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Abstract 

This thesis considers the development and analysis of unique sensorised surgical 

scissor blades for application in minimally invasive robotic surgery (MIRS). The lack of 

haptic (force and tactile) feedback to the user is currently an unresolved issue with 

modern MIRS systems. This thesis presents details on smart sensing scissor blades 

which enable the measurement of instrument-tissue interaction forces for the purpose 

of force reflection and tissue property identification. A review of current literature 

established that there exists a need for small compact, biocompatible, sterilisable and 

robust sensors which meet the demands of current MIRS instruments. Therefore, the 

sensorised blades exploit the strain sensing capabilities of a single fibre Bragg grating 

(FBG) sensor bonded to their surface. The nature and magnitude of the strain likely to 

be experienced by the blades, and consequently the FBG sensor, while cutting soft tissue 

samples were characterised through the use of an application specific test-bed. Using 

the sensorised blades to estimate fracture properties is proposed, hence two methods of 

extracting fracture toughness information from the test samples are assessed and 

compared. Investigations were carried out on the factors affecting the transfer of strain 

from the blade material to the core of the FBG sensor for surface mounted or partially 

embedded arrangements. Results show that adhesive bond length, thickness and 

stiffness need to be carefully specified when bonding FBG sensors to ensure effective 

strain transfer. Calibration and dynamic cutting experiments were carried out using the 

characterisation test-bed. The complex nature of the blade interaction forces were 

modelled, primarily for the purpose of decoupling the direct, lateral, friction and 

fracture strains experienced by the bonded FBG sensor during cutting. The modelled 

and experimental results show that the approach taken in sensorising the blade enables 

detailed cutting force data to be obtained and consequently leads to a unique method in 

estimating the kinetic friction coefficient for the blades. The forces measured using the 

FBG are validated against a commercial load cell used in the test-bed. This research 

work demonstrates that this unique approach of placing a single optical fibre onto the 

scissor blades can, in an unobtrusive manner, measure interblade friction forces and 

material fracture properties occurring at the blade-tissue interface.   
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The primary contribution of this research to the field of sensorised surgical 

instruments and devices is,  

 

A unique direct interaction-force measurement method for surgical scissor 

instruments using fibre Bragg gratings as the sensor. 

 

A number of interrelated key contributions to the field are: 

i. Measurement of cutting forces using a direct force sensing technique, 

for the first time, using a FBG sensor bonded to the blades.  

ii. A novel strain decoupling method used to determine fracture properties 

of the material being cut, as well the kinetic friction coefficient between 

the blades.  

iii. Validation of the forces on the blade measured by the FBG against values 

from a commercial load cell. Results show a close correlation between 

both. 

iv. An analytical model based on double tapered beam theory. This model 

allows strain distributions to be determined on the blade surface for 

surface mounted FBG sensors and within the blade structure for 

embedded FBG sensors. 

v. A model and experimental approach for quantifying the affects of 

adhesive bonding on strain transfer for a partially embedding FBG 

within the blade. 
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Chapter 1 

1 Introduction 

For centuries open surgery was the standard for performing operations on 

patients. This technique is traumatic for the patient, results in significant 

scarring and leads to lengthy and costly recovery times. In the last several 

decades, minimally invasive surgery (MIS) has revolutionised the way surgeries 

are performed and has addressed the demand for smaller incisions and shorter 

recovery times. Despite the obvious advantages that MIS has over open surgery 

there are a few significant drawbacks to the technique. It is worth noting that the 

advantages associated with MIS are primarily to the benefit of the patient while 

almost all the disadvantages affect the surgeon [1]. These disadvantages include, 

but are not limited to;  

 Lost hand-eye coordination 

 Increased operating time 

 Limited degrees of freedom (DOF) 

 Increased training time required 

 Loss of tactile and force feedback to the user 
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Technological advances in MIS have significantly progressed in the past 20 years 

[2] to the stage where a teleoperated MIS approach is now being adopted 

worldwide. This telemanipulation technique referred to as minimally invasive 

robotic surgery (MIRS) allows the surgeon to regain full access to the operating 

field and overcome most of the disadvantages associated with conventional MIS. 

However, the mechanically decoupled arrangement of surgeon and patient 

means that there is a total absence of force and tactile (haptic) feedback to the 

surgeon, to an even greater extent than conventional MIS [3]. A schematic of a 

typical MIRS master-slave system arranged as a telerobotic network is shown in 

Figure 1-1. 

Positional Information

Lack of Force Feedback

Master 

Console

Slave Robot

Patient

Visual feedback

A Master-Slave Surgical System

Surgical 

Instruments 

placed 

inside the 

Patient

 

Figure 1-1 A master-slave surgical system showing information flow paths  

The function of each subsystem is as follows; 
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1. The slave robot is the Teleoperator which manipulates surgical instruments 

by mimicking the movements of the surgeon’s manipulators [4]. Sensorised 

instruments measure the interaction forces arising during surgical tasks and 

transfer this force data to the master console. 

2. The master console is the interface between human and machine which 

reproduces the measured interaction forces to the user via a haptic display. 

The haptic display consists of motorised manipulators that provide 

resistance to the user’s movement. This resistance is appropriately scaled to 

the forces acting on the manipulated instrument at the slave console. 

The surgeon views the internal operative field through images from an 

endoscope (Figure 1-2) which also forms part of the slave console1.  

 

 

Figure 1-2 A view of a typical setup for robotic mitral valve repair showing the 
camera (Endoscope), robotic arms (instruments) [5] 

                                                        
 

1 Typically two or more manipulator arms carry actuated and sensorised instruments; a third arm controls the 
endoscopic camera. 
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In some cases the measured force information can also be viewed on the 

graphical display either as standalone graphical force information or in 

conjunction with forces reproduced via the haptic display [6, 7]. However, the 

challenge that still remains for all MIRS systems is achieving reliable and 

accurate measurement of the interaction forces that arise between instrument 

tip and the tissue being palpated, cut, grasped or punctured by that instrument 

[8-10].  

1.1 Motivation for the Research 

Many studies have been carried out to develop methods and techniques that can 

determine forces acting on surgical instruments during surgical procedures [11-

15]. The reasons for obtaining such force data vary. In some cases there is a need 

to provide such force information to the user either visually or mechanically via 

a haptic interface. Other studies have attempted to use the force information to 

ascertain whether or not the measurement of such forces is necessary or 

beneficial to the user. Additionally, researchers who focus on the development of 

reality-based or empirically-derived models of instrument-tissue interaction 

require in-vivo force information for the purpose of model validation. It is widely 

acknowledged that the ideal method of collecting such force data is to locate 

sensors close to the site of force generation. However, this approach comes with 

many associated challenges, specifically; size constraints, sterilisibility, 

biocompatibility, mechanism friction and backlash among others. To date, a 

solution has not been found that meets the requirements for instruments that 

have the capability to measure tool-tissue interaction forces such as cutting, 
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grasping and palpation [8, 9, 11]. Therefore, this work proposes the use of a 

novel force sensing technique employing a fibre Bragg grating (FBG) which will 

measure the forces arising on a surgical scissor blade for future MIRS 

applications.  

1.2 Thesis Aims and Objectives 

1.2.1 Research Aim 

This thesis presents an analysis of an unobtrusive and compact direct force 

sensing scheme incorporating FBGs implemented into surgical scissor blades to 

quantify instrument-tissue interaction forces during operation for the purpose 

of force reflection and tissue property identification. In this context, the primary 

aim of this research work is; 

To investigate and experimentally characterise a compact FBG-sensorised scissor 

blade end-effector as an integrated, direct force measurement solution to the 

problem of obtaining interaction force values generated at the blade-tissue 

interface. 

1.2.2 Research Objectives 

This thesis proposes the integration of FBG sensors onto the surface of a surgical 

scissor blade to facilitate force measurement during cutting. Parameters such as 

effective strain transfer from blade to FBG and deciphering the complex force 

components that arise at the blade-tissue interface will strongly influence the 

effectiveness of the proposed sensorised blades. Therefore, the objectives of this 

research are; 
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i. To design and build a characterisation test-bed that will facilitate the 

measurement and recording of blade-tissue cutting information from a 

pair of surgical scissor blades.  

ii. To investigate and characterise the nature of the forces generated at 

the instrument-tissue interface during cutting.  

iii. To ascertain the nature and magnitude of strain profiles experienced 

by the blade onto which a sensor will be placed. 

iv. To analyse the factors influencing strain transfer from the blade 

structure to the FBG core for surface-mounted and embedded 

configurations. 

v. To examine theoretically and experimentally the kinetic friction 

coefficient between the blades during an empty opening and closing 

cycle. 

vi. To determine the fracture properties of test samples using the 

proposed force sensing scheme. 

vii. To validate the results obtained from the FBG sensor for force and 

fracture toughness against a commercial load cell. 

1.3 Research Methodology 

This section provides a brief overview of the methodology adopted in this 

research in the characterising of a FBG-sensorised scissor blade. The 

methodology is summarised within Figure 1-3 which outlines the research 

hypothesis of this research followed by a number of key research objectives. 
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This is followed by the methodology which outlines the steps taken in the key 

stages that will facilitate the achievement of the research objectives.    
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Figure 1-3 Outline of research methodology 
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1.4 Organisation of the Thesis 

The contribution of this thesis will be the development of a unique direct 

interaction force sensing method for sensorised surgical scissor instruments 

employing a FBG optical fibre as the sensor. Chapter 1 outlines the aims, 

objectives and methodology employed for this particular research work.  

Chapter 2 discusses the general area of minimally invasive robotic surgery and 

highlights, in the context of the force measurement problem, how this research 

work will contribute a solution to the problem. Justifications for the selection of 

a direct force sensing technique employing FBGs have been laid out. Moreover, 

the requirements for a direct force measurement scheme of this type will be 

considered.  

In Chapter 3 an investigation into the nature of friction and fracture forces 

generated during the cutting of synthetic tissue samples is conducted. The 

development and calibration of the characterisation test-bed used is discussed. 

Results obtained from the samples are analysed and the fracture toughness 

determined. A closer examination of the blade structure is carried out to 

ascertain the sensitivity expected from a directly sensorised blade with an 

integrated electric strain gauge sensing element.  

Chapter 4 details the factors that influence the transfer of blade strain from the 

blade surface through to the fibre via an adhesive bonding layer.  Numerical and 

analytical modelling of the effect of adhesive bond length and thickness was 

carried out and the results compared. The results from an experimental 

investigation into strain transfer are also presented and used in the validation of 

the theoretical results. Unique details on the effect of partially embedding the 
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FBG force sensor within the structure of the blade element are all presented. 

Details on the change in sensitivity of the combined blade-FBG unit for the 

partially embedded configuration are compared to that of a surface mounted 

arrangement. The effects of lateral blade loading on the integrated FBG sensor 

are also analysed and the errors due to lateral loading quantified in this chapter.  

Chapter 5 documents the evolution of the characterisation test-bed to include a 

FBG sensor attached to the surface of the blade for the purpose of measuring the 

forces arising at the blade-tissue interface. A detailed theoretical model of the 

strains occurring at the FBG location during lateral and direct loading of the 

blade is presented. Details are given on a model that shows how the use of a 

single FBG sensor in the current configuration can enable the kinetic friction 

coefficient of the blades to be obtained. The limitations of the theory are also 

discussed. Dynamic experimental results obtained from the sensorised blades 

are presented and used to validate the theory.  

In Chapter 6 presents the conclusions from the analysis carried out on the 

sensorised blades as well as the limitations of this approach. The major 

contribution of this research is also presented in this chapter followed by a 

discussion on the future research stemming from this work. 
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Chapter 2 

2 State of the Art Review 

2.1 Introduction 

Presented in this chapter is a concise review of MIRS systems with a specific 

focus on the end-effectors that are in direct contact with tissue and consequently 

provide the motivation for this research work. An overview of the various state 

of the art sensing modalities available to address the lack of force feedback is 

carried out. Implementation of these sensing modalities can be achieved at 

different locations on the surgical end-effector units; hence, the advantages and 

disadvantages of these different locations are discussed. The sensor 

requirements for an effective direct force sensing scheme are also outlined.  

2.2 MIRS – Current Challenges 

Minimally invasive surgery (MIS) is an operating technique established in the 

1980’s. It differs from open surgery in that long slender surgical instruments 

(ranging from 5 to 14 mm) are inserted into the patient’s body through small 

incisions in the skin. A trocar is placed in the incision to guide the slender 



 
 
 

 
11 

 
 

 

surgical instrument into the abdominal cavity Figure 2-1. The abdominal cavity 

is filled with gas to expand the volume of the cavity allowing greater freedom of 

movement of the surgical instrument. This allows the surgeon to manipulate and 

treat organs, muscle and tissue within the body while observing the images on a 

2-D monitor. Most trocars are equipped with a valve that prevent the outflow of 

gas from the abdominal cavity [16].  

 

 

Figure 2-1 An MIS instrument guided into the gas filled abdominal cavity via a 
sealed trocar which prevents gas leakage.  

The primary advantages of this technique include smaller incisions, shorter 

hospital stays and lower risk of infection. Convalescence is also significantly 

reduced resulting in better clinical outcomes [11]. However, the disadvantages 

associated with this technique include the loss of hand-eye coordination, 
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reduced kinaesthetic and tactile feedback and limited degrees of freedom (DOF) 

within the abdominal cavity. Moreover, the trocar, abdominal wall, and organs 

within the abdomen all exert forces on the instrument that result in 

unrepresentative forces, felt by the user, at the hand-instrument interface. The 

trocar in particular generates high frictional forces resulting from the 

instrument shaft rubbing against the valve rubbing while translating along the 

shaft length and rotating about its longitudinal axis [16, 17].  

In the 1990’s development began on minimally invasive robotic surgical (MIRS) 

systems. The first robotic surgery was carried out in 1985 [12] and since then 

there has been a steady increase in robotic-based surgical systems. Robot-

assisted surgery has revolutionised the way in which surgeons carry out 

minimally invasive surgical procedures. It assists surgeons in overcoming the 

drawbacks associated with traditional MIS procedures such as hampered 

dexterity, reduced accuracy, and a loss of 3-D visualisation [12]. As well as 

addressing the disadvantages of MIS techniques robotic assistance offers new 

advancements in areas such as; provision of additional degrees-of-freedom (six 

instead of four), tremor filtering and scaling of motions, particularly in the field 

of microsurgery [13]. Despite all the advantages, progress in the field of robotic 

assisted surgery is limited by an unresolved problem; the lack of haptic (force 

and tactile) feedback to the user [14]. One of the most widely used commercially 

available minimally invasive robotic surgery (MIRS) systems is the daVinci™ 

from Intuitive-Surgical® Inc [15]. This system has been evaluated mainly in the 

field of minimally invasive heart surgery, but further applications will be 
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established in future. This type of system offers control over tool 

position/displacement only; there is no force measurement at the slave side as 

well as no haptic feedback at the master console [15]. This lack of force feedback 

leads to the difficult task for the surgeon of interpreting organ deformation as a 

measure of the forces at the slave side. This in turn is quite taxing on the 

surgeon, which can lead to reduced levels of concentration and increased fatigue. 

Complications such as accidental puncturing of blood vessels or tissue damage 

can also be attributed to lack of haptic feedback [18]. There is little doubt that 

the inclusion of force feedback in a MIRS system leads to improved performance 

over a system without haptic feedback. Previous work by Tavakoli et al [19] has 

looked at a blunt dissection task where it was found that force feedback reduces 

the number of errors that lead to tissue damage by a factor of three. A series of 

experiments on suture tying were carried out by Guthart et al [15], with and 

without, haptic feedback. These experiments indicated conclusively that haptic 

feedback is advantageous, and therefore desirable, in robot-assisted surgical 

systems. Thus, for many dexterous manipulations such as cutting, grasping, 

suturing or dissection, force sensing needs to be incorporated into the surgical 

instruments being used. 

2.3 Feedback Modalities 

The term haptic feedback has been broadly defined by Okamura as touch 

feedback which may include kinaesthetic (related to force and position) and 

cutaneous (tactile feedback related to the skin) [14]. Kinesthetic feedback is 
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perceived through direct contact with the object and gives a measure of the 

forces applied to the patient or tissue by surgical instruments. During open 

surgery tissue features can be assessed quickly by the surgeon owing to 

unrestricted access to the operation site. A functional schematic of feedback 

modalities in open surgery by Schostek [20] is shown in Figure 2-2. It illustrates 

clearly the feedback and feedforward paths between the surgeon and tissue 

being manipulated by surgical instruments. Modern MIRS systems are equipped 

with, and even enhance, visual feedback to the surgeon through the use of high 

definition 3D depth perception via screens within the user console.  

 

 

Figure 2-2 Multimodal feedback in open surgery[20]. 

The lack of force feedback in MIRS is considered to be a safety risk because it can 

result in accidental tissue damage [20]. Therefore, the majority of research 

regarding feedback in robotic surgery is aimed at restoring kinesthetic feedback 

by adding force and torque sensors to the robotic instruments. Kinesthetic 
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feedback, for most MIRS applications such as knot tying, is sufficient. This is due 

to the fact that kinaesthetic feedback allows the detection of position, movement 

and bulk forces acting on the end-effector [21, 22] during interaction with the 

suture or the tissue being manipulated. Other parameters such as contact force 

location and pressure distribution information (tactile feedback) may not be 

necessary to carry out most surgical tasks [23, 24]. However, palpation of tissue 

is noted as one particular task where the inclusion of tactile feedback in the 

MIRS system is particularly relevant [25, 26]. 

Other feedback modalities which have been considered when attempting to 

measure the interaction forces between instrument and tissue include visual 

feedback, virtual fixtures and auditory feedback (sensory substitution methods). 

A novel approach by Fischer et al [27] simultaneously measured the force 

applied by a grasper as well as the tissue blood oxygenation saturation as a 

means of limiting the maximum force being applied to the tissue. A GUI presents 

the data to the user in the form of coloured circles which change colour in 

proportion to the applied force. Reiley et al [28] investigated virtual fixtures 

which is a method of preventing the user applying excessive forces or entering 

forbidden regions during a surgical procedure by physically restraining the 

instrument tip. Thorough robotic modelling and control approaches are required 

for the accurate placement of virtual fixtures. Current research is investigating 

the uncertainty involving robot position relative to anatomical structures due to 

unmodelled dynamics [28]. The effects of substituting direct haptic feedback 

with auditory cues were studied by Kitagawa et al [29]. This work concluded 
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that, although auditory cues gave additional support to the surgeon, it was 

suggested that such continuous auditory feedback might be disruptive and 

confusing in an already noisy operating environment.  

It is reported that, despite attempts at incorporating feedback to the end-user 

using virtual fixtures or auditory cues, the most reliable approach is that 

involving the incorporation of sensors into the tip of the surgical instrument 

[29]. Such an approach is particularly pertinent while manipulating or handling 

soft tissues, as the modelling, estimation and subsequent compensation of soft 

tissue mechanical behaviour during intraoperative conditions is challenging [30, 

31].  

The direct force measurement approach forms the basis of this research work 

where we investigate the use of an optical sensor as a means of detecting the 

forces acting on the tip of a surgical device during operating. The reasons for 

adopting the direct force sensing approach over indirect force sensing 

alternatives are; 

 Direct force measurement instead of a force estimation 

 Forces on blades/jaws are isolated from all other forces 

 Mechanical properties of the tissue can be determined 

 Fast response without delays or sluggishness 

 No complex spatial modelling required 

 Integration of real-time end-point sensing into intelligent control 

schemes [32]. 
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2.4 Force Sensor Locations  

The realisation of a successful force feedback scheme requires that the sensing 

elements must form an integral part of the instrument. Commercially available 

force sensors are very effective for measuring forces and torques in many MIRS 

systems, but the surgical environment places severe constraints on size, 

geometry, cost, biocompatibility, and sterilisability. Although it is difficult to add 

force sensors to existing robotic instruments some researchers have had success 

on this front by creating specialised grippers that can attach to the jaws of 

existing instruments [1, 33, 34]. The surgical environment is a challenging 

environment in which to sense interaction forces. Sensors would ideally be 

placed in locations on the robot outside the body of the patient to simplify 

system design. However, this is problematic for most surgical robots since force 

sensors placed outside the patient’s body will acquire force data not only from 

the delicate interactions between the instruments and tissue, sutures, etc., but 

also from sources that are not directly relevant to the surgical task [35]. For 

example, there are significant friction, body wall forces, and torques applied to 

the instrument at the insertion point to the patients abdominal cavity. These 

undesirable forces are large enough to mask the instrument-tissue interaction 

forces that should be displayed to the surgeon. According to Okamura [35] force 

sensors would ideally be placed in, or near, the tip of the instrument being 

placed inside the patient. Additionally, the materials of the sensor must 

withstand harsh sterilisation procedures and because surgical instruments 

interact with warm tissues and fluids, sensors must be insensitive to changing 
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temperature. According to a state of the art review in force and tactile sensing 

for MIS by Puangmali et al [10] there are four location where the sensing 

elements can be placed on a MIRS laparoscopic instrument (Figure 2-3);  

 

 

Figure 2-3 Possible sensor locations on a MIRS laparoscopic instrument [9] 

1. Near or at the instrument actuation mechanism. 

2. Instrument shaft outside the patient’s body 

3. Instrument shaft inside the patient’s body 

4. At the instrument tip.  

These four sensor locations can be classified into two categories as follows,  

 Direct force sensing – sensors placed inside the body on or near to the 

instrument tip 

 Indirect force sensing – sensor placed outside or inside the body but not 

on the instrument tip. 

The advantages and disadvantages of indirect and direct forces are discussed in 

the sections that follow.  
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2.4.1 Indirect Force Sensing  

One approach to overcoming the adverse frictional effects associated with 

indirect force sensing (Section 2.2) is being investigated by a number of groups 

[36-38]. This method involves the use of what is commonly termed “the overcoat 

method”. This is a double barrel arrangement allowing the trocar to be fed into 

the abdominal cavity, unimpeded by friction, abdominal wall forces [35] and the 

fulcrum leverage effect [39] at the entry point on the patient. The force sensors 

are placed outside the abdominal cavity (Figure 2-4) and measure interaction 

forces between instrument and tissue resulting from pulling, pushing, probing 

and palpation. Shimachi et al [36, 40, 41] developed a system using the overcoat 

method which can be integrated into the daVinci® robotic surgical system. 

