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Abstract

A major challenge in the design of large-scale networks is to predict and optimise the

total time and energy consumption required to deliver a packet from a source node to a

destination node. Examples of such complex networks include wireless ad hoc and sensor

networks which need to deal with the effects of node mobility, routing inaccuracies, higher

packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the

computational limitations of the nodes. They also include more reliable communication

environments, such as wired networks, that are susceptible to random failures, security

threats and malicious behaviours which compromise their quality of service (QoS) guar-

antees. In such networks, packets traverse a number of hops that cannot be determined

in advance and encounter non-homogeneous network conditions that have been largely

ignored in the literature. This thesis examines analytical properties of packet travel in

large networks and investigates the implications of some packet coding techniques on both

QoS and resource utilisation.

Specifically, we use a mixed jump and diffusion model to represent packet traversal

through large networks. The model accounts for network non-homogeneity regarding

routing and the loss rate that a packet experiences as it passes successive segments of a

source to destination route. A mixed analytical-numerical method is developed to compute

the average packet travel time and the energy it consumes. The model is able to capture

the effects of increased loss rate in areas remote from the source and destination, variable

rate of advancement towards destination over the route, as well as of defending against

malicious packets within a certain distance from the destination. We then consider sending

multiple coded packets that follow independent paths to the destination node so as to

mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium

and obtain the time-dependent properties of the packet’s travel process, allowing us to

compare the merits and limitations of coding, both in terms of delivery times and energy

efficiency. Finally, we propose models that can assist in the analysis and optimisation

of the performance of inter-flow network coding (NC). We analyse two queueing models

for a router that carries out NC, in addition to its standard packet routing function. The

approach is extended to the study of multiple hops, which leads to an optimisation problem

that characterises the optimal time that packets should be held back in a router, waiting

for coding opportunities to arise, so that the total packet end-to-end delay is minimised.
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1. Introduction

As computer and communication networks become more complex and increasingly inter-

connected, there is a growing demand for techniques that can assist in evaluating and

optimising their performance. The aim of this thesis is to further our understanding of

the interactions and trade-offs that govern the behaviour of large packet networks. To this

end, we study whether a packet will ultimately succeed in reaching a given destination,

how long this will take, and how much energy may be expended. We also investigate

the implications of some packet coding techniques on both quality of service (QoS) and

resource utilisation. Probability models of computer algorithms and networked systems

have long been applied fruitfully, and this thesis takes a similar approach. The research

hypothesis is that abstract mathematical models can help to optimise the performance of

multi-hop networks, both at the macro and micro levels.

1.1. Research questions and motivations

In this thesis we examine three issues in multi-hop networks which have not been suffi-

ciently addressed in previous work:

1) Modelling packet travel in large networks: Despite the large body of literature on

characterising the performance of large-scale networks, most existing work has focused

on spatially homogeneous environments. In many practical settings, however, routing

accuracy and packet loss rate vary over the distance from a source to a destination. For

example, some parts of a wireless network may be particularly faulty or degraded while

the rest of the network is operating properly. Thus the network’s operational quality

may be quite good close to the source node, but it may become less reliable when the

packet moves far away from it. Another example of a non-homogeneous medium occurs

when a packet progresses more rapidly as it approaches its destination node, for instance

because a directional routing being used may become more accurate. The converse is also

possible if the packet is designed to carry some form of attack, such as a virus or a worm,

on the destination node which is being protected from such packets by the intermediate

nodes [1], so that as the packet approaches the destination node it is more likely to be

dropped. Consequently, there is a need for analytical models to explicitly describe the

travel process of a packet over networks that have such non-homogeneous properties. It
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would be particularly useful to have a model which is generic enough to be independent

of network specifics such as topology, routing policy and physical medium, and to be able

to represent different applications and scenarios. Many optimisation problems can then

be formulated in such a generic framework.

2) Evaluating the impact of coding at source nodes: Wireless ad hoc and sensor networks,

which are usually deployed in large numbers, need to deal with the effects of node mobility,

routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth,

energy constraints, and the computational limitations of the nodes [2,3]. Such characteris-

tics severely limit the ability of a network to guarantee a certain level of performance. Yet

in some applications of sensor networks, such as forest fire detection and seismic activity

monitoring, packets reporting irregularities in measurements have more stringent delay

constraints that require the network to provide more reliable delivery. In such instances,

it may be necessary for the source node to forward either duplicate or coded packets that

follow independent paths to the destination node so as to improve reliable delivery and

reduce effective travel times. This may, however, come at the price of higher energy con-

sumption, which is also an important issue in wireless networks. Specifically, since energy

utilisation per packet is proportional to the time spent travelling in the network, there is

a trade-off between having a small number of packets which travel for a long time in the

network and a large number of packets which may spend a shorter time. Hence the merits

and limitations of sending duplicate or coded packets into large networks, both in terms

of reliable delivery times and energy efficiency, need to be evaluated.

3) Evaluating the impact of inter-flow network coding (NC): With the advent of NC [4],

it has been shown that network performance can be further improved by allowing not

only source nodes but also intermediate nodes to combine received packets, for example

by a bit-by-bit XOR operation of two packets, before forwarding them towards their

destinations. This can provide path diversity for the information in such a way that an

efficient communication paradigm can be deployed in resource-constrained environments

[5]. However, the impact of inter-flow NC on packet delay is not fully understood. Indeed,

although a lower traffic rate per link may reduce the link delay, and thus the overall delay

that a given packet travelling through a network will experience, coding can also increase

delay in several ways. The need for combining packets at nodes may force packets to

wait for the arrival of other packets with which they will be combined, introducing a

synchronisation delay. Furthermore, although individual link delays will be reduced, node

delays may be affected adversely because in order to reconstitute the packet streams at

output nodes, overall the network will have to carry the same amount of traffic if no

information is to be lost. Finally, the need to decode packets at output nodes implies

further synchronisation delays due to waiting for the “right” combination of packets to

14



arrive before a given packet can be decoded and forwarded to the final receiver. Thus the

resulting trade-offs in NC between throughput, delay and resource utilisation need to be

investigated carefully, and effective mathematical tools are required so that correct design

decisions can be made.

1.2. Methodology

In this thesis we apply two different mathematical techniques to achieve the research

objectives. The first is based on Brownian motion [6–9] and allows us to analyse the travel

process of a packet in large non-homogeneous environments and to evaluate the effect of

sending redundant packets into a network. This macroscopic approach is motivated by

the fact that it is difficult to obtain closed-form expressions for the performance of large-

scale networks using microscopic techniques, such as queueing models, which are usually

computationally expensive and may not always be scalable [10,11]. The second approach

we adopt is based on the analysis of queueing systems with specific service processes

in order to capture the effect of inter-flow coding at the interior nodes in the network.

Although the primary focus of our research is on large-scale networks, the choice of this

microscopic method is justified by the facts that (a) inter-flow NC opportunities usually

arise in certain basic structures which may nonetheless represent small fragments of larger

arbitrary topologies, and (b) the level of detail provided by macroscopic techniques is not

sufficient to capture the gains and limitations of NC.

1.3. Thesis contributions

In this thesis we consider a probability model for travel of a packet from a source node to a

destination node in a large non-homogeneous multiple hop network with unreliable routing

tables and packet losses. The randomness models the lack of precise routing information

at each of the network hops [7, 12], and randomness in routing can also be used to model

networks where one wishes to explore alternate paths [13] in order to discover the more

reliable paths, or those that may have other desirable characteristics such as lower delay

or lower packet loss. The packet’s travel may also be impeded if certain routers on its

path prove to be unreliable, or the packet may be dropped from a buffer or destroyed

due to packet loss. The packet can also have a limited time-out that allows the source to

retransmit a dropped or lost packet. Because the network itself may be extremely large,

we consider packet travel in an infinitely large random non-homogeneous medium, with

events that may interrupt, destroy or stop the packet from moving towards its destination.

Generalising the work in [7,8] which focused on homogeneous environments, we obtain an

exact expression for the average time and energy that it takes the packet to eventually
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find the destination node, based on a modified and non-homogeneous Brownian motion

model.

While the expected performance can be useful in many cases of interest, it is not suf-

ficient to provide worst-case guarantees that can only be inferred from the distribution.

The latter, however, requires analysing the time-dependent behaviour of the packet travel

process which is difficult to obtain but useful to know in order to evaluate the effect of

uncertainties in the network, such as packet losses, inaccuracies or errors in routing, and

possible energy limitations. It is also valuable if one wishes to evaluate different means

for improving performance at the price of higher energy costs by sending out duplicate

or coded packets. Thus we consider N multiple coupled Brownian motions to represent

the travel of each packet and derive the distribution of total forwarding delay and energy

consumption when any k-out-of-N packets can decode the entire group, where k ≥ 1 and

N ≥ k. In order to make the analysis more tractable, we focus on homogeneous environ-

ments and assume that each of the transmitted packets travels independently of the others

which is a reasonable assumption for very large networks [14]. Hence our work extends [9]

where the average travel time and energy consumption of 1-out-of-N transmissions (i.e.,

duplication) are obtained.

Finally, we propose models that can assist in the analysis and optimisation of the perfor-

mance of inter-flow NC. We first focus on modelling a single NC router in isolation, then

we extend the analysis to multi-hop settings. We formulate and solve approximately an

optimisation problem which provides the optimal time that an encoding node should wait

before sending the information that it has un-coded, so that the average packet end-to-end

delay including encoding, queueing and decoding at the output is minimised. We investi-

gate the trade-offs in NC between delay and bandwidth or energy usage, and we evaluate

the performance of the proposed coding schemes in comparison with a conventional store

and forward network.

1.3.1. Summary of contributions

The contributions of this thesis can be divided into two categories: (a) theoretical devel-

opments for the diffusion model in [7–9], and (b) a novel queueing theoretic framework for

NC of multiple stochastic flows.

a. Performance analysis of large-scale networks

i. For non-homogeneous networks, we have developed a numerical-analytical solution

technique based on a finite but unbounded number of internally homogeneous

segments, yielding the average packet travel time and the energy expended. We

have illustrated the utility of the modelling approach with some applications

to wireless networks and network security.
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ii. For homogeneous networks, we have obtained the time-dependent solution of the

density function of the distance of a packet to its destination, and derived the

distribution of the total forwarding delay and energy consumption for k-out-of-

N coding techniques.

b. Queueing performance of inter-flow NC

i. We have proposed and analysed approximately queueing models for two possible

designs of a NC router: a single server queue for joint opportunistic coding and

transmission, and a multistage model for a NC implementation in which packet

coding and transmission are performed independently and a time-out is used

to modify coding opportunities.

ii. We have incorporated the second model into a network setting and proposed a

simple heuristic, based on fork-join synchronisation primitives, for choosing the

time-out periods so that the average end-to-end packet delay (between encoding

and decoding nodes) is minimised.

iii. We have validated the analytical solutions via discrete event simulations with

ns-2 [15].

1.4. Thesis outline

The remainder of this thesis is organised as follows. In Chapter 2 we provide background

information and review previous work related to our own in order to place our contributions

in the proper context. The chapter is structured around the two main issues addressed

by our research on performance analysis and optimisation of packet networks: modelling

large networks, and evaluating the impact of packet coding techniques. In Chapter 3 we

present our diffusion model for non-homogeneous networks, derive exact expressions for

the average travel time and energy consumption, and illustrate the results with several

examples. Chapter 4 is concerned with the time-dependent analysis of the packet’s travel

process in homogeneous environments, including the distribution of total delivery delay

and energy expenditure of coding and replication at the source nodes. Chapter 5 presents

queueing models and a heuristic for optimising the performance of inter-flow NC. Finally,

the thesis is concluded in Chapter 6 by a summary of results and recommendations for

future work.

1.5. Publications

This thesis is based in part on the following publications:
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2. Background and related work

This chapter provides background information and a survey of previous work related to

our own. The chapter is organised around the two main issues addressed by our research

on performance analysis of packet networks: modelling large networks and evaluating the

impact of packet coding.

In Section 2.1 we review existing analytical frameworks for characterising packet de-

livery time and energy consumption in large wireless ad hoc and sensor networks. The

discussion covers queueing-theoretic and random walk techniques in addition to Brown-

ian motion (diffusion) approximations. For each analytical approach, we highlight the

main advantages, known limitations and possible application domains. Special emphasis

is given to diffusion based methods which can simplify the analysis considerably due to

their asymptotic nature. In Section 2.2 we discuss two well-known packet coding tech-

niques that have been suggested in the literature to improve the reliability and delivery

performance of packet networks. In the first scheme, known as erasure coding, the encod-

ing and decoding operations are restricted to source and destination nodes, respectively,

while other nodes in the network only store and forward packets. The second scheme is

network coding (NC) which allows not only source nodes but also intermediate nodes to

combine received packets instead of simply relaying them. We discuss the two main ap-

proaches to NC, namely intra-flow NC which restricts coding to packets of the same flow,

and inter-flow coding in which packets from distinct flows can be combined together when

they pass a common node. In addition, we survey the different queueing models that have

been formulated for evaluating the performance of NC. Each of the two main sections in

this chapter is concluded by summarising how our research builds on previous work.

2.1. Analytical frameworks for performance evaluation of

large-scale networks

2.1.1. Queueing theory

Delay in store and forward packet networks is traditionally described as consisting of four

components [16]: processing, queueing, transmission and propagation. Propagation delay

depends on the physical characteristics of a link and is independent of the traffic carried by
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the link thus can be neglected. Processing delay is often ignored in the literature since the

early days of modelling the ARPAnet [17]; the assumption is that computational power is

not a limiting resource and as a result processing delay is considered to be independent

of the amount of traffic handled by the node. Consequently, data networks are usually

modelled as networks of transmission queues.

In recent work, queueing theory has been suggested as a means to evaluate packet

delivery time and energy utilisation in multi-hop wireless ad hoc and sensor networks.

The approach generally consists in (a) constructing a detailed model for an individual

node which accounts for traffic generated by the node and interaction with neighbouring

sensors including channel contention and reception of traffic; and (b) applying a decoupling

approximation, whereby each node is assumed to be independent of the others, in order

to analyse the entire network.

The work in [10] proposes a queueing model for delay analysis of random access wireless

ad hoc networks with static nodes that are distributed uniformly and independently over

a torus of unit area. In this network, the mean and the variance of the service time at

each node are computed based on a simple protocol interference model [18] while routing

probabilities are obtained in terms of the communication area of a node. A diffusion

approximation is then applied to estimate the average node’s delay assuming that each

node generates constant size packets according to a Poisson process. The authors also

derive an upper bound on the maximum achievable per-node throughput and show that

it is of the same order as that of [18] obtained using an information theoretic approach.

A queueing network model for sensor networks with geographic random forwarding

[19] is presented in [20] and [21] to evaluate the distributions of end-to-end delay and

energy consumption, respectively. Specifically, the authors model each sensor as a discrete-

time finite size queue with geometric inter-arrival time and Phase-type distributed service

time, and they propose a decoupling approximation to analyse a network of these sensors.

Experimental results, conducted on a small network testbed with different configurations,

are also presented in [20,21] to validate the analytical approach.

In [11], the performance of a sensor network whose nodes may enter a sleep mode is

studied assuming that nodes are stationary and uniformly distributed over a disc of unit

radius, and that all traffic is routed to a centrally located sink. In this approach, each

node is represented by a discrete-time Markov chain (DTMC) which incorporates input

parameters representing the node’s sleep/active dynamics and packet generation rate,

as well as estimated parameters describing traffic routing and channel contention. The

latter are obtained using a fixed point approximation procedure which is computationally

expensive and does not allow for large-scale networks to be represented. Nevertheless, the

technique provides interesting results illustrating the trade-off between delivery delay and

energy expenditure as the sensor dynamics in sleep/active mode vary; furthermore, the
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accuracy of the numerical technique is validated through comparison with simulations.

In order to deal with the aforementioned scalability issue in [11], the approach is modified

in [22] using a fluid representation of all quantities that depend on the specific location

within the network topology, including sensor, routing and traffic densities. Although the

approach captures non-homogeneity in sensor deployment, it assumes a particular routing

policy and channel contention model. Moreover, some of the results are numerical and

not in closed-form.

The impact of node mobility on the performance of wireless sensor networks is studied

in [23], where three types of queueing networks with immobile GI/G/1 queues are used

to capture mobility: gated nodes which are probabilistically disconnected from the en-

tire network; intermittent links that fail probabilistically; and intermittent servers which

experience a vacation effect that allows them to receive but not transmit packets. Differ-

ent performance measures of interest are obtained using the Queueing Network Analyser

(QNA) tool [24]. A similar approach is followed in [25] but, differently from [23], the

end-to-end delay is obtained using a Jackson network [26,27] approximation.

Queueing theoretic techniques provide a microscopic view of network dynamics which

requires intensive computations and may not always be scalable. Conversely, random walk

and Brownian motion based approaches focus on characterising the route followed by a

packet from its source to destination, without regard to queueing delays at intermediate

nodes. This macroscopic view often leads to closed-form results which can be used in

conjunction with approximate queueing models [28] in order to derive more accurate end-

to-end performance measures. The relation between hop counts and network performance

has been studied before (e.g., for multi-hop wireless networks [29]), and it is outside the

scope of the present study.

2.1.2. Random walk

A random walk is a stochastic process describing the motion of a particle that takes random

jumps at either discrete or continuous instants in time. The analysis of packet travel time

in random multi-hop networks is related to first passage (hitting) times of random walks.

In this area there are many results for special cases of network topologies.

In [30], the mean and variance of the hitting time are obtained for a torus-lattice network

graph when the next node visited is selected at random among all neighbours leading to an

unbiased walk. The analysis indicates that in such networks the probability distribution

of packet delivery time is approximately geometrically distributed. In [31], the probability

of an unbiased traveller visiting a particular node in a given step is derived for a 2D

grid-based sensor network.

Random walks on random geometric graphs [32] are used in [33, 34] to model uniform
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wireless networks in which nodes with fixed transmission range are deployed uniformly

at random over a given area. The results indicate that unbiased routing achieves poor

performance because the walker may “orbit” around the target node for a long time before

attaining it.

The first passage time for multiple independent and unbiased random walks on a con-

nected network is considered in [35], and it is shown that the mean first passage time

converges to the shortest path between the source and the destination as the number of

walkers approaches infinity.

The average time to locate a node at the origin of a chain by multiple searchers switching

probabilistically between random walks and long jumps is analysed in [36] showing how

this alternate motions can be conducted to optimise the search. In the context of wireless

environments [37], a random walk with jumps is used to represent a network in which

an intermediate node may decide to increase its transmission power to reach a neighbour

beyond its nominal transmission range in order to explore different regions of the network.

The impact of the jump probability on the hitting time and energy consumption for

a single packet search over a line, square grid and random geometric graph has been

evaluated in [37].

There is a large body of literature on the passage time of random walks on random

graphs (e.g., [38–41]); most of these studies, however, utilise tools from graph theory that

are outside the scope of the present research. In general, random walk analysis is difficult

when one studies non-homogeneous networks [42,43] or if the distribution, rather than the

expected value, of the hitting time is desired.

2.1.3. Brownian motion

Brownian motion is a scaling limit of the random walk obtained by letting the step size

approach zero. The time evolution of the probability density function (pdf) of the position

of a particle undergoing Brownian motion is described by a second-order partial differential

equation known as the diffusion equation. It has been used traditionally to represent

packet flow in communications systems and traffic flow in transportation systems [44–46]

and more recently to model packet traversal through large-scale networks [7–9, 47, 48].

In the remainder of this section we survey the literature on using Brownian motion to

approximate search problems in random environments, including the search by a packet

for a destination node in a large multi-hop network. An outline of the derivation of the

diffusion equation is provided in Appendix A.

The approach adopted in this research is based on the work of Gelenbe [7,8] where the

average travel time to a destination node in an infinitely large homogeneous multi-hop

wireless network is analysed using a mixed discrete and Brownian motion model. It is
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shown that the travel time is finite on average even with inaccurate routing information

and packet losses, provided that a time-out mechanism is inserted to destroy the ongoing

packet after a predetermined time, and replace it with a new packet that starts at the same

source and proceeds at random and independently of its predecessor. Since the network is

infinite, the time-out also protects the packet from spending an unreasonably long time in

remote areas from which it may never return. By using a randomly different travel path,

the new packet takes a distinct path from its previous incarnation, increasing its chances

of reaching the destination.

