53 research outputs found

    A Fiber Bragg Grating Sensing Structure for the Design, Simulation and Stress Strain Monitoring of Human Puncture Surgery

    Get PDF
    In order to improve the precision and stability of puncture surgical operations to assist doctors in completing fine manipulation, a new of type puncturing needle sensor is proposed based on a fiber Bragg grating (FBG). Compared with the traditional puncture needle sensor, the new type of puncturing needle sensor is able to sense not only the axial force, but also the torque force during the puncture process. A spoke-type structure is designed near the needle tip. In order to eliminate the influence of temperature and realize temperature compensation, a reference fiber method using three FBGs is applied. FBG1 and the reference FBG2 are pasted on the upper and lower surfaces of the new-type elastic beam, and FBG3 is pasted into the groove on the surface of the new type of puncturing needle cylinder. The difference of Bragg wavelength between FBG1 and the reference FBG2 is calibrated with the torque force, while the difference between the Bragg wavelength of the FBG3 and the reference FBG2 is calibrated with the axial force. Through simulation and sensing tests, when the torque force calibration range is 10 mN·m, the torque average sensitivity is 22.8 pm/mN·m, and the determination coefficient R2 is 0.99992, with a hysteresis error YH and repetition error YR of 0.03%FS and 0.81%FS, respectively. When the axial force calibration rang is 5 N, the axial force average sensitivity is 0.089 nm/N, and the determination coefficient R2 is 0.9997, with hysteresis error YH and repetition error YR of 0.014%FS and 0.11%FS, respectively. The axial force resolution and torque resolution of the new type of puncturing needle sensor are 0.03 N and 0.8 mN·m, respectively. The experimental data and simulation analysis show that the proposed new type of puncturing needle sensor has good practicability and versatility

    Recent advances in biomedical photonic sensors: a focus on optical-fibre-based sensing

    Get PDF
    In this invited review, we provide an overview of the recent advances in biomedical pho tonic sensors within the last five years. This review is focused on works using optical-fibre technology, employing diverse optical fibres, sensing techniques, and configurations applied in several medical fields. We identified technical innovations and advancements with increased implementations of optical-fibre sensors, multiparameter sensors, and control systems in real applications. Examples of outstanding optical-fibre sensor performances for physical and biochemical parameters are covered, including diverse sensing strategies and fibre-optical probes for integration into medical instruments such as catheters, needles, or endoscopes.This work was supported by Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (PID2019-107270RB-C21/AEI/10.13039/501100011033), and TeDFeS Project (RTC-2017- 6321-1) co-funded by European FEDER funds. M.O. and J.F.A. received funding from Ministerio de Ciencia, Innovación y Universidades of Spain under Juan de la Cierva-Formación and Juan de la Cierva-Incorporación grants, respectively. P.R-V. received funding from Ministerio de Educación, Cultura y Deporte of Spain under PhD grant FPU2018/02797

    Sensores em fibra ótica para o estudo biomecânico do disco intervertebral

    Get PDF
    Doutoramento em Engenharia MecânicaO presente trabalho teve como objetivo principal estudar o comportamento mecânico do disco intervertebral recorrendo a sensores em fibra ótica. Na expetativa de efetuar o melhor enquadramento do tema foi efetuada uma revisão exaustiva das várias configurações de sensores em fibra ótica que têm vindo a ser utilizadas em aplicações biomédicas e biomecânicas, nomeadamente para medição de temperatura, deformação, força e pressão. Nesse âmbito, procurou-se destacar as potencialidades dos sensores em fibra ótica e apresentá-los como uma tecnologia alternativa ou até de substituição das tecnologias associadas a sensores convencionais. Tendo em vista a aplicação de sensores em fibra ótica no estudo do comportamento do disco intervertebral efetuou-se também uma revisão exaustiva da coluna vertebral e, particularmente, do conceito de unidade funcional. A par de uma descrição anatómica e funcional centrada no disco intervertebral, vértebras adjacentes e ligamentos espinais foram ainda destacadas as suas propriedades mecânicas e descritos os procedimentos mais usuais no estudo dessas propriedades. A componente experimental do presente trabalho descreve um conjunto de experiências efetuadas com unidades funcionais cadavéricas utilizando sensores convencionais e sensores em fibra ótica com vista à medição da deformação do disco intervertebral sob cargas compressivas uniaxiais. Inclui ainda a medição in vivo da pressão intradiscal num disco lombar de uma ovelha sob efeito de anestesia. Para esse efeito utilizou-se um sensor comercial em fibra ótica e desenvolveu-se a respetiva unidade de interrogação. Finalmente apresenta-se os resultados da investigação em curso que tem como objetivo propor e desenvolver protótipos de sensores em fibra ótica para aplicações biomédicas e biomecânicas. Nesse sentido, são apresentadas duas soluções de sensores interferométricos para medição da pressão em fluídos corporais.The present work aimed to study the mechanical behavior of the intervertebral disc using fiber optic sensors. To address the theme an exhaustive review of the various configurations of fiber optic sensors that have been used in biomechanical and biomedical applications, in particular for measuring temperature, strain, force and pressure, was conducted. In this context, an effort was made to highlight the advantages of fiber optic sensors and present them as an alternative or even a substitution technology to conventional sensors. In view of the application of fiber optic sensors to study intervertebral disc behavior an exhaustive review of the spine and, particularly, of the spinal motion segment was made. Along with an anatomical and functional description of the intervertebral disc, the adjacent vertebrae and spinal ligaments, their mechanical properties were also highlighted as well as the most common procedures and guidelines followed in the study of these properties. The experimental section of the present work describes a set of tests performed with cadaveric spinal motion segments using conventional and fiber optic sensors to assess strain of the intervertebral disc under uniaxial compressive loads. This section also includes an experience reporting in vivo pressures measured in the lumbar disc of a sheep under general anesthesia. In this case, a commercial fiber optic sensor and a purpose-built interrogation unit were used. Finally, the results of ongoing research aiming to develop fiber optic sensors prototypes for biomedical and biomechanical applications are presented. Thus, the proof of concept of two possible interferometric configurations intended for pressure measurement in body fluids was presented