 

Figure 2-4 Overcoat method of force sensing used by Shimachi et al [40] 
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However, the total force sensing error is estimated to be 0.5 N as a result of the 

deformation of the adaptor frame supporting the motion drivers. Studies were 

also carried out by this group which used accelerometer measurements to cancel 

out the adverse inertial and gravitational effects of the motion 

drivers/instrument mass along the axis of the trocar. This method does not 

consider the grip forces at the jaws of the instrument.  

Zemiti et al [37] have also investigated the overcoat method; a 6-axis 

force/torque sensor, having a force resolution of 0.002 N in three dimensions 

and torque resolution of 25 µNm about the x,y and z-axes, is mounted outside of 

the abdominal cavity. Experimental results highlight the robot’s potential for the 

measurement of contact forces at the distal end without being corrupted by the 

friction between the instrument trocar and the passive guide. Grasping forces 

are not measured or controlled as the robot currently consists of a manually 

controlled grasper. 

Alternatively, Dobblesteen et al [42] estimated the forces arising at the tip of a 

grasper by carrying out a kinematic analysis of the relationship between the 

grasper handles and the tip. Results showed a good correlation between the 

actual tip grasping forces and the estimated tip forces measured at the handles. 

However, it was concluded that issues with mechanism friction and 

consequently hysteresis within the actuation mechanism needed to be 

addressed to improve the method adopted.  
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2.4.2 Direct Force Sensing 

An alternative means of sensing the interaction forces at the instrument-tissue 

interface is to locate the force transducers at the distal end either close to, or on, 

the instrument tip. There are two types of force that require measurement at 

this point, interaction/manipulation forces and grasping/cutting forces. Kuebler 

et al [3] have developed a six-axis resistive-based force/torque sensor utilising a 

Stewart Platform arrangement which is placed between the gripper and the 

cardanic joint. Results have shown that the sensor can provide realistic 

kinaesthetic feedback of the remote interaction forces. The sensor can handle 

manipulation forces up to 20 N with a resolution of 0.25 N in the z-direction and 

0.05 N in the x and y-directions. The force-torque sensor (FTS) does not cater for 

the measurement of the gripping forces, this being facilitated independently 

through the use of a uniaxial sensor. 

The most suitable location for the force transducer is on the instrument tip 

allowing for direct measurement of the grasping forces and the interaction 

forces, without frictional and transmission disturbances. However, this is 

technically the most challenging location for placement of a force transducer 

owing to size restrictions. Other issues include the cost of the sensor as well as 

preservation of the design so as to ensure functionality is not compromised [3].  

A number of different sensing technologies are currently being investigated for 

suitability as direct force sensing transducers. Tholey et al [43] attached a 

flexible resistive element on to a grasper for the measurement of forces normal 
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to the gripper surface. During calibration, the arrangement exhibited nonlinear 

characteristics as well as significant hysteresis up to an applied force of 13 N.    

A grasper catering for the measurement of forces being applied in 3-DOFs has 

been developed by Fischer et al [44]. The gripper was manufactured from 2024-

0 aluminium alloy instead of stainless steel to increase sensitivity, while strain 

gauges were bonded on to the gripper for force measurement. The measured 

forces were displayed to the user via a haptic interface using visual indicators as 

a measure of the applied force. All electrical components in the device were 

coated with an appropriate silicon epoxy to ensure biocompatibility as well as 

sterility. This method does not allow a standard autoclave sterilisation protocol 

to be used and hence the instrument is sterilised using hydrogen peroxide. 

A study into a force reflection scheme by Hemert et al [45] found that the forces 

exerted on  tissue by the grasping tips of a pair of forceps should be measured 

with sufficient accuracy if a bilateral position-force control scheme is to be 

implemented to control the master-slave system. It was noted that, due to 

several nonlinearities within the forceps, the force measurement at the handle is 

less accurate than measurements at the tip. They concluded that an optical force 

sensor was required to measure the forces at the tip in a safe manner without 

the influence of nonlinearities such as friction and mechanism backlash.  

2.4.3 Benefits of Direct Sensing 

It has been discussed in Section 2.4.1 that for indirect force measurement 

schemes the quality of the estimated forces at the distal end is degraded as a 
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result of frictional effects, gravity and the inertia of mechanical components. 

Many research groups have indicated that the ideal location for force sensor 

placement is as close as possible to the site of interaction [10, 43, 46-48], which 

for MIRS is at the instrument tip. This implies that augmented instruments 

employing the direct force sensing method are the most appropriate for accurate 

measurement of complex instrument-tissue cutting forces. Another benefit of 

accurate real-time direct force measurement is that the data collected from these 

instruments is expected to yield more accurate models for surgical simulators 

used in surgeon training. This can be attributed to the fact that force information 

measured is a true reflection of the forces exerted on the instrument tip, 

unmasked by fulcrum friction forces [16, 17].  The benefits provided by a direct 

force sensing method provide the basis for this thesis where the overall aim is to 

develop sensorised scissor blades that can detect complex cutting forces at the 

blade-tissue interface and enable the fracture properties of the tissue be 

estimated.  

2.5 Sensorised Surgical Instruments 

The geometries of a range of surgical instruments have been adapted into the 

design of surgical instruments specifically for use in MIRS. Among these are 

graspers, forceps, scissors and scalpels, some of which can come with 

cauterisation capability. Many research labs have explored the possibility of 

sensorising graspers and forceps [43, 49-51] for the purpose of measuring grip 

forces occurring between the tips. Scalpels and knives have also been sensorised 
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to measure multi-axis interaction forces [52, 53] enabling direct haptic feedback 

during an operation. Limited work has been carried out to date on sensorising 

scissor blades for acquiring interaction cutting forces during operation.  

2.5.1 Surgical Scissors 

Scissors represent an indispensable tool for any surgical discipline, in medical 

practices no less than in clinical departments. It is probably safe to say that 

among all surgical instruments, scissors are used most frequently – prior, during, 

and after the operation. Haag et al [54] reported that there are few better 

alternatives when it comes to transecting or dissecting tissue or cutting sutures 

or any other kind of auxiliary materials. Scissors have been the traditional tool of 

surgeons for dissection in conventional surgery and have maintained an active 

role in laparoscopic surgery. This can be attributed to their precise operator-

determined action, safety, and low price in comparison with other dissection 

techniques. Dissection is regarded as a necessary component of many surgical 

procedures carried out using open, minimally-invasive, or robot-assisted 

operating techniques. The two-handed scissors-atraumatic forceps technique 

represents the mainstay of complex laparoscopic surgical dissection [55]. 

Surgical dissection and transection using scissors are integral to many of the 

most frequently performed surgical interventions such as adrenalectomy, 

cholecytectomy, gastric bypass, heller myotomy [56] and prostatectomy [57].  

Sharp dissection implies the use of concentrated effort/energy on a relatively 

small area of tissue to achieve separation with little disruption to surrounding 
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tissue. This is most readily achieved by dividing homogenous tissue at right 

angles to lines of tension. Blunt dissection on the other hand separates bulk 

tissues ideally between tissue cleavage planes [55]. Properly used, scissors 

stabilise flaccid tissues between the blades during cutting and provide excellent 

control over both depth and direction of incision. Observations by Mahvash et al 

[58] relating to how surgeons use scissors show that the cutting blades rarely 

open beyond an angle of 20° and never close completely. Rather, they close the 

blades to the point where they feel the cut ends which is not when the blades are 

completely closed as scissor blades rarely taper to a point at their tip. Making 

small cuts over this small angular region provides the surgeon with a greater 

sense of feeling and control particularly during delicate cutting procedures. 

2.5.2 Previous Studies of Sensorised Scissors 

A study by Mahvash et al [59] modelled the forces generated on a pair of a 

Metzanbaum scissor blades based on empirical data collected from a test 

apparatus.  The test apparatus had a load cell placed at the scissor handles but 

not directly on the blades themselves. A load cell at the scissor handles was 

sufficient for this particular study as the aim was to measure the forces 

experienced at the scissor handles. The measured force data was then used to 

develop cutting models for a virtual haptic interface.  

Yang et al [60] carried out a study in which a laparoscopic scissors was adapted 

to measure cutting forces while cutting arterial wall tissue. A force sensor was 

attached to one of the scissor handles and measured the forces occurring at the 
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handle. This indirect force measurement method used by Yang et al [60] is 

sufficient for measuring forces on the instrument handle but did require 

modelling of the linkage mechanism in order for the true forces occurring on the 

blades to be determined. Changes in the linkage mechanism with time due to 

changes in frictional resistance and backlash would clearly affect this model and 

consequently compromise the accuracy of the cutting force values obtained.  It is 

argued that a direct force sensing approach where a suitable sensor formed part 

of the blade element would eliminate these drawbacks and allow unhindered 

direct force measurements to be taken.  

A study by Trejos et al [61] investigated the tool-tissue interaction forces 

required to manipulate tissue during natural orifice transluminal endoscopic 

surgery (NOTES). The aim of the study was to measure typical interaction forces 

acting on the NOTES instruments (grasper and scissors) while performing in-

vivo abdominal surgery. To measure the interaction forces, researchers opted 

for a direct sensing approach, by attaching small strain gauges to the scissor and 

grasper instruments close to (but not on) the gripper and blades (Figure 2-5). In 

the case of the grippers, the purpose of the strain gauges was to measure 

interaction forces perpendicular to the plane of the strain gauges during tissue 

manipulation. In the case of the scissors, the gauges were used to measure the 

forces arising during positioning of the instrument but not the forces produced 

during cutting. It is our view that with suitable miniature sensing technology a 

similar study could be carried out to measure the cutting forces experienced by 

the blades during in-vivo abdominal surgery using NOTES. Images from the 
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Trejos study showed that the scissor blades were approximately 3 mm in length 

and consequently would require very small narrow sensors to be attached to the 

blade surface.  

 

 

Figure 2-5 Sensorised NOTES scissors [61] 

Fundamentally, sensorising scissor end-effectors, using a direct force sensing 

method, for use in MIRS, NOTES or indeed traditional MIS will bring a number of 

benefits to the surgeon during operation such as; 

 Indicating to the surgeon, with a restricted view of the operating site [61], 

that an actual cut has been made. 

 The accumulation of real-time in-vivo cutting force data to facilitate the 

creation and validation of soft tissue virtual simulation models. 

 Enabling detection of blade slippage during cutting indicating blade 

bluntness and consequent tissue damage. 
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 Enabling the collection of in-vivo cutting force information for the 

purpose of estimating material mechanical properties such as fracture 

toughness. 

2.6 Fracture Toughness 

Fracture toughness is a material property that indicates a material’s resistance 

to fracture propagation upon loading [62]. Standard engineering tests used to 

measure fracture toughness classify fracture into three modes as illustrated in 

Figure 2-6. Mode I is an opening tensile mode where the crack surfaces move 

directly apart. Mode II is a sliding (in-plane shear) mode where the crack 

surfaces slide over one another perpendicular to the leading edge of the crack. 

Mode III is a tearing (antiplane mode) where the crack surfaces move parallel to 

the leading edge of the crack.  

 

Figure 2-6 Fracture modes [63] 

There are a few standard tests that are used to quantify fracture toughness of 

soft tissue samples. These include: 
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 A trouser (or tear) test (Mode III) in which a sample is made into a strip 

and a longitudinal starter crack made in the sample. Each leg of the strip 

is clamped in a universal testing machine and loaded until it breaks.   

 Single edge notched tensile test (Mode I) where like the trouser test a 

rectangular sample is prepared and a starter notch made mid-way along 

the sample on one edge. The sample is then clamped in the testing 

machine and pulled to propagate the crack across the specimen.  

 A shearing test (Mode I) in which a blade (preferably angled) is mounted 

in a universal testing machine crosshead. A second blade is held fixed 

below the angled blade and the specimen placed between the two. The 

angled blade is lowered and guillotines the sample. 

 

Other tests that have been adopted to measure the fracture toughness of specific 

types of biological samples include; the wedge fracture test (food samples), 

punch-and-die test (leaves and skin), microtome test (histological sections) and 

the single edged notched bending test (bone and nacre). The scissoring test2, 

pioneered by Lucas and Periera [64] has been established as an effective means 

of measuring the fracture toughness of leaves and mammalian skins. The tests 

involved mounting a pair of scissors in a universal testing machine monitoring 

the forces force generated while cutting a biological sample. Friction forces 

between the blades were accounted for by closing the blades while no tissue was 

                                                        
 

2 Scissor cutting is considered to be mixed-mode fracture, although this can be argued against if similar 

work-of-fracture results are obtained for the same test specimens using the wedge test.  In turn this enables 

results to be interpreted conventionally.   
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present and work done due to friction only was determined. This friction work 

was subtracted from the work of cutting which yielded an estimation of the 

fracture toughness of the sample being cut. 

2.6.1 Measuring Fracture Toughness in-vivo 

The fracture toughness of soft tissue acted upon by the surgical tools plays a 

critical role in medical procedures, such as catheter insertion, robotically-guided 

needle placement, suturing, cutting or tearing, and biopsy [65]. These 

procedures  all involve tissue damage to a certain extent, which should be kept to 

a minimum in order to avoid any medical complications [66]. Thus, knowledge 

of fracture related material properties, especially the fracture toughness, is of 

major importance. 

Fracture toughness characterises a material’s intrinsic resistance to crack 

initiation and penetration [67]. The measurement of fracture toughness of soft 

tissues is of interest to many researchers [68] particularly those involved in the 

development of reality-based tissue interaction models [69-71]. This material 

property is of importance when estimating or modelling interaction forces on 

surgical instruments during bisection, shearing and puncturing using scissors, 

blades and needles. Common methods currently being employed to estimate in-

vivo fracture toughness of biological tissue involve the use of material 

indentation or needle insertion [66, 72]. A review of relevant literature reveals 

that there are no instrumented scissor instruments currently available that are 

used specifically to facilitate the collection of fracture property data in-vivo.  
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2.6.2 Fracture Toughness using Scissors 

Although there are many types of instrument used in medical intervention that 

can facilitate the measurement of fracture toughness values, this thesis focuses 

on the use of scissors. Scissors are an effective and precise instrument for cutting 

thin tissues in laparoscopic and minimally invasive robotic surgery [54, 55, 65]. 

The advantages of using scissor blades over scalpels and indenters in the 

determination of fracture toughness include; 

(a) The test is simple to perform. 

(b) The cut can be directed as required to pass through the anatomical 

features of interest. 

(c) Material can be held (to a certain extent) by the scissors between its 

blades. 

(d) A reasonably long cut can be achieved. 

(e) Friction effects between blades can be quantified before and after a 

cutting procedure.  

Conversely there are a number of documented drawbacks associated with 

employing a scissoring technique [62]. Specifically; 

(a) Friction between the blades can be significant and must be compensated 

for.  

(b) The rate of cutting is non-uniform throughout the cut length increasing 

toward the tip of the blades.  
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It is evident that using scissors to estimate fracture toughness requires that 

adequate measurement and compensation of blade friction forces is required. 

This is particularly significant when cutting soft tissue as the forces generated 

from blade friction could be significantly greater than the forces on the blade 

arising from tissue fracture.  

2.7 Forces on Scissor Blades 

The number of different scissor and dissector instruments used in laparoscopic, 

minimally invasive and robot assisted surgery platforms is vast. Consequently, 

the forces generated on the cutting blades during operation are very much 

dependent on the mechanical properties of the tissue being cut as well as blade 

geometry, mechanism linkage, age of instrument and experience of the user.  A 

recent study by Mucksavage [73] et al carried out experiments on typical 

instruments used on three different daVinci surgical platforms types; the 

standard-platform, the s-platform and the si-platform. A load cell was placed 

within a manufactured housing unit (Figure 2-7(a)) onto which the tips of the 

instruments (including scissor instruments) were placed (Figure 2-7(b)). The 

instruments clamped the housing and the closing force measured. The forces 

measured from the three platforms specifically for two scissors instruments are 

summarised in Table 2-1.  
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Figure 2-7 Experimental Force measurement setup (a) Load cell and housing unit 
(b) A laparoscopic instrument gripping the machined portion of the housing unit. 

 

 
Closing forces (N) per platform type 

Scissor Type Standard-platform s-platform si-platform 

Round-tip 
scissors 

12.57 10.11 10.04 

Monopolar 
curved scissors 

12.10 10.38 10.38 

Table 2-1 Measured closing forces of 8 mm laparoscopic scissors [73] 

 

The study concluded that different grip forces were observed for each platform 

whilst using the same surgical instruments. This reinforces the need for a force 

measurement scheme that measures the true forces exerted on the instrument 

tip, free from the influence of system (platform) type, actuation mechanism and 

geometry. Greenish et al [74] have experimentally obtained in-vitro cutting 
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forces that occur at the handles of Metzenbaum surgical scissors. The main aim 

of this work was to use the experimentally-derived force data to enable 

reproduction of realistic force feedback in a virtual haptic scissors force 

feedback simulator [75]. It was concluded that the forces required to cut the 

tissue samples remained indeterminate and cited that an improvement to the 

force sensor was required. The measured force ranges for three different types 

of scissors used is summarised in Table 2-2. 

 

 
Cutting force range per scissor type (N) 

Material cut3 
Metzenbaum Mayo Iris 

Empty 3 - 5 5 - 9 5 - 8.5 

Liver 3 - 8 7 - 10 12 - 20 

Skin 7 - 27 8 - 22 23 - 49 

Muscle 6 - 8 7 - 10 15 - 23 

Table 2-2 Summary of measured cutting forces by Greenish [74]  

It should be noted that the force range signifies the minimum peak force to the 

maximum peak force obtained from a number of samples of the same specimen. 

It is not clear, from the data presented in Table 2-1 and Table 2-2 as to whether 

                                                        
 

3 Rat and sheep specimen samples 
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the scissor blades being considered would deflect sufficiently enough under 

loading and generate enough mechanical strain to load a strain sensor attached 

to its surface or within its structure. It is believed that the strain generated in 

scissor blades, particularly smaller blades, would be quite low. Therefore, the 

sensor chosen must itself have sufficiently high sensitivity to ensure that 

meaningful strain and force data is obtained from the sensorised blade. 

Moreover, the location of a sensor on the blades is also important, particularly in 

the case of scissor blades, as the location of the forces acting on the blade during 

cutting vary along its length.  

2.8 Summary of the Research Problem 

It is evident, based on the literature reviewed, that there exists a need for haptic 

feedback in MIRS. The benefits are twofold;  

 Haptic (both tactile and kinaesthetic) feedback enables the user a sense of 

feel that is otherwise lost due to the remote nature of the master-slave 

system. 

 Real time information in relation to tissue properties while being 

manipulated may be obtained in-vivo and used for the development and 

validation of soft tissue models and simulations.  

A schematic of a MIRS system is shown in Figure 2-8 along with a view of a 

surgical instrument illustrating the direct and indirect sensing locations onto 

which sensors can be placed.  
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Figure 2-8 Master-slave MIRS system and a slender surgical instrument 

Obtaining true information pertaining to the interaction between tissue and 

instruments which is free from the influence of unwanted frictional and inertial 

effects dictates that the tip of the instrument is the ideal location for force sensor 

placement (direct force sensing). This location enables force information to be 

collected as close as possible to the point where it originates (Figure 2-9). 

 



 
 
 

 
37 

 
 

 

Instrument Tip

Tissue

 

Figure 2-9 Ideal location for sensor placement (Instrument tip) 

A number of instruments can be considered for direct force sensing 

implementation, ranging from graspers and forceps to scissors and dissectors. 

For this research work Metzenbaum scissors have been selected as the 

instrument of choice for the following reasons; 

 They are an integral part of many of the most frequently performed 

surgical interventions. 

 Straight Metzenbaum scissors are mostly used in laparoscopic surgery for 

mechanical dissection.  

 Metzenbaum scissors are recommended for blunt dissection and for 

sharp dissection of delicate tissues [76]. 
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The focus of this research therefore is to integrate a force sensing scheme at the 

surgical scissor blades, enabling delicate soft tissue forces to be quantified while 

cutting. This approach in which a small sensing element is bonded to or ideally 

embedded into the scissor blade dictates that the scissor blade itself becomes 

the sensing element (Figure 2-10)4. The benefit of this approach is that only 

forces occurring in a region between a blades pivot and its tip are measured and 

are thus unaffected in any way by forces outside the region resulting from 

mechanism backlash and friction. The challenges associated with implementing 

a force measurement scheme are; 

 Selecting a sensor with sufficiently compact dimensions 

 The placement and attachment/bonding of the chosen sensor 

 Deciphering the various forces that act on the blade during cutting, i.e. 

fracture forces, compression forces, and friction forces. 

 

                                                        
 

4 Note that Figure 2-10 shows two integrated sensors. The sensor on the upper surface is the bonded strain sensor 
while the sensor on the side face is an unbonded temperature sensor if required. 
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Figure 2-10 Sensorised scissor blade with integral sensing 

2.9 Sensor Requirements 

There are a number of important issues, specific to a direct force-sensing 

scheme, which require consideration when assessing the potential of various 

sensing technologies.  The following sections investigate the issues which are 

deemed important in the integration of a suitable force sensor into a pair of 

surgical scissor blades. Although many sensors are available that can detect 

forces and ultimately tissue properties, not all are biocompatible, small, robust 

and do not hinder instrument functionality [77]. The challenge therefore is to 

find a sensor that meets all these criteria.  
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2.9.1 Space Restrictions 

Placing sensors directly on to the scissor blades requires that the sensing 

element be sufficiently small so as to maintain the integrity of the instrument tip. 

Advances in Micromachining technology has allowed Micro-electro-mechanical 

systems (MEMS) to be successfully attached onto, or embedded into, surgical 

instruments [78]. Geometrical constraints, biocompatible material 

requirements, and assembly complexities of surgical MEMS can make device 

fabrication quite challenging [79]. An additional constraint with scissor blades is 

that the blade width is generally narrower than that of a typical grasper, 

reducing the area on to which a sensor can be attached. Alternatively, a sensor 

could be placed on the outside faces of the blades as they are wider than the top 

of the blade but it remains to be seen whether sufficient sensitivity could be 

achieved with this approach. Scissor blades range in length from 3 mm to 30 mm 

depending on the scissor type being considered. Most scissor blades taper along 

their length. The width of the taper at the pivot can range from 1 mm to 5 mm 

narrowing to sub 1mm at the tip. These sensor placement zones for a single 

scissor blade are illustrated in Figure 2-11.  

