
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1997

Nested Fork-Join Queuing Networks and Their Application to Nested Fork-Join Queuing Networks and Their Application to

Mobility Airfield Operations Analysis Mobility Airfield Operations Analysis

Craig J. Willits

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Multi-Vehicle Systems and Air Traffic Control Commons

Recommended Citation Recommended Citation
Willits, Craig J., "Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations
Analysis" (1997). Theses and Dissertations. 5828.
https://scholar.afit.edu/etd/5828

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F5828&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/227?utm_source=scholar.afit.edu%2Fetd%2F5828&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/5828?utm_source=scholar.afit.edu%2Fetd%2F5828&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/DS/ENS/97-01

NESTED FORK-JOIN QUEUING
NETWORKS AND THEIR APPLICATION
TO MOBILITY AIRFIELD OPERATIONS

ANALYSIS

DISSERTATION

Craig Joslyn Willits
Major, USAF

AFIT/DS/ENS/97-01

Approved for public release; distribution unlimited

The views expressed in this dissertation are those of the author and do not reflect

the official policy of the Department of Defense or the U. S. Government.

AFIT/DS/ENS/97-01

NESTED FORK-JOIN QUEUING NETWORKS

AND THEIR APPLICATION TO MOBILITY AIRFIELD

OPERATIONS ANALYSIS

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Craig Joslyn Willits, B.A., M.S.

Major, USAF

March 1997

Approved for public release; distribution unlimited

AFIT/DS/ENS/97-01

NESTED FORK-JOIN QUEUING NETWORKS

AND THEIR APPLICATION TO MOBILITY AIRFIELD

OPERATIONS ANALYSIS

Craig Joslyn Willits, B.A., M.S.

Major, USAF

Approved:
Date

Dennis C. Dietz, Ph.D. (Chairman)

,)._ L 2oJ(' ____-

David L. Coulliette, Ph.D.

Edward F. Mykytla,'h.D.

.<,.LL,-7 f. l,, 7
Richard A. Raines, Ph.D.

Byro A. Welsh, Ph.D. (Dean's Representative)

Accepted:

ROBERT A. CALICO, Jr., Ph.D.
Dean, Graduate School of Engineering

ii

Acknowledgements

I do not know what I may appear to the world; but to myself I seem to
have been only like a boy playing on the sea-shore, and diverting myself in
now and then finding a smoother pebble or a prettier shell than ordinary,
whilst the great ocean of truth lay all undiscovered before me.

Sir Isaac Newton

In the process of conducting this research, I have indeed felt the joy of discovery

Newton so aptly described. Unlike Newton, however, I was not alone on the beach

of discovery.

Of course, I would not have succeeded in my efforts without my committee's

contributions. Dr Dennis Dietz, my research advisor, has been my mentor and coun-

selor since I began work on my master's thesis nearly four years ago; his importance

to the success of this project cannot be overstated. I am especially grateful to Dr

Dave Coulliette for lending his expertise in numerical analysis; his support was in-

valuable during the preparation of Chapter III. My thanks go to Dr Ed Mykytka

for asking the hard questions which led to a sharper written presentation. Dr Rick

Raines brought a fresh perspective that I appreciated. Dr Byron Welsh, the Dean's

representative, and Dr Pete Hovey, a former committee member, deserve special

mention for their helpful suggestions.

Besides my committee, I was fortunate to have outstanding support from Air

Mobility Command (AMC), which sponsored my research. Dr Jean Steppe had

the original vision for this project; her advice and suggestions helped me keep my

approach balanced between theory and practice. Dr John Borsi increased my un-

derstanding of mobility modeling issues. Kim Schubert, Travis Cusick and Alan

Whisman provided valuable insights into the details of AMC's mobility airfield sim-

ulation models.

iii

I am indebted to several friends and colleagues for their insight, empathy and

emotional support. My current and former office mates, John Van Hove and Dr

Dan Zalewski, deserve credit for enduring the times I waxed eloquent about queuing

theory. Fellow student Pete Vanden Bosch and I had many fruitful discussions about

the nature of phase-type probability distributions. My colleagues Robert Brigantic

and Steve Forsythe empathized with many of my frustrations, especially with balky

computer code. Dr Al Moore, another of my mentors, encouraged me with his

interest in my progress. The prayers and support of my faithful friends Milt Barney,

Darren Gibbs, Dr Mark Oxley, and Phil Shaw were much appreciated, especially in

the days leading up to the completion of this manuscript.

As always, my wife Sara was my chief source of encouragement and the leader

of my support team. I above all appreciate her willingness to listen as I dealt with

the frustrations of original research. I am also thankful for my sons, Steven, David,

and Joseph, who love me simply because I'm their Dad, and are not impressed with

dissertations and degrees.

Finally, I give all praise to God, and dedicate this dissertation to His glory. "A

man's heart deviseth his way: but the Lord directeth his steps" (Proverbs 16:9).

Craig Joslyn Willits

iv

Table of Contents

Page

Acknowledgements 1

Table of Contents v

List of Figures x

List of Tables. xiii

Abstract. xvi

I. Introduction.

Motivation.

Problem Statement. 2

The Analytical Airfield Model. 3

Overview. 3

The Network Structure. 3

Customer Classes. 7

Network Capacity. 8

The Arrival Processes 8

The Service Stations. 8

Research Goals 9

Sequence of Presentation 9

11. Analyzing Queuing Networks. 10

Overview. 10

Basic Concepts. 10

v

Page

Product-Form Approximation of Closed Queuing Networks . 12

Background 12

Aggregation 13

Marie's Method 14

Analyzing Multiserver Stations Using Marie's Method 17

III. Efficient Isolated Analysis of General Multiserver Stations

During Decomposition of Closed Queuing Networks 20

Introduction and Motivation 20

The Transition Rate Matrix for the A(n)/Ck/r/N Queue. . .. 21

Constructing the Matrix 21

The Structure of the Matrix 24

Solution Methods: Narrowing the Choice 26

Computational Experience 27

The Candidate Iterative Methods 27

The Representative Queuing Systems 27

Computing Environment 29

Numerical Analytical Considerations 29

Results 30

Using CGS for Isolated Analysis in Marie's Method 39

Conclusions 44

IV. Fork-Join Queuing Networks 46

Introduction 46

Network Types 46

The Fork-Join Queue 46

Networks With Fork-Join Primitives 48

Review of the Literature 49

vi

Page

Motivation 49

Simple Fork-Join Queues 49

Open Networks With Fork and Join Primitives 56

Closed Networks Containing Fork-Join Subnetworks. . . 58

Discussion of the Literature 61

Product-Form Approximation of Closed Fork-Join Queuing Net-

works .. 62

Introduction 62

Analysis Using Aggregation 62

Analysis Using Marie's Method 64

Necessary Theoretical Extensions 65

V. A Product-Form Approximation Technique for Closed Nested Fork-Join

Queuing Networks With Probabilistic Load Patterns 67

Introduction 67

The "Short-Circuit" Approximation 67

Description 67

Analyzing the Synchronization Station 68

Extension to Nested Fork-Join Queuing Networks..... .. 74

Computational Experience 76

Case Study 1: FJQNs With Probabilistic Forking 76

Case Study 2: FJQNs With Nested FJSNs 89

Conclusion 97

Recommendations 99

VI. Analytical Airfield Model Demonstration 101

Introduction 101

Implementing the Analytical Airfield Model 101

Numerical Study 104

vii

Page

Overview 104

Results 104

Error Analysis 109

Speed of Execution 109

Conclusion and Recommendations 109

VII. Conclusion111

Introduction111

Statement of Research Contributions 111

Analysis of Multiserver k-Coxian Queues 111

Decomposition of Nested Fork-Join Queuing Networks. 111

Isolated Analysis of Mobility Airfield Flow 111

Summary of Recommended Research Topics 112

Appendix A. Calculating the Stationary Probabilities of a

Continuous-Time Markov Chain 114

Introduction 114

The Stationary Probability Distribution 114

Definition 114

Problem Stability 115

Algebraic Solution of the Stationary Probability Problem . . . 116

Direct Solution Methods for Linear Systems 117

Iterative Solution Methods 118

Solving the Stationary Probability Problem Using Decomposition 125

Solving the Stationary Probability Problem Using Recursion.. 127

Appendix B. The A(n)/Ck/r/N Queue: Numerical Results for

Generalized k-Erlang Systems 129

Appendix C. Nested FJQNs: Numerical Results 135

viii

Page

Appendix D. The Analytical Airfield Model: Numerical Results 154

Bibliography 160

Vita 171

ix

List of Figures

Figure Page
1. Task Precedence Graph 4

2. Graph of the Equivalent Queuing Network 6

3. The Product-Form Approximation Technique 13

4. Surface Contour Plot of m versus k and r, N = 30 23

5. Block Structure of Q 25

6. k-Erlang Systems: Solution Time vs. Order, No Preconditioning. . 33

7. k-Erlang Systems: Solution Time vs. Order, ILU(O) Preconditioner.. 34

8. k-Erlang Systems: Factorization Time vs. Order, ILU(O) Precondi-

tioner .. 35

9. k-Erlang Systems: Iteration Time vs. Order, ILU(0) Preconditioner. 36

10. Memory Usage vs. Order 37

11. General Network Topology 41

12. Equivalent Topology, Networks Ia and lb 43

13. Equivalent Topology, Networks Ila and JIb 43

14. Sample Fork-Join Queue Topology 47

15. Sample PFJQN Topology 48

16. Sample AFJQN Topology 49

17. Representative Fork-Join Queuing Network 63

18. Isolated Fork-Join Subnetwork, Aggregation Method 63

19. Transformed Subnetwork, Aggregation Method 64

20. Isolated Fork-Join Subnetwork, Marie's Method 65

21. Transformed Subnetwork, Marie's Method 66

22. Using SC Approximation With Marie's Method 69

23. Hierarchical Decomposition of a Nested FJQN 75

24. Basic Network Topology, Case Study 1 Representative Systems. . .. 77

x

Figure Page

25. Case Study 1: Expected Throughput at Station 1, Systems 1-9. . . 81

26. Case Study 1: Expected Throughput at Station 1, Systems 10-18. 81

27. Case Study 1: Expected Queue Length at Station 1, Systems 1-9. 82

28. Case Study 1: Expected Queue Length at Station 1, Systems 10-18. 82

29. Case Study 1: Expected Queue Length at Station 2, Systems 1-9. 83

30. Case Study 1: Expected Queue Length at Station 2, Systems 10-18. 83

31. Case Study 1: Expected Queue Length at Station 3, Systems 1-9. 84

32. Case Study 1: Expected Queue Length at Station 3, Systems 10-18. 84

33. Case Study 1: Expected Queue Length at Station 4, Systems 1-9. 85

34. Case Study 1: Expected Queue Length at Station 4, Systems 10-18. 85

35. Case Study 1: Expected Queue Length at Station 5, Systems 1-9. 86

36. Case Study 1: Expected Queue Length at Station 5, Systems 10-18. 86

37. Case Study 1: Expected Queue Length at Station 6, Systems 1-9. 87

38. Case Study 1: Expected Queue Length at Station 6, Systems 10-18. 87

39. Case Study 1: Expected Queue Length at Station 7, Systems 1-9. 88

40. Case Study 1: Expected Queue Length at Station 7, Systems 10-18. 88

41. Basic Network Topology, Case Study 2 Representative Systems. . . 90

42. Case Study 2: Expected Throughput at Station 1 91

43. Case Study 2: Expected Queue Length at Station 1 92

44. Case Study 2: Expected Queue Length at Station 2 92

45. Case Study 2: Expected Queue Length at Station 3 93

46. Case Study 2: Expected Queue Length at Station 4 93

47. Case Study 2: Expected Queue Length at Station 5 94

48. Case Study 2: Expected Queue Length at Station 6 94

49. Case Study 2: Expected Queue Length at Station 7 95

50. Case Study 2: Expected Queue Length at Station 8 95

51. Case Study 2: Expected Queue Length at Station 9 96

xi

Figure Page

52. Case Study 2: Expected Queue Length at Station 10 96

53. Revised AAM Topology (Stations 3, 4, and 10 Removed) 102

54. Effect of Mean Interarrival Time on Airfield Throughput 105

55. Effect of Mean Interarrival Time on Airfield Response Time106

56. Effect of Mean Interarrival Time on Aircraft on Station 106

57. Effect of Constrained Resources on Airfield Throughput 107

58. Effect of Constrained Resources on Airfield Response Time 108

59. Effect of Constrained Resources on Aircraft on Station 108

60. Generalized k-Erlang Systems: Solution Time vs. Order, No Precon-

ditioning 131

61. Generalized k-Erlang Systems: Solution Time vs. Order, ILU(0) Pre-

conditioner .. 132

62. Generalized k-Erlang Systems: Factorization Time vs. Order, ILU(0)

Preconditioner 133

63. Generalized k-Erlang Systems: Iteration Time vs. Order, ILU(0) Pre-

conditioner .. 134

xii

List of Tables

Table Page

1. Network Station Descriptions 5

2. Ordering of States When k = 4, r = 3, and 3 < n < N 22

3. Representative System Configurations 28

4. Parameters of the Generalized k-Erlang Distributions 28

5. Elapsed Time to Solution (in seconds), No Preconditioner 31

6. Elapsed Time to Solution (in seconds), ILU(0) Preconditioner..... 32

7. Convergence Behavior, Arrival Process II, No Preconditioner..... 40

8. Parameters of Stations 9 and 10 42

9. Results of Marie's Method Decomposition 44

10. State Transitions, Aggregation 71

11. Column Entries For Row s of Q, Aggregation 73

12. State Transitions, Marie's Method 73

13. Column Entries For Row s of Q, Marie's Method 74

14. Case Study 1: Representative System Configurations 78

15. Case Study 2: Representative System Configurations 89

16. Case Study 2: Convergence Summary 98

17. Analytical Airfield Model Station Descriptions 103

18. Elapsed Time to Solution (in seconds), No Preconditioner 129

19. Elapsed Time to Solution (in seconds), ILU(0) Preconditioner..... 130

20. Case Study 1: Throughput at Station 1 135

21. Case Study 1: Queue Lengths at Station 1 136

22. Case Study 1: Queue Lengths at Station 2 137

23. Case Study 1: Queue Lengths at Station 3 138

24. Case Study 1: Queue Lengths at Station 4 139

xlii

Table Page

25. Case Study 1: Queue Lengths at Station 5 140

26. Case Study 1: Queue Lengths at Station 6 141

27. Case Study 1: Queue Lengths at Station 7 142

28. Case Study 2: Throughput at Station 1 143

29. Case Study 2: Queue Lengths at Station 1 144

30. Case Study 2: Queue Lengths at Station 2 145

31. Case Study 2: Queue Lengths at Station 3 146

32. Case Study 2: Queue Lengths at Station 4 147

33. Case Study 2: Queue Lengths at Station 5 148

34. Case Study 2: Queue Lengths at Station 6 149

35. Case Study 2: Queue Lengths at Station 7 150

36. Case Study 2: Queue Lengths at Station 8 151

37. Case Study 2: Queue Lengths at Station 9 152

38. Case Study 2: Queue Lengths at Station 10 153

39. Effect of Mean Interarrival Time on Airfield Throughput 154

40. Effect of Mean Interarrival Time on Response Time 154

41. Effect of Mean Interarrival Time on Aircraft on Station 155

42. Effect of Constrained Resources on Throughput, Analytical Results. 155

43. Effect of Constrained Resources on Response Time, Analytical Results. 155

44. Effect of Constrained Resources on Aircraft on Station, Analytical Re-

sults 156

45. Effect of Constrained Resources on Throughput, Simulation Results. 156

46. Effect of Constrained Resources on Response Time, Simulation Results. 156

47. Effect of Constrained Resources on Aircraft on Station, Simulation Re-

sults 157

48. Effect of Constrained Resources on Throughput, Relative Errors (Per-

cent) 157

xiv

Table Page

49. Effect of Constrained Resources on Response Time, Relative Errors

(Percent) .. 157

50. Effect of Constrained Resources on Aircraft on Station, Relative Errors

(Percent) .. 158

51. Effect of Constrained Resources on Response Time, Deterministic Re-

sults 158

52. Effect of Constrained Resources on Response Time, Relative Errors in

Deterministic Results (Percent) 158

53. Effect of Squared Coefficient of Variation on Airfield Throughput. . . 159

54. Effect of Squared Coefficient of Variation on Time on Response Time. 159

55. Effect of Squared Coefficient of Variation on Aircraft on Station. . . 159

xv

AFIT/DS/ENS/97-01

Abstract

A single-chain nested fork-join queuing network (FJQN) model of mobility air-

field ground processing is proposed. In order to analyze the queuing network model,

advances on two fronts are made. First, a general technique for decomposing nested

FJQNs with probabilistic forks is proposed, which consists of incorporating feedback

loops into the embedded Markov chain of the synchronization station, then using

Marie's Method to decompose the network. Numerical studies show this strategy to

be effective, with less than two percent relative error in the approximate performance

measures in most realistic cases. The second contribution is the identification of a

quick, efficient method for solving for the stationary probabilities of the A(n)/Ck/r/N

queue. Unpreconditioned Conjugate Gradient Squared is shown to be the method of

choice in the context of decomposition using Marie's Method, thus broadening the

class of networks where the method is of practical use. The mobility airfield model

is analyzed using the strategies described above, and accurate approximations of

airfield performance measures are obtained in a fraction of the time needed for a

simulation study. The proposed airfield modeling approach is especially effective for

quick-look studies and sensitivity analysis.

xvi

NESTED FORK-JOIN QUEUING NETWORKS

AND THEIR APPLICATION TO MOBILITY AIRFIELD

OPERATIONS ANALYSIS

L Introduction

Motivation

A critical aspect of military air mobility analysis is the study of the relationship

between a mobility airfield's resources and the characteristics of the stream of mo-

bility aircraft scheduled to arrive at that airfield. This relationship, which is loosely

termed airfield capability, can best be understood by answering a series of questions

[114]:

1. Where are the bottlenecks in the processing of aircraft on the ground?

2. What levels of critical resources are needed to maintain a given level of through-

put'?

3. Can a base's critical resources support a planned throughput level?

4. What is the airfield's maximum on the ground (MOG) 2?

5. What is the airfield's maximum achievable throughput?

In order to answer these questions, the mobility analyst must be able to quantify

airfield capability. The following quantities are usually used as capability measures

[114]:

1Airfield throughput is the amount of cargo and the number of passengers that can be moved
through the airfield in a given amount of time [129].

2An airfield's MOG is the number of aircraft that can land at that airfield, process through it,
and take off again in a predetermined amount of time [83].

1. The throughput capacity (in tons of cargo and number of passengers).

2. Critical resource levels required to sustain a given throughput level.

3. MOG.

4. The probability distribution of the time an aircraft is on the ground.

Over the years, several analyses of airfield capability have been conducted in

an attempt to provide a mechanism for answering some or all of these questions.

However, none of the models proposed by these studies fully captures the stochastic

nature of events at an airfield. To remedy this situation, analysts at the United

States Air Force's Air Mobility Command (AMC) initiated the Base Resource and

Airfield Capability Evaluation (BRACE) study in 1994. The purpose of the BRACE

study is to provide AMC with the simulation modeling capability to directly address

the five issues listed above, while explicitly allowing for the variability inherent in

airfield operations. The BRACE simulation model enables the estimation of the

airfield capability measures listed above. Ultimately, AMC desires to use the output

of the BRACE model as input to analyses of system-wide airlift operations [112].

Problem Statement

The processing of aircraft at a mobility airfield requires a complex arrangement

of synchronized tasks. AMC's BRACE study focuses on simulating these activities.

As a parallel effort, AMC has proposed using a queuing network model to study an

airfield's operations. An analytical approach may require some parts of the system

to be modeled at lower resolution than that used in the BRACE simulation model;

nevertheless, the queuing network model should have a structure that is similar to the

network that serves as the basis of the BRACE simulation model, so that comparison

between the output of the two models will be meaningful. The analytical model is

intended to provide AMC with a first step toward the following capability:

2

1. An additional mechanism for answering the questions on Page 1, albeit at a

more gross level than the BRACE model (as for a quick-look study).

2. A tool for analyzing the sensitivity of mobility operations at an isolated airfield.

3. A tool for reducing the variance in the BRACE simulation model runs.

The Analytical Airfield Model

Overview. In this section, a queuing network model of mobility airfield oper-

ations is proposed and described in detail. This model, which will be referred to

as the Analytical Airfield Model (AAM), is based on the BRACE simulation imple-

mentation, which is discussed in detail in References [107], [114], and [115].

The Network Structure. The general task precedence graph for the ground

flow of an aircraft at a mobility airfield is shown in Figure 1. In this graph, each

box represents a task that may have to be performed while an aircraft visits the air

base3 . The flow of precedence among tasks is from top to bottom; that is, tasks

at the top of the graph must be completed before the tasks below them. Tasks

that typically begin at the same time are immediately preceded by an appropriately

labeled horizontal bar. "Refuel" and "concurrent maintenance" are examples of tasks

that begin simultaneously. If a bar labeled "synchronize" immediately follows two or

more tasks, those tasks must be complete before any task below the bar may begin.

For example, the "liquid oxygen servicing" and "cargo on" tasks must be complete

before the "bags/passengers on" task can begin.

We can construct a queuing network that is logically equivalent to the flow of

tasks by viewing the service providers as "stations," and the aircraft as "customers"

that move through the network visiting the stations. The graph of the equivalent

3Note that this list of tasks is intended to be as general as possible. The assumptions made in
a particular mobility study may require ignoring one or more of these tasks (e.g., if a particular
contingency plan has no passenger requirements, the passenger onload and offload tasks would be
ignored).

3

AWAIT
PARKING
SPACE DIRECTION

OF FLOW

BAGS/
PASSENGERS

OFF

BRSYZUNSCHEDE
SYCRIMAINT

SYNCHRONIZE

[NON-CON-

CU RREN T
MAINT

SYNCHRONIZES

BAGRGO

OOFF

ICONCURRENT
LIQUID [MAINTENANCE CARG-O

OXYGEN ON

SERVICING

SYNCHRONIZE

SY C R NZ

PASS ENGERS
ON

Figure 1. Task Precedence Graph.

4

Table 1. Network Station Descriptions.

Station Activity T Number of Service Distribution Visit
Number Description Servers Discipline Type Prob

1 Landing < N FCFS Phase Type 1
2 Taxi/Park N Delay Phase Type 1
3 Passengers/bags off N Delay General < 1
4 Unscheduled Maintenance < N FCFS Phase Type < 1
5 Scheduled Maintenance (not N Delay General < 1

concurrent with refueling)
6 Refuel < N FCFS Phase Type < 1
7 Liquid oxygen servicing N Delay General < 1
8 Scheduled Maintenance N Delay General < 1

(concurrent with refueling)
9 Cargo off/on < N FCFS Phase Type < 1
10 Passengers/bags on N Delay General < 1
11 Backout/Taxi N Delay General 1
12 Takeoff < N FCFS Phase Type 1
13 Standard Ground Delay N Delay Deterministic 1

Note: N = network capacity; FCFS - first-come-first-served.

queuing network is shown in Figure 2. A description of the network stations is in

Table 1; this information is discussed in detail below.

The diamond-shaped nodes in Figure 2 are fork nodes (labeled "F") and join

nodes (labeled "J"). These nodes provide a convenient way to model activities that

must be synchronized. To illustrate the function of the fork and join nodes, we

consider an aircraft that needs to be refueled, and that has maintenance scheduled

to be performed at the same time as the refueling. It must therefore visit Nodes 6

and 8 simultaneously. The aircraft is said to "fork" because it behaves as if it has

split into two linked "clones;" one of these clones visits Node 6 (and perhaps Node 7)

while the other clone is at Node 8. The clone that finishes service first awaits the

other clone at the join node. When the second clone finishes service, the two clones

immediately "join" into a single unit and proceed through the remaining tasks.

5

Figure 2. Graph of the Equivalent Queuing Network.

6

The probability that an aircraft visits a particular service station (or a subnet-

work of stations) is assumed to be independent of the number and type of aircraft

at the stations in the network. This is a realistic assumption, since the types of

processing required by a particular aircraft are a function of the flight schedule, the

aircraft manifest or en-route events, and are not linked explicitly to any flight line

activities [114].

For the purposes of this study, it will be assumed that flow through the queuing

network reaches steady state. During wartime or a contingency, mobility operations

are normally conducted around the clock over a period of weeks or months. There-

fore, it is reasonable to assume that, after some initial warm-up period, the mean

aircraft flow rate remains relatively steady over time. For this reason, AMC's airfield

simulations will be primarily non-terminating and will focus on steady-state results

[112]. Thus, it is realistic to use a steady-state queuing network model.

Another assumption that is implied by the model structure is that crew rest

requirements have no impact on aircraft delay; that is, it is assumed that there are

enough crews in the system that a crew in need of rest can be immediately replaced

by a fresh crew. Since it is common during wartime or contingency operations to

preplace crews at different locations throughout the airlift system, it is reasonable

to ignore the impact of crew rest [113].

Customer Classes. Normally, a mobility airfield must be able to accept dif-

ferent types of aircraft. This is necessary because the different types of aircraft

have different service time distributions at certain network stations, and because

the routing probabilities within the network differ for each type. In the AAM, how-

ever, differences between aircraft classes will not be modeled explicitly in the interest

of model simplicity. However, the differences can easily be accounted for implicitly

through the judicious selection of routing probabilities and the composition of service

and arrival laws.

7

Network Capacity. Since an airfield obviously has limited parking space, a

finite capacity must be imposed on the queuing network model. The number of

aircraft permitted at each station is limited only by the system capacity, since it

is possible (but not likely) that all aircraft at the base could be either awaiting or

participating in the same kind of activity.

The Arrival Processes. The arrival process is assumed to be a phase-type re-

newal process (perhaps with a load-dependent mean arrival rate). In actuality, the

arrival process of aircraft to an airfield may not even be a renewal process. However,

little accuracy is lost by imposing the arrival assumption if the distribution of time

between events in a generic point process is approximated by a phase-type distri-

bution whose first few moments match those of the original inter-event distribution

[131].

The Service Stations. As stated above, Table 1 provides a description of the

number of servers, service discipline, service time distribution, and visit probability

at each network station. The service time distribution parameters are not provided

since they depend on the airfield being studied. Some stations may have load-

dependent service rates.

The passenger/bag loading processes (Stations 4 and 12), liquid oxygen ser-

vice (Station 8), and the maintenance processes (Stations 7 and 9) are modeled as

delay stations. Consultations with logistics experts throughout AMC indicate it is

reasonable to view these resources as unlimited [113]. The infinite-server model is

appropriate because the service rates do not depend on the number at the station.

The remaining processes are modeled either as delay stations or as multiserver,

first-come-first-served (FCFS) queues with phase-type service distributions. As with

the arrival process, the assumption of a phase-type form is made for tractability.

8

Research Goals

In order to meet the needs described in the problem statement, this research

will attempt to meet the following objectives:

1. Develop a method for analyzing queuing networks of the same class as the

network used in the AAM.

2. Demonstrate the use of the AAM by modeling operations under a particular

contingency scenario at a typical mobility airfield, using the method developed

under Objective 1 to analyze the AAM network.

Sequence of Presentation

The remainder of this dissertation is divided into six chapters. Chapters II

and IV provide theoretical background, and pose problems that need to be resolved

in order to satisfy the first research objective. The necessary theoretical advances

are presented in Chapters III and V, respectively. Chapter VI, which contains a

demonstration of the AAM, satisfies the second research objective. The dissertation

concludes with Chapter VII, a summary of contributions and research recommenda-

tions.

9

II. Analyzing Queuing Networks

Overview

This chapter has two purposes. First, it provides motivation for the computa-

tional study of queuing network analysis techniques in Chapter III. In addition, it

discusses fundamental queuing network theory that the reader needs to understand

the material on fork-join queuing networks presented in Chapters IV and V.

The remainder of this chapter assumes a familiarity with queuing theory on

the level presented in Reference [59]. The next section briefly covers foundational

material. The chapter continues with a detailed discussion of product-form approx-

imations, which are referred to extensively in Chapters IV and V. Computational

issues raised by applying product-form approximations to networks with multiserver

stations are discussed in the final section.

Basic Concepts

A queuing network is simply a set of queues, together with a set of arcs,

that form a directed graph. In a queuing network model, one typically defines

system behavior in terms of activity at the nodes (also called stations or member

queues) rather than on the arcs. This differs from other network models such as

transportation models, in which the emphasis is on flow through the arcs.

Queuing networks may be divided into two broad classes: open and closed.

Customers enter and depart an open network at one or more points; if the number of

customers in an open network is limited, the network is referred to as capacitated. In

contrast, a closed queuing network contains a fixed number of customers that start

in the system and remain there, circulating among the network stations. It may

be shown that, under certain broad conditions, a capacitated open network has an

equivalent closed network representation [38].

10

A queuing network may be composed of a linked set of graphs, each for a

different type of customer. In this case, the network is called a multiple-chain or

multichain network, and a subnetwork visited by a particular customer class is called

a chain. Networks with only one class of customer are called single-chain networks.

