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Background, literature review and mo-

tivation

The service sector lies at the heart of industrialized nations and
continues to serve as a major contributor to the world economy.
Over the years, the service industry has given rise to an enor-
mous amount of technological, scientific, and managerial chal-
lenges. Among all challenges, operational service quality, service
efficiency, and the tradeoffs between the two have always been at
the center of service managers’ attention and are likely to be so
more in the future. Queueing theory attempts to address these
challenges from a mathematical perspective. Every service station
of a queueing network is characterized by two major components:
the external arrival process and the service process. The external
arrival process governs the timing of service request arrivals to that
station from outside, and the service process concerns the duration
of service transactions in that station. These are then fused with a
routing process among stations to form the structure of the queue-
ing network. Since the arrival, service, and routing processes are
usually stochastic by nature, the study of service networks involves
probabilistic analysis, which is the subject of queueing theory.
Many distributed applications, such as voice data transmission,
remote computations, and database manipulations, information
integrity require that data exchanges between different nodes of a
system be performed in a specific order. Recently, multipath rout-
ing has received some attention in the context of both wired and
wireless communication networks. By sending data packets along
different paths, multipath routing can potentially help balance the
traffic load and reduce congestion levels in the network, thereby re-
sulting in lower sojourn time. Under multipath routing, since con-
secutive packets travel possibly along different paths from source
to destination, they can easily be received out-of-sequence at the
destination. If the application requires packets to be processed in
the order in which they were sent, then disordered packets have
to wait an additional amount of time, known as the resequencing
delay, before being consumed. Packet mis-ordering occurs in the
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following two transmission scenarios. In the first scenario, multi-
ple (or parallel) routes between the transmitter-receiver pair are
utilized to send data packets to increase the data transmission
rate. However, a packet transmitted along one route may experi-
ence a time delay that is different from that along another route.
Consequently, a packet that was sent by the transmitter earlier
than another may arrive at the receiver later, resulting in packet
mis-ordering at the receiver end. In the second scenario, packets
may be lost or erroneously received due to channel degradation,
congestion or any network hardware malfunction along a route,
in which case they have to be retransmitted for error-free data
transmissions via a retransmission scheme, such as the selective
repeat automatic repeat request protocol (SR-ARQ). Retransmis-
sion of corrupted or lost packets can cause packets to be received
out-of-order at the receiver as well. Note that the second scenario
happens when there is one single channel between the transmitter
and the receiver. In practice, many applications require that the
packets are received in the same order from which they were sent.
For such applications, the receiver has to buffer the mis-ordered
packets in a resequencing buffer, resequence them repeatedly, and
deliver them in the corrected order. This process is referred to as
packet resequencing. The resequencing issue in simultaneous pro-
cessing systems, where the order of customers (jobs, units, etc.)
upon arrival has to be preserved upon departure, is a crucial theme
in the queueing theory. Queueing-theoretic approach to resequenc-
ing problem implies that the system under consideration is rep-
resented as interconnected queueing systems/ networks. Various
analytical methods and models have been proposed to study the
impacts of resequencing. A general survey of queueing theoretic
methods and early models for the modeling and analysis of paral-
lel and distributed systems with resequencing can be found in [7].
Survey on the resequencing problem that covers period up to 1997
can be found in [8]. In [1] a continuous-time M/M/2 queueing sys-
tem, with two heterogeneous servers, a routing policy with variable
routing position, is analyzed with the objective of minimizing the
sum of the queueing delay and resequencing delay and of comput-
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ing the total expected end-to-end delay (including the resequenc-
ing delay). In [2] the effect of fixed delay on the optimal traffic split
is studied for a continuous-time system of two end nodes with two
parallel M/M/1, in order to minimize the total end to end delay
(including the resequencing delay) in a high speed environment.
In [3] a continuous-time 2-M/M/1 network is considered and the
asymptotic expression of the probability that there are n packets in
reordering buffer as n became large is computed, in order to avoid
a reduced data throughput caused by overflow of the resequencing
queue, a large enough buffer size of the resequencing queue has to
be configured. In [4] a distributed system consisting of two par-
allel heterogeneous single server M/M/1 queues is analyzed. It is
assumed that a total number of C different classes arrive at the
source node. The resequencing delay when C = 1 is evaluated,
and the result is then extended to the case of a single class with
interfering traffics (that is an additional stream of customers), and
in the case of two-class and multiple class systems. In [5] a M/M/2
system is considered, in which servers are parallel, heterogeneous
and exponential and the customers are released from the system
after service completion according to their arrival order. The cus-
tomers, which are delayed due to resequencing, have to wait in
a resequencing queue. The attention is limited to fixed-position
routing policies which route customers to server 1 only from the
head of queue Q, and to server 2 only from a fixed position J ,
J ≥ 2, where position J means the Jth customer among those in
server 1 and in queue Q. The existence of an optimal stationary
policy is shown: the faster service is kept active as long as the
service queue is not empty. In [6] a virtual circuit from node S
to node D connected by m links in parallel, whose arrival process
is general and the service times are exponentially distributed, is
investigated. An important property of a virtual circuit is that it
delivers packets at the destination in the same sequence as they
are received at the source. A packet arriving at S has to wait if all
links are busy. The distribution of the total delay for the G/M/m
queueing system model, the distribution of the resequencing delay
for the G/M/m queueing system model, the expectation of the
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resequencing delay for the G/M/m queueing system model, the
distribution of the total delay for the M/M/m, the M/HK/∞ and
the G/M/∞ queueing system model is obtained. The resequenc-
ing has also been studied in system in which the arrivals follow a
more complicated process: the Markovian arrival process (MAP).
In [9] a MAP/M/2/K queueing model in which messages should
leave the system in the order in which they entered into the sys-
tem is considered. In the case of infinite resequencing buffer, the
steady-state probability vector is shown to be of matrix-geometric
type. The total sojourn time of an admitted message into the sys-
tem is shown to be of phase type. Efficient algorithmic procedures
for computing various performance measures are given. In [10] a
two-server finite capacity queuing model in which messages should
leave the system in the order in which they entered the system, is
studied. Messages arrive according to a Markovian arrival process
and any message finding the buffer full is considered lost. Out-
of-sequence messages are stored in a (finite) buffer and may lead
to blocking when a processed message cannot be placed in the
buffer. Using matrix-analytic methods, the system is analyzed in
steady state. It is shown that the stationary waiting time distri-
butions of an admitted message in the queue and in the system
as well as the time spent in the service facility follow phase-type
distributions. The departure process is characterized as a Batch
Markovian Arrival Process. The system performance measures
such as system idle probability, server idle and server blocking
probabilities, throughput, mean number of messages in primary
and in resequencing buffers, rate of departure, average batch size
of departure are derived analytically. In [15] a model where the
disordering is caused by multipath routing is analyzed. Packets
are generated according to a Poisson process. Then, they arrive
at a disordering network (DN) modeled by two parallel M/M/1
queues, and are routed to each of the queues according to an inde-
pendent Bernoulli process. A resequencing buffer follows the DN.
In such a model, the packet resequencing delay is known. How-
ever, the size of the resequencing queue (RSQ) is unknown. The
probability for the large deviations of the queue size is analyzed.
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Other systems with resequencing have been studied in [16], [17],
[18], [20], [19].
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Purpose of the thesis

The main objective of this research is to find the stationary charac-
teristics of M/M/3/∞, M/M/∞/∞ and MAP/PH/2/∞ queueing
systems with reordering buffer of infinite capacity.
In the M/M/3/∞ customers in reordering buffer may form two
separate queues and focus is given to the study of their size dis-
tribution. These two queues are labeled as queue 1 and queue 2.
In queue 1 there are customers that are waiting for two customers
that are still in service, while in queue 2 there are customers that
are waiting for one customer that is still in service. Expressions
for joint stationary distribution are obtained both in explicit form
and in terms of generating functions. When the parameter of ser-
vice µ is equal to one and the parameter of arrival λ is between
0.1 and 2.5, numerical examples are given for the mean number of
customers in reordering buffer (RB) (queue 1 and queue 2), for the
variance of number of customers in RB (queue 1 and queue 2), the
coefficient of correlation between queue 1 and queue 2, between
queue 1 and RB, between queue 2 and RB.
In the M/M/∞/∞ we propose a new problem statement for sys-
tems with resequencing that are modeled by multiserver queues
followed with infinite resequencing buffer. Focus is given to the
study of joint stationary distribution of the total number of cus-
tomers in queue and total number of customers in reordering
buffer. Using developed analytical methods there was obtained
the system of equilibrium equations which allows recursive com-
putation of joint stationary distribution of the total number of
customers in buffer and servers and total number of customers in
RB.
In MAP/PH/2/∞ we have a queueing system with 2 servers, in
which the capacity of the collecting buffer and the reordering buffer
is infinite. The type distribution of both two servers is ”the phase
distribution” (PH), while the arrivals follow Markovian arrival pro-
cess. We introduce a recurrent algorithm to calculate the simul-
taneous stationary distribution of the number of the requests at
servers, in the collecting buffer and in the reordering buffer. The
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stationary distribution of the arrival time in the system and in the
reordering buffer are calculated with the Laplace-Stieltjes trans-
form.





Chapter 1

About queueing system

For an accurate description of a queueing system, we need to pro-
vide its following basic elements:

1. The input process. It refers to the arrivals to the system. It
describes the distribution and dependencies of the interar-
rival times. The most common input process is the Poisson
process.

2. The service mechanism. The basic characteristics of the ser-
vice mechanism include the number of parallel servers, their
identity (homogeneous or heterogeneous, their service speed
etc.) and the distribution and dependencies of the service
times.

3. The system capacity. It concerns the number of customers
that can wait at any given time in a queueing system.

4. The queueing discipline. It is the rule followed by the server(s)
for choosing customers for service. The most common queue
disciplines are the “first-come, first-served” (FCFS), the “last-
come, first-served” (LCFS), and the “service in random or-
der” (SIRO). There are many other queueing disciplines which
have been introduced for the efficient operation of computers
and communication systems.
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Figure 1.1 A queueing system.

The basic classification-notation that is currently used in queueing
theory was introduced by Kendall. According to Kendall’s nota-
tion, a queue is described by a sequence of five letter combina-
tions - numbers A/B/s/c ( ): input process/service times/number
of servers/capacity (discipline). For instance, M is used for expo-
nential (memoryless-Markovian), D for constant (deterministic),
Ek for Erlang-k, G or GI for general (independent) interarrival-
service times, MAP (Markovian arrival process) and PH phase
distibution in the positions A and B of Kendall’s notation. In
the context of a queueing system there are several processes that
concern customers in system:

1. Queue Length Process {N(t)}: N(t) denotes the number of
customers in system at time t, t > 0.

2. The Sojourn Time Process is the time from the customer’s
arrival till his departure.

3. The Waiting Time is the time from customer’s arrival till
the beginning of service.

Under certain conditions a stochastic process may settle down
to what is commonly called steady state or state of equilibrium,
in which its distribution properties are time-independent. In this
work of thesis we have studied three different systems in steady
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state condition: M/M/3/∞, M/M/N/∞ and MAP/PH/2/∞. The
arrival and the service processes presented in the first two chapters
are well known and are often used in literature. More attention
should be paid to the third queueing system in which the arrival
process is Markovian and the service process follows a PH distribu-
tion. In order to better understand the last system, we introduce
these two types of process [14].
First we describe the Markovian arrival process (MAP): let ν(t) be
the number of customers arriving over the time interval [0, t) and
τ1, τ2, ...,be the instants of their arrivals. We assume that there
also exists a Markov process {ξ(t), t ≥ 0} defined on the finite
state set I = {1, 2, ..., l}. We assume that η(t) = (ξ(t), ν(t)).
The process state set {η(t), t ≥ 0} is representable as ∪∞

k=0Ik
where Ik = {(i, k), i = 1, ..., l}, k ≥ 0. Therefore, the process
{η(t), t ≥ 0} is in the state (i, k), i = 1, ..., l, k ≥ 0, if k customers
arrived at the instant t and the process {ξ(t), t ≥ 0} at time t is
in the state i. The customer flow {τj, j ≥ 1} will be said to be the
Markov flow (relative to the process {ξ(t), t ≥ 0}) if the random
process {η(t), t ≥ 0} is a homogeneous Markov process and its
matrix A of transition intensities is of the block form

A =


Λ N 0 0 . .
0 Λ N 0 . .
0 0 Λ N . .
. . . . . .
. . . . . .
. . . . . .


where Λ and N are square matrices of the order l. We note that

Λ+N is the matrix of transition intensities of the Markov process
{ξ(t), t ≥ 0}. Obviously, for j ̸= m the elements Λjm of the matrix
Λ define the transition intensities of the process {η(t), t ≥ 0} which
are not related with customer arrivals, and the elementsNjm of the
matrix N are the transition intensities accompanied by arrivals of
customers. Understandably, if l = 1,Λ11 = −λ and N11 = λ, then
we get the ordinary Poisson flow. It is known that if {ξ(t), t ≥ 0}
is a stationary Markov process, then the Markov flow generated
by the process {η(t), t ≥ 0} is stationary.
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The PH-distribution can describe both the recurrent arrival
flow and the customer service times, in our case, we will discuss
the phase-type service time. The idea of fictitious phases belongs
to A.K. Erlang who used them to Markovize the Erlang distri-
bution. We present a brief description of the main notions for
the PH-distributions. The distribution function F (x) of a non-
negative random variable is called the phase-type distribution or
PH-distribution if it is representable as F (x) = 1− f⃗T e−Gx1⃗, x > 0

where f⃗ is the m-dimensional vector for which
∑m

j=1 fj ≤ 1,
fj ≥ 0, j = 1, ...,m and G is m×m matrix for which

∑m
j=1Gij ≤

0;Gij ≥ 0, i ̸= j;Gij < 0, i, j = 1, ...,m, and at least for one i,∑m
j=1Gij < 0. The pair (f⃗ , G) is called the PH-representation of

the order m of the distribution function F (x). The distribution
function of the PH type admits probabilistic interpretation based
on the concept of phase. Let ν1, ..., νm be some real numbers,
νi ≥ −Gii, i = 1, ...,m, the numbers θij, i, j = 1, ...,m, obey the
formula

θij =

{
1 + Gii

νi
, if i = j;

Gii

νi
, if i ̸= j.

Then
∑m

j=1 θij ≤ 1, θij ≥ 0, i, j = 1, ...,m. Let us consider now
an open queueing network consisting of m nodes where at most
one customer sojourns at each time instant, that is, the arriving
flow is blocked if there is a customer in the network. The arriving
customer is sent to the node i, i = 1, ...,m, with probability fi
and with the complementary probability f0 = 1−

∑m
j=1 fj imme-

diately departs from the network by passing all nodes. The time
of customer service in the node i is distributed exponentially with
the parameter νi. Upon leaving the node i, the customer trav-
els to the node j, j = 1, ...,m, with probability θij and with the
complementary probability θi0 = 1 −

∑m
j=1 θij departs from the

network.