Taking the smallest zone (the top zone) on the smallest blades, the sensor needs 

to have dimensions ideally <1 mm width and a maximum of 3 mm in length. It is 

worth noting that when the blade dimensions are small, the sensor dimensions 

also need to be compact. If not, the sensor is measuring strain over an area that 

may form a large percentage of the placement zone. 
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Figure 2-11 Sensor placement zones on a single scissor blade 

This would in turn lead to a sensor that is in effect measuring an average strain 

over its contact area rather than a localised point measurement. Point 

measurements are preferred as average strain values would result in lower 

strain sensitivity. To overcome space restrictions and achieve point 

measurement the sensor must be dimensionally as compact as possible both in 

width and length.  

2.9.2 Sterilisation and Biocompatibility 

Surgical instruments that are used inside the body need to be thoroughly 

sterilised to ensure complete destruction of microorganisms (e.g. spores). Steam 

sterilisation in an autoclave, at approximately 121°C and 205 kPa absolute 

pressure, is the standard sterilisation protocol used for most surgical 
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instruments [80, 81]. Steam autoclaving between 132°C and 134°C is 

recommended by Intuitive Surgical® for sterilisation of the daVinci® surgical 

instruments. Therefore, it is imperative that a transducer placed at the 

instrument tip is capable of withstanding these elevated temperatures for 

between 4 and 15 minutes to ensure all spores are eliminated. It is also 

important to note that if the sensor is to be bonded to the instrument then the 

bonding agent should also be able to withstand these temperatures and 

pressures. All electrical components placed on to the instrument tip must be 

appropriately sealed and protected. This is achieved through application of an 

appropriate epoxy that is again sterilisable as well as compatible with the 

conditions in which it is to operate. If suitable adhesives and epoxies are not 

available an alternative sterilisation protocol using Ethylene Oxide, Hydrogen 

Peroxide or other chemical agents may be more suitable. Ortmaier et al has 

suggested that, as a result of unanswered questions dealing with sterilisability of 

electrical components, alternatives such as optical methods may have to be used 

for measuring and transmitting information [53]. 

2.9.3 Modular Design 

Commercially available MIRS systems have instruments that are modular in 

design and allow the instrument tip to be disposed of after approximately 12 to 

20 uses. Integrating a force sensor on to the instrument tip would increase its 

complexity and cost. This requires consideration at the design stage so as to 

create an instrument that has an extended life and is thus reusable or 
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alternatively can be manufactured at a cost that is acceptable enough to allow 

disposal of the instrument after one use.  

2.9.4 Sensor Integration 

The majority of previous research efforts which focused on direct force sensing 

have attached the sensor onto the surface of the instrument. Studies by a 

number of researchers have used electrical strain gauges attached to the surface 

of their instruments [44, 82]. Strain gauges have the advantage of low cost, 

proven performance and are available off-the-shelf and are easy to attach to the 

surface of instruments. However, the use of surface mounted strain gauges on an 

instrument used clinically offers up different challenges compared to that of a 

lab setting. Among these challenges is the fact that surface mounted sensors may 

impede the surgeons view of the operating site and could impede the function of 

the device if the attached sensor increases the geometry of the instrument by a 

significant amount.  

A viable alternative may be to embed the force measurement transducer into the 

instrument during the manufacturing process. This method ensures no contact 

between sensor and tissue, and as a result eliminates issues involving 

sterilisation and compatibility. Verimetra Inc. has successfully embedded MEMS 

sensors into microgrippers. This eliminates the need for glue and adhesion 

layers which improves sensitivity and reduces errors due to creep [79]. A 

miniature polymeric gripper developed by Dollar et al [49] has six strain gauges 

embedded within its structure enabling three-axis force measurement. The 
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shape deposition manufacturing (SDM) technique was used to manufacture the 

gripper arms which incorporate the embedded sensors. This technique proved 

to be a quick, inexpensive and robust manufacturing method. The gripper output 

is sensitive to temperature with a drift of 0.15 N in the output arising from 

temperature variation over a 5 minute period; indicating that temperature 

compensation may need to be considered during embedding of force sensors 

using SDM. 

2.9.5 High Speed Dynamic Sensing 

Realistic modelling and simulation of tissue deformation is an ongoing area of 

research as a result of the complexity of human organs and the challenges 

associated with the acquisition of tissue parameters [83]. The real-time 

collection of in-vivo instrument-tissue interaction data can be used to validate 

the accuracy and realism of these models. It is proposed that sensors used in the 

collection of this interaction information should have high-speed dynamic 

sensing capabilities enabling the measurement of force information. 

2.10 Overview of Force Measurement Sensors 

There are a wide range of sensors available that have the potential to be used as 

the sensing element of a sensorised surgical scissor blade. Some of the most 

commonly available sensor types are considered in this section. A number of 

state-of-the-art review publications were consulted [84] to facilitate the 

evaluation of suitable sensors for the proposed sensing scheme in a clinical 



 
 
 

 
45 

 
 

 

application. These various force sensing technologies can be summarised and 

grouped into the following sensing categories; 

 

Sensing category Sensor technologies Force Measurement 

method 

Displacement based LVDT, potentiometer, VCA Force is estimated from 

difference between two 

displacement measurements. 

Current based DC motor Force inferred from motor 

current measurement. 

Resistive based Strain gauges, MEMS Structural strain induces 

change in electrical resistance 

proportional to force. 

Capacitance based  Capacitive sensor element 

arrays 

Force applied perpendicular 

to film results in change of 

capacitance5. 

Piezoelectric based Ferroperm Piezoceramics, 

PVDF 

Force causes stress in the 
PVDF film, polarisation 
charges which produce 
voltage signals are generated. 

Optical based (Extrinsic) Fabry-Perot Interferometer 

(EFPI) 

Force/strain moves the 
transduction element altering 
the reflected light spectrum 
which is transmitted along the 
optical fibre to a detector. 

Optical based (Intrinsic) Fibre Bragg grating (FBG), 

Long period grating (LPG) 

Strain is applied to the optical 
fibre which itself modulates 
and reflects the light 
spectrum to the detector. 

Table 2-3 Common sensing categories used in the detection of strain/forces 

Each of the sensing categories outlined in Table 2-3 have benefits and limitations 

particularly in the context of sensorised surgical devices for use in clinical 

applications.  Table 2-4 summarises the pros and cons of what are adjudged the 

most suitable force sensing technologies from Table 2-3. Displacement 

                                                        
 

5 Best suited to tactile force sensing applications 
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technologies are not considered due to the inferred nature of the sensing 

method, i.e. not strictly a direct force sensing technique.  

 

Technology Advantages Limitations 

Strain Gauges  Small size and can be sealed in 

a waterproof environment.  

 Multi-axis measurement is 

easily achieved. 

 Sensitive to electromagnetic 

noise and temperature changes 

leading to drift and hysteresis. 

 Trade-off between the sensitivity 

of the measurement and the 

stiffness of the structure. 

Measurement 

of actuator 

input 

 The system is no longer limited 

by the sensor bandwidth 

(which can make a control or 

feedback system unstable), and 

it is not necessary to incur the 

cost of force sensors. 

 Does not rely on force sensors, 

which often do not operate 

properly when exposed to high 

temperatures and humidity.  

 Very sensitive to               

uncertainties so if the system 

cannot be properly modelled 

(due to high joint friction, for 

example), the estimation error 

can be significant 

Capacitive-

based sensing 

 Limited hysteresis, better 

stability and increased 

sensitivity compared to strain 

gauges. 

 They need more complex signal 

processing and are more 

expensive. 

Piezoelectric 

sensing 

 Since these materials generate 

their own voltage, no additional 

power supply is needed. 

 They have high bandwidth, high 

output force, compact size and 

high power density. 

 They are very temperature 

dependent and subject to charge 

leakages. This results in a drifting 

signal when static forces are 

applied, thus making them 

suitable for the measurement of 

dynamic loads only. 

Optical Sensors  Forces can be measured in as 

many as six DOFs.  

 They can be used inside 

magnetic resonance imaging 

(MRI) scanners. 

 They can detect changes with 

high sensitivity and 

reproducibility. 

 Sensitivity to light intensity 

changes caused by bending of the 

cables or misalignment.  

 Optical fibres cannot typically 

achieve small bending radii. 

Table 2-4 Summary of force sensing technologies by Trejos [38] 
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The selection of a sensor from Table 2-4, that is suited to a device employing a 

direct forcing technique, can be achieved by assessing each one against the 

following proposed criteria; 1) General sensor requirements, 2) Requirements 

specific to a sensorised surgical instrument being used clinically. 

1) General criteria; 

 High sensitivity and resolution 

 Robustness 

 Minimal zero and sensitivity drift 

 Temperature insensitivity 

 

2) Application specific criteria; 

 Biocompatibility 

 Small dimensions 

 Sterilisibility 

 Embedibility 

 Electromagnetic immunity 

 Disposability/cost 

 

While most of the sensing technologies outlined in Table 2-4 would be similar in 

terms of general criteria, it is the application-specific criteria that will, to a great 

extent, determine sensor selection. On these grounds, the optical force sensing 

transducers would appear to be superior to their electrical counterparts. Optical 

based sensors are typically manufactured from silica, itself an inert material 
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which satisfies both the sterilisibility and biocompatibility criteria. Moreover, 

intrinsic optical sensors offer the following additional advantages over their 

resistance, piezo and capacitive-based commercially available counterparts [85]; 

a) Wavelength Encoded  

b) Self-referencing  

c) Linear Output  

d) Small and Lightweight 

e) WDM & TDM Multiplexing 

f) Mass producible 

g) Durable 

h) Single & Multi-Point Distributed Sensing 

These benefits are of great interest to researchers involved in the investigation, 

prototyping and manufacture of sensorised surgical devices and instruments. 

Additionally, researchers investigating small compact devices for use in NOTES 

and microsurgery [32] as well as sensorised instruments that can operate in an 

MRI environment [86, 87] could benefit. However, there are drawbacks that 

need consideration when using optical-based sensors for strain and force 

measurement. Namely; 

 Thermal sensitivity 

 Transverse strain sensitivity 

 Limited suppliers of optical sensors 

 Lack of standards available 
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Technical issues such as thermal sensitivity and transverse strain sensitivity can 

be addressed with the inclusion of an additional temperature sensor for 

localised temperature readings [88] and calibration of the strain sensor to 

enable compensation for lateral strain effects. The lack of standards at present 

means that optical sensors such as fibre Bragg grating sensors are not 

manufactured in standard sizes and do not come as pre-packaged transducers 

that can be bonded to a device or instrument. However, despite the drawbacks 

associated with optical sensors, the advantages outlined in page 48 offer 

significant potential for a new generation of augmented sensorised instruments 

such as scissors, dissectors, graspers, needles and forceps.  

2.10.1 Optical Fibre Sensor Selection  

The discussion in Section 2.10 has shown how optical based sensors meet both 

the general and application-specific criteria for sensorised surgical instruments. 

However, it is also important to assess the mechanical conditions likely to be 

experienced by an optically based sensor to establish its suitability for 

sensorised surgical scissor blades. There are number of different optical based 

strain sensors available. Four of the most common types have been compared by 

Rao [89] and are summarised in Table 2-5. It can be seen that the FBG sensor has 

advantages over its counterparts of high mechanical strength (~1375 kPa after 

gratings have been written into the fibre) and short gauge length (1 – 5 mm).  

Moreover, FBG sensors have a strain measurement range between 0 - 10,000 με 

[90] which make them very suitable for the measurement of high strain values. 
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However, it is generally recommended that the service strain be ~30% of 10,000 

με to ensure a 20 to 40 year lifespan for the FBG sensor [90]. Additionally, Rao 

[89] published details on the physical and optical properties of FBG strain 

sensors as outlined in Table 2-6. 

 

  

Fibre Bragg Grating 

(FBG) 

Fabry-Pérot 

(FP) 

Two- Mode 

(TM) 

Polarimetric 

(PM) 

Linear Response yes yes yes yes 

Absolute Measurement yes yes yes yes 

Range of Resolution high high low low 

Sensor Gauge Length short short long long 

Mechanical Strength high low high high 

Multiplexing yes yes yes yes 

Mass Production yes yes yes yes 

Potential Cost low low low low 

Table 2-5 Comparing optical fibre strain sensors [89] 

A few of the key properties of a typical FBG are assessed in Table 2-7 against the 

requirements for the sensorised scissor blades used in this research. The 

expected strain and stress values were obtained from a finite element analysis 

on the blade that will be used in the experimental section of this thesis [91]. 
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Physical Properties 

Ultimate strength  > 200 kpsi (~1379 MPa) 

Failure time > 1 million cycles 

Thermal stability < 3000 °C 

Response time  < 1 μs 

Optical Properties 

Spectral bandwidth 0.1 - 0.2 nm 

Reflectivity 0 - 100 % 

Excess loss -30 dB 

Table 2-6 Physical and optical properties of a nominal fibre Bragg grating [89] 

  Blade FBG 
Suitable for 

application? 

Strain 0 - 500 με (expected) 0 – 10,000 με [92] Yes 

Dimensions Placement Area: 3 x 39 mm  125 μm x 5 mm Yes 

Temperature 0 - 40 °C (expected) < 3000 °C [89] Yes 

Stress  71 MPa (expected) UTS: 1379 MPa [89] Yes 

Table 2-7 Comparing FBG properties against application requirements 

The data presented in Table 2-7 coupled with the fact that FBGs are sterilisable 

[93, 94], biocompatible [95], embeddable [96] and electromagnetically immune 

[97] make them an appropriate transducer to sensorise a pair of Metzenbaum 

scissor blades. The compact dimensions and inert nature of the sensor make it 

attractive for both microsurgery and MRI applications. Purchasing the sensors as 

non-prepackaged devices dictates that sensors can be integrated onto or within 

the tip of the blades to achieve a compact sensing element.  
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2.10.2 FBG Principle of Operation 

An elementary fibre Bragg grating comprises of a short section of single-mode 

optical fibre in which the core refractive index is modulated periodically using 

an intense optical interference pattern [98], typically at UV wavelengths. This 

periodic index modulated structure enables the light to be coupled from the 

forward propagating core mode into backward propagating core mode 

generating a reflection response. The light reflected by periodic variations of the 

refractive index of the Bragg grating, having a central wavelength λG, is given by 

[89],  

 2 ,G effλ n  (2.1) 

where neff  is the effective refractive index of the core and  is the periodicity of 

the refractive index modulation. 

The basic principle of operation of any FBG-based sensor system is to monitor 

the shift in the reflected wavelength due to changes in measurands such as strain 

and temperature. A schematic of a FBG interrogation system is shown in Figure 

2-12.  

The sensitivity of the Bragg wavelength to temperature arises from the change in 

period associated with the thermal expansion of the fibre, coupled with a change 

in the refractive index arising from the thermo-optic effect. The strain sensitivity 

of the Bragg wavelength arises from the change in period of the grating coupled 

with a change in refractive index arising from the strain-optic effect. 
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Figure 2-12 A FBG interrogation system 

The wavelength shift, ΔλT, for a corresponding change in temperature 

measurement, ΔT, is given by, 

 ( ) ,T Gλ λ α ξ T  (2.2) 

where α is the coefficient of thermal expansion of the fibre material and ξ is the 

fibre thermo optic coefficient. The wavelength shift, ΔλS, for the measurement of 

applied uniform longitudinal strain, Δε, is given as, 

 (1 )S G αλ λ ρ ε  (2.3) 

where ρα is the photo elastic coefficient of the fibre given by the formula, 

 
2

12 11 12( )
2

α
n

ρ ρ υ ρ ρ  (2.4) 

where ρ11 and ρ12  are the components of the fibre optic strain tensor and υ is the 

Poisson’s ratio. For a silica core fibre the value of (1 - ρα) is usually 0.78. Thus, by 

measuring the wavelength shift, using techniques such as those described in 

[89], changes in temperature or strain can be determined depending on which 



 
 
 

 
54 

 
 

 

parameter the FBG sensor is expected to measure. A FBG sensor has a strain 

sensitivity of 1.2 pm με-1 and a temperature sensitivity of 10 pm/°C.  

2.10.3 System Costs & Implementation 

An important issue with fibre Bragg grating sensors is the detection scheme for 

wavelength-shift. For most biomedical applications the resolution required is 

very high and the conventional spectrometers do not fulfil the requirement 

adequately [95].  A number of interrogation schemes such as edge filter, 

tuneable filter, interferometric scanning and dual-cavity interferometric 

scanning have been reported for high-resolution wavelength-shift detection 

[89]. In conventional robotics applications, the chief drawback is that the optical 

interrogator that reads the signals from the FBG cells is larger and more 

expensive (< €30,000) [99, 100] than the instrumentation used for foil or 

semiconductor strain gauges. The interrogation system cost is typically dictated 

by the measurement resolution required and the number of FBG sensors that 

can be read simultaneously (multiplexing).  However, the costs of optical-fibre 

interrogation systems are dropping steadily and in applications, such as MIRS 

applications, the capital costs are amortised over many operations [86]. 

Developing low cost interrogation systems is currently an active research area. 

Wan et al [101] for example, have developed a prototype ratiometric wavelength 

interrogation system designed for FBG strain sensing. It is believed that the 

complete measurement system can be produced for ~ €350. Typical 

interrogation units are relatively small and compact (~ 280 × 170 × 55 mm). 
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These dimensions would facilitate the practical integration of the interrogation 

unit into the slave subsystem of current or new MIRS systems.  Post processing 

of the signals from the interrogation unit can be done using a LabVIEW or 

MATLAB based platform [86]. This data can then interfaced with MIRS systems 

software to provide force information to the surgeon’s hands via the haptic 

interface on the master console.  

Currently, the one-off cost of a single FBG in a standard 125 μm silica single 

mode fibre with a ~12 μm polyimide recoat over the sensor region is ~€ 200. In 

large quantities, the price can be reduced significantly. Overall, these costs are 

small in comparison to most disposable and reusable devices for MIS and MIRS 

procedures. Furthermore, the price of FBGs is expected to drop in the next five 

years, making the integration of FBGs into augmented surgical instruments more 

financially achievable.  

2.11 FBG-Sensorised Surgical Devices 

Several groups are investigating the use of optical sensing techniques which 

facilitate the measurement of instrument-tissue force interactions in biomedical 

applications. Examples include the NeuroArm neurosurgical robotic system 

[102], a six degrees of freedom force-torque-sensor [103], a 2-D fibre optic 

sensorised hook instrument for retinal surgery [104], a sensorised surgical 

needle for use in a MRI environment [105] and a three degree of freedom 

modular sensor placed between instrument tip and shaft [87]. A recently 

developed micro-forceps by Kuru et al [106] bonded three FBG sensors onto the 
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shaft of the forceps. The instrument was designed to measure the lateral bending 

forces on the forceps while removing an inner shell membrane which mimicked 

a thin membrane layer on a retina surface. The grasping forces exerted on the 

tissue by the grasper were not measured.  

The aforementioned applications consist broadly of grasping, hooking and 

needle instruments for robotic surgery. This thesis will expand the current range 

of optically sensorised instruments by investigating, both analytically and 

experimentally, the interaction forces generated during surgical cutting. It is 

proposed that the FBG sensor forms an integral part of the scissor blade and is 

capable of detecting the directly applied forces resulting from the cutting 

process. Factors influencing these forces typically include inter-blade friction 

opposing the motion of the blades and the work required to fracture the material 

between the blades. Additionally, the lateral forces generated along the blade 

due to its curvature (Figure 2-13) will need to be quantified, as the FBG cannot 

discriminate them from the directly induced forces.  

 

Figure 2-13 Direction of direct and lateral forces acting on the blades  
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The attachment of the FBG at this distal location will serve to more accurately 

reflect the force information generated at the blade-tissue interface during 

cutting without any disturbance forces resulting from mechanism friction and 

backlash. 

2.11.1 Interaction Friction Forces 

In general the interaction between a rigid tool and a body involves friction, 

deformation of the body and possibly fracture, damage or other physical 

irreversible phenomena [7]. The importance of friction modelling and friction 

compensation when attempting to acquire fracture properties has been 

discussed by a number of researchers [69, 72, 107, 108]. Some instruments such 

as scissors necessitate high friction forces between the blades to ensure that the 

blades maintain contact during operation resulting in clean, burr-free cuts. A 

high friction coefficient and subsequently high contact friction forces are due to 

blade curvature along their length. From Atkins work on general guillotining of 

materials [109] it is assumed that the lateral forces between the blades due to 

curvature or ‘setting’ is constant throughout the cutting cycle. This is reasonable 

as the blade cross-section and curvature are uniform along the blade length. It 

was also stated that the lateral forces between the blades may vary with blade 

angle owing to the form of spring loading. Scissor blades are a typical example of 

this in which the lateral forces experienced between the blades differ along the 

blade length depending on the way in which the geometry of the blades change 

from pivot to tip. Modelling the forces generated during cutting with scissors 
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was carried out by Mahvash et al [59]. Their investigations focused on the forces 

generated due to fracture of the material being cut. Friction occurring between 

the blades was not modelled; instead the friction forces were measured and 

added to the model for forces generated during fracture of the material only. 

This was deemed effective for haptic rendering of cutting with a pair of scissor 

blades in a virtual environment.  

2.12 Summary 

Many researchers are actively engaged in developing methods to measure and 

restore force information that is currently not available in MIRS systems. The 

details presented in this review chapter outlined the current state-of-the-art 

sensing technologies being investigated in the field of sensorised surgical 

instruments. Particular attention was given to sensorising scissor instruments 

using a direct force sensing technique in which the sensor is placed as close as 

possible to the point where forces are being generated. This approach presents 

technical difficulties in relation to size restrictions, sterilisation issues thus 

possibly compromising instrument functionality. A review of the most popular 

resistive, piezoelectric and capacitive based sensing technologies show that, 

while they can meet most of the requirements for effective force sensing, issues 

still exist in relation to electromagnetic interference, temperature fluctuation 

and drift. Optical sensing technologies were explored as an alternative to 

capacitive and resistance options and it was found that they not only address the 

shortcomings of traditional sensors but bring the added benefits of 
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electromagnetic immunity, biocompatibility and sterilisibility. The focus of this 

work therefore is to investigate the use of FBGs to sensorise a Metzenbaum 

scissor blade and establish them as a viable choice when sensorising future 

surgical instruments and devices.  

