assigned to computer j , and where μt(j) = 0 if no
task is assigned to computer j . When a task of type i is
being processed on computer j , we can think of the next

event as being a potential task completion with probabil-
ity νj , and conditioned on there being a potential task com-
pletion, the probability that a task actually completes is μi .
With uniformization we have essentially a discrete-time sys-
tem, and we will call the times of potential events, i.e., the
decision times, time 0, time 1, etc. The actual time of time
k in the original system is the time of the kth event in a
Poisson process with rate 1. Let us condition on these ac-
tual event times and call the realized values σk, k = 0,1, . . .,
with 0 = σ0 < σ1 < σ2 < · · ·.

Our proof is by induction on a finite time horizon T ,
where we assume the problem will stop at the time of the
T th event. Assume that the cμ rule is optimal for time hori-
zon T (for T = 0 it is trivial), and consider horizon T + 1.

Suppose that at time 0 policy π puts some task 2 on
some computer j when there is another task, task 1, with
c1μ1 > c2μ2. We will show that following the cμ rule from
time 0 to time T + 1 will be stochastically better (will have
stochastically more successful completions by time t for
any t) than π . If π does not follow the cμ rule from time
1 to time T + 1, then we can construct a policy that agrees
with π at time 0 (so they have the same task completions and
states at time 1) and follows the cμ rule thereafter that will
be stochastically better than π , from the induction hypoth-
esis. Therefore, suppose π follows the cμ rule from time
1 on, so task 2 will not be processed again under π until
task 1 completes. (Tasks with larger cμ’s than task 1 may be
processed before task 1 under π .)

Let π ′ be an alternate policy (with N ′
t being the number

of successful completions by time t) such that π ′ processes
task 1 on computer j at time 0, and otherwise agrees with
π at time 0. If computer j doesn’t have a potential comple-
tion at time 1, the states will be the same under both policies,
and letting π ′ agree with π from time 1 on, N ′

t = Nt for all t .
Otherwise, if the event at time 1 is a potential completion of
computer j , let τ be the first time that some computer has
a potential completion, while π is processing task 1 (on all
computers), and let π ′ process task 2 whenever π is process-
ing task 1. For t < σ1, N ′

t = Nt . For σ1 ≤ t < στ ,

Nt = St + I 2,

N ′
t = St + I 1,

where St is the number of successful completions of tasks
other than 1 or 2 (tasks with larger cμ’s than c1μ1) by
time t given a j potential completion occurred at time 1,
I i ∼ Bernoulli(ciμi) is an indicator for the event at time 1
being a successful completion of task i, given that a poten-
tial completion on computer j occurred, and that i is be-
ing processed on computer j at time 1. Thus, N ′

t ≥st Nt , for
0 ≤ t < στ .

For t ≥ στ , define I i
1 ∼ Bernoulli(μi) as an indicator for

the event at time 1 being a completion (successful or not)

J Sched

of task i, given that a potential completion on computer j

occurred, I i
τ ∼ Bernoulli(μi) as an indicator for the event

at time τ being a completion of task i, given that a potential
task completion occurred (on any computer) and that i is be-
ing processed at time τ , and J i ∼ Bernoulli(ci) as an indica-
tor for the completion of task i being successful, given that a
potential completion occurs while i is being processed. (So
I i = I i

1J
i .) Then

Nt = I 2
1 I 1

τ

(
J 1 + J 2 + A

{1,2}
t

) + I 2
1

(
1 − I 1

τ

)(
J 2 + A

{2}
t

)

+ (
1 − I 2

1

)
I 1
τ

(
J 1 + A

{1}
t

) + (
1 − I 2

1

)(
1 − I 1

τ

)
A∅

t

= stI
2
t I 1

1

(
J 1 + J 2 + A

{1,2}
t

) + I 2
τ

(
1 − I 1

1

)(
J 2 + A

{2}
t

)

+ (
1 − I 2

τ

)
I 1

1

(
J 1 + A

{1}
t

) + (
1 − I 2

τ

)(
1 − I 1

1

)
A∅

t

= N ′
t ,

where AS
t is the total number of successful completions of

tasks other than 1 and 2 by time t , given that tasks in S
complete (either successfully or unsuccessfully) by time τ

and those in {1,2}\S do not. That is, because of the way we
have defined π ′, before time τ both policies will process the
same (higher priority) tasks other than task 1, and, given the
information about whether tasks 1 and/or 2 are still in the
system after time τ , the two policies will be the same from
time τ on, so we can couple all the events so that N ′

t = Nt

with probability 1, i.e., N ′
t =st Nt .