The diffusion model [7, 8] is generalised in [9] to multiple packets which are simultane-

ously but independently sent out in the quest for the same destination node. The analysis

is based on the use of multiple Brownian motions coupled by the total rate of attrac-

tion exerted on each diffusion process by all other diffusions due to the fact that one of

them may have reached the destination node. Closed-form expressions for the average

travel time and energy consumption are obtained in terms of the distance between source

and destination, the number of transmitted packets, the average time-out, the routing

uncertainty, and the loss rate of packets.

The approach followed in [7–9] is based on transforming the transient process of trav-

elling from the source to the destination just once to an ergodic process in which the

packet goes from the source to the destination, stops there for a short time which is an iid

positive random variable, and the travel restarts and is repeated indefinitely. This trans-

formation facilitates the computation of the mean travel time and energy consumption

from the steady-state solution of the synthetic ergodic process, but it does not allow for

the distributions to be evaluated.

The time-dependent solution for the passage time using Brownian motion is considered

in [48] where, differently from Gelenbe’s model, losses and retransmissions are assumed

to occur at specific distances from the destination that represent specific intermediate

nodes. Thus Brownian motion is used as a model of packet propagation from one hop

to another, whereas in [8, 9] it is used to represent the route followed by a packet from

source to destination. By assuming absorbing barriers with jumps at intermediate nodes

and applying previous results [49] for the distribution of hitting time of pure Brownian

motion, the authors in [48] derive the Laplace transform (LT) of the distribution of the

total delivery delay for finite but non-homogeneous node population.

Different Brownian motion based search strategies over a sensor network are considered

in [47], and it is shown that a source and sink driven “sticky search”, where both the

source and destination send probes into the network that leave trails, can match the

delivery success probability of a spatial periodic caching scheme without requiring much

memory or infrastructure support. The analysis in [47] utilises results on intersection

exponents for Brownian motion [50–52] where the probability of two groups of Brownian
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particles never intersecting over a time interval has been obtained. Scaling properties of

hitting times for a circular target area located at the centre of a larger circle with reflecting

boundaries are derived in [53]. The analysis suggests that when the source node is close

to the target area, a Brownian motion scheme first analysed in [54] achieves mean hitting

time on the same order as a random direction forwarding approach; otherwise, the latter

achieves better performance.

The first passage time problem has been studied in physics, biology and ecology and

some of the work done in these areas can be applied to communication networks. In [55]

bounds and approximations are derived for the average travel time of a single searcher that

alternates between local diffusive search and fast directed relocation (known as flights) in

order to find any of Poisson distributed targets. It is assumed that the target can only be

located during the diffusion phase, and that the searcher moves with a constant velocity

during the ballistic phase. The authors show that the travel time can be minimised by

appropriately choosing the waiting times in the slow and fast regimes. In [56], it is shown

that an inverse square power-law distribution of flight lengths (i.e., Lévy flights) is optimal

for searching sparsely and randomly distributed revisitable targets, and that Brownian

movement is sufficiently efficient for locating abundant targets. Such intermittent search

mechanisms, which avoid oversampling [57] in the sense that already visited sites are

not revisited continuously, have been observed in animals’ hunting patterns [58, 59] thus

confirming the Lévy flight foraging hypothesis [60]. In other contexts, such as navigation in

small-world networks [61,62] and transport systems [63], studies have shown that efficient

routing can be performed by links having a few long-range connections following Lévy

distribution in addition to regular short-range connections.

Another related model [64] in biological physics investigates the first passage time dis-

tribution of a diffusing particle which may overshoot its destination, i.e. it diffuses away

before being absorbed. The analysis suggests that there are two basic regimes: diffusion

dominated and absorption dominated. In the former, most of the travel time is spent

delivering the particle by diffusion to the destination, whereas in the latter the travel time

is spent mostly wandering around the target and waiting for successful absorption. This

model could be applicable to a wireless sensor network in which nodes are periodically

put into a sleep mode, to reduce energy consumption, which causes the unavailability of

the nodes and, in turn, the possibility of a packet overshooting its destination. This could

capture, for instance, the case where a route discovery fails because the destination node

is asleep.
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2.1.4. Conclusions

We have reviewed previous research efforts on analysing packet delivery time and en-

ergy consumption in large wireless ad hoc and sensor networks. The discussion covered

queueing, random walk and Brownian motion models. Although queueing theoretic ap-

proaches can accurately capture network dynamics, they are computationally expensive

and may not always be scalable; furthermore most of their results are numerical and not

in closed-form. On the other hand, random walk and Brownian motion provide a high-

level abstraction of packet forwarding without regard to queueing at intermediate nodes,

i.e., they yield result for the total number of hops travelled from source to destination.

This macroscopic approach can yield simple analytical results that can be used in con-

junction with approximate queueing models in order to obtain more accurate end-to-end

performance measures. Random walk and Brownian motion have been applied in the lit-

erature to describe the behaviour of biological, chemical, transport and social networks,

and we have highlighted the analogies between some of the work done in these areas and

the problem under consideration. While random walk techniques need to make assump-

tions about the network structure and routing policy, Brownian motion methods represent

these two aspects by a continuous diffusion process, characterised by a drift and a variance

parameters, which simplifies the analysis considerably. Most previous work has focused

on spatially homogeneous environments that may not represent many applications. Fur-

thermore, the energy aspects of sending redundant packets in large networks have not

been addressed in the literature. Thus our research will focus on these two issues, namely

spatial non-homogeneity and packet redundancy, using a Brownian motion approach.

2.2. Coding techniques for packet networks

2.2.1. Erasure coding

In an error prone communication environment, it may be necessary for the source node

to send redundant packets that follow different paths to the destination node in order

to mitigate the effects of packet losses and uncertainties in routing information. This

can be implemented through erasure coding whereby the source organises the data it

transmits into successive blocks of k packets and encodes them into N ≥ k packets such

that the original block can be reconstructed at the receiver from a k-subset of the N

packets, which is possible with many existing coding algorithms. In the special case where

k = 1, the source sends multiple identical copies of a single packet so that the packet

is considered to be successfully delivered when at least one of the copies reaches the

destination node. In [14], erasure coding has been shown to reduce delay variations in

comparison to replication in delay-tolerant networks (DTNs) under the assumption that
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the travel time of each individual packet is an independent and identically distributed (iid)

random variable with exponential or Pareto distribution. However, the impact of these

packet redundancy schemes on energy consumption has not been considered in [14] and,

furthermore, it is not clear if these results hold under more realistic assumptions.

2.2.2. Network coding

NC was first introduced in [4] showing that the multicast capacity of networks can be

achieved by allowing intermediate nodes to combine received packets instead of simply

relaying them. In contrast to traditional store and forward networks which aim at avoiding

collision of traffic streams as much as possible, NC encourages mixing of information at

intermediate nodes which has the advantages of increasing network throughput, saving

bandwidth and providing load balancing and security to the network [5]. In particular, NC

can reduce the maximum bandwidth requirements of certain links provided that redundant

data is sent over alternate paths so that destination nodes may then reconstruct the original

packet flows. Thus NC can reduce the peak traffic rates, but it will require traffic to be

distributed on a larger number of paths [65]. Furthermore, with its ability to disguise

the content of packets, NC provides a new form of system security beyond encryption

by rendering the traffic streams traversing networks much more difficult to decipher, for

instance if none of the flows taken singly can be decoded by itself [66–69]. NC can be

based on encoding packets from the same flow (intra-flow coding), or from distinct flows

(inter-flows coding).

Intra-flow network coding

Intra-flow NC generalises erasure coding by allowing not only source nodes but also in-

termediate nodes to combine packets within a single flow. Consequently, each packet can

contain some information about other packets in the flow and a node need not keep track

of packets which may have been missed by the next hop or the destination. The advan-

tages of this method are therefore enhancing reliability by not relying on the reception of

any particular packet and enabling multiple destinations of a single flow to share network

resources.

Most existing work on intra-flow NC assumes a network model in which all participating

nodes send out random linear combinations [70] of all previously received packets, which

is known as random linear network coding (RLNC). An algebraic formulation of RLNC in

the context of constant data rate sources and deterministic links capacities is introduced

in [71], a fluid-flow analysis of the propagation of packets carrying innovative information

in lossy networks with stochastic packet arrivals is presented in [72], and a distributed

implementation is proposed in [73].
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There is a large body of literature on the queueing performance of RLNC under different

network models. A bulk-service queueing model for a single source-destination pair with

lossy channel is presented in [74], and numerical results indicate that using a fixed coding

block size increases delay in comparison to traditional retransmission schemes. In [75], the

impact of limited buffer capacity on delay and loss performance of RLNC over a single-

hop and a two-link tandem network is analysed. Simulation results are also provided to

evaluate the effect of the coding field size showing that a relatively small one achieves

comparable performance to an infinitely large field. Such a coding scheme, which does

not require feedback, can outperform automatic repeat request (ARQ) when feedback is

unreliable or too slow. A queue backlog analysis of single-hop multicast with RLNC is

presented in [76] and it is shown that coding is order-optimal with respect to the number

of receivers. An online coding and queue management algorithm based on acknowledging

degrees of freedom rather than actual packets is proposed in [77, 78], and the analysis of

the coding policy shows that the queue size grows more slowly with load than a standard

acknowledgement strategy. This acknowledgement scheme has also been analysed in [79]

for a wireless channel with delayed feedback.

In [80], the multicast delay and throughput trade-off with intra-flow coding is considered

for a slotted-time collision based wireless network, showing that coding improves through-

put and energy costs at the expense of higher packet delays as compared to plain routing.

However, the results are obtained under the assumptions of one-bit packet lengths and

saturated queues at source and relay nodes.

Inter-flow network coding

This type of NC allows packets belonging to distinct flows to be combined together when

they pass through a common node, thus enabling higher throughput for the most common

scenario where only unicast flows are present in the network. As an example, consider the

directed butterfly network [4] depicted in Figure 2.1, which has two independent unicast

packet flows x and y between the source-destination pairs (si, ti), i = 1, 2. If the capacity

of the link nc → nf is c(nc, nf ) and the traffic rate of x and y are λx and λy, then

the shared link will saturate if λx + λy ≥ c(nc, nf ). With inter-flow NC, however, node

nc can transmit the coded flow x ⊕ y along the bottleneck link to node nf as long as

max(λx, λy) < c(nc, nf ), and nf then forwards it to both destinations. Receivers t1 and t2

can then resolve coded information by receiving redundant flows through links s2 → t1 and

s1 → t2, respectively. Obviously, if all links have the same capacity c then the achievable

traffic is λx + λy < c with routing, while with NC it will be λx < c, λy < c.

Despite its potential throughput gains, performing inter-flow NC is difficult [81], since

intermediate nodes need to ensure that incoming flows can be decoded at all destinations
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Figure 2.1.: A directed network with two independent unicast sessions x and y between
the source-destination pairs (si, ti), i = 1, 2.

before combining flows together. This has motivated the development of protocols that

restricts coding to packets that can be decoded at their respective next hops [82]. From

a performance perspective, it is also difficult to analyse inter-flow NC due to the complex

queueing behaviour resulting from joint servicing of multiple flows which leads to coupled

queueing problems [83]. The impact of inter-flow NC on QoS introduces additional coding

delays in nodes, synchronisation delays for jointly coded streams, and decoding delays due

to processing and synchronisation at the network output. In the rest of this section, we

review previous work on performance analysis of NC of multiple stochastic flows, and for

brevity we refer to “inter-flow NC” as simply “NC”.

The trade-off in NC between delay and transmission costs (bandwidth and energy) under

stochastic packet arrivals has been studied [84–87] for the two-way relay example shown

in Figure 2.2. In this network, nodes A and B exchange their packets a and b respectively,

through a relay R. With NC, the relay can broadcast a single packet a⊕ b, instead of two

successive packets, and each receiver decodes by XOR-ing the received packet with its own

hence reducing the total number of transmissions from 4 to 3. This scenario has received

much attention in the literature because of its simplicity and the fact that packets do not

experience decoding delay at the output.

In [84], the energy delay trade-off in the two-way relay network is analysed assuming

that the relay accumulates packets from one direction and sends them either after pack-

ets from the other direction arrive or the number of packets waiting exceeds the buffer

capacity. Packet transmission is then assumed to occur instantaneously (i.e., zero trans-

mission delay). The analysis indicates that in the case of even traffic load, the average

delay must tend to infinity in order to achieve minimum energy consumption. A similar

queueing analysis for slotted channel is presented in [85]; it is assumed that if the relay has

packets from only one source and the buffer capacity is not exceeded, then it transmits
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Figure 2.2.: The two-way relay network.

an un-coded packet with some probability. On the other hand, a packet arriving at a

full buffer triggers an immediate transmission. Numerical results in [85], depicting the

locus of delay and energy when varying the transmission probability of un-coded packets,

resemble those reported in [84]. The delay and throughput performance of the two-way

relay network under slotted ALOHA is considered in [86], showing that NC does not of-

fer significant gains when the traffic at the relay node is unbalanced. Bounds on energy

consumption based on queues with negative customers [88, 89] have been derived in [87].

In this model, coding of two packets is represented by a negative customer which, upon

arrival at a non-empty queue, immediately removes another customer from the queue. All

of the above results were obtained using simple assumptions such as zero [84,87] or slotted

transmission time [85,86], and they have not been extended to multiple hops.

The stability and energy consumption of NC in a wireless tandem network with slotted

transmission are considered in [90], where it is assumed that intermediate nodes can ei-

ther transmit self-generated packets or encode two relay flows received from neighbouring

nodes. The authors consider both synchronous NC (SNC) and opportunistic NC (ONC)

which represent two extreme cases with respect to delaying packets for NC. In the former,

each node maximises its coding gain by forcing each packet in one flow to be encoded

with a packet of the other flow that passes through that node with the encoding being

carried in sequence for each flow. In the latter approach, a node attempts to minimise

its response time by forwarding packets without coding if only one flow is present. The

results obtained in [90] show that immediate transmission of first available packets yields

higher throughput as compared to waiting for additional packets to arrive before coding,

but this gain comes at the expense of reducing energy efficiency.

In SNC, which is the simplest and also most naive approach to NC, we can consider

that the encoding process acts as a server which waits for the arrival of one packet from

each flow before it can start encoding, and is idle when its input buffer does not contain

at least one packet from each flow. A related model is studied in [91] for manufacturing

systems, and it is shown that this queueing system is intrinsically unstable so that the

queueing delay per flow tends to infinity when the input buffer is unlimited. In other words

the waiting time process cannot converge in distribution to a non-defective limit. Most
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subsequent work which investigated assembly-like processes has avoided the instability

problem by assuming limited capacity buffers [92–94] or by controlling the input flow of

items [95]. The taxicab problem [96] where taxis and customers can only leave the system

together is also closely related to this scheme. In the context of NC, the performance of

SNC has been discussed in [90,97,98].

The delay performance of a wireless lossy butterfly network which employs opportunistic

NC and dynamic buffer allocation at the relay node is evaluated in [99] using a DTMC

model which is solved numerically. The authors show that NC provides significant delay

gains in moderate to heavy traffic regimes, and they present a joint intra and inter-flow

coding policy which further improves performance in low traffic conditions. In [100], the

achievable rate regions under QoS constraints are computed for a butterfly network with

and without NC. However, the analysis is based on a fluid flow model that does not

capture the bursty nature of packet arrivals which is essential for understanding NC gains.

End-to-end QoS bounds for both NC and plain forwarding have been derived in [101]

using deterministic network calculus, and the results show that coding can improve the

worst-case delays even in topologies where no throughput gains are expected. A similar

approach for modelling NC using stochastic network calculus is proposed in [102]. Network

calculus, however, can only provide bounds that may not be tight in practice.

The performance of NC in single-hop wireless erasure channels has been studied in

[103, 104]. In [103], the delay benefits of NC for multiple file downloads from a sin-

gle transmitter to distinct receivers are considered, and it is shown that coding packets

within files improves delay and throughput performance whereas coding across files is not

favourable. Throughput analysis of NC for multiple multicast transmissions is presented

in [104], and the results indicate that coding across all the sessions can improve throughput

under certain conditions which depend on the number of sessions, the number of receivers

and the reliability of the channel.

A different line of research on NC of multiple stochastic packet flows develops throughput

optimal control policies, based on differential backlog algorithms [105], that can stabilise

the network traffic [81,83]. The analysis of such algorithms, however, focuses on stability

properties rather than delay performance and utilises tools from the Lyapunov Stability

Theorem that take into account the coupling between queues due to NC.

2.2.3. Conclusions

In the following we summarise the main findings of our literature survey on coding in

packet networks.

Coding and replication at source nodes have been shown to improve delivery time in

large networks [14], but the cost in terms of energy utilisation has not been addressed
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before. Furthermore, previous results were obtained under simplified assumptions that do

not include the effect of packet losses. The performance of intra-flow NC has been studied

extensively in the literature, and it is well understood. It has been shown to be capacity-

achieving for single unicast and single multicast connections over wireline and wireless

networks [72]. More explicitly, if a network can support a unicast rate between a source

and each destination node when no other destinations are sharing the network resources,

then NC can support the maximum multicast rate to all destinations. Conversely, it

is generally not possible to achieve this maximum rate if only routing is allowed at the

interior nodes of the network. Intra-flow NC, however, does not provide additional gain

when multiple unicast sessions are present in a network.

For inter-flow NC under stochastic packet arrivals, there are different strategies that

can be employed. The simplest and also most naive strategy would require each packet

in each flow be encoded with a packet of each of the other flows that pass through that

node. This has been shown to incur very large delay and loss penalties particularly when

the network is lightly loaded [90, 97, 98]. A more practical approach is to encode packets

opportunistically [90] with the option of forwarding un-encoded packets if other packets are

not available immediately for encoding. Also, time-outs can be employed by intermediate

nodes in order to modify coding opportunities so that a compromise between latency and

transmission costs can be achieved.

Despite the significant research efforts on characterising the performance of inter-flow

NC, a complete understanding of the resulting trade-offs between delay, throughput and

energy consumption is far from being reached. This may be partially attributed to the

lack of accurate analytical models that incorporate the additional delays resulting from

NC: synchronisation delays for jointly coded streams, higher transmission delays in links

due to combining packets of different lengths, and decoding delays due to processing and

synchronisation at the network output. While the effect of coding delays at intermediate

nodes has been considered previously [84,85,90], the additional transmission costs due to

coding packets of different sizes and sending remedy packets to assist in decoding, as well

as the synchronisation constraints at the receivers have been largely ignored. Indeed, most

theoretical studies focus on the two-way relay scenario [84–87, 90] in which no decoding

delay is incurred, and they assume zero or slotted transmission times which may not

capture the overhead of NC. On the other hand, the end-to-end performance of NC in

multi-hop networks have been analysed based on fluid-flow models [100] which may not

be appropriate for light traffic conditions; network calculus [101,102] which only provides

bounds that may not be tight in practice; or large Markov chains which are only solved

numerically [99]. Consequently, there is a need to expand the classical theory of delay

models for data networks [16,17,106] to address the requirements of NC.
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3. A diffusion model for packet travel in

non-homogeneous networks

In this chapter we consider the travel process of a packet from a given source to a des-

tination which is at distance D from the packet, but whose whereabouts are unknown,

or imprecisely known. Thus the packet may not have precise information about which

direction it should pursue as it moves from one hop to the next, and we suppose that

the destination node is recognised only when the packet gets close to it, typically one hop

away.

Errors in routing information can be due to node failures, infrequent routing table

updates which do not keep up with changes in the state of links and nodes, intermittent

effects in wireless links that disable certain one-step connections and invalidate the routing

tables, and node mobility which can easily invalidate previous routing information. In

such circumstances, one can view routers as probabilistic entities [7], and specific schemes

for discovering viable paths have been developed to deal with these circumstances [13].

Furthermore, when the network is very large, the packet may end up being dropped by

its own finite time-out, and it is also more likely to be lost due to an error or failure in

the communication layer or due to buffer overflows in some router.

We therefore study whether a packet ultimately succeeds in reaching its designated

destination, how long this will take, and how much energy may be expended, in the context

of a network with imperfect routing tables, and non-homogeneous network characteristics.

We use a Brownian motion model, along the lines of previous work [8, 9], which accounts

for network non-homogeneity regarding routing and packet loss rates.