Suppose we have a k-station single-chain queuing network of general topolo-

gy. Define a state of the network by h =_ {n,..., nk}, where ni is the number of

customers at station i. Suppose the probability that the system is in a particular

state h equals the product of the marginal probabilities that there are ni customers

at station i, i = I k:
k

Pr[hi] = Pri[ni] ()

If this condition holds, the network is said to be a separable or product-form network

(this definition can easily be generalized for multiple-chain networks). Such networks

are usually easy to analyze. In particular, if a separable network is either closed

or capacitated, its performance measures can be determined in a straightforward

manner using techniques such as convolution [29] and mean value analysis [100].

Unfortunately, most queuing networks that arise in real applications are not

separable. While exact performance measures can sometimes be obtained for some

of these networks, in many practical cases exact analysis is intractable. Therefore,

it is common to seek an approximate solution using more straightforward methods.

One such approach is decomposition. The goal of decomposition is to approximate

the network's performance measures by partitioning it into a set of subnetworks,

which are then analyzed in isolation [68], [70]. The next section describes in detail

a class of decomposition techniques that attempt to take advantage of the ease with

which separable networks can be analyzed.

11

Product-Form Approximation of Closed Queuing Networks

Background. Product-form approximation is a type of decomposition that

works well for closed networks. In this technique, the performance measures of

the original network are approximated by those of a closed, product-form network of

similar characteristics and behavior. In a product-form approximation, the original

network is partitioned into a set of subnetworks, which are analyzed in isolation (that

is, as independent networks) to get approximate throughput levels that are condi-

tioned on subnetwork population. For each subnetwork, an associated exponential

server with load-dependent service rates is constructed; these service rates are set

equal to the conditional throughput levels of the original subnetwork. The through-

put levels are calculated in such a way that flow into and out of the exponential

station closely approximates the flow behavior of the original subnetwork. A separa-

ble network is then formulated by replacing the subnetworks in the original network

topology by the flow-equivalent servers; the performance measures of this network

are used as approximations of those of the original network. Figure 3 illustrates the

process of server replacement. Clearly, the error in such an approximation comes

from two sources: the assumption of exponential service, and the approximation of

the conditional throughputs through isolated analysis [23].

Building on the work of Dallery and Cao [39], Baynat and Dallery identify four

conditions a network partition must meet in order for a product-form approximation

to be reasonably accurate [23]:

1. Customers enter and leave subnetworks one at a time.

2. The state-dependent behavior of a subnetwork is independent of the behavior

of its complement.

3. The routing between a subnetwork and its complement is independent of the

state of the subnetwork.

4. The splitting and matching of customers occurs only within subnetworks.

12

ii

•/M (n)/1 ,/M 7(n)/1

*/M (n)/1 ,/M (n)/1

Figure 3. The Product-Form Approximation Technique.

Baynat and Dallery call a partition that meets these conditions feasible.

Given a feasible partition, the estimation of the conditional throughputs be-

comes the central issue in a product-form approximation. The two most common

techniques for computing these throughputs are aggregation and Marie's Method. A

discussion of each approach follows.

Aggregation. Aggregation has its roots in the work of Avi-Itzhak and Heyman

[5] and Chandy, Hertzog, and Woo [32], [33], and is motivated and described fully

in [72:16111]. In this method, the subsystem to be isolated is analyzed as a closed,

independent network. This network is formed by "short-circuiting" the subnetwork's

complement (that is, removing the complement from the network). Approximate

conditional throughput levels are obtained by calculating the throughput of this

new subnetwork for fixed population levels. Chandy, Hertzog, and Woo showed

13

that these conditional throughputs are exact if the original network is separable

[32]. In the case where the network is nearly completely decomposable (that is, the

behavior of the subnetworks is nearly mutually independent), the error induced by

using aggregation will be small [23].

Marie's Method. Marie's Method was proposed by Raymond Marie in 1979

[78], [81]. The central idea of the method is to analyze the subsystem of interest as

an isolated, open network with finite capacity and load-dependent Poisson arrivals. 1

The load-dependent throughput levels of the isolated subsystem become the load-

dependent mean service rates of the associated exponential server.

Before describing Marie's Method for single-chain networks, we define the sym-

bols used. Let N be the number of customers in the original closed network. Let ni

be the number of customers in subsystem i (0 < ni < N). Further, define Ai(ni) and

fii(ni) as the arrival rate and the conditional throughput of customers at subsystem

i, n = 0, ... , N - 1. Let pi(ni) be the load-dependent service rate for the associated

flow-equivalent exponential server, ni = 0,. .. , N.

Marie's Method makes use of a system of three sets of foundational equations.

The first equation set, which is derived by applying the Marginal Local Balance

Theorem [59:231-232], establishes the throughput levels of the isolated subnetwork:

Pi(ni- 1)i (nj) = Aj(nj - 1) -in , ni = 1, ... ,IN (2)

The probabilities gi(ni) are the marginal probabilities that ni customers are found

in subsystem i; these are found by analyzing the subsystem in isolation as described

above. We get the load-dependent service rates of the flow-equivalent exponential

'Where the subsystem consists of a single station, this reduces to analyzing an isolated
A(n)/G/c/N queue. When the service time distribution can be modeled as a Coxian distribu-
tion [37], efficient algorithms exist for calculating the performance measures of the isolated queue
when c = 1 [79], [80]. The case where c > 1 is considered in [117] and in Chapter III.

14

server by setting them equal to the throughput levels of the isolated subsystem:

Pi (ni) = fij(ni) , ni = 1,..., N (3)

The final equation set, which is also derived using the Marginal Local Balance The-

orem, ensures local balance in the approximate product-form network:

PA(nj + 1)
Ai(ni) = pi(ni + 1) , n= 0,...,N-1 (4)

Pi (ni)(4

The probabilities Pti(ni) are derived by analyzing the associated product-form net-

work with any appropriate technique.

Marie's algorithm solves Equations (2), (3), and (4) for the conditional through-

puts using fixed-point iteration. The algorithm is given below:

STEP 0. Initialize pi(ni) for ni 1,... N.

STEP 1. Calculate Ai(ni) using Equation (4).

STEP 2. Analyze the station in isolation to get Pi(ni), ni = 0,.. .,N.

STEP 3. Use Equation (2) to get Fi(ni), ni 1,..., N.

STEP 4. Calculate the load-dependent service rates yi (ni) for the replacement server using
Equation (3).

STEP 5. Repeat Steps 1 through 4 until the relative improvement in the pi(ni) values is less

than some specified tolerance value.

The measure of improvement normally used is the maximum relative change in the

elements of the service rate vector:

I(k n)- p(k-1)(

max)n - -(ni) < 6 (5)

where i =1,.. ., k, ni = 0,..., N Vi, and s is the selected tolerance (typically set at

10 - or 10-4).

15

Marie's Method appears in several different studies as an accurate technique

for analyzing non-separable networks [20], [22], [24], [27], [38], [103]. Marie's method

compares favorably to aggregation, and provides superior estimates of expected

queue lengths in many cases [23]. Bondi and Whitt find that Marie's Method is the

most accurate and stable of the decomposition techniques they examine, although

they suggest further study of its convergence properties and robustness [27].

Baynat and Dallery have extended Marie's Method so it can be used to analyze

closed networks with R (> 1) chains. Their approach is based on decomposing the

network chain by chain. The derivation is similar to that for the single-chain case,

although each equation set must now be generated for each of the R chains. With

the obvious extensions to the notation, the multiple-chain analogs to Equations (2),

(3), and (4) are:

Pi(fn) = Ar(r-,)) = , .. ., Nr, r = 1,., fR (6)

Pri(nri) iri(nri) , nri , ... ,N, r = , ... ,R (7)

Pini+ 1)
Ari(nri) = Pri(nri + I)-ili(n) 0,..., Nr - 1, r = 1,., fR (8)

Pri (fri)

The multiple-chain version of Marie's algorithm is as follows [20], [26]:

STEP 0. Initialize / (nri) for r = 1,..., R and nri = 1,..., Nr.

STEP 1. For r = 1, ... , R, calculate Ari(nri) using Equation (4).

STEP 2. Analyze the station in isolation to get Pri (nri), r = 1, ... R and nri = 0, ... ,Nr.

STEP 3. Use Equation (2) to get fri(nri), r = 1,..., R and nri = 1,...,Nr.

STEP 4. Calculate the load-dependent service rates Iiri(nri) for the rth replacement server
using Equation (3).

STEP 5. Repeat Steps 1 through 4 until the relative improvement in the Pri (nri) values is less
than some specified tolerance value.

16

The stopping test is similar to that given in Equation (5), except that the maximiza-

tion is also performed over the R chains in the network:

(k) (flir) - gkk-i)(n,)I
max - Z < E (9)
i,ni,r (k-1 (nir)

where i = 1, ... , k, ni = 0,... , NVi, r = 1,... , R, and 6 is the selected tolerance.

As with the single-chain version, the analysis of subsystems in isolation drives

the time complexity of Marie's Method. The multiple-chain analysis is further com-

plicated if a subsystem to be analyzed is visited by more than one customer class.

If the number of chains a subsystem belongs to is large, the analysis in isolation will

not be practical. Baynat and Dallery have proposed a class aggregation technique

to deal with this difficulty for the case where the subsystem is a single queue; this

simplified approach is approximate, but appears to induce minimal additional error

[20].

Analyzing Multiserver Stations Using Marie's Method

In much of the open literature, practical implementation of Marie's Method is

restricted to queuing networks composed solely of single-server FCFS stations with

k-Coxian service laws. This is likely due to two factors:

1. A general service time distribution can be approximated to an arbitrary degree

of closeness by matching its moments to those of a k-Coxian law (the Coxian

representation is exact when the original distribution has a rational Laplace

transform) [37].

2. Isolating the station and approximating the service law by a Coxian distribu-

tion yields a A(n)/Ck/1/N queue; efficient methods exist for analyzing this

type of station.

17

Marie proposes an algorithm for determining the stationary queue length prob-

abilities of A(n)/Ck/1/N queue, with specialized variants for the case where the ser-

vice time distribution is k-Erlang or k-hyperexponential [79], [81]. Later refinements

to Marie's algorithms incorporate the possibility of feedback to the queue [80].

Queues with multiple servers have received far less attention in the literature.

It is possible, however, to analyze a general multiserver station in isolation. Based on

the above reasoning, this requires the formulation of a A(n)/Ck/r/N queue, and sub-

sequent analysis of this queue's embedded continuous-time Markov chain (CTMC)

(see Appendix A for a discussion of CMTC analysis). Stewart and Marie propose

a method for calculating stationary probabilities for this chain when the servers are

homogeneous; their approach is described in detail in Chapter III. In addition to giv-

ing an efficient method for formulating the transition rate matrix Q for this Markov

process, Stewart and Marie suggest calculating the stationary probability vector 7r

by using simultaneous iteration to solve for the appropriate eigenvector of the tran-

sition probability matrix P. Their numerical experiments showed that, based on

the computing power available at that time (the late 1970s), time complexity made

implementation impractical for chains with more than 1,400 states [117].

It may be because of this 1,400-state limitation that later researchers (such as

Baynat and Dallery) have limited their study of Marie's method to the case where r =

1. Unfortunately, many multiserver decomposition problems have embedded CTMCs

with dimension much greater than 1,400. If fact, it is not hard to find problems with

upwards of 50,000 states, as we will see in Chapter III. The stationary probability

problem of the A(n)/Ck/r/N queue needs to be solved quickly and efficiently for

large-dimension systems if multiserver decomposition with Marie's method is to be

practical. Since Stewart and Marie's article was published, many advances have

been made in computational linear algebra which can be used to speed solution of

large stationary probability problems; in addition, computing power has increased

dramatically since the early 1980s. The goal of the next chapter is to exploit these

18

advances to increase the size of the embedded chain for which numerical solution is

practical, thereby widening the range of queuing networks that can be easily analyzed

using Marie's method.

19

III. Efficient Isolated Analysis of General Multiserver Stations

During Decomposition of Closed Queuing Networks

Introduction and Motivation

Suppose we have a closed queuing network that is not of product form, in part

because it contains a station with first-come-first-served discipline and r servers with

identical general service time distributions. If we decide to use Marie's decompo-

sition method to get approximate performance measures for the network, we need

a strategy for analyzing the station of interest in isolation. Assuming that we can

reformulate this station's service law in k-Coxian form (as discussed in Chapter II),

we can analyze it as an isolated A(n)/Ck/r/N queue. By exploiting the Markovian

structure of this queue's stationary behavior, we can derive its stationary probability

distribution, which can then be passed back to Marie's algorithm. For this approach

to be successful, we need a fast, efficient method for calculating the stationary prob-

ability distribution of the isolated queue.

The purpose of this chapter is to exploit recent advances in computational

probability to identify a fast, efficient method for finding these probabilities, thereby

making the application of Marie's method practical for a much larger class of decom-

position problems. The discussion begins with a description of Stewart and Marie's

method for generating the transition rate matrix Q of the embedded CTMC', and

an analysis of the matrix's structure. The insights gained from studying Q are used

to develop a list of candidate solution methods, each of which are used to calculate

the stationary probability vector 7r for a set of 46 representative large-dimension

problems. Based on this computational experience, a preferred solution approach is

identified, and its effectiveness is demonstrated by analyzing the performance of four

1The discussion in this chapter assumes the reader is familiar with the general concepts presented
in Appendix A. All acronyms, abbreviations, and concepts introduced here are defined in that
appendix.

20

sample queuing networks. The chapter closes with a statement of the conclusions

drawn from this research.

The Transition Rate Matrix for the A(n)/Ck/r/N Queue

Constructing the Matrix. This section summarizes Stewart and Marie's me-

thod for constructing the transition rate matrix Q of the embedded CTMC of a

A(n)/Ck/r/N queue [117]. We begin by defining a state of the process as the (k+ 1)-

tuple (n, h1 ,. . . , hk), where n is the number of customers in the queue, and hi is the

number of these customers in phase i of service. Stewart and Marie show that m,

the total number of states (the order of Q) is

M +(N-r) (10)
i=o i r

Figure 4 shows the strong effect of k and r on m, and how the state space dimension

can become very large very quickly, especially for k > 4 and r > 10.

Stewart and Marie's algorithm for generating Q requires that the states be

ordered a certain way. For a given value of n, the states must be sorted first in

descending order by hi, then in descending order by h 2, and so on through hk.

Table 2 shows a sample ordering for k = 4, r = 3, and 3 < n < N.

Once we have properly ordered the states, we can efficiently construct Q row

by row. Define s as the number of the state corresponding to the row of Q under

construction. Suppose also that a = {afi; i = 1,..., k - 1} is the vector of prob-

abilities that service will continue past phase i, and that y = {Iti; i = 1,... , k} is

the vector of service rates for the stages of Coxian service. For each source state

s, transition can take place to a destination state d due to one of three types of

events: an arrival, a transition between service phases, or a departure from the sys-

tem. State transitions due to arrivals take place at rate A(n); the appropriate entry

21

Table 2. Ordering of States When k = 4, r = 3, and 3 < n < N.

n h, h2 h 3 h4

n-i 0 0 1 0
n-i 0 0 0 0
n 3 0 0 0
n 2 1 0 0
n 2 0 1 0
n 2 0 0 1
n 1 2 0 0
n 1 1 1 0
n 1 1 0 1
n 1 0 2 0
n 1 0 1 1
n 1 0 0 2
n 0 3 0 0
n 0 2 1 0
n 0 2 0 1
n 0 1 2 0
n 0 1 1 1
n 0 1 0 2
n 0 0 3 0
n 0 0 2 1
n 0 0 1 2
n 0 0 0 3

n+1 3 0 0 0
n+1 2 1 0 0

Adapted from Reference [117].

22

80000

70000

60000

50000

E 40000

3000

20000

1000

0 4

14 5i

Figure 4. Surface Contour Plot of m versus k and r, N =30.

in Qis q,= A(n), where

d s+ (+k-1)I11
If hi $ 0, a transition from phase i to phase i* +I 1 of service takes place at rate ailli.

Thus, qs,d(i) =aq-ti, where

d(i) (2

23

and i = 1,... , k - 1. Entries in the sth row of Q that are due to departures are

given by qs,d(i) (1 - aj)yi, where hi 5 0, and

o n - [j= h] k-l

d(i)= 9_-(n>r, =1
r

s - - j= 0 i n > r, Zi > 1

(13)

and i = 1,..., k - 1 (note that d(k) P'k, provided hk 7# 0). For detailed derivations

of Equations (11), (12), and (13), see Reference [117]. As is usual for a CTMC, the

diagonal elements of Q are formed using the relation

qs= -- qsd (14)
dos

The Structure of the Matrix. Stewart and Marie show that the generation

scheme described above results in a Q matrix of order m that has the block struc-

ture shown in Figure 5. In that figure, the block marked Q0 has order m, =

0 (' + k- i) and is referred to as the "initialization section" of the matrix. The

blocks marked S, D, and Tare each of order m 2 (+k - The S blocks contain

entries of Q corresponding to the departure process; all of these blocks are identi-

cal. The D blocks contain the matrix diagonal entries and the interphase transition

rates; these blocks vary only in the diagonal elements q,8 , since the transition rates

between service phases remain constant from state to state. The T blocks contain

the arrival rates, and are of the form A(n)I. All entries outside the marked blocks

are zero.

24

:::::::::::::::: :::::::::::::::::::::::..................

................. i~ ~~~iiiiil 1 ii!!ii!!iii [iiiiiiiiiiiii i iii i

..
..

.i...............c u r o Q

.. 2. . 5.

Solution Methods: Narrowing the Choice

Appendix A describes a wide range of methods for deriving 7r for a CTMC. By

considering these available methods in light of the structure of Q and the context of

our problem, we can narrow our choice to a subset of techniques that seem promising.

Direct methods would be the best choice for a small number of states. However,

memory constraints limit their applicability to 2,500 states or less, even for sparse

matrix implementations such as GE. Unfortunately, this is not much of an increase

in capability over the limitation encountered by Stewart and Marie.

If Q were NCD, we could make a good case for the use of decomposition.

However, an inspection of Figure 5 shows no clear way to partition Q so that it is

decomposable. Wherever one attempts a partition, one must deal with the effect of

ignoring S and T blocks. Since the norms of these blocks are known to be similar in

order to those of the D blocks, a decomposition of Q would likely induce substantial

error.

We might try a block-recursive approach to solving for the stationary proba-

bilities. Unfortunately, Q cannot be put in a suitable block-Hessenberg form unless

M 2 evenly divides m, (in which case Q0 can be partitioned into submatrices of order

n 2); clearly, this condition does not uniformly hold. Since most block-recursive so-

lution methods require that Q be partitioned into submatrices of equal order, their

usefulness is limited in this problem domain.

We are left, then, with iterative solution methods. As shown in Appendix A,

many iterative algorithms perform well when used to analyze large-scale CTMCs.

The fact that the chain of interest is not NCD considerably lessens the danger of ill

conditioning (although the absence of near-complete decomposability is not sufficient

to declare the problem well-conditioned); this, in turn, bodes well for the success of

an iterative solution approach.

26

Computational Experience

The Candidate Iterative Methods. Because of the irregular block structure

of Q, experimentation was limited to those non-stationary iterative methods that

can accomodate nonsymmetric matrices. Representatives of the three classes of

methods described in Appendix A were investigated: LSQR, GMRES(J), and CGS.

For GMRES, the restart period j was set at 50, 75, and 100 iterations.

In order to assess the the cost tradeoff of preconditioning, each method was

used both with and without preconditioners. ILU(0), modified ILU(0), and ILUTH

(with tolerance 10- 3) were applied, since the necessary matrix decompositions are

known to exist for QT.

The Representative Queuing Systems. Each of the above iterative methods

was used to solve for 7r for 46 different A(n)/Ck/r/N queues. The parameters N, r,

and k were chosen so that the state space of each system was large enough to require

the advantages of as iterative solution method (> 1, 000), yet small enough to enable

solution with existing computer resources (< 50, 000). The actual parameter values,

together with the order of each system, are given in Table 3.

For Systems 1 to 23, the service law chosen was k-Erlang with mean service

rate one and a2 = 1/k. Systems 24 to 46 used generalized k-Erlang distributions

with the parameters given in Table 4.

No service distributions with a coefficient of variation greater than one were

considered. These laws can be modeled to arbitrary accuracy by by matching their

first few moments to those of a 2-Coxian distribution [121:360-361]. A 2-Coxian law

yields a Q matrix of order less than 1,100 over the ranges of N and r used here; such

systems can easily be solved directly in minimal time.

Two arrival distributions were considered. Arrival Process I was based on

throughput from a product-form queuing network of three stations in series, one of

which was a ./M/r queue with unit mean service rates. This arrival rate vector is

27

Table 3. Representative System Configurations.

Number N r k Order
1/24 45 10 3 2596
2/25 60 10 3 3586
3/26 30 15 3 2856

4/27 45 15 3 4896
5/28 60 15 3 6936
6/29 30 20 3 4081
7/30 45 20 3 7546
8/31 60 20 3 11011
9/32 60 5 4 3206
10/33 15 10 4 2431
11/34 30 10 4 6721

12/35 45 10 4 11011
13/36 60 10 4 15301

14/37 30 15 4 16116

15/38 45 15 4 28356
16/39 60 15 4 40596
17/40 30 20 4 28336

18/41 30 5 5 3402

19/42 45 5 5 5292
20/43 60 5 5 7182
21/44 15 10 5 8008
22/45 30 10 5 23023
23/46 45 10 5 38038

Table 4. Parameters of the Generalized k-Erlang Distributions.

k y [
2

3 1.0 (6.0, 3.0, 2.0) 0.3889
4 1.0 (20.0, 5.0, 4.0, 2.0) 0.3550
5 1.0 (40.0, 10.0, 8.0, 4.0, 2.0) 0.33875

28

a reasonable example of the approximate flows that would be encountered during

queuing network decomposition. Arrival Process II, in which the arrival rates vary

much more widely, is a pathological example of network flow, and was chosen for the

purpose of sensitivity analysis; it is defined by the linear relation

A(n) -r(N n) (15)
N-r

Computing Environment. The solution and preconditioning routines used in

this study are implemented in Version 1.0 of the University of Texas' Fortran 77

subroutine NSPCG [93]. All other code was written in Fortran 90. Compilation and

execution took place on a Digital Equipment Corporation (DEC) Alpha workstation.

DEC's F90 compiler was used to compile both the Fortan 77 and the Fortran 90

code, which was optimized for speed (DEC Level 4). Eight-bit real and integer data

structures were used to enhance precision and provide a worst-case memory usage

scenario.

Numerical Analytical Considerations. The initial solution was arbitrarily set

at 7r(°) = 1 - (j/m),j = 1,... ,m; this 7r(°) was simpler to obtain than the one

suggested by Stewart and Marie in [117]. The upper limit on the dimension of the

Krylov subspace was set at ten, because this seemed to work well for Philippe et al.

[95].

The stopping test used was based on the residual norm HJQTIr(i)12 . A solution

was judged to have converged if IIQT7r(i)112 < 10 - 4 within 2,000 iterations. 2 Stewart

and Marie suggest using the tolerance level 10' based on their observation that it

is typically the best that can be expected from Marie's method; they see no point

in holding probabilities obtained from isolated analysis to a tighter standard [117].

2This relatively high number was selected to ensure convergence in as many cases as possible.

29

Execution was terminated without convergence under two conditions: (1) the

maximum iteration count of 2,000 was reached, but IIQ7r(i)12 > 10 - , and (2) the

process stalled (that is, JQT rr(i)JJ2 failed to change by more than 10' within 20

iterations).

Upon termination, the solution vector 7r was normalized so that its elements

summed to unity. A normalized solution was judged feasible if convergence was

reached, and if7r 0 E [0, 1],j = 1,... ,m (within tolerance).
3

Results

Arrival Process I. For the case where the arrival rates did not vary widely

with the number of customers in the queue, Tables 5 and 6 contain the total elapsed

system time to termination in seconds, by method, for Systems 1 to 23 (the queues

with k-Erlang service). Iteration counts are not reported, since they do not reflect the

amortized cost of preconditioning where it is applied. Except for System 16, where

unpreconditioned GMRES(75) stalled at iteration 1366, all methods converged to

feasible solutions within 2,000 iterations.

Graphs of the time to termination against the order of Q are given in Fig-

ures 6 and 7; these show how the various methods compared in terms of the time

required to solve each for each system's stationary probabilities. Figures 8 and 9

break solution time into factorization time and iteration time, respectively, for the

ILU(0)-preconditioned systems; taken together, these two graphs show the extent to

which factorization time dominated the total solution time. Actual NSPCG memory

usage for the various methods is illustrated in Figure 10.

Similar tables and graphs for Systems 24 to 46 (queues with generalized k-

Erlang service) are in Appendix B. The data for those systems are not substantially

different from the results presented above. As with Systems 1 to 23, convergence

to a feasible solution was attained in every case using every method, except that

30

Table 5. Elapsed Time to Solution (in seconds), No Preconditioner.

Number GMRES(100) GMRES(75) GMRES(50) CGS LSQR
1 4.03 3.52 3.85 1.03 3.08
2 21.81 13.59 7.71 1.67 8.50
3 5.07 3.85 3.33 0.58 3.49
4 10.06 7.74 5.50 2.14 9.74
5 15.20 13.44 12.33 4.24 21.67
6 8.94 8.42 7.37 1.16 3.96
7 23.43 13.92 9.78 4.53 20.33
8 47.88 35.55 30.58 7.85 48.84
9 9.84 11.05 10.49 2.59 7.51
10 1.28 1.29 1.17 0.43 1.30
11 17.78 15.99 11.47 3.90 12.00
12 83.14 48.12 51.52 10.44 36.31
13 99.23 52.35 51.99 22.36 75.25
14 50.70 40.52 27.16 10.31 52.03
15 177.87 122.42 134.01 32.96 148.93
16 643.88 * 285.25 64.15 281.58
17 58.51 51.17 40.14 19.80 93.65
18 14.51 18.42 12.21 2.43 7.05
19 23.33 17.51 19.32 7.94 19.54
20 48.17 41.07 32.99 14.48 36.57
21 6.89 5.60 5.64 3.35 10.76
22 51.45 62.69 62.52 24.76 84.82
23 229.41 181.36 159.17 67.87 215.87

• stalled at iteration 1366.

31

Table 6. Elapsed Time to Solution (in seconds), ILU(0) Preconditioner.

Number GMRES(100) GMRES(75) GMRES(50) CGS LSQR
1 2.43 2.40 2.31 1.52 2.37
2 3.53 3.54 5.15 2.52 4.31
3 1.65 1.67 1.66 1.61 2.13
4 5.29 5.35 5.25 3.94 6.44
5 11.87 11.61 12.80 8.27 12.64
6 3.68 3.65 3.56 2.96 4.01
7 11.72 11.54 11.89 10.30 14.13
8 26.07 27.12 25.60 20.48 32.82
9 5.57 5.65 4.77 3.07 4.77
10 1.26 1.38 1.28 1.27 1.61
11 11.78 12.85 11.95 10.93 13.88
12 37.73 38.57 37.19 33.20 42.68
13 74.04 75.34 88.08 70.03 87.00
14 62.38 67.53 65.38 63.12 70.93
15 259.72 269.11 259.00 246.23 278.11
16 561.73 553.66 560.58 519.04 596.03
17 210.80 210.72 203.12 197.53 227.15
18 5.38 4.91 4.55 3.14 4.87
19 10.38 11.44 10.39 7.82 12.47
20 21.68 24.88 20.30 14.25 25.17
21 19.54 19.98 18.80 18.35 23.71
22 166.39 163.77 160.60 160.01 173.65
23 451.15 477.29 479.14 463.97 492.06

32

600

500

400

00

00

300S(00

BCGS

LSQ/

Figue 6 k-rlag Sytem: Sluton Tme s. rde, NoPreondtioing

33/

600

/

400'

300

/

200 -

//
400 -

o'7

200 --- ~.

100 -

0 5000 1l 104 1.5* t04 2*104 2.5 104 3*104 3.5 104 4*104

Order

- GMRES(100)
-- GMRES(75)
- GMRES(50)
- BCGS
- LSQR

Figure 7. k-Erlang Systems: Solution Time vs. Order, ILU(O) Preconditioner.

34

600 1 1

500 -

/

400 -

300

i

200

100

0 210 251 10
0 5000 110

4
1.5"104 2104 2.5'104 P10

4
3.5'104 4'104

Order

- GMRES(100)

- GMRES(75)
- GMRES(50)

- BCGS

- LSQR

Figure 8. k-Erlang Systems: Factorization Time vs. Order, ILU(O) Preconditioner.

35

80 1 I I

70 -

60-

50- 7
/

0

m/

E 40 - / -

30 --- - -- - --

20

10

0o 69 A-1444-

0 5000 1I104 1.5104
2'104 2.5104 3*104 3.5104 4*10

Order

GMRES(100)
-- GMRES(75)

- GMRES(50)

- BCGS

- LSQR

Figure 9. k-Erlang Systems: Iteration Time vs. Order, ILU(O) Preconditioner.

36

2 '10 4

1.5.104"

-
13'

5000

// "¢

5 0 50 0 11 .*0 *0 25 1 *1 .*0 4 1

Order

- GMRES
-- BCGS
-LSQR

GMRES+ILU(O)
BCGS+ILU(O)
LSQR+ILU(O)

Figure 10. Memory Usage vs. Order.