From the induction hypothesis, we can construct a policy
that agrees with π ′ at time 0 and thereafter follows the cμ

rule, and that is stochastically better than π ′. We can repeat
the argument for all computers not assigned the task with
the highest cμ at time 0, so we finally have that the cμ rule
from time 0 to time T + 1 is stochastically better than any
other policy. �

It is not hard to modify the proof above to show that if all
task completions are successful, but ci is the reward earned
upon completion of a task of type i, then the cμ rule maxi-
mizes ERt for all t , where Rt is the total reward earned up
to time t (essentially replacing J i with its mean ci).

In the retrial model, we need only keep track of success-
ful completions of tasks, since unsuccessfully completed
tasks remain in the system in the same state (with the same
cμ) as before. Indeed, the model is equivalent to having
all success probabilities equal to 1, but changing the pa-
rameters of the processing times from μ to cμ. Thus, the
fact that the cμ rule stochastically maximizes Nt for all t

follows from the theorem above. However, for the retrial
model we can actually show a stronger result, that the cμ

rule stochastically maximizes the process {Nt } = {Nt }∞t=0,
where Nt is the number of successful task completions by
time t . When we say a policy π stochastically maximizes
the process {Nt }, we mean that for any other policy ρ,

{Nπ
t } ≥st {Nρ

t }, that is, P {Nπ
t1

≥ n1,N
π
t2

≥ n2, . . . ,N
π
tn

≥
nk} ≥ P {Nρ

t1
≥ n1,N

ρ
t2

≥ n2, . . . ,N
ρ
tn

≥ nk} for any k and
any n1, n2, . . . , nk ≥ 0. Using an extension of the coupling
definition above, we will show that {Nπ

t } ≥st {Nρ
t }, by con-

structing coupled processes {N̂π
t } =st {Nπ

t } and {N̂ρ
t } =st

{Nρ
t } such that for any n and any t1, t2, . . . , tn ≥ 0, with

probability 1, N̂π
t1

≥ N̂
ρ
t1
, N̂π

t12
≥ N̂

ρ
t2
, . . . , N̂π

tn
≥ N̂

ρ
tn

. Indeed,
our coupling will be such that all departures are earlier in
one process than the other. This type of process stochastic
maximization is also known as maximization across sample
paths. Note that stochastic maximization of {Nt }∞t=0 implies
stochastic minimization of both the total flowtime up to any
time t and the makespan for any finite number of tasks.

Theorem 2.2 For the retrial model, in which unsuccessfully
completed tasks are lost, the policy that never idles and al-
ways assigns the task with the largest ciμi(s) to all available
computers stochastically maximizes {Nt }∞t=0.

Proof The proof is along the same lines as above, so we
focus on the differences. Here the cμ rule corresponds to
having all computers process the task with the highest cμ

until the task successfully completes (or it is preempted by a
higher priority task). Again we use uniformization and in-
duction on the time horizon and we suppose that at time
0 policy π puts some task 2 on some computer j when
there is another task, task 1, with c1μ1 > c2μ2. We also
define π ′ as before, so that we only have a difference be-
tween the two policies if the event at time 1 is a potential
completion of computer j . With τ as defined before, we
can show that any successful completions at times 1 and τ

are jointly earlier under π ′, using the following coupling.
(All events at times other than 1 and τ are the same for
both policies.) Let I i

1 ∼ Bernoulli(ciμi) be an indicator for
the event at time 1 being a successful completion of task i,
given that a potential completion on computer j occurred
and that i is being processed on computer j at time 1, and
let I i

τ ∼ Bernoulli(ciμi) be an indicator for the event at time
τ being a successful completion of task i, given that a poten-
tial task completion occurred and that i is being processed
at time τ . Then

Nt = I 2
1 I 1

τ

(
2 + A

{1,2}
t

) + I 2
1

(
1 − I 1

τ

)(
1 + A

{2}
t

)

+ (
1 − I 2

1

)
I 1
τ

(
1 + A

{1}
t

) + (
1 − I 2

1

)(
1 − I 1

τ

)
A∅

t ,

N ′
t = I 2

t I 1
1

(
2 + A

{1,2}
t

) + I 2
τ

(
1 − I 1

1

)(
1 + A

{2}
t

)

+ (
1 − I 2

τ

)
I 1

1

(
1 + A

{1}
t

) + (
1 − I 2

τ

)(
1 − I 1

1

)
A∅

t ,

where AS
t is the total number of successful completions of

tasks other than 1 and 2 by time t , given that tasks in S
successfully complete by time τ and those in {1,2}\S do
not. Now we couple the indicators under the two policies as