Chapter 2

Three-server queueing
system with poisson input
and exponential service
times

2.1 Problem statement

We consider the M/M/3/∞ queueing system (QS) with three
servers, infinite capacity buffer, incoming Poisson flow of cus-
tomers (of intensity λ) and exponential distribution of service time
at each server (with parameter µ) and resequencing buffer (RB)
of infinite capacity. Customer in reordering buffer may form two
separate queues. The most convenient way to explain how queues
are separated in resequencing buffer is giving an example. Con-
sider a queueing system with three servers, infinite capacity main
buffer and reordering buffer. Let the state of the system at some
instant be as depicted in Fig. 1. In squares one can see customers’
sequential numbers. White (black) squares in Fig. 1 mean that
customers with these sequential numbers have received (have not
yet received) service. Here one can distinguish two queues: one
which is formed by customers awaiting customer n. 18 (queue #1),
another is formed by customers awaiting customer n. 15 (queue
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2. Three-server queueing system with poisson input and

exponential service times

#2). Three cases need to be considered.

1. If customer n. 21 is next to complete its service then it joins
queue 1 and stays there until service of customer n. 18 is
complete. Customer n. 22 joins idle server.

2. If customer n. 15 is next to complete its service then it
goes through queue 1 without waiting and joins queue 2.
Meanwhile customer n. 22 joins idle server. As there is no
customer in the system with sequential number smaller than
any sequential number in queue 2, then all customers from
queue 2 leave the system. Resequencing buffer “sees”, that
queue 2 is empty and moves its contents to queue 2. Now
there are three options.

(a) if customer n. 18 is next to complete service, then it
goes through queue 1 without waiting and joins queue
2. Customer n. 23 joins idle server. Again there is no
customer in the system with sequential number smaller
than any sequential number in queue 2. Thus all cus-
tomers from queue 2 leave the system. Resequencing
buffer becomes empty. Now if customer n. 21 is next
to complete service, it leaves the system. If customer
n. 22 is next to complete service, it goes through queue
1 without waiting and joins queue 2 where it waits for
customer n. 21. Finally, if customer n. 23 is next to
complete service, it joins queue 1 and does not proceed
to queue 1 because it needs customer n. 22 to complete
its service before both of them may join queue 2.

(b) if customer n. 21 is next to complete service, then
it goes through queue 1 again without waiting, joins
queue 2 and waits there with other customers for ser-
vice completion of customer n. 18.

(c) if customer n. 22 is next to complete service, then cus-
tomer n. 23 joins idle server, customer n. 22 joins
queue 1 and stops there because “sees” gap between



2.1. Problem statement 15

its sequential number and largest sequential number in
queue 2. It waits there for customer n. 21.

3. If customer n. 18 is the first to complete its service then it
joins queue 1 and customer n. 22 joins idle server. Rese-
quencing buffer “sees”, that there is no gap in the middle of
sequence and moves the content of queue 1 to queue 2 (queue
1 becomes empty). Now there are again three options.

(a) if customer n. 15 is next to complete service, then it
goes through queue 1 without waiting, joins queue 2
and immediately (because the sequence is complete)
leaves the system with all other customers of queue 2.

(b) if customer n. 21 is next to complete service, then it
goes through queue 1 again without waiting, joins other
customers in queue 2 that wait for service completion
of customer n. 15.

(c) if customer n. 22 is next to complete service, then it
joins queue 1 and stops there, because “sees” gap be-
tween its sequential number and the largest sequence
number in queue 2. The operation of the system pro-
ceeds along the line.

Figure 2.1 Scheme of the model.

Clearly, when the number of server is n there are (n-1) queues
in resequencing buffer. The sum of customers in these (n-1) is the
total number of customers in resequencing buffer.
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exponential service times

The main contribution of this research are algorithm and proba-
bility generating function of joint stationary probabilities of the
number of customers in buffer, queue 1 and queue 2.
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2.2 Model description and notation

Customers upon entering the system obtain sequential number
and join buffer. Without loss of generality we suppose that the
sequence starts from 1 and coincides with the row of natural num-
bers, i.e. the first customer upon entering the (empty) system re-
ceives number 1, the second one number 2 and so on and so forth.
Customers leave the system strictly in order of their arrival (i.e.
in the sequence order). Thus after customer’s arrival it remains in
the buffer for some time and then receives service when one of the
servers becomes idle. If at the moment of its service completion
there are no customers in the system or all other customers present
at that moment in the queue and the rest two servers have greater
sequential numbers, it leaves the system. Otherwise it occupies
one place in the RB.
Customer from RB leaves it if and only if its sequential number
is less than sequential numbers of all other customers present in
system. Thus customers may leave RB in groups.
Let us call “1st level” customer the one which is in service and
was the last to enter server; “2nd level” customer is the one which
is in service and was the penultimate to enter server; finally, “3rd

level” customer is the one which is in service and was the first to
enter server. If the number of busy servers is 3, then customers
that entered RB between “1st level” and “2nd level” customer form
queue #1; customers which entered RB between “2nd level” and
“3rd level” customer form queue #2. If the number of busy servers
is 2, then customers which entered RB after “1st level” customer
form queue #1; customers which entered RB between “1st level”
and “2nd level” customer form queue #2. When there is only one
busy server all customers in RB form queue #2.
The operation of the considered queueing system can be com-
pletely described by a Markov process ζ(t) = {(ξ(t), η(t), υ(t)), t ≥
0} with three components: ξ(t) - number of customers in buffer
and server at time t, η(t) - number of customers in queue #1 of RB
at time t, υ(t) - number of customers in queue #2 of RB at time t.
In case ξ(t) = 0, the second and third component of ζ(t) are omit-
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exponential service times

ted; in case ξ(t) = 1, the second is omitted. The state space of ζ(t)
is χ = {0} ∪ {(1, i), i ≥ 0} ∪ {(n, i, j), n ≥ 2, i ≥ 0, j ≥ 0}. Hence-
forth it is assumed that service and arrival processes are mutually
independent and necessary and sufficient condition of stationarity
ρ
3
< 1, where ρ = λ

µ
, holds for the system.

Note that the total number of customers in servers and buffer
of the considered QS with resequencing coincides with the total
number of customers in M/M/3/∞ queue. Therefore, its station-
ary distribution {pi, i ≥ 0}, has the form:

p0 =

(
2∑

i=0

ρi

i!
+

ρ3

2!(3− ρ)

)−1

, (2.2.1)

pi =
ρi

i!
p0, i = 1, 2, 3, (2.2.2)

pi =
ρi

3!3i−3
p0 = ρ̃i−3p3, ρ̃ =

ρ

3
, i ≥ 4. (2.2.3)

Provided that RB is empty when servers are idle, p0 is also
the probability, of the considered system with resequencing, to be
empty.
Lets denote by pn;i,j, n ≥ 3, i ≥ 0, j ≥ 0, stationary probability
of the fact that there are n customers in servers and buffer, i
customers in queue #1 of RB, j customers in queue #2 of RB.
By pn;i, n ≥ 3, i ≥ 0, denote stationary probability of the fact
that there are n customers in servers and buffer and i customers
in queue #1 of RB. Clearly pn;i =

∑
j≥0 pn;i,j. Probabilities p2;i,j,

i ≥ 0, j ≥ 0 and p2;i,, i ≥ 0, are defined by analogy. Finally, let p1;i,
i ≥ 0, be stationary probability of the fact that there is only one
busy server and i customers reside in queue #2 of RB. Note that
distribution pn, n ≥ 0, of the total number of customers in servers
and buffer (which is defined by 2.2.1-2.2.3) can be expressed as
follows:

p1 =
∑
i≥0

p1;i, pn =
∑
i≥0

∑
j≥0

pn;i,j, n ≥ 2.
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2.3 The equilibrium state distribution

The system of equilibrium equations is composed by the following
12 equations:

(λ+ 3µ) pn;0 = λpn−1;0 + 2µpn+1, n ≥ 3 (2.3.4)

(λ+ 3µ) pn;i = λpn−1;i + µpn+1;i−1, n ≥ 3, i ≥ 1 (2.3.5)

(λ+ 2µ) p2;0 = λp1 + 2µp3, (2.3.6)

(λ+ 2µ) p2;i = µp3;i−1, i ≥ 1 (2.3.7)

(λ+ µ) p1;0 = λp0 + µp2;0, (2.3.8)

(λ+ µ) p1;i = µp2;i + µ

i−1∑
j=0

p2;i−j−1,j, i ≥ 1 (2.3.9)

(λ+ 3µ) pn;0,0 = λpn−1;0,0 + µpn+1;0, n ≥ 3 (2.3.10)

(λ+ 3µ) pn;0,j = λpn−1;0,j+µpn+1;j+µ

j−1∑
k=0

pn+1;k,j−k−1, n ≥ 3, j ≥ 1

(2.3.11)
(λ+ 3µ) pn;i,j = λpn−1;i,j + µpn+1;i−1,j, n ≥ 3, i ≥ 1, j ≥ 0

(2.3.12)
(λ+ 2µ) p2;0,0 = λp1;0 + µp3;0, (2.3.13)

(λ+ 2µ) p2;0,j = λp1;j + µp3;j + µ

j−1∑
k=0

p3;k,j−k−1, j ≥ 1 (2.3.14)

(λ+ 2µ) p2;i,j = µp3;i−1,j, i ≥ 1, j ≥ 0. (2.3.15)

Now we describe them considering the transition diagram:

• (λ+ 3µ) pn;0 = λpn−1;0 + 2µpn+1, n ≥ 3. Analyze the
state (n; 0) and the rate in and the rate out of this state.
State (n; 0) means that there are 3 busy servers, n customers
between buffer and service, 0 customers in queue 1 and we
don’t know how many customers there are in queue 2. Rate
out of this state is λ + 3µ because system can exit it either
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through arrival or through service. System can enter this
state either: 1) by an arrival if all servers are busy, there are
n− 1 customers between buffer and service and there are no
customers in queue 1, 2) by service if all servers are busy,
there are n+ 1 customers in buffer and servers, and the 2nd

or the 3th level customer could be served. Equating rate-in
and rate-out we get equation (2.3.4).

• (λ+ 3µ) pn;i = λpn−1;i + µpn+1;i−1, n ≥ 3, i ≥ 1. Analyze
the state (n; i) and the rate in and the rate out of this state.
State (n; i) means that there are 3 busy servers, n customers
between buffer and service, i customers in queue 1 and we
don’t know how many customers there are in queue 2. Rate
out of this state is λ + 3µ because system can exit it either
through arrival or through service. System can enter this
state either: 1) by an arrival if all servers are busy, there
are n − 1 customers between buffer and service and there
are i customers in queue 1, 2) by service if all servers are
busy, there are n + 1 customers in buffer and servers, i − 1
customers in queue 1, and the 1st level customer is served.
Equating rate-in and rate-out we get equation (2.3.5).

• (λ+ 2µ) p2;0 = λp1 + 2µp3. Analyze the state (2; 0) and the
rate in and the rate out of this state. State (2; 0) means
that there are 2 busy servers, 0 customers in queue 1 and
we don’t know how many customers there are in queue 2.
Rate out of this state is λ + 2µ because system can exit it
either through arrival or through service. System can enter
this state either: 1) by an arrival if only one server is busy,
2) by service if all servers are busy, there are 3 customers in
service, and the 2nd or the 3th level customer could be served.
Equating rate-in and rate-out we get equation (2.3.6).

• (λ+ 2µ) p2;i = µp3;i−1, i ≥ 1. Analyze the state (2; i) and
the rate in and the rate out of this state. State (2; i) means
that there are 2 busy servers, i customers in queue 1 and
we don’t know how many customers there are in queue 2.
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Rate out of this state is λ + 2µ because system can exit it
either through arrival or through service. System can enter
this state: by service if all servers are busy, there are i − 1
customers in queue 1, and the 1st level customer is served.
Equating rate-in and rate-out we get equation (2.3.7).

• (λ+ µ) p1;0 = λp0 + µp2;0 . Analyze the state (1; 0) and the
rate in and the rate out of this state. State (1; 0) means
that there is 1 busy server, 0 customers in queue 1 and we
don’t know how many customers there are in queue 2. Rate
out of this state is λ + µ because system can exit it either
through arrival or through service. System can enter this
state either: 1) by an arrival if servers are idle, 2) by service
if 2 servers are busy, and the 3th level customer is served.
Equating rate-in and rate-out we get equation (2.3.8).

• (λ+ µ) p1;i = µp2;i + µ
i−1∑
j=0

p2;i−j−1,j, i ≥ 1. Analyze the

state (1; i) and the rate in and the rate out of this state.
State (1; i) means that there is 1 busy server, i customers in
queue 1 and we don’t know how many customers there are
in queue 2. Rate out of this state is λ + µ because system
can exit it either through arrival or through service. System
can enter this state either: 1) by service if 2 servers are busy,
there are i customers in queue 1 and the 3th level customer is
served, 2) by service if 2 servers are busy, there are i− j− 1
customers in queue 1 and j customers in queue 2, and the
2nd level customer is served. Equating rate-in and rate-out
we get equation (2.3.9).

• (λ+ 3µ) pn;0,0 = λpn−1;0,0 + µpn+1;0, n ≥ 3. Analyze the
state (n; 0, 0) and the rate in and the rate out of this state.
State (n; 0, 0) means that there are 3 busy servers, 0 cus-
tomers in queue 1 and 0 customers in queue 2. Rate out of
this state is λ+3µ because system can exit it either through
arrival or through service. System can enter this state ei-
ther: 1) by an arrival if 3 servers are busy, there are n − 1
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customers between buffer and servers, 0 customers in queue
1, 0 customers in queue 2, 2) by service if 3 servers are busy,
there are n + 1 customers between buffer and service and 0
customers in queue 1, and the 3th level customer is served.
Equating rate-in and rate-out we get equation (2.3.10).

• (λ+ 3µ) pn;0,j = λpn−1;0,j +µpn+1;j +µ
j−1∑
k=0

pn+1;k,j−k−1, n ≥

3, j ≥ 1. Analyze the state (n; 0, j) and the rate in and the
rate out of this state. State (n; 0, j) means that there are
3 busy servers, 0 customers in queue 1 and j customers in
queue 2. Rate out of this state is λ+3µ because system can
exit it either through arrival or through service. System can
enter this state: 1) by an arrival if 3 servers are busy, there
are n− 1 customers between buffer and servers, 0 customers
in queue 1, j customers in queue 2, 2) by service if 3 servers
are busy, there are n+1 customers between buffer and service
and j customers in queue 1, and the 3th level customer is
served, 3) by service if 3 servers are busy, there are n + 1
customers between buffer and service, k customers in queue
1 and j − k − 1 customers in queue 2, and the 2nd level
customer is served. Equating rate-in and rate-out we get
equation (2.3.11).