37

unpreconditioned LSQR failed to converge within 2,000 iterations for Systems 35,

36, 38, 39, 43, 45, and 46. However, the residuals in these cases were less than

2 x 10- 2 at termination and were decreasing; therefore, LSQR would likely have

converged had the iteration limit been increased.

No data are reported for equation systems preconditioned using either the mod-

ified ILU(0) or the ILUTH factorizations. For all 46 systems, none of the methods

tested converged when modified ILU(0) was applied. The ILUTH factorizations took

about the same amount of elapsed time as their ILU(0) counterparts, but they did

not significantly reduce the number of iterations to convergence significantly beyond

the gain realized by using ILU(O).

There was no appreciable difference in performance for any method when rn _<

10, 000. For rn > 10, 000, the preconditioned methods took similar amounts of

time to converge; however, they tended to be outperformed by the unpreconditioned

methods because of the cost of preconditioning a large QT matrix. Differences in

performance were noticeable for the unpreconditioned methods as m increased past

10,000, with CGS dominating all methods in convergence speed. As expected, CGS

also had the slowest growth in convergence speed, and required less memory than the

GMRES(j) methods. CGS's stable convergence behavior was not expected, given the

algorithm's documented tendency to diverge. This behavior is likely related to the

fact that for the class of CTMCs examined in the study, 7r is fairly well-conditioned.

Preconditioning the system of equations using standard ILU factorization sig-

nificantly sped theoretical convergence (as measured by the number of iterations

required) for all of the iterative methods considered, at the expense of significantly

increased memory overhead. Unfortunately, this reduction in the number of itera-

tions did not translate into a significant solution time reduction. In fact, the cost in

time of factoring a large QT matrix completely dominated any gains in convergence

speed when rn > 10,000.

38

Arrival Process II. Detailed results for the systems with the widely vary-

ing arrival rates are omitted. In the case of methods incorporating standard ILU

preconditioning, convergence was stable, and the solution times and iteration counts

were closely similar to those of the non-extremal cases. However, convergence prob-

lems were noted for the unpreconditioned case. For GMRES(j) and LSQR, the

solutions for some systems either stalled or did not converge; unpreconditioned CGS

diverged for 18 of the systems. See Table 7 for a summary of the irregular conver-

gence behavior.

For the unpreconditioned systems that did converge, the solution algorithms

performed about as well as they did for queues with the less-variable arrival rate

vectors. The failure of a solution method to converge for a particular system could

not be uniformly predicted by the structure of the queue being analyzed, although

two general characteristics of the unstable behavior were noted:

1. For unpreconditioned methods, more k-Erlang systems converged than did

their generalized counterparts.

2. Convergence behavior stabilized when the systems were preconditioned.

Further experimentation suggested that the erratic convergence behavior is insensi-

tive to perturbations to 7r(°) , independent of changes to the dimension of the Krylov

subspace, and unaffected by scaling the entries of QT. Therefore, the deterioration

in the convergence behavior is in all likelihood driven by ill conditioning introduced

by the pathological nature of the arrival process.

Using CGS for Isolated Analysis in Marie's Method

We turn now to a demonstration of the effectiveness of using unpreconditioned

CGS as part of the isolated analysis of multiserver stations. Using Marie's method,

approximate stationary probabilities were calculated for four closed queuing net-

works, each having the general topology pictured in Figure 11.

39

Table 7. Convergence Behavior, Arrival Process II, No Preconditioner.

Number GMRES(100) GMRES(75) GMRES(50) CGS LSQR
1 D
2 D
3
4
5 D
6
7
8 F D
9
10

11
12 D
13 D
14
15 D
16 D

17
18
19

20
21
22
23
24
25 D
26
27 F
28 S D
29

30 F
31 F S D

32

33

34
35 S D
36 F D

37
38 S S D
39 S F S D F
40 S
41
42 D
43 D

44
45 S D
46 F

Total not
Converging 1 3 11 18 2

S = stalled; F = failed to converge by iteration 2000; D = diverged

40

Station 10 Station 6

IL4= 0.3125/(.95.05.~)

S~St., 7.

0.6I(s)~ i= .15(.5.5.

Station 3 S tio 7 SStation9

IMII, A 2 *I() I/. it 1 0. 15(90 5 lUIM . 2=

Fiue1.0eea.NtokToooy

41/5 I IC15

The networks were constructed so that both single and multiple station de-

compositions could be studied. In networks Ia and Ib, station 10 had a 4-Coxian

service law, while its complement is made up of stations that possess product-form

properties. Similarly, stations 9 and 10 in networks Ila and JIb had Coxian distribu-

tions. In networks Ia and Ia, the Coxian stations had 15 4-Erlang servers, similar

to System 14 of the previous section. In Networks lb and Ilb, stations 9 and 10

each had 15 generalized 4-Erlang servers, as did System 37. The structure of the

stations was chosen so that that the embedded Markov chains were sufficiently large;

see Table 8 for a description of stations 9 and 10 by network.

Table 8. Parameters of Stations 9 and 10.

Network Station 9 Station 10
Ia ./M/15 ./E 4/15
lb */M/15 ./GE4 /15
Ila ./E 4/15 ./E 4/15
Ilb ./GE4/15 ./GE4/15

Following the advice of Baynat and Dallery [23], the complement of the stations

to be isolated was replaced by a single flow-equivalent load-dependent exponential

server. The service rates for this server were determined using aggregation. The

resulting equivalent networks are pictured in Figures 12 and 13.

CGS was used to solve for the stationary probabilities of the isolated station(s).

The results of the experiments are reported in Table 9.

In all examples, rapid convergence was observed. The total time required

to solve for the stationary probabilities of the isolated station on each iteration is

consistent with the results for Systems 14 and 37 reported in Tables 5 and 18. Also,

the required total solution time needed for each network is still less than the time

for a single preconditioned solution for the appropriate systems. This supports the

decision to omit preconditioning GCS.

42

*IM(nJ/1. Ji(n) varies

0.4

Figure 12. Equivalent Topology, Networks Ia and lb.

*IM(n)I1. IL(n) varies

Figue 13 Equvalnt Tpoloy, Ntwoks h and0.b

43~, L= .

Table 9. Results of Marie's Method Decomposition.

Network Iterations I Setup Time I Solution Time Other Tasks] Total Time
Ia 3 4.37 31.84 0.33 36.54
lb 2 3.12 44.68 0.40 48.20
Ila 2 6.24 41.68 0.44 48.34
Ilb 2 6.35 100.80 0.44 107.59

Note: All times are in seconds.

Conclusions

When the elements of the arrival rate vector of the A(n)/Ck/r/N queue are

reasonably bounded, unpreconditioned CGS is clearly the preferred method for solv-

ing for 7r when the order of Q is greater that 10,000. For problem sizes between

2,500 and 10,000 states, CGS is still the fastest method, although its advantange

over the others is less pronounced; still, it is to be preferred to GMRES(j) because

it uses significantly less memory. Note that this disagrees with the conclusion of

Philippe et al. that CGS is too unstable to be useful for solving for the stationary

probabilities of CTMCs typically arising from queuing network applications [95]; this

is probably because 7r is better conditioned for the systems considered here than for

those considered in [95] (which deals more with embedded chains that are NCD).

When the elements of the arrival rate vector A vary significantly, the choice

is less clear-cut, since the performance of unpreconditioned iterative methods tends

to deteriorate. The best explanation for this seems to be that the more extreme

the variance in the arrival rates, the worse the conditioning of the problem. This

ill-conditioning seems to be aggravated by variance within Y (the vector of service

rates for the Coxian stages). Since CGS is known to be especially susceptible to

convergence instability, its deficient performance in this case is not surprising; how-

ever, the experiment showed that the pathological behavior can be eliminated by

applying standard ILU preconditioning before solving with CGS. The deteriorating

44

convergence should not be a vital concern, however, since in practical queuing net-

work applications one is unlikely to encounter an input rate vector that varies to the

extent captured in Equation 15. Still, if CGS breaks down and preconditioning is

too expensive, GMRES(j) (with j > 100) can be used as a slower but more stable

alternative to CGS, provided memory capacity is not a problem.

For this type of CTMC, the results show preconditioning is costly when QT

is large; therefore, it is obviously impractical to factor QT during each iteration of

Marie's method. It may be possible, however, to amortize the cost of preconditioning

by only factoring QT on the first iteration of Marie's method, and then using the

resulting M matrix on all subsequent calls. This method, which is sometimes used

in time-dependent finite element analysis, only works well if QT remains relatively

stable [93:23]. Unfortunately, we cannot guarantee the stability of QT from iteration

to iteration, because the nature of the changes to the corresponding vector A are

unknown. Also, if we accept Marie's claim that his method typically converges within

three to five iterations, factoring QT even just once would significantly increase the

required solution time. It therefore seems beneficial to avoid preconditioning by

factorization when solving for 7r for this class of CTMCs.

Modified ILU(0) decomposition is often judged superior to the standard in

performance to the standard ILU(O) algorithm for certain classes of systems, par-

ticularly for finite element problems [7:41]. For this problem class, however, using

modified ILU(0) significantly worsened convergence behavior in every case consid-

ered. When a factorization is necessary, therefore, the modified ILU(k) method

should be avoided.

By using of unpreconditioned CGS to solve for the stationary probabilities of

the A(n)/Ck/r/N queue, the class of networks that can be quickly and efficiently an-

alyzed using Marie's method is greatly expanded. In the next two chapters, this class

of networks will be expanded even further to include queuing networks containing

fork and join nodes. The resulting expanded class will include the AAM.

45

IV. Fork-Join Queuing Networks

Introduction

Over the last decade, there has been much interest in the general class of

stochastic models that incorporate synchronization constraints. These models in-

corporate such complicating structural factors as customer resequencing, resource

sharing and concurrent processing. Research in parallel computer performance eval-

uation, flexible manufacturing, and telecommunications has driven the development

of the theory of synchronized systems; Baccelli and Makowski give several interesting

examples of applications [12], [13].

In this chapter, we consider queuing networks containing two types of syn-

chronizing structures that were briefly introduced in Chapter I: fork primitives and

join primitives. Queuing networks that contain one or both types of these struc-

tures are called fork-join queuing networks (FJQNs). The remainder of the chapter

has three parts. First, several types of FJQNs are described. This is followed by a

summary of several methods for analyzing these networks that are described in the

literature. The chapter ends with a brief discussion of the published techniques and

their usefulness for analyzing the airfield model presented in Chapter I.

Network Types

The Fork-Join Queue. The simplest form of a FJQN is the fork-join queue

(also called the split-match queue or the assembly-disassembly queue). Such queues

are useful for representing a system in which customers require simultaneous ser-

vice at more than one station. In a fork-join model, an arriving customer enters

through a fork primitive, where it splits into several identical entities. Each of these

new entities, which we will call clones because each has the same attributes and ar-

rival process as the original customer, immediately visits one of several independent

46

parallel service stations (typically, each station has a single server, but multiserver

stations are possible). When each clone's service is complete, it waits in a buffer at

the join primitive until all its matching clones (or siblings) are served; at that point,

the clones are "reassembled" into the original customer, which immediately leaves

the system. Figure 14 shows the directed graph of a fork-join queue.

Figure 14. Sample Fork-Join Queue Topology.

The manner in which arriving customers split into clones is called the loading

pattern. This loading pattern may be deterministic, in which case every customer

sends a clone to every server, or the number and destination of the clones may vary

according to some probability law.

If the servers in a fork-join queue have identically-distributed service times,

they are said to be homogeneous, and the queue is labeled symmetric. If the service

time distributions differ, the queue is termed asymmetric and is considered to have

heterogeneous stations. In the literature, the servers are usually assumed to have

infinite waiting capacity. The service disciplines are often first-come-first-served

(FCFS), but the processor-sharing discipline has also been considered.

47

Networks With Fork-Join Primitives. A parallel fork-join queuing network

(PFJQN) is a natural extension of the simple fork-join queue. In the PFJQN, each

fork primitive connects to a set of subnetworks instead of a collection of individ-

ual service stations. The directed graph of a typical open PFJQN is pictured in

Figure 15.

p

I-p

Figure 15. Sample PFJQN Topology.

The acyclic fork-join queuing network (AFJQN) has a more general topology

than the systems described above. This type of network may have fork or join

primitives (or both), but these primitives may not necessarily be paired. Figure 16

shows a sample open AFJQN network topology.

48

Figure 16. Sample AFJQN Topology.

Review of the Literature

Motivation. This section presents a comprehensive view of FJQN research that

has been published since the 1960s. The purpose for including this section is two-

fold. First, the section is intended to enlighten the reader on these developments,

and to define the state of the art in the topic area. Second, it is shown that no

published work considers FJQNs of the same class as the airfield model network,

and that an analysis technique for this model must be proposed and developed.

Simple Fork-Join Queues.

Exact results. To date, exact performance measures have been published

only for a fork-join queue with two single-server stations. In an early paper on the

subject, Mandelbaum and Avi-Itzhak [77] derive exact performance measures for the

case where either the arrival stream or the service distributions are deterministic.

49

However, many methodologies published since Reference [77] assume Poisson arrivals,

exponential service, or both.

Rao and Posner [98] derive the stationary joint probability distribution of the

queue lengths in a fork-join queue with a Poisson arrival stream, two heterogeneous,

exponentially-distributed servers and a deterministic load pattern. They impose

a limit on the capacity of one of the servers, and then solve the resulting system

numerically; the solution for the unbounded system is found by allowing the limit

to be arbitrarily large. In contrast to this numerical approach, Flatto and Hahn

[49] derive the analytical closed form of the joint stationary probability distribution.

Flatto [48] uses these findings to study the mutual dependence of the two queue

lengths and to derive the stationary form of their conditional distributions. Brun

and Fayolle [28] build on the work of Flatto and Hahn by deriving the probability

distribution of the response time and its Laplace-Stieltjes transform. Ding [45] uses a

linear-algebraic approach to derive the probability distribution of the interdeparture

time.

Some authors have considered systems that are more general in character than

the two-server Markovian fork-join queue. Baccelli [8] extends the results of Flatto

and Hahn [49] to allow for homogeneous servers with general service laws; the sta-

tionary joint queue length distribution for the heterogeneous, general-service case

is derived by DeKlein [41]. Zhang [132] considers a two-server Markovian fork-join

queue in discrete time, and constructs the generating function for the joint station-

ary queue length distribution and the Laplace-Stieltjes transform of the joint waiting

time distribution; he also derives the response time distribution for the case where

the servers are homogeneous.

Bounds on the response time. Because the state space becomes unman-

ageably large when there are more than two parallel servers in a fork-join queue,

exact solutions quickly become intractable. This fact has led several researchers

50

to seek alternative means of characterizing queue performance. One such approach

is the construction of computable bounds on the expected response time. Using

the theory of stochastic order relations [11], [102:251-283], [119:1-37], Baccelli and

Makowski [10], [12], [13] derive such bounds for a fork-join queue with a general

arrival process, general (possibly heterogeneous) service distributions and a deter-

ministic loading pattern. If T, is the response time of the nth customer to visit the

fork-join queue, the Baccelli-Makowski upper bound on E[Tn] is

E[T] < E[max T,] (16)-- <i<k

where T,, is the response time of the nth customer in an independent, single-server

queue with the same arrival process as the fork-join queue and the service time

distribution of the ith server in the fork-join queue. A lower bound on E[T] is

E[maxT ,] < E[T,2] (17)
1<i<k

where t' is the response time of the nth customer in an independent, single-server

queue with one of the following structures:

1. The new queue has the same arrival process as the fork-join queue, but it has

a deterministic service rate equal to the mean service rate of the ith server in

the fork-join queue.

2. The new queue has the same service time distribution as the ith server in the

fork join queue, but it has a deterministic arrival rate equal to the mean arrival

rate to the fork-join queue.

Baccelli and Makowski show that these transient bounds also hold in steady state.

Baccelli, Makowski and Shwartz [14] extend these results to allow for a general

probabilistic loading pattern. Kumar and Shorey [69] use Baccelli and Makowski's

bounding techniques to develop bounds on the expected response time for a sym-

51

metric fork-join queue with general service and Poisson arrivals, where the loading

pattern has a multinomial distribution.

Approximate performance measures. Computing bounds on the response

time of a fork-join queue requires knowledge of the response time distribution for

each server. Since these distributions are often difficult to obtain, several authors

have proposed heuristic approximations for the queue's performance measures as an

alternative to computing the bounds. One early approximation technique is that of

Rao and Posner [98], who consider the asymmetric Markovian fork-join queue with

two servers. They impose a virtual capacity limit on all the servers but one, and

then use a numerical approach to solve for the approximate steady-state joint queue

length probabilities. No evaluation of the approximation's performance is provided

for queues with more than two servers.

Nelson and Tantawi [85], [86] consider a Markovian fork-join queue with arrival

rate A and k (> 2) servers with homogeneous service rate y. They approximate the

steady-state mean response time by appropriately scaling the response time of an

independent M/M/1 queue with the same arrival and service rates. The scaling

factor, which depends on k, A and [t, is derived using a mixture of theoretical and

empirical techniques. For the cases considered, this approximation method yields a

relative error of less than 5 percent compared to simulation results.

Duda and Czach6rski [46] approximate the performance of a symmetric Marko-

vian fork-join queue with two servers by a single-server system with a load-dependent

service rate. For a given load, this rate is found by calculating the throughput of a

closed network containing only the fork-join queue and a customer population equal

to the desired load. The approximate expectations of queue length and sojourn time

are shown to be 3/2 times as great as the equivalent measures for an M/M/1 queue;

the approximate expected response time is also shown to be equal to the upper

bound derived by Nelson and Tantawi [85], [86] for a queue with two servers.

52

For the same type of fork-join queue, Nelson, Towsley and Tantawi [88] approx-

imate the expected steady state response time by that of a MX/M/c queue. They

use the results to study a variety of task splitting schemes in parallel processing

systems. The quality of the approximation is not investigated.

Kim and Agrawala [61] consider a fork-join queue with two homogeneous

servers. They derive an approximate expression for the response time by condition-

ing on the virtual waiting time of the nth arrival, then evaluating that expression

for sufficiently large n. Explicit results for various utilization rates are presented for

three cases:

1. Exponential interarrival times, exponential service.

2. Exponential interarrival times, 2-Erlang service.

3. Hyperexponential interarrival times, exponential service.

Kim and Agrawala show that the approximate expected response times lie between

the Baccelli-Makowski bounds, but they present no error analysis.

Balsamo and Donatiello [17] develop an approximation of the steady-state

mean response time that can be used for both symmetric and asymmetric Marko-

vian systems. They propose two heuristics for reducing the model's state space to

a manageable dimension. For the resulting approximate system, they use matrix-

geometric solution techniques to get the stationary joint queue length distribution.

The authors compare exact and approximate results for a two-server, symmetric

queue over various utilization rates. They report a maximum relative error in the

approximation of less than 2 percent (for a utilization rate of 0.9).

Several authors explore the use of diffusion theory to approximate performance

measures. Knessl [65] formulates and solves the diffusion equations for the system

considered by Flatto and Hahn, and derives approximations for the stationary queue

length distributions and the residual busy period. Varma and Makowski [128] pro-

53

pose a class of heuristic approximations to the limiting expected response time for a

symmetric fork-join queue with general arrival and service times; comparison of these

techniques to simulation results for a selection of sample systems yields a relative

error no greater than 14 percent (in most of the examples considered, the error is

under 10 percent). Varma [127] extends these methods to permit analysis of a fork-

join queue with embedded resequencing nodes, with which he models the response

time of a time-stamp ordering algorithm; he reports relative errors of 5 percent or

less.

Thomasian and Tantawi [120] approximate the limiting expected response time

in a symmetric fork-join queue with general service times by modeling the expected

synchronization delay as a low-order polynomial in p (the utilization rate at a sta-

tion). The form of the polynomial is determined by first simulating the system

of interest at various values of p, then estimating the polynomial coefficients us-

ing standard interpolation techniques. While the performance of the response time

approximation is not studied, the authors report a maximum relative error in the

approximate synchronization delay of less than 10 percent; in most of the cases, the

relative error is 3 percent or less. The quality of the approximation improves as the

number of servers increases.

Rommel [101] derives the exact steady-state expected response time for a

MX/G/1 queue with processor sharing service discipline. He suggests this as a

model for a parallel processing system where the jobs share processors. In other

words, Rommel's result can be used to calculate the response time in a symmet-

ric fork-join queue with a deterministic load pattern, where each server is a central

processor shared by the clones that visit it.

Other Performance Studies. Towsley, Rommel and Stankovic [123], [124]

consider fork-join queues with Poisson arrivals and both exponential and generalized

exponential service distributions. In their study, they compare the performance of

54

these queues under two types of service discipline: first-come-first-served (FCFS)

and processor sharing. According to the results they present, FCFS yields shorter

response times and queue lengths unless the service distribution has high variability.

Rao [97] studies the departure process of a two-server asymmetric Markovian

fork-join queue. He shows that the interdeparture times have a phase-type distribu-

tion in steady state, then uses this fact to calculate the coefficient of variation for

a variety of server utilizations. The author observes that the coefficient is always

very close to unity. From this, he deduces that the steady-state departure process is

approximately Poisson.

Avi-Itzhak and Halfin [4] consider a fork-join queue with k servers and k cus-

tomer classes, where customers in class i visit i out of k servers. They show that,

if a Class 1 customer (one that doesn't clone) has the smallest mean service time,

the limiting mean customer response time does not increase if that customer is given

simple nonpreemptive priority at its server over clones of other classes. For some

simple cases, the authors establish conditions under which giving nonpreemptive pri-

ority to a customer class causes the limiting mean response time to increase. They

label their results preliminary.

Nelson and Towsley [87] investigate the impact of the imposition of various

priority schemes on the performance of an asymmetric Markovian fork-join queue.

They find that customer class response times are uniformly smaller under a task

preemption policy (where arriving customer clones displace any lower priority clones

already in service).

Several authors consider a symmetric fork-join queue where customers are split

into a random number of clones that are then scheduled for service. These clones

are matched to some subset of the available servers based on the size of the waiting

lines at each station, so that response time is minimized. According to Makowski

and Nelson [76], if the utilization rate is low, the optimal scheduling policy is to

spread the clones as evenly as possible among the servers; however, for moderate to

55

high utilizations, the clones should be assigned to the server with the shortest queue

length. Setia, Squillante, and Tripathi [109] extend Makowski and Nelson's work by

performing a quantitative assessment of a range of scheduling policies. They validate

Makowski and Nelson's finding that the workloads of the servers should be balanced

when utilization is low; however, they recommend that customer clones should be

scheduled at a progressively smaller number of servers as the utilization rate rises.

Gin and Makowski [56] examine the same system described in the previous

paragraph, except that they also require customers leaving the queue to be restored

to the sequence in which they arrived. A Markov decision process (MDP), where the

cost per stage is the total customer response time (including the resequencing delay),

is used to find the optimal schedule of clones to servers. The authors find that the

optimal scheduling policy is to balance the workloads at the servers as quickly as

possible.

Open Networks With Fork and Join Primitives. Baccelli, Massey and Towsley

[12], [13], [15], [16] formulate bounds on the expected response time in an AFJQN

by generalizing the results in [10]. As with the simple fork-join queue, both bound-

ing systems are constructed by neglecting the stochastic coupling induced by the

synchronization constraints; the lower bounding system also imposes determinis-

tic interarrival or service distributions. For PFJQNs, the bounding method involves

treating the subnetworks along each fork independently, just as the individual servers

in a fork-join queue. Baccelli and Massey develop complex recursion relations to cal-

culate the bounds for more general network topologies. They also establish stability

conditions. These results are extended to cover networks with more general priorities

and customer precedence relations by Baccelli and Liu [9] and Liu and Baccelli [75].

Gershwin [53], [54] proposes a decomposition method for AFJQNs with finite

buffers and unreliable servers. His approach centers on analyzing each finite buffer

in isolation. For two sample systems, each with eight servers, Gershwin's algorithm

56

produces approximate performance measures that fall within 95 percent confidence

intervals derived by simulating the systems. The author observes that numerical

instability appears in the algorithm as the buffer capacities approach infinity [54].

King [63] shows that, for a PFJQN where each subnetwork is composed of an

arbitrary number of serial exponential servers, the exact distribution of customer

response time is a mixture of Erlang distributions. Because of the rapid increase

in the cardinality of the state space, King shows that it is impractical to estimate

the parameters of the exact distribution. To overcome this problem, he develops

a heuristic parameter estimation method that is based on the Central Limit Theo-

rem. For the hypothetical systems King considers, the heuristic provides accurate

parameter estimates when compared to Monte Carlo simulation.

Duda and Czach6rski [46] generalize their approximation technique (see above)

for a symmetric fork-join queue to accommodate networks of fork-join queues with

arbitrary numbers of phase-type servers. Their method, which they implement in the

specialized queuing analysis computer language QNAP2, is a numerical algorithm

that replaces each fork-join construct by a single-server queue with a load-dependent

service rate. The rates are calculated by aggregating servers in a manner similar to

that described in the previous section. No error analysis is reported.

Konstantopoulos and Walrand [66] derive the stability conditions for an AF-

JQN with an arrival process that is a general point process. They also generalize

these stability results to allow for random routing in the network.

Ammar and Gershwin [2] consider FJQNs with blocking; they prove a theorem

that establishes structural and probabilistic equivalence conditions for this class of

networks when the service times are all exponentially distributed. Dallery and his

coauthors [40] generalize these results to arbitrary FJQNs with blocking. In addition,

they establish conditions for symmetry and reversibility, and prove the concavity of

the throughput function for certain classes of input processes.

57

Nguyen [91],[92] considers a feedforward network of fork-join queues with de-

terministic routing. She uses a reflected Brownian motion (RBM) technique to derive

a heavy-traffic diffusion approximation for expected network response time. She also

provides a numerical algorithm for calculating the stationary probability density of

the approximating RBM process.

Campos, Chiola, and Silva [30] propose using free-choice Petri nets [84] to

model single-class networks with synchronization constraints. By using a combina-

tion of the theories of Petri nets and classical queuing networks, they derive bounds

on the throughput levels, mean queue lengths, and mean response time. They also

provide polynomial-time algorithms for calculating these bounds. No investigation

of the quality of the bounds is reported.

Rajaraman and Morgan [96] study the same class of FJQNs as King, except

that they allow each server to have a general service time distribution. They assume

a generalized exponential distribution for the response time along each subnetwork,

then use the Baccelli-Massey technique to compute an upper bound on network

response time. Compared to simulated response times for a variety of candidate

systems, the approximation technique yields relative errors of 10 percent or less.

Closed Networks Containing Fork-Join Subnetworks. Several studies have been

published considering closed systems that contain fork-join queues or networks.

Among the earliest of these is the paper by Almeida and Dowdy [1], who model

a sequential/parallel processor as a closed network containing a single exponential

server (to model the sequential execution process) in series with a symmetric fork-

join queue with two or more exponential servers (representing the parallel execution

process). They construct an approximating closed system by replacing the fork-join

queue by two single-server queues in tandem: a typical fork-join processor, followed

by a delay station that mimics the synchronization delay. Mean value analysis (MVA)

[100] is used to derive performance measures and system throughput for the approx-

58

imating network. The throughput approximation compares favorably with that of

the simulated throughput of the original system (less than 1 percent relative error

for various sample systems).

Liu and Perros [73] consider a closed network containing an exponential single-

server queue in series with a single fork-join queue with an arbitrary number of

exponential servers (this system is similar to the one studied by Almeida and Dowdy).

They create an approximating system by aggregating all but one of the parallel

servers into a composite server with a load-dependent service rate. The exact steady-

state joint probability distribution of the queue lengths for the approximate system

is obtained by constructing and solving its global balance equations; this distribution

is used as an approximate limiting distribution for the original system. Since the

relative error of throughput is observed to increase linearly as the number of servers

increases, Liu and Perros incorporate an empirical scaling factor that stabilizes the

relative error of the throughput approximation at less than 3 percent. In a related

paper [74], Liu and Perros formulate an alternate approach to obtaining an exact

probability distribution for this system when the fork-join queue has three servers;

their approach uses a combination of decomposability theory [36] and Gauss-Seidel

iteration.

Rao and Suri [99] develop a heuristic approximation technique based on MVA

to study a closed, multiclass queuing network containing a fork-join queue with

parallel exponential servers. Their method is based on two key assumptions:

1. When a customer clone arrives at a server in the fork-join queue, it finds the

system in a state that would be seen at a random point in time with a customer

(i.e., itself) removed from the system.

2. The response times at the servers in the fork-join queue are mutually indepen-

dent exponential random variables.

59

The authors report relative errors in the approximate throughput (compared to

simulation results) of less than 8 percent; the maximum relative error in the mean

queue lengths is 16 percent.

Jenkins [58] extends Rao and Suri's results to allow for multiserver exponen-

tial stations and a probabilistic loading pattern. The multiserver stations are ana-

lyzed using the load-dependent versions of the MVA recursion equations [35:182-183].

Jenkins deals with probabilistic loading by first conditioning on whether or not a

representative customer visits the embedded fork-join structure, then calculating the

cycle time for each possible customer path. Dietz and Jenkins [44] improve the al-

gorithm's performance by conditioning on the ordered subset of servers a customer

visits. The resulting algorithm is a very accurate heuristic: for the example consid-

ered, the relative error of the approximations with respect to simulation results is

less than one percent for the throughput levels and three percent for the mean queue

lengths. Hackman [57] extends the Dietz and Jenkins method to accomodate general

service laws by using heavy-traffic approximations; the results appear promising for

networks with moderate to high utilization levels.

