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We consider the traffic allocation problem: arriving customers have to be assigned to one of a group 
of servers. The aim is to optimize system performance measures, such as mean waiting time of 
a customer or total number of customers in the system, under a given static allocation policy. Two 
static policies are considered: probabilistic assignment and allocation according to a fixed pattern. 
For these two policies, general properties as well as optimization aspects are discussed. 

1. Introduction 

In a distributed computer system, tasks generated by a group of users can be 
distributed over a number of available processors. This contrasts with systems in 
which a single processor provides (global) computer capacity for all users, or systems 
in which each user is provided with its own local processor, usually with very limited 
capacity. 

An operational aspect of such a distributed system is the availability of a load 
balancing protocol. Such a protocol balances the work-load over the servers, aiming to 
optimize performance measures for the system, such as mean amount of work-load, 
throughput, or mean waiting times of jobs. 

Load balancing is required in many situations where a work-load is offered to 
a number of servers with limited capacity. Apart from distributed systems, one may 
e.g. think of the transmission of messages along one of several available paths of 
a communication network. 
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An important element of a load balancing protocol is the information it requires to 
operate. This information can range from total knowledge about the system at any 
point in time, to only information about some basic characteristics, like arrival rate 
and service times. In general, the term dynamic is used for policies which operate under 
time-dependent information, whereas protocols operating under time-independent 
characteristics of the system are called static. 

It is clear that the more information is available for making decisions, the better the 
allocation of work-load can be. Dynamic policies in general perform better than static 
policies. However, static load balancing protocols are also of considerable interest. 
First of all, the situation of total knowledge at all times is unrealistic. From a view
point of costs, overhead grows as the amount of information to be exchanged, stored 
and processed increases. Moreover, dynamic policies are not always that effective: 
there will always be some kind of time delay between updates of the system's current 
state, and this time delay can have a considerable effect on the quality of the protocol. 

A second reason for studying static allocation policies is that they can be useful 
tools in the design phase of a computer- or communication network. Static policies 
can provide performance bounds for dynamically controlled systems; the performance 
measures under static policies are in general evaluated reasonably quickly, whereas 
dynamic policies are harder to analyse and their performance can only be evaluated 
with time consuming methods. 

In this paper we consider the traffic allocation problem for two static allocation 
protocols for the model of a single Poisson stream of jobs offered to a fixed number of 
server stations. The allocation protocols we study are static in the sense described 
above; only the traffic intensity and the server characteristics are used. We give an 
overview of the results for these policies and also extend optimization procedures for 
some models. 

In the remainder of this section a brief survey of related literature and an outline of 
the paper are given. 

1.1. Related literature 

Several papers have addressed the load balancing problem. Below, we refer to two 
overview papers for the general load balancing problem, before giving a more 
extensive overview of the traffic allocation problem. Wang and Morris [27] give 
a taxonomy for the current load balancing protocols. They formulate the load 
balancing problem in its most general form, also discriminating between server 
initiative protocols, i.e. the servers determine from which input sources they draw their 
customers, and source initiative protocols, i.e. at the moment of arrival in the system 
jobs are (irrevocably) routed to one of the servers. Wang and Morris [27] provide 
numerical comparisons, based on analysis and simulation, of various allocation 
protocols. An overview of load balancing policies and their performances is also given 
by Boe! and van Schuppen [4]. They consider the problem from a control point of 
view and discuss the question as to what amount of information is required at the 
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routing points to achieve good system performance. Their paper concentrates on 
analytically and numerically tractable models. 

Two static allocation policies have been proposed for the traffic allocation problem: 
viz. probabilistic assignment and pattern allocation. With the probabilistic policy, 
each arriving customer is routed to one of the servers with fixed probabilities. Under 
pattern allocation, each arriving customer is routed to a server according to an 
allocation table. 

For probabilistic allocation, Buzen and Chen [8] present an algorithm for deter
mining the allocation which minimizes the mean sojourn time of a customer. Their 
mathematical programming formulation can easily be extended for various other 
performance measures and fits into the framework of Ibaraki and Katoh [13] for 
resource allocation problems (RAP). Optimal probabilistic load balancing has been 
studied by Jean-Marie [15] for the case of two parallel exponential servers and 
resequencing. 

Numerical comparisons (cf. [27]) reveal that dynamic allocation policies lead to 
considerably better results than probabilistic allocation. Yum [28] proposed the 
pattern allocation policy ("semi-dynamic deterministic routing"), which performs 
notably better than the probabilistic allocation policy (cf. [1, 28]). The reason for this 
is that the arrival processes at the servers under the pattern allocation policy are less 
irregular than under probabilistic allocation. However, constructing the optimal 
allocation pattern is an unsolved problem as yet. For the case of two identical 
exponential servers, Ephremides et al. [11] proved that alternatively assigning cus
tomers to each queue is optimal, a result which was extended by Ramakrishnan [21] 
for the model with more than two identical exponential servers. Ramakrishnan [21] 
also proposed a useful approximation procedure for the case ofnonidentical exponen
tial servers. 

The present paper extends the approximation procedure proposed by Ramakrishnan 
[21] in several directions, in particular allowing general service time distributions. We 
also give an overview of the results for the two above-mentioned static allocation 
policies. By comparing both policies from a more theoretical viewpoint than in most 
previous studies, we develop insights into general allocation problems and clarify 
some reported, but hitherto unexplained, properties. 

1.2. Outline of the paper 

In Section 2 a mathematical description of the allocation problem is presented, and 
the probabilistic allocation policy is discussed. In Section 3 we argue that allocation 
policies which result in more regular arrival processes than the Poisson arrival process 
are to be preferred to probabilistic allocation. There also the pattern allocation policy 
is introduced. In Section 4 an optimization procedure for pattern allocation is pres
ented. In Section 5 the performance measures under both allocation policies are 
numerically compared for various models. We also compare both policies with 
a dynamic policy that is expected to outperform most policies for the objective 
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functions we consider. Section 6 discusses three extensions of the basic traffic alloca
tion problem. The first extension deals with the case of a general arrival process. The 
second model describes the case in which all server stations receive a ("dedicated") 
Poisson arrival stream, on top of which an extra arrival stream has to be allocated. 
The third extension considers allocation to multiple server stations. 

2. Probabilistic allocation 

Before studying the probabilistic allocation policy, we first present a mathematical 
description of the traffic allocation problem. 

2.1. Model description 

Customers arrive at a routing point according to a Poisson process with rate A. At 
the instance of arrival, a customer has to be assigned to one of N single servers in 
parallel. This assignment is irrevocable. 

The service time Bi of a customer that is assigned to server i has general distribution 
Bi(·), with first and second moment /J; and /3~ 2 ), respectively. All service times are 
independent. 

Let P denote an allocation policy and p;, i = 1, ... , N, be the fraction of the 
customers that is routed to server i under policy P. 