This work is motivated by three interesting applications. The first case is related to

defending a destination node against attacks taking the form of packets which may carry

a virus or a worm that can be detected via deep packet inspection (DPI) at some inter-

mediate nodes. Thus as a packet approaches the destination node it may be inspected

by intermediate protecting nodes and dropped if it is viewed as a threat; however, the

source of the packet will use a time-out to attempt sending the attacking packet forward

again and it is interesting to see whether the attacker will eventually be successful. The

second one relates to a wireless network where remote areas, away from where the source

and destination nodes are located, perhaps have poor wireless coverage so that the packet
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losses become more frequent as the packet “unknowingly” (due to poor routing tables for

instance) meanders away from the source and destination node. A third example of non-

homogeneous wireless network occurs when the packet progresses faster as it approaches

the destination, for instance when directional information such as a radio signature be-

comes stronger as the packet approaches the destination node.

In the sequel we will model a packet’s motion towards a destination node in an in-

finite random non-homogeneous network, with packet drops that will stop the packet’s

progress resulting in a subsequent time-out retransmission of the packet from the source.

Generalising the work in [9], we obtain in Section 3.1 an exact expression for the average

time and energy that it takes the packet to eventually find the destination node, based on

a non-homogeneous Brownian motion model enhanced with some useful point processes

representing the relaunch of an aborted or interrupted search. We develop an analytical

solution technique based on a finite but unbounded number of internally homogeneous

segments, yielding the average travel time and the energy expended. Then, in Section 3.2,

the results are applied to the three cases of interest that we have outlined. We also

present some approximations which simplify the analytical results when the network has

small routing errors. Furthermore, we show how the model can be applied to finite-size

networks. Finally, we provide our concluding remarks in Section 3.3.

3.1. Modelling the travel process

Although traditionally most models in computer systems and networks are discrete [107],

here we consider a continuous distance Y (t) of the packet to its destination at time t ≥ 0.

The packet starts at distance Y (0) = D and the travel process ends at some time T defined

by:

T = inf{t : Y (t) = 0},

We model the distance {Y (t) : t ≥ 0} as a diffusion process [6,108] which is a continuous-

time Markov process with continuous state space in which small changes occur during small

intervals of time, i.e., for small ∆t and Y (t) = z the process satisfies the condition:

Pr[|Y (t+∆t)− Y (t)| > ϵ|Y (t) = z] = o(∆t)

Furthermore, the increment Y (t + ∆t) − Y (t) is approximately normal with mean and

variance:

E[Y (t+∆t)− Y (t)|Y (t) = z] = b(z, t)∆t+ o(∆t)

E[{Y (t+∆t)− Y (t)}2 − {E[Y (t+∆t)− Y (t)]}2|Y (t) = z] = c(z, t)∆t+ o(∆t)
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In other words, the limits of the infinitesimal mean and variance of the conditional incre-

ment of Y (t) exist and are equal to b(z, t) and c(z, t), respectively. We assume that the

process is time homogeneous so that

lim
∆t→0

E[Y (t+∆t)− Y (t)|Y (t) = z]

∆t
= b(z) ,

lim
∆t→0

E[{Y (t+∆t)− Y (t)}2 − {E[Y (t+∆t)− Y (t)]}2|Y (t) = z]

∆t
= c(z)

When b(z) < 0, on average the packet gets closer over time to the destination node, but

b(z) ≥ 0 is also possible.

Let the random variable s(t) represent the state of the packet at time t ≥ 0; s(t) ∈
{S,W,L,P} where:

• S: the travel is proceeding and the packet’s distance from the destination is Y (t) >

0. The probability density function (pdf) of the distance Y (t) is represented by

f(z, t)dz = Pr[z < Y (t) ≤ z + dz, s(t) = S].

• W: the packet’s life-span has ended, and so has its travel. This can happen because

the packet was destroyed or became lost, and the source was informed via the time-

out which is assumed to be exponential with parameter r. After an additional

exponentially distributed delay of parameter µ, a new packet is placed at the source

and a new travel immediately begins. We write W (t) = Pr[s(t) = W].

• L: the packet is lost, and the travel is interrupted until a new packet can be sent

out; for small ∆t and Y (t) = z > 0, this happens with probability λ(z)∆t+ o(∆t),

where λ(z) ≥ 0 is the packet loss rate at distance z. Information about the loss of

the packet will be available through the time-out effect; thus the time spent in this

state is exponentially distributed with parameter r, after which the travel process

enters state W. We denote L(t) = Pr[s(t) = L].

• P: the packet has reached its destination and the travel process ends. However,

as an artefact to construct an indefinitely repeating recurrent process in order to

simplify the computation of E[T ], it is assumed that after one time unit the travel

process restarts at the source and a new packet is sent out. We will use the notation

P (t) = Pr[s(t) = P].

Figure 3.1 shows a high level diagram of the model illustrating the different states that

a packet can be in during its travel from a source to a destination. In this abstract rep-

resentation, the diffusion parameters b(z) and c(z) capture quality of routing as well as

packet losses that can be repaired by intermediate network nodes (e.g., due to interfer-

ence). On the other hand, the loss parameter λ(z) represents packet losses that require
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Figure 3.1.: A schematic representation of the diffusion model.

retransmission by the source node, for instance due to node failure, buffer overflow or

malicious packet dropping by a relay node.

Notice that P is a fictitious state that we use to create a recurrent random process

which indefinitely repeats itself. The average total travel time E[T ] is the average time

that it takes from any successive start of the travel until the first instance when state P

is reached again. Let P = limt→∞ P (t), then:

P =
1

1 + E[T ]
, E[T ] = P−1 − 1 (3.1)

Thus we can compute E[T ] by solving the model for P , then applying the above equation.

3.1.1. Equations in the non-homogeneous medium

As discussed earlier, we model the packet’s movement in a non-homogeneous network by

the pdf f(z, t) that represents the distance of the packet at time t ≥ 0, and assume that

it satisfies a modified version of the distance dependent diffusion equation (A.4) in order

to take account of the discrete probabilities. We write the equations that the probability

density function f(z, t), z > 0, and the probability masses L(t), W (t) and P (t), t ≥ 0 will
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satisfy:

∂f(z, t)

∂t
=

1

2

∂2[c(z)f(z, t)]

∂z2
− ∂[b(z)f(z, t)]

∂z
− (λ(z) + r)f(z, t)

+ [P (t) + µW (t)]δ(z −D)

dL(t)

dt
= − rL(t) +

∫ ∞

0
λ(z)f(z, t)dz

dW (t)

dt
= − µW (t) + r[L(t) +

∫ ∞

0
f(z, t)dz]

dP (t)

dt
= − P (t) + lim

z→0+

[1
2

∂[c(z)f(z, t)]

∂z
− b(z)f(z, t)

]
1 = P (t) +W (t) + L(t) +

∫ ∞

0
f(z, t)dz (3.2)

where the distance dependent behaviour of the packet is captured in the drift b(z), in-

stantaneous variance c(z) as well as loss parameter λ(z). In effect, this is equivalent to

also letting the time-out parameter r be distance dependent because its distance depen-

dent part could be included in λ(z). On the other hand, if the time-out has operated

then the delay (of average value 1/µ) before the search is started again is independent of

the distance where the time-out occurred. Note that in practice the time-out is incorpo-

rated in the packet itself so that intermediate nodes can discard the packet if the time-out

has elapsed, and similarly the source will know the time-out value and eventually it will

retransmit a packet whose time-out has elapsed.

3.1.2. Piece-wise approximation for non-homogeneity

We simplify the model of a non-homogeneous medium by considering a finite but un-

bounded number of “segments” that have different parameters for the Brownian motion

describing the packet’s movement as a function of its distance to the destination node,

while within each segment the parameters are the same. The first segment is in the im-

mediate proximity of the destination node, starting at distance z = 0. Each segment

may have a different size, and we assume that there are a total of m < ∞ segments. By

choosing as many segments as we wish, and letting each segment be as small as we wish

(all segments need not be of the same length), we can approximate as closely as needed

any physical situation that arises where the packet’s motion characteristics vary over the

distance of the packet to the destination node. We also show that this discrete represen-

tation leads to a neat algebraic “product form” representation of the average travel time,

and that it thus provides a useful analytic form that offers a more intuitive representation

of the analytical results.

We denote by 0 ≤ Zk < ∞ the boundary between the k-th and (k + 1)-th segments
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Figure 3.2.: Illustration of the piece-wise approximation for a non-homogeneous packet
travel.

with Z0 = 0. The last segment goes from Zm−1 to +∞, and we assume that both m and

Zm−1 are finite but unbounded. Thus for greater accuracy in representing the medium

we can take as many segments as we wish, and they may be as small as needed, but they

are all finite except the last segment. Thus for 0 ≤ k ≤ m, the k-th segment represents

the range of distances Zk−1 ≤ z < Zk, and let Sk = Zk − Zk−1 denote its size. We use n

to denote the segment number in which the source node is located, i.e. Zn−1 < D ≤ Zn.

The piece-wise approximation is illustrated in Figure 3.2.

If we use the following notation:

{f(z, t), b(z), c(z), λ(z)} = {fk(z, t), bk, ck, λk} , Zk−1 < z ≤ Zk

Then the differential equation representing the stationary solution of the location depen-

dent diffusion equation for any segment k ̸= n is given by:

0 =
ck
2

d2fk(z)

dz2
− bk

dfk(z)

dz
− (λk + r)fk(z) (3.3)

while the equation for the segment where the source is located is:

−[P + µW ]δ(z −D) =
cn
2

d2fn(z)

dz2
− bn

dfn(z)

dz
− (λn + r)fn(z) (3.4)
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We will also have:

rL =

m∑
k=1

λk

∫ Zk

Zk−1

fk(z)dz (3.5)

µW = r[L+
m∑
k=1

∫ Zk

Zk−1

fk(z)dz] (3.6)

P = lim
z→0+

[
c1
2

df1(z)

dz
− b1f1(z)] (3.7)

and the normalisation condition:

1 = P +W + L+

m∑
k=1

∫ Zk

Zk−1

fk(z)dz (3.8)

3.1.3. Computing average travel time

Result 3.1 The total average travel time, which is obtained by solving for P so that

E[T ] = P−1 − 1, is given by:

E[T ] =
(1
r
+

1

µ

)[√b2n + 2cn(λn + r)

b21 + 2c1(λ1 + r)

A−
nB+

n e
unSn − B−

nA+
n e

vnSn

B+
n eun(Zn−D) +A+

n evn(Zn−D)
− 1

]
(3.9)

where uk, vk are, respectively, the positive and negative real roots of the characteristic

polynomial of the stationary differential equation for the k-th segment (3.3):

uk, vk =
bk ±

√
b2k + 2ck(λk + r)

ck
(3.10)

The remaining parameters in (3.9) are computed as follows. Define:

α−
k =

ckuk − ck−1vk−1

ck(uk − vk)
, β−k =

ckuk − ck−1uk−1

ck(uk − vk)

α+
k =

ckuk − ck+1vk+1

ck(uk − vk)
, β+k =

ckuk − ck+1uk+1

ck(uk − vk)
(3.11)

Then set A−
1 = 1 and B−

1 = −1 and for 2 ≤ k ≤ n compute:[
A−
k

B−
k

]
=

[
α−
k β−k

1− α−
k 1− β−k

][
euk−1Sk−1 0

0 evk−1Sk−1

][
A−
k−1

B−
k−1

]
(3.12)

38



Then set A+
m = 0 and B+

m = evmZm, and start another computation at k = m − 1 for

n ≤ k ≤ m− 1 with:[
A+
k

B+
k

]
=

[
α+
k β+k

1− α+
k 1− β+k

][
e−uk+1Sk+1 0

0 e−vk+1Sk+1

][
A+
k+1

B+
k+1

]
(3.13)

This completes the definition of all the terms in E[T ] and the proof of (3.9) is provided in

the derivation given below. But first let us point to some useful properties of the formula

that we have derived.

Remark With n being the index of the discretisation segment that includes the source

node at D, it is interesting to see that E[T ] only depends on a set of parameters that are

computed for values of k = 1, k = n, and on two sets of algebraic iterations between k = 1

and k = n and k = m down to k = n.

Remark When the source node is located in the last segment we have m = n, and the

average travel time takes the much simpler form:

E[T ] =
r + µ

rµ
[

√
b2n + 2cn(λn + r)

b21 + 2c1(λ1 + r)
A−
n e

un(D−Zn−1) − 1] (3.14)

Furthermore, if we have a homogeneous network with m = n = 1 we end up with:

E[T ] =
r + µ

rµ
[eu1D − 1] (3.15)

as we would expect from [9].

Proof The general solution has the form:

fk(z) =

{
A−
k e

ukz +B−
k e

vkz, Zk−1 ≤ z ≤ min(D,Zk)

A+
k e

ukz +B+
k e

vkz, max(D,Zk−1) ≤ z ≤ Zk

Thus there are 2m + 2 constants to be determined from (a) the boundary conditions at

0 and +∞, (b) the continuity condition of the probability density function at D and at

the boundaries between segments, and (c) conditions obtained by integrating the defining

differential equation around D and the boundaries between segments. First consider the

case Zk−1 ≤ z ≤ min(D,Zk); to ensure continuity of the probability density function at

z = Zk−1 we have:

fk(Zk−1) = fk−1(Zk−1) (3.16)

which leads to

A−
k e

ukZk−1 +B−
k e

vkZk−1 = A−
k−1e

uk−1Zk−1 +B−
k−1e

vk−1Zk−1
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Furthermore, integrating the differential equation (3.3) from z = Zk−1− ϵ to z = Zk−1+ ϵ

and taking the limit as ϵ tends to 0 yields:

ck
2

dfk(Zk−1)

dz
− ck−1

2

dfk−1(Zk−1)

dz
= [bk − bk−1]fk(Zk−1) (3.17)

or equivalently

A−
k uke

ukZk−1+B−
k vke

vkZk−1 =

2bk − ck−1vk−1

ck
A−
k−1e

uk−1Zk−1 +
2bk − ck−1uk−1

ck
B−
k−1e

vk−1Zk−1

Solving (3.16) and (3.17), we can write A−
k and B−

k in terms of A−
k−1 and B−

k−1 as:

A−
k e

ukZk−1 = α−
k A

−
k−1e

uk−1Zk−1 + β−k B
−
k−1e

vk−1Zk−1

B−
k e

vkZk−1 = [1− α−
k ]A

−
k−1e

uk−1Zk−1 + [1− β−k ]B
−
k−1e

vk−1Zk−1

where α−
k and β−k are defined in (3.11). The above linear equations can be written in

matrix form as:[
A−
k e

ukZk−1

B−
k e

vkZk−1

]
=

[
α−
k β−k

1− α−
k 1− β−k

][
euk−1Sk−1 0

0 evk−1Sk−1

][
A−
k−1e

uk−1Zk−2

B−
k−1e

vk−1Zk−2

]

From the boundary condition limz→0+ f1(z) = 0 we have B−
1 = −A−

1 . Thus, if we

define A−
1 A

−
k , A−

k e
ukZk−1 and A−

1 B
−
k , B−

k e
vkZk−1 , then we can compute A−

k and B−
k

recursively using the matrix multiplication in (3.12). Furthermore, the stationary solution

of the differential equation for Zk−1 ≤ z ≤ min(D,Zk) becomes:

fk(z) = A−
1 [A

−
k e

uk(z−Zk−1) + B−
k e

vk(z−Zk−1)] (3.18)

where the constant A−
1 is yet to be determined. Next consider a segment k where z ≥ D,

and write the constants A+
k and B+

k in terms of A+
k+1 and B+

k+1 by solving boundary

conditions similar to (3.16) and (3.17) at z = Zk:

A+
k e

ukZk = α+
k A

+
k+1e

uk+1Zk + β+k B
+
k+1e

vk+1Zk

B+
k e

vkZk = [1− α+
k ]A

+
k+1e

uk+1Zk + [1− β+k ]B
+
k+1e

vk+1Zk

or equivalently[
A+
k e

ukZk

B+
k e

vkZk

]
=

[
α+
k β+k

1− α+
k 1− β+k

][
e−uk+1Sk+1 0

0 e−vk+1Sk+1

][
A+
k+1e

uk+1Zk+1

B+
k+1e

vk+1Zk+1

]
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Since f(z) is a probability density function we must have limz→∞ fm(z) = 0 which

implies that A+
m = 0, hence the solution for max(D,Zk−1) ≤ z ≤ Zk can be expressed as

follows:

fk(z) = B+
m[A+

k e
−uk(Zk−z) + B+

k e
−vk(Zk−z)] (3.19)

where B+
mA+

k , A+
k e

ukZk and B+
mB+

k , B+
k e

vkZk leading to the matrix multiplication in

(3.13). Note that the initialisation B+
m = evmZm , with Zm → +∞, yields the desired

solution for the last segment, that is fm(z) = B+
mB+

me
−vm(Zm−z) = B+

me
vmz.

In order to determine A−
1 and B+

m, consider the n-th segment and apply the continuity

condition of fn(z) at z = D so that:

B+
m[A+

n e
−un(Zn−D) + B+

n e
−vn(Zn−D)] = A−

1 [A
−
n e

un(D−Zn−1) + B−
n e

vn(D−Zn−1)] (3.20)

Also, integrating the differential equation (3.4) from z = D − ϵ to z = D + ϵ and taking

the limit as ϵ tends to 0 yields:

2[P + µW ]

−cn
= B+

m[A+
n une

−un(Zn−D) + B+
n vne

−vn(Zn−D)]

−A−
1 [A

−
n une

un(D−Zn−1) + B−
n vne

vn(D−Zn−1)] (3.21)

From (3.7), the probability P is given by:

P =
c1
2
(u1 − v1)A

−
1 =

√
b21 + 2c1(λ1 + r) A−

1 (3.22)

Substituting (3.6) into (3.8) yields:

P + µW

(
1

r
+

1

µ

)
= 1 (3.23)

Now solving the system of linear equations (3.20)−(3.23) we can determine A−
1 and B+

m:

A−
1 = C

[
B+
n e

un(Zn−D) +A+
n e

vn(Zn−D)
]

B+
m = C

[
A−
n e

unSnevn(Zn−D) + B−
n e

vnSneun(Zn−D)
]

(3.24)
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where

C =
rµ/(r + µ)√

b2n + 2cn(λn + r)

{
A−
nB+

n e
unSn − B−

nA+
n e

vnSn

− [1− rµ

r + µ
]

√
b21 + 2c1(λ1 + r)

b2n + 2cn(λn + r)
[B+
n e

un(Zn−D) +A+
n e

vn(Zn−D)]

}−1

Substituting A−
1 in (3.22) yields P from which the average travel time follows directly.

Result 3.2 In the special case without packet losses and without a time-out (λk = 0,

r = 0) the average travel time for bm < 0 is:

E[T ] =
n−1∑
k=1

Sk
−bk

+
D − Zk−1

−bn

+

n∑
k=1

ck
2bk

Fk [e
2bk
ck

min(D,Zk) − e
2bk
ck
Zk−1 ] +

m∑
k=n

ck
2bk

Gk [e
2bk
ck
Zk − e

2bk
ck

max(D,Zk−1)]

where

F1 =
1

b1
, Fk =

[ 1
bk

− 1

bk−1
+ Fk−1e

2
bk−1
ck−1

Zk−1
]
e
−2

bk
ck
Zk−1

Gk =
[
Fn −

e−2 bn
cn
D

bn

]
e
−2

∑k
j=n+1(

bj
cj

−
bj−1
cj−1

)Zj−1

Proof The proof is similar to that of Result 3.1 and we omit it.

3.1.4. Energy consumption

Note that both delay and energy consumption include the effect of packet loss, time-outs

and retransmission. Delay includes all the (possibly multiple) waiting times for time-outs

to operate. However we assume that energy is only consumed by a packet while it is actu-

ally being forwarded through the network, so that during wait times for retransmissions

the packet (which remains stored at the source until final successful delivery) will consume

a negligible amount of energy. Thus the average energy consumption E[J ] until the packet

reaches its destination is [9]:

E[J ] = (1 + E[T ])

m∑
k=1

∫ Zk

Zk−1

fk(z)dz (3.25)
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There may be circumstances where packet storage plays a significant role in energy con-

sumption, in which case the total energy consumption can be estimated as being propor-

tional to the total delivery time for the packet. This case will not be considered in the

present work.

3.2. Applications

In this section we present some applications of the proposed model which may arise in

different physically meaningful environments.

3.2.1. A network with small routing errors

Suppose that the routing tables are reliable except for some errors that occur infrequently.