Baynat and Dallery [21], [22] propose a strategy for analyzing single-class,

closed networks with embedded fork-join subnetworks, deterministic load patterns

and multiserver stations with general service time distributions. The authors ap-

proximate the system of interest by a network with a product-form solution [19]; the

performance measures of the second system are used as approximations for those of

the original network. The product-form network is constructed as follows:

1. Replace all FCFS service stations with nonexponential service times by an

approximately equivalent single server with load-dependent, exponential ser-

vice times. The service rates can be calculated using either aggregation (as in

Algorithm 8.1 of Lazowska et al. [72:161]) or Marie's method [78], [79].

60

2. Replace each fork-join subnetwork by an approximately equivalent single server

with load-dependent, exponential service times. To get the service rates, an-

alyze the fork-join subnetwork as an isolated, closed network with a separate

customer class for each clone. The throughput levels of the isolated system are

used as the load-dependent service rates of the replacement server.

For the two sample systems studied, this decomposition approximation yields max-

imum relative errors of 2 percent for throughput and 9 percent for response time

when compared to simulation results, with most relative errors less than 2 percent.

In subsequent papers [24], [25], Baynat and Dallery extend their method for use

with multiclass networks where the fork and join primitives are the only structures

visited by more than one customer class. The core of this approach is to analyze the

join primitive in isolation using Marie's Method. The accuracy of this approximation

is similar to that of its single-class counterpart. A similar approach is used by

Di Mascolo, Frein, Baynat and Dallery to analyze a multi-stage production line

system [42], [43].

Discussion of the Literature.

Recall from Chapter 1 that the system to be investigated in this research

project is a capacitated FJQN containing a nested fork-join construct multiserver

FCFS queues. Currently, the state of the art in FJQN analysis does not provide

a method for bounding or approximating the performance measures of this type of

system. Existing methods are inappropriate for analyzing the system of interest

because they cannot handle all of the following attributes:

1. One or more stations have multiple servers operating under an FCFS service

discipline.

2. The loading patterns are probabilistic.

3. Fork-join constructs may be nested within one another.

61

Clearly, a method is needed for accurate, efficient analysis of networks having these

three features. The work of Baynat and Dallery provides the best starting point for

the development of such a method, for the following reasons:

1. It assumes a capacitated system.

2. It uses a straightforward, product-form approach.

3. It allows, at least in theory, the incorporation of multiserver stations.

Product-Form Approximation of Closed Fork-Join Queuing Networks.

Introduction. Since product-form approximations of FJQNs are foundational

to the discussion in the next chapter, they are examined in detail in this section. The

material that follows is an abstract of Baynat and Dallery's work, and represents the

state of the art in product-form approximations for fork-join queuing networks. The

full theoretical development is contained in References [21] and [22].

Suppose a queuing network containing a fork-join construct has been feasibly

partitioned using the guidelines presented in Chapter II. Then one of the subsystems

will necessarily contain the fork-join construct. This subsystem can be analyzed using

either aggregation or Marie's method to get approximate conditional throughput

levels. Figure 17 depicts a representative closed fork-join network, which will be

used to aid the exposition in this section.

Analysis Using Aggregation. If the conditional throughput levels are to be ob-

tained using the aggregation technique, the isolated fork-join subnetwork would be

formed by short-circuiting its complement, as in Figure 18. Baynat and Dallery pro-

pose transforming this isolated network by treating each clone as a separate customer

class, and combining the fork node and join buffer into a multi-class synchronization

station with a deterministic zero service time and synchronized departures. The

equivalent network is shown in Figure 19. To analyze this network, the multiple-

62

Figure 17. Representative Fork-Join Queuing Network.

Fpo

Figure 18. Isolated Fork-Join Subnetwork, Aggregation Method.

63

Figure 19. Transformed Subnetwork, Aggregation Method.

chain extension to Marie's Method is used, with the synchronization station (and

perhaps other stations) being analyzed in isolation. Baynat and Dallery give closed

form steady-state probabilities for a two-class synchronization station. If there are

more than two classes, the analysis in isolation can be carried out by formulating

and solving the embedded continuous-time Markov chain. In the case where there

are many more than two forks in the construct, the analysis may be simplified by

aggregating classes, as alluded to previously.

Analysis Using Marie's Method. If Marie's Method is to be used, the isolated

fork-join subnetwork would be formed as an open, capacitated network with load-

dependent Poisson arrivals; this would, in turn, be reformulated as the equivalent

closed network shown in Figure 20. Notice that the station representing the Poisson

arrival process has mean service rate yio(n) = A(N - n), n = 1,..., N. Baynat and

Dallery's transformation of this network is similar to the aggregation case, except

64

Figure 20. Isolated Fork-Join Subnetwork, Marie's Method.

that the join buffer is combined with the external Poisson arrival process to form

a timed synchronization station. This station has mean service rate /o(no), where

no = mint nor and nor is the number of clones of class r waiting in the join buffer.

The equivalent network is shown in Figure 21; as in the case of aggregation, Marie's

method is used to analyze this network. The synchronization station is analyzed in

a manner similar to that described for aggregation.

Necessary Theoretical Extensions

To be able to analyze the airfield model, two extensions to existing theory need

to be made. First, the above procedure for decomposing FJQNs must be modified

to allow for probabilistic load patterns in the fork-join constructs. Also, a strategy

must be outlined for dealing with nested fork-join constructs. The next chapter

describes proposed solutions to these problems.

65

Figure 21. Transformed Subnetwork, Marie's Method.

66

V. A Product-Form Approximation Technique for Closed Nested

Fork-Join Queuing Networks With Probabilistic Load Patterns

Introduction

As we saw in Chapter IV, the state of the art in product-form approximations

of closed fork-join queuing networks is the multiple-chain reformulation method of

Baynat and Dallery [21], [22]. Recall that Baynat and Dallery assume deterministic

forking; that is, a customer always visits every subnetwork connected to a fork node.

Also, nested fork-join constructs (the case where any fork-join subnetwork (FJSN)

contains another FJSN) are not explicitly treated except in Reference [24], where

one is given as an example of a system for which product-form approximations fail.

The problem of interest, however, belongs to a class of networks with nested FJSNs,

where each FJSN has a probabilistic load pattern. In this chapter, an approximation

strategy is developed that extends the results of Baynat and Dallery to accomodate

this larger class of networks.

The 'Short-Circuit" Approximation

Description. In Chapter IV, we saw that Baynat and Dallery analyze an iso-

lated FJSN by reformulating it as a closed, multiple-chain network with a synchro-

nization station; this station has varying forms depending on the strategy used to

decompose the original network (aggregation or Marie's method). Marie's method

for multiple-chain networks (MMMC), which is introduced in Chapter II, is used to

analyze the reformulated subnetwork in isolation.

Now suppose the FJSN of interest has a probabilistic load pattern. If this is

true, then it is obvious that a customer may completely bypass one or more of the

embedded subnetworks with positive probability. An intuitive way to model this

behavior is to introduce feedback loops into the appropriate chains in the isolated,

67

reformulated subnetwork; these feedback loops allow a customer to bypass all stations

in the chain and return immediately to the synchronization station. This strategy,

which we will call the "short-circuit" (SC) approximation, is graphically illustrated

in Figure 22 (note that Marie's method has been used to formulate the isolated

subnetwork).

The SC approximation requires an additional assumption not imposed by Bay-

nat and Dallery: the customer clones in the isolated FJSN can match interchange-

ably. SC produces approximate results because the matching assumption may not

be true for the original network model. The rationale for the approach is that the

resulting expected increase in throughput induced by the assumption of interchange-

ability should partially offset the effect of the independence assumptions required by

MMMC.

Analyzing the Synchronization Station. The feedback loops described above

can be dealt with in one of two ways: they can be incorporated into the embedded

Markov chain of the synchronization station (internal feedback), or they can be left

as part of the product-form approximation to the isolated FJSN (external feedback).

In the latter case, all that is required is to adjust the visit ratios for the isolated

FJSN. When the feedback loops are incorporated into the embedded chain, however,

the chain has a slightly different formulation from that described in References [21]

and [22]. The following discussion develops the structure of the embedded chain for

the case of two forks. Extension to the case of three or more forks is straightforward;

to reduce complexity, these Markov chain formulations can be used with the class

aggregation scheme proposed by Baynat and Dallery [24], [25].

Aggregation. We first consider the case where aggregation is used to

decompose the original network. Let ni = the number of class i customers in the

join buffer (i = 1, 2), and let (nl, n2) be the state of the synchronization station.

Clearly, the only feasible states in the embedded chain are those for which ni = 0

68

0 0

--

Figure 22. Using SC Approximation With Marie's Method.

69

or n 2 = 0 (or both). State transition behavior is complicated by the fact that one

or both matching customers can return to the join buffer in zero time following a

match.

Assume, for the sake of discussion, that n, = 0 and 0 < n 2 < N (where N

is the network population). Then the system state changes in one of the following

ways:

1. If 0 < n 2 < N, a class 2 customer arrives.

2. If n 2 = 0, a class 1 customer arrives.

3. If 0 < n 2 < N, a class 1 customer arrives, and causes between 0 and n 2

class 2 departures prior to departing in synchronization with the final class 2

departure.

4. If 0 < n 2 < N, a class 1 customer arrives, causes n 2 departures, and remains

at the synchronization station.

Define Ai(ni) as the arrival rate of class i customers, and pi as the probability

that a class i customer leaves the synchronization station. Further, let

P1 (j) = Pr[a class 1 customer causes j class 2 departures before leaving], j < n 2

and let

PO = Pr[a class 1 customer causes n 2 class 2 departures, and stays at station]

The states with which (0, n 2) communicates, as well as the appropriate transition

rates, are in Table 10.

70

Table 10. State Transitions, Aggregation.

Transitions to Rate Conditions
(0, n 2 -j) Pi(j)AI(0) n 2 E [0, N],j E [0, n 2]

(0,1) P1
0A1 (0) n2 E [1, N]
,Al (0) n 2 = 0

(0, n 2 + 1) A2(0) n 2 [0, N- 1]

We need to derive the probabilities P1(j) and Po. To get P1(j), we condition

on the number of feedback loops required to produce j class 2 departures:

00

P1 (J) Pr[j class 2 departures Iclass 1 departure after ith loop]...

x.. × Pr[class 1 departure after ith loop]

Clearly

Pr[class 1 departure after ith loop] = (1 - pl)-lpl

and

Pr[j class 2 departures class 1 departure after ith loop]- p 2)i- jp 2j

Therefore,

S((i- 1 (p 2)i- jp 2j(l - p l)i- 1
p

(I -P2)P2(-Pl)j-+i-lPli=1 j

71

p3(1 - p)J-2pl
(--P2)1 --(-PI)(--p2)] 1

-J--l + -- 1 [(1 - p l) (1 - p 2)]i [1 - (1 - p l) (1 - p 2)]j - lI-1

p{(1 - pl)- 2 pl { -[1 - (1 -pl)(I -p2)] j } (18)
-(I -P2)[1 - (I - pl)(1 - P2)] -

since each term in the infinite series is a negative binomial density [47:110].

Since the probability that a class 1 customer remains in the system after n2

class 2 departures is (1 - pl)t, we have that

p 0 = Pl(n 2) I1 p

Pi
p, (1--pl)n2-1

(1- p2)[1- (1_- p-)(1 - p2)] 2
-[1 - (1 - p l) (1

- p2)] n 2- 1} (19)

The probabilities P2 (j) and P2 are easily derived by exchanging subscripts in Equa-

tions 18 and 19.

To efficiently derive the transition rate matrix Q for the embedded Markov

chain, we first order the 2N + 1 states as follows: (N, 0), (N - 1,0),... ,(1,0), (0,0),

(0, 1), ... , (0, N - 1), (0, N). For state (row) s, we can then assign nonzero values to

the appropriate columns of Q as outlined in Table 11.

Marie's Method. When Marie's method is used, the embedded chain

with feedback loops is somewhat simpler to formulate because of the nonzero delay

after each synchronization. In this case, states exist where both nl and n2 are

nonzero. The states with which (nj, n2) communicates, together with the appropriate

transition rates, are in Table 12.

72

Table 11. Column Entries For Row s of Q, Aggregation.

Column Index Rate Conditions
s + j P2(N)A2(0) s E [1,N],
N+2 P°A2(0) j = 1,...,N + 1 - s
s - 1 A2(N + 1- s) s E [2, N + 1]
s-J Pi(j)Ai(0) s E [N + 2,2N + 1],

N P°A1 (0) j = 1,...,Is- N-

s+ I Al(s- N-1) s E [N + 1,2N]

Table 12. State Transitions, Marie's Method.

Transitions to Rate Conditions
(ni + 1, n 2) l(nl ni < N

(n,n 2 + 1) A2(n2) n2 < N
(n, - 1,n 2) p1(1 -p 2)pto(min[ni,n 2])
(ni, n 2 - 1) (1 - p1)p2 o(min[n, n 2]) ni, n 2 > 0

(n, - 1, n 2 - 1) p1p2[to(min[ni, n 2]) 1

73

The transition rate matrix Q can be efficiently generated by ordering the states

first on n1 , then on n 2 : (0,0),(0,1),... ,(N,N - 1),(N,N). When this ordering

scheme is followed, the non-zero entries in row s of Q can be generated according to

the rules in Table 13.

Table 13. Column Entries For Row s of Q, Marie's Method.

Column Index Rate Conditions
s + N + I Ai(ni) nl < N

s-+-1 A2(n 2) n 2 < N
s - N - 1 pi(1 - p2)[to(min[ni, n 2])

s - 1 (1 - pl)p 21Po(min[ni, n 2]) nl, n 2 > 0
s - N- 2 pip2lto(min[ni, n 2]) I

Extension to Nested Fork-Join Queuing Networks. Although nesting of fork-

join constructs is not explicitly addressed in the open literature, it makes sense to

deal with them by applying Baynat and Dallery's unified theory in a hierarchical

manner. All that is necessary is that the assumptions required by the unified theory

be satisfied by the network partitions at all levels of the hierarchy.

For the purpose of illustration, suppose we have a FJQN with two FJSNs, one

nested within the other. In this case, hierarchical decomposition requires isolated

analysis of structures at the following three levels:

1. The nested fork-join construct.

2. The FJSN embedded in the nested construct, together with the outer synchro-

nization station.

3. The inner synchronization station.

Note that other individual stations may need to be analyzed in isolation at any of

these three levels. This hierarchical process is illustrated in Figure 23.

74

U*°Cnd *onod

] Ao(no)

Figure 23. Hierarchical Decomposition of a Nested FJQN.

75

Computational Experience

Case Study 1: FJQNs With Probabilistic Forking.

Overview. A numerical study was conducted to examine the performance

of the SC approximation method when applied to FJQNs without nested fork-join

constructs. SC, with both internal and external feedback, was combined with both

aggregation and Marie's method to produce a set of four candidate approximation

strategies:

1. SC with internal feedback, using Marie's method to decompose the original

network (SCMI).

2. SC with external feedback, using Marie's method to decompose the original

network (SCME).

3. SC with internal feedback, using aggregation to decompose the original network

(SCAI).

4. SC with external feedback, using aggregation to decompose the original net-

work (SCAE).

The default stopping criteria (Equations (5) and (9)) were used for Marie's method.

Eighteen different configurations of the same underlying network topology were

studied. The topology, which was motivated by the airfield flow problem, is shown in

Figure 24. The attributes varied between configurations were the probabilities p, and

P2, the service time distributions of Stations 5 and 7, and the network population.

The service rates were chosen so that the response time along the subnetworks in

the fork-join construct would be balanced, thus allowing the effect of varying the

load pattern and the service distributions to be more transparent. The specific

configurations are enumerated in Table 14.

76

Station 4 Station 5

P:Station 6 Station :7X

Station 3 Station 2 Station 1

*IM/1, ~I = 1 /M/l, IL = 0.80 *IM/I, i = 1

*Service law varies

Figure 24. Basic Network Topology, Case Study 1 Representative Systems.

77

Table 14. Case Study 1: Representative System Configurations.

No N Stn 5 Stn 7 (P1, P2)
1 5
2 10 2-Erlang(1.O) 2-Erlang(0.5)
3 20
4 5
5 10 2-Cox(O.25,2.5,0.3) 2-Cox(0.25,2.5,0.1) (0.5,0.5)
6 20
7 5
8 10 Exponential (1. 0) Exponential(1.0)
9 20
10 5
11 10 2-Erlang(1.O) 2-Erlang(0.5)
12 20
13 5
14 10 2-Cox(0.25,2.5,0.3) 2-Cox(0.25,2.5,0.1) (0.9,0.1)
15 20
16 5
17 10 Exponential (1. 0) Exponential (1. 0)
18 20

78

Each method was applied to each representative system to compute the ex-

pected throughput at Station 1 and the expected queue lengths at all seven stations.

The performance of each method was judged on the basis of the relative error be-

tween the performance measures it produced and the true values of those measures.

Since exact analyses of the systems were impossible, "truth" was taken to be a sim-

ulation point estimate whose 95 percent confidence interval half-width was less than

or equal to 10- 2, regardless of the magnitude of the point estimate'.

Results. Based on the results of the numerical study, SCMI provided the

most consistently accurate approximations to the network performance measures.

SCAE was competitive with SCMI when used to estimate expected throughput and

expected queue lengths at Stations 1 to 3; however, this method failed to produce

accurate expected queue lengths for stations inside the fork-join construct (that is,

the relative errors were all between 30 and 1200 percent, with most errors on the high

end of that scale). This may be due to the fact that aggregation strips information

on higher moments from the queue length distributions that cannot be accurately

restored during "disaggregation."

The performance measures produced by SCME were dominated by those from

SCMI; as with SCAE, SCME gave grossly inaccurate queue length estimates for

Stations 4 through 7 (inplying that mere adjustment of the routing probabilities

in the aggregate network is not sufficient to preserve the distributional information

of the queue lengths inside the fork-join construct). SCAI was also ineffective as

an approximation strategy, since it in every case was dominated by SCAE, and in

many cases yielded performance measures with well over ten percent relative error,

especially for small populations. For these reasons, results are not presented here for

either SCAI or SCME.

'This choice was based on the reasoning that since changes to queuing network parameters of
such a small magnitude typically have little practical significance, it makes little sense to insist on
greater precision.

79

Relative errors in the approximate throughput at Station 1 are presented in

Figure 25 for balanced loads (Systems 1 through 9); Figure 26 shows the relative

errors for systems with unbalanced loads (Systems 10 through 18). Numerical results

are listed in Appendix C. Clearly, both SCAE and SCMI approximated throughput

accurately. Neither method dominated the other except for Systems 14, 15, and 16,

where SCAE was clearly more accurate.

Figures 27 to 40 depict the relative error in the queue length approximations

at the seven stations. For balanced loads, the performance of the two methods for

stations outside the fork-join structure tended to be similar, with both methods

generally increasing in accuracy as population increased. For unbalanced loads, the

methods behaved more irregularly for Stations 1, 2, and 3, with SCMI tending to

dominate SCAE. For the high-variance cases (Systems 13-15), performance tended

to deteriorate as population increased. The methods failed for System 15 at Station 1

(SCMI) and Station 2 (SCAE).

For stations inside the fork-join structure, SCAE failed completely, producing

relative errors of between 30 and 1,200 percent. In contrast, SCMI performed very

well, except when Station 7 had a high-variance Coxian service law (Systems 4

through 6 and 13 through 15). In these cases, however, the absolute error was found

to be a fraction of a customer, and was always less than one percent of the network

population.

80

15.0

10.0

5.0

1 3 4 5 6 7 8 9

-5.0

-10.0

-15.0

Configuratlon Number

Figure 25. Case Study 1: Expected Throughput at Station 1, Systems 1-9.

15.0

10.0

• 10 11 12 13 14 15 16 17 18

.0

-5.0

-10.0

-15.0

Configuration Number

Figure 26. Case Study 1: Expected Throughput at Station 1, Systems 10-18.

81

15.0

10.0

5.0

0.001 CA
* EMSCMI

-5.0

-10.0

-15,0

Configuration Number

Figure 27. Case Study 1: Expected Queue Length at Station 1, Systems 1-9.

15.0

10.0

5.0

-5.0

-10.0

-15.0
Configuration Number

Figure 28. Case Study 1: Expected Queue Length at Station 1, Systems 10-18.

82

15.0

10.0

5.0

. 0.0 B g1a

* IMSCMII

-5.0

-10.0

-15.0

Configuration Number

Figure 29. Case Study 1: Expected Queue Length at Station 2, Systems 1-9.

15.0

10.0

5.0.

WU 0.0
.=10 lF 113 14 15 16 17 18

-5.0

-10.0

-15.0

Configuration Number

Figure 30. Case Study 1: Expected Queue Length at Station 2, Systems 10-18.

83

15.0

10.0

5.0

-5.0

-10.0

-15.0

Configuration Number

Figure 31. Case Study 1: Expected Queue Length at Station 3, Systems 1-9.

15.0

10.0

IS 1 14 IS 16 17 is
.5.0

-5.0

-10.0

-15.0

Configuration Number

Figure 32. Case Study 1: Expected Queue Length at Station 3, Systems 10-18.

84

15.0

10.0

5.0

W 0.0 SM

1 2 a 4 5 6 7 8 g

-5.0

-10.0

-15.0

Configuration Number

Figure 33. Case Study 1: Expected Queue Length at Station 4, Systems 1-9.

15.0

10.0

5.0

tu 0.0 R
• 10 11 12 13 14 15 16 17 is

-5.0

-10,0

-15.0

Configuration Number

Figure 34. Case Study 1: Expected Queue Length at Station 4, Systems 10-18.

85

15,0

10.0

5.0

w0.0 SM

1 2 3 4 5 6 7 8 9

-5.0

-10.0

-15.0

Configuration Number

Figure 35. Case Study 1: Expected Queue Length at Station 5, Systems 1-9.

15.0

10.0

5.0

W 0.0

10 1 12 11516 17 18

-5.0

-10.0

-15.0

Configuration Number

Figure 36. Case Study 1: Expected Queue Length at Station 5, Systems 10-18.

86

15.0

10.0

5.0

-10.0

-1 2 3 4 5 6 7 a 9

-5.0

-10.0

-15.0

Configuration Number

Figure 37. Case Study 1: Expected Queue Length at Station 6, Systems 1-9.

15.0

10.0

5.0

U o,o

10 11 12 13 14 15 16 17 18

-5.0

-10.0

-15.0

Configuration Number

Figure 38. Case Study 1: Expected Queue Length at Station 6, Systems 10-18.

87

15.0

10.0

5.0

w 0.0 m I
2 3 7 a

-5.0

-10.0

-15.0

Configuration Number

Figure 39. Case Study 1: Expected Queue Length at Station 7, Systems 1-9.

15.0

10.0

5.0

W 0.0
S10 11 12 16 17 18

-5.0

-10.0

-15.0

Configuration Number

Figure 40. Case Study 1: Expected Queue Length at Station 7, Systems 10-18.

88

Case Study 2: FJQNs With Nested FJSNs.

Overview. A second numerical study was conducted to examine the per-

formance of SC when applied to nested FJQNs. Based on the performance of SCMI

in the previous study, it was chosen as the decomposition method.

As with Case Study 1, eighteen different configurations of the same underlying

network topology were studied. The topology is shown in Figure 41. The attributes

varied between configurations were the probabilities pi, P2, pll, and P12, the service

time distributions of Stations 5, 7, and 9, and the network population. Response

times along the subnetworks in the fork-join structures were intentionally balanced.

The specific configurations are enumerated in Table 15. As with Case Study 1, the

measure of merit was relative error, and the default stopping strategy was used for

Marie's method.

Table 15. Case Study 2: Representative System Configurations.

No N Stn 5 Stn 7 Stn 9 (PlP2,PllP12)
1 5
2 10 2-Erlang(0.5) 2-Erlang(0.5) 2-Erlang(1.0)
3 20

4 5
5 10 2-Cox(0.25,2.5,0.1) 2-Cox(0.25,2.5,0.1) 2-Cox(0.25,2.5,0.3) (0.5,0.5,0.5,0.5)
6 20
7 5
8 10 Exponential(0.5) Exponential(0.5) Exponential(1.0)
9 20
10 5
11 10 2-Erlang(0.5) 2-Erlang(0.5) 2-Erlang(0.5)
12 20
13 5
14 10 2-Cox(0.25,2.5,0.1) 2-Cox(0.25,2.5,0.1) 2-Cox(0.25,2.5,0.3) (0.9,0.1,0.9,0.1)
15 20 _________

16 5
17 10 Exponential (0.5) Exponential(0.5) Exponential(1.0)
18 20

89

Station 4 Station5

StatiSttin 81taio0

P tto 6Station 2Sato

*IMII, I =i 2 * 1. It 2 .0*M/,~

P2* Servioe la vtaries

Figure 41. Basic Network Topology, Case Study 2 Representative Systems.

90

Results. Figure 42 shows the relative error in the expected throughput

at Station 1 for each system; relative errors in expected queue lengths are given in

Figures 43 to 52. It is clear from the figures that SCMI produced good overall results

for the sample networks. Station 9 queue length accuracy suffered for networks where

that station had a high-variance Coxian service law (Systems 4-6 and 13-15).

15 .0 -...

10.0

5.0

0.

1 2 3 5 7 8 9 1 12 131 15 16 17 18

-5.0

-10.0

-15 .0

Conflgurstlon Number

Figure 42. Case Study 2: Expected Throughput at Station 1.

91

15.0

10.0

5.0

LU 0.0 fl1i L

1 * ~ ~ 7 6 9 10 11 12 13 1

-5.0

Configuration Number

Figure 43. Case Study 2: Expected Queue Length at Station 1.

10.0 I

1 2 3 ~7 a 9 10 11 12 13 14 15 16 17 18

-5.0

Configuration Number

Figure 44. Case Study 2: Expected Queue Length at Station 2.

92

15 .0

15.010,0

5.0

1 2 3 5 6 7 8 9 10 11 12 13 14 is 16 17 18

-5.0

-10.0

-15 .0

Configuration Number

Figure 45. Case Study 2: Expected Queue Length at Station 3.

15 .05..

10.0

5.0

uJ 0.0 i . ..

1 2 3 5 5 7 8 9 10 11 12 13 14 15 1 17 18

-5.0

-10.0

-15 .0

Configuration Number

Figure 46. Case Study 2: Expected Queue Length at Station 4.

93

10.0

5.0

1 2 3 5 6 7 8 5 10 11 12 15 16 17 18

-5,0

-10.0

-15 .0 :.

Configuration Number

Figure 47. Case Study 2: Expected Queue Length at Station 5.

15 .0

10.0

5.0

0.0 .M, -i n ~ fl r
1 2 3 5 6 7 a 9 10 11 12 13 14 15 16 17 18

-5.0

-10.0

-15.0

Configuration Number

Figure 48. Case Study 2: Expected Queue Length at Station 6.

94

10.0

5.0

u 0.0

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-5.0

-10.0

-15 .0 "

Configuration Number

Figure 49. Case Study 2: Expected Queue Length at Station 7.

15 .0

10.0

5.0

EM
U 0.0

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-5.0

-10,0

-15 .0

Configuration Number

Figure 50. Case Study 2: Expected Queue Length at Station 8.

95

15.0

10.0

5.0

-10.0

-15 0

Configuration Number

Figure 51. Case Study 2: Expected Queue Length at Station 9.

15 0

15.010.0

,0

S 0.0 r

- 1 2 10 12 16 17 1

-5.0

-10.0

-15 .0

Configuration Number

Figure 52. Case Study 2: Expected Queue Length at Station 10.

96

Special note should be made of the convergence behavior of the nested fixed-

point algorithms. The baseline tolerances were set at 10' at each level. However,

most systems required manual adjustment of the tolerance to speed convergence (see

Table 16 for the selected tolerance values). In some cases, tolerances had to be raised

as high as o(10'), particularly for higher population levels. It is interesting to note,

however, that in all but one case (System 6) the looseness of the tolerances did not

seem to directly affect the accuracy of the solutions. Recall that the large relative

errors in queue lengths for Systems 4-6 and 13-15 were observed in both numerical

studies, and are most likely due to linearizations inherent in SCMI. Since the require-

ment to adjust the tolerances seemed to driven by population level, the convergence

behavior observed may be due to large relative changes in small service rates (typi-

cally found when the station population approaches N). The corresponding absolute

changes in the service rates clearly had no practical significance, since the accuracy

of the approximate performance measures was not affected by the tolerance selec-

tions. Since this convergence behavior was not observed in Case Study 1, it is most

likely an effect of nesting the fixed point algorithms, and may be due to a loss of

precision. This situation could possibly be rectified by refinements to the stopping

test that consider both relative and absolute change in the service rate vectors.

System 6 was a pathological case in that none of the expected queue lengths

of Queues 4-10 were within ten percent of truth. This is most likely due to the fact

that overall convergence could not be attained without setting the tolerance for the

second level fixed-point algorithm at a level that allowed convergence after one pass

(see Table 16). Thus, the appropriate elements of the solution vector were not being

properly updated.