In our traffic allocation problem, the aim is to minimize 

N 

L J;(P)C;EW;(P). (2. l) 
i= 1 

In (2.1) E W;(P) denotes the mean waiting time of a customer assigned to server 
i under allocation policy P. C; is the cost associated with waiting one time unit at 
queue i. The factors f;(P) are additional, load-dependent, weight factors. The objective 
function can have various interpretations by varying Ji(-) and C;. For example, if 
f;(P)=p; and C;=l, i=l, ... ,N, then the objective function represents the mean 
waiting time of an arbitrary customer. Or, with f;(P)=Ap; and C;=/J;, Little's law 
shows that the objective is to minimize the mean total amount of work in the queues. 
Instead of EW;(P), also ER 1(P), the mean sojourn time of a customer assigned to 
queue i, could have been used in (2.1). 

2.2. Probabilistic allocation 

As described in the introduction, the assignment of an arriving customer to a queue 
can depend on all kinds of information contained in the history and the present state 
of the system. In this section we discuss the probabilistic allocation policy, also known 
as random splitting. Under this policy, a fraction p1 of the arrivals is routed to queue 
i by assigning a customer, arriving at the routing point, to server station i with 
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probability p;, i= 1, ... ,N (L,;p;= 1). These probabilities p; are the same for all 
customers, and do not change in time. Let Ppr denote the class of probabilistic 
allocation policies. This class can be completely described by Ppr= {p I pE[O, l]N, 

If=1 P;= l}. 
The probabilistic allocation policy is static in the sense that when a customer has to 

be routed to one of the queues, no information about the history and the present state 
of the system is used. Under PePpr• the arrival process at queue i is Poisson with 
intensity A;=p;A, i=l, ... ,N, and the objective function becomes 

(2.2) 

Among the first to study the probabilistic allocation policy were Buzen and Chen 
[8]. Their aim was to minimize the mean sojourn time of a customer for a model with 
generally distributed service times at the server stations. They solved the problem 
using standard mathematical programming techniques. 

As an example, we take f;(P)=.l.;/A in (2.2) and solve the allocation problem. In this 
case, the objective is to minimize the mean weighted waiting time of a customer or, 
using Little's law, to minimize a weighted sum of the mean number of waiting 
customers in the system. To obtain the assignment probabilities Pt=Xi/A which 
minimize this function, the following mathematical programming problem (MPP) has 
to be solved 

PAl: 

N A·f3~2) 

min .L A.;C; 2(1 ~~·fJ·) 
i= 1 1 I 

(2.3) 

N 

s.t. L A;=A, (2.4) 
i= 1 

i= 1, ... ,N. (2.5) 

Note that the objective function in PAl can be separated in terms 

which are strictly convex functions in A;. It can also be verified that PAl has 
a feasible solution provided that I.; 1//3; >A, i.e. the arrival rate does not exceed the 
total service capacity. Here and in the remainder of the paper it is assumed that such is 
the case. 

Problem PAl allows an analytical solution. To find this solution, we first relax PAl 
by dropping the last constraint. Using the standard Lagrange-multiplier techniques 
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we obtain, with 6 the Lagrange-multiplier, the following first-order Kuhn-Tucker 

constraints: 

{ 
• [J(2) } d . A; i · -- ~.c.--- =o, 

d;.; ., I 2(1-A;PJ 
i=l, .. .,N, (2.6) 

.'i 

I ).;-A=O. (2.7) 
i= 1 

from (2.6) and remarking that (2.3) concerns a sum of terms T; which are convex 
functions of).; we find the unique optimal values ). 't 

(2.8) 

in which the value of the Lagrange-multiplier 6 is determined by the constraint (2.7). 
The optimal splitting probabilities are given by p'f = ).'t/A, i = 1, ... , N. In (2.8) we see 
that 0 $;).'f < 1/ [J;, i = 1,. .. , N; so the vector ). * is also the solution of PA 1. 

This example shows us the structure of our traffic allocation problem. The objective 
function is separable in (strictly convex) terms T;, each term T; being a function of A;. 
Hence the solution of PAI is determined by the derivatives of the terms (cf. (2.6)) 
rather than their values. 

A second observation follows from (2.7) and (2.8): if A >0, then).;"> 0 for all i. This 
is a direct consequence of the above-mentioned properties; in the example we have 
dT;/d).;\.<,=o=O and dT;/d).; is an increasing function in).;, hence A.;" >0, provided 
that A >0. 

However, for other naturally arising objective functions, such as L C; E W; or 
'LJ; C; ER;, with R; denoting the sojourn time of a customer routed to queue i, the 
optimal values of some ).;'s (and p/s) may be equal to zero. For these objective 
functions dT;/dJd.<,=o can be so large, relative to the other queues, that it is 
advantageous not to assign customers to queue i, but to allocate all arrivals amongst 
the other queues. 

For the latter objective functions the MPPs have the same structure as PAI. 
Usually, these MPPs do not allow an analytical solution. However, PA 1 can be 
solved quite easily numerically, due to its special structure: the control variables 
only interact through the linear restriction (2.4). This characteristic is typical for 
the class of resource allocation problems (RAP), as studied by lbaraki and Katoh 
[13]. In their book they also consider a RAP which has almost the same form as PAl, 
the only difference being that the control variables are allowed to equal the upper 
bounds. 

In [10] we present an algorithm to solve the traffic allocation problem that has a 
separable objective function, consisting of strictly convex terms, and that has strict 
upper bounds on the control variables. The algorithm is a variant of the procedure 
RANK in ([13, p. 19]). The algorithm first determines the set of queues for which ). 't > O; 
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for that set it subsequently solves a set of equations of the form of (2.6) and (2.7). The 

algorithm strongly depends on the strict convexity of the terms. Due to this property, 

there is only one local minimum, which consequently has to be the optimal solution for 

the allocation problem. If the objective function is not separable into strictly convex 

terms, then in general there may exist several local minima for the allocation problem. 

Moreover, in most situations only approximately optimal allocation probabilities can 

be obtained. One of the cases in which the property of strictly convex terms may not 

hold is the traffic allocation problem with a general arrival process, as studied in Tang 

and van Vliet [26]. Their method involves an algorithm for quadratic programming 

and provides one of the local minima. They also argue that this local minimum should 

be close to the global minimum. 

3. Less variable arrival processes 

Intuitively, one expects that when traffic allocation leads to a more regular arrival 

process, then the mean waiting times are reduced and consequently also the value of 

the objective function. However, it is very difficult to prove such statements, except for 

special cases. A detailed investigation of these issues would not fit into the framework 

of this paper, and hence we restrict ourselves to presenting some basic results on 

comparison between queueing systems, along with a special case to support the 

above-mentioned intuition. 
In this section we discuss the single server queue with an arrival process that is more 

regular than the Poisson process, and we argue that for an important class of such 

arrival processes, the behaviour of the mean waiting time as a function of the load is 

better than for Poisson arrivals. 
General comparisons ofGI/G/1 systems are presented by Stoyan [25]. Particularly 

useful for our purposes is his Theorem 5.2.1, which states the following monotonicity 

property for the waiting times. 