Thus, most of the time the packet moves towards its destination at the top speed allowed

via the shortest path. We represent this case as follows:

bk = −1 + δb , ck = δc for 1 ≤ k ≤ m

where δb and δc are small non-negative numbers. Using first order approximation for

Taylor expansion we can write√
b2k + 2ck(λk + r) ≃ 1− δb +

δ2b
2

+ δc(λk + r)

and from (3.10) we have

uk =
bk +

√
b2k + 2ck(λk + r)

ck
≃

δ2b
2δc

+ λk + r

Furthermore if we multiply both the numerator and denominator of vk by uk we obtain

vk =
−2(λk + r)

bk +
√
b2k + 2ck(λk + r)

≃ −2(λk + r)
δ2b
2 + δc(λk + r)

<< 0
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or vk ≃ −∞ which yields[
A−
k

B−
k

]
≃

[
α−
k e

uk−1Sk−1A−
k−1

(1− α−
k )e

uk−1Sk−1A−
k−1

]

=

[ ∏k
i=2 α

−
i e

ui−1Si−1

(1− α−
k )e

uk−1Sk−1
∏k−1
i=2 α

−
i e

ui−1Si−1

]
, 2 ≤ k ≤ n[

A+
k

B+
k

]
≃

[
0

0

]
, n ≤ k ≤ m

Thus the total average travel time can be approximated as follows

E[T ] ≃ r + µ

rµ
[

√
b2n + 2cn(λn + r)

b21 + 2c1(λ1 + r)
A−
n e

unSne−un(Zn−D) − 1]

=
r + µ

rµ
[

√
b2n + 2cn(λn + r)

b21 + 2c1(λ1 + r)

n∏
k=2

α−
k e

unD e
∑n−1

k=1 (uk−un)Sk − 1]

≃ r + µ

rµ
[K e(λn+r)D e

∑n−1
k=1 (λk−λn)Sk − 1] (3.26)

where

K = e
δ2b
2δc

D[1 +
δc(λn − λ1)

(1− δb)2 + 2δc(λ1 + r)
]
n∏
k=2

[1− δc(λk − λk−1)

1 + (1− δb)2 + 2δc(λk + r)
]

Note that the accuracy of the above approximation improves as the errors in routing (i.e.,

δb and δc) tend to zero. If there is no uncertainty in routing, then K = 1 and the above

expression is exact.

3.2.2. Retarding an attacking packet

An example of practical interest occurs when the packet that we are modelling contains

some form of attack on the destination node, such as a virus or a worm. Also, we suppose

that the network protects this particular node by introducing a capability at intermediate

nodes to detect the contents of the packet and to drop it. This procedure usually in-

volves deep packet inspection (DPI) where intermediate nodes have to perform additional

operations, such as reading and checking the content of the packet during routing. The

specific mechanisms for malicious packet detection are out of scope of this research; we do

however realise that detection may not be perfect and this is reflected in the model. If the

packet is dropped by the defense mechanism or lost due to imprecise routing, the sender

will send the attacking packet again after a time-out. The question is then whether it is

possible to block the attack indefinitely or whether to the contrary the attacking packet
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will eventually reach the destination node that is being defended.

We first examine this problem in the context of a wired network that uses shortest path

routing. Thus if the distance D refers to the number of hops from source to destination,

and if the routers are operating properly, we will have a drift b = −1 and a variance c = 0

throughout the network. In other words, each transmission will send the packet one hop

closer to the destination node. More generally if there is no uncertainty in routing ck = 0

and bk < 0, and it can be shown that the total average travel time does not depend on

the network’s parameters for z > D:

E[T ] =
r + µ

rµ
[e

λn+r
|bn| D e

∑n−1
k=1

(
λk+r

|bk| −λn+r
|bn|

)
Sk − 1] (3.27)

Furthermore if the routers are perfect and always provide shortest distance routing we

have bk = −1 and the approximation in (3.26) is exact and reduces to:

E[T ] =
r + µ

rµ
[e(λn+r)D e

∑n−1
k=1 (λk−λn)Sk − 1] (3.28)

Now let us introduce a non-homogeneous packet drop effect by choosing an integer n to

create an acceleration in the packet drop effect and let Sk = D/(n− 1) so that:

E[T ] =
r + µ

rµ
[e(r+

∑n−1
k=1

λk
n−1

)D − 1] (3.29)

which yields the following result.

Result 3.3 If limn→∞

∑n−1
k=1 λk
n−1 = +∞ then the packet will never reach the destination

node. Otherwise it will reach it in a time which is finite on average, and with probability

one.

Figure 3.3 illustrates Result 3.3 by showing that even with a small excess, represented by

θ > 1, above the O(n) rate of increase for the loss rate λk the attacking packet’s progress

will be indefinitely impeded by the drops, despite the subsequent time-outs.

A phase transition effect

The destruction of the packet and the time-out will both relaunch the search for the

destination node allowing the attacker to improve its chances to find it. Figure 3.4 shows

that if the node is heavily defended when the attacking packet gets very close to it, then

the attack may never take place. Specifically, if the packet loss rate is log λk = 1
kρ , then

as ρ becomes very small E[T ] and the energy consumed tend to infinity despite the fact

that near the origin the search speed is greater bk = −0.25 + 0.5(k − 1)/(m − 1) and its

randomness is smaller ck = 0.5 + 0.5(k − 1)/(m− 1).
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Figure 3.3.: E[T ] versus the source segment n when the segment size Sk = D/(n− 1) and
the loss rate λk = 0.1(n − 1)θ−1 for different values of θ; bk = −1, ck = 0,
µ = 0.1, r = 0.02, and D = 100.

Figure 3.4.: E[T ] and average energy consumption E[J ] (logarithmic scale) versus ρ when

the loss rate λk = e
1
kρ , r = 0.05, D = 10, µ = 0.025 and Sk = 1, k < m = 20.

46



Figure 3.5.: Phase transition effect for average (a) travel time and (b) energy consumption
versus ρ when varying the value of ψ in λk = e1/(ρk) and bk = −eψ/(ρk); ck = 1,
D = 10, r = 0.05, µ = 0.025 and Sk = 1, k < m = 20.
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However it is interesting to see that if the packet’s speed of approach to the destination

grows faster than the rate at which the packet may be destroyed, then both E[T ] and E[J ]

remain finite and may tend to zero, while in the opposite case they will tend to infinity,

as shown in Figure 3.5, presenting a form of phase transition.

3.2.3. A neighbourhood with traps

Suppose that routers in the neighbourhood of the destination node within a distance

S contains “traps” that can identify the attacking packet and drop it. Thus we take

m = n = 2, so that E[T ] is obtained from (3.14) with λ2 = 0 and λ1 > 0:

E[T ] =
r + µ

rµ
[

√
b22 + 2c2r

b21 + 2c1(λ1 + r)
A−

2 e
u2(D−S) − 1]

Figure 3.6 shows the manner in which E[T ] sharply increases with λ1, for S ranging

between 10 and 15, D = 100, b2 = b1 = 0.25 and c1 = c2 = 1. Also µ = 1/10 and r is set

to the value that minimises E[T ] when λ1 = 0 and S = 10. Figure 3.7 shows how E[T ]

varies with S, with the same parameters and different values of λ1. The logarithmic scale

shows markedly how the average time it takes to reach the object being sought increases

by orders of magnitude as S and λ1 are increased. Figures 3.8 and 3.9, with S = 10,

b2 = 0.25 and the same set of parameters, show that even small increases (more negative)

in average speed at which the packet approaches its objective can reduce average travel

time by an order of magnitude, yet E[T ] is still very large.

Figures 3.10 and 3.11 raise the question about how to select S and λ1 together in order

to maximise the protection offered to the destination node. If we keep the same set of

parameters as previously but take λ1 to be inversely proportional to S in Figure 3.10 so

that the average number of sources of protection, placed at rate λ1, remains constant in

proportion to the protection space of size S. The mapping of time rate to spatial rate

will remain constant for any fixed value of b1 which is the speed of approach inside the

protected neighbourhood. In this context, we examine whether there is a size S∗ of the

protected neighbourhood which maximises protection, i.e., that maximises the average

time to locate the destination node. Figure 3.10 shows that there is indeed an optimum

size of protection space S = S∗ that maximises the delay before the attacking packet can

reach the destination node, and that it varies with the speed b1 of the packet inside the

protected neighbourhood. As the speed increases, the optimum size of the neighbourhood

gets smaller. This follows from the fact that we have taken λ1 ≈ 1/S: a smaller size implies

a higher “rate of protection” and hence more frequently occurring destructions of the

packet which compensate for the higher speed of the packet. However, the corresponding

maximum values of E[T ] do become smaller as the packet’s speed increases. In Figure 3.11
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Figure 3.6.: Average travel time E[T ] versus the loss rate λ1 in the protected neighbour-
hood S for S between 10 and 15 with a step size of 1.

Figure 3.7.: E[T ] (logarithmic scale) versus size of the protected neighbourhood S for
different values of loss rate λ1.
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Figure 3.8.: E[T ] (logarithmic scale) versus travel speed b1 inside the protected neighbour-
hood for different values of loss rate λ1.

Figure 3.9.: E[T ] versus size of the protected neighbourhood S for D = 100 and different
values of travel speed b1.
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Figure 3.10.: E[T ] versus size of protected neighbourhood S when loss rate λ1 = 10/S
for different values of travel speed b1. The optimum protection size needed
becomes smaller so that λ1 increases when the travel speed increases.

we set b1 = b2 = 0.25 and Λ is varied in λ1 = Λ/S2. The results are similar to the previous

ones.

For the examples of Figures 3.10 and 3.11 the average energy expenditure is closely pro-

portional to E[T ] because
∑m

k=1

∫ Zk

Zk−1
fk(z)dz ≃ 1 so that we omit showing the numerical

results for the energy.

3.2.4. Wireless networks

Another interesting case arises when a packet that moves far away from its initial point

and from the destination node, has a greater chance of being lost or destroyed. This could

represent a multi-hop wireless network deployed in a very large area; as the packet moves

to remote areas far from the region where the source and destination are located, the nodes

that the packet might visit are less likely to handle it and more likely to just discard it.

This can also represent a network where there are fewer nodes in remote areas and inter-

node communications in such areas are less reliable. As an example consider 100 segments

with S = 1 and a loss rate that increases with distance: λk = kℓ, ℓ > 0, 1 ≤ k ≤ 99,

λ100 = 100ℓ. If average speed of the packet’s motion and its second moment remain

constant with bk = 0 and ck = 1 for 1 ≤ k ≤ 100, the results with D = 10 in Figure 3.12

show that a relatively short time-out is needed to optimise the average travel time, but that
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Figure 3.11.: E[T ] versus size of protected neighbourhood S when loss rate λ1 = Λ/S2

for Λ = 0.1 to 0.5. The protection area needed to maximise the search time
decreases as Λ increases.

the resulting optimum is nevertheless very large. Similar results are shown in Figure 3.13

where the loss rate varies as λk = θk − 1, θ > 1 with Sk = 2.5, k < m = 15, but the

packet’s average speed of approach towards the destination and its instantaneous variance

improve as it gets closer to the destination node with bk = −0.25+0.5(k−1)/(m−1) and

ck = 0.5 + 0.5(k − 1)/(m− 1).

Figures 3.14 and 3.15 show the locus of E[T ] with E[J ] when the average time-out 1/r

is varied. The effect of varying the distance D between the source and destination nodes

is illustrated in Figure 3.14. It is interesting to note that when the time-out is small,

energy consumption decreases because the packet spends less time travelling, while delay

increases because many potentially successful search attempts will be interrupted by the

time-out. On the other hand, large time-outs increase both delay and energy consumption

since the source node will spend significant time before realising that a search attempt is

unsuccessful. These results indicate that both delay and energy consumption are strongly

influenced by the time-out, since a smaller value of D does not necessarily guarantee

better performance. In Figure 3.15, the loss rate increases with distance according to

λk = 10−4k/S with Sk = S, k < m and Zm−1 = 100; on the other hand the speed and

the uncertainty in motion improve as the packet approaches the destination node with

bk = −0.5 + (k − 1)/(m − 1) and ck = 0.75 + 0.25(k − 1)/(m − 1); when S decreases,
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Figure 3.12.: E[T ] versus the average time out 1/r when loss rates increases linearly and
the number of segments m = 100.

Figure 3.13.: E[T ] versus the average time-out 1/r when loss rates increase geometrically
and the number of segments m = 15.
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Figure 3.14.: The locus of E[T ] and E[J ] when the time-out 1/r is varied for D = 8, 9, 10
and 11. Loss rates increase with distance according to λ(z) = 1

4 [1 − e−z/10]
which is segmented with m = 42; bk = −0.25, ck = 1 and µ = 0.025.

increasing the loss rates but also improving the speed at which the packet reaches the

destination, energy decreases because less time is spent in actual motion, while delay

increases because in proportion more time is spent waiting and then restarting after the

packet is lost. Note that with high enough loss rates (S = 0.15) the minimum travel time

does not coincide with minimum energy consumption.

Next we examine how routing information should be distributed in a large network,

that is whether it is more useful to concentrate routing information around the destination

node or distribute them on a larger area at the cost of accuracy. To this end, we construct

networks that use “equivalent” resources by choosing b1 = −bm and bk = b1 + (bm −
b1)(k−1)/(m−1) so that

∑m
k=1 bm = 0 for different values of b1 ≤ 0. Figure 3.16(a) shows

an illustration of the compared networks where darker colours indicate areas with more

accurate routing information. The results in Figure 3.16(b) are obtained for a network

with high loss rates around the destination node defined by a continuous function λ(z) =

0.01+ze−0.35z which is segmented with m = 74; also, we set ck = 1, µ = 0.025 and D = 10

(which lies in the 53rd segment and close to the last one in the discretised function). The

figure shows that the higher the speed of the packet near the destination node (i.e., more

negative b1), the better the performance despite the fact that routing tables become less

reliable in remote areas where the source node is located. These results, however, are

specific to the above example and do not generalise to other networks.
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Figure 3.15.: The locus of E[T ] and E[J ] resulting from varying the time-out 1/r when
loss rates and travel speeds depend on the segment size Sk = S; D = 10 and
µ = 0.05.

3.2.5. Search in a bounded environment

As a final example, consider a wireless sensor network in which nodes are distributed over a

finite area of radius R ≥ D, and all packets are routed to a centrally located sink [11,22]. If

the network is sufficiently dense, then we can approximate packet routing by a continuous

diffusion process. To further simplify matters, assume a homogeneous medium so that the

average travel time can be obtained by first substituting n = 1, m = 2 and S1 = R into

(3.9) yielding:

E[T ] =
r + µ

rµ
[

eu1R +
β+
1

1−β+
1

ev1R

eu1(R−D) +
β+
1

1−β+
1

ev1(R−D)
− 1]
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source source source

destination destination destination

good bad

quality of routing decisions

Figure 3.16.: (a) Illustration of networks with “equivalent” routing resources, where darker
colours indicate more accurate routing decisions, (b) locus of E[T ] and E[J ]
when the average time out 1/r is varied for different distributions of routing
information.
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Next we need to account for the edge effect. If the boundary is reflecting, then we have

c2 = 0 and b2 < 0 yielding β+1 /(1− β+1 ) = −u1/v1 or:

E[T ] =
r + µ

rµ
[

u1e
v1R − v1e

u1R

u1ev1(R−D) − v1eu1(R−D)
− 1]

=
D

−b1
− c1

2b21
e

2b1R
c1

[
e

−2b1D
c1 − 1

]
, λ1, r = 0, b1 ̸= 0

=
D

c1
[2R−D], λ1, r, b1 = 0 (3.30)

On the other hand, if packets are discarded at the boundary then we can place an absorbing

barrier by taking limλ2→∞ β+1 /(1− β+1 ) = −1 so that:

E[T ] =
r + µ

rµ
[

eu1R − ev1R

eu1(R−D) − ev1(R−D)
− 1] (3.31)

3.3. Summary

We have constructed a Brownian motion model to represent a packet’s travel to a des-

tination node in a very large non-homogeneous network. A mixed analytical-numerical

method has been developed to compute the average packet travel time and the energy it

consumes. We observe that the degree of non-homogeneity of the network will significantly

affect the average travel time and energy consumed. The role of time-outs to optimise

these quantities has been exhibited, and several examples have been detailed. We consid-

ered wireless networks where packet losses (for instance due to insufficient wireless network

coverage) increase as the packet reaches areas which are remote from the source and des-

tination nodes. By varying the value of the time-out and studying the locus of the energy

expended versus the time taken by the search, we have noticed desirable operating areas

where both of these parameters of interest are minimised. We also modelled an attacking

packet which may be detected and destroyed as it approaches the destination node, but

in turn the attacking packet may progress more rapidly as it approaches the destination

node, for instance because a directional routing being used may become more accurate.

Comparing the increasing speed of approach of the packet with the possible steeper de-

fenses of the destination node, we observe that there may be conditions whereby despite

the use of time-outs the attacking packet may never make it to the destination node, while

in other circumstances the attack will be successful. Finally, we illustrated how the model

can be used to capture specific environments such as bounded search spaces and networks

with small routing errors.

In the next chapter, we derive the time-dependent properties of the packet travel process

in a homogeneous environment and use the analysis to obtain the distributions of the
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delivery time and energy consumption when multiple coded packets are transmitted into

the network. We also validate the accuracy of the diffusion model through a simulation

study of a grid topology.
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4. Time-dependent analysis of coded

transmission in homogeneous networks

In Chapter 3, a mixed analytical-numerical technique was developed to evaluate the aver-

age packet forwarding delay and the energy consumption for a single packet travelling in a

non-homogeneous network. While the expected performance can be useful in many cases

of interest, it is not sufficient to provide worst-case guarantees that can only be inferred

from the distribution. The latter, however, requires analysing the time-dependent be-

haviour of the packet travel process which is difficult to obtain but useful to know in order

to evaluate the effect of uncertainties in the network, such as packet losses, inaccuracies

or errors in routing, and possible energy limitations. It is also valuable if one wishes to

evaluate different means for improving performance at the price of higher energy costs by

sending out multiple duplicate packets or using erasure coding techniques.

Thus in this chapter we consider the probability distribution of both the forwarding

delay and energy consumption for a single as well as multiple simultaneously transmitted

packets. Characterising the energy aspects of sending multiple packets is particularly

challenging, since it requires knowledge of the distribution of energy expended by each

individual packet at every instant of time. As a result, we will focus on homogeneous

networks in order to make the analysis more tractable.

The remainder of the chapter is organised as follows. In Section 4.1 we obtain the time-

dependent solution of the density function of the distance of a packet to its destination,

and derive the Laplace transform (LT) of the probability density of total packet forwarding

delay, total energy consumption and the energy expended up to time t by a single packet.