Conclusion

While the representative systems are hardly a comprehensive picture of reality,

the results of the numerical study suggest SC is a useful, and often highly accurate,

97

Table 16. Case Study 2: Convergence Summary.

Maximum Iterations Selected Tolerance
Cfg L 1 Level 2 Level 3 Level 1 Level 2 Level 3
1 2 5 4 10- 4 10- 4 10- 4

2 2 3 3 10 - 4 10.0 3.0
3 2 5 25 10-2 20.0 10.0
4 2 5 5 10- 4 10- 4 10- 4

5 2 2 18 10- 4 15.0 3.0
6 2 1 5 10- 2 20.0 10.0
7 2 4 2 10- 4 10- 4 10- 4

8 2 3 2 10- 4 25.0 10- 4

9 2 2 2 1.0 20.0 10- 4

10 2 6 6 10- 4 10- 4 10- 4

11 2 8 2 10- 4 5.0 3.0
12 2 4 22 10 - 4 20.0 7.0
13 2 6 8 10- 4 10- 4 10- 4

14 2 6 32 10 - 4 7.0 5.0
15 3 8 36 1.5 30.0 15.0

16 2 2 10- 4 10- 4 10- 4 i
16 2 3 2 i0 i0i0
17 2 4 2 10- 4 10- 4 10- 4

18 2 3 2 10 4 7.0 10- 4

98

approximation technique for closed FJQNs with probabilistic load patterns. This

technique appears equally successful whether or not the network to be analyzed

contains nested FJSNs.

In the non-nested case, both SCAE and SCMI produce competitive approxi-

mations of expected throughput; this suggests that either approach would be useful

if system-level performance measures are desired, particularly those measures that

are relatively insensitive to higher moments of the service time distributions. SCMI

is clearly the preferred method, since it alone can provide accurate queue lengths for

stations inside a fork-join structure.

SCMI seems to suffer no degradation in performance when the network topol-

ogy contains nested FJSNs. However, larger network populations may necessitate

the use of a different stopping criterion for Marie's method.

In some cases, SCMI appears sensitive to service laws having coefficient of

variation greater than one. Therefore, the method should be used with care when

such stations are present.

Recommendations

The following suggestions for additional study would help to further define the

applicability and limitations of SC approximation techniques:

1. Study the effect of combining the SC methods with the class aggregation tech-

nique of Baynat and Dallery (see Chapter II).

2. Explore the reasons for the failure of SCAE and SCME to accurately approx-

imate expected queue lengths inside a fork-join structure.

3. Determine the reasons why internal feedback outperforms external feedback

for Marie's method but not for aggregation.

99

4. Explore the use of alternative stopping tests to eliminate convergence problems

caused by nesting Marie's method algorithms.

The decomposition strategy described in this chapter can be used to analyze a

wide class of queuing networks. This class of models can be applied in many practical

situations. Some suggested application areas, togther with specific examples, are as

follows:

1. Computer performance evaluation: nested parallel algorithm performance, multi-

nomial job splitting.

2. Micro-level production models: generalized kanban assembly/disassembly sys-

tems.

3. Aggregate production models: multi-plant order fulfillment systems.

4. Ground transportation flow models: ground transportation hub flow, airfield

processing flow.

The AAM is an example of the fourth class of applications; its use will be demon-

strated in the next chapter.

100

VI. Analytical Airfield Model Demonstration

Introduction

Based on the material presented in the previous four chapters, we now have

a strategy for analyzing the Analytical Airfield Model (AAM) presented in Chap-

ter I. This chapter demonstrates the effectiveness of this approach through a small

numerical study of a particular realization of the AAM. Baseline numerical results

are presented, together with rudimentary sensitivity analysis. A discussion of these

results is presented, including an error analysis. The chapter concludes with recom-

mendations for further research.

Implementing the Analytical Airfield Model

The AAM configuration used in the numerical study was based on a scenario

suggested by AMC [106]. The following assumptions were used:

1. The effect of passenger loading/unloading (Stations 3 and 10 in Figure 2) was

negligible.

2. Unscheduled maintenance (Station 4 in Figure 2) was not differentiated from

scheduled maintenance in the processing flow.

3. There were five types of aircraft used in the scenario, each with a fixed cargo

load. The cargo load was either removed from a fully loaded aircraft or loaded

onto an empty aircraft during ground processing.

4. Each type of aircraft had a fixed refueling requirement that depended only on

its type. Whether or not it required this fuel load depended on its mission.

5. Each aircraft type had a fixed scheduled ground delay.

6. There were five wide-body parking spots, which could accomodate the equiv-

alent of eight narrow-body aircraft.

101

7. The airfield can accomodate a single aircraft landing or taking off at one time.

The arrival stream was generated by AMC using a separate computer simulation,

and consisted of a list of aircraft by type, fuel load, cargo load, and so forth. A

30-day time horizon was assumed.

Since the processes captured by Stations 3, 4, and 10 in Figure 2 were ignored

under the study assumptions, those stations were removed. This resulted in the

problem-specific topology shown in Figure 53. The distinction between wide- and

narrow-body parking spots was ignored; it was assumed that there were enough

parking spots to accomodate eight aircraft, regardless of type.

Station 6 Station 7

Station 5

station 2 Station 1 Station 0 Station 12 Station 11

N=8

Figure 53. Revised AAM Topology (Stations 3, 4, and 10 Removed).

102

The arrival stream data were pre-processed to determine the proportion of each

type of aircraft, the proportion of aircraft needing fuel, and the mean and variance

of the interarrival times. Deterministic service times for all ground processing tasks

except refueling were provided by AMC; for cargo processing, these were provided by

aircraft type. Pump rates, fuel truck travel times, and fuel line connect/disconnect

times were provided so that refueling time could be determined by aircraft type;

hydrant and truck pump rates were aggregated by the proportion of each resource at

the airfield. Since the AAM can only accomodate a single class of aircraft, aircraft

types were aggregated by linearly combining aircraft-dependent mean service times

using the proportion of aircraft types obtained during pre-processing. The aggregate

service laws assumed for each station are given in Table 17.

Table 17. Analytical Airfield Model Station Descriptions.

Station Activity Number of Service Distribution Visit

Number Description Servers Discipline Type Prob

0 Interarrival Time 1 FCFS 2-Coxian(3.79,0.65,0.41) 1

1 Landing 1 FCFS 2-Erlang(0.033) 1

2 Taxi/Park 8 Delay 2-Erlang(0.125) 1
3 Scheduled Maintenance (not 8 Delay 2-Erlang(0.083) 1

concurrent with refueling)
4 Refuel 6 FCFS 2-Erlang(0.983) 0.47

5 Liquid oxygen servicing 8 Delay 2-Erlang(0.45) 0.47
6 Scheduled Maintenance 8 Delay 2-Erlang(0.5) 1

(concurrent with refueling)
7 Cargo off/on 3 FCFS 2-Erlang(0.946) 1

8 Standard Ground Delay 8 Delay 2.34 (Deterministic) 1

9 Backout/Taxi 8 Delay 2-Erlang(O.125) 1

10 Takeoff 1 FCFS 2-Erlang(0.033) 1

103

Numerical Study

Overview. The baseline AAM configuration was analyzed using the methods

proposed in Chapters III and V. Three performance measures were calculated:

1. The airfield throughput (the average number of aircraft leaving the airfield

each hour).

2. The airfield response time (the average number of hours it takes between air-

craft arrival and departure).

3. The average number of aircraft on station.

These measures were chosen because they are typically of interest to a mobility

analyst (see Chapter 1).

Sensitivity analysis was conducted by varying the mean interarrival time, the

maximum number of aircraft that could be serviced (cargo and fuel), and the coeffi-

cient of variation of the service time distributions. Performance measures were also

evaluated for the case when the standard ground delay was ignored to capture the

effect of standard ground delay on the performance measures.

Error analysis was performed by comparing performance measures calculated

with the AAM to a simulation point estimate whose 95 percent confidence interval

half-width was less than or equal to 10- 2.

Results. Analysis of the baseline scenario showed that, on average, 1.1 aircraft

departed the airfield per hour. A typical departing aircraft had spent 2.8 hours on

station; on average, 3.0 aircraft were in the airfield flow at any given time. The

results of the numerical study are presented in detail in Tables 39 through 55 in

Appendix D.

The effect of decreasing the mean interarrival time is illustrated in Figures 54,

55, and 56. Deterministic response time estimates are included in Figure 55 for com-

104

parison purposes.' Clearly, all performance measures increased as mean interarrival

time decreased; this makes sense for a capacitated queuing network. Variations in

interarrival time had less of an effect on response time than on aircraft on station;

this implies that the arrival rate could be increased to drive up throughput provided

that the fraction of occupied parking spaces need not be minimized. Further, the

effect of ignoring the standard ground delay did not provide much of an increase

in throughput even at low mean interarrival times, but it did contribute to large

decreases in response time and aircraft on station; ground time could be omitted if

these latter two performance measures need to be minimized.

3.0000

2.5000 '....

V2.0000

2- Ground Delay
:S 1.5000 . .- ':'"No Ground Dolay
0. --- 2,... ,,

j_ 1.0000

0.5000

0.0000 I I I I
0.30 0.40 0.50 0.60 0.70 0.80 0.90

Moon Intererrival Time (Hours)

Figure 54. Effect of Mean Interarrival Time on Airfield Throughput.

1 This estimate was calculated by summing the expected response times at each station of the
network except Station 0. The mean response time of a fork-join network structure was found by
conditioning on the probability of visiting a particular set of forks; for each set visited, the mean
response time was taken as the maximum sum of means along the forks.

105

2.5000

2.0000

-4+-Ground Delay (AAM)
E -;3---Ground Delay (Dot)
i: 1500000 -----. -----.---------.-----------------.----------------- --------------------- NoGroud-D lay---M

o ~"rNo Ground Delay (Dot)

1 1.0000

0 .5000

0.0000 i i
0.10 0.20 0.30 0.40 0.50 0.60 0.70

Mean Intenrrval Tim* (Hours)

Figure 55. Effect of Mean Interarrival Time on Airfield Response Time.

7 . 0 0 -- ------- -----------.- --------- ------------ ----------- ----------- ----------

6.0000

5.0000 .

4.0000 ..

No Ground Delay

0.. No--Ground Dea
3.0000

2.0000

1.0000

0.0000 III-
0.10 0.20 0.30 0.40 0.50 0.60 0.70

Mean Interarrival Time (Hours)

Figure 56. Effect of Mean Interarrival Time on Aircraft on Station.

106

Figures 57, 58, and 59 capture the effect of varying the maximum number of

aircraft that can serviced for fuel or processed for cargo. The tightly superimposed

lines on each graph (each of which reflects a different number of refueling servers,

from one to eight) imply that adjusting the maximum number of aircraft that could

be serviced for fuel had no significant impact on the values of the performance

measures. In contrast, each graph shows the performance measures worsened when

resources were adjusted so that only one aircraft's cargo could be processed at a

time. This implies that a bottleneck forms at Station 7 if cargo resources are tightly

constrained. The figures report results only for the case where ground delay was

included; a similar effect was observed when ground delay was ignored.

11000

...............-..__ _ _ _ _ _ _ _

1.0500

b2

33
0.9500

0 100 2 3 45

Cargo Servers

Figure 57. Effect of Constrained Resources on Airfield Throughput.

107

5.5000 -

5.0000

4.5000

4.0000 2

0 3

S3,5000

*0

*3.0000 z~~--~--------- -.~~~~~~~~~~~~~~~

2.5000

2.0000

1.5000 i

1 2 3 4 5

* of Cargo Servers

Figure 58. Effect of Constrained Resources on Airfield Response Time.

5.0000

4.5000

4.0000

3.5000
'C

s .0 0 0 0 .. c~ zcc c. -.. 6

2.5000

2.0000

1.5000 I

1 2 3 4 5

Cargo Servers

Figure 59. Effect of Constrained Resources on Aircraft on Station.

108

Increasing the coefficient of variation from 0.5 to 1.0 at each service station

(except for the arrival process) had little impact on the performance measures, re-

gardless of the level of constrained resources. The impact was more pronounced in

the case where ground delay was ignored, but it was still insignificant from a practical

standpoint.

Error Analysis. All but two of the 318 performance measure data points cal-

culated using the analytical model had relative errors of ten percent or less; eighty

percent of these were five percent or less. This agrees with the finding in Chapter V

that performance measures can be approximated reasonably accurately using the

SCMI method.

Further, the response times calculated using the analytical approach were com-

pared to the deterministic response time estimates described above. In every case,

the SCMI analysis produced a smaller relative error. The difference in the relative

errors was particularly pronounced when ground delay was ignored.

Speed of Execution. The software for the numerical investigation was imple-

mented on a Digital Equipment Corporation Alpha workstation. To achieve the

desired tolerance in the simulation point estimates, the typical simulation run took

35 to 45 minutes of elapsed system time. In contrast, virtually all of the analyti-

cal software runs produced near-immediate output (within the limitations of output

channel bandwidth). This fact, combined with the accuracy of the analytical approx-

imation used, gave the queuing network analysis approach a distinct speed advantage

over simulation.

Conclusion and Recommendations

The AAM is a valuable tool for the steady-state analysis of mobility airfield

processes. The speed and accuracy with which it can be analyzed make it particularly

useful for quick-look studies and sensitivity analysis.

109

Despite this promising start, further research is needed before such an analyt-

ical model can be widely adopted. In particular, the following modeling issues need

to be addressed:

1. A variety of approaches to the aggregation of aircraft classes should be studied.

If aggregation is not sufficently accurate, the methods proposed in Chapters III

and V need to be adapted to allow their efficient application to multiple-chain

queuing networks.

2. A systematic method is needed for modeling the cargo and refueling processes

as FCFS multiserver queues, particularly when the servers are heterogeneous.

3. The robustness of the AAM performance measures in the face of a departure

from the steady-state assumption needs to be assessed.

4. The effect of the dependence of network capacity on aircraft type needs to be

studied further.

5. The feasibility of using AAM-generated performance measures in a system-level

mobility model should be explored.

6. The effectiveness of the AAM as a variance-reduction tool should be investi-

gated.

110

VII. Conclusion

Introduction

This chapter brings this research project to closure. The construction and

analysis of the AAM has given rise to several contributions to the literature; these

are summarized in the next section. The final section of the chapter consolidates the

recommendations for further research that were made in previous chapters.

Statement of Research Contributions

Analysis of Multiserver k-Coxian Queues. A quick, efficient method was iden-

tified for solving for the stationary probabilities of the A(n)/Ck/r/N queue. Unpre-

conditioned Conjugate Gradient Squared was shown to be the method of choice in

the context of decomposition using Marie's Method, thus broadening the class of

networks where the method is of practical use.

Decomposition of Nested Fork-Join Queuing Networks. A general technique for

decomposing nested FJQNs with probabilistic forks was formulated. The approach

consists of incorporating feedback loops into the embedded Markov chain of the

synchronization station, then using Marie's Method for the network decomposition.

Numerical studies showed this strategy to be effective, with less than two percent

relative error in the approximate performance measures in most realistic cases.

Isolated Analysis of Mobility Airfield Flow. A single-chain queuing network

model of an isolated mobility airfield was formulated. When this network is analyzed

using the strategy described above, accurate approximations of airfield performance

measures can be obtained in a fraction of the time needed for a simulation study.

The proposed modeling approach is especially effective for quick-look studies and

sensitivity analysis.

111

Summary of Recommended Research Topics

Several questions and issues regarding the analysis of nested FJQNs were raised

during the course of this study. They are as follows:

1. The effect of combining the SC methods with the class aggregation technique

of Baynat and Dallery (see Chapter II) needs further study.

2. The reasons for the failure of SCAE and SCME to accurately approximate

expected queue lengths inside a fork-join structure need to be explored.

3. The reasons why internal feedback outperforms external feedback for Marie's

method but not for aggregation need to be explored.

4. Alternative stopping tests should be explored in an attempt to eliminate con-

vergence problems caused by nesting Marie's method algorithms.

In addition to these theoretical considerations, the following issues related to

the use of the AAM to be considered:

1. A variety of approaches to the aggregation of aircraft classes should be studied.

If aggregation is not sufficently accurate, the methods proposed in Chapters III

and V need to be adapted to allow their efficient application to multiple-chain

queuing networks.

2. A systematic method is needed for modeling the cargo and refueling processes

as FCFS multiserver queues, particularly when the servers are heterogeneous.

3. The robustness of the AAM performance measures in the face of a departure

from the steady-state assumption needs to be assessed.

4. The effect of the dependence of network capacity on aircraft type needs to be

studied further.

112

5. The feasibility of using AAM-generated performance measures in a system-level

mobility model should be explored.

6. The effectiveness of the AAM as a variance-reduction tool should be investi-

gated.

113

Appendix A. Calculating the Stationary Probabilities of a

Continuous-Time Markov Chain

Introduction

The purpose of this appendix is to provide background for the discussion of

the computational aspects of continuous-time Markov chains (CTMCs) that occurs

in Chapter III. As was seen in that chapter, the efficient and timely calculation

of stationary probabilities for these processes is crucial to the effectiveness of cer-

tain implementations of Marie's method. The discussion begins by considering the

problem of calculating stationary probabilities for a CTMC. The remainder of the

appendix reviews methods for solving this problem.

The Stationary Probability Distribution

Definition. Suppose that a certain process can be modeled by a CTMC with

n states. For this chain, we define P as the n x n matrix of instantaneous state

transition probabilities, and Q as the n x n matrix of instantaneous transition rates.

If the chain is homogeneous and irreducible, it follows that we can find the n x 1

vector 7r of stationary probabilities for the chain by solving the following system

[116:26-30]:

7Tp = 7rT (20)

1171 = 1

It can be shown (see [116]) that the solution to System (20) is unique, and that

P is guaranteed a unit eigenvalue (which is, in fact, the eigenvalue with the largest

modulus). Therefore, 7r is the unique normalized left eigenvector associated with the

unit eigenvalue of P, and System (20) is really an eigenvector problem.

114

For ease of numerical implementation, System (20) is often reformulated in

terms of Q. To do this, we first note that P = QAt + I for some sufficiently small

time slice At [116:31]. If we apply this fact, and take the transpose of both sides,

we have the following equivalent system:

QTr =0 (21)

I117r1 = 1

The transposed form of the problem is easier to implement and results in more

stable execution of certain solution algorithms; see Stewart's detailed discussion

in Reference [116:77]. In subsequent discussion, we will use the phrase stationary

probability problem to refer interchangeably to Systems (20) or (21).

Problem Stability. The success of many numerical solution methods depends

on the conditioning of the problem to be solved (i.e., the sensitivity of the solution to

small perturbations in the coefficient matrix). Since QT is singular, it is impossible

to discuss conditioning of the linear system (21) without introducing the concept

of the generalized inverse, which is out of the scope of this appendix. However,

we can discuss problem stability in terms of the related eigenvalue problem of P

(System (20)).

Let 7r and 0 be left and right eigenvectors associated with the unit eigenvalue

of P. Let B be the Jordan basis for P, and define B' as the subspace spanned by

B - {r}. It can be shown [34:15] that the condition number of the unit eigenvalue

of P is
1 1

m1 n-I 7r - y sin (22)

where 0 is the angle between 7r and q. We know that = 6 = (1, 1,..., I)T [116:26-

30] Also, the elements of 7r are clearly nonnegative. Using these facts, it follows

115

that 1 114112 1 112 _ V'n 11 r2 11 2 /-:j7 11 712 < /
sin 0 - (,7r) - 1 (0,7r)- 1171 -

Therefore, the unit eigenvalue is itself reasonably well-conditioned.

This happy circumstance does not necessarily extend to the conditioning of

the normalized left eigenvector 7r. It follows from a result proven by Chatelin [34:17]

that the condition number of 7r is bounded below:

1
K, > min 1(23)

Ae{A(P)-{I}} I A - I1

where A(P) is the set of all unique eigenvalues of P. Equation (23) implies that if

P has eigenvalues clustered near the unit eigenvalue, 7r will be poorly conditioned.

A practical effect of ill conditioning is that it adversely affects the accuracy and

convergence properties of numerical solution algorithms.

Algebraic Solution of the Stationary Probability Problem

In this section, we consider methods for solving the n x n eigenvector problem

Ax = Ax (24)

and its equivalent linear system

A*x = (A- AI)x = 0 (25)

We will assume that A is nonsymmetric and is not definite. We can approach the

task of calculating an eigenvector corresponding to A using either a direct or an

iterative method, since both approaches are equally effective. Accordingly, we will

describe methods in both categories. The section ends with a consideration of the

application of these techniques to the stationary probability problem.

116

Direct Solution Methods for Linear Systems. When the CTMC has a small

number of states, System (25) is often solved by some direct method. This is usu-

ally an implementation of the well-known Gaussian elimination procedure, which is

defined by the relation

(s)
aij ---aa. a s + I < < n, s + 1 < j n (26)

where . is the number of the current Gaussian elimination step [6:9].

There are problems with Gaussian elimination that hinder its usefulness, es-

pecially for large systems [6:18-21]:

1. It is prone to numerical instability (although implementations have been intro-

duced that reduce numerical error by avoiding subtraction; see, for example,

Reference [55]).

2. The sparsity structure of A is destroyed by fill-in (the phenomenon where zero

entries in the original matrix become nonzero as the algorithm proceeds). This

decreases efficiency and increases memory requirements, particularly in non-

sparse implementations, which require storage of the entire matrix.

3. The time requirements for solution quickly become impractical as n increases,

because the procedure requires o(n 3 /3) floating point operations (flops) to

factor A.

To illustrate the limitations of Gaussian elimination, consider a moderately-

sized system of order 2048. The solution of this system would require roughly three

billion flops and 16 megabytes of memory, not including program overhead (assuming

four-bit real data structures).

To alleviate space limitations, Philippe et al. propose a direct algorithm that

applies stable Gaussian elimination to large, sparse matrices stored in compact for-

mat. This method is specifically intended for Markov chain problems. The authors'

117

experience shows that the algorithm works well for chains where the order of Q is

2500 states or less, but that memory requirements limit its effectiveness with larger

problems [95], [104].

For small Markov Chains, it is often faster and more precise to solve for ir

using a numerically stable form of Gaussian elimination [104]. As the state space

increases, however, it becomes more practical to solve large chains using some other

approach.

Iterative Solution Methods. An iterative method for solving a system of equa-

tions is a procedure that makes repeated improvements to an approximate solution

until it is within some tolerance of the true solution [18:1]. There are two classes of

iterative methods: stationary and nonstationary.

Stationary iterative methods have the following general structure:

X(
-

) = Bx (I- 1) + c, i > 1 (27)

where the matrix B and the vector c may depend on A but are independent of i

[18:7], [60:5]. These methods are easy to understand and use, but they are usually

slower to converge and less efficient than nonstationary methods [18:5].

Nonstationary iterative methods are based on the successive construction of

orthogonal vectors. These techniques are sometimes called projection methods. The

goal of a projection method is to successively approximate the solution to System (24)

or (25) by choosing each approximation in the sequence from a small-dimension sub-

space (WV) of the solution space such that some function of the iterate is minimized.

This choice is typically constrained so that the function of the iterate is orthogonal to

a second subspace (L). The differences between projection methods are determined

primarily by the structure of the subspaces) and £, and the way in which iterates

are constructed from them [95], [104].

118

An important subset of the projection methods are the Krylov subspace meth-

ods. These methods are so called because W is typically chosen to be

W = x (0) + ki(r(°), B) (28)

where B depends on A, r (°) is the initial residual, and

lAi(r(°), B) span{r(O), Br(O), B 2r()...,B(-)r()}

is the ith Krylov subspace of r (0) with respect to B [60:11], [93:18]. The subspace £

is typically)K;(r(°), B) or some variant thereof [93:18].

Projection methods for eigensolutions. When solving System (24) using

a projection method, an approximate eigenvector x () is chosen from W/; subject to

the constraint that r(0 = Ax (') - Ax(') I £. We consider three groups of these

methods.

Simultaneous iteration methods are so called because they attempt to succes-

sively approximate a set of eigenvectors for A simultaneously. The initial set of

vectors is chosen so that they are orthonormal; this orthogonality is maintained

throughout the procedure. These methods are primarily of historical interest; they

are not as effective as Krylov subspace methods, especially when the moduli of the

eigenvalues of A are uniformly distributed [104], [116:186].

One of the oldest Krylov subspace procedures is the Lanczos Process [71]. This

method uses a three-term recursion technique to generate a nonsymmetric tridiagonal

matrix, which is then used to form an approximate eigenvector for A. The projection

subspaces are W = x(°) +)A2(r(°), A) and £ = KCi(r(°), AT). Unfortunately, the

Lanczos process is not without its problems. First, it requires matrix multiplication

by both A and AT during each iteration, which hampers efficiency [104]. Also,

when it is applied to nonsymmetric A, the residuals are orthogonal, but they are

119

no longer minimized over £ [6:491], [18:21]. Also, the Lanczos process is susceptible

to divergence; however, refinements have been proposed that attempt to anticipate

convergence problems (see, for example, [116:214-215]).

Arnoldi's Method is related to the Lanczos process. This algorithm takes

its name from the fact that it forms an orthonormal basis for)V using modified

Gram-Schmidt orthogonalization; this basis generation process was first proposed

by Arnoldi [3]. The projection subspaces are defined as W = x(o) + ki(r(°), A) and

£ = AKQ(r(°), A). At the ith iteration step, an i x i upper Hessenberg matrix is

formed that is the restriction of A to C. The eigenvalues of the Hessenberg ma-

trix, particularly those with larger moduli, closely approximate those of A. These

eigenvalues are used to construct the appropriate eigenvector of A [6:541-542], [104],

[116:190-192].

Projection methods for linear systems. One of the best-known Krylov

subspace methods is the conjugate gradient method (CG) for solving symmetric pos-

itive definite (SPD) systems [6:449-491]. For this method, W = x (±) +C(r(°), A*)

and £ = ICi(r(°), A*), where r () = -A*x(O) [93:18]. Unfortunately, CG is unsuitable

for nonsymmetric matrices because the sequence of residuals {r(')} cannot be forced

to be orthogonal without retaining all of the residual information computed in the

course of the solution [18:21]. Iterative methods that accomodate nonsymmetric ma-

trices must confront this difficulty. In the following paragraphs, we describe several

of generalizations of the CG algorithm to accomodate nonsymmetric indefinite (or

semidefinite) matrices.

Normal equations methods cope with the lack of symmetry by applying CG to

the equivalent system

(A*)TA*x = (A*)Tb (29)

The rationale behind this approach is that even if A* is nonsymmetric and indef-

inite, the normal equation matrix (A*)TA* is SPD. The most efficient of the nor-

120

mal equations algorithms is Paige and Saunders' LSQR, which uses V = x(') +

Ci((A*)Tr(O), (A*)TA*), and requires that (A*)Tr(') be orthogonal to the following

vector space [94]:

C = ICj((A*)Tr(O), (A*)TA*)

A drawback of these methods is that their convergence speed depends on the square

of the condition number of A* [18:18]; nevertheless, this limitation has not hindered

performance in certain applications [116:219].

The Generalized Minimal Residual (GMRES) method attempts to maintain

the orthogonality of the residuals by retaining the entire orthogonal sequence {r(z)}.

In the original implementation of GMRES, due to Saad and Schultz [105], an or-

thonormal basis for VY is formed using the same modified Gram-Schmidt proce-

dure used in Arnoldi's method, to which it is closely related. As with Arnoldi,

); = x (°) + /C(r(°), A*) and C = A*k(r(O), A*). (Walker proposes a modification

of GMRES that uses Householder transformations instead of Arnoldi's method; this

variant is more numerically stable, but in general is less efficient [130].) Because the

entire sequence {r(')} must be stored, GMRES is seldom implemented in its pure

form. For practical purposes, the algorithm is restarted after a certain number of

iterations, say j; that is, all information is cleared except x (j) , which is used as the

new initial solution. This restarted procedure is referred to as GMRES(J). There is

no "correct" value for j; the choice must be made based on computational experience

with a certain class of problems [18:18-21].

As the name implies, Lanczos methods are based on the Lanczos process de-

scribed earlier. Like this process, Lanczos methods attempt to retain the orthog-

onality of the residuals at the expense of minimization. Fletcher's Bi-Conjugate

Gradient (Bi-CG) algorithm [50] is the linear-system analog of the Lanczos process;

it generates two mutually-orthogonal series of residuals, one with respect to A*, and

the other with respect to (A*)T. As with Lanczos, VV = x(O) + C(r(O), A*), and

C =]C(r(°), (A*)T) [93:18]. Because it has the same tendencies to break down as the

121

Lanczos process, Bi-CG has irregular convergence behavior; the closely related Quasi-

Minimal Residual method of Freund and Nachtigal attempts to smooth convergence

decomposing A* in a more stable manner, and by anticipating breakdowns in the

underlying process [18:23], [51]. The Conjugate Gradient Squared (CGS) method,

first proposed by Sonneveld, converges faster than Bi-CG and improves efficiency by

avoiding the use of (A*)T [111]. CGS may be thought of as Bi-CG with the residual

reduction operator applied twice during each iteration; therefore, CGS should be

expected to converge twice as fast as Bi-CG (although this is not uniformly true in

practice) [18:26]. For certain problems, CGS is prone to cancellation effects in the

updates of the residuals, which affect the stability of convergence [18:26], [125]. To

counteract this effect, van der Vorst proposes a variant of CGS called Bi-CGSTAB,

which ensures that the residual vector is minimized at least locally [126]; this work

is extended to add even more stability by Chan and Szeto [31].