Lemma 3.1. Consider two Gl/G/l queueing systems with identically distributed service 

times. If jar the interarrival times A 1 and A 2 , A 1 ::::::; c A 2 , then also for the steady-state 

waiting times W1 ::::::; c W2. 

Here ::::::; c denotes the convex stochastic ordering for random variables, and indices 

1, 2 refer to the two queueing systems. Since W1 and W2 are positive random 

variables, W1 ::::;c W2 implies EWj :::::;EW;, r= 1, 2, ... 
In particular, if EA 1 =EA 2 , A 1 ::::; c A 2 holds in the following two cases: 

(i) A 1 is constant (cf. [25, Example 1.9(a)], 
(ii) A 1 is NBUE and A 2 has an exponential distribution. 

A stochastic variable X with distribution function F is "new better than used in 

expectation" (NBUE) if Loc· (1- F(x))dx/(1-F(t))::::::; EX for all t ~O. Note that if X has 



24 M.B. Combe, O.J. Boxma 

an increasing failure rate, X is NBUE. As examples, Gamma(A, y) with y ~ 1, 
Weibull(A, y) with y~ 1 and uniformly distributed random variables are NBUE (cf. 
[25, Ch. 1]). The Gamma(A,y) case is now discussed in more detail, as it plays an 
important role in the remainder of the paper. 

Gamma(A, y): Consider a Gamma(A, y)/M/1 queueing model with y > 1, so that the 
arrival process has a coefficient of variation which is smaller than that of a Poisson 
process. Letµ be the service rate and A/ µy < 1, i.e. the queue is stable. In this queue the 
mean waiting time ofa customer EW 0 is given by ro/(µ(1-w)), with w=Pr { W0 >0} 
the smallest positive real solution of x = a(µ(l -x)), a(·) being the Laplace-Stieltjes 
transform of the arrival process (cf. [9]). For Gamma(A,y), we have a(x)=(A/(A +x))l'. 

Firstly, for this queueing model E w 0 < E WM, which follows from Lemma 3.1. Here 
EWM denotes the mean waiting time in the M/M/1 queue with arrival rate A/y and 
service rate µ. Secondly, it is readily verified that 

d 
dA EW 0 LO as ALO. 

The consequence of these two properties for the model with N Gamma(A.;, y;)/M/1 
queues, Y; > 1, i = 1, .. ., N is: if one has to assign intensities A; such that the overall 
arrival rate I; A.;fy;=A while the objective is to minimize I;; EW?, then ..1.;>0 for all i. 
Moreover, the value of the objective function will be lower than if a Poisson A arrival 
stream had been allocated probabilistically to the N stations. 

For the Gamma(A,y)/M/1 queueing model, we also find that 

d 
dy EW 0 tO as y-->oo. 

As a consequence, suppose that for the model with N Gamma(A, y;)/M/1 queues one 
has to assign y;'s such that L 1/y;= 1, i.e. the sum of the arrival rates at the queues is 
A. Then 1/y;>O for all i. This special queueing model is used in the next section as an 
approximation for a queue with a special nonrenewal arrival process. 

3.1. Pattern allocation - the MAP/G/1 queue 

Next we introduce a traffic allocation policy which allocates the Poisson arrival 
stream such that the arrival processes at the queues are less variable than under 
probabilistic assignment, but which still is static in the sense that no state information 
of the queues is used and that the allocations are time independent. This policy is 
pattern allocation. Pattern allocation uses an infinite string of integers {a 1, a 2 , ••• , 

an-ban,an+1'···}, where an denotes the number of the queue to which the nth 
customer in the arrival process is routed. For practical reasons, it is assumed that this 
string contains a sub-pattern S of finite length M which is repeated over and over. 
Thus a;= ai+kM for all i = 1, ... , Mand k= 1, 2, .... Like for the probabilistic allocation 
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policy we can completely describe PP•' the class of pattern allocations. This is done by 
Ppa={alaE[l, ... ,N]\ k=l,2, ... }. 

Let A;" be the time between the nth and (n + l)th arrival at queue i. Under pattern 
allocation, the distributions of A;" form a repeated sequence of Erlang distributions. For 
example, if S = { l, 2, 1, 3, 4, 1, 2}, then the sequence of the interarrival distributions at 
queue 1 is a repetition of {Erlang(A, 2), Erlang(A, 3), Erlang(A, 2) }. 

The pattern allocation policy was first introduced by Yum [28] as semi-dynamic 
deterministic routing. For the cases of two and infinitely many identical exponential 
server stations, Yum [28] shows a considerable reduction in mean waiting time if the 
pattern allocation policy is used instead of probabilistic allocation. 

The arrival processes which result from pattern allocation fall into the class of the 
Markovian arrival process (MAP). The MAP studied by us is characterized by 
a continuous-time Markov process with finite state space {1, ... , M }, where arrivals 
can occur only at transition epochs in the Markov process. The transitions at which 
an arrival takes place are defined by a 0-1 M x M matrix D, with Dii = 1 if and only if 
the transition from i to j in the Markov process is associated with an arrival. In the 
MAP arising under pattern allocation, the Markov chain has the special property that 
only transitions from state i to state (imodM)+ 1 can occur. In Appendix A we 
present some results from [17] for the MAP/G/1 queue, whose analysis is based on 
the matrix geometric techniques as developed by Neuts [19] and Ramaswami [22]. 
Using more classical techniques, Agrawala and Tripathi [2] analyse the waiting times 
in the MAP/M/1 queue for the typical MAP that we consider. 

Observe that the MAP in general is not a renewal process. The earlier mentioned 
comparisons from [25] are for GI/G/1 queues and do not apply to MAP /G/1 queues. 
Besides, a useful characterization of the irregularity of a MAP is much more complic
ated than for GI arrival processes. However, in order to compare the MAP /G/1 
queue with an M/G/l queue with the same service time distribution we state the 
following conjecture, which is based on the observations made earlier in this section 
and supported by numerical experience. 

Conjecture 3.2. Consider a stable M/G/l queue in which the arrival rate is pA, with 

p < 1, and the service time has distribution B( · ). Then there exists a MAP with transition 

rate A in all states of the underlying Markov chain, and overall arrival rate closely 

approximating pAfrom above, such that in the MAP/G/I queue with the same service 

time distribution B('), EWMAP <EWM, where WMAP and WM denote the steady-state 

waiting times of customers in the MAP/G/I queue and M/G/1 queue, respectively. 

Conjecture 3.2 is clarified by viewing the Poisson (pA) arrival process as the result 
of a probabilistic allocation and the MAP as the result of a pattern allocation. Let 
M be the number of phases in the MAP. Then in the pattern allocation out of every 
M arriving customers an exact fraction p is routed to the queue, whereas under 
probabilistic allocation, this fraction is equal to p only in expectation. Moreover, in 
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the MAP the arrivals can be better regulated, e.g. for p=~ every second and fifth 
customer can be routed to the queue. 