J Sched

follows: Let

Î 2
1 = Î 1

1 = Î 1
τ = Î 2

τ = 1

with probability c1μ1c2μ2,

Î 2
1 = Î 1

1 = Î 1
τ = Î 2

τ = 0

with probability (1 − c1μ1)(1 − c2μ2),

Î 2
1 = Î 1

1 = 1, Î 1
τ = Î 2

τ = 0

with probability c2μ2(1 − c1μ1),

Î 2
1 = Î 1

1 = 0, Î 1
τ = Î 2

τ = 1

with probability c2μ2(1 − c1μ1),

Î 2
1 = Î 2

τ = 0, Î 1
1 = Î 1

τ = 1

with probability c1μ1 − c2μ2.

With this coupling, either there are successful comple-
tions at both times 1 and τ under both policies, or there are
no successful completions at either times 1 or τ under both
policies, or there is exactly one successful completion at ei-
ther times 1 or τ under both policies. In the latter case, either
the successful completion occurs at time 1 for both policies,
or at time τ for both, or it occurs at time 1 under π ′ and
time τ under π . Note that our coupling is legitimate, i.e.,
the probabilities are correct on the margin for each policy,
because

P
{
Î 2

1 = Î 1
τ = 1

} = P
{
Î 1
τ = Î 2

1 = 1
} = c1μ1c2μ2,

P
{
Î 2

1 = Î 1
τ = 0

} = P
{
Î 1
τ = Î 2

1 = 0
}

= (1 − c1μ1)(1 − c2μ2),

P
{
Î 2

1 = 0, Î 1
τ = 1

} = P
{
Î 1
τ = 1, Î 2

1 = 0
}

= c1μ1(1 − c2μ2),

P
{
Î 2

1 = 1, Î 1
τ = 0

} = P
{
Î 1
τ = 0, Î 2

1 = 1
}

= c2μ2(1 − c1μ1).

Since all other completions occur at the same times under
both policies, we have {Nπ ′

t }∞t=0 ≥ {Nπ
t }∞t=0 with probability

1 (across the whole sample path). The rest of the argument
is as before. �

It is easy to see that if we have an extra resequencing con-
straint, that is, that the outputs of tasks must be used in the
same order as the tasks are ordered (e.g., FIFO), and if tasks
are identical, replicating tasks as much as possible will still
be optimal, because this guarantees that tasks complete in
order. The same holds true of programs that consist of se-
quential sets of parallelizable tasks, where synchronization
must occur for each set of tasks before the next set can start.

It is also not hard to show that if preemption and idling
are not permitted, and the ci ’s are the same for all tasks, the

“μ rule” (or SEPT, shortest expected processing time first),
of assigning the stochastically shortest task to all computers,
is optimal.

At first surprisingly, our result for exponential process-
ing times is the opposite of the result for the geometric case
(Borst et al. 2003). For identically and geometrically distrib-
uted processing times with success probabilities equal to 1,
Borst et al. have shown that the optimal policy assigns dif-
ferent tasks to different computers whenever possible, and
when there are fewer tasks than computers, though all com-
puters should be used, each task should have the minimum
number of copies possible. Of course, in the exponential
case, when tasks are identical in both c and μ, all assign-
ment rules that use all available computers are stochastically
identical (so minimal task replication is also optimal in the
exponential case). Also, in a discrete model such as that of
Borst et al., it is possible for several computers to finish at
the same time, and it is wasteful to have them finish the same
task, so there is an incentive to minimize replications.

3 Identical tasks with generally distributed processing
times

Now we suppose the tasks are identical, so the only question
is whether to process multiple copies of the same task on dif-
ferent computers. We assume that nominal task processing
times and probabilities of successful completion are inde-
pendent of the state and policy, though other processes may
depend on an environmental state. The processing time of
a task on a computer is independent of which task it is and
which tasks are assigned to other computers. We first sup-
pose that the common probability of successful completion
given completion of a task on a computer is 1. Arrivals of
tasks may follow an arbitrary stochastic process, as long as
it is independent of the policy, and computers may have dif-
ferent, finite, speeds that can vary according to arbitrary sto-
chastic processes, again independent of the policy. When a
task completes on a computer, all copies of the task are im-
mediately removed from the system. Otherwise, tasks may
not be preempted once assigned to a computer. Idling is per-
mitted.