Preconditioned systems. The convergence of an iterative method is

strongly dependent on the spectral properties of the matrix A*. If A* is ill-condition-

ed, a method's convergence behavior may become erratic. Therefore, it is common

practice to transform the system A*x = 0 into an equivalent system that is better

conditioned. This technique is called preconditioning. To precondition System 25, a

transformation matrix M is derived, and the system is transformed as follows:

(M iA*M i)(M 2x) = 0 (30)

where M = M1 M2. If M1 and M2 are non-trivial, the method is called two-sided

preconditioning; otherwise, the new system is said to be left-preconditioned if M1 =

I, or right-preconditioned if M2 = I [18:39-40], [93:12].

Preconditioners generally fall into two classes: point and line (or block). Line

preconditioners are useful if A* has some readily-exploitable block structure, such as

block tridiagonality. Otherwise, a point preconditioner is applied [93:12].

122

The point preconditioning techniques most commonly used in Markov chain

applications are based on incomplete factorization. The basic form, known as in-

complete LU factorization (ILU(k)), is a modification of Gaussian elimination that

limits or discards off-diagonal fill-in. The value of k determines the level of fill-in

allowed. Greater fill-in increases the accuracy of M (i.e., it decreases IIA* - M1H) at

the expense of stability and memory [7:39]; see Meijerink and van der Vorst [82] for

numerical examples.

For general k, the matrix M takes the form

M = (A - L)A-(A - U) (31)

where A is a diagonal matrix containing the factorization pivots, L is lower-triang-

ular, and U is upper-triangular [93:13]. For k = 0, it may be shown that

M = (D - S)D-I(D - T) (32)

where diagonal D, lower-triangular S, and upper-triangular T are chosen such that

A* = D - S - T [18:43]. The space complexity of this preconditioner is on the order

of the number of nonzero entries in A* [104].

It is possible to modify the ILU(k) preconditioner so that M has the same row

sums as A*; this ensures that M-A* has a unit eigenvalue [93:14]. This procedure

is quite successful when applied to certain classes of problems, particularly in the

area of finite element analysis [18:44]. For some types of linear system, however, this

modified approach may break down [125].

Other modifications to the ILU procedure center on eliminating elements based

on relative magnitude rather than preserving the sparsity structure of A*. One

successful variant of ILU(k) is ILUTH, which retains all fill-in entries that exceed

a preset tolerance (typically < 10-'). A second effective method is ILUK, which

123

retains a predetermined number of the largest entries in a row after each elimination

step. (Both methods retain diagonal entries regardless of their magnitude.)

The concepts behind the point ILU(k) preconditioner can be used to construct

a block matrix form of the decomposition. Line ILU(k) preconditioners will not

be discussed here. The reader is referred to Axelsson [6:260-287] and Oppe et al.

[93:15-17] for comprehensive theoretical development.

Incomplete factorization is not the only way to precondition a linear system.

One other method commonly encountered is symmetric successive overrelaxation

(SSOR). The SSOR M matrix is constructed as follows:

1 -

21 (D -S) (D) (D -t) (33)

where D, S, and T are defined above, and Lo is an overrelaxation parameter whose

optimal value must usually be guessed [93:13].

The trade-off between the computational cost of preconditioning and the antic-

ipated acceleration in convergence must be weighed when applying a preconditioner.

This is especially true for preconditioners based on incomplete factorization, which

tend to be expensive, especially for large systems [18:39].

Application to Markov chain problems. Projection methods have been

shown to be highly effective for solving both System (20) and System (21). Recent

comprehensive work in this area has been done by Philippe et al. [95] (see also [104]

and [116:121-230]). The authors show that a number of Krylov subspace methods

for both eigensolutions and linear systems are effective for medium- to large-sized

chains. (In a contemporary article, Krieger and Sczittnick also investigate iterative

solution procedures, but they limit their inquiry to stationary methods [67].)

It is axiomatic that there is no single "best" iterative method for solving linear

systems (although it can be shown that a superior method can be found within a

124

particular problem class) [18:37]. This assertion is supported by the computational

experience of Philippe et al., who found no optimal method for solving the station-

ary probability problem for a general CTMCs arising from applications in queuing

network analysis [95].

When solving for stationary probabilities, incomplete factorization is usually

the preferred preconditioner. This may be due to the fact that an ILU decomposi-

tion can be shown to exist for any Q and QT by trivially extending results given by

Axelsson and Barker [7:42-44]. Philippe et al. found that incomplete factorization

outperformed SSOR, especially for large CTMCs; they observed the best perfor-

mance from ILUTH [95], [104]. Saad finds no intuitive explanation for why there are

variations in performance between the types of ILU schemes [104].

As with direct solution algorithms, the size of the problems to which iterative

methods can be applied is limited in practice by available memory. However, large

Q matrices tend to be sparse, so the use of a sparse matrix storage scheme can allow

iterative methods to be used on problems many times the size of those where direct

solution is effective. Innovative generation algorithms, such as the one proposed by

Knaup that makes use of concepts from tensor algebra, can be used to increase the

upper limit on size even further [64]; for example, Knaup showed that his method

can be used to get stationary probabilities for sparse Q matrices of order up to 107.

This makes iterative methods an attractive alternative for analyzing large-dimesion

CTMCs.

Solving the Stationary Probability Problem Using Decomposition

Sometimes a Markov chain can be partitioned into a number of subchains,

where the magnitudes of the probabilities of transitions between the states in each

subchain are large compared to those of transitions between subchains. If such a par-

tition exists, the original chain is said to be nearly completely decomposable (NCD),

nearly uncoupled, or nearly separable (see Courtois [36] for rigorous development).

125

If a Markov chain is NCD, its corresponding system of stationary equations

is often ill-conditioned [95]. This causes problems with iterative solution methods.

Fortunately, the chain's decomposability can be exploited to construct a smaller,

nearly-equivalent chain. The stationary probabilities associated with the new chain

can then be used to approximate those of the original chain. This process is called

aggregation/disaggregation (A/D).

A/D algorithms follow three basic steps:

1. Partition the chain into a set of nearly-independent subchains (ideally, the

number of subchains is considerably smaller than n).

2. Compute the stationary probabilities for each subchain.

3. Construct the stationary probabilities of the original chain from the subchain.

In general, this process is not exact, because the subchains are not strictly inde-

pendent- however, if a Markov chain is NCD, independence almost holds, and the

induced error will be small [118].

The comprehensive surveys by Schweitzer [108] and Stewart [116:285-342] pro-

vide a solid overview of basic A/D techniques. In one of the more recent develop-

ments, Kim and Smith identify of a large class of CTMCs for which the A/D algo-

rithm produces exact results [62]. Investigations by Stewart [116:307-331], Stewart

and Wu [118], and Touzene [122] suggest that combining A/D with iterative solu-

tion schemes works well for NCD chains. Shioyama and Tanaka [110] formulate the

partition step as a decision problem, and use a branch-and-bound technique to find

the optimal partition.

A/D can be used with any CTMC. However, it is important to remember

that this is an approximate method, and that its accuracy depends on the chain's

decomposability. If the error that would be induced by applying A/D to a non-NCD

chain is unacceptable, some other solution method should be used.

126

Solving the Stationary Probability Problem Using Recursion

If Q is has a block-Hessenberg structure, a recursive solution algorithm can

often be used to solve for 7r. Usually, these approaches require the subblocks of

Q to be square matrices of identical dimension. Such methods can be grouped

into two categories: general block-recursive methods and matrix-geometric solution

algorithms.

General block-recursive methods are often suggested by the form of the Chap-

man-Kolmogorov equations for a particular problem. Such general approaches can

be an effective way to solve for 7r, but they must be implemented carefully to guard

against numerical instability [116:250]. There also exist extensions of algebraic meth-

ods (such as those described previously) to the case where the matrix can be par-

titioned into submatrices. These block-recursive methods can be quite stable and

effective. Gaussian elimination has been extended to block form, as has the sta-

tionary Gauss-Seidel iterative method; both are descirbed in Stewart [116:138-142;

234-257]. Obviously, other iterative methods can be extended to the block-matrix

case. These methods can also be used as preconditioners, as mentioned earlier [93:12].

The second category of procedures for CTMCs with block-Hessenberg structure

are the matrix-geometric solution methods proposed by Neuts [90], [89]. These

algorithms are more restrictive than the general block-Hessenberg case, because they

require P to have the form

Bo Ao 0 0 0 ...

B1 A 1 Ao 0 0 ...

B 2 A 2 A1 Ao 0 ...

B 3 A 3 A 2 A1 Ao ...

B 4 A 4 A 3 A 2 A 1 ...

127

where Ai and Bj are square matrices of the same order for all i and j, and A, and B0

are nonsingular. Neuts has developed a set of iterative techniques for solving for 7r

when P has this general form; others have refined his methods. In particular, much

attention has been paid to the case where P is block-tridiagonal (i.e., Ai = Bj = 0

when i > 2 and j > 1); such a CTMC is called a quasi-birth-death process (QBD).

Quadratically converging algorithms exist for solving these types of problems. See

References [90:81-141] and [116:258-283] for details.

128

Appendix B. The A(n)/Ck/r/N Queue: Numerical Results for

Generalized k-Erlang Systems

Table 18. Elapsed Time to Solution (in seconds), No Preconditioner.

Number GMRES(100) GMRES(75) GMRES(50) CGS LSQR
24 5.06 3.52 4.01 1.18 4.92
25 25.68 20.62 14.24 1.72 11.88
26 2.37 1.96 2.17 0.68 4.25
27 25.11 11.59 10.65 2.35 14.64
28 29.24 23.98 19.53 4.66 33.52
29 5.11 4.72 5.23 1.35 5.96
30 32.76 18.51 16.12 4.32 31.34
31 94.88 76.09 74.48 10.29 79.68
32 9.33 9.07 10.60 2.58 17.07
33 1.57 1.43 1.55 0.64 4.07
34 11.87 10.59 12.46 3.91 37.54
35 36.32 45.88 47.75 10.95 F
36 86.90 114.04 112.73 24.27 F
37 91.47 98.40 76.82 14.15 163.06
38 173.64 146.39 118.45 39.80 F
39 409.93 436.60 590.52 78.02 F
40 59.71 129.81 117.68 30.70 362.32
41 9.52 8.68 7.75 2.79 24.22
42 44.74 32.88 28.36 6.84 64.88
43 77.07 86.96 70.13 13.69 F
44 10.01 10.15 9.12 5.04 49.55
45 70.04 62.41 73.29 31.87 F
46 173.51 202.56 239.55 70.78 F

F = failed to converge by iteration 2000

129

Table 19. Elapsed Time to Solution (in seconds), ILU(0) Preconditioner.

Number GMRES(100) GMRES(75) GMRES(50) CGS LSQR
24 2.58 2.50 2.33 1.56 2.58
25 4.61 4.30 4.46 2.46 4.32
26 1.55 1.54 1.53 1.28 2.30
27 5.68 5.11 5.06 3.88 6.50
28 12.05 13.46 11.72 8.43 14.88
29 3.21 3.12 3.13 2.60 3.75
30 10.99 11.16 11.11 8.94 14.90
31 27.29 24.13 23.82 18.78 33.61
32 4.44 4.30 4.03 3.25 4.66
33 1.19 1.18 1.19 1.12 1.53
34 11.70 11.78 11.52 10.13 14.01
35 40.72 38.48 35.98 33.97 46.70
36 94.01 83.47 84.40 70.57 97.58
37 68.17 59.90 66.53 61.44 74.24
38 272.17 257.99 251.40 242.62 318.59
39 599.95 570.42 580.82 538.27 639.48
40 204.21 193.38 197.45 197.59 248.49
41 4.45 4.39 4.34 3.43 4.76
42 10.10 10.36 9.87 7.59 11.77
43 39.67 26.48 20.43 14.29 24.12
44 19.66 19.32 19.10 19.67 22.16
45 159.83 162.19 149.12 155.39 176.00
46 483.25 488.77 477.21 442.48 536.45

130

IIII I I

Soo

I,
400 -

A/

E1,
300

00

200 - -.

100 "% - - -

5000 I"10
4

1."14 o14 2.51I04 3'I04 3.5"104 4"104

Order

GMRES(100)
- - GMRES (75)
- GMRES(50)

- BCGS
LSQR

Figure 60. Generalized k-Erlang Systems: Solution Time vs. Order, No Precondi-
tioning.

131

700 1 1 1 1

600

500
--

/

400

~/
0

300
7/

200 -

100 -

0 5000 11104 1.5"10
4

2"104 2.51104 3104 3.5 104 4"104

Order

- GMRES(100)
-- GMRES(75)
- GMRES(50)
- BCGS
- LSQR

Figure 61. Generalized k-Erlang Systems: Solution Time vs. Order, ILU(O) Pre-
conditioner.

132

600

500

200

400 -- -

100

05000 1104 1.5"104 2,104 2.5'10 4 P104 3.5"104 4"104

Order
GMRES(100)

-- GMRES(75)
-- GMRES(50)
-- BCGS
-- LSQR

Figure 62. Generalized k-Erlang Systems: Factorization Time vs. Order, ILU(0)
Preconditioner.

133

140 I

120

100

80

40

0

60
0 500 1104 .5 04 '104 2.510 4 3'14 35'104 410

Order

-~ ~ GMR-'00

-- GMRES (75)
GMRES (50)

-BCGS

SLSQR

Figure 63. Generalized k-Erlang Systems: Iteration Time vs. Order, JLU(O) Pre-
conditioner.

134

Appendix C. Nested FJQNs: Numerical Results

Table 20. Case Study 1: Throughput at Station 1.

Cfg If Sim SCAE I Rel Err (%) SCAI Rel Err (%) If SCMI I Rel Err (%) I
1 0.6023 0.6052 0.5 0.5317 -11.7 0.6053 0.5
2 0.7306 0.7308 0.0 0.6845 -6.3 0.7322 0.2
3 0.7894 0.7890 -0.1 0.7743 -1.9 0.7893 0.0
4 0.5653 0.6015 6.4 0.5113 -9.6 0.5934 5.0
5 0.7088 0.7296 2.9 0.6666 -6.0 0.7249 2.3
6 0.7844 0.7888 0.6 0.7676 -2.1 0.7892 0.6
7 0.5987 0.6046 1.0 0.5270 -12.0 0.6032 0.8
8 0.7288 0.7306 0.2 0.6811 -6.5 0.7312 0.3
9 0.7890 0.7890 0.0 0.7731 -2.0 0.7892 0.0
10 0.5859 0.5826 -0.6 0.5501 -6.1 0.5821 -0.6
11 0.7202 0.7190 -0.2 0.6948 -3.5 0.7171 -0.4
12 0.7870 0.7867 0.0 0.7770 -1.3 0.7855 -0.2
13 0.5377 0.5701 6.0 0.5353 -0.4 0.5600 4.1
14 0.6733 0.7093 5.3 0.6834 1.5 0.6891 2.3
15 0.7650 0.7843 2.5 0.7733 1.1 0.7719 0.9
16 0.5752 0.5793 0.7 0.5465 -5.0 0.5757 0.1
17 0.7112 0.7167 0.8 0.6925 -2.6 0.7113 0.0
18 0.7837 0.7862 0.3 0.7764 -0.9 0.7836 0.0

135

Table 21. Case Study 1: Queue Lengths at Station 1.

Cfg Sim SCAE I Rel Err (%) SCAI [Rel Err (%) SCMIJ Rel Err (%
1 1.1453 1.1763 2.7 0.9219 -19.5 1.1664 1.8
2 2.1761 2.2102 1.6 1.8073 -16.9 2.2162 1.8
3 3.4085 3.4482 1.2 3.0992 -9.1 3.4571 1.4
4 1.0896 1.1616 6.6 0.8671 -20.4 1.1324 3.9
5 2.1631 2.1945 1.5 1.6854 -22.1 2.1538 -0.4
6 3.6244 3.4415 -5.0 2.9682 -18.1 3.4515 -4.8
7 1.1468 1.1737 2.3 0.9090 -20.7 1.1596 1.1
8 2.1820 2.2077 1.2 1.7821 -18.3 2.2059 1.1
9 3.4396 3.4473 0.2 3.0755 -10.6 3.4515 0.3
10 1.0581 1.0934 3.3 0.9815 -7.2 1.0864 2.7
11 1.9758 2.0887 5.7 1.8914 -4.3 2.0676 4.6
12 3.1420 3.3754 7.4 3.1628 0.7 3.3455 6.5
13 1.0705 1.0544 -1.5 0.9386 -12.3 1.0391 -2.9
14 2.1438 2.0054 -6.5 1.8054 -15.8 1.9123 -10.8
15 3.8724 3.3091 -14.5 3.0826 -20.4 3.1304 -19.2
16 1.0683 1.0826 1.3 0.9705 -9.2 1.0709 0.2
17 2.0248 2.0682 2.1 1.8725 -7.5 2.0283 0.2
18 3.2876 3.3607 2.2 3.1476 -4.3 3.3028 0.5

136

Table 22. Case Study 1: Queue Lengths at Station 2.

Cfg Sim SCAE Rel Err (%) SCAI Rel Err (%) SCMI Rel Err (%)
1 1.7522 1.7863 1.9 1.3492 -23.0 1.7638 0.7
2 4.3560 4.3930 0.8 3.3091 -24.0 4.3950 0.9
3 11.7101 11.7246 0.1 9.1420 -21.9 11.7752 0.6
4 1.5731 1.7606 11.9 1.2611 -19.8 1.7097 8.7
5 3.8840 4.3448 11.9 3.0170 -22.3 4.2343 9.0
6 10.6689 11.6510 9.2 8.3508 -21.7 11.7234 9.9
7 1.7319 1.7817 2.9 1.3281 -23.3 1.7527 1.2
8 4.3099 4.3851 1.7 3.2470 -24.7 4.3669 1.3
9 11.6013 11.7132 1.0 8.9895 -22.5 11.7234 1.1
10 1.6397 1.6422 0.2 1.4496 -11.6 1.6276 -0.7
11 4.0318 4.0469 0.4 3.5281 -12.5 3.9832 -1.2
12 10.9567 11.0577 0.9 9.5905 -12.5 10.8180 -1.3
13 1.4961 1.5773 5.4 1.3795 -7.8 1.5584 4.2
14 3.4802 3.8276 10.0 3.3131 -4.8 3.6447 4.7
15 9.0744 10.5348 16.1 9.0599 -0.2 9.6693 6.6
16 1.6010 1.6242 1.4 1.4315 -10.6 1.6040 0.2
17 3.8842 3.9916 2.8 3.4795 -10.4 3.8915 0.2
18 10.5381 10.9358 3.8 9.4836 -10.0 10.5476 0.1

137

Table 23. Case Study 1: Queue Lengths at Station 3.

Cfg Sim SCAE I Rel Err (%) SCA [Rel Err (%) SCMI Rel Err (%
1 1.1596 1.1763 1.4 0.9219 -20.5 1.1664 0.6
2 2.2072 2.2102 0.1 1.8073 -18.1 2.2162 0.4
3 3.4450 3.4482 0.1 3.0992 -10.0 3.4571 0.4
4 1.0444 1.1616 11.2 0.8671 -17.0 1.1324 8.4
5 2.0106 2.1945 9.1 1.6854 -16.2 2.1538 7.1
6 3.3101 3.4415 4.0 2.9682 -10.3 3.4515 4.3
7 1.1465 1.1737 2.4 0.9090 -20.7 1.1596 1.1
8 2.1882 2.2077 0.9 1.7821 -18.6 2.2059 0.8
9 3.4441 3.4473 0.1 3.0755 -10.7 3.4515 0.2
10 1.0998 1.0934 -0.6 0.9815 -10.8 1.0864 -1.2
11 2.0972 2.0887 -0.4 1.8914 -9.8 2.0676 -1.4
12 3.3889 3.3754 -0.4 3.1628 -6.7 3.3455 -1.3
13 0.9861 1.0544 6.9 0.9386 -4.8 1.0391 5.4
14 1.8096 2.0054 10.8 1.8054 -0.2 1.9123 5.7
15 3.0025 3.3091 10.2 3.0826 2.7 3.1304 4.3
16 1.0680 1.0826 1.4 0.9705 -9.1 1.0709 0.3
17 2.0251 2.0682 2.1 1.8725 -7.5 2.0283 0.2
18 3.3067 3.3607 1.6 3.1476 -4.8 3.3028 -0.1

138

Table 24. Case Study 1: Queue Lengths at Station 4.

Cfg Sim SCAE J Rel Err (%) SCAI Rel Err (%) SCMI Rel Err (%)
1 0.1741 0.2328 33.7 0.3429 97.0 0.1755 0.8
2 0.2220 0.3231 45.5 0.4957 123.3 0.2230 0.5
3 0.2457 0.3708 50.9 0.6017 144.9 0.2457 0.0
4 0.1620 0.2267 39.9 0.3768 132.6 0.1716 5.9
5 0.2138 0.3187 49.1 0.5970 179.2 0.2203 3.0
6 0.2439 0.3690 51.3 0.7861 222.3 0.2453 0.6
7 0.1726 0.2309 33.8 0.3517 103.8 0.1748 1.3
8 0.2213 0.3213 45.2 0.5191 134.6 0.2226 0.6
9 0.2454 0.3696 50.6 0.6404 161.0 0.2456 0.1

10 0.3418 0.3301 -3.4 0.3495 2.3 0.3391 -0.8
11 0.4710 0.4482 -4.8 0.4859 3.2 0.4680 -0.6
12 0.5463 0.5135 -6.0 0.5740 5.1 0.5450 -0.2
13 0.3102 0.3651 17.7 0.4188 35.0 0.3249 4.7
14 0.4302 0.5441 26.5 0.6743 56.7 0.4437 3.1
15 0.5227 0.6657 27.4 0.8953 71.3 0.5305 1.5
16 0.3343 0.3397 1.6 0.3684 10.2 0.3348 0.1
17 0.4621 0.4718 2.1 0.5311 14.9 0.4626 0.1
18 0.5425 0.5481 1.0 0.6433 18.6 0.5427 0.0

139

Table 25. Case Study 1: Queue Lengths at Station 5.

Cfg Sim SCAE Rel Err (%) SCAI] Rel Err (%) SCMI Rel Err (%)
1 0.3815 0.4070 6.7 0.9510 149.3 0.3882 1.8
2 0.5145 0.5934 15.3 1.8678 263.0 0.5186 0.8
3 0.5858 0.7145 22.0 3.1908 444.7 0.5866 0.1
4 0.4674 0.4662 -0.3 1.0568 126.1 0.4870 4.2
5 0.7336 0.6719 -8.4 2.1610 194.6 0.7606 3.7
6 0.9236 0.7950 -13.9 3.8142 313.0 0.9255 0.2
7 0.4047 0.4190 3.5 0.9831 142.9 0.4117 1.7
8 0.5618 0.6072 8.1 1.9431 245.9 0.5665 0.8
9 0.6495 0.7271 11.9 3.3241 411.8 0.6497 0.0

10 0.8325 0.7964 -4.3 1.0197 22.5 0.8419 1.1
11 1.3964 1.2497 -10.5 1.9654 40.7 1.3987 0.2
12 1.9348 1.5792 -18.4 3.2634 68.7 1.9335 -0.1
13 1.0803 0.9004 -16.7 1.0896 0.9 1.0169 -5.9
14 2.0740 1.5203 -26.7 2.1357 3.0 2.0689 -0.2
15 3.4731 2.0443 -41.1 3.5996 3.6 3.5247 1.5
16 0.8982 0.8255 -8.1 1.0405 15.8 0.9006 0.3
17 1.5715 1.3182 -16.1 2.0058 27.6 1.5741 0.2
18 2.2921 1.6881 -26.4 3.3303 45.3 2.2912 0.0

140

Table 26. Case Study 1: Queue Lengths at Station 6.

Cfg Sim SCAE Rel Err (%) SCAI [Rel Err (%) SCMI Rel Err (%)
1 0.4077 0.4212 3.3 0.9919 143.3 0.4138 1.5
2 0.5630 0.6128 8.8 1.9494 246.3 0.5679 0.9
3 0.6489 0.7360 13.4 3.3039 409.2 0.6503 0.2
4 0.3749 0.4128 10.1 0.9693 158.5 0.4032 7.5
5 0.5360 0.5925 10.5 1.9577 265.2 0.5592 4.3
6 0.6416 0.7029 9.6 3.4707 440.9 0.6495 1.2
7 0.4036 0.4190 3.8 0.9831 143.6 0.4117 2.0
8 0.5603 0.6072 8.4 1.9431 246.8 0.5665 1.1
9 0.6496 0.7271 11.9 3.3241 411.7 0.6498 0.0
10 0.0615 0.3239 426.7 0.6541 963.6 0.0615 0.0
11 0.0771 0.6499 742.9 1.2093 1468.5 0.0771 0.0
12 0.0852 0.9162 975.4 1.9690 2211.0 0.0852 0.0
13 0.0566 0.3367 494.9 0.6321 1016.8 0.0591 4.4
14 0.0721 0.7171 894.6 1.1725 1526.2 0.0744 3.2
15 0.0825 1.0885 1219.4 1.9205 2227.9 0.0832 0.8
16 0.0604 0.3289 444.5 0.6502 976.5 0.0608 0.7
17 0.0764 0.6718 779.3 1.1983 1468.5 0.0764 0.0
18 0.0847 0.9641 1038.3 1.9452 2196.6 0.0850 0.4

141

Table 27. Case Study 1: Queue Lengths at Station 7.

Cfg i Sim SCAE Rel Err (%) 1 SCAT Rel Err (% SCMI Rel Err (%
1 0.1679 0.2255 34.3 0.3390 101.9 0.1697 1.1
2 0.2120 0.3106 46.5 0.4854 129.0 0.2131 0.5
3 0.2336 0.3555 52.2 0.5852 150.5 0.2336 0.0
4 0.4678 0.2560 -45.3 0.4025 -14.0 0.2069 -55.8
5 0.7322 0.3685 -49.7 0.6717 -8.3 0.2946 -59.8
6 0.9220 0.4308 -53.3 0.9360 1.5 0.2799 -69.6
7 0.1726 0.2309 33.8 0.3517 103.8 0.1748 1.3
8 0.2211 0.3213 45.3 0.5191 134.8 0.2226 0.7
9 0.2453 0.3696 50.7 0.6404 161.1 0.2456 0.1
10 0.0298 0.1842 518.1 0.2467 727.9 0.0297 -0.3
11 0.0369 0.3037 723.0 0.3573 868.3 0.0368 -0.3
12 0.0405 0.3735 822.2 0.4433 994.6 0.0405 0.0
13 0.0594 0.2083 250.7 0.2902 388.6 0.0302 -49.2
14 0.0774 0.3929 407.6 0.4798 519.9 0.0384 -50.4
15 0.0897 0.5331 494.3 0.6708 647.8 0.0430 -52.1
16 0.0294 0.1901 546.6 0.2544 765.3 0.0296 0.7
17 0.0368 0.3228 777.2 0.3776 926.1 0.0368 0.0
18 0.0407 0.4041 892.9 0.4771 1072.2 0.0408 0.2

142

Table 28. Case Study 2: Throughput at Station 1.

Cfg I Sim +/- SCMI Abs Error Rel Err (%)
1 0.6093 0.0003 0.6119 0.00 0.4
2 0.7337 0.0002 0.7349 0.00 0.2
3 0.7896 0.0005 0.7898 0.00 0.0
4 0.6089 0.0001 0.5991 -0.01 -1.6
5 0.7328 0.0001 0.7323 0.00 -0.1
6 0.7891 0.0005 0.7892 0.00 0.0
7 0.6053 0.0001 0.6097 0.00 0.7
8 0.7324 0.0002 0.7339 0.00 0.2
9 0.7893 0.0005 0.7897 0.00 0.1

10 0.5981 0.0003 0.5893 -0.01 -1.5
11 0.7296 0.0003 0.7294 0.00 0.0
12 0.7891 0.0005 0.7889 0.00 0.0
13 0.5815 0.0003 0.5872 0.01 1.0
14 0.7167 0.0003 0.7222 0.01 0.8
15 0.7858 0.0003 0.7888 0.00 0.4
16 0.5960 0.0000 0.5970 0.00 0.2
17 0.7283 0.0003 0.7287 0.00 0.1
18 0.7885 0.0005 0.7889 0.00 0.1

143

Table 29. Case Study 2: Queue Lengths at Station 1.