• (λ+ 3µ) pn;i,j = λpn−1;i,j + µpn+1;i−1,j, n ≥ 3, i ≥ 1, j ≥ 0.
Analyze the state (n; i, j) and the rate in and the rate out of
this state. State (n; i, j) means that there are 3 busy servers,
i customers in queue 1 and j customers in queue 2. Rate
out of this state is λ + 3µ because system can exit it either
through arrival or through service. System can enter this
state either: 1) by an arrival if 3 servers are busy, there are
n − 1 customers between buffer and servers, i customers in
queue 1, j customers in queue 2, 2) by service if 3 servers are
busy, there are n+ 1 customers between buffer and service,
i− 1 customers in queue 1, j customers in queue 2 and the
1st level customer is served. Equating rate-in and rate-out
we get equation (2.3.12).
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• (λ+ 2µ) p2;0,0 = λp1;0 + µp3;0. Analyze the state (2; 0, 0)
and the rate in and the rate out of this state. State (2; 0, 0)
means that there are 2 busy servers, 0 customers in queue 1
and 0 customers in queue 2. Rate out of this state is λ+2µ
because system can exit it either through arrival or through
service. System can enter this state either: 1) by an arrival
if 1 server is busy, there are no customers between buffer
and servers, 2) by service if 3 servers are busy, there are no
customers in queue 1, and the 3th level customer is served.
Equating rate-in and rate-out we get equation (2.3.13).

• (λ+ 2µ) p2;0,j = λp1;j + µp3;j + µ
j−1∑
k=0

p3;k,j−k−1, j ≥ 1. An-

alyze the state (2; 0, j) and the rate in and the rate out of
this state. State (2; 0, j) means that there are 2 busy servers,
0 customers in queue 1 and j customers in queue 2. Rate
out of this state is λ + 2µ because system can exit it either
through arrival or through service. System can enter this
state either: 1) by an arrival if 1 server is busy, there are
j customers in queue 1, 2) by service if 3 servers are busy,
there are j customers in queue 1, and the 3th level customer
is served, 3) by service if 3 servers are busy, there are k cus-
tomers in queue 1 and j−k−1 customers in queue 2, and the
2nd level customer is served. Equating rate-in and rate-out
we get equation (2.3.14).

• (λ+ 2µ) p2;i,j = µp3;i−1,j, i ≥ 1, j ≥ 0. Analyze the state
(2; i, j) and the rate in and the rate out of this state. State
(2; i, j) means that there are 2 busy servers, i customers in
queue 1 and j customers in queue 2. Rate out of this state
is λ + 2µ because system can exit it either through arrival
or through service. System can enter this state either: 1) by
service if all servers are busy, there are i − 1 customers in
queue 1, j customers in queue 2 and the 1st level customer
is served. Equating rate-in and rate-out we get equation
(2.3.15).
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The analysis of steady-state equations resulted in the develop-
ment of simple algorithm for step-by-step computation of station-
ary joint probabilities pn;i,j, n ≥ 2, i ≥ 0, j ≥ 0 and pn;i, n ≥ 1, i ≥
0.
The algorithm is the following:

Inizialize λ, µ;
for n ≥ 0 do:

calculate pn from equation (2.2.1), (2.2.2), (2.2.3);
end for
calculate p2;0 from equation (2.3.6);
for n ≥ 3 do:

calculate pn;0 from equation (2.3.4);
end for
for i ≥ 1 do:

calculate p2;i from equation (2.3.7);
for n ≥ 3 do:

calculate pn;i from equation (2.3.5);

end for
end for
calculate p1;0 from equation (2.3.8);
calculate p2;0,0 from equation (2.3.13);
for n ≥ 3 do:

calculate pn;0,0 from equation (2.3.10);
end for
for i ≥ 1 do:

calculate p2;i,0 from equation (2.3.15);
for n ≥ 3 do:

calculate pn;i,0 from equation (2.3.12);
end for

end for
for i ≥ 2 do:

calculate p1;i from equation (2.3.9);
calculate p2;0,i from equation (2.3.14);
for n ≥ 3 do:

calculate pn;0,i from equation (2.3.11);
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end for
for j ≥ 1 do:

calculate p2;j,i from equation (2.3.15);
for m ≥ 3 do:

calculate pm;i,j from equation (2.3.12);

end for
end for

end for

For practical purposes it may be sometimes sufficient to know
either only πn;i n ≥ 1, i ≥ 0 - stationary probabilities of the fact
that total number of customers in servers and in buffer is n and
total number of customers in RB (sum of queue #1 and queue
#2) is i, or only πi, i ≥ 0 - stationary probabilities of the fact
that there are n customers in total in the whole system (including
buffer, servers, RB). These quantities can be calculated from joint
probability distribution as follows:

π1;i = p1;i, i ≥ 0, π2;i =
i∑

j=0

p2;j,i−j, i ≥ 0,

πn;i =
i∑

j=0

pn;j,i−j, n ≥ 3, i ≥ 0,

π0 = p0, π1 = π1;0, π2 = π1;1 + π2;0,

πi = π1;i−1 + π2;i−2 +
i∑

j=3

πj;i−j, i ≥ 3.
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2.4 Probability generating functions

Though the calculation of probabilities pn;i,j, n ≥ 2, i ≥ 0, j ≥
0 and pn;i, n ≥ 1, j ≥ 0 is just a matter of computational effort
due to obtained above algorithm, performance characteristics (e.g.
moments and/or correlation of queue lengths in RB) are not so
straightforward to obtain. Below we show that in the considered
case one can obtain expressions for probability generating func-
tions (PGF) that ease the computation of various performance
characteristics. Let us introduce the following PGF:

pn(z) =
∞∑
i=0

zipn;i, 0 ≤ z ≤ 1, n ≥ 1,

pn(z1, z2) =
∞∑

i1=0

∞∑
i2=0

zi11 z
i2
2 pn;i1,i2 , 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1, n ≥ 2,

P (u, z) =
∞∑
n=3

un−3pn(z), 0 ≤ u ≤ 1,

P (u, z1, z2) =
∞∑
n=3

un−3pn(z1, z2), 0 ≤ u ≤ 1.

If one puts z1 = z2 = z in P (u, z1, z2), then function P (u, z, z) is
the double PGF of the total number of customers in buffer and
servers and total number of customers in RB when all three servers
are busy. By analogy pn(z, z), n ≥ 2, is the PGF of the total num-
ber of customers: total number of customers in RB and probability
of total n customers in servers and buffer. In the following we will

make use of PGF P (u) =
∞∑
n=3

un−3pn, |u| ≤ 1 which, with respect

to (2.2.1)-(2.2.3), equals P (u) = p3
1−ρ̃u

.

Now we will successively obtain relations for PGF defined above.
Start with the following equations:

(λ+ 3µ)pn;0 = λpn−1;0 + 2µpn+1, n ≥ 3, (2.4.16)
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pn;i(λ+ 3µ) = pn−1;iλ+ pn+1;i−1µ, n ≥ 3, i ≥ 1. (2.4.17)

We multiply for zi and sum on i only the equation (4.3.1) because
of the equation (2.4.16) does not depend on i :

∞∑
i=1

zipn;i(λ+3µ) =
∞∑
i=1

zipn−1;iλ+
∞∑
i=1

zipn+1;i−1µ n ≥ 3, i ≥ 1

from which we obtain:

(λ+3µ) [pn(z)− pn;0] = λ [pn−1(z)− pn−1;0]+µzpn+1(z) (2.4.18)

Here we sum (2.4.16) with (4.3.5) in order to find pn(z) :

pn(z) =
1

λ+ 3µ
[2µpn+1 + λpn−1(z) + µzpn+1(z)] n ≥ 3

(2.4.19)
Then we analize the following equations:

p2;0(λ+ 2µ) = p1λ+ p32µ (2.4.20)

p2;i(λ+ 2µ) = p3;i−1µ i ≥ 1 (2.4.21)

Multiplying for zi and summing on i only the equation (2.4.21),
because of the equation (2.4.20) does not depend on i, we obtain:

∞∑
i=1

zip2;i(λ+ 2µ) =
∞∑
i=1

zip3;i−1µ i ≥ 1

(λ+ 2µ)

[
∞∑
i=0

zip2;i − p2;0

]
= µz

∞∑
t=0

ztp3;t

(λ+ 2µ) [p2(z)− p2;0] = µzp3(z) (2.4.22)

Now we sum (2.4.20) with (2.4.22) in order to find p2(z) :

p2(z) =
1

λ+ 2µ
[λp1 + 2µp3 + µzp3(z)] (2.4.23)

We analize the following equations:

p1;0(λ+ µ) = p0λ+ p2;0λ (2.4.24)
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p1;i(λ+ µ) = p2;iµ+
i−1∑
j=0

p2;i−j−1,jµ i ≥ 1 (2.4.25)

We multiply for zi and sum on i only the equation (2.4.25) because
of the equation (2.4.24) does not depend on i :

∞∑
i=1

zip1;i(λ+ µ) =
∞∑
i=1

zip2;iµ+
∞∑
i=1

zi
i−1∑
j=0

p2;i−j−1,jµ i ≥ 1

(λ+µ)

[
∞∑
i=0

zip1;i − p1;0

]
= µ

[
∞∑
i=0

zip2;i − p2;0

]
+

∞∑
i=1

zi
i−1∑
j=0

p2;i−j−1,jµ

(λ+ µ) [p1(z)− p1;0] = µ [p2(z)− p2;0] +
∞∑
i=1

i−1∑
j=0

zip2;i−j−1,jµ

(2.4.26)
In order to find p1(z) we sum (2.4.24) with (2.4.26):

p1(z) =
1

λ+ µ

[
p0λ+ µp2(z) + µz

∞∑
t=0

t∑
j=0

ztp2;t−j,j

]
(2.4.27)

and we observe that for t− j = k:

∞∑
k+j=0

k+j∑
j=0

zk+jp2;k,j =
∞∑

k+j=0

∞∑
j=0

zk+jp2;k,j = p2(z, z)

so

p1(z) =
1

λ+ µ
[p0λ+ µp2(z) + µzp2(z, z)] (2.4.28)

The next step is to analize the following equations:

pn;0,0(λ+ 3µ) = pn−1;0,0λ+ pn+1;0 n ≥ 3 (2.4.29)

pn;0,j(λ+3µ) = pn−1;0,jλ+pn+1;jµ+

j−1∑
k=0

pn+1;k,j−k−1µ n ≥ 3, j ≥ 1

(2.4.30)
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pn;i,j(λ+ 3µ) = pn−1;i,jλ+ pn+1;i−1,jµ n ≥ 3, i ≥ 1, j ≥ 0
(2.4.31)

We multiply for zj2 and sum on j the equation (2.4.30), then we
multiply for zi1 and z

j
2 and sum on i and on j the equation (2.4.31),

while the equation (2.4.29) does depend neither on i or on j :

∞∑
j=1

zj2pn;0,j(λ+ 3µ) =
∞∑
j=1

zj2pn−1;0,jλ+
∞∑
j=1

zj2pn+1;jµ+

+
∞∑
j=1

zj2

j−1∑
k=0

pn+1;k,j−k−1µ n ≥ 3, j ≥ 1

and after manipulations:

(λ+ 3µ)

[
∞∑
j=0

zj2pn;0,j − pn;0,0

]
= λ

[
∞∑
j=0

zj2pn−1;0,j − pn−1;0,0

]
+

(2.4.32)

+µ [pn+1(z2)− pn+1;0] + µz2

[
∞∑
t=0

t∑
k=0

zt2pn+1;k,t−k

]
Here we study the equation (2.4.31):

∞∑
j=0

zj2

∞∑
i=1

zi1pn;i,j(λ+ 3µ) =
∞∑
j=0

zj2

∞∑
i=1

zi1pn−1;i,jλ+

+
∞∑
j=0

zj2

∞∑
i=1

zi1pn+1;i−1,jµ n ≥ 3, i ≥ 1, j ≥ 0

introducing the term for i = 0 and after appropriate manipula-
tions, we find:

(λ+3µ)

[
pn(z1, z2)−

∞∑
j=0

zj2pn;0,j

]
= λ

[
pn−1(z1, z2)−

∞∑
j=0

zj2pn−1;0,j

]
+

(2.4.33)

+µz1pn+1(z1, z2)
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In order to find pn(z1, z2) we sum (2.4.29), (2.4.32) and (2.4.33):

pn;0,0(λ+ 3µ) + (λ+ 3µ)

[
∞∑
j=0

zj2pn;0,j − pn;0,0

]
+ (λ+ 3µ)

[
pn(z1, z2)−

∞∑
j=0

zj2pn;0,j

]
= pn−1;0,0λ+ pn+1;0+

+λ

[
∞∑
j=0

zj2pn−1;0,j − pn−1;0,0

]
+ µ [pn+1(z2)− pn+1;0] +

+µz2

[
∞∑
t=0

t∑
k=0

zt2pn+1;k,t−k

]
+ λ

[
pn−1(z1, z2)−

∞∑
j=0

zj2pn−1;0,j

]
+

+µz1pn+1(z1, z2)

observing that t = k + s we obtain:

∞∑
k+s=0

∞∑
k=0

zk+s
2 pn+1;k,s = p2(z2, z2)

so

pn(z1, z2) =
1

(λ+ 3µ)
[µpn+1(z2) + z2µp2(z2, z2)+

+λpn−1(z1, z2) + µz1pn+1(z1, z2)]

Here we analize the following equations:

p2;0,0(λ+ 2µ) = p1;0λ+ p3;0µ (2.4.34)

p2;0,j(λ+ 2µ) = p1;j + p3;jµ+

j−1∑
k=0

p3;k,j−k−1µ j ≥ 1 (2.4.35)
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p2;i,j(λ+ 2µ) = p3;i−1,jµ i ≥ 1, j ≥ 0 (2.4.36)

Now we multiply for zj2 and sum on j the equation (2.4.35), then
we multiply for zi1 and zj2 and sum on i and on j the equation
(2.4.36), while the equation (2.4.34) does depend neither on i or
on j :

∞∑
j=1

zj2p2;0,j(λ+2µ) = λ

∞∑
j=1

zj2p1;j+
∞∑
j=1

zj2p3;jµ+
∞∑
j=1

zj2

j−1∑
k=0

p3;k,j−k−1µ

j ≥ 1

(λ+2µ)