The interaction forces occurring between a surgical scissor blade and the tissue 

is complex, consisting of fracture forces and blade friction. A direct force sensing 

method by its nature should facilitate the measurement of accurate fracture and 

friction forces. The most common methods to date, of obtaining in-vivo fracture 

properties of biological tissue consist of indentation and needle insertion. The 

use of scissors has only been explored ex-vivo using commercial load cells. It is 

proposed that a directly sensorised scissor device employing a FBG could enable 

the collection of accurate tissue fracture information in-vivo. A set of tissue 

cutting experiments are required to establish the nature of the forces and strains 

that are likely to be experienced by the FBG sensor. A test rig has been 

developed for this purpose, the details of which are discussed in the following 

chapter. 
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Chapter 3 

3 Scissor Cutting Characterisation & 
Evaluation of Soft Tissue Forces 

3.1 Introduction 

The design and development of an experimental test-bed incorporating a pair of 

sensorised surgical scissors has been carried out. This test-bed will form the 

basis for determining the nature of forces occurring on the scissor blades as well 

as facilitating the future analysis of FBG sensorised blades during the cutting of 

synthetic tissue samples.  

The functional and performance requirements of the test-bed are outlined in 

Section 3.3 followed by details on the calibration of the apparatus. Calibrating 

scissor blades for forces generated along its length is complicated by the fact that 

the forces generated move along the blade length during cutting. The maximum 

force acting on scissor blades during a cut occurs at the intersection point 

between the two scissor blades [58, 75]. Due to the variation of the included 

angle between the two blades a relationship between the intersection point of 

the blades and the blade angle needs to be established. This chapter establishes 
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this relationship experimentally and analytically for the Metzenbaum being 

used. To date there is no data available pertaining to the magnitude and nature 

of the strain on the surface of scissor blades arising from cutting. Sensorising the 

blades using established strain sensing technologies such as electrical strain 

gauges is required to obtain this information.  

In addition to analysing the nature of the force profiles arising during surgical 

cutting, methods of determining the fracture properties of the samples being cut 

are also explored. Characteristics that are unique to obtaining fracture 

properties using the scissor method are discussed and the limitations of such a 

method are presented.  

3.2 Related Research 

To date little research has been undertaken to investigate the interaction 

between a pair of scissor blades and the tissue being cut with a view to 

developing a real-time force feedback solution. A study carried out by Greenish 

[75] to measure the forces generated while cutting a range of anatomical tissue 

concluded that exact quantitative measures for the forces required to cut tissues 

remained indeterminate. However, the force data obtained was subsequently 

used by [58, 71] for virtual simulation of tissue cutting.  

Test rigs developed by Darvell [110] and Pereira [108] used scissors to ascertain 

the fracture toughness of various biological tissues. Forces acting on the blades 

were measured by the placement of a load cell between the scissor handles and 

an actuator. No force sensors were placed on or close to the blades. 
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Mahvash et al [59] constructed a test rig to measure forces generated on a pair 

of Metzenbaum scissor handles while cutting for the purpose of validating an 

analytical model of the forces generated during cutting. No force sensors were 

attached to the blades of the scissors as only the force occurring at the handles of 

the scissors were of interest.  

Other test-beds of varying configurations have been developed previously to 

measure the mechanical properties of biological and synthetic materials as well 

as the forces generated at the interaction between tissue and instrument. Tholey 

et al [51] for example, developed an automated laparoscopic grasper for the 

characterisation of grasping and cutting tasks. The jaws of the grasper were 

calibrated by placing a load cell against one of the jaws and forming a 

relationship between forces and actuating current to ensure accurate 

measurement of the cutting forces. The grasper set-up was evaluated by 

grasping hydrogels of varying elasticity and distinguishing between each one 

based on the force feedback from the grasper. Further tests were carried out on 

the samples to assess repeatability of the measurement system with good results 

being obtained.  

Equipment for measurement of the forces and torque exerted on a scalpel blade 

during one degree-of-freedom tissue cutting was developed by 

Chanthasopeephan [111]. The acquired force displacement graphs highlighted a 

characteristic deformation followed by a localised crack extension pattern. This 

data was later used to verify finite element models that would be used to create 

a reality-based model for real-time medical simulation. 
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Studying the test-beds developed by other researchers enabled a set of design 

and functional requirements to be created that met the needs of this particular 

research work.  

3.3 Test-Bed Design Requirements 

This research focuses on the direct measurement of contact forces between a 

surgical instrument tip, in this case a pair of scissor blades, and the tissue with 

which it makes contact. In order to facilitate this, the requirements for a force 

measurement evaluation test-bed specific to scissor cutting needed to be 

established. The primary requirements of the test-bed were categorised into 

functional and performance requirements and are outlined in Table 3-1 and 

Table 3-2.  

 
 

Functional Requirements 

 

FR.1 

 

The test rig shall actuate a pair of Metzenbaum scissors through a 
complete open-close cycle. 
 

 

FR.2 

 

The test rig shall facilitate the measurement of interaction forces 
occurring at the blade-tissue interface. 
 

 

FR.3 

 

Facilitate the measurement of the blades intersection point 
position. 
 

 

FR.4 

 

Be controlled using a standard PC and data acquisition system. 
 

 

FR.5 

 

Enable the secure attachment of soft synthetic test samples 
ranging in thickness from 1 mm to 5 mm. 
 

Table 3-1 Test-rig functional requirements 
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Performance Requirements 

 

PR.1 

 

The scissor blades shall have an open and closing rate of between 
7 °s-1 and 50 °s-1 [75]. 
 

 

PR.2 

 

The test rig shall have a force measurement range up to 50 ± 0.1 N. 
 

 

PR.3 

 

Be capable of measuring the included angle of the scissor blades 
between 0° and 50°. 
 

 

PR.4 

 

The data acquisition system shall be capable of sampling signals 
from the force and angular displacement transducers at a rate of 
1kHz to ensure that all complex cutting force information can be 
obtained.  
 

 

PR.5 

 

The clamping mechanism shall have the capacity to apply 
transverse tension to the samples enabling an increase in % strain 
up to 10%. 
 

Table 3-2 Test-rig performance requirements 

3.3.1 Test-Bed Development 

The functional and performance requirements in Table 3-1 and Table 3-2 were 

laid out at the test-bed design stage so that the rig could be deemed a suitable 

force measurement, characterisation, and evaluation tool. This test-bed will be 

used in future work to assess new sensing technologies in the measurement of 

the contact forces at the instrument-tissue interface. It is therefore logical to take 

initial force readings using tried and tested sensing methods such as bonded 

resistance strain gauges. It is imperative that the test equipment can 

differentiate in a quantifiable manner between tissue samples with differing 

mechanical properties. To achieve this, a series of PVA cryogels of increasing 
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elastic modulus were cut and the force/angular-displacement characteristics 

recorded using a data acquisition system. A number of cutting experiments were 

performed on each of the different tissue samples in order to establish the 

repeatability of the measurements.  

All aspects of the characterisation test-bed development (Figure 3-1(a)), 

including design, manufacture, data acquisition (DAQ) and software writing was 

implemented in-house.  A typical pair of scissor blades that are geometrically 

similar to scissor blades used in MIS were examined to facilitate the 

characterisation of the cutting process. The complexity of the system was 

minimised by mounting the scissors in a rigid fixture allowing 1-DOF (blades 

opening and closing) movement only (Figure 3-1(a)(b)). This approach was 

appropriate in this investigation as only the contact forces perpendicular to the 

edges of the scissor blades are of interest.  

 

Figure 3-1(a) Characterisation test-bed (b) Location of strain gauges and 
potentiometer 
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A pair of 18 cm straight blade Metzenbaum-Nelson scissors (nopa® 

instruments) were used as the cutting instrument for this investigation. These 

scissors were deemed appropriate as they have been used in previous force 

measurement investigations [75] and therefore data is available for comparative 

purposes. An electrical resistance strain gauge (RS 632-124 N11-MA2-120-11) 

was bonded to the inner surface of the lower scissor arm (strain gauge 1) as 

shown in Figure 3-1(b). The inner surface was chosen because it is a flat, even 

surface compared to the outer surface which is convex. The gauge has a nominal 

resistance of 120 Ω and base dimensions of 9 mm × 3.5 mm, small enough to be 

attached to the inner surface of the scissor arm. The upper arm of the scissors is 

securely fixed while the lower arm is free to rotate about its fulcrum. The 

actuation of the lower arm is achieved by means of a 32 mm diameter double 

acting pneumatic cylinder (Festo, model DSNU-32-100-P-A) with a maximum 

force output of 322 N. Adjustment of a unidirectional flow control valve at the 

entry to the cylinder upper and lower chambers controls the linear velocity of 

the piston rod. A single turn conductive plastic precision potentiometer (Vishay 

Spectrol® model 357), for the measurement of the angular displacement of the 

blade cutting edges, was fixed to the scissor fulcrum via a coupling device. Fully 

closed, the scissor cutting edges form an included angle θ of 6.5° (Figure 3-2), 

however, with the strain gauge bonded to the inner surface of the handle this 

angle is increased to 7.5°. The cutting angle range of the scissor blades is from 

40° to 7.5° with the cutting process completed at 10°. The design and 

construction of the cutting assembly offers a robust arrangement ensuring that 
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the forces measured by the strain sensor are only those occurring during the 

interaction between blades and tissue. 

3.3.2 Data Acquisition 

The data acquisition unit used in this system collected analogue signals from the 

active strain gauge (strain gauge 1) and the precision potentiometer. As a result 

of limited space on the scissor arm the strain gauges were arranged in a quarter 

bridge configuration with a dummy strain gauge (Figure 3-1(b)) for temperature 

compensation. This three-wire arrangement was connected to a National 

Instruments® (NI) SCC-SG02 strain gauge module, which provided bridge 

completion. The signals are filtered through a 1.6 kHz lowpass filter and 

amplified by 100 to give readable strain values. Bridge offset nulling was also 

included in the module by adjustment of a built-in potentiometer. This strain 

gauge module was inserted into an NI SCC 68 module holder, which also 

accepted analogue output signals from the precision potentiometer. These 

analogue signals were converted into useable digital readings by connecting the 

SCC 68 module holder to a PCI-6221 NIDAQ card, which was installed on a 

standard PC (Dell optiplex GX150). The software used included NIDAQ MAX 8.3, 

which configured the devices, sub-devices and channels, as well as set up tasks.  

LabVIEW® 8.0 was used to condition and display the acquired data. 
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3.3.3 Test-Bed Calibration 

Calibration of the force measurement system was carried out to ensure 

meaningful force readings were obtained from the strain gauge bonded to the 

scissor arm. To achieve this, a relationship was established between the point of 

intersection between the blades C and the strain readings ε obtained from strain 

gauge 1 (Figure 3-2). This was accomplished by placing a miniature button load 

cell, measuring 9.52 mm in diameter and 6.35 mm high (model SLB-25 from 

Transducer Techniques®), between the blades using two specially designed 

securing units which allowed the forces FL to be directed perpendicular to the 

load cell surfaces (Figure 3-3). The upper arm of the scissors was secured in a 

clamping mechanism while a series of forces FA were applied to the scissor arms 

using a miniature translation stage.  

 

 

Figure 3-2 Scissor calibration arrangement 
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Figure 3-3 Close up view showing the load cell held between the securing units 
which are clamped to the scissor blades by a lock screw  

The strain gauge and the load cell readings were recorded for each force 

increment applied to the scissor arms. This resulted in a constant of 

proportionality k (N/με) between the load cell output at xc (mm) along the 

scissor blade and the strain gauge readings at x1 being obtained. This procedure 

was repeated with the load cell placed at three different locations along the 

blades resulting in three different k values. However, the dimensions of the load 

cell placed a restriction on how close the load cell could be placed to the pivot of 

the blades with the result that k values close to the fulcrum could not be 

measured directly. The unknown k values were obtained as follows; the three 

known values were plotted and extrapolated over the working length of the 

scissor blades (Figure 3-4) resulting in the linear equation, 

 ck x0.0059 0.3072  (3.1) 
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This equation yields a k value for any position xc along the cutting edges of the 

blades.  

 

 

Figure 3-4  Extrapolation of the k-values over the full blade length 

The angle θ can be measured directly, hence, a relationship between this angular 

displacement and xc allows a value for k to be assigned to any angle and 

consequently any distance xc along the length of the blade. Both θ and xc were 

recorded at incremental steps of 2° over the cutting range of the blades (40° to 

7.5°). When plotted the results yielded the following power relationship, 

 1.1069θ 560.38 cx  (3.2) 

A comparison can be made between the empirically-derived relationship in (3.2) 

and the theoretical relationship by examination of the blade geometry in Figure 

3-5 using [112], 
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Where t(l) is the thickness of the scissor blades which varies along its length and 

 is the angle between the centre lines of the blades. It is assumed that t varies 

linearly between tmax and tmin, thus yielding, 
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Figure 3-5 Scissor blade geometry 

Comparing the theoretical and measured values (Figure 3-6) it can be observed 

that there are small variations between the measured and theoretical values due 

to the assumption that the blade cutting edges are perfectly straight. 

Examination has shown that there is a slight irregular curvature along the length 

of the blade. However, the close correlation signifies that the location of the 
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blade intersection can be reliably obtained when the angle of the blades is 

known. 

 

Figure 3-6 Measured and analytical intersection point and blade angle relationship 

A database was created wherein the appropriate k value was assigned to each 

angle in increments of 0.001° between 40° and 7.5°. The resultant force Fc at the 

point of contact C is therefore expressed as, 

   Measured strain  (θ)cF k  (3.5) 

where k is a function of the measured blade angle θ.  

3.4 Poly-Vinyl Alcohol (PVA) Hydrogel Test Samples  

Hydrogels are a cross-linked network of hydrophilic polymers that are insoluble 

in water [113]. Poly-vinyl alcohol (PVA) hydrogels, for example, can be made 

using a freeze-thaw (FT) method which creates crystallinity to bond the 
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structure [114]. Hydrogels have been used in a variety of applications including 

drug delivery devices [115], scaffolds for tissue engineering [116] and as tissue 

phantoms [117, 118]. PVA cryogels in particular are very suitable as phantom 

materials because they can be produced with realistic tactility and mechanical 

properties and possess long term structural stability. Synthetic tissues are used 

in the assessment of instrument-tissue interaction forces as a practical 

substitute to in vivo or in vitro biological tissue samples [117, 119]. Real 

biological tissues were not chosen for this study due to their anisotropic and 

heterogeneous nature [120] making it difficult to highlight the sensitivity of the 

characterisation rig in ranking specimens of differing stiffness and fracture 

properties. Homogeneous synthetic PVA tissue samples were chosen so that 

fracture properties and characteristics could be identified without the influence 

of cells, blood vessels, lymphatics, nerves, collagen elastin fibres etc. typical of 

living tissue [109]. This type of homogeneous sample would enable a reasonable 

degree of repeatability in the results to be obtained from the test-bed.  

3.4.1 PVA Compressive Modulus 

A range of homogeneous samples of differing elastic properties are produced 

using a carefully mixed solution and exposing them to a varying number of 

freeze-thaw cycles (1FT cycle to 5FT cycles). A 99+% hydrolyzed Polyvinyl 

Alcohol (PVA) power from Sigma-Aldrich was used with a weight-average 

molecular weight (MW) of between 85,000 and 124,000 g/mol. A 10 wt.% PVA 

cryogel solution was achieved by dissolving 40g of PVA powder in 360g of 
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deionised water. The solution was mixed on a magnetic stir plate at 90°C for 30 

minutes, then removed and stirred for a further 30 minutes until cooled to room 

temperature. Once cooled the solution was weighed and additional de-ionized 

water added to ensure a 10 wt.% was achieved. Five samples were prepared by 

pouring the PVA solution into five identical moulds giving a sheet of PVA tissue 

180 mm × 80 mm × 3 mm. A cylindrical test sample, measuring 22 mm × 20 mm 

diameter, was exposed to the same freeze-thaw cycle as each of the tissue sheets. 

These cylindrical specimens were included so that mechanical properties could 

be obtained using appropriate testing procedures. A secant modulus [121] value 

was obtained for each cylindrical sample by subjecting them to standard 

compression testing using a materials testing machine (Lloyd Instruments™ 

LRK30) with a 500 N load cell. The stress-strain relationship for a cylindrical 

sample (5FT) subjected to 30% compressive strain is plotted in Figure 3-7. The 

secant modulus is calculated by taking the slope of a secant drawn from the 

origin through the stress-strain curve at 30% (0.3) strain. A 30% compressive 

strain was the maximum that all samples were tested to. The experimentally 

obtained stress-strain values for all PVA samples are plotted in Figure 3-8 and 

the calculated Secant modulii presented in Table 3-3. This range of modulus 

values (18.35 to 193.6 kPa) is comparable to that of a range of intra-vitam 

bovine biological tissues such as Liver, Spleen and Kidney (10 to 85 kPa) that 

were measured by Maaß [122].  
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Figure 3-7 Obtaining the compressive secant modulus for a PVA cryogel sample   

 

Number of freeze-thaw (FT) 

cycles 

Secant modulus at 30% 

compressive  strain (kPa) 

5 193.6 

4 149.14 

3 130.29 

2 85.95 

1 18.35 

Table 3-3 Secant modulus values for the five PVA samples 
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Figure 3-8 Compressive stress-strain data for all PVA samples 

It can be seen that due to the nonlinear nature of the PVA, the compressive 

stress-strain relationship varies as the percentage strain changes. To quantify 

this variation a tangent modulii were calculated at ~5% strain increments 

between 2% and ~27% strain. The tangent slope was calculated by measuring 

the slope between two localised data points at each percentage strain increment 

[123]. The variation in compressive tangent modulus shown in Figure 3-9 

illustrates the variation in the compressive properties between the respective 

samples.  
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Figure 3-9 Variation in compressive tangent modulus for all PVA samples 

3.4.2 Repeatability of Tissue Samples  

Cutting measurements were obtained from each of the samples immediately 

after they had been removed from the de-ionized water to prevent dehydration, 

which would result in changes in tissue properties. The angular velocity at which 

all samples were cut was maintained constant at 22.7 deg·s-1 to ensure that the 

conditions would be as consistent as possible, and allow comparisons to be 

made between samples. The velocity was maintained constant by adjusting the 

air flowrate to the pneumatic actuator which in turn closed the scissor blades. 

The change in angular displacement (Δθ) was plotted against the time taken (Δt) 

for the blades to close fully. The slope of the graph was the angular velocity of 

the blade. A speed of 22.7 deg·s-1 was chosen based on data collected by 

Greenish [75] which found that the average speed during actual surgical cutting 
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procedures was found to be in the range from 7 deg·s-1 to 44 deg·s-1 depending 

on the material being cut. Each sample was subjected to one complete cutting 

cycle involving the blades closing from 40° to 7.5° and returning to the fully open 

position again, resulting in a 32 mm long cut. Data from three different cuts from 

each sample set were compared to establish the repeatability of the 

measurement system. An example of the closeness of agreement after three cuts 

for one sample set is illustrated in Figure 3-10. 

 

Figure 3-10 Repeatability graph for three cuts of sample 3FT 

3.4.3 Analysis of Force Profiles 

Each cutting cycle consists of a number of different stages [55]. Engagement is 

the initial phase, where by the blades make contact with the tissue. This is 

illustrated in Figure 3-11 by the sudden rise in the force reading at t = 0.01 s. 
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From this point onward there is a combination of phases such as plastic 

deformation and intercellular fracture followed by separation along the line of 

the scissor blades. This process continues along the cutting edges, until the end 

of the cut is reached at 10°.  Beyond this angle, the forces generated from 10° to 

the fully closed position of 7.5° are not as a result of contact forces but are due to 

frictional forces between the blades only. Force-displacement curves were 

created using the data collected from the sensorised scissors while cutting each 

of the five different tissue samples (Figure 3-12). It is observed that the force 

distribution along the blades for the softest sample (one freeze-thaw cycle) 

followed a similar profile to that for the empty cut with only a slight increase in 

magnitude. This was expected as the Young’s modulus value for this sample was 

quite low and also highlights the capability of the test-bed to detect low level 

force values arising from softer samples.     

 

Figure 3-11 Typical soft tissue cut characteristics 
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Figure 3-12 Cutting force profiles for five PVA samples obtained from the 
characterisation testbed 

For each of the other samples, the contact force continuously increases along the 

blade length, with a significant increase in the maximum force towards the end 

of the cutting cycle. This may be due to the fact that as the angle of the scissor 

blades decreases it has the effect of squeezing the tissue resulting in an extended 

plastic deformation phase before fracture and separation stages [75]. It is 

reasonable to assume that the forces generated due to deformation of the tissue 

with the blades would be greater than those generated during fracture, 

warranting further investigation. It was expected that the location of the 

maximum contact force would be at the tip of the blades corresponding to an 

angle of 10°, however, it can be seen from Figure 3-12 that the maximum force 

occurs before the end of the cut. An explanation for this may come from the fact 
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that, during cutting, the tissue is being pushed forward slightly due to the 

longitudinal components of the forces acting on the blades. Towards the end of 

the cut the tissue may slide off the blade tip instead of being cut, accounting for 

the sudden drop in contact force after the maximum is obtained.  

3.5 Strain on Blade Surface 

A direct force sensing approach requires placement of a strain-force sensor 

directly onto the blades as close to the point of force generation as possible. It is 

important, therefore, that the nature of the strains at the location of the sensor is 

understood. To ascertain the nature of the strains generated on the blade 

surface, a miniature strain gauge (RS 632-124 N11-MA2-120-11) (strain gauge 2 

in Figure 3-13) was bonded to the upper edge of one blade to directly measure 

the strains experienced by the blades during cutting.  

 

Figure 3-13 Direction of strains acting on the blade upper surface 

Results from strain gauge 2 (Figure 3-14) show that the measured strain ranges 

from +62 µε for the softest sample to -121 µε for the stiffest sample. It is 
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interesting to note that even though the top surface of the blade onto which the 

strain gauge is attached experiences compressive strain resulting from tissue 

cutting, the strain readings for the first two samples (1FT and 2FT) are positive 

values. The strain values for 3FT to 5FT are negative as expected and increase in 

magnitude as the sample stiffness increases. On close examination of the blades 

during a cutting cycle it was observed that lateral deflection of the blades, due to 

blade curvature along its length, was significant. This lateral deflection in turn 

induced lateral strain at the location where the strain gauge was attached. 

Therefore, the strain values being measured by the surface-mounted strain 

gauge were not exclusively as a result of cutting forces but a combination of 

cutting, friction and lateral forces.  