Cfg II Sim +/- II SCMI Abs Error Rel Err (%)
1 1.1747 0.0015 1.1919 0.02 1.5
2 2.2114 0.0055 2.2481 0.04 1.7
3 3.4281 0.0110 3.4734 0.05 1.3
4 1.2117 0.0017 1.1566 -0.06 -4.5
5 2.2916 0.0040 2.2271 -0.06 -2.8
6 3.5613 0.0059 3.4515 -0.11 -3.1
7 1.1725 0.0020 1.1851 0.01 1.1
8 2.2143 0.0015 2.2386 0.02 1.1
9 3.4398 0.0106 3.4682 0.03 0.8

10 1.1377 0.0020 1.1423 0.00 0.4
11 2.1783 0.0036 2.1868 0.01 0.4
12 3.4373 0.0155 3.4428 0.01 0.2
13 1.1259 0.0013 1.1158 -0.01 -0.9
14 2.2026 0.0037 2.1361 -0.07 -3.0
15 3.6384 0.0127 3.4380 -0.20 -5.5
16 1.1371 0.0013 1.1385 0.00 0.1
17 2.1699 0.0051 2.1799 0.01 0.5
18 3.4313 0.0160 3.4392 0.01 0.2

144

Table 30. Case Study 2: Queue Lengths at Station 2.

Cfg Sim +/- SCMI I Abs Error Rel Err (%)
1 1.7986 0.0025 1.8084 0.01 0.5
2 4.4667 0.0072 4.4904 0.02 0.5
3 11.8978 0.0201 11.9422 0.04 0.4
4 1.8259 0.0023 1.7522 -0.07 -4.0
5 4.4831 0.0050 4.4402 -0.04 -1.0
6 11.8849 0.0122 11.7232 -0.16 -1.4
7 1.7816 0.0020 1.7974 0.02 0.9
8 4.4201 0.0031 4.4647 0.04 1.0
9 11.8064 0.0198 11.8918 0.09 0.7
10 1.7267 0.0022 1.7231 0.00 -0.2
11 4.3111 0.0023 4.3116 0.00 0.0
12 11.6304 0.0207 11.6375 0.01 0.1
13 1.6674 0.0024 1.6823 0.01 0.9
14 4.1059 0.0045 4.1891 0.08 2.0
15 11.0907 0.0227 11.5945 0.50 4.5
16 1.7112 0.0019 1.7170 0.01 0.3
17 4.2848 0.0051 4.2931 0.01 0.2
18 11.5774 0.0210 11.6011 0.02 0.2

145

Table 31. Case Study 2: Queue Lengths at Station 3.

Cfg Sim +/- 1 SCMI Abs Error Rel Err (%)
1 1.1866 0.0011 1.1919 0.01 0.4
2 2.2390 0.0028 2.2481 0.01 0.4
3 3.4652 0.0156 3.4734 0.01 0.2
4 1.1958 0.0021 1.1566 -0.04 -3.3
5 2.2357 0.0031 2.2271 -0.01 -0.4
6 3.4491 0.0081 3.4515 0.00 0.1
7 1.1726 0.0015 1.1851 0.01 1.1
8 2.2191 0.0021 2.2386 0.02 0.9
9 3.4641 0.0113 3.4682 0.00 0.1
10 1.1428 0.0014 1.1423 0.00 0.0
11 2.1885 0.0034 2.1868 0.00 -0.1
12 3.4356 0.0083 3.4428 0.01 0.2
13 1.1017 0.0015 1.1158 0.01 1.3
14 2.0907 0.0046 2.1361 0.05 2.2
15 3.3511 0.0105 3.4380 0.09 2.6
16 1.1371 0.0013 1.1385 0.00 0.1
17 2.1762 0.0036 2.1799 0.00 0.2
18 3.4334 0.0082 3.4392 0.01 0.2

146

Table 32. Case Study 2: Queue Lengths at Station 4.

Cfg Sim +/- SCMI Abs Error Rel Err (%)

1 0.0818 0.0002 0.0824 0.00 0.7
2 0.1007 0.0003 0.1009 0.00 0.2
3 0.1094 0.0001 0.1096 0.00 0.2
4 0.0817 0.0001 0.0805 0.00 -1.5
5 0.1006 0.0001 0.1010 0.00 0.4
6 0.1093 0.0001 0.1428 0.03 30.6
7 0.0813 0.0001 0.0820 0.00 0.9
8 0.1005 0.0002 0.1009 0.00 0.4
9 0.1096 0.0002 0.1095 0.00 -0.1
10 0.3073 0.0004 0.3078 0.00 0.2
11 0.4138 0.0008 0.4137 0.00 0.0
12 0.4683 0.0007 0.4686 0.00 0.1
13 0.2976 0.0003 0.3014 0.00 1.3
14 0.4035 0.0007 0.4083 0.00 1.2
15 0.4655 0.0007 0.4675 0.00 0.4
16 0.3060 0.0003 0.3070 0.00 0.3
17 0.4129 0.0005 0.4132 0.00 0.1
18 0.4683 0.0007 0.4684 0.00 0.0

147

Table 33. Case Study 2: Queue Lengths at Station 5.

I Cfg Sim +/- 1 SCMI Abs Error Rel Err (%)
1 0.0805 0.0002 0.0809 0.00 0.5
2 0.0984 0.0002 0.0987 0.00 0.3
3 0.1067 0.0001 0.1068 0.00 0.1
4 0.0930 0.0004 0.0912 0.00 -1.9
5 0.1183 0.0005 0.1181 0.00 -0.2
6 0.1302 0.0003 0.1785 0.05 37.1
7 0.0811 0.0001 0.0820 0.00 1.1
8 0.1005 0.0003 0.1009 0.00 0.4
9 0.1094 0.0002 0.1095 0.00 0.1
10 0.2911 0.0003 0.2923 0.00 0.4
11 0.3842 0.0003 0.3847 0.00 0.1
12 0.4317 0.0005 0.4314 0.00 -0.1
13 0.4009 0.0010 0.3953 -0.01 -1.4
14 0.6165 0.0015 0.6109 -0.01 -0.9
15 0.7570 0.0032 0.7597 0.00 0.4
16 0.3058 0.0005 0.3070 0.00 0.4
17 0.4125 0.0006 0.4132 0.00 0.2
18 0.4677 0.0008 0.4684 0.00 0.1

148

Table 34. Case Study 2: Queue Lengths at Station 6.

Cfg Sim +/- 1 SCMI Abs Error Rel Err (%
1 0.0817 0.0001 0.0824 0.00 0.9
2 0.1008 0.0002 0.1009 0.00 0.1
3 0.1093 0.0001 0.1095 0.00 0.2
4 0.0816 0.0001 0.0805 0.00 -1.3
5 0.1006 0.0001 0.1012 0.00 0.6
6 0.1093 0.0001 0.1429 0.03 30.7
7 0.0811 0.0002 0.0820 0.00 1.1
8 0.1005 0.0001 0.1008 0.00 0.3
9 0.1093 0.0001 0.1095 0.00 0.2
10 0.0274 0.0000 0.0276 0.00 0.7
11 0.0337 0.0000 0.0339 0.00 0.6
12 0.0367 0.0001 0.0368 0.00 0.3
13 0.0267 0.0001 0.0271 0.00 1.5
14 0.0332 0.0002 0.0336 0.00 1.2
15 0.0366 0.0001 0.0367 0.00 0.3
16 0.0273 0.0001 0.0276 0.00 1.1
17 0.0337 0.0001 0.0339 0.00 0.6
18 0.0367 0.0001 0.0368 0.00 0.3

149

Table 35. Case Study 2: Queue Lengths at Station 7.

Cfg 11 Sim +/- 11 SCMI Abs Error Rel Err (%)
1 0.0804 0.0002 0.0809 0.00 0.6
2 0.0984 0.0002 0.0987 0.00 0.3
3 0.1068 0.0001 0.1068 0.00 0.0
4 0.0927 0.0006 0.0912 0.00 -1.6
5 0.1183 0.0000 0.1255 0.01 6.1
6 0.1309 0.0004 0.1785 0.05 36.4
7 0.0811 0.0001 0.0820 0.00 1.1
8 0.1003 0.0002 0.1008 0.00 0.5
9 0.1092 0.0002 0.1095 0.00 0.3

10 0.0274 0.0000 0.0274 0.00 0.0
11 0.0336 0.0000 0.0336 0.00 0.0
12 0.0364 0.0001 0.0365 0.00 0.3
13 0.0280 0.0002 0.0284 0.00 1.4
14 0.0351 0.0003 0.0357 0.00 1.7
15 0.0390 0.0002 0.0394 0.00 1.0
16 0.0273 0.0001 0.0276 0.00 1.1
17 0.0338 0.0001 0.0339 0.00 0.3
18 0.0367 0.0001 0.0368 0.00 0.3

150

Table 36. Case Study 2: Queue Lengths at Station 8.

Cfg Sim +/- 1 SCMI [Abs Error Rel Err (%)
1 0.1763 0.0002 0.1777 0.00 0.8
2 0.2233 0.0001 0.2240 0.00 0.3
3 0.2453 0.0003 0.2459 0.00 0.2
4 0.1763 0.0003 0.1736 0.00 -1.5
5 0.2229 0.0004 0.2216 0.00 -0.6
6 0.2453 0.0002 0.3333 0.09 35.9
7 0.1747 0.0002 0.1770 0.00 1.3
8 0.2226 0.0001 0.2237 0.00 0.5
9 0.2452 0.0005 0.2457 0.00 0.2
10 0.0307 0.0001 0.0308 0.00 0.3
11 0.0378 0.0001 0.0378 0.00 0.0
12 0.0411 0.0001 0.0411 0.00 0.0
13 0.0298 0.0001 0.0302 0.00 1.3
14 0.0372 0.0001 0.0374 0.00 0.5
15 0.0409 0.0001 0.0411 0.00 0.5
16 0.0307 0.0001 0.0307 0.00 0.0
17 0.0378 0.0001 0.0378 0.00 0.0
18 0.0411 0.0001 0.0411 0.00 0.0

151

Table 37. Case Study 2: Queue Lengths at Station 9.

Cfg D Sim I +/- SCMI IAbs Error Rel Err (%)
1 0.3869 0.0005 0.3932 0.01 1.6
2 0.5182 0.0007 0.5213 0.00 0.6
3 0.5869 0.0007 0.5871 0.00 0.0
4 0.2198 0.0006 0.5079 0.29 131.1
5 0.3007 0.0012 0.7696 0.47 155.9
6 0.3413 0.0008 1.0000 0.66 193.0
7 0.4103 0.0009 0.4176 0.01 1.8
8 0.5667 0.0011 0.5699 0.00 0.6
9 0.6487 0.0016 0.6499 0.00 0.2
10 0.0624 0.0002 0.0625 0.00 0.2
11 0.0773 0.0002 0.0772 0.00 -0.1
12 0.0840 0.0003 0.0839 0.00 -0.1
13 0.0314 0.0002 0.0659 0.03 109.9
14 0.0398 0.0002 0.0839 0.04 110.8
15 0.0441 0.0003 0.0932 0.05 111.3
16 0.0630 0.0002 0.0632 0.00 0.3
17 0.0784 0.0002 0.0785 0.00 0.1
18 0.0855 0.0003 0.0859 0.00 0.5

152

Table 38. Case Study 2: Queue Lengths at Station 10.

Cfg Sim +/- 1 SCMI IAbs Error Rel Err (%
1 0.1751 0.0003 0.1778 0.00 1.5
2 0.2214 0.0003 0.2241 0.00 1.2
3 0.2435 0.0005 0.2459 0.00 1.0
4 0.1795 0.0003 0.1736 -0.01 -3.3
5 0.2285 0.0004 0.2230 -0.01 -2.4
6 0.2526 0.0003 0.3333 0.08 31.9
7 0.1746 0.0002 0.1771 0.00 1.4
8 0.2227 0.0003 0.2238 0.00 0.5
9 0.2455 0.0004 0.2474 0.00 0.8
10 0.3440 0.0004 0.3517 0.01 2.2
11 0.4668 0.0007 0.4806 0.01 3.0
12 0.5304 0.0006 0.5489 0.02 3.5
13 0.3585 0.0005 0.3444 -0.01 -3.9
14 0.5251 0.0005 0.4740 -0.05 -9.7
15 0.6382 0.0012 0.5473 -0.09 -14.2
16 0.3500 0.0002 0.3508 0.00 0.2
17 0.4793 0.0006 0.4799 0.00 0.1
18 0.5487 0.0011 0.5505 0.00 0.3

153

Appendix D. The Analytical Airfield Model: Numerical Results

Table 39. Effect of Mean Interarrival Time on Airfield Throughput.

Ground Delay No Ground Delay
Arr Rate Sim AAM Rel Err Sim AAM Rel Err

0.30 2.2340 2.2110 -1.0 2.6296 2.5702 -2.3
0.40 1.9596 1.9665 0.4 2.2288 2.1835 -2.0
0.50 1.7158 1.7321 0.9 1.8844 1.8757 -0.5
0.60 1.5096 1.5255 1.1 1.6139 1.6057 -0.5
0.70 1.3378 1.3511 1.0 1.4043 1.3977 -0.5
0.80 1.1952 1.2062 0.9 1.2385 1.2347 -0.3
0.90 1.0777 1.0862 0.8 1.1037 1.1034 0.0

Table 40. Effect of Mean Interarrival Time on Response Time.

Ground Delay No Ground Delay
Arr Rate Sim AAM Rel Err Determ Rel Err Sim AAM Rel Err Determ Rel Err

0.30 2.7514 2.8683 4.2 2.6567 -3.4 2.0462 2.1223 3.7 1.5299 -27.9
0.40 2.7448 2.8407 3.5 2.6567 -3.2 1.9404 2.0735 6.9 1.5299 -26.2
0.50 2.7401 2.8205 2.9 2.6567 -3.0 1.8693 2.0171 7.9 1.5299 -24.2

0.60 2.7364 2.8094 2.7 2.6567 -2.9 1.8241 1.8877 3.5 1.5299 -19.0
0.70 2.7337 2.8011 2.5 2.6567 -2.8 1.7911 1.8291 2.1 1.5299 -16.4
0.80 2.7318 2.7933 2.3 2.6567 -2.8 1.7676 1.6270 -8.0 1.5299 -6.0
0.90 2.7301 2.7836 2.0 2.6567 -2.7 1.7502 1.6830 -3.8 1.5299 -9.1

154

Table 41. Effect of Mean Interarrival Time on Aircraft on Station.

Ground Delay No Ground Delay
Arr Rate Sim AAM Rel Err Sim AAM Rel Err

0.30 6.1466 6.3418 3.2 5.3806 5.3374 -0.8
0.40 5.3789 5.5863 3.9 4.3251 4.3775 1.2
0.50 4.7016 4.8855 3.9 3.5227 3.6212 2.8
0.60 4.1314 4.2858 3.7 2.9433 2.9446 0.0
0.70 3.6574 3.7847 3.5 2.5153 2.5032 -0.5
0.80 3.2652 3.3693 3.2 2.1895 2.0013 -8.6
0.90 2.9420 3.0235 2.8 1.9312 1.8389 -4.8

Table 42. Effect of Constrained Resources on Throughput, Analytical Results.

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 0.9379 1.0822 1.0835 1.0838 1.0840 0.9402 1.0686 1.0744 1.0754 1.0756
2 0.9379 1.0847 1.0860 1.0864 1.0866 0.9398 1.0809 1.0824 1.0830 1.0830
3 0.9379 1.0849 1.0861 1.0865 1.0867 0.9397 1.0809 1.0824 1.0830 1.0831
4 0.9379 1.0849 1.0862 1.0865 1.0868 0.9397 1.0809 1.0824 1.0830 1.0831
5 0.9379 1.0849 1.0862 1.0865 1.0868 0.9397 1.0809 1.0824 1.0830 1.0831
6 0.9379 1.0849 1.0862 1.0865 1.0868 0.9397 1.0809 1.0824 1.0830 1.0831
7 0.9379 1.0849 1.0862 1.0865 1.0868 0.9397 1.0809 1.0824 1.0830 1.0831

8 0.9379 1.0849 1.0862 1.0865 1.0868 0.9397 1.0809 1.0824 1.0830 1.0831

Table 43. Effect of Constrained Resources on Response Time, Analytical Results.

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 5.0244 2.8619 2.8485 2.8446 2.8420 4.7988 2.2030 2.1183 2.1058 2.1040
2 5.0189 2.8034 2.7895 2.7854 2.7828 4.7957 1.9056 1.8747 1.8639 1.8639

3 5.0185 2.7985 2.7846 2.7805 2.7778 4.7956 1.9028 1.8720 1.8611 1.8594

4 5.0184 2.7977 2.7838 2.7797 2.7770 4.7957 1.9026 1.8718 1.8609 1.8592
5 5.0185 2.7975 2.7836 2.7795 2.7769 4.7957 1.9026 1.8717 1.8609 1.8592

6 5.0184 2.7975 2.7836 2.7795 2.7768 4.7957 1.9026 1.8717 1.8609 1.8592
7 5.0184 2.7975 2.7836 2.7795 2.7768 4.7957 1.9026 1.8718 1.8609 1.8592

8 5.0184 2.7975 2.7836 2.7795 2.7768 4.7957 1.9026 1.8718 1.8609 1.8592

155

Table 44. Effect of Constrained Resources on Aircraft on Station, Analytical
Results.

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 4.7121 3.0973 3.0862 3.0830 3.0808 4.5117 2.3541 2.2758 2.2645 2.2631

2 4.7073 3.0409 3.0294 3.0259 3.0237 4.5069 2.0597 2.0292 2.0186 2.0186
3 4.7069 3.0360 3.0245 3.0210 3.0188 4.5067 2.0568 2.0262 2.0157 2.0140

4 4.7068 3.0352 3.0237 3.0202 3.0179 4.5066 2.0565 2.0260 2.0154 2.0138
5 4.7069 3.0350 3.0235 3.0201 3.0178 4.5066 2.0565 2.0260 2.0154 2.0138
6 4.7068 3.0350 3.0235 3.0201 3.0178 4.5066 2.0565 2.0260 2.0154 2.0138
7 4.7068 3.0350 3.0235 3.0201 3.0178 4.5066 2.0565 2.0260 2.0154 2.0138
8 4.7068 3.0350 3.0235 3.0201 3.0178 4.5066 2.0565 2.0260 2.0154 2.0138

Table 45. Effect of Constrained Resources on Throughput, Simulation Results.

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay

Servers 1 2 3 4 5 1 2 3 4 5

1 0.9347 1.0652 1.0649 1.0663 1.0660 0.9362 1.0817 1.0911 1.0932 1.0935
2 0.9355 1.0728 1.0743 1.0758 1.0752 0.9374 1.0949 1.1011 1.1058 1.1032
3 0.9355 1.0709 1.0766 1.0735 1.0767 0.9379 1.0942 1.1031 1.1055 1.1068

4 0.9347 1.0717 1.0764 1.0766 1.0733 0.9364 1.0939 1.1027 1.1047 1.1061
5 0.9340 1.0727 1.0768 1.0770 1.0776 0.9361 1.0946 1.1029 1.1054 1.1042

6 0.9359 1.0737 1.0777 1.0756 1.0759 0.9375 1.0932 1.1037 1.1052 1.1068

7 0.9346 1.0728 1.0786 1.0752 1.0781 0.9366 1.0932 1.1048 1.1056 1.1069

8 0.9346 1.0728 1.0786 1.0752 1.0781 0.9366 1.0932 1.1043 1.1042 1.1068

Table 46. Effect of Constrained Resources on Response Time, Simulation Results.

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 5.0329 3.0251 2.9696 2.9662 2.9677 4.8692 2.3632 2.1643 2.1304 2.1246

2 5.0095 2.8188 2.7417 2.7364 2.7353 4.8478 2.0632 1.7861 1.7385 1.7303

3 5.0009 2.8102 2.7307 2.7246 2.7244 4.8234 2.0407 1.7565 1.7058 1.6946

4 4.9987 2.8081 2.7301 2.7239 2.7230 4.8516 2.0397 1.7252 1.7011 1.6905

5 5.0005 2.8083 2.7301 2.7239 2.7233 4.8316 2.0440 1.7514 1.7016 1.6899

6 5.0142 2.8086 2.7301 2.7239 2.7230 4.8296 2.0443 1.7502 1.7005 1.6899

7 5.0010 2.8093 2.7302 2.7241 2.7231 4.8307 2.0442 1.7516 1.7006 1.6902

8 5.0010 2.8093 2.7302 2.7241 2.7231 4.8307 2.0442 1.7518 1.7012 1.6898

156

Table 47. Effect of Constrained Resources on Aircraft on Station, Simulation
Results.

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 4.7042 3.2224 3.1623 3.1631 3.1639 4.5585 2.5563 2.3616 2.3290 2.3235

2 4.6867 3.0234 2.9450 2.9435 2.9406 4.5443 2.2591 1.9660 1.9221 1.9086

3 4.6783 3.0088 2.9395 2.9245 2.9330 4.5241 2.2331 1.9370 1.8853 1.8753

4 4.6725 3.0089 2.9385 2.9322 2.9225 4.5431 2.2313 1.9321 1.8788 1.8696
5 4.6706 3.0119 2.9395 2.9333 2.9344 4.5228 2.2376 1.9311 1.8806 1.8657

6 4.6926 3.0152 2.9420 2.9297 2.9293 4.5278 2.2350 1.9312 1,8791 1.8687

7 4.6738 3.0132 2.9444 2.9288 2.9355 4.5244 2.2349 1.9347 1.8798 1.8706
8 4.6738 3.0132 2.9444 2.9288 2.9355 4.5244 2.2349 1.9341 1,8783 1,8701

Table 48. Effect of Constrained Resources on Throughput, Relative Errors
(Percent).

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 0.3 1.6 1.7 1.6 1.7 0.4 -1.2 -1.5 -1.6 -1.6
2 0.3 1.1 1.1 1.0 1.1 0.3 -1.3 -1.7 -2.1 -1.8
3 0.3 1.3 0.9 1.2 0.9 0.2 -1.2 -1.9 -2.0 -2.1

4 0.3 1.2 0.9 0.9 1.3 0.4 -1.2 -1.8 -2.0 -2.1
5 0.4 1.1 0.9 0.9 0.9 0.4 -1.3 -1.9 -2.0 -1.9
6 0.2 1.0 0.8 1.0 1.0 0.2 -1.1 -1.9 -2.0 -2.1
7 0.4 1.1 0.7 1.1 0.8 0.3 -1.1 -2.0 -2.0 -2.2
8 0.4 1.1 0.7 1.1 0.8 0.3 -1.1 -2.0 -1.9 -2.1

Table 49. Effect of Constrained Resources on Response Time, Relative Errors
(Percent).

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 -0.2 -5.4 -4.1 -4.1 -4.2 -1.4 -6.8 -2.1 -1.2 -1.0
2 0.2 -0.5 1.7 1.8 1.7 -1.1 -7.6 5.0 7.2 7.7
3 0.4 -0.4 2.0 2.1 2.0 -0.6 -6.8 6.6 9.1 9.7

4 0.4 -0.4 2.0 2.0 2.0 -1.2 -6.7 8.5 9.4 10.0
5 0.4 -0.4 2.0 2.0 2.0 -0.7 -6.9 6.9 9.4 10.0
6 0.1 -0.4 2.0 2.0 2.0 -0.7 -6.9 6.9 9.4 10.0
7 0.3 -0.4 2.0 2.0 2.0 -0.7 -6.9 6.9 9.4 10.0
8 0.3 -0.4 2.0 2.0 2.0 -0.7 -6.9 6.9 9.4 10.0

157

Table 50. Effect of Constrained Resources on Aircraft on Station, Relative Errors
(Percent).

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 0.2 -3.9 -2.4 -2.5 -2.6 -1.0 -7.9 -3.6 -2.8 -2.6
2 0.4 0.6 2.9 2.8 2.8 -0.8 -8.8 3.2 5.0 5.8
3 0.6 0.9 2.9 3.3 2.9 -0.4 -7.9 4.6 6.9 7.4
4 0.7 0.9 2.9 3.0 3.3 -0.8 -7.8 4.9 7.3 7.7
5 0.8 0.8 2.9 3.0 2.8 -0.4 -8.1 4.9 7.2 7.9
6 0.3 0.7 2.8 3.1 3.0 -0.5 -8.0 4.9 7.3 7.8
7 0.7 0.7 2.7 3.1 2.8 -0.4 -8.0 4.7 7.2 7.7
8 0.7 0.7 2.7 3.1 2.8 -0.4 -8.0 4.8 7.3 7.7

Table 51. Effect of Constrained Resources on Response Time, Deterministic
Results.

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

1 2.6567 2.6567 2.6567 2.6567 2.6567 1.5299 1.5299 1.5299 1.5299 1.5299
2 2.6567 2.6567 2.6567 2.6567 2.6567 1.5299 1.5299 1.5299 1.5299 1.5299

3 2.6567 2.6567 2.6567 2.6567 2.6567 1.5299 1.5299 1.5299 1.5299 1.5299
4 2.6567 2.6567 2.6567 2.6567 2.6567 1.5299 1.5299 1.5299 1.5299 1.5299
5 2.6567 2.6567 2.6567 2.6567 2.6567 1.5299 1.5299 1.5299 1.5299 1.5299
6 2.6567 2.6567 2.6567 2.6567 2.6567 1.5299 1.5299 1.5299 1.5299 1.5299
7 2.6567 2.6567 2.6567 2.6567 2.6567 1.5299 1.5299 1.5299 1.5299 1.5299
8 2.6567 2.6567 2.6567 2.6567 2.6567 1.5299 1.5299 1.5299 1.5299 1.5299

Table 52. Effect of Constrained Resources on Response Time, Relative Errors in
Deterministic Results (Percent).

No Refuel No Cargo Servers, Ground Delay No Cargo Servers, No Ground Delay
Servers 1 2 3 4 5 1 2 3 4 5

2 -47.2 -12.2 -10.5 -10.4 -10.5 -68.6 -35.3 -29.3 -28.2 -28.0
3 -47.0 -5.8 -3.1 -2.9 -2.9 -68.4 -25.8 -14.3 -12.0 -11.6

3 -46.9 -5.5 -2.7 -2.5 -2.5 -68.3 -25.0 -12.9 -10.3 -9.7
4 -46.9 -5.4 -2.7 -2.5 -2.4 -68.5 -25.0 -11.3 -10.1 -9.5
5 -46.9 -5.4 -2.7 -2.5 -2.4 -68.3 -25.2 -12.6 -10.1 -9.5
6 -47.0 -5.4 -2.7 -2.5 -2.4 -68.3 -25.2 -12.6 -10.0 -9.5
7 -46.9 -5.4 -2.7 -2.5 -2.4 -68.3 -25.2 -12.7 -10.0 -9.5
8 -46.9 -5.4 -2.7 -2.5 -2.4 -68.3 -25.2 -12.7 -10.1 -9.5

158

Table 53. Effect of Squared Coefficient of Variation on Airfield Throughput.

Ground Delay No Ground Delay
Case CV2 Sim AAM Rel Err Sim AAM Rel Err

0.50 1.0777 1.0862 0.8 1.1037 1.1034 0.0
Baseline 0.75 1.0742 1.0854 1.0 1.1038 1.1010 -0.3

1.00 1.0747 1.0892 1.3 1.1023 1.1057 0.3
0.50 1.0728 1.0847 1.1 1.0949 1.0809 -1.3

Constrained 0.75 1.0683 1.0829 1.4 1.0875 1.0954 0.7
1.00 1.0661 1.0810 1.4 1.0875 1.0909 0.3

Table 54. Effect of Squared Coefficient of Variation on Time on Response Time.

Ground Delay No Ground Delay
Case CV 2 Sim AAM Rel Err Determ Rel Err Sim AAM Rel Err Determ Rel Err

0.50 2.7301 2.7836 2.0 2.6567 -2.7 1.7502 1.6830 -3.8 1.5299 -12.6
Baseline 0.75 2.8120 2.7901 -0.8 2.6567 -5.5 1.8457 1.8476 0.1 1.5299 -17.1

1.00 2.8396 2.7670 -2.6 2.6567 -6.4 1.8720 1.6522 -11.7 1.5299 -18.3
0,50 2.8188 2.8034 -0.5 2.6567 -5.8 2.0632 1.9056 -7.6 1.5299 -25.8

Constrained 0.75 2.9326 2.8213 -3.8 2.6567 -9.4 2.1780 2.0405 -6.3 1.5299 -29.8
1.00 2.9696 2.9037 -2.2 2.6567 -10.5 2.2104 2.0188 -8.7 1.5299 -30.8

Table 55. Effect of Squared Coefficient of Variation on Aircraft on Station.

Ground Delay No Ground Delay
Case CV 2 Sim AAM Rel Err Sim AAM Rel Err

0.50 2.9420 3.0235 2.8 1.9312 1.8389 -4.8
Baseline 0.75 3.0202 3.0283 0.3 2.0381 1.9919 -2.3

1.00 3.0520 3.0138 -1.3 2.0641 1.8287 -11.4
0.50 3.0234 3.0409 0.6 2.2591 2.0597 -8.8

Constrained 0.75 3.1329 3.0553 -2.5 2.3685 2.1783 -8.0
1.00 3.1660 3.1391 -0.8 2.4039 2.2022 -8.4

159

Bibliography

[1] Almeida, V. A. F. and L. W. Dowdy. "Performance analysis of a scheme for
concurrency/synchronization using queueing network models," International
Journal of Parallel Programming, 15(6):529-550 (1986).

[2] Ammar, M. H. and S. B. Gershwin. "Equivalence relations in queueing models
of fork/join networks with blocking," Performance Evaluation, 10(3):233-245
(1989).