[
∞∑
j=0

zj2p2;0,j − p2;0,0

]
= λp1(z2)−λp1;0+µ [p3(z2)− p3;0] +

(2.4.37)

+µz
∞∑
t=0

zt2

t∑
k=0

p3;k,t−k

∞∑
j=0

zj2

∞∑
i=1

zi1p2;i,j(λ+ 2µ) =
∞∑
j=0

zj2

∞∑
i=1

zi1p3;i−1,jµ i ≥ 1, j ≥ 0

as in the previous case, we introduce the term for i = 0 and after
appropriate substitutions we find:

(λ+ 2µ)

[
p2(z1, z2)−

∞∑
j=0

zj2p2;0,j

]
= µz1p3(z1, z2) (2.4.38)

In the next step we sum (2.4.34), (2.4.37) and (2.4.38) in order to
find p2(z1, z2):

p2;0,0(λ+ 2µ) + (λ+ 2µ)

[
∞∑
j=0

zj2p2;0,j − p2;0,0

]
+ (λ+ 2µ)

[
p2(z1, z2)−

∞∑
j=0

zj2p2;0,j

]
= p1;0λ+ p3;0µ+ λp1(z2)− λp1;0+
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+µ [p3(z2)− p3;0] + µz
∞∑
t=0

zt2

t∑
k=0

p3;k,t−k + µz1p3(z1, z2)

we observe that for t = a+ k we get:

∞∑
a+k=0

za+k
2

∞∑
k=0

p3;k,a = p3(z2, z2)

so

p2(z1, z2) =
1

λ+ 2µ
[λp1(z2) + µp3(z2) + µz2p3(z2, z2)+ (2.4.39)

+µz1p3(z1, z2)]

We find P (u, z) :

∞∑
n=3

un−3(λ+3µ)pn(z) =
∞∑
n=3

un−3 [2µpn+1 + λpn−1(z) + µzpn+1(z)]

(λ+ 3µ)
∞∑
n=3

un−3pn(z) =
∞∑
n=3

[
un−32µpn+1 + un−3λpn−1(z)+

+un−3µzpn+1(z)
]
(λ+ 3µ)P (u, z) =

∞∑
n=3

un−32µpn+1+

+
∞∑
n=3

un−3λpn−1(z) +
∞∑
n=3

un−3µzpn+1(z)

Thanks to the notations introduced at the beginning of this chap-
ter, we can write a better expression using P (u), P (u, z) :

(λ+ 3µ)P (u, z) =
2µ

u

[
∞∑
n=3

un−3pn − p3

]
+ λ

∞∑
n=3

un−3pn−1(z)+

+µz
∞∑
n=3

un−3pn+1(z)
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(λ+ 3µ)P (u, z) =
2µ

u
[P (u)− p3] + λ

∞∑
n=3

un−3pn−1(z)+

+µz
∞∑
n=3

un−3pn+1(z)

(λ+ 3µ)P (u, z) =
2µ

u
[P (u)− p3] + λ

[
u

∞∑
n=3

un−3pn(z) + p2(z)

]
+

+µz
∞∑
n=3

un−3pn+1(z)

(λ+ 3µ)P (u, z) =
2µ

u
[P (u)− p3] + λ [uP (u, z) + p2(z)] +

+µ
z

u

[
∞∑
n=3

un−3pn(z)− p3(z)

]

(λ+ 3µ)P (u, z) =
2µ

u
[P (u)− p3] + λ [uP (u, z) + p2(z)] +

+µ
z

u
[P (u, z)− p3(z)]

u(λ+ 3µ)P (u, z) = 2µ [P (u)− p3] + λu2P (u, z)+

λup2(z) + µzP (u, z)− µzp3(z)

Finally we obtain:

P (u, z) =
µzp3(z)− λµp2(z)− 2µ [P (u)− p3]

λu2 + µz − u(λ+ 3µ)
(2.4.40)

The next step is to find P (u, z1, z2) :

(λ+ 3µ)
∞∑
n=3

un−3pn(z1, z2) =
∞∑
n=3

un−3 [µpn+1(z2)+

+z2µpn+1(z2, z2) + λpn−1(z1, z2) + µz1pn+1(z1, z2)]

(λ+3µ)P (u, z1, z2) = λ

∞∑
n=3

un−3pn−1(z1, z2)+
∞∑
n=3

un−3µpn+1(z2)+
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+
∞∑
n=3

un−3µz2pn+1(z2, z2) +
∞∑
n=3

un−3µz1pn+1(z1, z2)

(λ+ 3µ)P (u, z1, z2) = λ

[
u

∞∑
n=3

un−3pn(z1, z2) + p2(z1, z2)

]
+

+
µ

u

[
∞∑
n=3

un−3pn(z2)− p3(z2)

]
+
µ

u
z2

[
∞∑
n=3

un−3pn(z2, z2)− p3(z2, z2)

]
+

+
µ

u
z1

[
∞∑
n=3

un−3pn(z1, z2)− p3(z1, z2)

]

(λ+ 3µ)P (u, z1, z2) = λ [uP (u, z1, z2) + p2(z1, z2)] +
µ

u
[P (u, z2) +

−p3(z2)]+
µ

u
z2 [P (u, z2, z2)− p3(z2, z2)]+

µ

u
z1 [P (u, z1, z2)− p3(z1, z2)]

P (u, z1, z2) =
1

λu2 + µz1 − (λ+ 3µ)u
[−λup2(z1, z2)+ (2.4.41)

−µ [P (u, z2)− p3(z2)]− µz2 [P (u, z2, z2)− p3(z2, z2)] + µz1p3(z1, z2)]

Assuming z1 = z2 = z we find P (u, z, z) and p2(z, z) :

P (u, z, z) =
1

λu2 + 2µz − (λ+ 3µ)u
[−λup2(z, z)+ (2.4.42)

−µ [P (u, z)− p3(z)] + 2µzp3(z, z)]

p2(z, z) =
1

(λ+ 2µ)
[λp1(z) + µp3(z) + 2µzp3(z, z)] (2.4.43)

In order to find solution of the denominator P (u, z, z) we consider:

fm(u, z) = λu2 +mµz − (λ+ 3µ)u m = 1, 2

and study:

fm(u, z) = 0 ⇒ λu2 +mµz − (λ+ 3µ)u = 0



2.4. Probability generating functions 35

from which

um =
λ+ 3µ−

√
(λ+ 3µ)2 − 4mλµz

2λ

and

ûm =
λ+ 3µ+

√
(λ+ 3µ)2 − 4mλµz

2λ
=
λ+ 3µ

λ
− um

If z = 0 :

um =
λ+ 3µ−

√
(λ+ 3µ)2

2λ
= 0

If z = 1 :

ûm =
λ+ 3µ+

√
(λ+ 3µ)2 − 4mλµ

2λ
= 1

Now we rewrite P (u, z) and P (u, z, z) :

P (u, z) =
µzp3(z)− λµp2(z)− 2µ [P (u)− p3]

f1(u, z)
(2.4.44)

P (u, z, z) =
1

f2(u, z)
[−λup2(z, z)− (2.4.45)

µ [P (u, z)− p3(z)] + 2µzp3(z, z)]

Denominator in (2.4.44) and (2.4.45) is zero at points (u1, z) =
(u1(z), z) and (u2, z) = (u2(z), z). Since PGF P (u, z, z) is analytic
function in the domain 0 ≤ z ≤ 1 then numerator must be zero at
these points too. This leads to the following equations:

µzp3(z)− λu1p2(z)− 2µ [P (u1)− p3] = 0 (2.4.46)

2µzp3(z, z)− λu2p2(z, z)− µ [P (u2, z)− p3(z)] = 0 (2.4.47)

Firstly we find PGF P (u, z). Solution of equations (2.4.23) and
(2.4.46): {

(λ+ 2µ)p2(z)− µzp3(z) = λp1 + 2µp3
µzp3(z)− λu1p2(z) = 2µ [P (u1)− p3]
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{
(λ+ 2µ)p2(z)− [2µ [P (u1)− p3] + λu1p2(z)] = λp1 + 2µp3
p3(z) =

1
µz

[2µ [P (u1)− p3] + λu1p2(z)]{
p2(z) =

1
2µ+λ−λu1

[λp1 − 2µP (u1)]

p3(z) =
1
µz

[2µ [P (u1)− p3] + λu1p2(z)]

Now we substitute p2(z) and p3(z) in P (u, z):

P (u, z) =
1

f1(u, z)

[
µz

1

µz
[λu1p2(z) + 2µ [P (u1)− p3]] +

− (λµ)
λp1 + 2µP (u1)

λ− λu1 + 2µ
− 2µ [P (u)− p3]

]
=

1

f1(u, z)

[
λu1p2(z) + 2µ [P (u1)− p3]− (λµ)

λp1 + 2µP (u1)

λ− λu1 + 2µ
+

−2µ [P (u)− p3]]

=
1

(u− u1) (u− û1)

[
λu1

λp1 + 2µP (u1)

λ− λu1 + 2µ
+ 2µ [P (u1)− P (u)] +

−λuλp1 + 2µP (u1)

λ− λu1 + 2µ

]
=

1

(u− u1) (u− û1)

[
p2(z)(λu1 − λu) + 2µ

(
p3

1− ρ̃u1
− p3

1− ρ̃u

)]
=

1

(u− u1) (u− û1)
[p2(z)(λu1 − λu)+

+2µ

(
p4

ρ̃(1− ρ̃u1)
− p4
ρ̃(1− ρ̃u)

)]
=

1

(u− u1) (u− û1)

[
λp2(z)(u1 − u) + 2µ

p4ρ̃(u1 − u)

ρ̃(1− ρ̃u)(1− ρ̃u1)

]
substitute p2(z):

=
1

(u− û1)

[
−λp2(z)−

2µp4
(1− ρ̃u)(1− ρ̃u1)

]

=
1

(u− û1)

[
−λλp1 + 2µP (u1)

λ− λu1 + 2µ
− 2µp4

(1− ρ̃u)(1− ρ̃u1)

]
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substitute P (u1):

=
1

(u− û1)

[
−λ

λp1 + 2µ p3
1−ρ̃u1

λ− λu1 + 2µ
− 2µp4

(1− ρ̃u)(1− ρ̃u1)

]

=
λ

(û1 − u) (1− ρ̃u1)

[
[λ+ 2µ]p2;0 − λp1ρ̃u1

(λ− λu1 + 2µ)
+

2µp4
(1− ρ̃u)

]
(2.4.48)

Now we find the expression for P (u, z, z). Solving system of equa-
tions (2.4.28), (2.4.43) and (2.4.47), one obtains the following ex-
pression for PGFs p1(z), p2(z, z) and p3(z, z):

p1(z) =
1

λ+ µ
[λp0 + µp2(z) + µzp2(z, z)]

p3(z, z) =
1

2µz
[λu2p2(z, z) + µ [P (u2, z)− p3(z)]]

p2(z, z) =
1

λ− λu2 + 2µ− λµz
λ+µ

[
1

λ+ µ
[λp0 + µp2(z)] + µP (u2, z)

]
If one substitutes expression for p1(z), p2(z, z) and p3(z, z) into
(2.4.45) then, after collecting the common terms, one finds P (u, z, z).
The last PGF to find is P (u, z1, z2). Denominator in (2.4.41) is
zero at point (u1(z1), z1). Since PGF P (u, z1, z2) is an analytic
function in the domain 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1 then numerator
must vanish at this point. Hence it holds:

−λu1(z1)p2(z1, z2)− µ [P (u1(z1), z2)− p3(z2)] + (2.4.49)

−µz2 [P (u1(z1), z2, z2)− p3(z2, z2)] + µz1p3(z1, z2) = 0.

From relation (2.4.39) it follows that:

µz1p3(z1, z2) = (λ+2µ)p2(z1, z2)−λp1(z2)−µp3(z2)−µz2p3(z2, z2).

Substitution of µz1p3(z1, z2) into (2.4.49), leads to the expression
for p2(z1, z2):

p2(z1, z2) =
1

[λ+ 2µ− λu1(z1)]
[λp1(z2) + µP (u1(z1), z2)+
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+µz2P (u1(z1), z2, z2)]

Thus we have obtained all the unknown quantities in PGF
P (u1, z1, z2) and it is determined completely.
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2.5 Numerical results

There are several quantities related to the number of customers in
the system that may be of interest. They are mean and variance
of the number of customers in queue 1 and queue 2, correlation
between queue size in buffer and queue 1, between queue size in
buffer and queue 2 and between queue 1 and queue 2. These quan-
tities are calculated considering λ = 2.5, µ = 1 and n = 100. In
the Figure 2.2 the upper, the middle and the lower line represents
respectively the mean number of customers in RB, queue 2 of RB
and queue 1 of RB:

Figure 2.2 Mean number of customers.

We observe that the mean number of customers in RB is the
sum of the mean number of customers in queue 1 of RB and queue
2 in RB. In the Figure 2.3 the upper, the middle and the lower line
represents respectively the variance of the number of customers in
RB, queue 2 of RB and queue 1 of RB.

We observe that the variance of the number of customers in
RB is almost the sum of the variance of the number of customers
in queue 1 of RB and queue 2 of RB, and this is strange because it
is well known that V ar(X+Y ) = V ar(X)+V ar(Y )+Cov(X, Y ),
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Figure 2.3 Variance of the number of customers.

where X is the number of customers in queue 1 of RB and Y is
the number of customers in queue 2 of RB, so the Cov(X, Y ) ∼ 0.
In fact if we observe the Figure 2.4 where the upper, the middle
and the lower line represents respectively the correlation between
buffer and queue 1 of RB, between buffer and queue 2 of RB,
between queue 1 and queue 2 of RB, we notice that the correla-
tion between queue 1 and queue 2 of RB is almost equal to zero,
so the number of customers in queue 1 of RB and the number
of customers in queue 2 of RB are almost uncorrelated, so the
V ar(X + Y ) is almost equal to V ar(X) + V ar(Y ).
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Figure 2.4 Coefficients of correlation.