 

Figure 3-14 Experimentally obtained blade strains during soft tissue cutting 
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It is clear that the integration of a force sensing element into the tip of the scissor 

blades will require detailed analysis of the effect of the various strain 

components on the required force readings. Consideration needs to be given to 

the decoupling of these various strain components particularly if accurate tissue 

fracture properties are to be obtained from the measured force data. Forces due 

to cutting of the tissue are the primary forces of interest; therefore, a means of 

eliminating the inadvertent lateral blade forces needs to be established.  It is 

important to note that in terms of sensor selection, the resolution of the 

measurement system is of greater significance over the working range (25° to 

10°) as this is the portion of the blade primarily used by surgeons while cutting 

as documented by Greenish [75]. This equates to the surgeon utilising 

approximately 56% of the blade length cutting edge measured from the tip. This 

would suggest that, from the point of view of sensor placement, the remainder of 

the blade (44%) towards the blade pivot can be regarded as a sensor placement 

zone.  From Figure 3-12 it can be seen that the maximum measured force for all 

tissue samples occurs between 12° and 18°. Clearly this cutting region of the 

blade is where the greatest force sensitivity is occurring and gives credence as to 

why surgeons prefer using it. 

3.6 Limitations of Test-Rig 

It was felt that collecting force data from the characterisation rig using a 

calibrated strain gauge attached to the scissor arm was not an optimal method as 

there was still a degree of inference required in the values obtained. The 
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purpose of the characterisation test rig is to form a basis for assessing and 

validating new sensing technologies against more established off-the-shelf 

technologies such as strain gauges and load cells. To this end, an evolution of the 

test rig configuration was carried out in which a commercially available load cell 

was incorporated into the characterisation test rig. The benefits of this 

arrangement were twofold;  

 A commercially available precalibrated load cell would be used as a 

benchmark against which force measurements from the proposed FBG 

sensing arrangement could be validated.   

 The placement of the load cell unit at the scissor handle actuator ensured 

that external forces acting on the scissor handle could be measured 

directly.  

Measuring externally applied forces on the scissor handles offers a reliable 

means of calculating the work done due to intrablade friction and fracture 

during cutting. These externally applied forces are of particular importance 

when using scissor blades to estimate the fracture toughness of the material 

being cut as the total external work done W  during fracture is calculated using, 

 

 ( )
b

ff f
a

W F F dz  (3.6) 

 

where dz is the infinitesimal displacement of the scissor actuation mechanism 

and b-a is the total displacement of this mechanism during a cut [108]. Fff is the 
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force due to combined fracture and blade friction and Ff is the force due to blade 

friction only. The acquisition of accurate force measurements dictated that the 

rig be modified to incorporate a commercial load cell located at the point of 

scissor actuation enabling real-time force readings to be obtained. This approach 

in turn would serve as a means of validating cutting force readings from 

miniature force sensors placed on the scissor blades. Force values can be 

compared directly to values obtained from the commercial load cell. An inline 

load cell (DSM 50 from Transducer Techniques) was used as shown in Figure 

3-15.  

 

Figure 3-15 Modified characterisation test-bed showing location of load cell 
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3.7 Obtaining Fracture Toughness Values 

The sensitivity of the modified test-bed to forces generated from cutting 

synthetic tissue samples with differing fracture properties and dimensions is 

assessed in this section. A series of cutting tests were carried out using the test-

bed. The objectives of the tissue cutting tests were to examine the following: 

1. The effect of tissue thickness on forces generated on the scissor blades. 

2. The effect of tissue stiffness on the forces acting on the blades. 

3. The effect of tissue fracture toughness on the forces acting on the blades. 

4. The effect of pretensioning the samples being cut. 

5. The effect of two different analysis methods for the estimation of fracture 

toughness values.  

3.7.1 Preparing PVA Samples 

The synthetic PVA samples used were prepared and manufactured using the 

method outlined in Section 3.4. The work done in fracturing a tissue sample is a 

dependent on the net fracture force, the length of the cut and the thickness of the 

material being cut [109]. Therefore, it was decided to use PVA samples over a 

range of thicknesses and stiffnesses, where the stiffness of each sample is 

determined from the number of freeze-thaw cycles it was put through during 

manufacture. Medium (3 FT) and high (5 FT) stiffness PVA samples were chosen 

for these experiments with each sample having thicknesses of 1, 3, and 5 mm.  

Previous work by Chu [124] showed that increasing the number of FT cycles 

results in reduction in the sample dimensions due to a loss of moisture content. 
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This decrease can be as much as 20% in some cases. Examination of the 

cylindrical specimens used in Section 3.4 indicated that there was a clear 

decrease in the specimen diameters as the number of freeze-thaw cycles 

increased. To quantify the decrease in sample diameter the original inner 

diameter of the mould was measured (18.6 mm) and used as a reference 

diameter for each of the five specimens. The percentage change in diameter for 

each specimen is illustrated in Figure 3-16. The relatively linear nature of the 

decrease between one and four freeze-thaws correlates with findings by Chu 

[124] where the wall thickness of a PVA aortic phantom decreased linearly up to 

5 freeze-thaw cycles. Thereafter, up to 10 freeze-thaw cycles, the reduction in 

thickness was minimal.  

 

 

Figure 3-16 Percentage reduction in PVA sample diameter as the number of FT 
cycles increase 
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The nylon moulds were machined deeper than the target thickness of the sample 

to allow for shrinkage and to ensure that the required PVA sample thicknesses of 

1, 3 and 5 mm were obtained. One mould for each sample thickness was 

manufactured as opposed to one mould per FT cycle per sample thickness as the 

shrinkage difference between 3 FT and 5 FT was approximately 3.5%. This was 

deemed small enough to have minimal effect on the final thickness of the 

finished sample. A summary of the mould dimensions and the final sample 

thicknesses are presented in Table 3-4. It can be seen that the final sample 

thicknesses are in good agreement with the target thicknesses. Moreover, the 

use of the original cylindrical samples to estimate the percentage increase in the 

new mould dimensions was a suitable technique in achieving accurate sample 

thicknesses.  

 

Table 3-4 Target and actual PVA sample thicknesses 

3.7.2 Fracture Characteristics of Synthetic Samples 

Literature suggests that measured fracture toughness (J) is sensitive to the type 

of test performed [125]. This is consistent with the fact that tests carried out on 

Target Sample 

Thickness (mm)
FT Cycles Mould Depth (mm)

Final Sample 

Thickness (mm)

3 1.1

5 0.97

3 3.1

5 3.06

3 5.1

5 5.09

1

3

5

1.15

3.4

5.7
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rat skin using both a trouser test and a scissor test showed that J values obtained 

from the scissor test were an order of magnitude lower than that obtained from 

the trouser test. This is believed to be due to the fact that scissor tear tests 

maintain a sharp crack tip ahead of the blades [125].  

The forces measured at the scissor handle for all six PVA samples are presented 

in Figure 3-17. It can be seen that the force profiles from samples 1 mm_3FT to 3 

mm_3FT (and to some degree sample 3 mm_5FT) are relatively smooth through 

the cutting cycle from the point of initial contact with the tissue, through the 

compression-fracture phase up to the point of tissue failure. It is interesting to 

note that this smooth profile is similar to the force values6 obtained in Section 

3.4.3 where all the sample thicknesses were constant at 3 mm. Comparing force 

profiles for samples < 3 mm to the profiles of the 5 mm samples, it can be seen 

that the 5 mm force profiles are not smooth but contain a number of very 

distinctive compression-fracture peaks. In the case of the 5 mm_3FT and the 5 

mm_5FT samples it is obvious that the magnitude of these peaks increase from 

approximately θ = 23° to the end of the cut at θ = 12°. This suggests that as the 

angle between the blades decreases and becomes more acute through the 

cutting cycle the tissue experiences a lot of compression between the blades 

before the force is sufficiently high to further propagate fracture [125].  

 

 

                                                        
 

6 Original values represent forces acting on the blade and not at the scissor handle. 
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Figure 3-17 Experimental cutting force profiles from six PVA samples7 

Moreover, at the beginning of the cutting cycle, at θ = 30°, the wide blade angle 

will have the effect of pushing the tissue ahead of the blade intersection point 

before it actually begins to fracture it. As the blade angle reduces this so called 

slice-push ratio [126] decreases and so the combined compression-fracture 

forces increase due to; 

 the compression of the tissue between the blades inducing a clamping 

effect on the tissue, and, 

                                                        
 

7 The negative force values shown for some samples is due to the tip of one of the blades slipping under the clamped 
sample at the end of the cut and snagging it during the blade opening phase of the cycle. 
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 the residual forces present in the tissue due to the initial pushing are now 

acting in the opposite direction to blade motion keeping it pressed 

against the blade intersection point.  

During guillotining, deformation and subsequent fracture of the material occurs 

over the small region around that part of the blade in contact with the material 

being cut [126]. Analysis of this region (Figure 3-18) shows how the non-steady 

state force vs blade stroke for orthogonal cropping can be used to estimate the 

steady state force component of guillotining in the cut plane of intense shear.  

 

 

Figure 3-18 Non steady force vs blade stroke during cropping with a guillotine 
[109] 
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The mean total work per area performed over the cut face from δ = 0 to δ = δt 

consists of the indentation plastic work from δ = 0 to δ = δcr followed by the 

subsequent fracture between δ = δcr and δ = δt. This mean total work per area is 

defined by Atkins [126] as the effective fracture toughness (J ) in the plane of 

intense shear. 

Results obtained from the characterisation test-bed while cutting PVA tissue 

samples also exhibit this type of non-steady force behaviour, particularly values 

obtained from the thicker stiffer samples (Figure 3-19). Although scissor cutting 

and guillotining are not exactly the same in the way in which the blades move 

relative to one another there are obvious similarities between the way in which 

the PVA samples fracture during cutting and the way in which metal plates 

fracture during guillotining. This is illustrated in Figure 3-19 where the close up 

view highlights the various stages of work being carried out during the cutting 

phase of the cycle which corresponds closely to the plastic indentation and 

fracture characteristics identified in Figure 3-18.    
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Figure 3-19 Compression and fracture characteristics of PVA sample 

Phase A, for example, highlights the tissue sample is being compressed between 

the blades of the scissors without obvious fracture of the sample. Phase B 

suggests that while there is plastic indentation of the sample following 

compression, there also appears to be small fractures (at a microstructural level) 

occurring throughout the phase as the blades closes. The magnitude of the forces 

generated during these compression and indentation phases are greater towards 

the end of the cuts (between θ=16° and θ=12°) owing to the acute angle between 

the blades having a greater compressive effect on the samples. At the end of 

phase B, where the indentation force is at its maximum, the small cracks within 

the microstructure of the sample eventually coalesce under the increased load 

and fracture of the sample occurs. This localised fracture is evident in phase C 

and occurs over a small displacement of the scissor handles and related 

translation of the blade intersection point along the sample. The sum of the work 
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done over the three phases A, B and C is the effective fracture toughness J  of the 

PVA samples being cut using scissor blades. This is not to be confused with the 

true specific essential work of fracture (fracture toughness) J, which does not 

reflect the inclusion of remote plastic work (B) nor compression work (A) both 

of which have nothing to do with the process of fracture [109]. 

3.7.3 Pretensioning Tissue Samples 

It has been reported that tensioning a sample being cut by blades has the effect 

of reducing the cutting force require to fracture the specimen due to the lateral 

tension assisting fracture propagation [62]. This in part may be due to the fact 

that tensioning the material reduces the friction force between the material and 

the blades doing the cutting, hence a reduction in friction and not forces arising 

from fracture may be the cause of the force reduction.  The reduction of the net 

force and its effect on the repeatability of the measurements can be assessed 

using the test-bed. The method of clamping the synthetic PVA samples into the 

test-bed involves securing the sample between two clamping jaws that can 

subsequently be moved away from one another to apply a degree of pretension 

to the sample (Figure 3-20). A method of obtaining the effective fracture 

toughness for these tensioned and untensioned samples is outlined in Section 

3.7.4. 
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Figure 3-20 Direction of the applied tension in relation to the scissor blades  

3.7.4 Obtaining J* (Method 1) 

To determine J* an approach similar to that used by Pereira et al [108] is used. 

The method of obtaining the effective fracture toughness of the samples used in 

these experiments is outlined in Figure 3-21 where each stage is broken down as 

follows; 

(a) PVA samples of thicknesses 1 mm, 3 mm and 5 mm (two of each thickness) 

were prepared as described in Section 3.4. Half the samples were put 

through 3FT cycles and the other half were put through 5FT cycles giving a 

total of six samples of varying stiffness and thickness. 

(b) Force data was collected from the characterisation test-bed for all the 

samples. Each sample was glued to the clamping surfaces using 

cyanoacrylate glue to ensure that there was zero slippage of the sample 

during a cutting cycle. Additionally the clamps were designed so that they 
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could be translated away from one another allowing controlled tensioning 

of sample to be carried out.  

 

 

Figure 3-21 Method 1; obtaining effective J* values using the entire cut length 
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(c) Three cuts were made for each sample; one with zero tension, one with 5% 

strain applied by the clamping mechanism and one with 10% strain applied. 

This enabled the forces acting on the scissors to be assessed for each 

tensioned sample and to ascertain if the tension affected the magnitude of 

the forces. 

The friction forces generated between the blades devoid of tissue were 

measured before each cut was carried out. Due to the low velocities 

involved, the minimal contact area between the two blades and the stiff 

nature of the blades, it is reasonable to assume that the friction forces 

generated during an empty cycle of the blades remained the same during a 

tissue cutting cycle. It should be noted that work carried out by [108] shows, 

that for some materials, the friction force profile before and just after 

cutting a specimen can vary. This can be attributed to micro particles being 

deposited on the blade cutting surfaces. It is believed that fragments 

deposited during the cutting of biological samples had adhered to the blades 

and altered the surface roughness, resulting in a change in the friction 

profile. Non biological samples e.g. PET plastic, which is tougher and more 

homogeneous, does not produce as many fragments during cutting. This 

results in a friction profile that does not deviate as much from the empty 

pass after cutting.  

(d) Friction forces generated for an empty pass of the blades are subtracted 

from the combined fracture-friction force profile resulting in a force profile 

without the influence of friction. The force-displacement area calculated 
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under this profile is the work done during tissue fracture. The cut length Lc 

can be estimated when the force profile is plotted against the displacement 

of the blade intersection point xc. All cuts end at xc = 38 mm (1 mm from the 

blade tip8). The beginning of the cut can be established through 

identification of the first primary fracture which initiates separation of the 

tissue along the length of the blade cutting edges. Each cut was measured 

(using a pair of digital vernier calipers) to confirm the cut length estimated 

from the force data. Work done to fracture the tissue sample is defined as 

the product of the externally applied load and the displacement of the 

scissor handles where the load is applied. The area under this force-

displacement profile was calculated using the numerical Trapezoidal 

integration method.  

(e) The effective fracture toughness for each sample is calculated using, 

 ff f

c

W W
J

L t
 (3.7) 

where Wff –Wf  is the work done due to fracture of the sample only, and t  is 

the sample thickness.  

3.7.5 J* Results (Method 1) 

The J* results for each set of samples are presented in the box and whisker plot 

shown in Figure 3-22. The upper and lower limits of each box represent the 75th 

                                                        
 

8 Between xc = 38mm and xc = 39mm the blade tips are rounded resulting in the blades passing one another without 
shearing the tissue.  
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and 25th percentile respectively (the interquartile range), with the median being 

the horizontal line in the box.  

 

 

Figure 3-22 Mean J* for samples experiencing varying degrees of pretension  

The ends of the blue whiskers denote the maximum and minimum values of the 

data set.  The blue diamond represents the mean in the range. The red error bars 

denote the standard error of the mean value. The low standard error for each set 

of samples indicates that there is little difference between the J* values for an 

individual sample, whether tensioned or untensioned.  However, there is 

significant difference between samples of the same stiffness but different 

thicknesses. It has been shown by [127] that there was no difference in the true 
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fracture toughness between thin (0.7 mm) and relatively thick (2.7 mm) 

specimens using a modified single edge notch  (MSEN) test. Therefore, the use of 

a shearing technique to obtain fracture properties requires further 

understanding of the complex interaction occurring between the specimen being 

cut and the scissor blades. A reason for the variation in J* values could be 

attributed to variations in strain energy induced in a sample during a cutting 

cycle. Strain energy within a soft tissue sample during scissor cutting arises from 

the tissue being ‘clamped’ between the blades during a cutting cycle. As the 

blades go through a cutting cycle the angle between them changes and as a 

consequence the level of compression experienced by the tissue between the 

blades also changes. Furthermore, thicker samples are likely to experience a 

greater degree of clamping from the blades which in turn induces a higher level 

of strain energy. As quantitative strain energy values are difficult to obtain it is 

unclear to what extent the strain energy contributes to the J* values.  

3.7.6 Obtaining J* (Method 2) 

The methodology outlined in Section 3.7.4 (method 1) for obtaining J* is based 

on calculating the external work done over a complete cut length. This approach 

indicated that while the effective fracture toughness can be obtained, the nature 

of the cutting process means that J* is not independent of material thickness. An 

alternative method is investigated to ascertain whether J* values can be obtained 

independently of the thickness of the sample being cut. Method 2 differs from 

method 1, in the determination of J*, as the full cut length is not considered when 
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calculating the work of fracture but rather the work done over a number of 

individual fractures is calculated. This method of obtaining the work of fracture 

for a series of fractures while cutting a 5FT 5 mm sample is illustrated in Figure 

3-23.  

 

Figure 3-23 Method 2; Obtaining J* using the individual fracture approach  
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The key elements of this approach are the identification of the fractures to be 

analysed (Figure 3-23(c)) and the calculation of the work done during the 

propagation of the fracture (d). The fracture toughness equation (3.7) was used 

to calculate the localised J* where Wff – Wf is the area under an individual 

fracture and Lc is the length of the crack over which the work was calculated. Lc 

was measured by taking the location of the blades intersection point at the start 

of the fracture from the location at the end of the fracture. The difference was 

deemed to be the fracture length Lc.  

3.7.7 J* Results (Method 2) 

The results obtained for J* using method 2 are presented in Figure 3-24. Higher 

J* values for the 3 mm and 5 mm samples are observed when compared with the 

1 mm samples.  The mean J* values obtained using method 2 are generally 

higher than values obtained using method 1 as shown in Figure 3-25 with an 

average 15% difference. This would indicate that method 2 is possibly more 

sensitive to the thickness of the material being cut as well as the nature of the 

scissor cutting method.  

This is supported by the fact that for samples 5FT1mm and 3FT1mm the 

difference in J* is negligible and the standard error is low.  From the results 

obtained it is believed that the respective J* for 5FT1mm and 3FT1mm are closer 

to the true fracture toughness of the material than the values obtained for the 

stiffer, thicker samples. Similar results have been observed by Atkins [128] while 

guillotining thin sheets of metals of different thicknesses. It was stated that the 
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higher J* value reflects the inclusion of remote plastic work which has nothing to 

do with the work of fracture.  

 

Figure 3-24 Mean J* values obtained using method 2 

 

Figure 3-25 Comparing both methods of obtaining J* 
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3.7.8 Discussion on Fracture Results 

It has been observed, that at the beginning of a cutting cycle, the tissue is pushed 

in front of the blade intersection point before the initial material fracture occurs. 

This initial localised pushing is due to the large opening angle of the blades and 

the gap of 30 mm between the support clamps in which the sample is secured. 

This localised pushing combined with material compression between the cutting 

edges of the blades is evident in Figure 3-17 between θ = 30° and 23°. However, 

after the initial primary fracture occurs it is not clear to what extent the sample 

returns to its original prefracture condition. There appears to be a percentage of 

the original pushing force present throughout the remainder of the cut 

materialising as strain energy. This in turn changes the deformation pattern 

around the crack tip as it propagates through the material. Evidence of this 

residual strain energy was observed at the end of each cut when the portion of 

the sample just ahead of the tip of the scissor blades slipped back over the blade 

upon cut completion. The extent to which the sample slipped over the blade tip 

appeared greater as the sample size and stiffness increased. Attaining values for 

the specific work of fracture, independent of the effects of residual strain energy, 

requires a detailed investigation into the contribution of residual strain energy 

in determining J* of a sample. An energy balance equation proposed by [129] for 

the determination of  fracture toughness is,  

 

 
( ) fXu d dU F u d

J
dA

 (3.8) 
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where Xu is the incremental external work done, dΛ is the elastic strain energy 

stored in the specimen, dΓ is the incremental plastic work, dU is the energy 

stored in the specimen due to transverse loading and Ff u is the work resulting 

from contact between tissue specimen and the blade surface. In most cases 

where sharp cutting (assumed to be quasi-static) is used to determine fracture 

toughness dΛ  and dΓ are typically neglected [130]. This is reasonable if the 

cutting edges of the tools are considered sharp, leading to the assumption that 

the elastic energy stored in the specimen is much smaller than the irreversible 

work due to fracture, in turn limiting the measurement error. Experimental 

force-displacement graphs obtained by [59, 72, 120, 130] showed that the elastic 

strain energy had the effect of shifting the curves along the y-axis but did not 

affect the slope of the curve and hence can be ignored in the calculation of J. 

However, when making cuts with scissor blades the included angle of the blades 

is continually changing and therefore the amount of strain energy present in the 

material is also changing as the blades progress through the tissue. This is due to 

the contact region between tissue and blade increasing as the blades close as 

shown in Figure 3-26.  
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Figure 3-26 Change in contact region between blade and tissue throughout cut 

In Figure 3-26(a) there is no contact between tissue and blades; in (b) the blades 

compress the soft tissue creating a moderate contact region from the blade 

intersection point. Clearly as the blade closes, this contact region increases as 

shown in (c) inducing greater strain energy in the tissue being cut.   

3.8 Summary 

In this chapter a force measurement evaluation apparatus has been designed 

and developed which can cater for the characterisation of scissor-cutting 
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procedures on synthetic tissue samples with known elastic properties. The 

major system requirements were measurement and acquisition of: 

(i) the forces experienced by the scissor blades,  

(ii) the angular displacement of the blades, during the cutting procedure. 

The test apparatus was found to be robust, accurate and capable of 

discriminating between homogeneous tissue samples of varying mechanical 

properties.  

The force-displacement curves obtained from the test-bed exhibited typical 

scissor cutting characteristics such as tissue engagement, elastic deformation, 

plastic deformation, fracture and separation. It was observed that the maximum 

force during a cut, occurred before the cut was completed, indicating tissue 

slippage towards the tips of the blades. Data showed that the cutting apparatus 

was clearly able to distinguish between the range of tissue samples used. The 

force displacement profiles are in general agreement with those published in 

other literature. Fracture toughness values have been estimated using two 

different methods. Both methods highlight the complexities associated with 

obtaining fracture properties from soft tissue.  