Note that not for all MAPs with phase intensity A and overall arrival rate pA, 
E WMAP < E WM; for example, again viewing the MAP as the result of pattern alloca
tion, when of every 2M customers the first M are routed to the queue, then for 
! < A/3 - 1, the mean waiting time of a customer at the queue tends to infinity as 
M-+oo, while p=! and EWM< oo. 

Also note that the refinement "closely approximating pA from above" has to be 
made, because for p irrational there does not exist a MAP with finite state space of the 
underlying Markov process such that the overall arrival rate is exactly equal to pA. 

A benefit of the pattern allocation policy, besides lowering the value of the objective 
function, is that it is more robust than probabilistic allocation. For example, from the 
explicit expression for the mean waiting times in an exponential server queue (cf. 
Gamma(A, y) case), it follows that slightly altering the arrival intensity in an Erlang 
(A, 2)/M/1 queue has less influence than changing the arrival intensity in an M/M/1 
queue. 

In this section we have argued that in the traffic allocation problem the pattern 
allocation policy is to be preferred to the probabilistic allocation policy, because of the 
reduction of variability in the arrival processes. In the next section we turn our 
attention to an optimization procedure for the pattern allocation policy. 

4. Optimal pattern allocation 

The mean waiting time of a customer in the MAP/G/1 queue is given by formula 
(A.5) of Appendix A; it is a closed expression which can be evaluated. However, (A.5) is 
not very suitable for a direct optimization procedure; the matrix structure of (A.5) 
makes an exact analytical optimization actually impossible. This contrasts with 
probabilistic allocation where only the N optimal assignment probabilities pj have to 
be determined and where the simple structure of the objective function (2.3) allows an 
analytical solution of the MPP PAL 

Moreover, for pattern allocation it is impossible to determine the optimal alloca
tion pattern by comparing patterns; there are too many patterns with length smaller 
than some practical bound, and the matrix operations involved in the evaluation of 
expression (A.5) are too time consuming. 

We therefore have to resort to an approximate optimization procedure. Our 
procedure consists of two steps: 

(1) Approximate pj, i = 1, ... , N, the queue assignment frequencies in the optimal 
allocation pattern. 

(2) Use these frequencies for the construction of the allocation pattern. 
In this section our attention is mainly devoted to step (1). The problems related 

to step (2) are more of a combinatorial nature, and in fact a quite difficult 
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cyclic scheduling problem has to be solved. In Remark 4.3 we mention some of the 

difficulties occurring here, and in Appendix B we present a heuristic for building an 

allocation pattern from a set of allocation frequencies. 

Due to the matrix operations involved, comparing assignment frequencies directly 

using (A.5) is too time consuming, so further approximations have to be made. To 

avoid the matrix operations we approximate the MAP with a GI arrival process. 

An obvious option for this GI arrival process is the Poisson arrival process. In 

step (1), the fractions Pi, i = 1, ... , N are then approximated by the optimal probabilis

tic allocation. However, in general this does not lead to the optimal allocation pattern, 

as illustrated in [1] for the traffic allocation problem with the mean sojourn time of 

a customer as objective function. 

A good choice for a GI approximation of the MAP is the Gamma arrival process, 

an arrival process with Gamma distributed interarrival times. The first step then is to 

determine the optimal allocation fractions for a model in which we are to assign 

customers from an infinite reservoir of customers to N parallel Gamma/G/I queues 

maintaining an overall arrival rate A. This we call the Gamma approximation 

procedure. 

The idea of approximating the arrival process with a Gamma arrival process 

was first used by Ramakrishnan [21], who studied various allocation policies 

for the case of exponentially distributed service times. Using the exact expression for 

the mean waiting times in the Gamma/M/1 queue (cf. case 3.1 of Section 3), 

Ramakrishnan numerically solved the Gamma/M/l allocation problem for the case 

of two queues. 
The Gamma(A, y) arrival process appears to be a reasonable approximation for the 

MAP with overall arrival intensity A /y. It possesses the same phase character as the 

MAP, and if y is an integer and the MAP is as regular as possible, both arrival 

processes have the same Erlang interarrival times. 

The Gamma arrival process can be viewed as the ideal MAP; if from an infinite 

reservoir of customers ai customers out of every M have to be routed to queue i such 

that the interarrival times of the customers are i.i.d. and the sum of ai interarrival 

times has an Erlang(A, M) distribution (the length of the arrival pattern), then the 

interarrival time of a customer has a Gamma(.A, M /ad distribution. This implies that 

a Gamma(.A, M /ad arrival process is more regular than the MAP with the same 

arrival intensity. Hence we expect the mean waiting times in the MAP /G/1 queue to 

be bounded from below by the mean waiting times in the corresponding Gamma/G/l 

queue. Again, such a statement is hard to prove, except for the case of exponential 

servers, for which the proof readily follows from the results in [12]. 

Unfortunately, the expression for the mean waiting times of customers in 

a Gamma/G/1 queue (cf. [9]) is too complicated to be useful in an optimization 

procedure, and hence we have to resort to more simple approximate expressions for 

this mean waiting time. 
The next part of this section is devoted to the actual determination of the allocation 

fractions. For the mean waiting times in a Gamma/G/1 queue we apply the 
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two-moment approximation proposed by Kramer and Langenbach-Belz (KLB; cf. 
[16]) for GI/G/1 queues: 

p/3 2 2 { 2(1-p) (1-c;)2 } 

EW 2(l-p)[ca+c,]exp -~ c;+c; ' (4.1) 

in which f3 is the mean service time, p is the load of the queue, and c; and c; denote the 
squared coefficient of variation (variance divided by squared mean) of the arrival time 
and service time distributions, respectively. Obviously (4.1) is exact if the arrival 
process is Poisson. 

A number of approximations for the mean waiting time in the GI/G/1 queue are 
compared in Shanthikumar and Buzacott [24]. From [24] the Marshall approxima
tion appears to be a good alternative for the KLB approximation. 

For a Gamma(A, y) process, the arrival rate A. is given by A/y and c; = 1/y, and for 
the Gamma/G/1 queue, (4.1) thus becomes 

A/3 2 [1 13< 2>-13 2 ] { 2(y-Af3) (1-1/y) 2 } 

EW=2(y-Af3) y+ 132 exp 3Af3 l/y-l+/3(2)/(32 . (4.2) 

With (4.2) we can formulate the MPP for the Gamma approximation procedure. For 
objective function (2.2), substituting r1.i:= f; =A.;/ A= 1/y; we find 

GAl: 

N 

s.t. I r1.;= 1, 
i= 1 

1 
O:::;;oii<-{3, 

A; 

(4.3) 

i= 1,. .. ,N. 

Problem GAl has the same structure as PAl in Section 2, and hence it can easily be 
solved numerically with the algorithm presented in [10]. Note that 

l . dEJfi I 
1m d =0. 

{e~O) rl.i ~;=e 

Hence not only the optimal assignment frequencies resulting from GAl are all greater 
than 0, but this would also be the case for the objective function 2:; C i E W;. The latter 
was not always the case for the optimal probabilistic allocation. 