Chapter 3

N-server queueing system
with poisson input and
exponential service times

3.1 Problem statement

We consider a queueing system with 3 < N < ∞ servers, infinite
capacity buffer, incoming Poisson flow of customers (of intensity
λ), exponential distribution of service time in each server (with
parameter µ) and resequencing buffer (RB) of infinite capacity.
Customers upon entering the system obtain sequential number
and join buffer. Without loss of generality we suppose that the
sequence starts from 1 and coincides with the row of natural num-
bers, i.e. the first customer upon entering the (empty) system re-
ceives number 1, the second one number 2 and so on and so forth.
Customers leave the system strictly in order of their arrival. Thus
after customer’s arrival it remains in the buffer for some time and
then receives service when one of the servers becomes idle. If at
the moment of its service completion there are no customers in
the system or all other customers present at that moment in the
queue and in all other servers have greater sequential numbers,
it leaves the system. Otherwise it occupies one place in the RB.
Customer from RB leaves it if and only if its sequential number
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is less than sequential number of all other customers present in
system i.e. customers may leave RB in groups.
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3.2 Model description and notation

As it was mentioned in the previous section customers awaiting in
RB may form separate (virtual) queues. In order to explain this
let us introduce the following notation. If there are n, n = 1, .., N
busy servers, we call “1st level” customer the last one (among those
n in servers) which joined the system; we call “2nd level” customer
the penultimate customer which joined the system (among those
n in servers); “3rd level” customer is the one which joined the
system before the penultimate customer etc. The customer which
was the first (among those n in servers) to join the system is
“nthlevel” customer. If at some instant all servers are busy i.e.
n = N , then customers which joined RB between “1st level” and
“2nd level” customer form queue 1; customers which joined RB
between “2nd level” and “3rd level” customer form queue 2 etc.
Clearly, customers which joined RB between “(n− 1)th level” and
“nth level” customer form queue (N-1). Notice that if at some
instant n < N , then customers which joined RB after “1st level”
customer form queue 1; customers which joined RB between “1st

level” and “2nd level” customer form queue 2 etc. The operation
of the considered queueing system can be completely described
by Markov process ζ(t) = {(ξ(t), η1(t), η2(t), ..., ηN−1(t)), t ≥ 0}
where ξ(t) is the number of customers in buffer and all servers at
time t, ηi(t) is the number of customers in queue #i of RB at time
t. In case ξ(t) = 0, the all but first component of ζ(t) are omitted;
in case ξ(t) = n, n = 1, ..., N − 2, the last N − 1− n components
are omitted. The state space of ζ(t) is:

χ = {0} ∪ {(1, i1), i1 ≥ 0} ∪ {(2, i1, i2), i1 ≥ 0, i2 ≥ 0} ∪ ...

∪{(2, i1, i2, ..., iN−1), n ≥ N − 1, i1, i2, ..., iN−1 ≥ 0}.
It is assumed that service and arrival processes are mutually in-
dependent and necessary and sufficient condition of stationarity
ρ̃ = ρ

N
< 1, where ρ = λ

µ
holds for the system. Indeed one can

notice that the total number of customers in buffer and servers of
the considered QS with resequencing coincides with the total num-
ber of customers in M/M/∞/∞ queue. Therefore, its stationary
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distribution {pn, n ≥ 0}, has the form:

pn =
ρn

n!
p0, n = 1, ..., N, (3.2.1)

pn =
ρn

N !Nn−N
p0, n ≥ N + 1, (3.2.2)

p0 =

(
N−1∑
n=0

ρn

n!
+

ρN

(N − 1)!(N − ρ)

)−1

. (3.2.3)

Provided that RB is empty when servers are idle, p0 is also the
probability of the considered system with resequencing to be empty.
If n ≥ N let us denote by p

(m)
n;i , m = 1, ..., N − 1, i ≥ 0, stationary

probability of the fact that there are total n customers in servers
and buffer and total number of customers in first m queues in RB
equals i i.e.

p
(m)
n;i = lim

t→∞
P {ξ(t) = n, η1(t) + ...+ ηm(t) = i} ,

n = 1, ..., N − 1,m = 1, ..., n, i ≥ 0.

By p
(m)
n;i , m = 1, ..., n, i ≥ 0 we denote similar stationary probabil-

ity when n = 1, ..., N − 1 i.e.

p
(m)
n;i = lim

t→∞
P {ξ(t) = n, η1(t) + ...+ ηm(t) = i} ,

n ≥ N,m = 1, ..., N − 1, i ≥ 0.

Note that joint stationary distribution {pn;i, n ≥ 1, i ≥ 0} of total
number of customers in buffer and servers and total number of
customers in RB equals

pn;i = p
(n)
n;i , n = 1, ..., N − 1, i ≥ 0,

pn;i = p
(N−1)
n;i , n ≥ N, i ≥ 0.

Moreover distribution {pn, n ≥ 0} of the total number of customers
in servers and buffer (already defined by 3.2.1, 3.2.2, 3.2.3) can be
expressed through probabilities pn;i as follows

pn =
∑
i≥0

pn;i, n = 1, ..., N − 2, pn =
∑
i≥0

pn;i, n ≥ N − 1.
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3.3 The equilibrium state distribution

In order to compute joint stationary distribution an algorithm was
developed, which led to recursive procedure for computation of all
probabilities p

(m)
n;i . For probabilities p

(1)
n;i, n ≥ N , i ≥ 0, it holds:

p
(1)
n;0(λ+Nµ) = p

(1)
n−1;0λ+ pn+1(N − 1)µ, n ≥ N, (3.3.4)

p
(1)
n;i(λ+Nµ) = p

(1)
n−1;iλ+ p

(1)
n+1;i−1µ, n ≥ N, i ≥ 1. (3.3.5)

Probabilities p
(1)
N−1;i, i ≥ 0, satisfy the following system of equa-

tions:

p
(1)
N−1;0[λ+ (N − 1)µ] = pN−2λ+ pN(N − 1)µ, (3.3.6)

p
(1)
N−1;i[λ+ (N − 1)µ] = p

(1)
N ;i−1µ, i ≥ 1. (3.3.7)

Probabilities p
(1)
n;i, n = 1, N − 2, i ≥ 0, are expressed as follows:

p
(1)
n;0(λ+ nµ) = pn−1λ+ p

(1)
n+1;0nµ, n = 1, N − 2, (3.3.8)

p
(1)
n;i(λ+nµ) = p

(1)
n+1;inµ+p

(2)
n+1;i−1µ, n = 1, N − 2, i ≥ 1. (3.3.9)

Other probabilities p
(m)
n;i , m = 2, N − 1, are computed from the

following relations:

p
(m)
n;0 (λ+Nµ) = p

(m)
n−1;0λ+ p

(m−1)
n+1;0 (N −m)µ, n ≥ N, (3.3.10)

p
(m)
n;i (λ+Nµ) = p

(m)
n−1;iλ+ p

(m−1)
n+1;i (N −m)µ+ p

(m)
n+1;i−1mµ, n ≥ N,

(3.3.11)
i ≥ 1,

p
(m)
N−1;0[λ+ (N − 1)µ] = p

(m−1)
N−2;0λ+ p

(m−1)
N ;0 (N −m)µ, (3.3.12)

p
(m)
N−1;i[λ+(N−1)µ] = p

(m−1)
N−2;iλ+p

(m−1)
N ;i (N−m)µ+p

(m)
N ;i−1mµ, i ≥ 1,

(3.3.13)

p
(m)
n;0 (λ+ nµ) = p

(m−1)
n−1;0 λ+ p

(m)
n+1;0(n−m+ 1)µ, n = m,N − 2,

(3.3.14)
m ̸= N − 1,
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p
(m)
n;i (λ+nµ) = p

(m−1)
n−1;i λ+p

(m)
n+1;i(n−m+1)µ+p

(m+1)
n+1;i−1mµ, (3.3.15)

n = m,N − 2,m ̸= N − 1, i ≥ 1.

Now we describe them.
For probabilities p

(1)
n;i, n ≥ N , i ≥ 0, it holds:

• p
(1)
n;0(λ + Nµ) = p

(1)
n−1;0λ + (N − 1)pn+1µ, n ≥ N . Analyze

the state (n; 0) and the rate in and the rate out of this state.
State (n; 0) means that there are n customers between buffer
and service, 0 customers in queue 1 and we don’t know how
many customers there are in the other queues. Rate out of
this state is λ+Nµ because system can exit it either through
arrival or through service. System can enter this state either:
1) by an arrival, there are n−1 customers between buffer and
service and there are no customers in queue 1, 2) by service
if all servers are busy, there are n + 1 customers in buffer
and servers. Equating rate-in and rate-out we get equation
(3.3.4).

• p
(1)
n;i(λ+Nµ) = p

(1)
n−1;iλ+ p

(1)
n+1;i−1µ, n ≥ N, i ≥ 1. Analyze

the state (n; i) and the rate in and the rate out of this state.
State (n; i) means that there are n customers between buffer
and service, i customers in queue 1 and we don’t know how
many customers there are in the other queues. Rate out of
this state is λ+Nµ because system can exit it either through
arrival or through service. System can enter this state either:
1) by an arrival, there are n−1 customers between buffer and
service and there are i customers in queue 1, 2) by service if
all servers are busy, there are n+ 1 customers in buffer and
servers, and i− 1 customers in queue. Equating rate-in and
rate-out we get equation (3.3.5).

Probabilities p
(1)
N−1;i, i ≥ 0, satisfy the following system of

equations:

• p
(1)
N−1;0[λ + (N − 1)µ] = pN−2λ + pN(N − 1)µ, i ≥ 0. An-
alyze the state (N − 1; 0) and the rate in and the rate out
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of this state. State (N − 1; 0) means that there are N − 1
customers between buffer and service, 0 customers in queue
1 and we don’t know how many customers there are in the
other queues. Rate out of this state is λ+(N − 1)µ because
system can exit it either through arrival or through service.
System can enter this state either: 1) by an arrival, there
are N − 2 customers between buffer and service, 2) by ser-
vice if all servers are busy, there are N customers in buffer
and servers. Equating rate-in and rate-out we get equation
(3.3.6).

• p
(1)
N−1;i[λ + (N − 1)µ] = p

(1)
N ;i−1µ, i ≥ 1. Analyze the state

(N−1; i) and the rate in and the rate out of this state. State
(N − 1; i) means that there are N − 1 customers between
buffer and service, i customers in queue 1 and we don’t know
how many customers there are in the other queues. Rate
out of this state is λ+ (N − 1)µ because system can exit it
either through arrival or through service. System can enter
this state: 1) by service if all servers are busy, there are N
customers in buffer and servers. Equating rate-in and rate-
out we get equation (3.3.7) .

Probabilities p
(1)
n;i, n = 1, N − 2, i ≥ 0, are expressed as

follows:

• p
(1)
n;0(λ + nµ) = pn−1λ + p

(1)
n+1;0nµ, n = 1, N − 2. Analyze

the state (n; 0) and the rate in and the rate out of this state.
State (n; 0) means that there are n customers between buffer
and service, 0 customers in queue 1 and we don’t know how
many customers there are in the other queues. Rate out of
this state is λ+nµ because system can exit it either through
arrival or through service. System can enter this state either:
1) by an arrival, there are n − 1 customers between buffer
and service, 2) by service, there are n+1 customers in buffer
and servers, 0 customers in queue 1. Equating rate-in and
rate-out we get equation (3.3.8).
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• p
(1)
n;i(λ + nµ) = p

(1)
n+1;inµ + p

(2)
n+1;i−1µ, n = 1, N − 2, i ≥ 1.

Analyze the state (n; i) and the rate in and the rate out of
this state. State (n; i) means that there are n customers be-
tween buffer and service, i customers in queue 1 and we don’t
know how many customers there are in the other queues.
Rate out of this state is λ + nµ because system can exit it
either through arrival or through service. System can enter
this state either: 1) by service, there are n + 1 customers
in buffer and servers, i customers in queue 1, 2) by service,
there are n+1 customers in buffer and servers, i−1 customers
in queue 1 and queue 2. Equating rate-in and rate-out we
get equation (3.3.9).

Other probabilities p
(m)
n;i , m = 2, N − 1, are computed from

the following relations:

• p
(m)
n;0 (λ+Nµ) = p

(m)
n−1;0λ+p

(m−1)
n+1;0 (N−m)µ, n ≥ N : suppose

system is in state n; 0. It means that there are n customers
between buffer and service, 0 customers in the firstm queues
and we don’t know how many customers there are in the
other queues. Rate out of this state is λ+Nµ because system
can exit it either through arrival or through service. Now,
system can enter this state either: 1) by an arrival, there are
n − 1 customers between buffer and service, 0 customers in
the first m queues 2) by service if all servers are busy, there
are n + 1 customers in buffer and servers, 0 customers in
the first m− 1 queues. Equating rate-in and rate-out we get
equation (3.3.10).

• p
(m)
n;i (λ+Nµ) = p

(m)
n−1;iλ+p

(m−1)
n+1;i (N−m)µ+p

(m)
n+1;i−1mµ, n ≥

N, i ≥ 1 : suppose system is in state n; i. It means that
there are n customers between buffer and service, i customers
in the firstm queues and we don’t know how many customers
there are in the other queues. Rate out of this state is λ+Nµ
because system can exit it either through arrival or through
service. Now, system can enter this state: 1) by an arrival,



3.3. The equilibrium state distribution 51

there are n− 1 customers between buffer and service, i cus-
tomers in the first m queues 2) by service if all servers are
busy, there are n+ 1 customers in buffer and servers, i cus-
tomers in the first m − 1 queues, 3) by service if all servers
are busy, there are n + 1 customers in buffer and servers,
i− 1 customers in the first m queues. Equating rate-in and
rate-out we get equation (3.3.11).

• p
(m)
N−1;0[λ+ (N − 1)µ] = p

(m−1)
N−2;0λ+ p

(m−1)
N ;0 (N −m)µ : suppose

system is in state N − 1; 0. It means that there are N − 1
customers between buffer and service, 0 customers in the first
m queues and we don’t know how many customers there are
in the other queues. Rate out of this state is λ + (N − 1)µ
because system can exit it either through arrival or through
service. Now, system can enter this state either: 1) by an
arrival, there are N−2 customers between buffer and service,
0 customers in the first m − 1 queues 2) by service if all
servers are busy, there are N customers in buffer and servers,
0 customers in the first m− 1 queues. Equating rate-in and
rate-out we get equation (3.3.12).

• p
(m)
N−1;i[λ+(N−1)µ] = p

(m−1)
N−2;iλ+p

(m−1)
N ;i (N−m)µ+p

(m)
N ;i−1mµ, i ≥

1 : suppose system is in state N − 1; i. It means that there
are N −1 customers between buffer and service, i customers
in the first m queues and we don’t know how many cus-
tomers there are in the other queues. Rate out of this state
is λ + (N − 1)µ because system can exit it either through
arrival or through service. Now, system can enter this state:
1) by an arrival, there are N − 2 customers between buffer
and service, i customers in the first m− 1 queues 2) by ser-
vice if all servers are busy, there are N customers in buffer
and servers, i customers in the first m− 1 queues, 3) by ser-
vice if all servers are busy, there are N customers in buffer
and servers, i− 1 customers in the first m queues. Equating
rate-in and rate-out we get equation (3.3.13).