The analysis is extended in Section 4.2 to the case where the source sends either duplicate

or coded packets that follow independent paths to the destination node so as to improve

reliable delivery and reduce effective travel times. The results are illustrated by several

examples in Section 4.3, where we evaluate the performance of a scheme which imposes a

limit on the total energy consumption per packet; furthermore we investigate the resulting

gain in performance, and loss in increased energy consumption, due to coding at the source

node. Section 4.4 summarises the main outcomes of the chapter.
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4.1. Time-dependent solution of the diffusion model

We will first compute the distribution of packet travel time and energy consumption by

modifying the recurrent approach in Chapter 3 where we assumed that when the packet

reaches the destination node at z = 0 it remains there for one time unit then jumps to z =

D and diffuses anew. The aim was to construct a synthetic ergodic process which simplifies

the computation of expected performance. In contrast, since we are concerned with the

time-dependent solution, we place an absorbing barrier at the destination. Because the

network is assumed to be homogeneous, we have b(z) = b, c(z) = c and λ(z) = λ. From

the above assumptions, the equations governing the pdf f(z, t) and the probability masses

L(t) and W (t) become:

∂f(z, t)

∂t
=

c

2

∂2f(z, t)

∂z2
− b

∂f(z, t)

∂z
− (λ+ r)f(z, t) + µW (t)δ(z −D)

dL(t)

dt
= − rL(t) + λ

∫ ∞

0+
f(z, t)dz

dW (t)

dt
= − µW (t) + r[L(t) +

∫ ∞

0+
f(z, t)dz]

Moreover, the probability that the packet has not reached the destination by time t is:

Pr[T > t] = L(t) +W (t) +

∫ ∞

0+
f(z, t)dz

The cumulative distribution function (cdf) of the packet travel time G(t) = Pr[T ≤ t] can

be deduced from the other quantities we defined since the probabilities sum to one:

1 = G(t) + L(t) +W (t) +

∫ ∞

0+
f(z, t)dz

and as a direct consequence we obtain the pdf of the travel time:

g(t) =
dG(t)

dt
= lim

z→0+
[−bf(z, t) + c

2

∂f(z, t)

∂z
] (4.1)

Note that from the definition of the probability current I(z, t) in (A.5), g(t) is given by

the flow of probability mass from the interval (0,∞) to the origin, namely

g(t) = − lim
z→0+

I(z, t)

The initial condition of the diffusion process is

f(z, 0) = δ(z −D)
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while the boundary conditions are

f(0, t) = 0, lim
z→+∞

f(z, t) = 0

If the LT of a function a(t) is written as:

ā(s) =

∫ ∞

0
a(t)e−stdt

where s is a complex number, then the LT of the equations describing the travel process

are:

−[1 + µW̄ (s)]δ(z −D) =
c

2

∂2f̄(z, s)

∂z2
− b

∂f̄(z, s)

∂z
− (s+ λ+ r)f̄(z, s) (4.2)

L̄(s) =
λ

s+ r

∫ ∞

0+
f̄(z, s)dz (4.3)

W̄ (s) =
r

s+ µ
[L̄(s) +

∫ ∞

0+
f̄(z, s)dz] (4.4)

ḡ(s) =
c

2
lim
z→0+

∂f̄(z, t)

∂z
(4.5)

and the normalisation condition regarding the sum of the probabilities gives:

1

s
= L̄(s) + W̄ (s) +

ḡ(s)

s
+

∫ ∞

0+
f̄(z, s)dz (4.6)

We now summarise our first result.

4.1.1. Travel time

Result 4.1 The LT of the pdf of the travel time is given by

ḡ(s) =
(s+ µ)(s+ r)

µr + s(s+ µ+ r)eω1D
(4.7)

Furthermore, for z ≥ 0 we have:

f̄(z, s) =
ḡ(s)√

b2 + 2c(s+ λ+ r)

[
e

b
c
ze

√
b2+2c(s+λ+r)

c
(D−|z−D|) − eω2z

]
(4.8)

where ω1, ω2 are the roots of the characteristic polynomial c2ω
2 − bω − (s+ λ+ r) = 0

ω1, ω2 =
b±

√
b2 + 2c(s+ λ+ r)

c
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Proof The solution of the differential equation (4.2) has the form:

f̄(z, s) =

{
Aeω1z +Beω2z, z < D

Ceω1z + Eeω2z, z > D

The boundary condition f̄(0, s) = 0 implies that B = −A, and the condition f̄(∞, s) = 0

requires that C = 0. To ensure continuity of f̄(z, s) at z = D we have A(eω1D − eω2D) =

Eeω2D so that E = A(eω1D − eω2D)e−ω2D and consequently

f̄(z, s) =

{
A[eω1z − eω2z] , z ≤ D

A[e(ω1−ω2)D − 1] eω2z , z ≥ D

which can be written concisely as:

f̄(z, s) = A
[
e

b
c
ze

√
b2+2c(s+λ+r)

c
(D−|z−D|) − eω2z

]
(4.9)

Applying the above equation to (4.5) we get:

ḡ(s) =
c

2
A(ω1 − ω2), or A =

ḡ(s)√
b2 + 2c(s+ λ+ r)

substituting A above in (4.9) yields the expression for f̄(z, s) in (4.8). Now it remains to

determine ḡ(s); integrating (4.2) in the interval D± ϵ and taking the limit as ϵ→ 0 yields:

1 + µW̄ (s) =
c

2
A(ω1 − ω2)e

ω1D = ḡ(s)eω1D (4.10)

We can also substitute (4.4) into (4.6) to obtain:

1 = sW̄ (s)
[
1 +

s+ µ

r

]
+ ḡ(s) (4.11)

and the result for ḡ(s) follows by solving (4.10) and (4.11).

Note that the average packet travel time can be found from E[T ] = − lims→0
dḡ(s)
ds .

Remark In the special case without packet losses and without a time-out (λ = 0, r = 0)

our analysis agrees with previous results [48,49,109]:

ḡ0(s) = e−
D
c

(b+
√
b2+2cs)

f̄0(z, s) =
e−

b
c
(D−z)

√
b2 + 2cs

[
e

−
√

b2+2cs
c

|z−D| − e
−
√

b2+2cs
c

(z+D)
]

(4.12)

62



that can be easily inverted to obtain:

g0(t) =
D√
2πct3

e−
(D+bt)2

2ct

f0(z, t) =
e−

b2t
2c e−

b
c
(D−z)

√
2πct

[
e−

(z−D)2

2ct − e−
(z+D)2

2ct
]

(4.13)

Here the subscript 0 is used to indicate that the quantity is relevant to pure Brownian

motion. The cdf of the travel time G0(t) = Pr[T0 ≤ t] can also be derived using other

standard results [110]:

G0(t) =
1

2

[
erfc

(
D + bt√

2ct

)
+ e−2 b

c
D erfc

(
D − bt√

2ct

)]
(4.14)

where erfc is the complementary error function, erfc(x) = 2√
π

∫∞
x e−y

2
dy. In this case the

condition b < 0 is necessary in order to have a finite average travel time E[T0] = −D/b.
Moreover if b > 0 then there is a non-zero probability that the packet will never reach the

destination node; more precisely we have:

G0(∞) =

{
1 , b ≤ 0

e−2 b
c
D , b > 0

Remark We can also express the density f(z, t) in terms of f0(z, t) as noted in [111]:

f(z, t) = f0(z, t)e
−(λ+r)t +

∫ t

0
µW (τ)e−(λ+r)(t−τ)f0(z, t− τ)dτ (4.15)

where the first term is the probability that the packet reaches distance z in time t without

being lost or interrupted by a time-out, while the second term is the probability that the

travel is restarted at some time τ ∈ [0, t] and that distance z is reached in a time interval

t − τ without interruption. While (4.15) is easier to interpret in the time domain, the

proof is straightforward if we take the LT of the right hand side yielding:

[1 + µW̄ (s)]f̄0(z, s+ λ+ r) = ḡ(s)eω1Df̄0(z, s+ λ+ r) = f̄(z, s)

4.1.2. Energy consumption

Result 4.2 The LT of the pdf of the packet’s total energy expenditure J is given by:

h̄(s) =
s+ λ+ r

seω1D + λ+ r
(4.16)
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which does not depend on 1/µ the average delay for packet retransmission, after the time-

out elapses.

Proof During any travel epoch, the packet’s travel can be interrupted by its loss occurring

according to a Poisson process of rate λ, and by the time-out which occurs independently

and is exponentially distributed with parameter r. Let τλ and τr be mutually independent

and exponentially distributed random variables representing the time to the first loss and

the time to the first time-out, respectively. Let γι(t) be the pdf of the duration of a packet

travel time until its first interruption. From previous analysis, T0 is the random variable

representing the total travel time of a packet from source to destination if it were not

interrupted and its pdf is given by (4.13). Thus we have:

γι(t)dt = Pr[t ≤ min(τλ, τr) ≤ t+ dt, T0 > t] (4.17)

or

γι(t) = (λ+ r)e−(λ+r)t[1−G0(t)], γ̄ι(s) =
λ+ r

s+ λ+ r
[1− ḡ0(s+ λ+ r)] (4.18)

A packet’s travel may be interrupted several times in this manner, and after each inter-

ruption it will (after some time) be sent out again. On the other hand, its last and hence

successful attempt at reaching its destination will have a duration whose pdf is defined as:

γd(t)dt = Pr[t ≤ T0 ≤ t+ dt, min(τλ, τr) > t]

or

γd(t) = g0(t)e
−(λ+r)t, γ̄d(s) = ḡ0(s+ λ+ r) (4.19)

Since the total energy expenditure is proportional to the time spent travelling, it can be

obtained by accounting for the possibilities of reaching the destination in 1, 2, . . . attempts

without including the time spent in the lost and wait-for-retransmission states. Since each

attempt is independent of its predecessors, the LT of the pdf of J is simply:

h̄(s) =
γ̄d(s)

1− γ̄ι(s)
(4.20)

and the result follows by substituting (4.18) and (4.19) into (4.20).

4.1.3. Energy expended up to time t

In this section we generalise the results presented in the previous section. We first derive

the joint distribution of the total energy consumption J and travel time T . This will

then allow us to analyse the distribution of the random variable J(t) representing the
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energy consumed by a packet up to time t ≥ 0, with the total energy expenditure of the

travel process being J(∞) ≡ J . These two results will finally be applied to obtain the

distribution of energy consumption of erasure coding and duplication.

Lemma 4.3 Let ϕ(x, t) denote the joint pdf of the total energy consumption and travel

time, i.e., ϕ(x, t)dxdt = Pr[x ≤ J ≤ x+ dx, t ≤ T ≤ t+ dt] and∫ ∞

0

∫ ∞

x
ϕ(x, t)dt dx = 1

Then its two-dimensional LT, with complex variables ξ and s, is given by:

ϕ̃(ξ, s) =

∫ ∞

0

∫ ∞

x
ϕ(x, t)e−ξx−stdt dx =

γ̄d(s+ ξ)

1− ψ̄(s)γ̄ι(s+ ξ)
(4.21)

where ψ(t) denotes the pdf of the time interval between the loss or time-out of a packet

and the retransmission of a new one:

ψ(t) =
r

λ+ r
µe−µt +

λ

λ+ r

∫ t

0
re−ryµe−µ(t−y)dy

whose LT takes the form

ψ̄(s) =
µr

λ+ r

s+ λ+ r

(s+ µ)(s+ r)

Proof If the packet is successful in reaching the destination node in its first attempt then

J = T . On the other hand, if at least one retransmission takes place then T will exceed J

by the amount of time spent in the lost or wait-for-retransmission states. Therefore:

ϕ(x, t) = γd(t)δ(t− x) +

∫ x

0
γι(y)ψ(t− x)γd(x− y)dy

+

∫ x

0

∫ x−y1

0

∫ t−x

0
γι(y1)γι(y2)γd(x− y1 − y2)ψ(t− x− y3)ψ(y3)dy3dy2dy1 + · · ·

If we take the LT with respect to the time variable t we get:

ϕ̄(x, s) = γd(x)e
−sx + ψ̄(s)e−sx

∫ x

0
γι(y)γd(x− y)dy

+ ψ̄(s)2e−sx
∫ x

0

∫ x−y1

0
γι(y1)γι(y2)γd(x− y1 − y2)dy2dy1 + · · ·

and (4.21) follows by taking the LT with respect to the energy variable x and summing

the resulting infinite geometric series.
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Note that the marginal distributions derived previously can be obtained from the above

lemma:

ḡ(s) = ϕ̃(0, s), h̄(ξ) = ϕ̃(ξ, 0)

Furthermore, the LT of the pdf of the total time during which the travel process is sus-

pended (due to loss or time-out) is given by:

E[e−s(T−J)] = ϕ̃(−s, s) = ḡ0(λ+ r)

1− ψ̄(s)[1− ḡ0(λ+ r)]
=

Pr[T0 < min(τλ, τr)]

1− ψ̄(s) Pr[T0 > min(τλ, τr)]

Lemma 4.4 Let h(x, t) denote the pdf of the energy consumed by the packet up to time

t ≥ 0, i.e., h(x, t)dx = Pr[x ≤ J(t) ≤ x+ dx] and∫ t

0
h(x, t)dx = 1

Then:

h̃(ξ, s) =

∫ ∞

0

∫ ∞

x
h(x, t)e−ξx−stdt dx

= ϕ̄(ξ, s)

[
1

s
+
γ̄ι(s+ ξ)

γ̄d(s+ ξ)

{
1

λ+ r
+

1− ψ̄(s)

s

}]
(4.22)

Proof At time t ≥ 0, the packet can be in one of the four states described in Chapter 3,

that is s(t) ∈ {P,S,L,W} which we consider below:

(a) The packet reached the destination at some time τ ≤ t:

hd(x, t) =
∂

∂x
Pr[J(t) ≤ x, s(t) = P] =

∫ t

x
ϕ(x, τ)dτ (4.23)

(b) The packet is searching for the destination node:

hs(x, t) =
∂

∂x
Pr[J(t) ≤ x, s(t) = S] = e−(λ+r)t[1−G0(t)]δ(x− t)

+

∫ x

0
γι(y)e

−(λ+r)(x−y)[1−G0(x− y)]ψ(t− x)dy + · · · (4.24)

In the first term, no time-out or loss has occurred up to t and consequently the total energy

consumption is equal to t. The i-th term corresponds to the case where at time t the packet

is in the i-th attempt to find the destination node (i.e., it has been retransmitted i − 1

times); therefore the pdf of the energy utilisation up to t is given by the convolution of

the pdf of i − 1 interrupted search periods, each followed by an idle period, and a single

search period which does not end before the time instant t.
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(c) The travel process of the packet is interrupted due to a loss or a time-out:

hι(x, t) =
∂

∂x
Pr[J(t) ≤ x, s(t) ∈ {L,W}] = γι(x)[1−Ψ(t− x)]

+

∫ x

0

∫ t−x

0
γι(y1)γι(x− y1)ψ(y2)[1−Ψ(t− x− y2)]dy2dy1 + · · · (4.25)

where Ψ(t) =
∫ t
0 ψ(τ)dτ . Here the i-th term denotes the case where the time instant t

occurs after the packet’s travel process is suspended i times but before retransmission of

the (i+ 1)-th packet.

From the law of total probability, the pdf of J(t) can be obtained as:

h(x, t) = hd(x, t) + hs(x, t) + hι(x, t)

If we take the two-dimensional LT for the above equation we obtain:

h̃(ξ, s) =
ϕ̃(ξ, s)

s
+

1− ḡ0(s+ ξ + λ+ r)

s+ ξ + λ+ r
+ γ̄ι(s+ ξ)

1− ψ̄(s)

s

1− ψ̄(s)γ̄ι(s+ ξ)

and formula (4.22) follows by substituting the identities:

1− ḡ0(s+ ξ + λ+ r)

s+ ξ + λ+ r
=
γ̄ι(s+ ξ)

λ+ r
and

1

1− ψ̄(s)γ̄ι(s+ ξ)
=

ϕ̄(s, ξ)

γ̄d(s+ ξ)

from (4.18) and (4.21), respectively.

Remark The LT of E[J(t)] is given by:

− lim
ξ→0

∂h̃(ξ, s)

∂ξ
=

(s+ µ)(s+ r)[eω1D − 1]

s(s+ λ+ r)[µr + s(s+ µ+ r)eω1D]
=
ḡ(s)

s

eω1D − 1

s+ λ+ r
(4.26)

Remark In the absence of packet loss and a time-out mechanism we have:

h̃0(ξ, s) =
ḡ0(s+ ξ)

s
+

1− ḡ0(s+ ξ)

s+ ξ

which can be inverted to obtain:

h0(x, t) =

{
g0(x) + [1−G0(t)]δ(t− x) , x ≤ t

0 , x > t
(4.27)

and

E[J0(t)] =

∫ t

0
[1−G0(τ)]dτ =

D

|b|
−

∫ ∞

t
[1−G0(τ)]dτ (4.28)

67



4.2. Erasure coding and replication

In this section we compare two known redundancy techniques for improving reliable packet

delivery: in the first one the source node sends N duplicate packets along independent

paths, while in the second technique ”k-out-of-N” coding is used and all packets are sent

along independent paths. As in [14] we assume that the N transmitted packets do not

interfere with each other so that their travel times T1, T2, . . . , TN are iid random variables.

Furthermore, we assume that the receiver can decode a block as soon as it receives the first

arriving k packets. Since replication is a special case of coding with k = 1 we will focus

our discussion on the latter technique. Our preceding analysis allows us to compare the

merits and limitations of these two approaches both in terms of reliable packet delivery

times and energy efficiency.

4.2.1. Decoding delay

Let T1,N , T2,N , . . . , TN,N be the random variables obtained by arranging the packet travel

times of the N transmitted packets Ti, i = 1, ... , N in ascending order

T1,N ≤ T2,N ≤ . . . ≤ TN,N

Tk,N is the k-th order statistic [112], and it denotes the time required to decode a message

of size k when the source sends N ≥ k packets. The cdf of the decoding time Gk,N (t) =

Pr[Tk,N ≤ t] is given by

Gk,N (t) =

N∑
i=k

(
N

i

)
G(t)i[1−G(t)]N−i (4.29)

while the pdf can be written as

gk,N (t) = N

(
N − 1

k − 1

)
G(t)k−1[1−G(t)]N−kg(t) (4.30)

Asymptotic analysis

Let G−1(p) denote the quantile function of the distribution of the travel time:

G−1(p) = inf{t : G(t) ≥ p}, 0 < p < 1 (4.31)

It is well known that [14,113] if the ratio k/N has a limit p as the number of transmitted

packets N becomes sufficiently large, that is k/N → p as N → ∞, then Tk,N is the p-th
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sample quantile and is asymptotically normally distributed

Tk,N ∼ N
(
G−1(p),

p(1− p)

N [g(G−1(p))]2

)
(4.32)

It follows that as N tends to infinity, the distribution of the decoding delay converges

to a constant which is equal to the p-th quantile of the original distribution. A direct

implication of this result is that we can characterise the average decoding delay by simply

evaluating the p-th quantile of the travel time of a single packet.

4.2.2. Energy consumption

Now we consider the energy aspects of sending out multiple packets. Since energy util-

isation per packet is proportional to the time spent travelling in the network, there is a

trade-off between having a small number of packets which travel for a long time in the

network and a large number of packets which may spend a shorter time. A sensor net-

work typically have source and intermediate nodes which are very simple and have limited

wireless range. Destination nodes which are in charge of collecting the sensory informa-

tion and forwarding it to some external supervisor may however use a radio channel with

enough power to reach all the sensor nodes in one hop. This can then be used to abort any

further transmission within the network after k packets have been received [114]. If such

a feedback mechanism is not available then each of the remaining N − k packets, which

is still being forwarded after decoding is successful, will keep propagating in the network

until either lost, destroyed by the time-out mechanism, or received by the destination

node, whichever happens first. In this case the following result represents a lower bound

estimate to the total energy consumption:

Result 4.5 The pdf of the total energy utilisation of k-out-of-N coding up to the time of

receipt of k packets is given by:

hk,N (x) = N

(
N − 1

k − 1

)∫ ∞

t=0

∫
∑N−1

i=1 yi≤x

ϕ(x−
N−1∑
i=1

yi, t)dt

k−1∏
i=1

hd(yi, t)dyi

N−1∏
i=k

[
hs(yi, t) + hι(yi, t)

]
dyi (4.33)

Proof For the total consumption to be equal to x at some time t, it is necessary that

exactly k − 1, 1 and N − k packets arrive at the destination node in the intervals [0, t],

[t, t + dt] and [t + dt,∞] respectively, and that the energy expended by each individual

packet is at most t while their sum is x. The probabilities that a packet arrives in the three

respective intervals while consuming w units of energy up to t are hd(w, t)dw, ϕ(w, t)dwdt
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Figure 4.1.: The density functions of the total travel time g(t) and energy consumption
h(t) for b = 0.1, c = 1, µ = 0.1, r = 0.01, λ = 0.1 and D = 10.

and [hs(w, t) + hι(w, t)]dw; the result then follows by integrating over all possible values

of w and t.

4.3. Numerical results

In this section we illustrate the analytical results with several numerical examples. How-

ever, since it may not be possible to obtain the inverse LT of ḡ(s) and h̄(s) analytically,

we invert them numerically using a MATLAB code [115] based on the algorithm in [116].

The inversion of ϕ̃(ξ, s) and h̃(ξ, s) is also achieved numerically using a Mathematica pro-

gram [117] which employs a two-step procedure that concatenates the two one-dimensional

inversion algorithms in [118]. In the first step, ξ is regarded as constant and the inversion

is performed with respect to s yielding ϕ̄(ξ, t) and h̄(ξ, t). In the second step, the trans-

forms are inverted with respect to ξ regarding t as constant in order to finally obtain the

desired approximation for ϕ(x, t) and h(x, t).

Figure 4.1 compares the density functions for total travel time and energy consumption

when both packet losses and uncertainty in routing are high. One can notice that the

travel time exhibits a long-tail distribution which is apparent from the logarithmic scale

on the x-axis.