    Force-Sensing-Based Multi-Platform Robotic Assistance for Vitreoretinal Surgery

    Get PDF
    Vitreoretinal surgery aims to treat disorders of the retina, vitreous body, and macula, such as retinal detachment, diabetic retinopathy, macular hole, epiretinal membrane and retinal vein occlusion. Challenged by several technical and human limitations, vitreoretinal practice currently ranks amongst the most demanding fields in ophthalmic surgery. Of vitreoretinal procedures, membrane peeling is the most common to be performed, over 0.5 million times annually, and among the most prone to complications. It requires an extremely delicate tissue manipulation by various micron scale maneuvers near the retina despite the physiological hand tremor of the operator. In addition, to avoid injuries, the applied forces on the retina need to be kept at a very fine level, which is often well below the tactile sensory threshold of the surgeon. Retinal vein cannulation is another demanding procedure where therapeutic agents are injected into occluded retinal veins. The feasibility of this treatment is limited due to challenges in identifying the moment of venous puncture, achieving cannulation and maintaining it throughout the drug delivery period. Recent advancements in medical robotics have significant potential to address most of the challenges in vitreoretinal practice, and therefore to prevent traumas, lessen complications, minimize intra-operative surgeon effort, maximize surgeon comfort, and promote patient safety. This dissertation presents the development of novel force-sensing tools that can easily be used on various robotic platforms, and robot control methods to produce integrated assistive surgical systems that work in partnership with surgeons against the current limitations in vitreoretinal surgery, specifically focusing on membrane peeling and vein cannulation procedures. Integrating high sensitivity force sensing into the ophthalmic instruments enables precise quantitative monitoring of applied forces. Auditory feedback based upon the measured forces can inform (and warn) the surgeon quickly during the surgery and help prevent injury due to excessive forces. Using these tools on a robotic platform can attenuate hand tremor of the surgeon, which effectively promotes tool manipulation accuracy. In addition, based upon certain force signatures, the robotic system can precisely identify critical instants, such as the venous puncture in retinal vein cannulation, and actively guide the tool towards clinical targets, compensate any involuntary motion of the surgeon, or generate additional motion that will make the surgical task easier. The experimental results using two distinct robotic platforms, the Steady-Hand Eye Robot and Micron, in combination with the force-sensing ophthalmic instruments, show significant performance improvement in artificial dry phantoms and ex vivo biological tissues