Note that in the presence of processing time variability,
task replication is appealing because, if all computers are
processing the same task, as soon as the first one finishes,
all computers become available to process more tasks. Our
results are consistent with this intuition.

We first define and develop intuition for the concepts of
new better or worse than used. See Shaked and Shanthiku-
mar (1994) or Müller and Stoyan (2002) for details and fur-
ther background.

J Sched

3.1 NWU (NBU) preliminaries

Let X be a random task processing time on a computer
whose speed is always 1. We call X the nominal process-
ing time and assume that its distribution is continuous and
identical for all tasks. Let Xt = {X− t |X > t} be the remain-
ing processing time of a task that has completed t time units
of processing, and let F̄ (x) = P {X > x}. We say that X is
New Worse than Used (NWU) if the remaining processing
time of a task that has received some processing (is used)
is stochastically larger than the processing time of a task
that has received no processing (is new), i.e., X0 ≤st Xt

for all t , or equivalently, F̄ (x + y) ≥ F̄ (x)F̄ (y) for all
x, y. Note that the “worse” comes from reliability theory,
in which it is worse to have component lifetimes that are
short. In a scheduling context, it is just the opposite, i.e.,
short task processing times are better, but we stick with
well-established terminology. An equivalent definition for
NWU is to say that for any t we can construct coupled ver-
sions, X̂0 =st X0 and X̂t =st Xt , so that X̂0 ≤ X̂t with prob-
ability 1. Note that under our assumptions on the computer
speed processes, X0 ≤st Xt implies that Cj(X0, u, S(u)) ≤st

Cj(Xt , u,S(u)) for any time u, where Cj (Y,u,S(u)) is the
actual completion time of a task started at time u on com-
puter j , when the state of the system is S(u). NBU (New
Better than Used) distributions are defined analogously, with
analogous properties.

A sufficient condition for X to be NWU is to have de-
creasing failure rate (DHR), because this is equivalent to Xt

stochastically increasing in t . An example of a DHR dis-
tribution is the hyperexponential distribution. If a process-
ing time is DHR then, roughly, the longer the task has been
worked on, the less likely it is to finish soon. In our context
this may be a very reasonable assumption, because a com-
puter may either process the task quickly or take a long time,
depending on its workload of other tasks for other users.
Similarly, if X is IHR (has increasing hazard rate), then X

is NBU. An example of an IHR distribution is the Erlang
distribution.

Intuitively, NWU distributions are more variable than
NBU distributions. For example, the coefficient of variation
of an NWU random variable is at least 1, while it is at most 1
for an NBU random variable. Of course exponential random
variables, with a coefficient of variation of 1, are both NBU
and NWU.

To make the ideas of NWU, i.e., X0 ≤st Xt , and cou-
pling concrete, consider the following example of a mixture
of two exponentials (a hyperexponential): X = X0 = IYs +
(1 − I)Yb , where I ∼ Bernoulli(1/2), Ys ∼ exp(3), Yb ∼
exp(1) (s for small, b for big). At time 0, X0 is equally likely
to be the small or the big exponentially distributed random
variable. Now suppose that the task with initial processing
time X = X0 has completed 2 time units of processing and

still has not completed. Then X2 = I ′Ys + (1− I ′)Yb , where
I ′ ∼ Bernoulli(p), and where

p = P {X = Ys |X > 2} = P {X = Ys,X > 2}/P {X > 2}

= 1

2
e−(3)(2)

/(
1

2
e−(3)(2) + 1

2
e−(1)(2)

)

≈ 0.02.

Thus, after completing 2 units of processing, the remain-
ing processing time has only a 2% chance of being the
small random variable. We can couple the random vari-
ables so that X̃0 ≤ X̃2 with probability 1 as follows. With
probability 0.02 let Î = Î ′ = 1; with probability 0.50 let
Î = Î ′ = 0; with probability 0.48 let Î = 0 and Î ′ = 1,
so Î ∼ Bernoulli(0.50) and Î ′ ∼ Bernoulli(0.02). Let Ŷs ∼
exp(10) and let Ŷb = 10Ŷs , so

P {Ŷb > t} = P {10Ys > t} = P {Ys > t/10}
= e−10t/10 = P {Yb > t}.

Then X̃0 = Î Ŷs + (1 − Î)Ŷb ≤ Î ′Ŷs + (1 − Î ′)Ŷb = X̂t

with probability 1. Note that it doesn’t matter that Ŷs and Ŷb

are dependent, because X̂0 and X̂t only use one or the other
of Ŷs and Ŷb .