Earlier in this section we stated that the mean waiting times in the MAP /G /1 queue 
are bounded from below by the mean waiting times in the corresponding 
Gamma/G/1 queue. Consequently, the solution of GAl provides an approximate 
lower bound for the mean waiting costs under the optimal allocation pattern. 
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Remark 4.1. An important observation is that, for the optimal pattern allocation, 

more load is assigned to the queues with relatively high first moment of the service 

time distribution than under probabilistic allocation. This property was first reported 

by Agra wala and Tripathi [ 1]. The explanation of this property is that the effect of 

regularizing is stronger for the queues with relatively small assignment probabilities. 

For example, consider a traffic allocation problem with two queues for which the 

optimal probabilistic assignment fractions are pi=~ and pi=~. Then the MAP for 

the first queue would approximately be equal to a Poisson arrival process with arrival 

intensity ~A, hence the switch from probabilistic to pattern allocation would not 

cause great changes in the arrival process at queue 1. However, for queue 2, switching 

from probabilistic to pattern allocation also changes the arrival process at queue 

2 from a Poisson (~A) into an Erlang (A, 9) arrival process. The switch from 

probabilistic to pattern allocation has a more regularizing effect on queue 2 than on 

queue 1, and hence the decrement of the mean waiting times is larger for queue 2 than 
for queue 1. 

This example also shows why the Gamma approximation procedure has a better 

performance than the approximations obtained from probabilistic allocation: the 

Gamma arrival process better captures the influence of assignment fractions on the 
degree of regularization. 

Remark 4.2. Elaborating on Remark 4.1, we expect that the effect of a transition from 

probabilistic allocation to pattern allocation will be stronger when the assignment 

fractions are closer to each other. In that situation all servers will profit from 

regularization. An interesting conclusion is that for the case of nonidentical service 

rates, comparing the Gamma approximation procedure with probabilistic patterns, 

the difference in patterns is in particular pronounced for low system loads. When the 

load increases, both methods will lead to allocation fractions close to the capacities of 

the queues, but for low load probabilistic allocation tends to assign many more 

customers to the faster queue than the Gamma approximation. Another interesting 

conclusion is that when the number of servers increases, the effect of regularizing 

becomes stronger. For example, consider the case of k identical servers with service 

rate 1 and A= pk, p < 1 and all servers receiving the same fraction 1/ k of the arrivals. 

The allocation pattern based on these fractions leads to k Erlang(pk, k) arrival 

processes. Stoyan [25, Examplel.5.l(e)] shows that Erlang(p(k+l),k+ll~c 

Erlang(pk,k). Hence the value of the objective function decreases when k increases. 

Note that for k --+oo the arrival processes at the queues become deterministic. 

We conclude this section with a remark concerning the validity of our optimization 

procedure. In this remark we also reveal some problems which occur in the second 

step of the procedure, where allocation frequencies are to be translated into patterns. 

Remark 4.3. Assignment fractions Pi do not determine a unique allocation pattern. 

Firstly, as explained in the previous section, the Pi 's can be irrational, so in general 

a finite pattern with corresponding assignment fractions Pi for i = 1, ... , N does not 
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exist. And secondly, even if there exist integer numbers a; such that p;=a;/L,i ai for 
i = 1, ... , N, the orders in which the queue numbers can be placed in a pattern are 

numerous. 
However, the natural requirement that the arrival processes should be as regular as 

possible causes a set of allocation fractions to lead to a more or less uniquely 
determined allocation pattern. Let us now consider the translation of assignment 

fractions into patterns. 
First, (a 1 , .•. , a N) are defined as follows. For all e > 0, there exists an integer m such 

that 

- . [p;m] 1 } 
m=mm{m> NI Jl(p;m-[p;m])/[p;m] II <e, -;;;- A< /3;, for al P;>O . 

Let a;=[p;m], i= 1, ... ,N. Hence the a;'s are uniquely defined by a chosen e>O. Note 
that the value of e has a strong influence on the length of the pattern. 

Second, in Section 3 we saw that the mean waiting time decreases with increasing 
regularity of the arrival process; so given numbers a;, i = 1, ... , N, we try to construct 
an allocation pattern in which the occurrences of the queue numbers are as uniformly 
distributed as possible. In this way, given e>O, assignment fractions p; correspond to 
a more or less uniquely determined allocation pattern. 

This does not imply monotonicity of the waiting times as a function of the 
assignment fractions. For certain values p;, i = 1, ... , N, placing the queue numbers 
into a pattern in a uniformly distributed way can be rather difficult, whereas after 
slightly altering the frequencies, a much more regular pattern would arise. This 
property also has consequences for the value of the objective function. This contrasts 
with probabilistic allocation where, given the assignment fractions, the model is 
equivalent to N independent M/G/1 queues. 

The actual construction of an allocation pattern is an interesting combinatorial 
problem, for which we present a heuristic in Appendix B. Here the main problem is 
that the interests of the queues interfere, i.e. we try to make the arrival process as 
regular as possible for all queues simultaneously. An example of such interference is, 
with N = 3, a 1 = 1, a 2 = 2, a 3 = 3. The reader can easily check that there exists no 
pattern oflength 6 in which the arrival process at all three queues is a renewal process. 

In general the optimal allocation pattern cannot be determined, hence it is not to be 
expected that the optimal assignment frequencies are determined by applying the 
Gamma approximation procedure. However, our numerical experience indicates that 
this procedure results in a pattern under which the objective function is close to the 
approximate lower bound for the optimal arrival pattern, this lower bound being the 
value of the solution of GAL 

5. Numerical results 

In this section we present some numerical results. We compare various allocation 
policies and also discuss the quality of the Gamma approximation procedure. We 
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show five instances for the case of two servers and three instances for the case of three 
servers in parallel. For each instance, the objective is to minimize the mean waiting 
time of a customer. As a function of the load of the total system, we present absolute 
and relative values of the objective function for various optimized allocation policies 
and for the solutions of the mathematical programs. 

5.1. Description of numerical instances and presented results 

In Figs. 1-8 we show numerical results for 8 instances. We have considered the 
problem of minimizing the mean waiting time of an arbitrary customer (taking 
f;(P)=p;, C;= 1, in (2.2), i= 1, ... ,N). For each instance, we have optimized various 
allocation policies for system loads p that we increased from 0.05 to 0.95 in steps of 
0.05. The system load is defined as p =A CL 1 / f3 ;)- 1, i.e. the offered traffic to the 
system divided by the total service capacity of the system. 

Figures 1-5 concern the case of two servers, 6-8 the case of three servers. We have 
considered three types of service time distributions: exponential, Erlang 2 and hyper
exponential. For the hyper-exponential distribution, the coefficient of variation is 2. In 
Figs. 1-3 and 6-8 the servers are of the same type, but differ in service rates. For 
Figs. 4 and 5 the servers are not of the same type; in Fig. 4 both servers have identical 
service rate, in Fig. 5 the rates are different. 