Figure 4.2 compares analytical predictions g(t) and h(t) with simulation results for

packet traversal through a grid topology. In the simulation, time is assumed to be slotted
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and at any time slot, a transmission occurs which may take the packet one step towards

the destination with probability q or relay it to a node which is further away from the

destination with probability 1−q. Thus the parameter q reflects the quality of the routing

tables as it measures the probability of making a correct routing decision at any time slot.

Furthermore, in the simulation we assume time-outs are constant since in practice, the

source may know an upper bound for the round-trip delay in the network, and as a result

it will set a fixed value for the time-to-live (TTL) field in the packet’s header. Losses in

the simulation are assumed to occur according to a Bernoulli loss model whereby at each

hop along the path, the packet is lost with probability pλ ≃ 1 − e−λ or it is successfully

transmitted to the next hop with probability 1 − pλ. From the above assumptions, the

mean and the variance of the distance travelled per unit time are:

b = 1− 2q, c = 4q(1− q)

The results in Figure 4.2 are obtained from 10,000 simulation runs in MATLAB, and

the pdf curves are estimated using the Gaussian kernel density estimator method [119].

One can notice that the simulation results are in good agreement with those predicted by

the model with some discrepancies which are likely due to the differences in assumptions

(regarding the distributions of timers and losses) between the model and the simulator.

Note also that the diffusion model is expected to become more accurate as the distance

between the source and the destination D becomes large.

4.3.1. The effect of a limited energy budget

Since energy consumption is an important issue in wireless networks, we apply the pre-

vious results to estimating the performance of a policy where each packet is imposed a

limited energy budget of B units (e.g. micro-watts-secs). By calculating the ratio of the

probability that a packet does reach its destination, to the probability that it does not,

with an energy budget B, we can determine how the required value of B should be chosen

for reliable network operation. In turn this would allow us to evaluate the total energy

budget needed for a communication that includes a known number of packets. This is

illustrated in Figures 4.3 and 4.4 where we plot the likelihood function

η(B) =
Pr[J < B]

Pr[J > B]
(4.34)

against the budget B for different values of the average travel speed and loss rate. As one

would expect, the figures show that as losses decrease or routing accuracy improves, the

likelihood of reaching the destination node with a fixed energy budget B increases.
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Figure 4.2.: Comparison of analytical predictions and simulations results for a regular
topology with D = 10. Parameters of the simulation are: constant time-out
1/r = 60 and retransmission delay 1/µ = 1, Bernoulli packet loss probability
pλ = 0.01 and probability of correct routing decision q = 0.6.
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Figure 4.3.: η(B) (logarithmic scale) versus the energy budget B for λ = 0.05, c = 1,
µ = 0.1, r = 0.01, D = 10 and different values of b.

Figure 4.4.: η(B) (logarithmic scale) versus the energy budget B for b = −0.1, c = 1,
µ = 0.1, r = 0.025, D = 20 and different values of λ.

73



4.3.2. The effect of packet redundancy

In Figure 4.5 we plot the pdf and the cdf of the decoding time for a message of size k = 8

and for different values of the number of transmitted packets N > k. We can observe that

as N increases, the mean and the variance of the decoding time decrease as one would

expect.

Figure 4.6 illustrates the asymptotic result of (4.32) showing that convergence is fast

and that the error between the exact and asymptotic results is relatively small even for

small values of N .

Next in Figures 4.7 and 4.8 we evaluate the delay performance of coding and replication

under the same total number of transmitted packets. In particular, we compare the delay

performance of sending N packets and waiting for k of them to arrive (i.e., Tk,N ), and

sending N/k duplicate packets and waiting for the first to arrive (i.e., T1,N/k). This is

illustrated in Figure 4.7 where we plot the quantile function that returns the smallest

upper bound below which random draws of delay fall in p × 100% of observations. More

precisely, we plot the function G−1
i,j (p) = inf{t : Gi,j(t) ≥ p} against the probability p,

where i = k, j = N for coding and i = 1, j = N/k for replication. The results indicate

that in few cases, packet duplication achieves better performance while coding yields

smaller delays most of the time. Figure 4.8 compares the pdf and the cdf for replication

and coding with k = 5 and a total number of transmitted packets N = 25. In this case, the

mean and the standard deviation of the packet delay are, respectively, 128.3 and 66.1 with

coding and 120 and 132.4 with duplication. Hence, erasure coding is able to eliminate the

long-tail observed in Figure 4.1, which makes it more appropriate for applications requiring

reduced delay variations. This confirms earlier results obtained in [14] for exponential and

Pareto distributions of the delivery delay.

Finally, in Figure 4.9 we examine how N should be selected in order to optimise both

delay and energy utilisation. More specifically, we plot the locus of the average decoding

time and the total average energy consumption, obtained from (4.33), when the number

of transmitted packets N is varied between 9 and 20 for a block of k = 8 packets. The

results indicate that as N increases the decoding time drops rapidly while the total energy

expenditure increases at a much lower rate. For instance, sending double the number

of packets (i.e., N = 16) increases energy cost by only 12% while it reduces decoding

time by 72% as compared to sending only one redundant packet (N = 9). Thus sending

out multiple packets can reduce delivery time significantly without compromising energy

efficiency provided that a feedback mechanism is available at the destination node which

can stop further packet transmissions in the network after k packets have been received.
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Figure 4.5.: (a) pdf and (b) cdf of the decoding time for a message of size k = 8 and for
different number of transmitted packets N with λ = 0.05, r = 0.04, µ = 0.1,
b = 0.15, c = 1.5 and D = 10.
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Figure 4.6.: Exact and asymptotic results for the pdf of the decoding delay when the
ratio of the message size to the number of sent packets k/N = 0.5 with
b = −0.2, c = 0.5, λ = 0.1, r = 0.02, µ = 0.1 and D = 10.

Figure 4.7.: Comparison of the delay performance of sending N = 32 packets and waiting
for k = 8 to arrive (coding) and sending N/k = 4 packets and waiting for 1 to
arrive (replication) with b = 0, c = 1, λ = 0.01, r = 0.025, µ = 0.1 and D = 10.
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Figure 4.8.: Comparison of the pdf and cdf of the delay for sending N = 25 coded packets
and waiting for any 5 packets to arrive and sending N/k = 5 duplicate packets
for any single packet. Parameters of the diffusion model are b = 0.2, c =
2.5, λ = 0.01, r = 0.025, µ = 0.1 and D = 10.
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Figure 4.9.: Locus of average decoding time and total average energy consumption as a
result of varying N for k = 8, b = −0.35, c = 1, µ = 0.1, λ = 0.01, r = 0.015
and D = 10.

4.4. Summary

In this chapter we derived the Laplace transform of the probability density of total packet

forwarding delay and energy expenditure in a homogeneous wireless network. The analysis

was extended to evaluate the case where the source node sends duplicate or coded packets

in order to mitigate the effects of packet loss and uncertainty in routing information.

Numerical examples suggest that while erasure coding may result in higher overall packet

travel delay and energy consumption on average, it reduces delay variations significantly

and thus reduces the uncertainty in packet delivery times. The trade-off in erasure coding

between energy and delay as a result of varying the number of transmitted packets has

been examined, and we have observed desirable operating areas where delivery time is

reduced significantly at the cost of a small increase in energy utilisation.
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5. Queueing models for network coding

The average time and energy required for a packet to travel from a source node to a

destination node in a large multi-hop non-homogeneous network with imprecise routing

information and packet losses have been derived in Chapter 3. In Chapter 4 we obtained

the distribution of these performance measures in a homogeneous medium, and examined

the merits and limitations of using k-out-of-N coding techniques at the source nodes, in

terms of reliable packet delivery times and energy efficiency. So far we have assumed

that intermediate nodes do not manipulate the contents of packets and simply relay them,

which is not efficient for utilising network resources [4]. Thus the present chapter proposes

models that can assist in the analysis and optimisation of coding at the interior nodes in

the network.

In particular, we consider a store and forward packet network in which NC is being

used to co-encode packets from distinct flows. In such a system both the encoding and

decoding process may introduce additional delays, and we develop analytical models to

evaluate the resulting performance. The approach we adopt is based on the analysis

of queueing systems with specific service processes that capture the effect of NC, and we

analyse single and multi stage queueing models for a router that carries out NC, in addition

to its standard packet routing function. The approach is extended to the study of multiple

hops, which leads to an interesting constrained optimisation problem that characterises

the optimal time that packets should be held back in a router so that the total packet

end-to-end delay, including encoding, queueing and decoding at the output is minimised.

We assume certain basic network structures, where inter-flow coding can be useful, and

which nevertheless can represent small fragments of larger arbitrary topologies such as the

ones studied in previous chapters. Trade-offs between delay and bandwidth or energy are

also investigated, and the results indicate that NC can offer significant gains in all respects

provided that decisions to code packets from distinct flows is made a function of network

traffic conditions. The accuracy of the analytical solutions is verified through comparison

with discrete event simulations with ns-2 [15].

The remainder of the chapter is organised as follows. Section 5.1 presents a single

server queueing model for a cross-layer design of NC which coordinates packet coding and

transmission at the intermediate node. The benefit of the abstract model is that, even

under non-Markovian assumptions and for any number of flows, it can be quite accurately
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Figure 5.1.: (a) Single and (b) multi stage queueing models for an encoding node.

analysed using a simple decoupling approximation. In Section 5.2 we propose a multistage

queueing model which introduces processing and coding queues prior to the transmission

queue in order to analyse the performance of NC when these distinct functionalities are

decoupled; the model also incorporates a time-out mechanism to modify coding opportu-

nities. A queueing network model is then presented along with a heuristic for optimising

the end-to-end delay. Finally, Section 5.3 presents a summary of the results.

5.1. Single stage queueing model

In this section we analyse the performance of an intermediate node that receives and

encodes an arbitrary number of independent sessions with general arrival and packet size

distributions. The encoding node is represented by a single-server queue and the effect

of NC on the service process is captured through the potential increase in transmission

times resulting from combining packets of random lengths. This model corresponds to

a cross-layer NC implementation which coordinates packet coding and transmission; it

does not represent the case where coding is performed independently of the hardware that

sends packets out over links, which is addressed in the subsequent section. Note that this

abstract queueing representation follows the classical approach [16, 17] of modelling data

networks as networks of transmission queues.

Consider a network node which receives N distinct independent flows of packets with

general inter-arrival time distribution Ai(x) = Pr[Ai ≤ x] for the i-th flow, which queue

up in distinct buffers of unlimited capacity as depicted in Figure 5.1(a). Denote by λi

the average arrival rate of the i-th flow λi = E[Ai]
−1. Assume that packet lengths in

each stream are independent random variables and that they are mutually independent

between flows, with general distribution L(x) = Pr[L ≤ x] where L is the random variable

representing packet length. We assume that the transmission time S is directly propor-

tional to packet length, that is S = L/c where c is the capacity of the transmission link

measured in bit/s, and define S(x) = Pr[S ≤ x].
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As discussed in Section 2.2, synchronous NC (SNC) incurs very large delay and loss

penalties particularly when the network is lightly loaded; therefore we will consider an

ONC scheme which encodes packets from distinct flows with any packets present, except

for packets belonging to the same flow. Thus after the encoding node forwards a packet,

the next packet forwarded will simply be the encoded version of the packets from distinct

flows that are present in the queues. If only one of the flows has a packet present, then

just that one un-encoded packet will be forwarded, while if more than one flow has at least

one packet present in their queues, then the encoded packet will include the head-of-line

(HOL) packet from each of those flows.

When a coding operation that involves 1 < n ≤ N packets starts, the server will pack

the shorter packets with zero-bits to reach the length of the longest packet, and encode

the resulting packet bit by bit, so that its length will be equal to the largest of the n

packet lengths. The transmission time of a packet is then proportional to the length of

the largest co-encoded packet and its distribution is given by S(x)n.

5.1.1. The queueing behaviour of opportunistic coding

In order to have more understanding of the queueing process in ONC, consider a node

with N = 2 flows, and define the following ℜ+ valued variables for the i-th flow:

ai,n Arrival instant of the n-th packet to the encoding node.

Si,n Service time of the n-th packet.

We can also define the following quantities which depend on the above variables:

Ai,n Inter-arrival time between the n-th and the (n−1)-th packets, i.e., Ai,n = ai,n−ai,n−1.

di,n Departure instant of the n-th packet from the encoding node.

We assume that as n→ ∞ the sequences {Ai,n} and {Si,n} converge in law to the random

variables Ai and S, respectively.

If we assume the system to be initially empty and adopt the convention that ai,0 =

aj,0 = 0 where j = 3− i, then we can write Lindley-type [120] recursive equations for the

sequence {di,n}n≥1 as follows:

1) di,n = di,n−1 + Si,n if ai,n ≤ di,n−1 and (a) there exists m such that di,n−1 ≥ dj,m−1,

(b) aj,m > di,n−1.

2) di,n = di,n−1 +max[Si,n, Sj,m] if ai,n ≤ di,n−1 and (a) there exists m such that di,n−1 =

dj,m−1, (b) aj,m ≤ dj,m−1.
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3) di,n = di,n−1 +max[Si,n, Sj,m] if ai,n ≤ di,n−1 and (a) there exists m such that di,n−1 >

dj,m−1, (b) max[ai,n−1, di,n−2, dj,m−1] < aj,m ≤ di,n−1.

4) di,n = ai,n + Si,n if ai,n > di,n−1 and (a) there exists m such that dj,m−1 ≤ ai,n, (b)

aj,m > ai,n.

5) di,n = ai,n+Vi,n+Si,n if ai,n > di,n−1 and (a) there existsm such that max[aj,m−1, dj,m−2] <

ai,n < dj,m−1, (b) Vi,n = dj,m−1 − ai,n, (c) aj,m > dj,m−1.

6) di,n = ai,n + Vi,n + max[Si,n, Sj,m] if ai,n > di,n−1 and (a) there exists m such that

max[aj,m−1, dj,m−2] < ai,n < dj,m−1, (b) Vi,n = dj,m−1 − ai,n, (c) aj,m ≤ dj,m−1.

where the variable Vi,n, appearing in the last two cases, represents the additional delay

a packet experiences when it arrives at an empty queue and finds the server busy trans-

mitting a packet from the other queue. In such instances, the packet must wait until the

current service has finished, after which it will be either transmitted without coding if the

other buffer becomes empty (case 5) or it will be combined with the HOL packet from the

other flow and transmitted (case 6).

5.1.2. A decoupling approximation

The recursive equations above indicate that, even for the simplest case of 2 flows, exact

analysis of ONC is extremely difficult due to the facts that (a) transmission times depend

on the number of combined packets, and (b) it is difficult to characterise exactly the

distribution of the random variable Vi = limn→∞ Vi,n. Thus we propose a solution based

on the “decoupling approximation” along the lines of [121]. In particular, we study a

queue, say the i-th, in isolation from the others and consider that the queues interact

with each other via the steady-state probabilities, which we call qi for the i-th queue,

that the i-th flow is not involved in a coding operation. In this case this may occur

either because that queue is idle (no customers), or because the queue is busy but there is

another currently ongoing encoding and transmission which started while the i-th queue

was empty.

The approximation we propose is based on constructing an “equivalent” G/G/1 model

for any of the N individual queues, having the “server with vacations” property [122,123].

Note that in this case the assumption of finite buffers is not needed because (contrary to

the SNC case) the system with unlimited buffer size is not always unstable.

The server with vacation is a queueing system in which, after each service ends, if the

queue is empty then the server will “go off” for a vacation time V , and the process repeats

itself if the server finds the queue empty at the end of the vacation time. Service starts

again when, at the end of a vacation time, there is at least one customer in queue. Such
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models usually assume that each successive vacation time is an iid random variable. The

key result about a queue with vacations can be summarised as follows.

Result 5.1 (Gelenbe, Iasnogorodski [123]) Let W be the random variable represent-

ing the steady-state distribution of the customer waiting time for a queue (with unlimited

buffer size) and a server with vacations, for a single server queue with service time S

and vacation time V , which are assumed to be mutually independent random variables,

while both the successive service times and the successive vacation times are sequences of

iid random variables. We assume that the inter-arrival times of customers to the queue

are also iid (but the arrival process need not be Poisson). Let W0 be the waiting time for

exactly the same queue, but without vacations (i.e. when V = 0). Then the following

equality holds in distribution:

W =W0 + V̂ (5.1)

where V̂ is the forward recurrence (residual) vacation time whose distribution is given

by [122]:

V̂ (x) =
1

E[V ]

∫ x

0
[1− V (y)] dy (5.2)

Thus the result summarised in (5.1) allows us to map all properties of interest of a queue

with vacations in steady state to those of a system without vacations using the probability

distribution of the vacation time V . In particular we can see that only W0 depends on the

arrival process, and therefore the stability condition for the queue with vacations is not

affected by the vacation time distribution, and is identical to the stability conditions for

the corresponding ordinary queue.

Now turning back to the model for ONC, note that if at the end of a service time the

i-th queue is not empty, then the subsequent service time distribution Si(x) will be the

maximum of the service times for the set of non-empty queues including the i-th queue.

Thus, for Z(i) = {1, ... i − 1, i + 1, ... N}, the resulting approximation for the service

time distribution after a departure that does not leave an empty queue at i will be:

Si(x) = S(x)
∑

Z⊆Z(i)

S(x)|Z|
∏
j∈Z

[1− qj ]
∏
j /∈Z

qj (5.3)

On the other hand if the i-th queue is empty after a service time ends, then when the next

arrival to that queue occurs, the arriving packet will have to wait for its service until after

any currently ongoing service involving the other queues ends.

Thus after the i-th queue becomes empty at the end of a service time, a sequence of

vacation times involving the services at other queues will take place, and some of these

other services will possibly be of zero duration if the queues are empty. These vacation

times have a probability distribution similar to Si(x), except that the i-th queue is not
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involved. We will denote the vacation time distribution for the i-th queue by Vi(x), where:

Vi(x) =
∑

Z⊆Z(i)

S(x)|Z|
∏
j∈z

[1− qj ]
∏
j /∈Z

qj (5.4)

We can now use the formula for the probability qi that the i-th queue is empty or that it

is busy but that its equivalent server is idle due to a vacation time, from the corresponding

result for the model with vacations, where Si(x) and Vi(x) are, respectively, the service

time and vacation time distributions:

qi = 1− λiE[Si] (5.5)

For Poisson arrivals, the probability of the i-th queue being empty at the end of a service

or a vacation time has been obtained [122] and is given by:

qi =
1− λiE[Si]

1 + λi(E[Vi]− E[Si])
(5.6)

However, in the numerical results we have found that the first expression for qi gives

more accurate results even though the latter captures the dynamics of the system more

accurately.

In [124], we consider the use of ONC in scenarios where combining packets from all

flows may render some of the packets undecodable at the output. We propose a combined

scheduling-coding scheme which restricts NC within disjoint subsets of the traffic streams,

and we extend the decoupling approximation to the case where coding subsets are served

in a round-robin (RR) manner.

5.1.3. Performance evaluation

The performance measures of interest for ONC include the average response time, through-

put, bandwidth utilisation and stability region which are considered below.

Response time

When the arrival processes are Poisson, we apply the well known Pollaczek-Khinchin

formula [27] separately to each queue in order to obtain the mean waiting times. Then,

utilising the decomposition property of vacation queues (5.1), the mean response time in

queue i becomes:

E[Ri] =
λiE[S2

i ]

2(1− λiE[Si])
+ E[Si] + E[V̂i] (5.7)

For general arrival processes, we use a diffusion approximation [8, 9, 125] to solve the

equivalent G/G/1 systems. Figure 5.2 presents numerical results for the mean response
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Figure 5.2.: Mean response times for ONC and plain forwarding of N = 3 Poisson traffic
streams of rates λ = (1 1.5 2) λ and Erlang-3 packet size distribution with
E[S] = 3.

times for three asymmetric Poisson flows with Erlang-4 packet size distribution. We

find that the approximation yields very accurate results, which in most instances remain

within 2% of the simulation results. Figure 5.3 presents results for four symmetric flows

with Erlang-2 inter-arrival and service times distributions. In this case, the diffusion

approximation introduces additional errors in computations as can be observed in the

figure. However, the error between the analytical and simulation results remains within

10%. Overall the quality of the approximation appears to be relatively insensitive to the

number of encoded flows and the traffic load. The figures also compare the average packet

delay of ONC with a peer non-coding scheme in which packets from all incoming flows

are stored into a single buffer and transmitted in a first-come-first-served (FCFS) order;

as one would expect, ONC offers significant delay improvement.