3.2 Results for NWU processing times

Suppose processing times are NWU. Then the optimal pol-
icy maximizes replications, i.e., it is optimal to always as-
sign the same task to all computers and to never idle. Let us
call this policy the MRNI (maximal replications, non-idling)
policy.

We say a task is a “fresh” task if it has not yet been as-
signed to any computer, and it is an “old” task if some copies
of it have already been assigned. Note that any time a task
is assigned to a computer, regardless of whether it is fresh
or old or how many copies of the task are currently run-
ning, the processing time from the point of assignment is
X0. This is intuitively why, for NWU processing times, we
prefer to assign old tasks; because their remaining process-
ing times on other computers are getting longer, and when
we replicate the old task we have a chance of a short (new)
processing time that will eliminate all outstanding copies of
the task, freeing up multiple computers. The lemma below
makes this intuition rigorous, where Nt is the total number
of task completions by time t .

Lemma 3.1 If processing times are NWU, then it is never
optimal to assign a fresh task when old tasks are present.
More specifically, for any policy that assigns a fresh task
when old tasks are present, we can construct a policy that
assigns old tasks, such that {Nt }∞t=0 is stochastically larger
under the new policy.

J Sched

Fig. 1 Gantt chart for NWU
processing times

Proof Let π be an arbitrary policy that at some time, call it
time 0, assigns a fresh task, call it task 2, to a set of comput-
ers, when an old task, call it task 1, is present. Let π ′ agree
with π starting at time 0 except that, whenever π assigns
task 2 to a computer (call such computers A-computers),
π ′ assigns task 1, until one of the computers with task 1
assigned to it under π ′ completes, at time τ say. The cor-
responding computer under π could be processing either
task 1 (case 1) or task 2 (case 2, if the computer is an A-
computer). Refer to Fig. 1 for a Gantt chart illustrating an
8-computer example, where the 4th, 5th and 6th computers
are A-computers, and where a bold line on the right of a
processing time block means that the corresponding com-
puter is the one that completed the corresponding task first.
(Other computers with the same task stop processing the
task at the same time.) Let the remaining processing times of
all tasks currently being processed at time 0 be the same for
both policies, and, whenever a task is assigned to a computer
under either policy between times 0 and τ , let the processing
time of the task on that computer be the same for both poli-
cies (regardless of whether the policies assign the same task;
recall that task processing times are stochastically identical).
Between times 0 and τ task 2 is not processed under π ′ by
construction, and neither task 1 nor task 2 completes under
either policy, by definition of τ . If the completing computer
at time τ also has task 1 assigned to it under π (case 1),
then there is a task 1 departure for both policies, all com-
puters except the A-computers will be in the same state for
both policies, and the A-computers will be available under
π ′ but not under π . Let π ′ assign task 2 to the A-computers,
and suppose their (new) processing times are coupled with
the remaining (used) processing times on these computers
under π so that they are smaller under π ′ (which we can
do because processing times are NWU). These processing
times are shown with dotted lines in Fig 1. Let π ′ other-

wise agree with π from time τ until either task 2 completes
on some computer other than an A-computer (case 1a), in
which case the two policies will be in the same state, or an
A-computer completes under π ′ (case 1b). In the latter case
π ′ has a task completion, but π does not. Let π ′ agree with
π except that it idles computers on which task 2 is assigned
under π , until task 2 completes under π , at time σ say. At
this point both policies are in the same state, and all depar-
tures are the same under both policies, except that task 2
departs earlier under π ′.

Note that π ′ must be able to observe the state under π

when an A-computer completes after time τ , so that it can
idle until task 2 completes under π . However, the remaining
time until task 2 completes is independent of all the other
random variables in the system operating under π , so π ′ is
still non-anticipative.

If the completing computer at time τ is an A-computer
(case 2), then both policies have a departure (task 1 under
π ′ and task 2 under π). Let us relabel the remaining task
under π so that it is called task 2 under both policies. Let
us also now call the computers that have task 2 assigned to
them under π (and are available under π ′) the A-computers.
The rest of the argument is then the same as in case 1. �

Theorem 3.2 If processing times are NWU and we start
with no old tasks, then the MRNI policy stochastically max-
imizes {Nt }∞t=0.