For each instance, two figures are presented, one displaying absolute value of the 
objective function, the other showing this value relative to the value for optimal 
probabilistic allocation. The abbreviations used in the figures are: 

prob: mean waiting times, under the optimal probabilistic allocation, 
prop: pattern that is based on the optimal probabilistic pattern, 
klbp: pattern obtained via the gamma approximation procedure, using the KLB 

approximation for the Gamma/G/1 queue, 
klbb: approximate lower bound for the mean waiting times under the optimal 

allocation pattern (see Section 4), 
lb: strict lower bound for the mean waiting times under the optimal allocation 

pattern. This is for the case of exponential servers (see Section 4), 
jlw: mean waiting times under the dynamic policy that allocates a customer to the 

queue with the least waiting time. These are simulation results. 

5.2. Comparing probabilistic and pattern allocation 

In Section 3 we argued that regularizing arrival processes leads to lower mean 
waiting times. Also, in Conjecture 3.2 we stated that for each M/G/1 queue, there 
exists a MAP /G/1 queue with lower mean waiting times, where the Poisson arrival 
process has intensity pA, p< 1, and the MAP has the same arrival rate and phase 
intensity A. We concluded that pattern allocation leads to lower mean waiting times 
than probabilistic allocation. This conclusion is supported by our numerical results. 
In all cases considered, the allocation pattern based on the optimal probabilistic 
allocation fractions (curves prop in Figs. 1-8) performs better than the probabilistic 
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allocation itself (prob). The relative differences vary from 7% to 40% for low loads up 
to about 40% for high load, except for the case of nonidentical servers with identical 
rate, where the difference for low loads is even 50%. Also, the effect of a transition 
from probabilistic to pattern allocation is stronger for the case of three servers. All 
observations are illuminated by Remarks 4.1 and 4.2. 

Figures 1-3 and 6-8 suggest that for identical servers the effect of a transition from 
probabilistic to pattern allocation is stronger when the service time distribution has 
a smaller coefficient of variation. 

The nonsmoothness of the curves (prop) in Figs. 6-8 is caused by the way the 
patterns were constructed in our numerical experiments. Due to pattern length 
limitations, imposed by computer capacity, some inaccuracies occur. The assigned 
fractions in the pattern are for some values of p closer to the optimal probabilistic 
allocation than for others. It is interesting to see that when the deviation results in -
relatively speaking - more (less) load at a slower server, this decreases (increases) the 
value of the objective function. In Remark 4.1 this observation is explained. The effect 
is most pronounced for p=O.I, where the constructed allocation pattern actually 
assigns no customers to the slowest server. 

5.3. Comparing the Gamma approximation procedure with pattern allocation 
based on optimal probabilistic allocation 

In Section 4 we concluded that the Gamma approximation procedure would lead 
to better allocation patterns than probabilistic allocation because the Gamma arrival 
process better captures the behaviour of the MAP than the Poisson arrival process. 
This conclusion is supported by the numerical results. The difference between objec
tive functions for Gamma approximation based patterns (klbp) and probabilistically 
based patterns (prop) is larger for lower loads than for higher loads. The difference 
ranges from 0% to 45%. 

5.4. Optimal pattern allocation 

Finally, we turn to the questions (i) how good is pattern allocation compared to the 
best policy, and (ii) how close is the pattern obtained with the Gamma approximation 
procedure to the optimal allocation pattern? 

Concerning (i), it is very hard to determine the optimal - probably a dynamic 
- allocation policy. Hence we have considered a dynamic policy which is expected to 
perform better than most policies, and considerably better than the static policies. 
This dynamic policy operates under complete knowledge of the system at the moment 
of arrival and sends each customer to the queue with smallest waiting time. Our claim 
that this is a nearly optimal allocation policy, is based on the fact that this policy uses 
all information available at moments of arrival and seems to use this information in 
a very sensible way. In the figures one can see that this dynamic policy (jlw) performs 
from 40% up to about 95% better than probabilistic allocation. The difference with 
the optimal Gamma approximated pattern ranges from 20% up to 45%. 
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Concerning question (ii), we know that it is very hard to determine the optimal 
allocation pattern. However, in an indirect way we are able to make a statement about 
the quality of the Gamma approximation procedure. In Section 4 we stated that 
waiting times in a MAP/G/l queue are bounded from below by the waiting times in 
the corresponding Gamma/G/1 queue. Numerical experience shows that the approxi
mation of the mean waiting times in the MAP/ G /1 queue, using the KLB formula for 
waiting times in the corresponding Gamma/G/1 queue, is fairly accurate. Hence the 
value of the objective function for the solution of mathematical program GA 1 (klbb) is 
an approximate lower bound for the optimal allocation pattern. 

We also note that, in particular for high loads, this value reasonably accurately 
approximates the mean waiting times under the allocation pattern that is constructed 
from the solution of GAL 

So GAl provides an approximate lower bound for the mean waiting times under 
the optimal allocation pattern, as well as an accurate approximation of the mean 
waiting times under the allocation pattern that is based on the solution of GAL We 
conclude that the Gamma approximation procedure provides us with a nearly 
optimal allocation pattern. 
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6. Extensions of the traffic allocation problem 

In this section we briefly discuss the traffic allocation problem for three extensions 
of the model that was discussed in the previous sections. For all extensions, the traffic 
allocation problem can be approached in a similar way as the original problem. 

First we discuss the case of general arrival processes. The second model considers 
the situation in which one has to allocate a Poisson arrival stream to N queues, where 
each queue already receives a Poisson arrival stream. This problem is known as the 
traffic allocation problem with dedicated arrival streams. The third model under 
consideration is the allocation problem with multiple server stations. 

In Section 2 we argued that regularizing arrival streams tends to reduce the mean 
waiting times. Based on similar intuitive arguments, we now make the same conjec
ture for the extended allocation problems, realizing that proving the same statements 
for the extended models can only be harder than for the original allocation problem. 

According to this assumption, the customers are allocated using an allocation 
pattern rather than assigning them to the queues probabilistically. 

6.1. Allocation for the case of general arrival processes 

In many traffic allocation situations, the arrival process will not be a Poisson 
process. We believe that our approach can be extended for such situations. The first 
step would be to approximate the arrival process by a Gamma process, fitting the 
parameters Ji and c;, the arrival rate and squared coefficient of variation, respectively. 
Hence the interarrival time has the LST (A/(A + ro)) 1 ic~. with A =A/c;. Subsequently, 
applying pattern allocation would result in sending one out of each Yi customers to 
queue i. Of course Yi need not be integral. However, in an ideal pattern allocation, the 
interarrival time at queue i will have an LST (A/(A +w))Yifci, and hence will be 
Gamma distributed. We thus can again approximate the optimal assignment frequen
cies by solving a mathematical programming problem of the form of optimization 
problem GAl, with constraint If= 1 ai=1 replaced by L:f= 1 IX;= ci. 