• p
(m)
n;0 (λ+nµ) = p

(m−1)
n−1;0 λ+p

(m)
n+1;0(n−m+1)µ, n = m,N − 2,m ̸=
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N − 1 : suppose system is in state n; 0. It means that there
are n customers between buffer and service, 0 customers in
the first m queues and we don’t know how many customers
there are in the other queues. Rate out of this state is λ+nµ
because system can exit it either through arrival or through
service. Now, system can enter this state either: 1) by an
arrival, there are n − 1 customers between buffer and ser-
vice, 0 customers in the first m − 1 queues 2) by service,
there are n+ 1 customers in buffer and servers, 0 customers
in the first m queues. Equating rate-in and rate-out we get
equation (3.3.14).

• p
(m)
n;i (λ+nµ) = p

(m−1)
n−1;i λ+p

(m)
n+1;i(n−m+1)µ+p

(m+1)
n+1;i−1mµ, n =

m,N − 2,m ̸= N − 1, i ≥ 1 : suppose system is in state
n; i. It means that there are n customers between buffer and
service, i customers in the first m queues and we don’t know
how many customers there are in the other queues. Rate
out of this state is λ+ nµ because system can exit it either
through arrival or through service. Now, system can enter
this state: 1) by an arrival, there are n−1 customers between
buffer and service, i customers in the first m − 1 queues 2)
by service, there are n+1 customers in buffer and servers, i
customers in the first m queues, 3) by service, there are n+1
customers in buffer and servers, i− 1 customers in the first
m+1 queues. Equating rate-in and rate-out we get equation
(3.3.15).
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3.4 Probability generating functions and

numerical results

The analysis of steady-state equations resulted in the development
of simple recursive algorithm for step-by-step computation of p

(m)
n;i .

The pseudo-code of the algorithm is the following:

Initialize N, λ, µ;
Calculate p0
for 1 ≤ n ≤ N do

Calculate pn from ρn

n!
p0

end for
for n ≥ N + 1 do

Calculate pn from ρn

N !Nn−N p0
end for
Calculate p

(1)
N−1;0 from

p
(1)
N−1;0[λ+ (N − 1)µ] = pN−2λ+ pN(N − 1)µ,

for n ≥ N do
Calculate p

(1)
n;0 from

p
(1)
n;0(λ+Nµ) = p

(1)
n−1;0λ+ pn+1(N − 1)µ,

end for

for i ≥ 1 do
Calculate p

(1)
N−1;i from

p
(1)
N−1;i[λ+ (N − 1)µ] = p

(1)
N ;i−1µ,

for n ≥ N do
Calculate p

(1)
n;i from

p
(1)
n;i(λ+Nµ) = p

(1)
n−1;iλ+ p

(1)
n+1;i−1µ,

end for
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end for
for n = N − 2 to 1 do

Calculate p
(1)
n;0 from

p
(1)
n;0(λ+ nµ) = pn−1λ+ p

(1)
n+1;0nµ,

end for
for m = 2 to N − 1 do

Calculate p
(m)
N−1;0 from

p
(m)
N−1;0[λ+ (N − 1)µ] = p

(m−1)
N−2;0λ+ p

(m−1)
N ;0 (N −m)µ

for n ≥ N do

Calculate p
(m)
n;0 from

p
(m)
n;0 (λ+Nµ) = p

(m)
n−1;0λ+ p

(m−1)
n+1;0 (N −m)µ,

end for
for i ≥ 1 do

Calculate p
(1)
N−m;i from

p
(1)
n;i(λ+ nµ) = p

(1)
n+1;inµ+ p

(2)
n+1;i−1µ

if m ̸= 2 then
for j = 2 to m− 1 do

Calculate p
(j)
N−m+j−1;i from

p
(m)
n;i (λ+ nµ) = p

(m−1)
n−1;i λ+ p

(m)
n+1;i(n−m+ 1)µ+ p

(m+1)
n+1;i−1mµ,

end for
end if
Calculate p

(m)
N−1;i from

p
(m)
N−1;i[λ+ (N − 1)µ] = p

(m−1)
N−2;iλ+ p

(m−1)
N ;i (N −m)µ+ p

(m)
N ;i−1mµ
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for n ≥ N do

p
(m)
n;i (λ+ nµ) = p

(m−1)
n−1;i λ+ p

(m)
n+1;i(n−m+ 1)µ+ p

(m+1)
n+1;i−1mµ, ,

end for
end for
if m ̸= N − 1 then

for n = N − 2 to m do
Calculate p

(m)
n;0 with formula

p
(m)
n;0 (λ+ nµ) = p

(m−1)
n−1;0 λ+ p

(m)
n+1;0(n−m+ 1)µ,

end for
end if
end for
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3.5 Numerical example

There are several quantities related to the number of customers in
the system that may be of interest. We have calculated mean and
variance of the number of customers in RB, correlation between
queue size in buffer and RB. These quantities are depicted in the
following figure for different number N of servers in the system.
Along the x-axis values of system’s load (ρ/N) are indicated, along
the y-axis we indicate the corresponding value of mean number
of customers in reordering buffer (Figure 3.1(a)), variance of the
number of customers in reordering buffer (Figure 3.1(b)), correla-
tion on the number of customers in queue and reordering buffer
(Figure 3.1(c)). In all examples service rate µ = 1. We can ob-
serve that when the number of servers increases, the values of
mean number of customers in reordering buffer increases and this
happens because using more servers, the service is speeded, but
in this way it is not ensured that the customers end the service
in the same order of their arrival in service. It is worth noticing
that correlation between queue sizes in buffer and RB is almost
insignificant. In Figure 3.2 one can see the behaviour of joint sta-
tionary distribution {p0, pn;i, n ≥ 1, i ≥ 0} when the number of
servers N = 5 and system’s load ρ/N takes values 0.5, 0.7 and
0.9. We observe that when the value of ρ/N increases we have
more often values of pn;i different from zero.

Figure 3.1 Dependence on load ρ/N of (a) mean number of customers in
reordering buffer, (b) variance of number of customers in reordering buffer,
(c) correlation on the number of customers in queue and reordering buffer.
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Figure 3.2 Join stationary distribution pπ;i (a) ρ/5 = 0.5, (b) ρ/5 = 0.7, (c)
ρ/5 = 0.9.





Chapter 4

System MAP/PH/2 with
resequencing

4.1 Problem statement

We have a queueing system with 2 homogeneous servers, in which
the capacity of the collecting buffer and the reordering buffer is
infinite. The type distribution of both two servers is ”the phase
distribution” (PH), while the arrivals follow Markovian arrival pro-
cess. We have two type of request: the request that, in order to
leave the system, have to wait one request that is still in service,
and the request that, in order to leave the system, have to wait for
two requests still in service. We introduce a recurrent algorithm
to calculate the simultaneous stationary distribution of the num-
ber of the requests at servers, in the collecting buffer and in the
reordering buffer. Then we calculate the stationary distribution
of the arrival time of the requests in the buffer and in service, and
the stationary distribution of the arrival time of the requests in
the reordering buffer in terms of Laplace-Stieltjes transform using
geometric-matrix methods.



60 4. System MAP/PH/2 with resequencing

4.2 Model description and notation

The queueing system studied has 2 homogeneous servers, collect-
ing buffer and reordering buffer with infinite capacity. The ar-
rival process is Markovian with n generation phases. The ma-
trix of the intensity of change of the generation phases of the
requests without the arrival of the requests is N , while the ma-
trix of the intensity of change of the generation phases of the
requests with the arrival of the requests is Λ. The service time for
both servers is the same phase type distribution with parameters
(f⃗ , G), where f⃗ = (f1, . . . , fm) is a row vector of dimension m, and
G = (gij)i,j=1,m is a square matrix of dimension m, 1 ≤ m <∞.

The request arrives at the server with probability fi i = 1,m,
and it is served starting from the phase i. If in a certain period of
time the server serves the request in the phase i, then in a ”small”
period of time ∆ with probability gij∆ + o(∆), i, j = 1,m, the
phase of the service changes into the j − th phase. The service of
the request finishes with probability g⋆i∆+ o(∆), where

g⋆i = −
m∑
j=1

gij.

With g⃗ = −G1⃗ is indicated a column-vector with coordinate g⋆i ,
where 1⃗ is a column-vector whose elements are all equal to 1.
When the requests arrive in the system, a sequential number is
given at each of them. The order given by these serial numbers is
kept for requests when they are leaving the queueing system. The
requests that have finished the service earlier and interrupted the
order, have to wait in the reordering buffer and they can leave the
queueing system only after that the requests with lower sequential
number have finished the service. In the case that both servers
are busy, the server to whom the request arrives earlier is called
”primary server” , and the server to whom the request arrives later
is called ”secondary server”. Here λ is the stationary intensity of
the arrivals, and µ is the intensity of service:

λ = π⃗(A)Λ1⃗, µ = −(f⃗G−11⃗)−1,
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where π⃗(A) is the row-vector of the stationary probabilities of the
Markovian process with infinitesimal matrix (N + Λ). It is sup-
posed that the sufficient and necessary condition ρ = λ/(2µ) < 1
for existence of stationary behavior of the queueing system holds
true.
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4.3 Stationary state probabilities

Let ξ(t) be the number of the requests at servers and in the collect-
ing buffer at the time moment t, η(t) the number of the requests
in the reordering buffer (RB) at the time t, α(t) the request gen-
eration phase at the time t, β1(t) the distribution service phase of
the primary server at time t, β2(t) the distribution service phase
of the secondary server at time t. Initial suppositions, concerning
the input flux and the service process, guarantee that the random
process ζ(t) = {(ξ(t), η(t), α(t), β1(t), β2(t)), t ≥ 0} is Markovian.
We note that when ξ(t) = 0 then the second, the fourth and the
fifth component of ζ(t) is undefined, while when ξ(t) = 1 then the
fifth component is undefined. The state set of this process has the
following form:

X =
{
(0, i), i = 1, n

}
∪
{
(1, k, i, j) , k ≥ 0, i = 1, n, j = 1,m

}
∪

∪
{
(u, k, i, j, l) , u ≥ 2, k ≥ 0, i = 1, n, j, l = 1,m

}
.

Now we want to compute the simultaneous stationary distribution
of the number of requests at servers and in the collecting buffer,
and the number of the requests in the reordering buffer. We in-
troduce the following notations:

p0(i) denotes stationary probability of the process ζ(t) being
in the state (0, i), i = 1, n;

p1,k(i, j) denotes stationary probability of the process ζ(t) be-
ing in the state (1, k, i, j), k ≥ 0, i = 1, n, j = 1,m;

p1(i, j) =
∑∞

k=0 p1,k(i, j) denotes stationary probability of hav-
ing only one request in the system, generation phase equals to i,
and service phase equals to j, i = 1, n, j = 1,m;

pu,k(i, j, l) denotes stationary probability of the process ζ(t)
being in the state (u, k, i, j, l), u ≥ 2, k ≥ 0, i = 1, n, j, l = 1,m;

pu(i, j, l) =
∑∞

k=0 pu,k(i, j, l), u ≥ 2, i = 1, n, j, l = 1,m de-
notes stationary probability of the fact that there are u requests
at servers and in the collecting buffer, the generation phase is i,
the service phase of the primary server is j, while the service phase
of the secondary server is l.
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We set:
p⃗0 be a vector with coordinates p0,i = p0(i), i = 1, n;
p⃗1,k, k ≥ 0 be a vector with coordinates p1,k,z, z = 1, nm, where
p1,k,z = p1,k(i, j) for z = (i− 1)m+ j, i = 1, n, j = 1,m;
p⃗1 be a vector with coordinates p1,z, z = 1, nm, where p1,z =
p1(i, j) for z = (i − 1)m + j, i = 1, n, j = 1,m; p⃗u,k, u ≥ 2,
k ≥ 0 denotes vector with coordinates pu,k,z, z = 1, nm2, where
pu,k,z = pu,k(i, j, l), when z = (i − 1)m2 + (j − 1)m + l, i = 1, n,
j, l = 1,m;
p⃗u, u ≥ 2 be a vector with coordinates pu,z, z = 1, nm2, where
pu,z = pu(i, j, l) for z = (i−1)m2+(j−1)m+l, i = 1, n, j, l = 1,m.

Before writing the system of the equilibrium equations for sta-
tionary probabilities, we introduce some other notations:

Λ0 = Λ⊗ f⃗ , Λ1 = Λ⊗ E ⊗ f⃗ , Λ∗ = Λ⊗ E ⊗ E,

M1 = E⊗g⃗, M2,1 = E⊗E⊗g⃗, M2,2 = E⊗g⃗⊗E, M2 =M2,1+M2,2,

M∗
1 = E ⊗E ⊗ g⃗⊗ f⃗ , M∗

2 = E ⊗ g⃗⊗E ⊗ f⃗ , M∗ =M∗
1 +M∗

2 ,

N1 = N⊗E+E⊗G, N∗ = N⊗E⊗E+E⊗E⊗G+E⊗G⊗E.

where ⊗ is the Kronecker product.
The meaning of the matrices is the following:

• Λ0 = Λ ⊗ f⃗ : this matrix rappresents the passage from the
state 0 requests in the buffer and in service to 1 request in
the buffer and service. The matrix Λ indicates that there
is the arrival of a request and f⃗ indicates that this request
goes immediately in service.

• Λ1 = Λ ⊗ E ⊗ f⃗ : this matrix rappresents the passage from
the state 1 request in the buffer and in service to 2 requests
in the buffer and service. The matrix Λ indicates that there
is the arrival of a request, the matrix E suggests that the
primary server goes on serving the customer in service and
f⃗ indicates that the second request goes immediately in
service.
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• Λ∗ = Λ⊗ E ⊗ E : this matrix rappresents the passage from
the state u request in the buffer and in service to u + 1
requests in the buffer and service. The matrix Λ indicates
that there is the arrival of a request and, because of both
servers are busy, this customer has to wait in the buffer, the
matrix E suggests that the primary server goes on serving
the customer in service and the other matrix E indicates
that the secondary server goes on serving the customer in
service.

• M1 = E ⊗ g⃗ : this matrix rappresents the passage from the
state 1 request in the buffer and in service to 0 request in
the buffer and service. The matrix E indicates that happens
nothing in the arrival and the vector g⃗ suggests that the
request that was in service has finished the service.

• M2,1 = E⊗E⊗ g⃗ : this matrix rappresents the passage from
the state 2 requests in the buffer and in service to 1 request
in the buffer and service. The first matrix E indicates that
happens nothing in the arrival, the second matrix E suggests
that the primary server goes on serving the customer in ser-
vice and the vector g⃗ indicates that the request that was in
service in the secondary server has finished the service.