Proof From the lemma above we need only show that, when
there are no old tasks initially, and when fresh tasks are only
started when all old tasks are complete, it is never optimal
to idle. Let π be a policy that sometime idles but otherwise
never starts fresh tasks when an old task is present. That is,
π always has the same task on all computers until it com-
pletes. Let π ′ never idle and always assign the same task to

J Sched

all computers. Let Ti (T ′
i) be the time of the ith departure,

or task completion, under π (π ′), with T0 = T ′
0 = 0, and let

Yi,j =st X be the nominal processing time of task i on com-
puter j . Then

T ′
i = min

j

{
Cj

(
Yi,j , T

′
i−1, S(T ′

i−1)
)} =: min

j
V ′

ij ,

Ti = min
j

{
Cj

(
Yi,j , Ti−1 + δij , S(Ti−1 + δij)

)} =: min
j

Vij ,

where Vij would be the completion time of task i on com-
puter j if it were the only computer from time Ti−1 on, and
δij is the amount of time computer j idles before starting
the ith task under π , which could be a random variable.
(Recall that Cj(Y,u,S(u)) is the actual completion time
of a task with nominal processing time Y started at time
u on computer j , when the state of the system is S(u).)
Thus, we will have stochastically earlier departures under
π ′, by induction on i, if we can show, for any j and i ≥ 1,
that Vij ≤st V ′

ij , whenever T ′
i−1 ≤st Ti−1. Let us fix i and

j , couple T ′
i−1 ≤st Ti−1, and condition on their values so

that T ′
i−1 = t ′ ≤ Ti−1 = t . Let us also condition on the state

at time t ′ and the processes controlling the speed of all the
computers from t ′ on, so that the completion time of a task
started at time t ′ on j is an increasing deterministic function,
f , of its processing time, σ . Let us condition on δij = d , and
let σ0 be such that f (σ0) = d + t , i.e., it is the processing
time of a task that if started on computer j at time t ′ would
complete at time t + d . We also condition on Yi,j = y, for
both policies. If y ≤ σ , then V ′

i,j = f (y) ≤ f (σ0) = t + d ≤
Vi,j . Otherwise, V ′

i,j = f (y) ≤ f (σ0 + y) = Vi,j . There-
fore, T ′

i = minj V ′
ij ≤ minj Vi,j = Ti . �

Note that part of our proof does not depend on the dis-
tribution of processing times. In particular, we showed that
when the same task is always assigned to all computers then
there should be no unnecessary idling, for any task process-
ing time distribution, and the distribution may depend on the
task.

Now suppose that tasks have the same probability of suc-
cessful completion c, but c < 1, and we let N̂t be the num-
ber of successful task completions by time t ; Nt is still the
number of task completions, whether successful or not. As
in the last section, we consider both a loss model, in which
unsuccessfully completed tasks are lost, and a retrial model,
in which tasks can be started again after unsuccessful com-
pletions until they are successfully completed.

Corollary 3.3 If processing times are NWU and tasks have
a common probability of success c < 1, and we start with
no old tasks, then the MRNI policy stochastically maximizes
{N̂t }∞t=0, for both the loss and retrial models.

Proof The argument in the proof of Theorem 3.2 also shows
that MRNI stochastically maximizes {Nt }∞t=0 even when

c < 1, for both the loss and retrial models. Also, for both
models N̂t = ∑Nt

k=1 I(k), where I(k) ∼ Bernoulli(c) (i.i.d.)
is the indicator for successful completion of the kth task to
complete. Since success probabilities are the same for all
tasks, we have no preference for ordering tasks, and {N̂t }∞t=0
is stochastically maximized if {Nt }∞t=0 is stochastically max-
imized. �

Now suppose that tasks have different success probabil-
ities, ci , but they still have stochastically identical process-
ing times. Suppose there are K fresh tasks and no old tasks
initially. With nonidentical tasks we must now also assume
there are no arrivals.

Corollary 3.4 If processing times are NWU, and there is a
fixed set of fresh tasks with different ci ’s, and no arrivals
and no old tasks, then the policy that always assigns the un-
completed task with the largest ci to all computers and never
idles stochastically maximizes {N̂t }∞t=0, for both the loss and
retrial models.

Proof As observed in the last proof, we know that MRNI
stochastically maximizes {Nt }∞t=0, and N̂t = ∑Nt

k=1 I(k),
where I(k) ∼ Bernoulli(c(k)) (i.i.d.) is the indicator for
successful completion of the kth task to complete. Also,
because there are no arrivals, to stochastically maximize
{N̂t }∞t=0 we will want to stochastically maximize {Nt }∞t=0
(i.e., to follow the MRNI policy), so we need only deter-
mine the order in which to do the K fresh tasks. (If we had
arrivals then, if at some time we had only tasks with small
c’s present, we might want to idle and wait for a task with
a higher c.) A coupling and interchange argument along the
lines of the proof of Theorem 2.2 shows that the optimal
order is largest c first. �

If the tasks have different rewards, ci , rather than success
probabilities, the argument above for the loss model shows
that the c rule stochastically maximizes the cumulative re-
ward process, when we start with a fixed set of fresh tasks
and there are no arrivals.