    Force Sensing Surgical Scissor Blades using Fibre Bragg Grating Sensors

    Get PDF
    This thesis considers the development and analysis of unique sensorised surgical scissor blades for application in minimally invasive robotic surgery (MIRS). The lack of haptic (force and tactile) feedback to the user is currently an unresolved issue with modern MIRS systems. This thesis presents details on smart sensing scissor blades which enable the measurement of instrument-tissue interaction forces for the purpose of force reflection and tissue property identification. A review of current literature established that there exists a need for small compact, biocompatible, sterilisable and robust sensors which meet the demands of current MIRS instruments. Therefore, the sensorised blades exploit the strain sensing capabilities of a single fibre Bragg grating (FBG) sensor bonded to their surface. The nature and magnitude of the strain likely to be experienced by the blades, and consequently the FBG sensor, while cutting soft tissue samples were characterised through the use of an application specific test-bed. Using the sensorised blades to estimate fracture properties is proposed, hence two methods of extracting fracture toughness information from the test samples are assessed and compared. Investigations were carried out on the factors affecting the transfer of strain from the blade material to the core of the FBG sensor for surface mounted or partially embedded arrangements. Results show that adhesive bond length, thickness and stiffness need to be carefully specified when bonding FBG sensors to ensure effective strain transfer. Calibration and dynamic cutting experiments were carried out using the characterisation test-bed. The complex nature of the blade interaction forces were modelled, primarily for the purpose of decoupling the direct, lateral, friction and fracture strains experienced by the bonded FBG sensor during cutting. The modelled and experimental results show that the approach taken in sensorising the blade enables detailed cutting force data to be obtained and consequently leads to a unique method in estimating the kinetic friction coefficient for the blades. The forces measured using the FBG are validated against a commercial load cell used in the test-bed. This research work demonstrates that this unique approach of placing a single optical fibre onto the scissor blades can, in an unobtrusive manner, measure interblade friction forces and material fracture properties occurring at the blade-tissue interface

    Sensores de fibra ótica para arquiteturas e-Health

    Get PDF
    In this work, optical fiber sensors were developed and optimized for biomedical applications in wearable and non-intrusive and/or invisible solutions. As it was intended that the developed devices would not interfere with the user's movements and their daily life, the fibre optic sensors presented several advantages when compared to conventional electronic sensors, among others, the following stand out: size and reduced weight, biocompatibility, safety, immunity to electromagnetic interference and high sensitivity. In a first step, wearable devices with fibre optic sensors based in Fiber Bragg gratings (FBG) were developed to be incorporated into insoles to monitor different walking parameters based on the analysis of the pressure exerted on several areas of the insole. Still within this theme, other sensors were developed using the same sensing technology, but capable of monitoring pressure and shear forces simultaneously. This work was pioneering and allowed monitoring one of the main causes of foot ulceration in people with diabetes: shear. At a later stage, the study focused on the issue related with the appearance of ulcers in people with reduced mobility and wheelchair users. In order to contribute to the mitigation of this scourge, a system was developed composed of a network of fibre optic sensors capable of monitoring the pressure at various points of the wheelchair. It not only measures the pressure at each point, but also monitors the posture of the wheelchair user and advises him/her to change posture regularly to reduce the probability of this pathology occurring. Still within this application, another work was developed where the sensor not only monitored the pressure but also the temperature in each of the analysis points, thus indirectly measuring shear. In another phase, plastic fibre optic sensors were studied and developed to monitor the body posture of an office chair user. Simultaneously, software was developed capable of monitoring and showing the user all the acquired data in real time and warning for incorrect postures, as well as advising for work breaks. In a fourth phase, the study focused on the development of highly sensitive sensors embedded in materials printed by a 3D printer. The sensor was composed of an optical fibre with a FBG and the sensor body of a flexible polymeric material called "Flexible". This material was printed on a 3D printer and during its printing the optical fibre was incorporated. The sensor proved to be highly sensitive and was able to monitor respiratory and cardiac rate, both in wearable solutions (chest and wrist) and in "invisible" solutions (office chair).Neste trabalho foram desenvolvidos e otimizados sensores em fibra ótica para aplicações biomédicas em soluções vestíveis e não intrusivas/ou invisíveis. Tendo em conta que se pretende que os dispositivos desenvolvidos não interfiram com os movimentos e o dia-a-dia do utilizador, os sensores de fibra ótica apresentam inúmeras vantagens quando comparados com os sensores eletrónicos convencionais, de entre várias, destacam-se: tamanho e peso reduzido, biocompatibilidade, segurança, imunidade a interferências eletromagnéticas e elevada sensibilidade. Numa primeira etapa, foram desenvolvidos dispositivos vestíveis com sensores de fibra ótica baseados em redes de Bragg (FBG) para incorporar em palmilhas de modo a monitorizar diferentes parâmetros da marcha com base na análise da pressão exercida em várias zonas da palmilha. Ainda no âmbito deste tema, adicionalmente, foram desenvolvidos sensores utilizando a mesma tecnologia de sensoriamento, mas capazes de monitorizar simultaneamente pressão e forças de cisalhamento. Este trabalho foi pioneiro e permitiu monitorizar um dos principais responsáveis pela ulceração dos pés em pessoas com diabetes: o cisalhamento. Numa fase posterior, o estudo centrou-se na temática relacionada com o aparecimento de úlceras em pessoas com mobilidade reduzida e utilizadores de cadeiras de rodas. De modo a contribuir para a mitigação deste flagelo, procurou-se desenvolver um sistema composto por uma rede de sensores de fibra ótica capaz de monitorizar a pressão em vários pontos de uma cadeira de rodas e não só aferir a pressão em cada ponto, mas monitorizar a postura do cadeirante e aconselhá-lo a mudar de postura com regularidade, de modo a diminuir a probabilidade de ocorrência desta patologia. Ainda dentro desta aplicação, foi publicado um outro trabalho onde o sensor não só monitoriza a pressão como também a temperatura em cada um dos pontos de análise, conseguindo aferir assim indiretamente o cisalhamento. Numa outra fase, foi realizado o estudo e desenvolvimento de sensores de fibra ótica de plástico para monitorizar a postura corporal de um utilizador de uma cadeira de escritório. Simultaneamente, foi desenvolvido um software capaz de monitorizar e mostrar ao utilizador todos os dados adquiridos em tempo real e advertir o utilizador de posturas incorretas, bem como aconselhar para pausas no trabalho. Numa quarta fase, o estudo centrou-se no desenvolvimento de sensores altamente sensíveis embebidos em materiais impressos 3D. O sensor é composto por uma fibra ótica com uma FBG e o corpo do sensor por um material polimérico flexível, denominado “Flexible”. O sensor foi impresso numa impressora 3D e durante a sua impressão foi incorporada a fibra ótica. O sensor demonstrou ser altamente sensível e foi capaz de monitorizar frequência respiratória e cardíaca, tanto em soluções vestíveis (peito e pulso) como em soluções “invisíveis” (cadeira de escritório).Programa Doutoral em Engenharia Físic