The key conclusions of this chapter can be summarised as follows: 

 The application specific test-bed developed is capable of facilitating the 

characterisation of interaction forces occurring between tissue sample 

and surgical scissor blades. It forms the basis of a test rig which can be 

further developed to assess alternative and new force sensing 

technologies for surgical cutting instruments.  
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 The range and nature of the forces likely to be experienced by the scissor 

blades have been measured. Based on this data, loads not exceeding 30N 

will be used in future modelling and experimental work.  

 Strain values measured by a surface mounted sensor cannot exclusively 

measure fracture induced forces but rather a combination of fracture, 

friction and lateral forces. The integration of a force sensing element into 

the tip of the scissor blades will require detailed analysis of the effect of 

the various strain components on the strain arising during tissue fracture. 

Decoupling of these various strain components will be required.  

  The determination of fracture properties for soft tissue samples using 

scissors is complex. Effects such as, compression of the tissue by the 

blades, and tissue being pushed ahead of the blades during cutting, make 

ascertaining true fracture property data challenging. It is therefore 

proposed that the energy required to fracture the tissue sample during 

cutting be referred to as the effective fracture toughness, incorporating 

strain energy arising from tissue compression as well as true fracture 

energy.  
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Chapter 4 

4 Strain Transfer from Blade Structure 
to Fibre Core 

4.1 Introduction 

This chapter investigates the parameters which affect strain transfer from the 

blade structure to the core of a bonded FBG sensor. Two cases are considered; a 

surface mounted FBG attached to the blade upper surface and a FBG partially 

embedded within the blade. This study is necessary as FBG sensors, unlike ESG 

sensors, are not manufactured in modular units complete with a polyimide 

backing strip allowing the strain gauge to be bonded to a structure. Therefore, 

consideration needs to be given to the factors which influence the transfer of 

strains which arise in and on the blade structure during cutting.  This chapter 

presents details of the main factors affecting strain transfer to the FBG sensor. 

Preliminary investigations focus on bonding the FBG to the upper surface of a 

mocked up scissor blade and estimating the theoretical average strain transfer 

coefficient (ASTC) between the blade and the core of the FBG. FEA simulations of 
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the FBG bonded to the blade surface are carried out for a range of adhesive layer 

thicknesses (10 – 200 μm) and bond lengths (5 – 13 mm). Experimental 

validation of the FE results was achieved using an application-specific test rig 

incorporating a simplified geometrical realisation of an actual surgical scissor 

blade. The rig design allows for the bonding of an electrical strain gauge (ESG) 

and a FBG sensor simultaneously, enabling their respective performances to be 

evaluated. Loading the blade will induce strain in the blade allowing the 

effectiveness of strain transfer from blade structure to the FBG sensor to be 

assessed. A study is also carried out on a FBG which is partially embedded within 

a groove machined into the mocked up blade. The ASTC is assessed both 

analytically and numerically and results verified experimentally. Additional 

factors such as transverse strain gradients through the groove and lateral 

loading of the blade are also investigated. The sensitivities of the surface 

mounted FBG and the embedded FBG are examined to assess what effect 

embedding the FBG has on the sensor performance. 

4.2 Strain Transfer Theory 

Initial theoretical investigations into the strain transfer from a host matrix to a 

cylindrical fibre were carried out by Cox [131]. The resultant derived solution is 

adapted in this work to a four-layer cylindrical model for the purpose of 

identifying the strain transfer parameters which influence strain transfer 

between host material (the blade) and fibre (FBG) core.  
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A bare FBG encapsulated within a protective coating, adhesive layer and the 

blade material is illustrated in Figure 4-1. The blade is the only element to which 

an axial load (x-direction) is directly applied.  

 

 

Figure 4-1 A FBG fully embedded within the blade 

The resulting strain is transferred to the bare FBG as a result of shear strain 

developed within the two intermediate layers. The average strain transfer 

coefficient (ASTC) is defined as the ratio of the average strain over the bonded 

FBG to that of the blade (εm) and can be calculated using the following 

expression, 

 
sinh( )

1
cosh( )

f

m

ε kL
α

ε kL kL
 (4.1) 

 

where L is the length of the FBG sensor and k is the shear lag parameter 

encapsulating the material and geometric properties of the FBG, coating and 

adhesive layers and is given by, 
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where Gc and Ga are the shear modulii values for the protective coating and 

adhesive layer respectively and Ef  being the Young’s modulus of the FBG 

material (Silica). The terms rf, rc, and rm refer to the radii of the FBG, the FBG 

coating and the adhesive layers respectively (Figure 4-2). These equations show 

that the strain in the FBG core is influenced by the bonded length of the FBG as 

well as the geometric and material properties of the FBG and intermediate 

layers. 

 

Figure 4-2 FBG, coating, adhesive and blade material layers 

A surface mounted FBG sensor differs from an embedded FBG in that the host 

material does not fully encapsulate the coated FBG (Figure 4-3). 
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Figure 4-3  FBG sensor surface bonded to the blade 

The coated FBG is instead bonded to the surface of the host material (blade) by 

the adhesive. The adhesive between the blade and the FBG coating does not 

exhibit an annular cross sectional profile, but can be approximated as a semi-

elliptical profile. It is obvious for a semi-elliptical adhesive layer that a 

concentric adhesive outer radius rm does not exist and as a consequence 

equations 4.1 and 4.2 are not applicable when considering a surface mounted 

fibre. Therefore, it is proposed that a numerical simulation be used to model the 

surface mounted FBG and incorporate the fact that it is not fully embedded 

within the blade. 

4.3 Numerical Simulation of Surface Mounted FBG 

In practice, the adhesive layer tends to take up a flattened profile which is 

approximated as an ellipse for the purpose of this numerical model. A previous 

study by Wan et al [132] demonstrated that variation in side width and top 

thickness of the elliptical profile had negligible effect on the strain transfer from 
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host material to FBG core. It was shown, however, that the adhesive thickness, ta, 

between the protective coating and the host material surface greatly influenced 

the average strain in the FBG core.  

4.3.1 Details on the FBG sensor 

The finite element model was created with reference to the FBG being used in 

concurrent experimental work in which the FBG was bonded to the surface of a 

replica scissor blade. This experimental work is discussed in detail in Section 4.4. 

The FBG used was manufactured from a length of SMF 28 single mode fibre. The 

fibre has a (cladding) diameter of 125 ± 0.7 μm, a core diameter of 8.2 μm and an 

effective refractive index neff of 1.4682 at a wavelength λG of 1550 ± 0.5 nm 

(Figure 4-4).  

 

Figure 4-4 A fibre Bragg grating [133] 

The gratings were written into the FBG by Smart Fibres Ltd. using  spatially-

varying patterns of intense UV laser light; this is known as a phase mask 

technique [89]. A phasemask is a diffractive element that can be used to form an 

interference pattern laterally, i.e. Bragg grating pitch, with the light beams which 
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are spatially phase modulated and diffracted by the phase-mask, as shown in 

Figure 4-5. This interference pattern is then used to imprint a refractive index 

modulation into the photosensitive fibre. The phase-mask method has several 

advantages over other FBG writing techniques: 

 The Bragg wavelength of an FBG is determined by the pitch of the phase-

mask and is independent of the wavelength of the UV laser. 

 As phase-masks are fabricated under a computer controlled 

photolithographic imprinting process through an original phase-mask, 

this technique is suited to mass production with good repeatability at low 

cost. 

 This single-beam writing method improves the mechanical stability of the 

FBG. 

 Low spatial and temporal coherence lasers can be used instead of highly 

coherent, very expensive UV lasers used by other writing methods.  

 

 

Figure 4-5 Schematic of the phase-mask writing process [89] 
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The optical properties of the FBG were supplied by the manufacturer and are 

given in Table 4-1. 

 

5 mm long FBG with 10 ± 2 μm polyimide recoat over the sensor region 

Central wavelength (λG) 1550 ±0.5 nm 

Reflectivity  ≥ 70% 

Full width at half maximum (FWHM) < 0.7 nm 

Table 4-1 Optical properties of the FBG obtained from the manufacturer 

4.3.2 The Effect of Adhesive Thickness on the ASTC 

An FE model has been created to study the effects of varying the adhesive layer 

thickness, bond length and elasticity on the ASTC in a manner more 

representative of a surface mounted FBG. The symmetry of the model geometry, 

as well as the applied strain, allows a half model to be created (Figure 4-6) 

reducing computational convergence time. The compound arrangement is 5 mm 

long representing the bonded length of the FBG sensor. Other FBG and isotropic 

material parameters employed in the FE model are presented in Table 4-2. The 

3-D model is solved using ANSYS 12 simulation software. The materials are all 

assumed to be linear, elastic and isotropic. SOLID185 quad elements offering 

enhanced strain formulation were used in each of the model components. All 

surfaces between FBG, adhesive and blade are assumed to be in perfect contact 

with no slippage occurring.  
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Figure 4-6 The finite element model cross-sectional isometric view 

A 0.03% uniform strain was applied to the blade in the axial direction for each 

simulation. The following parameters were varied and the strain distribution 

along the FBG core assessed after each simulation: 

(a) The thickness of the adhesive layer between FBG coating and blade was 

varied from 10 µm to 200 µm. 

(b) The Young’s modulus of the adhesive was set at either 2 GPa or 3 GPa 

[134].   

The strain distribution along the FBG core for an adhesive Young’s modulus of 3 

GPa over a range of thicknesses from 10 µm to 200 µm is shown in Figure 4-7. 

The effect of increasing the adhesive layer thickness is evident, with the effects 

becoming more pronounced at greater thickness values.  
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Description Identifier Value

Outer Radius of FBG (µm) r f 62.5

Outer Radius of Polyimide Coating (µm) r c 75

Adhesive Layer Thickness (µm) t a 10 - 200

Young's Modulus (GPa)

     FBG E f 72

     Polyimide Coating E c 3

     Adhesive Layer E a 2-3

     Blade E m 193

Poissons Ratio

     FBG ν f 0.17

     Polyimide Coating ν c 0.35

     Adhesive Layer ν a 0.35

     Blade ν m 0.30  

Table 4-2 Table of material and geometric properties used in the FE model 

 

 

Figure 4-7 FE strain along FBG core for a range of adhesive thicknesses 



 
 
 

 
119 

 
 

 

Shear effects through the adhesive and protective coating layers dictate that 

100% uniform strain over the FBG length is unattainable by bonding the FBG 

length only. Therefore an adhesive bond length of some percentage greater than 

the length of the FBG length is necessary to ensure complete strain transfer from 

blade to the core of the FBG. The ratio of the average FBG strain to that of the 

blade (ASTC) is plotted in Figure 4-8 for five different adhesive layer thicknesses 

and Young’s modulus values of 2 and 3GPa. The analytical ASTC values were 

obtained from equations 4.1 and 4.2 where an effective value for rm was 

obtained using the following equation developed by Wan et al [132], 

 

 2 2( )m c a cr r t r  (4.3) 

 

It can be seen that the analytically obtained ASTC values are over-estimated by 

an average of 10% compared with the values obtained using FE. This can be 

attributed to the approximate nature of equation 4.3 which does not completely 

reflect the influence that ta has on the ASTC.  

  



 
 
 

 
120 

 
 

 

 

Figure 4-8 Comparing analytical and FE ASTC results for a range of adhesive 
thicknesses 

Table 4-3 compares the ASTC values using both methods and it can be seen that 

the most effective strain transfer is achieved (for both methods) when the 

adhesive layer thickness is thinnest (10 µm) and its Young’s modulus is greatest 

(3 GPa). Reducing the stiffness of the adhesive from 3 GPa to 2 GPa has the effect 

of reducing the ASTC by an average of 2%. It is noted also that there is a 

significant difference between the ASTC values obtained using FE and analytical 

methods using the same adhesive stiffness. The consistently lower ASTC values 

obtained using FE were expected as the geometry of the surface adhesive layer 

dictates that the shear effects are concentrated between the bottom of the FBG 

and the host material. In contrast, the analytical equations assume that the strain 

is transferred circumferentially around the FBG resulting in a higher ASTC value.  
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Adhesive 

Thickness

Analytical 

ASTC

Finite 

Element 

ASTC

% 

Difference

Analytical 

ASTC

Finite 

Element 

ASTC

% 

Difference

10 µm (Bare Fibre) 0.907 0.866 4.52 0.888 0.843 5.07

10 µm 0.890 0.836 6.07 0.874 0.820 6.18

30 µm 0.879 0.805 8.42 0.860 0.781 9.19

50 µm 0.869 0.788 9.32 0.848 0.758 10.61

100 µm 0.850 0.741 12.82 0.824 0.710 13.83

200 µm 0.825 0.678 17.82 0.793 0.641 19.17

3 GPa Adhesive Modulus 2 GPa Adhesive Modulus

 

Table 4-3 FE and analytical ASTC values for two different Young’s modulus values 

and a range of adhesive thicknesses 

4.3.3 The Effect of Adhesive Bond Length 

It was shown in Section 4.3 that the ASTC is influenced by the material 

properties of the FBG, its coating and the adhesive. Moreover, geometrical 

properties such as adhesive layer thickness also affect strain transfer. The length 

of the adhesive that bonds the FBG also influences the effectiveness with which 

the blade strain is transferred to the FBG core. A FBG strain sensor measures the 

shift in its reflected wavelength which is proportional to the strain being 

experienced. Achieving accurate strain measurement necessitates that a uniform 

strain distribution is obtained along the 5 mm grating length. This ensures that: 

(a) The strain sensitivity of the FBG (1.2 pm µε-1) is valid, as this value is 

based on the assumption of strain uniformity.   

(b) No spectral broadening or distortion of the reflected wavelength spectra 

occurs which can result in errors.   



 
 
 

 
122 

 
 

 

FE analysis was carried out to ascertain the minimum FBG bond length which 

ensures strain uniformity over the 5 mm grating. Five FE models were created of 

a surface bonded FBG in which the adhesive bond length was the only variable. 

Simulations showed that for an adhesive layer thickness of 60 µm, and a 4 µm 

thick polyimide coating, a minimum bond length of 11 mm (55 % longer than the 

FBG) ensures a uniform strain distribution across the 5 mm FBG (Figure 4-9).  

 

 

Figure 4-9 FE strain distribution for various bond lengths 

Practical limitations restrict the dimension to which the adhesive layer thickness 

can be reduced. A thickness, ta, of 62.5 µm (Figure 4-10(a)) was chosen as an 

achievable value based on the dimensions of the actual FBG polyimide and 

acrylate coatings used in our experiments (Figure 4-10(b)). The original coating 

radius was 125 µm and the recoated fibre radius 62.5 µm, therefore, the 
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adhesive thickness is maintained at 62.5 µm whenever the original coating is 

resting on the blade surface.  

 

Figure 4-10 (a) Surface mounted FBG (b) A FBG sensor within the adhesive layer  

4.4 Experimental Test Rig (Surface Mounted FBG) 

An experimental testing platform has been developed for the initial investigation 

and characterisation of the strain distribution along a replica stainless steel 

scissor blade. The test rig consists of a simplified blade arrangement which is 

representative of one blade of a stainless steel scissor end effector. The blade is 

symmetrical about its pivot point allowing for the simultaneous evaluation of 

FBG and electrical strain gauge sensors under the same conditions. The blade 

protrudes 39 mm either side of its pivot point. Two FBG sensors are attached to 

the blade, one on the top of the blade for direct strain measurement and the 

other, used for temperature compensation, is attached but not bonded to the 

lateral side of the blade. A close-up view of the 5 mm FBG attached to the top 

surface of the blade is shown in Figure 4-11. 
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Figure 4-11 A 5 mm FBG attached to the upper surface of the blade 

An ESG is attached at the equivalent position on the opposite, symmetrical, side 

of the blade to facilitate comparison with the results obtained from the FBG. 

Loads were applied using a micrometer translation stage with a load cell 

attached to the end of the micrometer as shown in Figure 4-12. The data from 

the load cell is collected using a National Instruments load cell module SG-24, 

which is connected to a data acquisition board NI6221. The data from the strain 

gauges is obtained using a strain gauge module SG-03. The system is monitored 

and controlled using LabView 8.0. 



 
 
 

 
125 

 
 

 

 

Figure 4-12 Symmetrical blade test arrangement showing locations of the FBG and 
ESG 

4.4.1 FBG Placement 

Due to the small dimensions of the blade used (39 mm in length) and the high 

modulus of elasticity of the blade material (193 GNm-2) it was important that the 

sensitivity of the sensorised blade was maximised. This was achieved by 

analytically modelling a series of loads applied to the blade at a number of 

locations along its length and finding the subsequent point of maximum strain 

on the blade upper surface.  The geometry of one half of the symmetrical blade 

model is shown in Figure 4-13.  
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Figure 4-13 Blade geometry 

The strain along the blade upper surface εd, as a function of x, can be defined 

from elementary beam theory as, 

 
( ) (x)

( )
2 ( )

d c g
d

F x x t
ε x

EI x
 (4.4) 

where t(x) is the depth of the blade at any location x along its length and can be 

written as, 

 ( ) bt x mx t  (4.5) 

Where tb is the width of the blade at its pivot and m is the slope of the blade, 

taken to be, 

 t bt t
m

L
 (4.6) 
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and tt  is the width of the blade at its tip and L is the total length of the blade. As 

the second moment of area I(x) of the blade section is not constant it is taken as, 
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Subbing I(x) into equation 4.4, the equation which allows the strain to be 

estimated at any location along the blade length becomes, 
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where xc is the distance from the pivot to the point of application of the load Fd, 

xg is the distance from the pivot to where the strain is to be estimated (0 < xg > 

L), w is the width of the blade and E  is the Young’s modulus of the blade 

material. To find the location of the maximum strain, let 0ddε

dx
, therefore, 
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When a load is applied at the blade tip then the maximum strain occurs at, 

 

 bt
xmax c= 2x +

m
 (4.10) 
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Finite element simulations were used to confirm the location of maximum strain 

on the blade upper surface. This is illustrated in Figure 4-14 where the blade is 

loaded to 30 N at its tip and the strain profile along the upper surface is plotted 

against the strain obtained from the analytical analysis.  

 

Figure 4-14 Location of maximum strain on one half of the symmetrical blade 

Figure 4-15(a) and (b) shows a range of strain profiles over a range of loads up 

to 30 N applied at the blade tip (xc = 39 mm). The maximum strain consistently 

occurs at xg = 14 mm from the pivot point. Figure 4-15(c) and (d) considers the 

effect of moving the applied load along the blade length. The maximum load of 

30 N is applied at a series of locations from the blade tip (xc = 39 mm) to the 

blade pivot (xc = 0 mm). It can be seen that as the blade is loaded at each 

location, strain is induced on the blade upper surface between the point of 

application of the load and the blade pivot point. The blade upper surface region 

between the point of application of the load and the tip of the blade does not 
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experience any strain from the applied load. Placing a FBG sensor at xg = 14 mm 

means that it is within the 44 % region (equating to xg = 17 mm) of the blade 

upper surface that is available for sensor placement as outlined in Section 3.5.  

 

 

Figure 4-15 Strain distribution along blade top surface obtained using analytical 
equation 4.8 where in (a) and (b) a 0 N to 30 N load range is applied to the tip of 
the blade only and in (c) and (d) the loads are applied at a number of locations xc 

along the blade length. 

4.4.2 Attaching the FBG Sensor 

Bonding of the FBG sensor to the surface of the blade was achieved using a 

special fixture incorporating four linear stages. This fixture allows the fibre to be 

fixed at one location while the blade is aligned in the x, y and z planes prior to the 
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addition of the adhesive layer. After satisfactory alignment, the blade is lowered 

and the adhesive layer is manually applied over the bond length (11 mm). The 

blade is then raised to its original position where it meets the fibre which is held 

in position by an applicator containing a 250 µm deep groove. This groove 

ensures that the fibre is placed securely to the blade without squeezing the 

Acrylate coating at the points of contact between applicator and blade (either 

side of the recoated fibre). This technique is important since squeezing of the 

Acrylate coating during bonding results in curvature of the recoated fibre and 

consequently an inconsistent adhesive thickness along the adhesive bond length. 

4.4.3 Comparing FBG and ESG Sensors 

A range of loads in increments of 2 N between 0 and 30 N were applied to one 

end of the symmetrical blade resulting in an equal load being applied at the 

opposite end (Figure 4-12). This technique induces equal strain fields in each 

side of the blade. As a result the ESG and the FBG sensors located at the same 

location on each blade experience the same strain due to the blade being directly 

loaded. The reflected central wavelengths of the FBG sensor were measured 

using an optical spectrum analyzer (Agilent 86140B). The measured wavelength 

for zero strain and maximum applied load have the same bandwidth with peak 

shift, due to the induced strain only, being observed (Figure 4-16). This confirms 

that uniform strain is being induced over the grating length, as an appropriate 

bond length of 11 mm is being used.  
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Figure 4-16 Spectral shift at zero and maximum load 

The experimental data from the FBG and the ESG over the loading range of the 

blades are presented in Figure 4-17. Blade strains obtained using FE and 

elementary beam theory are also presented.  

 

 

Figure 4-17 FBG and ESG measured strain 
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The strain values from the FBG sensor are in good agreement with those from 

the surface mounted ESG with a maximum of 2.8% variation in strain being 

observed over the full range. The theoretical ASTC is estimated from equation 

(4.1) where the uniform strain fε  is the actual strain measured by the FBG and 

εm is the uniform strain on the blade surface. The FE simulation indicates that an 

ASTC of 1 is obtainable using an appropriate bond length, adhesive layer 

thickness and coating thickness. The experimentally obtained strain readings for 

both the FBG and ESG were plotted against one another as shown in Figure 4-18.  

By letting the FBG strain readings represent fε  and the ESG9 readings 

representing εm an estimate of the ASTC value can be obtained.   

 

 

Figure 4-18 Obtaining ASTC from FBG and ESG strain readings  

                                                        
 

9 Gauge factor tolerance ±1% and Resistance tolerance ±0.5% 
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It is seen that closeness of agreement between the FBG and ESG strain values is 

very good and consequently an ASTC of 0.98 is obtained from the slope of the 

graph. This comparison also indicates the performance of the FBG, in terms of its 

sensitivity, is comparable to that of the more established ESG technology 

reinforcing its suitability for the proposed measurement application. It is 

observed that the strain values from the FBG sensor correlate closely with both 

the analytical and FE values which also indicate that a high level of strain 

transfer from blade to FBG is attained.  