Throughput

In order to estimate the average output packet rate, we first note that the notion of

vacations exists only when we consider a single buffer in isolation but if we look at the

system as a whole, the server will never be idle while any of the buffers is non-empty.

Thus computing the packet throughput consists in summing the steady state probabilities

over all possible subsets of non-empty queues Z ⊆ {1, ..., N} : |Z| ≥ 1 each weighted by
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Figure 5.3.: Mean response times for ONC and plain forwarding of N = 4 balanced traffic
streams with Erlang-2 inter-arrival times each with rate λ and Erlang-2 packet
size distribution with E[S] = 2.

the corresponding average transmission rate. Using the decoupling approach, this can be

approximated by:

φ =
∑

Z⊆{1,...,N}:|Z|≥1

∏
j∈Z

[1− qj ]
∏
j /∈Z

qj

(∫ ∞

0
x dS(x)|Z|

)−1
(5.8)

Alternatively the output rate can be obtained from the inverse of the time interval between

two successive packet departures which can be approximated by:

φ−1 =

N∏
j=1

qj E[Â+ S] +
∑

Z⊆{1,...,N}:|Z|≥1

∏
j∈Z

[1− qj ]
∏
j /∈Z

qj

∫ ∞

0
x dS(x)|Z| (5.9)

The first term in (5.9) represents the case where all queues are empty at the end of a

packet transmission so that the time until the next departure will include the residual

inter-arrival time until the first packet arrives Â, followed by its transmission time S.

Let Âi denote the forward recurrence time of the inter-arrival time to the i-th queue; we
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approximate the distribution of Â by:

Â(x) = Pr[ min
1≤i≤N

Âi ≤ x] = 1−
N∏
j=1

(
1− λj

∫ x

0
[1−Aj(y)] dy

)

The second term in (5.9) denotes the case where there are |Z| ≥ 1 non-empty queues

at the end of a transmission epoch, so that the time until next packet departure will be

distributed according to S(x)|Z|.

Coding gain and opportunities

We define coding gain for stable traffic load (i.e., qi > 0, ∀i) as the ratio of the input bit

rate to the output bit rate:

η =

∑N
i=1 λi E[L](

1−
∏N
i=1 qi

)
c
=

∑N
i=1 λi E[S]

1−
∏N
i=1 qi

∈ [1, N ] (5.10)

which is a measure of transmission costs along the output link. One may also be interested

in estimating coding opportunities or the average number of packets that are combined in

each transmission:

ζ =

∑N
i=1 λi
φ

(5.11)

Note that η ≤ ζ with the equality holds if and only if the packet size is constant; this

follows from (5.8) by writing

φ ≤
∑

Z⊆{1,...,N}
|Z|≥1

∏
j∈Z

[1− qj ]
∏
j /∈Z

qjE[S]−1

= (1−
N∏
i=1

qi)E[S]−1 =

∑N
i=1 λi
η

Hence the fact that the encoded packet size is dominated by the longest co-encoded packet

reduces the gain from NC.

Figure 5.4(a) compares analytical and simulation results for the packet throughput of

ONC of three symmetric Poisson flows using different packet size distributions with the

same mean. The analytical results are obtained using (5.9) for exponential and Erlang-3

distributions; (5.9) for constant length; and the average of the two approximations for

Erlang-5 distribution. In general, we have observed that (5.8) tends to underestimate

the output rate whereas (5.9) overestimates it. The error between the analytical and

simulation results, however, is less than 5% in most of the cases tested. Interestingly,

the figure shows, for non-deterministic packet size, a drop in the output packet rate as
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the input rates approach saturation. This suggests that when the node is congested, any

slight increase in the input rate will significantly increase coding opportunities and as a

result fewer but longer packets will be transmitted. Figure 5.4(b) depicts the coding gain

η showing that the lower the variance of the packet size distribution, the higher the coding

gain and the maximum stable traffic load. Indeed, although constant packet length yields

higher output packet rate and thus fewer coding opportunities ζ, it still provides the best

utilisation of the output link.

Stability region

In order to illustrate how the decoupling approximation can be used to characterise the

stability conditions for ONC, we consider a node with N = 2 flows with arrival rate λi

and service rate µi for the i-th flow. If we call ν = E[max(S1, S2)]
−1 then from (5.5) the

probability qi is coupled with qj , where j = 3− i, by the relation:

1− qi = [1− qj ]
λi
ν

+ qj
λi
µi

Solving the two equations for i = 1, 2 simultaneously yields:

qi = 1− λiν
νµj + λj(µi − ν)

ν2µiµj − λiλj(µi − ν)(µj − ν)

and the stability conditions become:

λi <
µiν

2

ν2 + λj(µi − ν)
, 0 ≤ λj ≤ ν

λi <
ν2

λj

µj − λj
µj − ν

, ν ≤ λj < µj (5.12)

On the other hand, under the store and forward paradigm the node acts as a FCFS queue

with two classes of packets; thus its stability region is given by:

λ1
µ1

+
λ2
µ2

< 1 (5.13)

Figure 5.5 compares the stability regions (5.12) and (5.13) using different packet size

distributions with average rates µ1 = 0.8 and µ2 = 0.7.

5.2. Multistage queueing model

In this section we propose a queueing model for a NC implementation that preserves the

decoupling between packet processing and transmission which exists in current Internet
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Figure 5.4.: (a) Output packet rate and (b) coding gain η for ONC of N = 3 balanced

Poisson flows each of average rate λ <
(∫∞

0 xdS(x)N
)−1

, for different packet
size distributions with E[S] = 1.
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Figure 5.5.: Stability regions for routing and ONC with two flows with average service
rates µ1 = 0.8 and µ2 = 0.7.

routers. These routers consist of four main components: a processing module, memory,

an internal interconnection unit and several network interfaces to the attached network

[126]. Typically, packets are received at an inbound network interface, processed by the

processing component and finally forwarded through the internal bus to the outbound

interface that transmits them on the next hop towards their destination. NC would add an

additional coding module that sits between the processing and transmission components.

This module, which can be implemented in either software or hardware, should be seamless

to flows that are not participating in NC so that their packets are forwarded directly from

the processing module to the network interfaces without further delay.

To represent such a NC router, we propose a multistage queueing model which introduces

processing and coding queues prior to the transmission queue. Since packets will arrive

individually at the coding queue, the router can use timers in order to modify coding

opportunities. We derive analytical expressions for the throughput, coding gain, energy

consumption and response time in terms of the traffic rates, packet size distribution and

timers durations for the case of two Poisson traffic streams. We then incorporate the model

into a networking setting and present a simple heuristic for optimising the end-to-end delay

performance, including packet assembly and decoding at the output.
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5.2.1. Queueing analysis

In order to evaluate the performance of the above NC router architecture, we consider a

network node that receives and encodes two distinct independent Poisson flows of packets

Ai with rate λi for the i-th flow. Denote by A the total arrival process to the node which

is also a Poisson process with rate Λ = λ1 + λ2, and let ρi = λi/Λ. The node’s buffers are

assumed to be of unlimited capacity so that loss of packets due to buffer overflow cannot

occur.

We assume that packets arriving at the node are stored into an input queue where their

headers are processed according to an exponential service time, with parameter µ0 >> Λ,

which is independent of the packet size L. Thus the processing module is modelled as an

M/M/1 system with negligible service time. The received packets are then forwarded to

the coding module which consists of two buffers, one for each packet class, of unlimited

capacity. The policy employed by the coding component to process the packets from the

two buffers is as follows:

• When a packet reaches the head of buffer i, if the other buffer j = 3 − i is not

empty, then this packet is immediately XOR-ed with the head of the line packet

from buffer j and the coded version is placed in the transmission queue. We assume

that the XOR operation is instantaneous so that no further delay is incurred after the

two packets are matched. This is a fairly reasonable assumption given the current

processing power.

• When a packet arrives at the head of buffer i and the buffer holding the traffic

from class j is empty, then the packet waits for an exponential time-out period

with parameter ri. If a packet arrives at queue j before the timer elapses, then

the two packets will be coded together and the coded version will be placed in the

transmission queue. If, however, the timer expires before a packet arrives at buffer j,

then the head of the line packet from buffer i will be forwarded to the transmission

queue without coding.

The queueing network model for the encoding node is depicted in Figure 5.1(b). The

question that arises from the above coding policy is: how long should the encoding node

wait before going ahead and sending the information that it has uncoded? Short waiting

times imply few coding opportunities and therefore inefficient network operation while

long waiting times imply added delay which eventually overtakes the original benefit of

coding.
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Coding queues

Denote by Qi(t) the number of packets waiting in buffer i ∈ {1, 2} at time instant t. Note

that due to the coding policy described previously, at most one of the two coding queues

can be non-empty. Thus, we can represent the state of the two queues at time instant t by

a single number Q(t) = Q1(t)−Q2(t) ∈ [−∞,∞]. If the i-th coding queue is non-empty,

then the time until the next packet departure is an exponential random variable Ui with

parameter µi = ri + λj . The stationary probability pn = limt→∞ Pr[Q(t) = n] can be

shown to have the following form:

pn =

 p0

(
λ1
µ1

)n
, n > 0

p0

(
λ2
µ2

)−n
, n < 0

(5.14)

where p0 is obtained from the normalisation condition
∑∞

n=−∞ pn = 1, yielding:

p0 =

[
1 +

λ1
µ1 − λ1

+
λ2

µ2 − λ2

]−1

(5.15)

Consider the queue length process at time instants when packets depart from the coding

stage, and denote by πn the stationary probability associated with the queue length at

those instants which, if exist, must satisfy:

π0 = [π1 + π0ρ1] α1,0 + [π−1 + π0ρ2] α2,0

πn =

n∑
k=0

πn−k+1α1,k + π0ρ1α1,n, n > 0

πn =

−n∑
k=0

πn+k−1α2,k + π0ρ2α2,−n, n < 0 (5.16)

where αi,k denotes the probability of k arrivals to queue i during a service time at the

queue:

αi,k =

∫ ∞

0

(λit)
ke−λit

k!
µie

−µitdt =
µi

λi + µi

(
λi

λi + µi

)k
(5.17)

yielding:

πn =

 π0ρ1

(
λ1
µ1

)n
, n > 0

π0ρ2

(
λ2
µ2

)−n
, n < 0

(5.18)

and

π0 =

[
1 + ρ1

λ1
µ1 − λ1

+ ρ2
λ2

µ2 − λ2

]−1

(5.19)
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The distribution of the response time for coding queue i ∈ {1, 2} can be obtained as

follows:

Ti(x) =

∓∞∑
n=∓1

pn +

∫ x

0

±∞∑
n=0

pn
µn+1
i yne−µiy

n!
dy = 1− p0

µi
µi − λi

e−(µi−λi)x (5.20)

The first term represents the case where a packet arriving at the i-th queue finds n ≥
1 packets waiting in the other buffer so that it does not experience any delay and is

immediately encoded and forwarded to the transmission queue. In the second term, the

arriving packet finds the other buffer empty and n ≥ 0 packets waiting in its buffer; as

a result its response time is the sum of n + 1 successive service times each of duration

Ui. Note that the distribution Ti(x) is exponential with a jump of size 1− p0
µi

µi−λi at the

origin. By straight forward calculations, the mean response time of coding queue i is:

E[Ti] = p0
µi

(µi − λi)2
(5.21)

The average output packet rate from the coding stage can be obtained as follows:

φ =
∞∑
n=1

pnµ1 +
−∞∑
n=−1

pnµ2 = Λ− λ1λ2(r1 + r2)

λ1r1 + λ2r2 + r1r2
(5.22)

which can be written as φ = Λ− φc, where φc denotes the output rate of coded packets.

We can see that φc > 0 for all values of ri < ∞; thus an opportunity for NC may arise

even when the timers are very small.

Transmission queue

Exact analysis of the transmission queue under the present assumptions is very difficult;

indeed even for the simplest case of exponential transmission times, the generating function

for the joint coding and transmission queue lengths can only be solved using boundary

value problem techniques [127–130] which may not be practical for optimising performance

in real time. Thus we analyse the response time in the transmission queue approximately

using the decomposition approach in [27] which will be based on the unjustified assumption

that the departure process from the coding stage is a renewal process.

In particular, we approximate the distribution of the arrival process to the transmission

queue A3 or equivalently the departure process from the coding stage using the stationary

interval method that ignores the correlation between successive departures:

A3(x) =

∞∑
n=1

πnU1(x) +

−∞∑
n=−1

πnU2(x) + π0

∫ x

0
A(x− y)

[
ρ1 dU1(y) + ρ2 dU2(y)

]
(5.23)
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Note that φ = E[A3]
−1. The transmission queue contains both coded and non-coded

packets which have different distribution when packet size is not constant. In order to

circumvent this difficulty, we apply an approximation similar to the one used for ONC so

as to obtain an equivalent service time distribution:

S3(x) =
φc
φ
S(x)2 +

[
1− φc

φ

]
S(x) (5.24)

The average packet delay in the transmission queue E[R3] is then estimated using the dif-

fusion approximation for a G/G/1 system [125] with arrival and service time distributions

A3(x) and S3(x) respectively.

5.2.2. Optimising the time-outs over a single-hop

Now we use the analytical results derived previously in order to investigate the trade-offs

associated with the choice of the time-outs when decoding is immediate at the next hops.

In particular, we consider the two-way relay network in Figure 2.2 assuming that packets

are received successfully by the relay node even if more than one packet arrives at the

same time [84]. The performance measures of interest are delay, bandwidth utilisation

and energy consumption.

Response time

Given a set of input rates λi, a packet size distribution L and a capacity of the output link

c, we seek to determine the optimal time-out parameters ri that minimise an aggregate

objective function of the response time of class 1 and 2 packets in the system:

Minimise
r1,r2

D = E
[
wT1 + (1− w)T2 +R3

]
subject to ri > λi − λ3−i, i ∈ {1, 2}

φc E[L] +
(
Λ− 2φc

)
E[L] < c (5.25)

where L is the random variable representing the largest of the two packet lengths, and

w ∈ [0, 1]. We choose w = 0.5 in order to provide equal priority to both packet classes.

For symmetric traffic load λi = λ and constant packet size with µ = E[S]−1, the stability

conditions for the coding and transmission queues (the constraints in (5.25)) reduce to:

0 < r, if Λ < µ

0 < r <
Λ(µ− λ)

Λ− µ
, if µ ≤ Λ < 2µ

(5.26)

Note that when the output link is lightly loaded Λ << µ, NC cannot improve delay
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performance and therefore plain routing is optimal. On the other hand, under moderate

traffic conditions where Λ < µ, the node is stable with routing but using NC can reduce

both delay and transmission costs. Finally, when the output link is saturated (µ ≤ Λ <

2µ), NC must be performed in order to stabilise the transmission queue.

Bandwidth utilisation

We use coding gain η as a measure of bandwidth efficiency of NC in comparison to plain

forwarding. We have

η =
ΛE[L]

φcE[L] + (Λ− 2φc)E[L]
∈ [1, 2] (5.27)

The problem of maximising the coding gain, however, has a trivial solution r∗i = 0, which

renders the coding stage unstable. Hence, there is a compromise to be achieved between

delay and coding gain which will be illustrated in the numerical results.

Energy consumption

Reducing energy consumption is becoming a major design issue in networking especially

in sensor networks where nodes are typically resource-constrained and rely on batteries

or energy harvesting. Thus we consider the energy efficiency of NC against routing in

the two-way relay network. We follow an approach similar to the one presented in [103]

but unlike their work, we allow coding and energy costs to depend on the packet size.

Moreover, we include an energy cost Ep for receiving a packet by a node even if the node

is not the intended receiver (due to the broadcast nature of the wireless medium). Let εc

and εtr be the energy required to XOR two bits and to transmit a single bit, respectively.

The average energy consumption per unit time (power) under plain forwarding is then

given by:

Pf = 3ΛEp + ΛE[L]εtr (5.28)

Here the first term accounts for the fact that each packet will be processed by three

nodes: the relay node and the two neighbouring nodes. The energy cost of NC involves a

trade-off: on the one hand, it reduces the number of transmissions by the relay node and,

consequently, the number of packets processed at the two receivers; on the other hand,

it adds a coding cost at the relay node and a decoding cost at each of the neighbouring

nodes. Hence, the average energy consumption per unit time under NC is given by:

Pc =
(
Λ + 2φ

)
Ep +

(
φcE[L] +

(
Λ− 2φc

)
E[L]

)
εtr + 3φcE[L]εc (5.29)
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NC therefore reduces the power consumption if and only if the following condition is

satisfied:

3E[L]εc <
(
2E[L]− E[L]

)
εtr + 2Ep (5.30)

Next we present some numerical examples. Figure 5.6(a) depicts the mean coding,

transmission and total delays in the system vs the mean time-out period for a balanced

system under moderate traffic condition, Λ = 2 and µ = 2.5. In this case, the range of

time-out parameters which stabilises the system is [0,∞) where the lower bound corre-

sponds to the non-coding case. The figure indicates that the approximation yields very

accurate results as compared to simulations. We can also observe that the coding delay

is monotonically increasing while the transmission delay is exponentially decaying with

the time-out period. Hence, the total delay in the system decreases up to a point (the

optimal) after which it increases continuously. More specifically, network coding reduces

the average response time by up to 24% as compared to plain forwarding while at the same

time offering a coding gain of 1.23. Furthermore, a coding gain of 1.5 can be achieved

while maintaining a similar response time to the non-coding system.

Figure 5.6(b) depicts similar numerical results under heavy traffic conditions where for-

warding packets without coding renders the transmission queue unstable. The parameters

used in the figure are Λ = 2 and µ = 1.4, which imply that the average time-out periods

can vary in the range (0.75,∞) in order to stabilise the system. In this case, network

coding yields a minimum response time of about 3.7 sec while offering a coding gain of

1.7. Higher coding gains can also be achieved at the expense of higher delays.

Figures 5.7 and 5.8 depict the trade-off curve between delay and coding gain as a result

of varying the time-out for the set of parameters of Figure 5.6 and for a balanced system

under different traffic conditions, respectively. The results suggest that the time-out should

not be smaller than the optimal value since the curve is almost symmetric in the vicinity of

this point. In other words, if δ− and δ+ are positive numbers then, for any average time-

out 1/r∗ − δ− within the stability region there is another time-out value 1/r∗ + δ+ which

maintains the same delay performance while achieving higher coding gain. Figure 5.8 also

shows that the trade-off curve becomes narrower as the traffic load increases.

In Figure 5.9, we plot the inverse of the aggregate delay function when the arrival rates

of the two flows are moderately different. The figure shows that there is an optimal set

of time-out parameters which maximises the inverse of the delay cost function, yielding

a delay improvement of about 54% and a coding gain of 1.26 in comparison to routing.

When the arrival rates of the two flows are highly unbalanced, we have observed that the

optimisation problem depends mainly on the time-out parameter for the faster flow while

the optimal time-out parameter for the slower flow is simply zero.
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Figure 5.6.: Average coding, transmission and total delays vs average time-out 1/r for
balanced load λ = 1 and constant packet length with (a) µ = 2.5 and (b)
µ = 1.4.
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Figure 5.7.: The trade-off between delay and coding gain as a result of varying the time-out
using parameters of Figure 5.6.
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Figure 5.8.: The trade-off between delay and coding gain as a result of varying the time-out
period for a balanced traffic under different traffic conditions with constant
packet length µ = 1.

Figure 5.9.: The inverse of the delay function D−1 vs the average time-outs for λ1 = 0.4,
λ2 = 0.5 and constant packet with µ = 1.
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Figure 5.10.: The feedback mechanism in a butterfly network with two independent unicast
sessions between the source-destination pairs (si, ti), i ∈ {1, 2}. When two
packets are combined, node nc sends a feedback message to si requesting
retransmission of a packet to t3−i.

5.2.3. Extension to multi-hop networks

In multi-hop networks, where decoding is not possible at the next hop of the encoding

node, each source needs to send remedy packets to the destination nodes of those packets

with which its own are combined. A direct consequence of performing NC asynchronously,

however, is that senders will not know in advance which of their packets will be combined

at intermediate nodes. Yet, sending a remedy for every packet in a flow will lead to poor

utilisation of network resources as only a small proportion of those packets might be used

for decoding. A potential solution to this problem is to implement a feedback mechanism

at the encoding node [81] which requests retransmission of additional packets if NC is

performed. Note that in a directed graph, edges in the reverse direction can be considered

as low bandwidth links that can be used to relay feedback and protocol information, but

they may not be used by the underlying routing protocol to carry traffic.