• M2,2 = E⊗ g⃗⊗E : this matrix rappresents the passage from
the state 2 requests in the buffer and in service to 1 request
in the buffer and service. The first matrix E indicates that
happens nothing in the arrival, the vector g⃗ suggests that the
request that was in service in the primary server has finished
the service and the last matrix E indicates that the primary
server goes on serving the customer in service.

• M∗
1 = E ⊗ E ⊗ g⃗ ⊗ f⃗ : this matrix rappresents the passage

from the state u requests in the buffer and in service to
u − 1 request in the buffer and service. The first matrix
E indicates that happens nothing in the arrival, the second
one suggests that the primary server goes on serving the
customer in service, the vector g⃗ indicates that the request
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that was in service in the secondary server has finished the
service and f⃗ says that the request that was waiting in the
buffer goes immediately in service.

• M∗
2 = E ⊗ g⃗ ⊗ E ⊗ f⃗ : this matrix rappresents the passage

from the state u requests in the buffer and in service to
u − 1 request in the buffer and service. The first matrix E
indicates that happens nothing in the arrival, the vector g⃗
suggests that the request that was in service in the primary
server has finished the service, the second matrix E indicates
that the secondary server goes on serving the customer in
service and f⃗ says that the request that was waiting in the
buffer goes immediately in service.

• N1 = N ⊗ E + E ⊗G : this matrix rappresents the passage
from the state 1 requests in the buffer and in service to 1
request in the buffer and service. The system can go to the
state 1 to 1 in two ways: in the first one (as indicated by
matrix N)there are no arrival of the requests in the system
and there is only one virtual customer, (as indicated by ma-
trix E) happen nothing in the service; in the second one (as
indicated by matrix E) happens nothing in the arrival and
(as indicated by matrix G) the only request in service is still
in service.

• N∗ = N⊗E⊗E+E⊗E⊗G+E⊗G⊗E : this matrix rappre-
sents the passage from the state u requests in the buffer and
in service to u request in the buffer and service. The system
can remain in the state u in three different ways: in the first
(as indicated by N) there are no arrival of the requests in the
system and there are only u virtual customers, (as indicated
by the first matrix E) happens nothing in the primary server,
(as indicated by the second matrix E) happens nothing in
the secondary server; in the second one (as indicated by the
first matrix E) happens nothing in the arrival, (as indicated
by the second matrix E) happens nothing in the secondary
server, the matrix G says that the requests in service are
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still in service; in the third one the matrix E indicates that
happens nothing in the arrival, the matrix G suggests that
the requests in service are still in service, the last matrix E
indicates that happens nothing in the secondary server.

Now we observe that the number of requests at servers and in
the collecting buffer in the queueing system (QS) with reorder-
ing is equal to the number of the requests in the similar QS
without reordering. For this reason the stationary distribution
p⃗ = (p⃗0, p⃗1, . . .) of the number of requests at servers and in the
collecting buffer for the considered system is defined by the same
formulas as for a usual QS MAP/PH/2/∞, i.e. this distribution
must satisfy the following system of the equilibrium equations:

p⃗ T = 0⃗ (4.3.1)

with a normalization condition:

p⃗ 1⃗ = 1, (4.3.2)

where the infinitesimal transition matrix T is a tridiagonal block
matrix:

T =



N Λ0 0 0 0 . . .
M1 N1 Λ1 0 0 . . .
0 M2 N∗ Λ∗ 0 . . .
0 0 M∗ N∗ Λ∗ . . .
0 0 0 M∗ N∗ . . .
...

...
...

...
...

. . .


. (4.3.3)

The problem of finding a stationary distribution for Markov pro-
cess with an infinitesimal matrix of the type T is well studied in
[11], [12]. For this reason we do not linger on how the vector p⃗
is found, we only mention that its components p⃗i are solutions of
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the following system:

p⃗0N + p⃗1M1 = 0,

p⃗0Λ0 + p⃗1N1 + p⃗2M2 = 0,

p⃗1Λ1 + p⃗2N
∗ + p⃗3M

∗ = 0,

p⃗i = p⃗2R
i−2, i ≥ 2,

p⃗01⃗ + p⃗11⃗ +
∞∑
i=2

p⃗i1⃗ = 1,

where the matrix R is the minimal non-negative solution of the
matrix equation:

Λ∗ +RN∗ +R2M∗ = 0.

Introduce the vector π⃗ = (π⃗1, π⃗2, . . .), that is composed of vectors
π⃗1 = (π1,1, . . . , π1,m), π⃗i = (πi,1, . . . , πi,m2), i ≥ 2. Each coordinate
πi,j of the vector π⃗i is the stationary probability of the fact that
right after the arrival of the request in the queueing system we
have i requests at servers and in the collecting buffer. Here the
service phase equals to j when i = 1, while when i ≥ 2 the service
phase can be found from the formula j = (k−1)m+l, where k and
l denote the service phases of the primary and secondary server
respectively. The vectors π⃗i are defined by the following relations:

π⃗1 =
1

λ
p⃗0Λ0(⃗1⊗ E) =

1

λ
p⃗0Λ1⃗⊗ f⃗ ,

π⃗2 =
1

λ
p⃗1Λ1(⃗1⊗ E ⊗ E) =

1

λ
p⃗1(Λ⊗ E)(⃗1⊗ E)(E ⊗ f⃗),

π⃗i =
1

λ
p⃗i−1Λ

∗(⃗1⊗ E ⊗ E), i ≥ 3.

Now let us calculate the simultaneous stationary distribution of
the number of requests at servers, in the collecting buffer and in
the reordering buffer. It can be easily shown that for probabilities
p⃗1;i, k ≥ 0 the following equations are satisfied:

p⃗1,0N1 + p⃗0Λ0 + p⃗2M2,2 = 0, (4.3.4)
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p⃗1,kN1 + p⃗2,k−1M2,1 = 0, k ≥ 1. (4.3.5)

For probabilities p⃗2,j, k ≥ 0, we have

p⃗2,0N
∗ + p⃗1,0Λ1 + p⃗3M

∗
2 = 0, (4.3.6)

p⃗2,kN
∗ + p⃗1,kΛ1 + p⃗3,k−1M

∗
1 = 0, k ≥ 1. (4.3.7)

And, finally, for probabilities p⃗u,k, u ≥ 3, k ≥ 0, the equations

p⃗u,0N
∗ + p⃗u−1,0Λ

∗ + p⃗u+1M
∗
2 = 0, u ≥ 3, (4.3.8)

p⃗u,kN
∗ + p⃗u−1,kΛ

∗ + p⃗u+1,k−1M
∗
1 = 0, u ≥ 3, k ≥ 1 (4.3.9)

hold true. All equations (4.3.4)–(4.3.9) are based on the global
equilibrium principle. Now we describe them. For probabilities
p⃗1;k, k ≥ 0 it holds:

• p⃗1,0N1 + p⃗0Λ0 + p⃗2M2,2 = 0, k = 0. Analyze the state (1; 0)
and the rate in and the rate out of this state. State (1; 0)
means that there is one customer in service, the markovian
phase is i, the service phase is j and there are no customers
in the RB. Rate out of this state is given by the matrix N1.
System can enter this state either: 1) by an arrival, there
are 0 customers between buffer and service, the Markovian
phase is i, there are no customers in the RB, 2) by service if
all servers are busy, so there are 2 customers in servers, the
Markovian phase is i, the service phase is j for one server
and l for the other one and there are no customers in the
RB. Equating rate-in and rate-out we get equation (4.3.4).

• p⃗1,kN1 + p⃗2,k−1M2,1 = 0, k ≥ 1. Analyze the state (1; k)
and the rate in and the rate out of this state. State (1; k)
means that there is one customer in service, the Markovian
phase is i, the service phase is j and there are k customers
in the RB. Rate out of this state is given by the matrix
N1. Now, system can enter this state only: 1) by service if
all servers are busy, so there are 2 customers in servers, the
Markovian phase is i, the service phase is j for one server and
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l for the other one and there are k− 1 customers in the RB.
The customer that has to be served is that whose sequential
number is bigger than the sequential number of customer
who is still in service. Equating rate-in and rate-out we get
equation (4.3.5).

For probabilities p⃗2,j it holds:

• p⃗2,0N
∗ + p⃗1,0Λ1 + p⃗3M

∗
2 = 0, k = 0. Analyze the state (2; 0)

and the rate in and the rate out of this state. State (2; 0)
means that there are 2 customers in service, the Markovian
phase is i, the service phase is j for one server and l for the
other one, there are no customers in RB. Rate out of this
state is given by the matrix N∗. System can enter this state
either: 1) by an arrival, there is one customer in service, the
Markovian phase is i, there are no customers in the RB, 2)
by service if all servers are busy, so there are 3 customers
between buffer and service, 2 of them are in service, the
Markovian phase is i, the service phase is j for one server
and l for the other one and there are no customers in the
RB. Equating rate-in and rate-out we get equation (4.3.6).

• p⃗2,kN
∗ + p⃗1,kΛ1 + p⃗3,k−1M

∗
1 = 0, k ≥ 1. Analyze the state

(2; k) and the rate in and the rate out of this state. State
(2; k) means that there are 2 customers in service, the Marko-
vian phase is i, the service phase is j for one server and l
for the other one, there are k customers in RB. Rate out
of this state is given by the matrix N∗. System can enter
this state either: 1) by an arrival, there is one customer in
service, the Markovian phase is i, there are k customers in
the RB, 2) by service if all servers are busy, so there are 3
customers between buffer and service, 2 of them are in ser-
vice, the Markovian phase is i, the service phase is j for one
server and l for the other one and there are k− 1 customers
in the RB. Equating rate-in and rate-out we get equation
(4.3.7).

For probabilities p⃗u,k, u ≥ 3, k ≥ 0 it holds:
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• p⃗u,0N
∗ + p⃗u−1,0Λ

∗ + p⃗u+1M
∗
2 = 0, u ≥ 3. Analyze the state

(u; 0) and the rate in and the rate out of this state. State
(u; 0) means that there are u customers between buffer and
service, the markovian phase is i, the service phase is j for
one server and l for the other one, there are no customers in
RB. Rate out of this state is given by the matrix N∗. System
can enter this state either: 1) by an arrival, there are u− 1
customers between buffer and service, the markovian phase
is i, there are no customers in the RB, 2) by service if all
servers are busy, so there are u+1 customers between buffer
and service, 2 of them are in service, the markovian phase
is i, the service phase is j for one server and l for the other
one and there are no customers in the RB. Equating rate-in
and rate-out we get equation (4.3.8).

• p⃗u,kN
∗+ p⃗u−1,kΛ

∗+ p⃗u+1,k−1M
∗
1 = 0, u ≥ 3, k ≥ 1. Analyze

the state (u; k) and the rate in and the rate out of this state.
State (u; k) means that there are u customers between buffer
and service, the markovian phase is i, the service phase is j
for one server and l for the other one, there are k customers in
RB. Rate out of this state is given by the matrix N∗. System
can enter this state either: 1) by an arrival, there are u− 1
customers between buffer and service, the markovian phase
is i, there are k customers in the RB, 2) by service if all
servers are busy, so there are u+1 customers between buffer
and service, 2 of them are in service, the markovian phase is
i, the service phase is j for one server and l for the other one
and there are k − 1 customers in the RB. Equating rate-in
and rate-out we get equation (4.3.9).

Analyzing the equations we obtain the following simple algo-
rithm that allows to find successively the stationary probabilities
p⃗u,k, u ≥ 1, k ≥ 0.

• Setting of Λ, N,G, f⃗ .

• Finding p⃗n for n ≥ 0.
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• Finding p⃗1,0 from formula (4.3.4).

• Finding p⃗2,0 from formula (4.3.6).

• Finding p⃗n,0 for n ≥ 3 from formula (4.3.8).

• Finding p⃗1,i for i ≥ 1 from formula (4.3.5).

• Finding p⃗2,i from formula (4.3.7)

• Find p⃗n,i for n ≥ 3 from formula (4.3.9)
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4.4 Stationary distribution of the in-

service time of a request in the queue-

ing system

From now on we use some notations that are used before, but with
a different meaning. First of all let us consider the Markov process
{γ̃(t), t ≥ 0} with a state set Ỹ = Ỹ0 ∪ Ỹ1, where

{Ỹk = (k, i), k = 0, 1, i = 1,m2},

the matrix M̃ = E⊗ g⃗⊗ f⃗+ g⃗⊗E⊗ f⃗ = (m̃i,j)i,j=1,m2 of transition

intensities when passing from the state (1, i) ∈ Ỹ1 to the state
(0, j) ∈ Ỹ0 and the matrix Ñ = E ⊗ G + G ⊗ E = (ñi,j)i,j=1,m2

of transition intensities when passing from the state (1, i) ∈ Ỹ1 to
the state (1, j) ∈ Ỹ1.

Let us find a square matrix R̃(s) of the elements r̃i,j(s) that
are the Laplace-Stieltjes transformations of the time of the first
passage from the state (1, i) to the state (0, j) and the probability
of the fact that when the process leaves the state set Ỹ1 at the first
time, it passes to the state (0, j).

We note that, that from the point of view of the queueing
system with reordering, r̃i,j(s) is the Laplace-Stieltjes transforma-
tion of the service termination time for the first one of the two
requests that are at servers, and the probability of the fact that at
the same time the service process will pass to the state j, where
j = (k−1)m+ l and by k and l denote the service phase of the pri-
mary server and of the secondary server respectively. We suppose
that at the start (zero) time there are no less than two requests
in the queueing system and that the service process is in the state
i where i = (u − 1)m + v, and by u and v we denote the service
phase of the primary and the secondary server respectively.

We can use the embedded Markov chain generated by mo-
ments of change of the state of the process γ̃(t). The matrix Q̃(0)

of transition probabilities from the state (1, i) ∈ Ỹ1 to the state
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(0, j) ∈ Ỹ0 for this Markov chain consists of the elements:

q̃
(0)
i,j = −m̃i,j

ñi,i

, i, j = 1,m2.

Elements of the matrix Q̃(1) of transition probabilities from the
state (1, i) ∈ Ỹ1 to the state (1, j) ∈ Ỹ1 of the Markov chain are
given by the formulas:

q̃
(1)
i,j = − ñi,j

ñi,i

, i, j = 1,m2, j ̸= i,

q̃
(1)
i,i = 0, i = 1,m2.

Finally, since the time of the Markov process γ̃(t) staying in the
state (1, i) ∈ Ỹ1 has exponential distribution with the parameter
−ñi,i, then considering the matrix Q̃(k)(s) k = 0, 1, whose element

q̃
(k)
i,j (s) is the Laplace-Stieltjes transformation of the time of the

first passage of the process γ̃(t) from the state (1, i) ∈ Ỹ1 to the
state (k, j) ∈ Ỹ0 and the probability of the fact that, going out of
the state (1, i), the process γ̃(t) passes immediately to the state
(k, j), we have:

q̃
(k)
i,j (s) =

ñi,i

ñi,i − s
q̃
(k)
i,j , k = 0, 1, i, j = 1,m2.