6.2. The allocation problem with dedicated arrival streams 

A Poisson arrival stream with intensity A has to be allocated to N queues queue i, 
each queue already receiving a Poisson arrival stream with intensity A 1~0, i = 1, ... , N. 
Note that the original problem returns if J.1=0 for i= 1, ... ,N. For the allocation 
problem with dedicated arrival streams, for the case of exponential servers, Ni and 
Hwang [20] optimize the probabilistic allocation policy with the mean sojourn time 
of a customer as objective fuction. 

The benefit of using pattern allocation is less substantial than in the original 
allocation problem without dedicated arrivals, because allocated arrivals from the 
additional Poisson arrival stream (forming a MAP) join in with the arrivals from the 
dedicated Poisson (J.1) arrival stream. So the arrival processes at the queues are not as 
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regular as the MAP in the original problem, they are the sum of such a MAP and 
a Poisson arrival process. Although the sum of two MAPs is also a MAP, and the 
Poisson process is just a special MAP, the arrival processes at the queues are hard to 
approximate by any GI arrival process, in particular the Gamma arrival process. 

As a result, we try to approximate the optimal assignment fractions for the 
allocation pattern with probabilistic allocation or with the Gamma optimization 
procedure, depending on the ratio between the sum of the dedicated arrival rates and 
the extra arrival rate. For example: if the sum of the dedicated arrival rates is large 
compared to the rate of the extra arrival stream, then the resulting arrival processes 
will resemble a Poisson process more than a MAP, hence it makes more sense to use 
the assignment fractions from probabilistic allocation for the allocation pattern. 

Below the MPP is formulated for the probabilistic allocation policy; for the 
Gamma optimization procedure the formulation is quite similar. 

DAl: 

( 6.1) 

N 

s.t. I ).; =A, 
i~l 

i= I, ... ,N, 

A; ~O, i=l, ... ,N. 

The structure ofDAl is similar to the earlier presented MPPs PAl and GAl. Again 
the solution of DAI can easily be determined using the allocation algorithm in Combe 
and Box ma [ 1 O]. 

Note that under probabilistic allocation, the original probabilistic allocation prob
lem reappears with the additional constraints that the arrival rate at queue i should be 

at least A.1, i = 1, ... , N. 

We finish this discussion of load balancing with dedicated arrival streams by 
mentioning two references on this topic. 

Bonomi and Kumar [5] discuss an adaptive probabilistic allocation policy for the 
case of exponential and the case of identical servers with objective function the mean 
sojourn time of a customer. They consider the situation where not all system para
meters are known, or where some of the parameters may change from time to time. 
Their main concern is the speed of convergence of the allocation policy towards the 
optimal assignment probabilities. 

Ross and Yao [23] consider the following N-server model. At server i a set Si of 
customer types arrives according to Poisson processes with arrival intensities ).ij,jES;, 

i = 1, ... , N. The jth arrival stream at server i has service time distribution Bij( · ), jESi, 

i = 1, ... , N. Furthermore, each server generates additional customers, according to 
a Poisson process, which may be routed to one of the other servers. The service time of 
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such a customer at server i has distribution B ;(" ). The aim in [23] is to find the 
probabilistic allocation policy that minimizes the sum of the mean sojourn time and 
some rerouting delay of a customer from the additional arrival process, under the 
constraints that the mean sojourn time of the jth dedicated customer stream at server 
i is less than or equal to aij• jES;, i = 1, ... , N. Ross and Yao [23] allow local priority 
scheduling of customer types, which also involves the additional customers. The 
essential problem is to derive an expression for ER;, the mean sojourn time at server 
i of an additional customer when local priority scheduling of customers is allowed. 
Using matroid theory, Ross and Yao [23] prove that x;ER; is a convex function in X;, 

where x; denotes the additional load assigned to server i. The remaining problem, 
determining the optimal assignment vector x*=(xj, ... ,x~), proceeds in a way that is 
similar to solving a common RAP. 

It might be interesting to use the resulting assignment vector for determining a good 
pattern allocation. 

6.3. Allocation for the case of multiple server queues 

In this model, a Poisson arrival stream with intensity A has to be allocated over 
N multiple server queues, where the number of servers at queue i is sh i = 1, ... , N. 

Except for a few special cases, no explicit expressions for the mean waiting times in 
GI/G/s or MAP /G/s queueing systems are available. Hence in this model, an optimal 
allocation cannot be determined analytically, for both probabilistic assignment and 
pattern allocation. 

We again assume that regularizing the arrival streams decreases mean waiting times, 
and again we expect to obtain better allocation fractions using the Gamma/G/si 
approximation for the MAP/G/s; queue than when using the M/G/s; approximation. 

Using this assumption, the path towards an allocation pattern is reasonably 
straightforward; by choosing a suitable strictly convex approximation for the mean 
waiting times in a Gamma/G/s queue one can formulate a MPP which possesses all 
the required properties for applying the algorithm in [10]. Bitran and Dasu [3] and 
Buzacott and Shanthikumar [7] mention several approximations for the mean wait
ing time in the GI/G/s queue. 
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Appendix A. Waiting times in the MAP/G/1 queue 

In this appendix we present some results on the waiting times of customers in the 
MAP /G/1 queue, and apply them to the typical MAP /G/1 queue which arises under 
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pattern allocation. The papers by Lucantoni [ 17], Ramaswami [22] and the book of 
Neuts [19] discuss in great detail all aspects of the MAP and the MAP /G /1 queue as 
parts of a more general framework. In [17] analytical results are obtained for queue 
lengths, busy period lengths, and waiting times in the MAP /G/1 queue. Lucantoni 
[17] also provides algorithms to obtain explicit results for distributions and moments 
of distributions. 

The MAP is defined by a continuous-time Markov process { J (t), t ~ O} with a finite 
state space E = { 1, ... , M }, where arrivals can occur at transition epochs. E represents 
the set of phases of the arrival process. 

The Markov process has generator D, which can be decomposed in two M x M 
matrices, D0 and D 1 . Let ),ij be the transition rate from state i to j, ii' jeE. Then A;= 
LjeEJ,ci Aij is the total transition rate out of state i. Let% denote the probability that 
given a transition from state i to j an arrival occurs. Then D = D0 +D 1 where 

i,jEE, i=j, 

i,jEE, i#j, 

i,jEE, i= j, 

i,jEE, i# j. 

D0 (Di) represents transitions in the Markov process {J(t), t ~ O} without (with) 
arrivals of customers. 

The fundamental arrival rate for the MAP is defined as 

in which n is the stationary probability row vector of the Markov process with 
generator D and e the M-dimensional unit column vector. 

For the MAP /G/1 queue, let the service time B have an arbitrary distribution B( ·) 
with first and second moment f3 and f:!( 2l, respectively, and let f3 ( ·) be the 
Laplace-Stieltjes transform of B. Neuts [19] shows that the MAP /G/1 queue is stable 

if )o' {:! < 1. 
Let Wv(·)={Wi(·), ... ,WM(·)}, where Uj(x) is the joint probability that at an 

arbitrary time the arrival process is in phase j and the amount of work at the server is 
at most x. Wv is the row vector of the virtual waiting times. 