3.3 Results for NBU processing times

Now we assume that X is NBU, so that the remaining
processing time of a task that has just been started is larger
than one that has been worked on for a while, and its coef-
ficient of variation is at most 1. We also assume that there
are only two stochastically identical computers, tasks are
stochastically identical, and, for simplicity, that there is no
environmental state. In this case task replication should be
minimized, when there are at least two tasks in the system.

Theorem 3.5 If processing times are NBU and there are
only two computers, to stochastically maximize {Nt }∞t=0,

J Sched

Fig. 2 Gantt chart for NBU processing times

fresh (different) tasks should be assigned to an available
computer whenever possible, there should be no idling when
at least two tasks are present, and the computers should
never both be idle, when any task is present.

Proof We first show that we should never idle both comput-
ers. Suppose some policy π does idle both computers when
some task, task 1 say, is present. Let δ be the time π first as-
signs a task, say task 1 without loss of generality, to a com-
puter; call it computer 1. Let π ′ process task 1 on computer
1 at time 0, and let it otherwise agree with π until task 1
completes under π ′. Suppose the processing time of task 1
on computer 1 under both policies is X, and condition on
X = x. Let all other processing times be the same for both
policies. Refer to Fig. 2. If task 1 is also processed on com-
puter 2 and completes before x for both policies (case 1),
then the states will be the same, and letting π ′ agree with
π thereafter, π and π ′ will have the same task completion
processes. Otherwise, task 1 will complete earlier under π ′
(at time x) than under π , and any task completions (of other
tasks) before time x on computer 2 will be the same for both
policies (case 2). Let γ ≤ δ + x (and γ > x) be the comple-
tion time of task 1 under π , and let π ′ idle computer 1 from
time x to time γ and, if γ < δ + x (so task 1 completes on
computer 2 at time γ under π), let π ′ also idle computer 2
from time x to time γ , and otherwise let π ′ agree with π ,
so all completions besides that of task 1 will be the same for
both policies. That is, {Nπ ′

t }∞t=0 ≥ {Nπ
t }∞t=0 with probabil-

ity 1. We can repeat this argument to show that never idling
both computers before time T is stochastically better than
idling them before T , for any arbitrarily large T .

Now suppose π assigns an old task, say task 2, to a com-
puter, say computer 1, when a fresh task is available (so
computer 2 is processing task 2). Let π ′ assign a fresh task,
call it task 1, to computer 1, and agree with π for com-
puter 2. Let X1 =st X be the processing time of the task
assigned to computer 1 under both policies (we can do this
because processing times have the same distribution for all

tasks), let R2 =st Xt be the remaining processing time of
the task on computer 2 under both policies, where t is the
amount of processing that task 2 has already received on
computer 2, and let γ = min(X1,R2) be the time of the first
task completion for both policies. Then under π task 2 com-
pletes at time γ and both computers are available, and under
π ′ one of tasks 1 and 2 completes while the other computer
may still be processing a task. Let us (possibly) relabel the
tasks and computers under π ′ so that we call task 2 the task
that completes at γ and task 1 the one that (may) still be
being processed on computer 1. Since both computers are
idle at time γ under π , from the argument above we may
assume that π will assign a task, call it task 1 without loss
of generality, to a computer, call it computer 1, at time γ . (It
may also assign a task to computer 2.) Let π ′ agree with π

for any assignments to computer 2.
Let X̂ =st X be the processing time of task 1 on com-

puter 1 under policy π , and let R̂ =st Xγ be the remaining
processing time of task 1 on computer 1 under policy π ′
and let them be coupled, so that R̂ ≤ X̂ with probability 1
(because X is NBU). Let γ2 ≤ γ + X̂ (γ ′

2 ≤ γ + R̂) be the
completion time of task 1 under policy π (π ′). (We could
have γ2 = γ ′

2 ≤ γ + R̂ if task 1 is also assigned to computer
2 under the two policies.) Let π ′ idle computer 1 from time
γ ′

2 to γ2, and let it otherwise agree with π . Then, at time γ2,
the states of the systems will be the same, and before that
time π ′ may have one extra departure. We will show next
that there is a policy that does not idle at time γ2, that is
better than π ′, and hence better than π .