Now we can write the equation for R̃(s):

R̃(s) = Q̃(0)(s) + Q̃(1)(s)R̃(s),

and after solving it we have:

R̃(s) = [E − Q̃(1)(s)]−1Q̃(0)(s).

We introduce the vector W⃗ (s) = (w1(s), . . . , wm2(s)), where
wi(s) − is the Laplace-Stieltjes transformation of the stationary
distribution of the waiting-in-queue time and the probability of
the fact that right after the arrival of a request in the queueing
system, there will be no less than two requests, and at the moment
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when the service of the distinguished request starts the process,
γ̃(t) will be in the state i, i.e.

W⃗ (s) =
∞∑
i=2

π⃗iR̃
i−2(s). (4.4.10)

Further we consider the Markov process {γ̂(t), t ≥ 0} with a

state set Ŷ = Ŷ0 ∪ Ŷ1, where

{Ŷ0 = (0, i), i = 1,m},

{Ŷ1 = (1, i), i = 1,m2},

with the transition intensity matrix M̂0 = E ⊗ g⃗ + g⃗ ⊗ E =
(m̂0,i,j)i=1,m2,j=1,m of for transactions from the state (1, i) ∈ Ŷ1 to

the state (0, j) ∈ Ŷ0 and N̂ = Ñ = E⊗G+G⊗E = (n̂i,j)i,j=1,m2 is
transition intensity matrix for transactions from the state (1, i) ∈
Ŷ1 to the state (1, j) ∈ Ŷ1.

Let us find the matrix R̂(s) = (r̂i,j)i=1,m2,j=1,m, whose element
r̂i,j(s) are the Laplace-Stiltjes transformation of the time of the

first passage from the state (1, i) ∈ Ŷ1 to the state (0, j) ∈ Ŷ0

and the probability of the fact that right after the first exit from
the state set Ŷ1 the process will pass to the state (0, j). From
the point of view of the initial queueing system with reordering,
the element r̂i,j(s) is the Laplace-Stieltjes transformation of the
service termination time for the first one of the two requests that
are at servers and the probability of the fact that at the same time
the service phase of the request at the other server will be equal
to j. We suppose that at the initial moment of time there are
no less than two requests at the queueing system and the service
process is in the state i , where i = (u− 1)m+ v and by u and v−
we denote the service phase of the primary and secondary server
respectively.

We can use the embedded Markov chain generated by moments
of the state changes of the process γ̂(t). Elements of matrix Q̂(0)

of transition probabilities from the state (1, i) ∈ Ŷ1 to the state
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(0, j) ∈ Ŷ0 of this Markov chain are defined by the following rela-
tions:

q̂
(0)
i,j = −m̂i,j

n̂i,i

, i = 1,m2, j = 1,m.

Elements of the matrix Q̂(1) of transition probabilities from the
state (1, i) ∈ Ŷ1 to the state (1, j) ∈ Ŷ1 of the considered Markov
chain can be found from formulas:

q̂
(1)
i,j = − n̂i,j

n̂i,i

, i, j = 1,m2, j ̸= i,

q̂
(1)
i,i = 0, i = 1,m2.

Finally, since the time of the Markov process γ̂(t) staying in the

state (1, i) ∈ Ŷ1 has exponential distribution with the parameter
−n̂i,i, then, introducing the matrix Q̂(k)(s), k = 0, 1, whose ele-

ment q̂
(k)
i,j (s) is the Laplace-Stieltjes transformation of the time of

the first passage of the process γ̂(t) from the state (1, i) ∈ Ŷ1 to

the state (k, j) ∈ Ŷ0 and the probability of the fact that going out
from the state (1, i), the process γ̂(t) immediately passes to the
state (k, j), we have:

q̂
(0)
i,j (s) =

n̂i,i

n̂i,i − s
q̂
(k)
i,j , i = 1,m2, j = 1,m,

q̂
(1)
i,j (s) =

n̂i,i

n̂i,i − s
q̂
(1)
i,j , i, j = 1,m2.

The equation for R̂(s) takes the form:

R̂(s) = Q̂(0)(s) + Q̂(1)(s)R̂(s),

and its solution is given by formula:

R̂(s) = [E − Q̂(1)(s)]−1Q̂(0)(s).

Assuming that at the initial point of time the distribution of
the request service phase was f⃗ , the Laplace-Stieltjes transforma-
tion of the in-service time of the request takes the following well
known form:

φ(s) = −f⃗(sE −G)−1G1⃗.



76 4. System MAP/PH/2 with resequencing

Now we can write the formula for the Laplace-Stieltjes transfor-
mation V (s) of the stationary distribution of the total in-service
time of the request in the queueing system (including the time
spent in the reordering buffer). This time consists of two terms,
the first one is the time from the moment of the request arrival
in the queueing system to the moment of its entry at the server.
While the second term is the time from the moment of the re-
quest entry at the server to its exit from the system, that, in its
turn, is the sum of the in-service time of this distinguished request
and also of the in-service time of the request served by the second
server at the moment of arrival of this distinguished request (it is
evident that when a request arrives at the empty queueing system,
the total time of this request is only its own in-service time). So

V (s) = −π⃗1(sE −G)−1G1⃗− W⃗ (s)R̂(s)(sE −G)−1G1⃗. (4.4.11)

At the end of this section we will write down formulas for the
Laplace-Stieltjes transformation ψ(s) of the stationary distribu-
tion of the arrival time of the request in the reordering buffer.

We introduce W⃗ (0) = (w1(0), . . . , wm2(0)) − this is a vector
whose components are wi(0),where wi(0) = w(u−1)m+v(0) − are
the stationary probabilities that at the beginning of the service
of a request there are not less than two requests in the system,
while the primary and the secondary request in the servers will be
served in the phases u and v.

We look at the Markov process {γ̌(t), t ≥ 0} with multiple
states Y̌ = Y̌0 ∪ Y̌1 ∪ Y̌2, where

{Y̌k = (k, i), k = 0, 1, i = 1,m},

{Y̌2 = (2, i), i = 1,m2},

the matrix M̌0 = E ⊗ g⃗ = (m̌0,i,j)i=1,m2,j=1,m is the matrix of the

intensity of transactions from the state (2, i) ∈ Y̌2 to the state
(0, j) ∈ Y̌0, the matrix M̌1 = g⃗ ⊗ E = (m̌1,i,j)i=1,m2,j=1,m is the

matrix of the intensity of transactions from the state (2, i) ∈ Y̌2

to the state (1, j) ∈ Y̌1 and the matrix Ň = N̂ = Ñ = E ⊗ G +
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G⊗E = (ňi,j)i,j=1,m2 is the matrix of the intensity of transactions

from the state (2, i) ∈ Y̌2 to the state (2, j) ∈ Y̌2. The matrix
Ř = (ři,j)i=1,m2,j=1,m, is composed of elements ři,j that indicate the
passage of the process γ̌(t) from the initial state (2, i) to the finale
state (0, j). From the point of view of the queueing system with
reordering, ři,j is the probability that at the beginning the request
in the secondary server is served and at the end of this service the
service phase of the request in the primary server will be j, at the
initial moment there are not less than two requests in the system
and the service process was in the state i, where i = (u− 1)m+ v,
with u and v the service phase in the primary and secondary server.
We use the Markov chain given by moments of changes of states of
the process γ̂(t). The matrix Q̌(0) of the transient probabilities in
the Markov chain from the state (2, i) ∈ Y̌2 to the state (0, j) ∈ Y̌0

is composed by the following elements

q̌
(0)
i,j = −m̌0,i,j

ňi,i

, i = 1,m2, j = 1,m.

The elements of the matrix of the transient probabilities Q̌(2),
given in the Markov chain, from the state (2, i) ∈ Y̌2 to the state
(2, j) ∈ Y̌2 are given by the formula:

q̌
(2)
i,j = − ňi,j

ňi,i

, i, j = 1,m2, j ̸= i,

q̌
(2)
i,i = 0, i = 1,m2.

The equation of the matrix Ř is:

Ř = Q̌(0) + Q̌(2)Ř,

whose solution is:

Ř = [E − Q̌(2)]−1Q̌(0).

Then the Laplace-Stieltjes form (PLS) ψ(s) of the stationary
distribution of the arrival time of the request in the reordering
buffer is:

ψ(s) = −W⃗ (0)Ř(sE −G)−1G1⃗,
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while the mean time of the arrival in the reordering buffer is:

−ψ′(0) = −W⃗ (0)ŘG−11⃗.

The PLS T(s) of the stationary distribution of the arrival time
of the request in the buffer and in server is the same of that in
MAP/PH/2 system without reordering:

T (s) = −π⃗1(sE −G)−1G1⃗− W⃗ (s)(⃗1⊗ E)(sE −G)−1G1⃗,

and its mean value is given by the formula:

−T ′(0) = −π⃗1G−11⃗− W⃗ ′(0)⃗1− W⃗ (0)(⃗1⊗ E)G−11⃗.

We observe that differentiating the formula (4.3.11) we can
find moments of differents order of stationary distruibution of the
arrival time of the request in the system. The stationary mean
time v̄ of the arrival of the request in the system is given by the
formula:

v̄ = −V ′(0) = −π⃗1G−11⃗−W⃗ ′(0)⃗1−W⃗ (0)R̂′(0)⃗1−W⃗ (0)R̂(0)G−11⃗.
(4.4.12)
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4.5 Numerical examples

We introduce a recurrent algorithm that allows to calculate the si-
multaneous stationary distribution of the number of the requests
in the buffer and in service, and the number of the requests in the
reordering buffer. We have also calculated in terms of PLS the sta-
tionary distribution of the waiting in-queue time of the requests,
the stationary distribution of the total in-service time of the re-
quests in the queueing system with its moments, the stationary
distribution of the arrival time of the request in buffer and server
with its moments, and the stationary distribution of the arrival
time of the requests in the reordering buffer with its moments.
In all example parameters of the phase distribution of the service
time are the same, in order to intensify the service of the requests
on each server the service parameter is equal to one. The curves
on the Figure 4.1 show the mean and the variance of the number
of requests in the reordering buffer, and finally the coefficient of
correlation of the number of the requests in the buffer and in the
reordering buffer from the time of the arrival in the system, that
in this case coincide with the intensification of the parameter λ.
From the graphic is evident that this two quantities are almost
uncorrelated, because of, with the definition chosen for the pa-
rameter of the system and of the arrival, the system is stationary.
As it is evident in [13] an alike result is observed in the case when
the arrivals follow a Poisson process and the service time is expo-
nential on each server. In Figure 4.2 we can see the mean time of
arrival of requests in the system, the mean time of arrival in the
buffer and in server, the mean time of reordering from the arrival
in the reordering buffer, and finally the variance of time of arrival
of requests in the system. When the requests increase, we have a
queue in the buffer, and the mean and the variance of the waiting
time from the beginning of the service. The mean time of the
arrival in the reordering buffer (and moments of bigger order) is
limited, this is evident from the formula of Little. We can observe
that the variation of the parameter of the service (f⃗ , G) affect the
number of the requests waited in the reordering buffer, whereas
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Figure 4.1 Mean and variance of the number of the requests in the reordering
buffer and the coefficient of correlation of the number of the requests in the
reordering buffer and in the buffer.
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the parameter of the MAP arrival process don’t affect it. In fact,
as example we consider two systems: in the fist one the arrival
process is defined by the couple (N1,Λ1), while in the second one
the couple is (N2,Λ2) where

N1 =

(
−2 2
0 −2

)
Λ1 =

(
0 0
2 0

)

N2 =

(
−0.5452 0

0 −16.3565

)
Λ2 =

(
0.0818 0.4634
15.6477 0.7088

)
For both systems the mean time of arrival in the system is

equal to 1
λ
= 1, while the values of the variance of the time of

arrival and of the coefficient of correlation between the mean time
of arrival in the buffer and the mean time of the arrival in the
reordering buffer are in the table 1.

Figure 4.2 Moments of the arrival time of the requests in the system and
in the reordering buffer.
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We observe that ρ = 1
2µ

and for both systems the parameter
of the service are the same. From the Figure 4.3 we can observe
that for ρ > 0.2 the mean time of the arrival in both systems start
to diverge, but the difference of the MAP process don’t affect on
the mean time of the arrival of he requests in the reordering buffer
that only in the range 0.2 < ρ < 0.8 are different, while for value
of ρ out of this range tend to the same value.

Figure 4.3 Moments of the distribution of the mean time of the arrival of
the requests in the system and in the reordering buffer for both systems with
a different values of the parameters of the MAP process and the same values
for the parameters of the service process.
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Conclusions

In this work we have studied three different queueing systems
characterized by resequencing. First of all we have analyzed the
M/M/3/∞, of infinity capacity, with resequencing. We have no-
ticed that customer in reordering buffer may form two separate
queues, so focus is given to the study of their size distribution.
We present results of the thorough analysis of joint stationary dis-
tribution (both explicit and in terms of generating functions). We
have shown numerically that, for the all possible range of load val-
ues, correlation between any queues that are formed in the system
is almost insignificant. Then we have generalized the M/M/3/∞
introducing a number of servers bigger than 3 and less than infin-
ity. The analysis of steady-state equations resulted in the develop-
ment of simple recursive algorithm for step-by-step computation
of stationary probability of the fact that there are n customers in
servers and buffer and total number of customers in first m queues
in reordering buffer (RB) is equals i. We study mean and variance
of the number of customers in RB, correlation between queue size
in buffer and RB. Further research will be devoted to analysis of
joint stationary distribution of number of customers in all queues
(i.e. buffer and N - 1 queues in RB) and study of behaviour of dif-
ferent performance characteristics. For example in [13]for the case
N = 3 we have shown numerically that queues in RB and queues
of RB and buffer are almost uncorrelated. Case N > 3 remains
an open issue. In the last studied system we generalize the arrival
and the service flow introducing MAP and PH process. We found
a recurrent algorithm that allows to calculate the simultaneous
stationary distribution of the number of the requests in the buffer
and in service, and the number of the requests in the reordering
buffer. We have also calculated in terms of PLS the stationary
distribution of the waiting in-queue time of the requests,the sta-
tionary distribution of the total in-service time of the requests in
the queueing system with its moments, the stationary distribu-
tion of the arrival time of the request in buffer and server with
its moments, and the stationary distribution of the arrival time of



the requests in the reordering buffer with its moments. Further
study will be devoted to the analysis of stationary distribution of
the number of the requests in the buffer and in service, and the
number of the requests in the reordering buffer in more complex
system with possibly arbitrary number of servers.
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