4.5 Partial Embedment of the Fibre 

The purpose of partially embedding the FBG sensor within a host structure is to 

protect the fibre from damage during operation and to simulate somewhat a 

fully embedded fibre arrangement. The accuracy of the FBG measured strain is 

dependent on the bonding characteristics between the host structure, fibre 

protective coating and the silica fibre itself. Ideally, the embedded FBG should 

output a signal in proportion to the strain generated in the blade structure in the 

vicinity of the FBG sensor. The theoretical analysis into the effect of the adhesive 

bond length and thickness has not been examined for a partially embedded fibre 

scenario. These parameters are important when considering the implementation 

of a FBG strain sensor into small structures experiencing relatively small strains. 

Minimising the fibre bond length to ensure that the combined fibre-adhesive 

length is as short and compact as possible facilitates the integration of FBG 

sensors in small compact surgical instruments and devices. Furthermore, 
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embedding a FBG sensor close to the neutral axis of its host structure, affects the 

overall sensitivity of the sensorised structure. Bonding FBGs to the surface of the 

host structure maximises the distance between the neutral axis and the point of 

maximum strain measurement. Embedding the fibre below the surface of the 

blade will result in a reduction in the sensitivity of the sensorised blade and 

therefore the depth of sensor embedment should be kept to a minimum. Work 

by Iordachita et al [104] in which  partially embedded FBGs were integrated into 

a retinal surgery device has been carried out but investigations into the 

reduction in sensitivity and the effects of local strain gradients at the location of 

FBG were not carried out. Park et al [86, 135] have reported hysteresis as an 

issue during the operation of a sensorised biopsy needle incorporating partially 

embedded FBG. This reinforces the importance of understanding the effects of 

the bonding interface between an instrument and a FBG.  

The following sections will quantify the reduction in sensitivity of a blade with a 

partially embedded FBG sensor, taking into consideration transverse strain 

variations through the fibre during blade loading. Recalculation of the minimum 

adhesive bond length is required due to the geometrically different way in which 

the FBG is adhered to the blade structure. This is achieved by modification of the 

surface analytical strain transfer model to include an effective adhesive radius 

analogous to that of a fully embedded fibre. Numerical analysis will be used to 

verify the modified strain transfer analytical model.  
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4.5.1 Limitations of ASTC Equations 

Cox [131] originally developed equations for the embedment of a cylindrical 

element embedded in a host material being subjected to an axially applied 

uniform strain field. These equations assume that the fibre being strained is 

encapsulated fully by the surrounding host material and by the intermediate 

adhesive layer bonding the fibre to the structure. However, as seen in Figure 

4-19 which represents a partially embedded fibre placed within a groove in the 

host structure, the encapsulating adhesive layer is not axisymmetrical. 

Incorporating a fibre into a host structure in this way means that the adhesive 

thickness is not uniform between the fibre protective coating and the loaded 

host structure. Hence, the strain being transferred from the host structure 

through the adhesive layer will not be uniform at different circumferential 

locations around the fibre outer surface.  

 

Figure 4-19 Coated FBG partially embedded within the host structure 
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These limitations of Cox’s equations will not allow accurate estimation of the 

adhesive bond length and strain transfer coefficient to be obtained for a partially 

embedded fibre as it is only applicable to a fibre fully encapsulated within the 

host material.  

4.5.2 The Effect of Adhesive Thickness and Bond Length 

Modification of the ASTC equation (4.1) for a fully embedded FBG fibre to 

account for the axisymmetrical nature of a partially embedded fibre is proposed. 

As the geometry of the adhesive effects the strain transfer from host structure to 

fibre core, a re-evaluation of the shear lag parameter k is required. It is clear 

from equation 4.1 that the outer radius of the annular adhesive layer, rm, does 

not exist for a partially embedded fibre. It is proposed that the radial dimension 

rm be replaced with an effective radius, reff, to account for the non-axisymetrical 

nature of the adhesive layer encapsulating the fibre within the groove (Figure 

4-20).  

 

Figure 4-20 Embedded fibre and effective radius reff of adhesive 
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This effective radius was estimated by equating the cross sectional area of the 

adhesive within the groove to the cross sectional area of an annular adhesive 

ring representative of a fully embedded fibre within the blade structure resulting 

in an effective adhesive radius reff  defined  as,  

 gr gr c a
eff

y z r t
r

π

1/2
2( )

2
 (4.11) 

where ta is the effective adhesive thickness between the bottom of the fibre 

coating and the base of the groove into which it is bonded. It is observed that ta 

has an impact on the ASTC for a partially embedded fibre similar to that of a fully 

embedded fibre. This is illustrated in Figure 4-21 where the effect of varying the 

nondimensionalised BL/ta for a range of bond lengths between 5 mm and 13 mm 

is shown. A high BL/ta ratio results in a high ASTC over the bonded region, 

signifying that ta is kept to a minimum and the BL is maximised.   

 

 

Figure 4-21 The effect of the BL/ta ratio on the ASTC  
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It should be noted that the ASTC values presented in Figure 4-21 are obtained by 

taking the ratio of the average strain in the fibre over its bonded length to the 

strain experienced by the host material. However, the plots in Figure 4-21 do not 

give any indication of the ASTC over the actual FBG length present within the 

bonded length. The only plot in figure 4-19 that gives the ASTC over the FBG 

length is the 5 mm BL plot where the adhesive is applied over the length of the 5 

mm FBG only. Simulations show that a ta of 2-3 μm would be required to achieve 

an ASTC of 0.95 for a 5 mm FBG with a 5 mm BL. However, there is uncertainty 

as to whether an adhesive layer of this thickness would remain intact under 

loading. 

Holding ta at a fixed value (62.5 μm) and varying the BL yields the fibre strain 

distribution shown in Figure 4-22.  

 

Figure 4-22 Strain distribution over the FBG length (half length) 
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It is seen that the 5,6,7 and 8 mm bond lengths do not transfer 100% of the host 

material strain in the to the FBG. Therefore, the minimum BL for which an ASTC 

of unity is achieved for a partially embedded fibre with ta = 62.5 μm is 9 mm. 

This BL is 45% greater than the length of the FBG being used.  Using FBG sensors 

for the purpose of low value strain measurement arising in small surgical 

instruments requires compact packaging of the sensor onto or into the 

instrument. It is therefore imperative that the fibre itself is as small as possible 

and that the method of attaching the sensor to the instrument also has minimal 

impact on the overall dimensions of the sensing element. 

4.5.3 Numerical Simulation of Partially Embedded Fibre 

A numerical simulation of the FBG strain sensor embedded within a groove in 

the host material was developed for two reasons; 

1. To validate the effectiveness of using the modified analytical equation 

incorporating reff, as a means of estimating a bond length which ensures 

complete strain transfer from blade to fibre core.   

2. To investigate, for transverse strain gradients through the groove, 

whether or not the FBG measures the strain in a horizontal plane 

coincident to the centreline of the fibre core.  

A 3-D finite element model of the 5 mm FBG sensor placed within the groove 

was created using ANSYS 12 numerical simulation software. A half model was 

used as it is symmetrical about a vertical plane along its longitudinal axis thus 

enabling mirror symmetry to be implemented (Figure 4-23). 



 
 
 

 
140 

 
 

 

 

 

Figure 4-23 Model of fibre embedded within the host material 

The interfaces between the fibre, adhesive and host material are bonded in the 

FE simulation software. Initial investigations into how the contact surfaces 

between fibre, adhesive and host material would be bonded in the model 

considered the use of TARG and CONT elements. The TARG and CONT elements 

allow a more detailed contact model to be created. The surfaces in contact were 

configured so that high cohesive sliding resistance and frictional resistance 

conditions were established between them. However, this configuration set up 

nonlinearities at these contact surfaces which resulted in long convergence 

times for the model. The model was run again with the surface areas glued using 

the ANSYS glue function. The glue function assumes a perfect contact between 

the surfaces. Strain results from both methods were compared and it was found 

that there was negligible difference in the results. It is reasonable to assume that 

the three materials being used in the model would remain within their elastic 
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limits during loading and unlikely to experience any yielding at the contact 

interfaces. For this reason the glued contact option was deemed suitable for this 

particular model.  

4.5.4 Parameters for the Numerical Model 

As outlined in the theoretical analysis in Section 4.5.2 the bond length of the 

adhesive which adheres the fibre to the host structure must be some percentage 

greater than the length of the FBG being used. Finite element analysis is 

employed here to validate the modified ASTC equation (4.1) and to confirm that 

the minimum adhesive bond length of 9 mm results in an ASTC of unity. Five 

different bond lengths were compared ranging from 5 mm to 10 mm. The fibre 

was located within the groove with a ta of 62.5 μm. This ta was measured from 

the experimental set-up and dictated by the geometric restrictions placed on the 

fibre depth by the radius of the original Acrylate fibre coating which was 

retained either side of the polyimide recoated portion of the fibre (Figure 4-24).  

 

 

Figure 4-24 A coated fibre within the host material 
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The original coating measured 250 μm in diameter and the coated silica fibre 

into which the FBG was written measured 125 μm. This dictated, therefore, that 

between the base of the groove and the protective coating of the fibre, ta is 62.5 

μm. This value for ta was used in the numerical simulation model.  

4.5.5 Numerical and Analytical ASTC Results 

The material properties used for the embedded fibre simulation are the same as 

the properties used for the surface mounted fibre. The host material was 

strained to 0.0341% strain longitudinally. The strain distribution through the 

adhesive layer into the fibre is shown in Figure 4-25 where an obvious region of 

low strain is observed towards the end of the adhesive layer.  

 

 

Figure 4-25 Numerical simulation showing areas of low strain towards end of the 
bonded region 
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The strain in the adhesive and fibre eventually converge at the centre of the 

bonded region to match the strain being experienced by the host material. This 

strain distribution is similar in characteristic to the strain profiles obtained 

analytically in Figure 4-22. A path was created in the numerical model along the 

centre of the fibre from one end of the BL to the other. The longitudinal strain 

was mapped onto this path and is plotted against the analytically obtained 

values in Figure 4-26 for 5 different bond lengths between 5 and 10 mm.  

 

 

Figure 4-26 FEA and analytical strain distribution for a range of BL 

It can be seen from Figure 4-26 that there is good correlation between the strain 

profiles obtained using FE and the modified analytical equations. Close 

examination of the FE strain profile shows that, like the analytical analysis, an 



 
 
 

 
144 

 
 

 

ASTC of 1 is obtained with a BL=9 mm. This length ensures that there is uniform 

strain over the entire 5 mm FBG sensing region of the fibre.  

 

 

Figure 4-27 Comparing FEA and analytical ASTC 

The closeness of agreement between the ASTC values obtained through 

analytical and FE methods is shown in Figure 4-27. The average percentage 

difference between the ASTC obtained using the FE and analytical equations was 

found to be 2.4% with a 1.9% at BL=9 mm.  It can be concluded that the modified 

analytical model, to include an effective radius, gives a reasonable estimation of 

the minimum bond length for a FBG fibre embedded within a host material.  
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4.6 Transverse Strain Gradients within the Groove 

The FE analysis of the fibre within the groove was carried out by loading the 

host material longitudinally to a specified percentage strain value. This approach 

dictates that the strain throughout the host material is uniform at all points 

throughout it cross-section. However, further analysis of the strain distribution 

throughout the tapered blade cross-section shows that the longitudinal strain is 

at its maximum at the blade upper surface and gradually decreases towards the 

blades neutral axis. An estimation of the strain variation between the blade 

upper surface and the bottom of the groove (260 μm) is shown in Figure 4-28(a). 

These strain profiles were created using the elementary beam theory previously 

discussed in Section 4.4.1 where 30 N was applied at the blade tip. 

 

 

Figure 4-28 (a) Strain variation over blade length from upper surface to base of 
groove (b) Strain variation along 5 mm FBG length only. 

A closer look at the longitudinal and transverse strain variations over the 5 mm 

FBG only shows that there is 0.5% variation in longitudinal strain and a 9.5% 
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variation in the transverse strain. While FBGs are sensitive to nonuniform 

longitudinal strain it is believed that 0.5% is negligible and unlikely to cause 

significant spectral broadening or multiple reflected peaks [136]. Little is known 

however on the effect of the transverse strain variation on the readings obtained 

from the FBG sensor. It is assumed that for a fully embedded fibre the strain 

measured by the fibre is the strain coincident with the centreline of the fibre. 

This is justifiable as the strain in the host material is being transferred 

circumferentially to the fibre via a fully encapsulated adhesive layer. However, 

when the fibre is partially embedded not all of the host material strain is being 

transferred circumferentially but primarily concentrated at the bottom and sides 

of the adhesive layer with the top of the adhesive being open to the environment. 

Therefore, for a partially embedded FBG, an investigation is required to 

ascertain whether the strain being measured is the strain coincident with the 

centreline of the FBG or whether it is affected by the transverse strain gradient 

throughout the groove depth.  

4.6.1 Defining Transverse Strain Gradient 

The numerical model used in Section 4.5.5 was modified and used to assess the 

effect of introducing a transverse strain gradient through the groove. A 9.5% 

change in displacement between the top of the groove and the base of the groove 

was applied to the face of the host material. This in turn induced a 9.5% linear 

strain gradient representative of the variation found in Figure 4-28(a).  The 

change in the longitudinal strain dεx is now a function of the distance dy from the 
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upper surface of the blade (y = 0) where the constant of proportionality linking 

both variables is mo, the slope of the line as shown in Figure 4-29. The term εf  is 

the strain expected to be read by the FBG sensor at distance yf from the blade 

upper surface.  

 

 

Figure 4-29 Nature of the applied strain gradient to the host material in the finite 
element simulation 

Inducing the strain gradient required that a displacement function was imported 

into ANSYS which related displacement of the host material at a specific distance 

from the top surface of the blade of the form, 

 o surfx m y x  (4.12) 

Δx is the displacement of the host material and xsurf is the displacement at the 

blade upper surface. Since, 

 x
x

ε
BL

 (4.13) 

where BL is the bond length of the host material, then the induced strain at 

distance y  from the blade upper surface is calculated as, 
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 o surf
x

m y x
ε

BL
 (4.14) 

An ANSYS model of the partially embedded fibre with a BL of 9 mm was created. 

A 9 mm BL was chosen as this is the BL that ensures 100% of the strain from the 

host material is transferred to the fibre core. The adhesive thickness below the 

fibre ta was maintained at its practical minimum value of 62.5 μm. An image of 

the loaded model is shown in Figure 4-30 where the applied strain gradient can 

be seen by the change in colour of the contour lines in the host material. A slope 

mo of 1.167 μm/μm was used in this model to induce a 9.5% strain gradient from 

the upper surface of the host material to the bottom of the groove in which the 

fibre was embedded.  

 

 

Figure 4-30 Transverse strain gradient applied to the finite element model 
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Post processing of the results from the FEA model was carried out by creating 

strain measurement paths at six locations in the model; the upper surface of the 

host material, 135 μm down from the surface, 260 μm down from the surface, 

and the top, bottom and centre of the partially embedded fibre. Strain 

measurements at 135 μm are significant as this is the depth in the host structure 

which is coincident with the centreline of the bonded fibre. The longitudinal 

strain readings that were mapped onto the six paths are presented in Figure 

4-31. It can be observed that the strain measured along the centreline of the 

fibre, located 135 μm from the upper surface of the host material, corresponds 

with the strain within the host material at the same distance from the upper 

surface.  

 

 

Figure 4-31 Strain readings through host material and embedded fibre 
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Five further simulations were carried out where the transverse strain gradient 

was incrementally increased from 9.5% to 90%. The results from each 

simulation showed that, at each strain gradient the strain measured at the fibre 

centreline location was the same as the strain at that depth in the host material. 

These results do suggest that the strain in the core of the fibre over the length of 

the FBG sensor (5 mm) is the strain experienced by the host material at a 

location coincident with the fibre centreline even if there is a significant 

transverse strain gradient through the groove.  

4.6.2 The Grooved Blade 

The experimental rig used in Section 4.4 in the analysis of a surface mounted 

FBG sensor was modified to accommodate a FBG sensor embedded within a 

groove in the blade. A high speed milling machine with a 300 μm wide ball-nosed 

cutting tool was used to machine the groove into the upper surface of the 

mocked up symmetrical blade (Figure 4-32(a)).  

 

 

Figure 4-32 (a) Model of the machined blade (b) close-up section view of grooves  
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An additional groove was put into the blade to accommodate an additional 

unbonded FBG for the purpose of localised temperature measurement and 

consequent temperature compensation if needed. The depth of the grooves was 

260 μm, which matched the geometry of the FE model. When measured, the 

widths of the grooves were found to be 340 μm at the top and not 300 μm as 

originally specified. A close-up view of the grooves (Figure 4-32(b)) showed that 

the top edges of the grooves had become rounded. It was concluded that this was 

probably due to swarf catching the top edges of the groove while being removed 

during the machining process. Even though the rounded edges were slightly 

different to the corresponding edges in the FE models, it was believed that this 

would have no affect on the ASTC.   

4.6.3 The Recoated FBG  

The FBG used was a single mode silica fibre with a 5 mm FBG written into its 

core. The original Acrylate coating was stripped over a 10 mm region to allow 

the FBG to be written. The stripped region was then recoated with a polyimide 

layer used to protect the delicate fibre from damage and breakage. The final 

outer dimensions of the recoated portion and the original coating of the fibre are 

shown in Figure 4-33. It should be note that the manufacturing tolerances used 

in the recoating process are quite low and as a consequence it has been found 

that there can be quite a variation in the diameter of the recoated fibre from one 

sensor to the next. This is also evident in Figure 4-33(b) which shows the 

diameter of the recoated 5 mm FBG region of the fibre. It can be seen that the 
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diameter over this region is greater than the region close to the original coating 

by ~6 μm. Therefore, the adhesive thickness between the base of the recoated 

fibre and the base of the groove is ~55 μm when the fibre is bonded in the 

groove. This differs from the value used in the analytical and numerical analysis 

where the adhesive thickness was taken to be 62.5 μm. The thinner adhesive 

thickness in the experimental setup should not have any detrimental effect on 

the results obtained other than to enhance the transfer characteristics between 

FBG and the blade.  

 

 

Figure 4-33 (a) Original Acrylate coating and recoated fibre (b) Finished diameter 
of the recoated fibre at the 5 mm FBG location 
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4.6.4 Experimental Verification of Coincident Strain 

The numerical analysis carried out confirmed that the strain being experienced 

by a partially embedded FBG is the same as the strain within the host structure 

coincident with the centreline of the FBG. To verify this, the symmetrical blade 

used for the surface mounted investigations was modified to include a groove on 

one half of the blade for embedding the FBG and a machined region on the other 

half of the blade to accommodate an electrical strain gauge at a depth of 135 μm 

from the upper surface (Figure 4-34). This machined region will experience the 

same strain at a depth coincident with the location of the FBG in the other half of 

the blade. The centre of the machined region was located at 14 mm from the 

blade pivot point to ensure that the strain gauge was located at the same 

location as the FBG on the other half of the blade.  

The experimental procedure for loading the blade and collecting the FBG and 

ESG strain information was the same as the procedure described in Section 4.4.3 

for the surface mounted FBG. 

 

 

Figure 4-34 Modified symmetrical blade 
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The results comparing the strain values obtained from the ESG, FBG and 

analytically are shown in Figure 4-35. The results show the strain readings taken 

while loading and unloading of the blade between 0 and 30 N. It is notable that 

there is a very good correlation between both sets of results up to ~15 N. 

Thereafter there is a decrease in the sensitivity of the FBG sensor while the ESG 

sensitivity remains constant. It was suspected initially that this change at ~15 N 

may be due to inadequate bonding of the fibre in the groove. However, the strain 

values while unloading the blade match exactly the loading readings with no 

evidence of hysteresis. This would suggest that the bonding is adequate.  

 

Figure 4-35 Results comparing ESG, FBG and analytical strain values 

To check that the mechanical loading of the blade was not causing the issue, the 

blade was reversed and the experiment carried out again. The readings were 

found to match those in Figure 4-35 very closely and the change in sensitivity at 
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~15 N was still evident. It was observed from analysis of the FBG strain readings 

that noise in the signal appeared to change as the load applied to the blade 

changed between 0 and 30 N. Therefore, an investigation was carried out to 

establish if there was a correlation between the noise observed in the signal and 

a change in the FBG strain readings. 

4.7 Fluctuations in the FBG Strain Readings  

Reading the load cell force values and the FBG wavelength shift, while the force 

was being applied at various locations, was carried out by taking 100 samples 

over a 2 second time period and logging the information. Each set of 200 

samples was then averaged to give the force applied to the blade by the load cell 

and the corresponding strain measured by the FBG sensor. It was observed that 

the peak-to-peak (p-p) fluctuation in some of the FBG readings, at certain load 

values, was different to others. Closer analysis of the p-p fluctuation in the 

signals showed that, at lower load values, it was relatively low (p-p fluctuation of 

6 με) but as the loads increased the p-p fluctuation also increased (Figure 4-36).  
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Figure 4-36 Peak to peak strain fluctuation in the FBG readings 

A maximum p-p fluctuation of 31 με occurred at 14 N load before decreasing to 

~5με thereafter. By contrast the p-p fluctuation measured from the 

corresponding ESG readings remained constant at ~8.5 με. It was not clear 

exactly why the p-p fluctuation in the FBG was behaving like this, so a series of 

experiments were carried out to assess: 

1. The influence of FBG bonding on the strain fluctuation.  

2. If the blade material affected the fluctuation.  

4.7.1 Point Bonding Experiment 

It was thought that there could be unknown issues at the contact region between 

the FBG and the adhesive that may in some way affect the strain transfer to the 
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fibre.  Therefore, is was decided to carry out the same loading experiment as 

before but change the way in which the fibre was bonded to the blade surface. 

The experiments carried out in Section 4.4.3 used a FBG bonded to the blade 

surface over its length. The adhesive bonded the length of the 5 mm FBG plus 3 

mm either side to ensure complete strain transfer from the blade surface. To 

assess whether or not there was an issue with fully bonding the FBG in this way, 

a new fibre was bonded at the exact same blade location as the previous one. 