A basic result for the MAP/G/1 queue is the Laplace-Stieltjes transform of Wv 
(which is the matrix equivalent of the Pollaczek-Khintchine formula for the ordinary 

M/G/1 queue): 

T:f'v(s)=s(l -X[J)g[sl +Do+ f:!(s)D1r 1 , s~O. (A.1) 

Here g is the invariant probability vector ofa matrix G=(Gij), Gii is the probability 
that at the end of a busy period the arrival process is in phase j, given that it was in 
state i at the beginning of that busy period. G can be computed using the following 
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matrix functional equation: 

G= J.:=O elDo+D1G)x dB(x). (A.2) 

The functional equation (A.2) is obtained by an extension of the branching argument 
for the M/G/1 busy period (cf. [9, p. 249]). 

From (A. l), for the specific MAP /G/l queue which arises under pattern allocation, 
one obtains E W" the vector of mean virtual waiting times: 

EW, = (E Wv)en+ n-((1-X{J)g + {JnDi)(en + D)- 1 , (A.3) 

in which (E W, )e is given by 

(EW )e= 1 [2(A'a-{(l-A'/3)g+n/3Di)(en+D)- 1 /3D 1 e)+X/3( 2 )]. 
v. 2(1-X/3) fl 

(A.4) 

Using (A.3), the PASTA property, and remarking that for the typical MAP that we 
study Pii=I if j=(imodM)+l, we obtain EWMAP/G/1' the mean waiting time of 
a customer in the MAP /G/1 queue: 

(A.5) 

Appendix B. Constructing the allocation pattern 

In this appendix we discuss the problem of constructing an allocation pattern from 
a given set {Pi. ... ,pN) of allocation fractions. First of all, these frequencies are 
translated into the vector (ai. ... ,aN), in which a; is the number of occurrences of 
index i in the pattern. The integers a; are computed by defining 

1n=min {m>NI ll{p;m-[p;m])/[p;m] II <e, [p~m] A</3;, for all p;>O} 

and taking a;= [p;n1], i = 1, ... , N. Note that the choice of e has a strong influence on 
the length of the pattern. After this translation there remains the problem of determin
ing an allocation pattern, such that the number of arriving customers at the routing 
point between two consecutive allocations to queue i is as constant as possible. 
Moreover, one has to achieve this for all queues simultaneously. In various optimiza
tion problems this combinatorial cyclic scheduling problem has been encountered. 
Itai and Rosberg [14] suggest the so-called Golden Ratio method for a cyclic 
scheduling problem that arises in the access control for a multi-access channel. Boxma 
et al. [6] study a polling model in which a server visits the queues according to 
a polling table. For this more or less dual problem of the traffic allocation problem 
they follow an optimization procedure which is similar to our approach for the traffic 
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allocation problem. First good visit frequencies are computed for a polling model in 
which the server chooses his next queue probabilistically, subsequently a polling table 
based on these frequencies is constructed, using the Golden Ratio method. 

The combinatorial complexity of the cyclic scheduling problem is yet undeter
mined. However, it seems to be a hard problem; it can be translated to known 
NP-hard problems, although with special structures, but those special structures do 
not seem to reduce the problem to a polynomially solvable one. 

In this appendix a heuristic based on the paper by Hajek [12] on extremal splittings 
of point processes is presented. This heuristic is an alternative for the Golden Ratio 
policy as described in [14]. 

First, some notation and a mathematical criterion for optimality are introduced. 
A pattern Sis defined by S = { s 1 , ... , sk} in which k =I SI is the length of S. Let S0 be the 
class of patterns oflength M =I:i [f;m] in which index i occurs exactly a; times. In the 
rest of this appendix we assume that a 1 ;;;.a 2 ;;.:. ··· ;;;.aN and we set N equal to the 
number of queues with ai >0. Under the allocation pattern SeS0 , the interarrival 
times at queue i form a repeated sequence of ai Erlang (A, di1 (S)) distributed variables, 
j=l, ... ,ai. The "distances" di/S) are the numbers of arriving customers at the 
routing point between two consecutive allocations to queue i. 

Next, the problem is to determine S* = argmaxseso V(S), in which 

V(S)= {~ ai .I df,(S)}. 
I J= 1 

The objective function V( ·)tries to capture the notion of even spreading in the pattern 
by a kind of second moment function. The weights ai have been chosen such that in 
the optimal allocation, i.e. di1 = M/ai, j = 1, ... , a;, i = 1, ... , N, the contributions of the 
queues to the objective function are all equal. The optimality criterion is quite 
arbitrary, for example, the weight factors could also have favored the queues with high 
or those with low frequencies. The same holds for the order in which the indices are 
included. At the moment it is unclear which objective function is best. However, our 
numerical experience suggests that slightly altering these factors does not have 
a substantial influence on the value of the objective function. 

The algorithm: The algorithm consists of two phases. In Phase l a basic pattern is 
created with a method derived from [12]. In Phase 2, this pattern is improved with the 

use of a local search method. 
Phase J: A basic pattern is constructed in an iterative way, starting with an empty 

pattern and consecutively inserting the indices of the queues into the pattern. After 
step i, the algorithm has produced a sub-pattern Si• which contains the indices of 
queues l, ... , i. The method operates as follows: If in step i in sub-pattern Si- 1 of 
length k, the index of queue i has to be inserted ai times, then first the distances di, for 

f II · [\?] b I [ ·1k+11 )ia·] • l the next sub-pattern Si are computed, o owmg - , Y l ;, = J ' ' , J = , ... , "i· 
In this way, the distances for queue i are regularly placed around their mean 
(k+a;)/a;. After computing these distances di,· the indices still can be inserted in 
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various ways into Si- 1. To illustrate, if S 2 = { 1, 1, 2} and a 3 = 1, then there are three 

different patterns to choose S3 from: {3,l,l,2},{l,3,1,2} and {1,1,3,2}. In this 

example, the insertion can start from three different points in S 2 • In general, there can 

be k different ways of inserting, creating possible new sub-patterns S ;1, ... , S~. From 

these patterns, S; is chosen such that V(S;)=min1 ,,,jH V(S{). 
We see that in the ith step of phase 1, index i is optimally placed in the sub-pattern. 

However, this optimality could be ruffled in subsequent iteration steps. Therefore in 

phase 2 a local search method is applied, trying to restore some of the regularity. 

Phase 2: In the local search SN is replaced by SN(k, I) if V(SN(k, l))< V(SN), where 

S'.v(k, /)=SN except for entries k and/, which in SN(k, /)are interchanged compared to 
SN. This local search is repeated until no further improvements can be made. 

Remark B.l. For the first phase also the Golden Ratio method, as described by Itai 

and Rosberg [14], could have been applied. The local search method does improve 

the Golden Ratio pattern, but in general the above-described heuristic based on [12] 
performs better. In the cases that we ran, the latter method provides a pattern S for 

which the objective function V(S) lies between 0 and 5 percent of the theoretical 

minimum, whereas Golden Ratio's relative error is in most cases between 2 and 
4 times as high. 
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