As an example, consider the butterfly network of Figure 5.10; if two packets are combined

at node nc then the node can send feedback packets to source nodes s1 and s2 requesting

retransmission of remedy packets to receivers t2 and t1, respectively. In turn, node nf will

multicast received coded packets to both destination nodes and unicast un-coded packets

to their intended recipient. This scheme thus requires source nodes to retain copies of

their transmitted packets until a remedy transmission request is received, after which the

requested packet in addition to all packets with smaller sequence numbers can be discarded
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Figure 5.11.: Queueing network model for the source destination pair (si, ti) of the but-
terfly network when coding takes place at nc.

(assuming single path routing so that packets arrive at the encoding node in sequence).

Figure 5.11 depicts the queueing network model for the source-destination pair (si, ti)

when coding is performed at the intermediate node. If, on the other hand, a packet passes

through node nc without being encoded, then the equivalent model is a tandem queueing

network.

Note that the queueing behaviour of coded packets resembles that of fork-join queueing

networks (FJQNs), where a fork occurs at the encoding node to represent the simultaneous

transmission of coded and feedback packets, while join primitives occur at the destina-

tion nodes to represent decoding operations. Such queueing networks are analytically

intractable and only bounds are available for their performance [106].

We will assume that packets must be received at the destination node in sequence so

that un-coded packets may experience a form of resequencing delay upon arrival at the

destination node if a previously received coded packet has not been decoded yet. Thus

the arrival of a remedy packet at the output node may release a batch of packets from

the decoding buffer; this highly correlated batch departure process also complicates the

analysis of the queueing network significantly. In the sequel we will obtain an approximate

upper bound for the average end-to-end delay for both coded and un-coded packets, which

will be achieved by focusing on the former since they experience, on average, higher

transmission delays in links and synchronisation delays at the output.

Heuristic for optimising the average end-to-end delay

A well known upper bound for the total delay of parallel FJQNs is based on the properties

of associated random variables [106] which we summarise as follows. Denote by Dp
i and

Dr
i , respectively, the total delays over the primary routing path nc → nf → ti and the

remedy path nc → sj → ti; these two random variables are associated because of the fork

synchronisation primitive. If Dp
i and Dr

i are the independent versions of the associated

variables such that:
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(a) Dp
i and Dp

i (Dr
i and Dr

i ) have the same distribution;

(b) Dp
i and Dr

i are mutually independent

then the following inequality holds:

Pr[max(Dp
i , D

r
i ) ≤ x] ≥ Pr[max(Dp

i ,D
r
i ) ≤ x]

and as a consequence:

E[max(Dp
i , D

r
i )] ≤ E[max(Dp

i ,D
r
i )] (5.31)

The above bound indicates that we can obtain an upper bound for the expected fork-join

delay of coded packets by assuming the two path delays independent when in fact they are

associated but not independent. However, obtaining the distribution of the independent

versions of the path delays is yet extremely difficult. Thus we propose a simple heuristic

for selecting the time-out parameters which requires knowledge of the average traffic flow

characteristics over each link in the network. More precisely, we assume that link u → v

behaves as an M/M/1 queueing system with arrival rate λ(u, v) which is equal to the

average packet rate on the link, and service rate µ(u, v) given by the ratio of the capacity

of the link c(u, v) to the average packet size in the flows traversing the link. Consequently,

the response time of link u→ v follows the exponential distribution:

R(u, v) ∼ Exp
(
µ(u, v)− λ(u, v)

)
(5.32)

Applying this approximation to the butterfly network yields:

λ(nc, nf ) = φ, µ(nc, nf ) =
c(nc, nf ) φ

φcE[L] +
(
φ− φc

)
E[L]

λ(nf , ti) = λi, µ(nf , ti) =
c(nf , ti) λi

φcE[L] +
(
λi − φc

)
E[L]

λ(nc, sj) = φc, µ(nc, sj) =
c(nc, sj)

FB

λ(sj , ti) = φc, µ(sj , ti) =
c(sj , ti)

E[L]

where FB denotes the size of feedback packets.

Now we select the time-out parameters to minimise a cost function D which combines

the coding delay at the encoding node (5.20) and an approximate upper bound for the
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Figure 5.12.: Simulation results and the analytical delay bound of (5.33) for the butter-
fly network with the following parameters: capacity of the remedy links
0.5Mb/s, capacity of feedback links 128kb/s, capacity of other links in the
network 1Mb/s, symmetric Poisson traffic of rate 0.5Mb/s with exponential
packet length E[L] = 512B, and FB = 80B.

delay of coded packets obtained using (5.31) and (5.32):

Minimise
r1,r2

D =
1

2

2∑
i=1

E

[
Ti +max

(
R(nc, nf ) +R(nf , ti), R(nc, sj) +R(sj , ti)

)]
subject to ri > λi − λj , i ∈ {1, 2}, j = 3− i

λ(u, v) < µ(u, v), u, v ∈ {si, nc, nf , ti} (5.33)

Figure 5.12 presents simulation results for the expected value of the different delay

components in the butterfly network: coding delay at the encoding node; sum of link

delays on the main routing path; synchronisation delay at the output including decoding

of coded packets and resequencing of un-coded packets; and the total end-to-end delay.

In the figure, decoding delay increases steadily with the time-out due to congestion in the

feedback and remedy links. Figure 5.12 also shows the delay cost function D, from which

we can observe that both simulation and analytical predictions have a minimum around

a time-out value of 0.05ms. This indicates that the proposed heuristic provides a simple

technique for optimising the end-to-end delay performance of NC.
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5.3. Summary

In this chapter queueing models for two possible implementations of inter-session NC have

been proposed and analysed. We first presented a single stage model for joint opportunis-

tic coding and transmission, and analysed its performance by a decoupling approximation.

We then presented a multistage queueing model for a NC implementation in which packet

coding and transmission are performed independently, and nodes use timers to modify

coding opportunities. We have incorporated this model into a network setting and pro-

posed a simple heuristic, based on fork-join synchronisation primitives, to optimise the

end-to-end delay performance for butterfly-like network structures. In both cases, the

accuracy of the proposed approximations was verified through many comparisons with

simulations, and the approximations were found to work out well. We have used the ana-

lytical models to evaluate the performance of the proposed coding schemes in comparison

to a conventional store and forward network, and we have shown that NC can improve

performance significantly in a moderate to heavily loaded system.
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6. Conclusions and future work

The aim of this thesis was to develop mathematical models that would assist in optimising

the performance of multi-hop networks and improve our understanding of the trade-offs

that govern their behaviour. Specifically, the thesis addressed the following issues:

• Spatial non-homogeneity of large networks which may arise from their structure,

transmission medium, routing policy and security mechanism used by relay nodes.

Optimisation problems of interest include: optimising packet delivery performance

through a judicious choice of the time-out, and allocating resources to protect a node

against malicious packets.

• The delay-energy trade-offs associated with sending redundant packets into large-

scale networks to mitigate the effects of packet losses and routing inaccuracies.

• The queueing behaviour of NC of multiple stochastic flows, including packet syn-

chronisation at encoding and decoding nodes. The figures of merit being delay,

throughput, energy consumption and bandwidth utilisation.

The following section summarises the contributions of the thesis towards solving the

above problems and outlines the main results of the research.

6.1. Conclusions

In this thesis we used Brownian motion as a model of packet traversal of a large wireless or

wired network. The model accounts for network non-homogeneity regarding routing and

the loss rate that the packet experiences as it passes successive segments of a source to

destination route. A mixed analytical-numerical solution technique has been developed to

compute the average time to reach the destination, including recurrent retransmission by

the source after time-outs, and the average energy expended by the packet while moving

through the network. The approach is based on using a finite but unbounded number of

internally homogeneous segments. The model is able to capture the effects of increased

loss rate in areas remote from the source and destination, variable rate of advancement

towards destination over the route, as well as of defending against malicious packets within

a certain distance from the destination. The role of time-outs to optimise the performance

105



of wireless networks has been examined; by varying the value of the time-out and studying

the locus of the energy expended versus the time taken by the search, we can notice

desirable operating areas where both of these parameters of interest are minimised. In the

context of network security, we have applied the model to investigate the effect of using

intermediate nodes that perform DPI and packet drops in protecting a destination node

from malicious packets. We have shown that a scaling of the drop rate can be found such

that the destination can be indefinitely protected from dangerous traffic in spite of infinite

resending. A form of phase transition has also been observed concerning the eventual

success of the attack depending on the relative speed of approach of the dangerous traffic

and the intensity of protections which block the attacker’s progress. Another interesting

result is that, with fixed protection resources, there is an optimum size of protection

space around the destination which maximises the delay before the attacker reaches the

destination.

We then applied the Brownian motion model to analyse the time-dependent proper-

ties of the travel processes of a single, duplicate and coded packets over homogeneous

networks. In particular, we derived the distribution of the total forwarding delay, total

energy consumption and energy expended by a packet at any time instant from the start

of the search. The results were obtained in the form of LTs which were inverted numer-

ically and applied to some useful questions. We first applied the results to estimating

the total energy budget needed for a communication that includes a known number of

packets. Then we compared two known techniques for improving reliable packet delivery

by sending N redundant packets along independent paths. In the first one, the source

node sends duplicate packets so that transmission is considered to be successful when at

least one of the copies reaches the destination node. In the second, erasure coding is used

such that any k-out-of-N packets are enough to decode a block of k packets. Numerical

examples suggest that while coding may result in higher overall packet delay and energy

consumption on average, it reduces variations significantly and thus reduces the uncer-

tainty in packet delivery performance. This indicates that erasure coding could be more

appropriate for real-time applications which have stringent delay requirements. We also

investigated the performance trade-offs in erasure coding resulting from varying the num-

ber of transmitted packets N . We have shown that a small excess in N above k can reduce

decoding time significantly at the cost of a small increase in energy utilisation; this can

be achieved provided that the destination node is equipped with a feedback mechanism to

abort further transmissions in the network after decoding is successful.

Finally, we considered a store and forward packet network in which NC is being used

to co-encode packets from distinct flows. In such a system both the encoding and decod-

ing process introduce additional delays, and we developed analytical models to evaluate

the resulting performance. In particular, we proposed and analysed queueing models for
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two possible implementations of inter-flow NC at a network router. We first presented a

single server queueing model for a cross-layer NC design which coordinates packet cod-

ing and transmission. We proposed a decoupling approximation which reduces the so-

lution method to an iterative non-linear numerical solution. The approach is based on

constructing, for each flow, an equivalent queue with vacations that takes into account

the additional waiting time for service which a flow encounters while other flows are be-

ing encoded. We derived results for the average response time, throughput and coding

gain for arbitrary number of flows that have non-Markovian arrival and service processes.

We then presented a multistage queueing model which introduces processing and coding

queues prior to the transmission queue in order to analyse the performance of NC when

these distinct functionalities are decoupled. We assumed that the router employs a time-

out mechanism in order to accumulate packets for coding, and we evaluated the trade-offs

associated with varying the length of the waiting time. We obtained analytical expressions

for the throughput, coding gain, energy consumption and response time in terms of traffic

rates, packet size distribution and time-outs for the case of two Poisson traffic streams.

We have incorporated the model into a network setting and proposed a simple heuristic,

based on fork-join synchronisation primitives, to optimise the average end-to-end delay in

butterfly-like network topologies. The proposed approximations were validated through

many comparisons with discrete event simulations and were found to work out very well.

We have also used the analytical models to evaluate the performance of the proposed cod-

ing schemes in comparison with a conventional store and forward network, and we have

shown that NC can offer significant gains provided that decisions to code packets from

distinct flows is made a function of network traffic conditions.

6.2. Future work

There are several areas where the research presented in this thesis can be extended. In

this section we discuss open issues and provide possible directions for future work.

In Chapter 3 we focused on developing a generic analytical framework to represent a

packet’s travel in large networks, but we have not addressed the problem of how the pa-

rameters of the model can be obtained when a specific routing protocol is deployed over a

complex topology. To go beyond a purely theoretical impact, realistic examples of trans-

lating the assumed loss and advancement rates into existing environments and protocols

should be considered. Examples of application areas include: packet traversal through an

opportunistic network [14, 131, 132], data query [47] and gradient routing [133, 134] in a

wireless sensor network, and search for a file in an unstructured peer-to-peer network [135].

In such networks, the location of the destination may not be known when a packet starts

its travel. Furthermore, it may be difficult to construct accurate routing tables in highly
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dynamic topologies, and intermediate nodes may relay the packet away from its destina-

tion. As the packet approaches the destination, routing may improve as more accurate or

recent information becomes available regarding its whereabouts. Similarly, we presented

a theoretical analysis of how network attacks can be prevented through the use of DPI

and packet drops. We addressed the question of whether such a mechanism can effectively

stop an attack, but we did not investigate the relation between DPI parameters and the

loss rates in the model. Parameters such as the number of nodes performing DPI, the

percentage of packets that undergo DPI and the mechanism employed to detect a mali-

cious packet would all affect average detection rates. Thus mapping techniques that can

accurately capture the network parameters of interest are required.

The diffusion model presented in this thesis deals with a particular problem, namely the

search by a packet for a destination node in a multi-hop network. However, it addresses

a large class of other problems concerning search for recognisable objects in large random

or imprecisely known environments. Such problems arise in robotic search for mines in a

minefield [136]; search for information in the web or in large databases with uncertain or

approximately represented data such as the content of images [137]; and automatic theorem

proving where portions of proofs have to be sought by sifting through a large database. In

many such contexts the search space is not homogeneous, and it may be possible to move

or search more rapidly in some parts of the search than in others; search may also be easier

in certain parts of the search space due to hints or other useful directional information

that may be available. Furthermore, in many such contexts, the searcher’s progress may

be impeded or blocked, or even destroyed for instance for lack of fuel during a robotic

search or due to unreliability in the computational mechanisms when we are dealing with

a software search for data. The diffusion model also provides a framework for the study of

intermittent search strategies [55–57, 60] which mimic animals’ foraging patterns [58, 59].

Specifically, the combination of local diffusive and ballistic motions characterising such

search mechanisms can be represented by timer that triggers the searcher to jump to a

random location instead of restarting from the initial position, as in our approach. Thus

an interesting research direction is to apply the diffusion model to the aforementioned

research areas and perhaps relate its findings to real world experiments.

The time-dependent analysis presented in Chapter 4 can be extended in several ways.

Firstly, the distributions of the travel time and energy consumption of a single packet

were obtained in the form of one-dimensional LTs that were inverted numerically. Since

it is difficult to invert the LTs analytically, one can attempt to deduce the asymptotic

behaviour which could be determined from singularities in the complex plane. Further-

more, the energy consumption results for coded transmissions require numerical inversions

of two-dimensional LTs which can be time-consuming. Thus it would be useful to extend

the steady-state approach in [9] to the case of erasure coding, in order to derive analytical
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expressions for the average performance. Secondly, we have assumed that the N searchers

travel independently of each other, which may not represent some cases of interest that

involve collaborative behaviour or use of memory; for instance, a searcher which has ex-

haustively searched a particular area may leave “negative hints” that would encourage

others to relaunch their search away from where they are currently. Lastly, one can gen-

eralise the time-dependent results to non-homogeneous environments which would require

more mathematically sophisticated techniques.

For the problem of optimising the performance of inter-flow NC using time-outs, we

have only considered in Chapter 5 the case of two Poisson flows in butterfly-like network

structures. It would be useful to extend the results to arbitrary number of flows, which is

likely to require further approximations as the state space of the model becomes very large.

Bounds and approximations are also required in order to optimise performance in more

complex network topologies, for instance networks with multiple encoding and decoding

points. One can also apply similar techniques to optimise the multicast performance

of intra-flow NC. Indeed, the subgraph representing the flow of packets from a source

to a single destination of a multicast session can be transformed into a FJQN. In this

network, fork primitives occur at points where multicast operations are performed, while

join primitives represent both encoding at intermediate nodes and decoding at the output

of the network. Finally, the queueing models presented in this thesis, which seem to

provide adequate delay approximations, can also be used to design efficient algorithms for

routing and flow control under NC.
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A. The diffusion equation

In this appendix we outline the derivation of the diffusion equation which is a second-

order partial differential equation describing approximately the time evolution of the pdf

of the position of a particle undergoing Brownian motion [6]. Our treatment follows that

of [108,138–140].

Let {X(t) : t} be a one-dimensional stochastic process denoting the position of a Brow-

nian particle at time t ≥ 0 and let f(x, t) indicate the pdf of X(t), i.e. f(x, t)dx = Pr[x ≤
X(t) ≤ x+ dx]. The process X(t) is assumed to be a Markov process which is continuous

in both time and space, thus for any arbitrary times t1 < t2 < · · · < tn we have

Pr[X(tn) = xn|X(tn−1) = xn−1, · · · , X(t1) = x1]

= Pr[X(tn) = xn|X(tn−1) = xn−1]

Furthermore, for a small time interval ∆t, the pdf of X(t) satisfies the following equation:

f(x, t+∆t) =

∫ ∞

0
f(x−∆x, t)q(x−∆x, t; ∆x,∆t)d∆x (A.1)

where the transition probability q is defined as

q(x, t;∆x,∆t) = Pr[X(t+∆t) = x+∆x|X(t) = x]

From the Taylor expansion of the right hand side of (A.1) about the point x we obtain:

f(x, t+∆t) =

∫ ∞

0

∞∑
n=0

(−∆x)n

n!

∂n[f(x, t)q(x, t; ∆x,∆t)]

∂xn
d∆x

If we assume that X(t) evolves through the effect of many small displacements, then high

order moments of the jumps with n > 2 become negligible as ∆t→ 0:

f(x, t+∆t) ≈ f(x, t)− ∂

∂x

[
f(x, t)

∫ ∞

0
∆x p(x, t;∆x,∆t)d∆x

]
+

1

2

∂2

∂x2
[
f(x, t)

∫ ∞

0
(∆x)2p(x, t;∆x,∆t)d∆x

]
(A.2)

Let b(x, t)∆t be the mean change over time [t, t + ∆t[ of the position of the particle
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given that X(t) = x, and let the variance of the distance travelled over the same time

interval be c(x, t)∆t:

b(x, t)∆t =

∫ ∞

0
∆x q(x, t; ∆x,∆t) d∆x

c(x, t)∆t =

∫ ∞

0
(∆x)2q(x, t;∆x,∆t) d∆x− o(∆t) (A.3)

Now we can substitute (A.3) into (A.2), divide both sides by ∆t and take the limit as

∆t→ 0 to get:
∂f(x, t)

∂t
= −∂[b(x, t)f(x, t)]

∂x
+

1

2

∂2[c(x, t)f(x, t)]

∂x2
(A.4)

which is the well-known diffusion equation.

The probability current I(x, t) or the rate of flow of probability, in the positive direction,

across a point x at time t is given by:

I(x, t) = −
[
−b(x, t)f(x, t) + 1

2

∂[c(x, t)f(x, t)]

∂x

]
(A.5)

This follows from the fact that the probability of the diffusion process lying within an

interval [x, x+∆x] is f(x, t)∆x and so the rate of change of the probability current across

this narrow segment is [140]:

∂f(x, t)∆x

∂t
= I(x, t)− I(x+∆x, t) (A.6)

Dividing both sides by ∆x and taking the limit as ∆x→ 0 yield:

∂f(x, t)

∂t
= −∂I(x, t)

∂x
(A.7)

hence (A.5) is obtained from (A.4) and (A.7).

The diffusion process X(t) can be expressed by the following stochastic differential

equation [27]:

dX(t) = b(X(t), t)dt+
√
c(X(t), t)dX0(t) (A.8)

where X0(t) denotes the Wiener process (Standard Brownian motion) with b(z, t) = 0 and

c(z, t) = 1. More specifically, X0(t) is characterised by: (a) It is continuous, (b) X0(0) = 0

and (c) X0(t)−X0(τ) ∼ N (0, t−τ), i.e., independent and normally distributed increments

with mean 0 and variance (t− τ). Thus if X(t) = x then in a small time interval ∆t, the

process changes its position by an amount which is approximately normally distributed

with mean b(x, t)∆t and variance c(x, t)∆t and is independent of the past behaviour of

the process.
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