[3] Arnoldi, W. E. "The principle of minimized iteration in the solution of the
matrix eigenvalue problem," Quarterly Journal of Applied Mathematics, 9:17-
29 (1951).

[4] Avi-Itzhak, B. and S. Halfin. "Non-preemptive priorities in simple fork-join
queues." Queueing, Performance and Control in ATM, ITC-13 Workshops:
Proceedings of the 13th International Teletraffic Conference, edited by J. W.
Cohen and C. D. Pack, 231-238. Amsterdam: Elsevier Science Publishers B. V.
(North-Holland), 1991.

[5] Avi-Itzhak, B. and D. Heyman. "Approximate queueing models for multipro-
gramming computer systems," Operations Research, 21(6):1212-1230 (1973).

[6] Axelsson, 0. Iterative Solution Methods. Cambridge: Cambridge University
Press, 1994.

[7] Axelsson, 0. and V. A. Barker. Finite Element Solution of Boundary Value
Problems: Theory and Computation. Computer Science and Applied Mathe-
matics, New York: Academic Press, 1984.

[8] Baccelli, F. Two parallel queues created by arrivals with two demands: the
M/G/2 symmetrical case. Technical Report 426. Le Chesnay, France: Institut
National de Recherche en Informatique et en Automatique, 1985.

[9] Baccelli, F. and Z. Liu. "On the execution of parallel programs on multipro-
cessor systems-a queuing theory approach," Journal of the Association for
Computing Machinery, 37(2):373-414 (1990).

[10] Baccelli, F. and A. M. Makowski. "Simple computable bounds for the fork-join
queue." Proceedings of the 19th Annual Conference on Information Sciences
and Systems. 436-441. Baltimore: Johns Hopkins University, 1985.

[11] Baccelli, F. and A. M. Makowski. "Multidimensional stochastic ordering and
associated random variables," Operations Research, 37(3):478-487 (1989).

160

[12] Baccelli, F. and A. M. Makowski. "Queueing models for systems with syn-
chronization constraints," Proceedings of the IEEE, 77(1):138-161 (1989).

[13] Baccelli, F. and A. M. Makowski. "Synchronization in queueing systems."
Stochastic Analysis of Computer and Communication Systems, edited by
H. Takagi, 57-129. Amsterdam: Elsevier Science Publishers B. V. (North-
Holland), 1990. Reprint of Reference [12].

[14] Baccelli, F., and others. "The fork-join queue and related systems with syn-
chronization constraints: stochastic ordering and computable bounds," Ad-
vances in Applied Probability, 21:629-660 (1989).

[15] Baccelli, F. and W. A. Massey. Series-Parallel Fork-Join Queueing Networks
and Their Stochastic Ordering. Technical Report 534. Le Chesnay, France:
Institut National de Recherche en Informatique et en Automatique, 1986.

[16] Baccelli, F., and others. "Acyclic fork-join queuing networks," Journal of the
Association for Computing Machinery, 36(3):615-642 (1989).

[17] Balsamo, S. and L. Donatiello. "Approximate performance analysis of parallel
processing systems." Decentralized Systems: Proceedings of the IFIP WG 10.3
Working Conference on Decentralized Systems, Lyons, France, 11-13 December
1989, edited by M. Cosnard and C. Girault, 325-336. Amsterdam: Elsevier
Science Publishers B. V. (North-Holland), 1990.

[18] Barrett, R., and others. Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. Philadelphia: Society for Industrial and
Applied Mathematics, 1994.

[19] Baskett, F., and others. "Open, closed, and mixed networks of queues with
different classes of customers," Journal of the Association for Computing Ma-
chinery, 22(2):248-260 (1975).

[20] Baynat, B. and Y. Dallery. A Product-Form Approximation Method for Gen-
eral Closed Queueing Networks with Several Classes of Customers. Techni-
cal Report MASI 91.50. Paris: Laboratoire de Methodologie et Architecture
des Systemes Informatiques, Institut Blaise Pascal, Universit6 Pierre et Marie
Curie, 1991.

[21] Baynat, B. and Y. Dallery. An Approximation Method for General Closed
Queueing Networks with Fork/Join Mechanisms. Technical Report. Paris:
Laboratoire de M~thodologie et Architecture des Syst~mes Informatiques, In-
stitut Blaise Pascal, Universit6 Pierre et Marie Curie, 1993.

[22] Baynat, B. and Y. Dallery. "A decomposition approximation for closed queue-
ing networks with fork/join subnetworks." IFIP Transactions A (Computer

161

Science and Technology), A-39, edited by M. Cosnard and R. Puigjaner, 199-
210. Amsterdam: Elsevier Science Publishers B. V. (North-Holland), 1993.

[23] Baynat, B. and Y. Dallery. "A unified view of product-form approximation
techniques for general closed queueing networks," Performance Evaluation,
18(3):205-224 (1993).

[24] Baynat, B. and Y. Dallery. Approximate analysis of multi-class synchro-
nized closed queueing networks. Technical Report. Paris: Laboratoire de
M6thodologie et Architecture des Syst~mes Informatiques, Institut Blaise Pas-
cal, Universit6 Pierre et Marie Curie, 1994.

[25] Baynat, B. and Y. Dallery. "Approximate analysis of multi-class synchronized
closed queueing networks." MASCOTS '95: Proceedings of the Third Inter-
national Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, edited by P. Dowd and E. Gelenbe, 23-27. Los
Alamitos CA: IEEE Computer Society Press, 1995.

[26] Baynat, B., and others. "A decomposition approximation method for mul-
ticlass BCMP queueing networks with multiple server stations," Annals of
Operational Research, 48(1-4):273-294 (1994).

[27] Bondi, A. B. and W. Whitt. "The influence of service time variability in a
closed network of queues," Performance Evaluation, 6(3):219-234 (1986).

[28] Brun, M. A. and G. Fayolle. "The distribution of the transaction processing
time in a simple fork-join system." Computer Performance and Reliability:
Proceedings of the 2nd International MCPR Workshop, edited by G. Jazolla
and others, 203-212. Amsterdam: Elsevier Science Publishers B. V. (North-
Holland), 1988.

[29] Buzen, J. P. "Computational algorithms for closed queueing networks with
exponential servers," Communications of the ACM, 16(9):527-531 (1973).

[30] Campos, J., and others. "Properties and performance bounds for closed free
choice synchronized monoclass queueing networks," IEEE Transactions on Au-
tomatic Control, 36(12):1368-1382 (1991).

[31] Chan, T. F. and T. Szeto. "Composite Step Methods for Solving Nonsymmet-
ric Linear Systems," SIAM Journal on Scientific Computing, 17(6):1491-1508
(1996).

[32] Chandy, K. M., and others. "Approximate analysis of general queuing net-
works," IBM Journal of Research and Development, 19(1):43-49 (1975).

[33] Chandy, K. M., and others. "Parametric analysis of queuing networks," IBM
Journal of Research and Development, 19(1):36-42 (1975).

162

[34] Chatelin, F. Spectral Approximation of Linear Operators. New York: Aca-
demic Press, 1983.

[35] Conway, A. E. and N. D. Georganas. Queueing Networks-Exact Computa-
tional Algorithms. Cambridge MA: The MIT Press, 1989.

[36] Courtois, P. J. Decomposability. New York: Academic Press, 1977.

[37] Cox, D. R. "A use of complex probabilities in the theory of stochastic pro-
cesses," Proceedings of the Cambridge Philosophical Society, 51(2):313-319
(1955).

[38] Dallery, Y. "Approximate analysis of general open queueing networks with
restricted capacity," Performance Evaluation, 11 (3):209-222 (1990).

[39] Dallery, Y. and X. Cao. "Operational analysis of stochastic closed queueing
networks," Performance Evaluation, 14(1):43-61 (1992).

[40] Dallery, Y., and others. "Equivalence, reversibility, symmetry and concavity
properties in fork-join queuing networks with blocking," Journal of the Asso-
ciation for Computing Machinery, 41 (5):903-942 (1994).

[41] DeKlein, S. J. Two Parallel Queues With Simultaneous Service Demands.
Technical Report 360. Utrecht, The Netherlands: Department of Mathematics,
University of Utrecht, 1984.

[42] Di Mascolo, M., and others. Queueing Network Modeling and Analysis of
Generalized Kanban Systems. Technical Report. Saint Martin d'Hres, France:
Laboratoire de Automatique de Grenoble, 1993.

[43] Di Mascolo, M., and others. "An analytical method for performance evaluation
of kanban controlled production systems," Operations Research, 44(1):50-64
(1996).

[44] Dietz, D. C. and R. C. Jenkins. "Analysis of aircraft sortie generation with
the use of a fork-join queueing network model," Naval Research Logistics,
44(2):153-164 (1997).

[45] Ding, Y. On Performance Control of Real-Time Systems. PhD dissertation,
The University of Connecticut, 1991 (DA9215426).

[46] Duda, A. and T. Czach6rski. "Performance evaluation of fork and join syn-
chronization primitives," Acta Informatica, 24(5):525-553 (1987).

[47] Evans, M., and others. Statistical Distributions (Second Edition). New York:
John Wiley and Sons, 1993.

[48] Flatto, L. "Two parallel queues created by arrivals with two demands, II,"
SIAM Journal of Applied Mathematics, 45(5):861-878 (1985).

163

[49] Flatto, L. and S. Hahn. "Two parallel queues created by arrivals with two
demands, I," SIAM Journal of Applied Mathematics, 4 (5):1041-1053 (1984).

[50] Fletcher, R. Conjugate Gradient Methods for Indefinite Systems, 506. Lecture
Notes in Mathematics, 73-89. Berlin: Springer-Verlag, 1976.

[51] Freund, R. and N. Nachtigal. "QMR: a quasi-minimal residual method for
non-Hermitian linear systems," Numerical Mathematics, 60:315-339 (1991).

[52] Gelenbe, E. and G. Pujolle. Introduction to Queueing Networks. Chichester,
UK: John Wiley and Sons, 1987. Translated from French by J. C. C. Nelson.

[53] Gershwin, S. B. "Modeling and analysis of assembly/disassembly networks."
Proceedings of the 1986 IEEE Conference on Systems, Man and Cybernetics.

687-691. New York: IEEE Press, 1986.

[54] Gershwin, S. B. "Assembly/disassembly systems: an efficient decomposi-
tion algorithm for tree-structured networks," IE Transactions, 23(4):302-314
(1991).

[55] Grassman, W. K., and others. "Regenerative analysis and steady state distri-
butions for Markov chains," Operations Research, 33(5):1107-1116 (1985).

[56] Gin, L. and A. M. Makowski. "Dynamic load allocation in parallel queues
with synchronization." Proceedings of the 29th Conference on Decision and

Control. 2124-2129. New York: IEEE Press, 1990.

[57] Hackman, D. V. Analysis of Aircraft Sortie Generation with Concurrent Main-
tenance and General Service Times. M. S. thesis, Graduate School of Engi-
neering, Air Force Institute of Technology, Wright-Patterson AFB OH, 1997
(DTIC Number TBD).

[58] Jenkins, R. C. A Mean Value Analysis Heuristic for Analysis of Aircraft Sortie
Generation. M. S. thesis, Graduate School of Engineering, Air Force Institute
of Technology, Wright-Patterson AFB OH, 1994 (AD-A278578).

[59] Kant, K. Introduction to Computer System Performance Evaluation. New
York: McGraw Hill, Inc., 1992.

[60] Kelley, C. T. Iterative Methods for Linear and Nonlinear Equations. Philadel-
phia: Society for Industrial and Applied Mathematics, 1995.

[61] Kim, C. and A. K. Agrawala. "Analysis of the fork-join queue," IEEE Trans-
actions on Computers, 38(2):250-255 (1989).

[62] Kim, D. S. and R. L. Smith. "An exact aggregation/disaggregation algorithm
for large scale Markov chains," Naval Research Logistics, 42:1115-1128 (1995).

164

[63] King, R. E. Sojourn Distributions for Particular Customers in Networks of
Queues. PhD dissertation, University of Florida, 1986 (DA8716008).

[64] Knaup, W. "A new iterative numerical solution method for Markovian queue-
ing networks." Quantitative Evaluation of Computing and Communication Sys-
tems: Proceedings of the Joint Conference Performance Tools '95 and MMB
'95, edited by H. Beilner and F. Bause, 194-208. Berlin: Springer-Verlag, 1995.

[65] Knessl, C. "On the diffusion approximation to a fork and join queueing model,"
SIAM Journal of Applied Mathematics, 51 (1):160-171 (1991).

[66] Konstantopoulos, P. and J. Walrand. "Stationarity and stability of fork-join
networks," Journal of Applied Probability, 26(3):604-614 (1989).

[67] Krieger, U. R. and M. Sczittnick. "Application of numerical solution meth-
ods for singular systems in field of computational probability theory." Iterative
Methods in Linear Algebra: Proceedings of the IMACS International Sympo-
sium, edited by R. Beauwens and P. de Groen, 613-626. Amsterdam: Elsevier
Science Publishers B. V. (North-Holland), 1992.

[68] Kuehn, P. J. "Approximate analysis of general queuing networks by decom-
position," IEEE Transactions on Communications, 27(1):113-126 (1979).

[69] Kumar, A. and R. Shorey. "Performance analysis and scheduling of stochastic
fork-join jobs in a multicomputer system," IEEE Transactions on Parallel and
Distributed Systems, 4 (10):1147-1164 (1993).

[70] Labetoulle, J. and G. Pujolle. "Isolation method in a network of queues,"
IEEE Transactions on Software Engineering, 6(4):373-381 (1980).

[71] Lanczos, C. "An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators," Journal of Research of the National
Bureau of Standards, 45:255-282 (1950).

[72] Lazowska, E. D., and others. Quantitative System Performance: Computer
System Analysis Using Queueing Network Models. Englewood Cliffs NJ: Pren-
tice Hall, Inc., 1984.

[73] Liu, Y. and H. G. Perros. "Approximate analysis of a closed fork-join model,"
European Journal of Operational Research, 53(3):382-392 (1991).

[74] Liu, Y. and H. G. Perros. "A decomposition procedure for the analysis
of a closed fork/join queueing system," IEEE Transactions on Computers,
40(3):365-370 (1991).

[75] Liu, Z. and F. Baccelli. "Generalized precedence-based queueing systems,"
Mathematics of Operations Research, 17(3):615-639 (1992).

165

[76] Makowski, A. M. and R. Nelson. "An optimal scheduling policy for fork/join
queues." Proceedings of the 32nd Conference on Decision and Control. 3611-
3617. New York: IEEE Press, 1993.

[77] Mandelbaum, M. and B. Avi-Itzhak. "Introduction to queueing with splitting
and matching," Israel Journal of Technology, 6(5):376-382 (1968).

[78] Marie, R. A. "An approximate analytical method for general queueing net-
works," IEEE Transactions on Software Engineering, 5(5):530-538 (1979).

[79] Marie, R. A. "Calculating equilibrium probabilities for A(n)/Ck/1/N queues,"
Performance Evaluation Review, 9(2):117-125 (1980).

[80] Marie, R. A. and J. M. Pellaumail. "Steady-state probabilities for a queue
with a general service distribution and state-dependent arrivals," IEEE Trans-
actions on Software Engineering, 9(1):109-113 (1983).

[81] Marie, R. A., and others. "Extensions and computational aspects of an itera-
tive method," Performance Evaluation Review, 11 (4):186-194 (1982).

[82] Meijerink, J. A. and H. A. van der Vorst. "Guidelines for the usage of in-
complete decompositions in solving sets of linear equations as they occur in
practical problems," Journal of Computational Physics, 44:134-155 (1981).

[83] Merrill, D. Point Paper on MOG. Headquarters Air Mobility Command, Scott
AFB IL, 12 December 1994.

[84] Murata, T. "Petri nets: properties, analysis and applications," Proceedings of
the IEEE, 77(4):541-580 (1989).

[85] Nelson, R. and A. N. Tantawi. "Approximate analysis of fork/join synchro-
nization in parallel queues," IEEE Transactions on Computers, 37(6):739-743
(1988).

[86] Nelson, R. and A. N. Tantawi. "Approximating task response times in
fork/join queues." High Performance Computer Systems: Proceedings of the
International Symposium on High Performance Computer Systems, Paris,
France, 14-16 December 1987, edited by E. Gelenbe, 157-167. Amsterdam:
Elsevier Science Publishers B. V. (North-Holland), 1988.

[87] Nelson, R. and D. Towsley. "A performance evaluation of several priority poli-
cies for parallel processing systems," Journal of the Association for Computing
Machinery, 40(3):714-740 (1993).

[88] Nelson, R., and others. "Performance analysis of parallel processing systems,"
IEEE Transactions on Software Engineering, 14 (4):532-539 (1988).

166

[89] Neuts, M. F. Structured Stochastic Matrices of M/G/1 Type and Their Appli-
cations. New York: Marcel Dekker, 1989.

[90] Neuts, M. F. Matrix-Geometric Solutions in Stochastic Models. New York:
Dover Publications, Inc., 1994.

[91] Nguyen, V. Heavy Traffic Analysis of Processing Networks with Parallel and
Sequential Tasks. PhD dissertation, Stanford University, 1990 (DA9108881).

[92] Nguyen, V. "Processing networks with parallel and sequential tasks: heavy
traffic analysis and Brownian limits," Annals of Applied Probability, 3(1):28-
55 (1993).

[93] Oppe, T. C., and others. NSPCG User's Guide, Version 1.0: A Package for
Solving Large Sparse Linear Systems by Various Iterative Methods. Center for
Numerical Analysis, University of Texas at Austin, 1988.

[94] Paige, C. C. and M. A. Saunders. "LSQR: an algorithm for sparse linear equa-
tions and sparse least squares," ACM Transactions on Mathematical Software,
8(1):43-71 (1982).

[95] Philippe, B., and others. "Numerical methods in Markov chain modeling,"
Operations Research, 40(6):1156-1179 (1992).

[96] Rajaraman, B. and T. W. Morgan. "Approximate analysis of the average delay
in parallel program execution." Proceedings of the 26th Hawaii International
Conference on System Sciences, edited by T. N. Mudge and others, 584-593.
New York: IEEE Press, 1993.

[97] Rao, B. M. "On the departure process of the split and match queue," Com-
puters and Operations Research, 17(4):349-357 (1990).

[98] Rao, B. M. and M. J. M. Posner. "Algorithmic and approximation analyses of
the split and match queue," Communications in Statistics: Stochastic Models,
1 (2):433-456 (1985).

[99] Rao, P. C. and R. Suri. "Approximate queueing network models for closed
fabrication/assembly systems. Part I: single level systems," Production and
Operations Management, 3(4):244-275 (1994).

[100] Reiser, M. and S. S. Lavenberg. "Mean value analysis of closed multichain
queuing networks," Journal of the Association for Computing Machinery,
27(2):313-320 (1980).

[101] Rommel, C. G. "A solution for MX/G/1-PS process response time," Operations
Research Letters, 15(5):253-263 (1994).

[102] Ross, S. M. Stochastic Processes. New York: John Wiley and Sons, 1983.

167

[103] Ruan, S. Y. and M. A. Jafari. "An approximation model for a manufacturing
cell attended by a material handling system." Queueing Networks with Finite
Capacity: Proceedings of the International Symposium on Queueing Networks
with Finite Capacity, Research Triangle Park NC, 28-29 May 1992, edited
by R. 0. Onvural and I. F. Akyildiz, 225-238. Amsterdam: Elsevier Science
Publishers B. V. (North-Holland), 1993.

[104] Saad, Y. "Projection methods for the numerical solution of Markov chain
models." Numerical Solution of Markov Chains, edited by W. J. Stewart, 455-
472. Basel: Marcel Dekker, 1991.

[105] Saad, Y. and M. H. Schultz. "GMRES: a generalized minimal residual algo-
rithm for solving nonsymmetric linear systems," SIAM Journal of Scientific
and Statistical Computing, 7(3):856-869 (1986).

[106] Schubert, K. A. Operations Research Analyst, Headquarters Air Mobility
Command. Electronic mail message s2d67598.0150hqamc.safb.af.mil, 10 Jan
1997.

[107] Schubert, K. A. and T. Cusick. "Base Resource and Airfield Capability Eval-
uation (BRACE) Simulation Model: System Documentation." Unpublished
paper. Headquarters Air Mobility Command, Scott AFB IL, October 1996.

[108] Schweitzer, P. J. "A survey of aggregation-disaggregation in large Markov
chains." Numerical Solution of Markov Chains, edited by W. J. Stewart, 63-
88. Basel: Marcel Dekker, 1991.

[109] Setia, S. K., and others. "Analysis of processor allocation in multiprogrammed,
distributed-memory parallel processing systems," IEEE Transactions on Par-
allel and Distributed Systems, 5(4):401-420 (1994).

[110] Shioyama, T. and K. Tanaka. "A new aggregation-disaggregation algorithm,"
European Journal of Operational Research, 83(3):655-669 (1995).

[111] Sonneveld, P. "CGS, a fast Lanczos-type solver for nonsymmetric linear sys-
tems," SIAM Journal of Scientific and Statistical Computing, 10(1):36-52
(1989).

[112] Steppe, J. M. Operations Research Analyst, Headquarters Air Mobility Com-
mand. Written communication, 5 Aug 1995.

[113] Steppe, J. M. Operations Research Analyst, Headquarters Air Mobility Com-
mand. Personal interview, 26 May 1995.

[114] Steppe, J. M. "BRACE: Base Resource and [Airfield] Capability Evaluation."
Presentation to the 63rd Military Operations Research Society Symposium,
Annapolis MD, 6-8 June 1995. Headquarters Air Mobility Command, Scott
AFB IL, 6 June 1995.

168

[115] Steppe, J. M., and others. "Stochastic Airfield Capability Modeling." Unpub-
lished paper. Headquarters Air Mobility Command, Scott AFB IL, February
1995.

[116] Stewart, W. J. An Introdution to the Numerical Solution of Markov Chains.
Princeton NJ: Princeton University Press, 1994.

[117] Stewart, W. J. and R. A. Marie. "A numerical solution for the A(n)/Ck/r/N
queue," European Journal of Operational Research, 5(1):56-68 (1980).

[118] Stewart, W. J. and W. Wu. "Numerical experiments with iteration and ag-
gregation for Markov chains," ORSA Journal on Computing, 4(3):336-350
(1992).

[119] Stoyan, D. Comparison Methods for Queues and Other Stochastic Models.
Chichester UK: John Wiley and Sons, 1983. Translated from the German and
revised by D. J. Daley.

[120] Thomasian, A. and A. N. Tantawi. "Approximate solutions for M/G/1
fork/join synchronization." Proceedings of the 1994 Winter Simulation Con-
ference, edited by J. D. Tew and others, 361-368. New York: IEEE Press,
1994.

[121] Tijms, H. C. Stochastic Models: An Algorithmic Approach. Chichester UK:
John Wiley and Sons, 1994.

[122] Touzene, A. "A new iterative method for solving large-scale Markov chains."
Quantitative Evaluation of Computing and Communication Systems: Proceed-
ings of the Joint Conference Performance Tools '95 and MMB '95, edited by
H. Beilner and F. Bause, 180-193. Berlin: Springer-Verlag, 1995.

[123] Towsley, D., and others. "The performance of processor sharing for schedul-
ing fork-join jobs in multiprocessors." High Performance Computer Systems:
Proceedings of the International Symposium on High Performance Computer
Systems, Paris, France, 14-16 December 1987, edited by E. Gelenbe, 145-156.
Amsterdam: Elsevier Science Publishers B. V. (North-Holland), 1988.

[124] Towsley, D., and others. "Analysis of fork-join program response times on
multiprocessors," IEEE Transactions on Parallel and Distributed Systems,
1 (3):286-303 (1990).

[125] van der Vorst, H. A. "The convergence behavior of preconditioned CG and
CG-S in the presence of rounding errors." Preconditioned Conjugate Gradient
Methods: Proceedings of a Conference Held in Nijmegen, The Netherlands,
June 19-21, 1989, edited by 0. Axelsson and L. Yu. Kolotilina, 126-136.
Berlin: Springer-Verlag, 1990.

169

[126] van der Vorst, H. A. "Bi-CGSTAB: a fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems," SIAM Journal of
Scientific and Statistical Computing, 13(2):631-644 (1992).

[127] Varma, S. "Performance evaluation of the time-stamp ordering algorithm in
a distributed database," IEEE Transactions on Parallel and Distributed Sys-
tems, 4 (6):668-676 (1993).

[128] Varma, S. and A. M. Makowski. "Interpolation approximations for symmetric
fork-join queues," Performance Evaluation, 20(1-3):245-265 (1994).

[129] Waisanen, A. and M. Grabau. "Airfield resource modeling (ARM): a mobility
analysis tool." Unpublished paper. Headquarters Air Mobility Command, Scott
AFB IL, 1992.

[130] Walker, H. F. "Implementation of the GMRES method using Householder
transformations," SIAM Journal of Scientific and Statistical Computing,
9(1):152-163 (1988).

[131] Whitt, W. "Approximating a point process by a renewal process, I: two basic
methods," Operations Research, 30(1):125-147 (1981).

[132] Zhang, Z. "Analytical results for waiting time and system size distributions
in two parallel queueing systems," SIAM Journal on Applied Mathematics,
50(4):1176-1193 (1990).

170

Vita

Craig Joslyn Willits

He attended public schools in Rumson NJ, graduating from Rumson-Fair Haven

Regional High School in 1979. In 1983, he received a Bachelor of Arts degree with a

major in mathematics from Rutgers, The State University of New Jersey.

An Air Force Reserve Officers Tiaining Corps Distinguished Graduate, Major

Willits received a regular Air Force commission after graduation from Rutgers. From

October 1983 to August 1992, he performed a variety of analysis duties, as well as

serving a tour as an aircraft maintenance officer. During this period, he was stationed

at Los Angeles AFB CA, Chanute AFB IL, March AFB CA, and Barksdale AFB

LA. In August 1992, Major Willits entered the Air Force Institute of Technology. He

completed the Graduate Operations Research program in March 1994 as a Distigu-

ished Graduate, and was awarded a Master of Science degree in operations research

by the Institute. After receiving his master's degree, Major Willits remained at the

Institute as a-doctoral student in operations research.

Major Willits is -a member of the Omega Rho and Tau Beta Pi honor soci-

eties and the Institute for Operations Research and the Management Sciences. His

master's thesis, "Point and Interval Estimation of Series System Reliability Using

Small Data Sets," won the Military Operations Research Society's 1994 Graduate

Research Award. He has published an archival journal article and a refereed pro-

ceedings article based on his master's thesis research.

Major Willits and his wife, the former Sara Elizabeth Brown of Hackettstown,

New Jersey, have three sons: Steven, David and Joseph.

171

Form Approved
REPORT DOCUMENTATION PAGE om Noved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Whshington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2.EPO3. RORTTY .ANDDATES COVERED

IVI a F]tl bssertation

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

NESTED FORK-JOIN QUEUING NETWORKS AND THEIR
APPLICATION TO MOBILITY AIRFIELD OPERATIONS ANALYSIS

6. AUTHOR(S)

Craig Joslyn Willits, Major, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
Wright-Patterson AFB OH 45433-7765 AFIT/DS/ENS/97-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AMCSAF/XPYA AGENCY REPORT NUMBER

204 SCOTT DR UNIT 3L3
SCOTT AFB IL 62225-5307

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. AB5TRCT (Maximum 00 vods)

A sing e-chain n I Or-Join queuing network (FJQN) model of mobility airfield ground processing is proposed.
In order to analyze the queuing network model, advances on two fronts are made. First, a general technique for
decomposing nested FJQNs with probabilistic forks is proposed, which consists of incorporating feedback loops
into the embedded Markov chain of the synchronization station, then using Marie's Method to decompose the
network. Numerical studies show this strategy to be effective, with less than two percent relative error in the
approximate performance measures in most realistic cases. The second contribution is the identification of a
quick, efficient method for solving for the stationary probabilities of the A(n)/Ck/r'/N queue. Unpreconditioned
Conjugate Gradient Squared is shown to be the method of choice in the context of decomposition using Marie's
Method, thus broadening the class of networks where the method is of practical use. The mobility airfield model
is analyzed using the strategies described above, and accurate approximations of airfield performance measures
are obtained in a fraction of the time needed for a simulation study. The proposed airfieldmodeling approach is
especially effective for quick-look studies and sensitivity analysis.

14. SUBJFCT T' RMS 15. NUMBER ff0PAGES
Queung _Networks, Decomposition, Markov Chains, Steady
State Analysis, Mobility Modeling, Large Linear Systems 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If Statements on Technical
applicable, enter inclusive report dates (e.g. 10 Documents."
Jun 87 - 30 Jun 88). DOE - See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.

the part of the report that provides the most NTIS - Leave blank.

meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses. DOE - Enter DOE distribution categories

from the Standard Distribution for

Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.

element number(s), project number(s), task NASA - Leave blank.

number(s), and work unit number(s). Use the NTIS - Leave blank.

following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications. Self-
perform ing the report. explanatory. Enter U.S. Security Classification in

Block 9. Sponsoring/Monitoring Agency Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

*U.S.GPO:1 993-0-336-043 Standard Form 298 Back (Rev. 2-89)

	Nested Fork-Join Queuing Networks and Their Application to Mobility Airfield Operations Analysis
	Recommended Citation

	tmp.1690816869.pdf.5yii7