Finally, suppose π idles computer 2, when there is a fresh
task, call it task 2, that is available, and suppose, because
we’ve already shown it is not optimal to idle both comput-
ers, that task 1 is being processed on computer 1. Let π ′
assign task 2 to computer 2. We’ve shown that it is optimal
to always assign fresh tasks when possible, so we can as-
sume, without loss of generality, that π will assign task 2 to
computer 2 when it finishes idling, at time δ say. Let x be the
processing time of task 2 on computer 2 under both policies.
Let γ ≤ δ + x be the time task 2 completes under π . (We
could have γ < δ + x if task 2 is processed on computer 1.)
Let π ′ agree with π for assignments to computer 1 up to
time γ , and let it idle computer 2 from time x to time γ if
x < γ . At time γ the states will be the same under the two
policies, so letting π ′ agree with π from then on, all task
completions will be the same under the two policies, except
that task 2 may complete earlier under π ′. Again we can re-
peat the argument to show that never idling, when a fresh
task is available, is better than a policy that does so idle. �

4 Conclusions

We have found that when processing times have high vari-
ability, in the sense that tasks that have been worked on for a

J Sched

while have longer remaining processing times than tasks that
have received no processing (and have coefficients of vari-
ation equal to 1 or larger), then it is optimal to process the
same task on as many computers as possible. This task repli-
cation allows us to take advantage of the chance of small
processing times, and it means that more computers will be
available when a task completes. It also has the advantage of
creating a FIFO (first-in first-out) ordering of tasks, which is
helpful in synchronizing large, complicated programs. An-
other advantage is that it is independent of the state of the
system, and, therefore, expensive monitoring and load bal-
ancing procedures may be avoided. Interesting open ques-
tions are conditions under which task replication is a good
idea, even when there are penalties for stopping unfinished
tasks, or when all copies of a task must be processed to com-
pletion.

Another research direction is to investigate good policies
when processing times are variable (e.g., they still have large
coefficients of variation), but are not necessarily NWU. It
is known that a Gittins’ index policy is optimal for a sin-
gle computer and general processing times with preemp-
tion, and that such a policy is approximately optimal with
parallel processors in heavy traffic. Future research may
provide good heuristics for replicating tasks using Gittins’
indices. We are also investigating good policies based on
specific processing time distributions. For example, data in-
dicates that a mixture of normal distributions may be a rea-
sonable approximation for processing times. In these cases
we expect policies that are intermediate between maximal
and minimal replication to be good; e.g., when there are 100

computers, replicate each task 5 times, as long as there are
at least 20 tasks.

Acknowledgements We are very grateful to the associate editor and
two referees for excellent comments that greatly improved the presen-
tation of our results. We also benefited from discussions with Menno
Dobber.

References

Asmussen, S., & Koole, G. (1993). Marked point processes as limits
of Markovian arrival streams. Journal of Applied Probability, 30,
365–372.

Borst, S., Boxma, O., Groote, J. F., & Mauw, S. (2003). Task allocation
in a multi-server system. Journal of Scheduling, 6, 423–436.

Cirne, W. (2002). MyGrid: a user-centric approach for grid computing.
Walfredo.dsc.ufcg.edu.br/talks/MyGrid.ppt.

Dobber, M., van der Mei, R., & Koole, G. (2006). Statistical proper-
ties of task running times in a global-scale grid environment. In
Proceedings of the 6th IEEE international symposium on cluster
computing and the grid (CCGrid 2006) (pp. 150–153).

Foster, L., & Kesselman, C. (Eds.). (1999). The grid: blueprint for a
new computing infrastructure. San Francisco: Kaufmann.

Liu, Z., & Righter, R. (1997). Optimal scheduling on parallel proces-
sors with precedence constraints and general costs. Probability in
the Engineering and Informational Sciences, 11, 79–93.

Müller, A., & Stoyan, D. (2002). Comparison methods for stochastic
models and risks. New York: Wiley.

Shaked, M., & Shanthikumar, J. G. (1994). Stochastic orders. New
York: Academic Press.

Weiss, G., & Pinedo, M. (1980). Scheduling tasks with exponential
service times on non-identical processors to minimize various cost
functions. Journal of Applied Probability, 17, 187–202.

	Resource allocation in grid computing
	Abstract
	Introduction
	Heterogeneous tasks with exponential processing times
	Identical tasks with generally distributed processing times
	NWU (NBU) preliminaries
	Results for NWU processing times
	Results for NBU processing times

	Conclusions
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