    OPTICAL-BASED TACTILE SENSORS FOR MINIMALLY INVASIVE SURGERIES: DESIGN, MODELING, FABRICATION AND VALIDATION

    Get PDF
    Loss of tactile perception is the most challenging limitation of state-of-the-art technology for minimally invasive surgery. In conventional open surgery, surgeons rely on their tactile sensation to perceive the tissue type, anatomical landmarks, and instrument-tissue interaction in the patient’s body. To compensate for the loss of tactile feedback in minimally invasive surgery, researchers have proposed various tactile sensors based on electrical and optical sensing principles. Optical-based sensors have shown the most compatibility with the functional and physical requirements of minimally invasive surgery applications. However, the proposed tactile sensors in the literature are typically bulky, expensive, cumbersome to integrate with surgical instruments and show nonlinearity in interaction with biological tissues. In this doctoral study, different optical tactile sensing principles were proposed, modeled, validated and various tactile sensors were fabricated, and experimentally studied to address the limitations of the state-of-the-art. The present thesis first provides a critical review of the proposed tactile sensors in the literature with a comparison of their advantages and limitations for surgical applications. Afterward, it compiles the results of the design, modeling, and validation of a hybrid optical-piezoresistive sensor, a distributed Bragg reflecting sensor, and two sensors based on the variable bending radius light intensity modulation principle. The performance of each sensor was verified experimentally for the required criteria of accuracy, resolution, range, repeatability, and hysteresis. Also, a novel image-based intensity estimation technique was proposed and its applicability for being used in surgical applications was verified experimentally. In the end, concluding remarks and recommendations for future studies are provided

    SMART IMAGE-GUIDED NEEDLE INSERTION FOR TISSUE BIOPSY

    Get PDF
    M.S

    A Survey on the Current Status and Future Challenges Towards Objective Skills Assessment in Endovascular Surgery

    Get PDF
    Minimally-invasive endovascular interventions have evolved rapidly over the past decade, facilitated by breakthroughs in medical imaging and sensing, instrumentation and most recently robotics. Catheter based operations are potentially safer and applicable to a wider patient population due to the reduced comorbidity. As a result endovascular surgery has become the preferred treatment option for conditions previously treated with open surgery and as such the number of patients undergoing endovascular interventions is increasing every year. This fact coupled with a proclivity for reduced working hours, results in a requirement for efficient training and assessment of new surgeons, that deviates from the “see one, do one, teach one” model introduced by William Halsted, so that trainees obtain operational expertise in a shorter period. Developing more objective assessment tools based on quantitative metrics is now a recognised need in interventional training and this manuscript reports the current literature for endovascular skills assessment and the associated emerging technologies. A systematic search was performed on PubMed (MEDLINE), Google Scholar, IEEXplore and known journals using the keywords, “endovascular surgery”, “surgical skills”, “endovascular skills”, “surgical training endovascular” and “catheter skills”. Focusing explicitly on endovascular surgical skills, we group related works into three categories based on the metrics used; structured scales and checklists, simulation-based and motion-based metrics. This review highlights the key findings in each category and also provides suggestions for new research opportunities towards fully objective and automated surgical assessment solutions
    corecore