However, the new fibre was bonded to the blade by placing two regions of 

adhesive on either side of the FBG instead of along its length. This meant that 

there was no contact between the FBG and adhesive yet the fibre could still be 

strained by inducing tensile strain on the blade upper surface. The tensile strain 

was induced in the FBG by turning the symmetrical blade (shown in Figure 4-12) 

upside down in the test rig and applying the loads at the blade tips as described 

in Section 4.4.3. The p-p fluctuation was again measured for each applied load 

and the results are shown in Figure 4-37. There is little difference between the 

results for the fully bonded and the point bonded FBGs and consequently we 

concluded that the influence of a fully bonded adhesive layer had no impact on 

the strain fluctuation. Moreover, strain results taken from the fully bonded FBG 

were compared under tensile and compression loading but similar p-p 

characteristics were observed in each case as shown in Figure 4-37. 
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Figure 4-37 P-P fluctuation for point bonded and fully bonded FBGs 

4.7.2 Modified Test-Rig  

It could be concluded from the experiments carried out in Section 4.7.1 that 

adverse effects due to bonding, the adhesive material, strain gradients in the 

vicinity of the FBG and the nature of the loading were not causing the irregular 

p-p strain fluctuation. Other possibilities were proposed such as the possibility 

of a resonant vibration occurring in the blade material at a particular load. 

Therefore, a second symmetrical blade was manufactured from aluminium 

instead of stainless steel and the experiments repeated with a new FBG bonded 

at the same location as previous FBGs. The p-p fluctuation results obtained 

corresponded very closely with results from the stainless blade suggesting that 

the blade material was not causing the issue.  
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To assess the possibility of the rig itself introducing inadvertent lateral or 

transverse loads into the blade during application of the forces, the rig setup was 

changed. The symmetrical blade was held securely in a rigid translational stage 

(Figure 4-38) and the blade translated against a solid column which in turn 

applied the loads to the blade. The results obtained were identical to the 

previous rig setup which suggested that the original rig set-up was probably not 

the cause of the strain fluctuations.  

 

 

Figure 4-38 Alternative blade loading fixture 

4.7.3 Macrobend Interrogation Unit 

Having investigated the possibility of mechanical or bonding issues causing 

fluctuations in the strain readings, attention was turned to the interrogator used 
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in the detection of the reflected wavelength from the FBG and the shift in 

reflected spectrum when loaded. The strain readings in previous experiments 

were obtained using a Wx-02 commercial interrogator unit from the Smart 

Fibres Company. The Wx-02 unit has a high output power, electrically tunable, 

solid state laser source with a 2500Hz scan rate enabling real time data 

acquisition. Using an interrogator based on a tunable-filter method, a broadband 

source is followed by a filter that can be periodically scanned over the whole 

wavelength operating range of the sensor. This method of interrogation allows 

the use of the system in a closed-loop operation, enabling it to track the centre 

wavelength of the light reflected by a single sensor. Alternatively it could be used 

in a sweep mode, allowing the interrogation of several sensors simultaneously 

[137]. This interrogation unit was changed, for the purpose of this experiment, 

to a macro-bend fibre edge filter ratiometric system developed by Wang et al 

[101]. The schematic structure of a ratiometric wavelength measurement system 

is shown in Figure 4-39 which includes a splitter, an edge filter, a reference arm 

and two photodetectors. The edge filter discriminates the wavelength of the 

input signal with the transmission measured by photodetector A.  

 

Figure 4-39 Schematic of a ratiometric wavelength measurement system [138] 
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The reference arm is used and based on the ratio between the measured powers 

from two arms, it can discriminate the wavelength of the input signal regardless 

the power of the input signal for an ideal input light (monochromatic) and 

photodetectors (no noise) [138].  

The original test-rig was again used to load the blade and the FBG connected to 

the macrobend interrogation unit. The results obtained from both units are 

presented in Figure 4-40. Clearly by using the macrobend interrogator the 

irregular nature of the p-p fluctuation through the loading range is no longer 

evident.  

 

 

Figure 4-40 Commercial and macrobend interrogator p-p fluctuation 
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This suggests that the means by which the commercial interrogation unit 

measures the reflected spectrum could be the reason for the variation in the p-p 

strain fluctuation. It is not clear if the problem is due to the hardware used in the 

measurement of the wavelength shift or a software related issue that interprets 

the measured information. The fluctuation of the signal could be reduced by 

averaging or filtering the signal. However, the resolution of the overall system is 

restricted by the maximum p-p fluctuation of ~31 με occurring at particular 

loading values. 

4.8 Lateral Loading of the Grooved Blade 

In practice, during a typical cutting cycle, scissor blades experience laterally 

applied loading due to the curved nature of the blade. The sensitivity of the 

embedded fibre to these lateral loads is examined. Lateral loads were applied to 

the blade along its length, with the FBG located at the same longitudinal position, 

14 mm from the pivot. Loads in the range 0-12 N were applied at multiple 

locations along the lateral side of the blade, from the tip (39 mm) towards the 

location of the FBG (14 mm) in 3 mm increments. The strain measured by the 

FBG resulting from the laterally applied loads is shown in the Figure 4-41. 
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Figure 4-41 Measured FBG lateral strain over a range of loads 

It is clear that the lateral loading of the blade will impact the FBG strain readings 

obtained from direct loading.  Although the FBG sensor is less sensitive to the 

lateral loading, it is still significant enough to cause errors in the direct 

measurements which arise due to blade friction, tissue fracture and 

compression. A maximum lateral load of 12 N applied to the tip of the blade 

introduces a maximum error of 14 με in the measured direct strain. The value of 

error decreases when the applied load shifts towards the blade pivot due to 

smaller lateral deflections. Thus, the accuracy of the direct strain measurement 

is limited due to the inadvertent lateral loading arising from the deflection of the 

blade during cutting. However, this could potentially be minimised by 

characterising the lateral strain for a dry cut (without any tissue) and using the 
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results to form a calibration correction factor to eliminate the impact of the 

lateral loads.  

Theoretically, if the blade groove and consequently the FBG sensor were located 

exactly on the neutral axis of the blade, the strain readings from the FBG due to 

lateral loading would be zero. The location of the centreline of the groove 

relative to the neutral axis of the blade was measured and found to be offset by 

80 µm. An analytical equation (4.16) was developed from elementary beam 

theory which predicted the lateral strain being experienced by the FBG when 

placed a distance xg (14 mm) from the blade pivot and a distance wg (1.063 mm) 

from the blade cutting face.  

 
3

6 ( )( 2 )

( )

g g

g b

F L x w w
ε

Ew mx t
 (4.15) 

F is the lateral load, L the length of the blade, w is the width of the blade, tb is the 

thickness of the blade at the pivot, E  is the Young’s modulus of the blade 

material and m is the slope of the blade given as;  

 t bt t
m

L
 (4.16) 

where tt is the thickness of the blade at its tip.    

Comparing the theoretical lateral strain with the experimental values in Figure 

4-42 it can be seen that they correlate closely up to a maximum load of 12 N 

applied at the tip.  
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Figure 4-42 Tensile and compressive lateral loading of FBG from laterally loading 
the blade in opposing directions 

The results also highlight that there is a slight discrepancy between the strains 

measured when the blade is loaded laterally in one direction (Figure 4-43(a)) 

and then in the opposite direction (Figure 4-43(b)) due to the FBG being offset 

from the centreline by 80 µm. The sensitivities for each loading direction were 

found to be 1.13 µε N-1 and -1.37 µε N-1 by taking a best fit linear line through the 

experimental data points.  
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Figure 4-43 Blade showing FBG (offset from blade neutral axis) (a) applied load 
inducing tensile strain on the FBG (b) applied load inducing compressive strain on 

the FBG 

Comparing the lateral sensitivities of both configurations (Figure 4-44) it is 

notable that the sensitivities of the surface mounted configuration are generally 

higher than that of the grooved configuration. This can be attributed to the 

location of the FBG centreline axis relative to the neutral axis of the blade. The 

centreline of the FBG embedded within the groove was measured to be offset 

from the blades neutral axis by ~80 µm (wg = 1.063 mm) while the surface 

mounted FBG was measured to be ~100 µm (wg = 1.043 mm) from the neutral 

axis. These measurements were used in the equation (4.15) to estimate the 

theoretical strain being experienced by the FBG in their respective 

configurations.  
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Figure 4-44 Measured and theoretical lateral sensitivities for surface mounted and 
embedded FBG configurations 

4.9 Direct Sensitivities of Surface Mounted and Partially 
Embedded Blades 

Partially embedding the FBG into the structure of the blade moves the fibre away 

from the location of maximum strain which occurs at the blade surface. It has 

been established in Section 4.4.3 that the strain read by a surface mounted FBG 

sensor is in good agreement with established strain sensing technology when 

the blade is loaded directly. The experimentally measured FBG strain values 

between the blade tip (39 mm) and FBG location (14 mm) over a 30 N load range 

are shown in Figure 4-45. The values exhibit good linear characteristics over the 

length of the blade. Likewise, the partially embedded fibre also exhibits good 
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linearity as well as close agreement to the theoretically determined values. It is 

evident that there is a reduction in the sensitivity of the partially embedded fibre 

arrangement compared with the surface mounted arrangement.  

 

 

Figure 4-45 (a) Surface mounted FBG strain and (b) partially embedded FBG strain 

The determination of the respective sensitivities is achieved by analysing the 

strain/force ratio for each configuration when the load range (0-30 N) is applied 

over the region between tip (39 mm) and FBG location (14 mm). Comparing 

each experimental sensitivity with its respective theoretical value in Figure 4-46 

shows that there is a good correlation between them.  A difference of 9.2% exists 

between the surface mounted FBG (5.88 με N-1) and embedded FBG (5.34 με N-1) 

arrangements when comparing the experimental sensitivity values. The 

corresponding theoretical sensitivities, based on elementary beam theory, were 

5.36 με N-1 for the surface mounted and 4.91 με N-1 for the partially embedded 

fibre giving an average difference of 8.4%. It can be seen that the FBG sensitivity 

values for the embedded fibre correspond very closely with the theoretical 
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values with good linearity being attained. The surface mounted FBG corresponds 

more closely to the theoretical values when the loads are applied at blade 

locations between 24 mm and 39 mm with a slight deviation from linearity 

between 24 mm and 15 mm.  

 

 

Figure 4-46 Direct loading sensitivities for surface mounted and embedded FBG 
configurations   

The ratio of the direct-to-lateral sensitivity values for both surface mounted and 

grooved configurations are compared in Figure 4-47. The theoretical results 

show that the direct-to-lateral sensitivity ratio should remain constant along the 

blade length. However, the experimentally obtained values show that direct-to-

lateral sensitivity ratio remains relatively constant from the blade tip (39 mm) to 



 
 
 

 
170 

 
 

 

~24 mm corresponding to ~38% of the blade length. In the region between 24 

mm and the location of the FBG (14 mm) the sensitivity ratio is clearly 

erroneous. This could be attributed to the lower (direct and lateral) sensitivities 

in this region being affected by the p-p strain fluctuation discussed in Section 4.7 

leading to inaccuracies in the measured values. However as documented by 

Greenish [75] surgeons typically use the first one third of the blade (from the 

tip) which is the region in Figure 4-47 where the direct-to-lateral sensitivity 

ratio is relatively constant.   

 

 

Figure 4-47 Measured and theoretical direct to lateral strain ratio for both surface 
mounted and grooved configurations 
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4.10 Summary 

In this chapter the transfer of strain from the scissor blade to the core of a FBG 

sensor bonded to the blade was investigated. FBG sensors are not available as 

pre-packaged modular sensors; therefore, the bonding of the fibre to the host 

structure requires consideration as a non-uniform strain distribution across the 

FBG sensor will lead to spectral broadening and distortion of the reflected 

spectrum.  

An average strain transfer coefficient (ASTC) theoretical model developed by 

Cox et al for a fully encapsulated FBG was used to estimate the adhesive bond 

length required to ensure complete strain transfer from host to FBG. A numerical 

model was developed to more accurately simulate the ASTC for a surface 

mounted fibre. 

A study was carried out where a FBG was partially embedded within the 

structure of a mocked up scissor blade to assess the effects of adhesive bond 

length and adhesive thickness as well as the sensitivity of the partially 

embedded sensor arrangement. No theoretical models existed for a partially 

embedded fibre so the model for a fully encapsulated fibre was modified to 

account for a change in adhesive between the bottom of the fibre and the base of 

the groove. 

The study also investigated whether or not the presence of transverse strain 

gradients through the host material had any effect on the strain reading obtained 

from the FBG sensor. 

The key conclusions of this chapter can be summarised as follows; 
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 A series of adhesive bond lengths and adhesive thicknesses for a surface 

mounted FBG sensor were assessed using the numerical model. It was 

found that for an adhesive thickness of 62.5 μm a bond length of 11 mm 

(55% longer than the FBG) ensures 100% strain transfer and uniform 

strain across the 5 mm FBG length.  

 A novel evaluation test-bed was developed which allows FBG and ESG 

strain readings to be assessed simultaneously. Results show that the 

sensors are in good agreement with a maximum variation of 2.8% 

between respective strain readings. The ratio of the strain measured by 

the FBG to that of the ESG was found to be 0.98. This was defined as the 

ASTC.  

 Analysis of the reflected FBG spectrum at zero and maximum load reveals 

that no errors occurred in the FBG strain measurements as a result of 

strain non-uniformity along the grating. This confirmed that 11 mm is an 

appropriate bond length for the 5 mm FBG used, allowing strain 

uniformity and complete strain transfer to be obtained. 

 A numerical model was developed for the partially embedded FBG and it 

was found that the modified analytical model compared favourably. Using 

an adhesive thickness of 62.5 μm it was found that the adhesive bond 

length for a partially embedded FBG could be reduced to 9 mm compared 

to 11 mm for the surface mounted FBG. An 18% reduction in bond length 

is desirable from the point of view of ensuring the sensing arrangement is 

as compact as possible.  
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 Numerical simulations, where a series of strain gradients up to 14% were 

applied, showed that the strain measured by the FBG is the strain 

coincident with the FBG centreline. However, it is believed that there is a 

need for more detailed knowledge of the adhesive properties being used 

in the simulations to more accurately reflect the complex interaction 

between fibre, adhesive and host material. Experimental results show 

that the coincident strain measured by the FBG correlated well with 

results from an electrical strain gauge and the numerical simulations. 

There was an irregularity in the results from the FBG midway through the 

loading range. It was proposed that these errors in reading could be due 

to noise fluctuation observed in the measured signal at different loading 

values. An alternative interrogation technique confirmed that the peak-

to-peak fluctuation observed appeared to be caused by the commercial 

interrogator unit used in the study.  

 The sensitivity of the FBG sensor to lateral loading, whether surface 

mounted or partially embedded, was investigated. The results show that 

the FBG is sensitive to both direct loading and lateral loading of the blade. 

The strain effects of lateral loading must be compensated for as the 

laterally induced strain will introduce errors into the direct force 

readings. These laterally induced errors have particular importance when 

the forces being measured are to be used in the measurement of tissue 

elastic and fracture properties. 
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Chapter 5 

5 Dynamic Cutting Analysis of the 
Sensorised Scissor Blade  

5.1 Introduction 

The strain experienced by an actual scissor blade onto which a FBG sensor is 

attached is investigated and modelled, through the use of elementary beam 

theory (EBT). A theoretical analysis is presented, followed by experimental 

verification, of the strains that occur coincident with the FBG position on the 

blade due to the blade being loaded directly and laterally during operation. The 

model demonstrates how the complex strains generated during blade opening 

and closing will contribute to the total strain readings obtained from the FBG 

sensor. Moreover, a means of decoupling the lateral and direct forces is modelled 

and validated using data obtained from the sensorised characterisation test-bed. 

The model employs the use of double tapered beam theory to represent the 

blade [139-142]. From this, a theoretical calibration ratio can be developed 

allowing estimations to be made in relation to the sensitivity of the sensorised 
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blades. The calibration ratio is verified experimentally and subsequently used to 

facilitate the measurement of forces generated at the interface between tissue 

and blades at any location along the blade. This will enable analysis of the 

variation of forces acting on the blade as the blades open and close [107, 108]. 

To validate the accuracy of the force results obtained from the FBG sensorised 

blade, results are compared to those obtained from a commercial load cell. 

5.2 Blade-Tissue Interaction 

Inter-blade friction and the fracture properties of the material being cut are the 

primary factors affecting the magnitude of blade-tissue interaction forces. Our 

approach aims to integrate the sensor into the actual scissor blade at the blade-

tissue interaction site. This arrangement provides for excellent transmission of 

resulting blade strains to the sensor. This ensures that measurements are not 

adversely influenced by factors such as mechanism friction and backlash [6]. 

This increased accuracy provides the basis for improved analysis of the resultant 

force components.  

Sharp dissection implies the use of concentrated energy on a relatively small 

area of tissue to achieve separation with little disruption to surrounding tissue. 

The scissor cutting method consists of two sharpened blades rotating about a 

common pivot location during closing. The blades are curved along their 

longitudinal axis such that, upon passing, there is a point contact between the 

cutting edges of both blades [74]. This is the point at which all the external input 

energy, from scissor actuation, is concentrated. This point is referred to as the 
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blade intersection point as shown in Figure 5-1. This intersection point moves 

along the blade length as the included angle of the cutting edges changes through 

a cutting cycle. As a result, two coincident friction force components (direct and 

lateral) are occurring at the intersection point as it moves through the cycle. 

Implementing a FBG sensing element as part of the blade structure means that 

both the lateral and direct force components are measured simultaneously. 

However, it is the direct loading forces that are of primary interest in this work 

as they are the forces acting perpendicular to the blade cutting edges, giving a 

sense of feeling to the user. The approach taken in the development of a set of 

sensorised scissor blades capable of facilitating the measurement of these direct 

forces is shown in Figure 5-1.   

 

 

Figure 5-1 Proposed method of measuring blade-tissue interaction forces 

5.2.1 The Effect of Eccentric Blade Loading 

A finite element analysis of eccentric loading was carried out on a model of a 

blade to assess the applicability of employing elementary double tapered beam 
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theory during blade strain analysis. Firstly, the blade was loaded directly (Fd) at 

the location of the blade neutral axis (Figure 5-2(a)), then, the load was offset 

from the neutral axis to the cutting edge. Secondly, a similar evaluation was 

carried out during lateral loading where Fs was applied both at the neutral axis 

and offset to the cutting edge. Fd and Fs were set to 30 N and 10 N respectively 

and applied at the blade tip to induce maximum bending moments.  

The strain distributions resulting from Fd being applied at the neutral axis, then 

offset by 0.76 mm (half the blade width at its tip) to the blade cutting edge, are 

shown in Figure 5-2(b). The strain values were measured at two locations on the 

blade upper surface; at the centreline axis (green and purple) and at the cutting 

face plane (red and blue). Results show that there is no discernible error 

between the strain plots at these locations under the described loading 

conditions.  

During lateral loading, Fs was applied at the blade neutral axis and subsequently 

offset from the neutral axis by 1.345 mm (half the blade thickness at the tip) as 

shown in Figure 5-3 (a). Strain distributions were measured on the blade upper 

surface at the cutting face plane as well as 0.38 mm and 0.76 mm from the 

cutting face plane Figure 5-3 (b).  Analysis of the strain at the three locations 

found that the impact of eccentric loading induced negligible twisting of the 

blade. It is reasonable therefore, to assume that the use of elementary beam 

theory, in which the loads are applied at the blade neutral axis, is representative 

of a scissor blade being loaded eccentrically along its cutting edge.  
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Figure 5-2 (a) The Finite Element model being loaded at the blade centreline (Fd) 
and at the cutting edge (Fd offset), (b) Strain profiles along the blade top surface 

for both direct loading configurations.  
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Figure 5-3 (a) The Finite Element model loaded laterally at its centreline (Fs) and 
offset to the cutting edge (Fs offset), (b) Strain profiles at three locations along the 

blade top surface for both lateral loading configurations. 

5.2.2 Tapered Blade Strain Analysis using EBT 

The scissor blade onto which a FBG strain sensor is to be attached can be 

approximated as a cantilever beam tapering uniformly in two planes (Figure 

5-4). The blade is loaded both laterally and directly to investigate the nature of 
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the 2-D strains experienced at the location of the FBG. The FBG sensor is located 

on the blade upper surface so as not to interfere with blade functionality during 

opening and closing. Using elementary beam theory, the resultant strain ε at any 

location x along the blade length for a given direct force input Fd can be 

estimated from equation (4.4). 

 

 

Figure 5-4 Geometry of a double tapered scissor blade 

The blade section varies linearly in both planes and consequently the Second 

Moment of Area I(x) of the section can be expressed as, 
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where the blade width w(x) is given as, 

 ( ) bw x nx w  (5.2) 
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with the width taper ratio n given as, 

 t bw w
n

L
 (5.3) 

Substituting (5.1) into (4.4) results in the strain as measured by the FBG at 

location xg due to direct loading at xc and is given as, 
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 (5.4) 

Direct force loading of the blade during an empty cut arises from frictional 

contact between the blades while they are opening and closing. When the blades 

are passing one another during this empty cut cycle there is effectively a point 

contact at their point of intersection due to the blades curving along their length 

in the xy plane. It is therefore reasonable to assume that forces during opening 

and closing are generated perpendicular to the blade cutting edges at xc. The 

curved profile also causes lateral deflection resulting in lateral forces on the 

blades during a cutting cycle. This lateral deflection influences the FBG readings 

as the fibre is bonded to the upper surface of the blade. The lateral strain εs is 

estimated using an approach analogous to that for calculating the direct strain 

and is presented as, 
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The fibre lateral location, yg, which can be varied between the blade centreline 

and blade cutting surface, is according to equation 5.5 assumed to be located at 

the blade cutting edge where, 
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This is an undesirable location as placing the fibre at the blade cutting face 

interferes with blade functionality as well as compromising the protection of the 

FBG during operation. Modification of equation 5.6 to include the term wg 

permits the measurement of strain values at any location between the blade 

cutting edge and its centre axis to be evaluated according to,   
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Substituting (5.7) into (5.5) results in equation (5.8) and describes the lateral 

strain induced in a FBG strain sensing element attached to the upper surface of a 

blade. Therefore,  
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where xg and wg are the longitudinal and lateral locations respectively of the 

fibre on the blade upper surface. The resultant total strain ε from the FBG sensor 

subjected to Fd and Fs inputs at coincident locations along the blade length is 

therefore the sum of εd  and εs. It is evident that to obtain relevant direct force 

information perpendicular to the cutting edges, εs needs to be decoupled from 

the total strain readings.  

5.2.3 Decoupling Strains  

Extracting pertinent force information from the total FBG strain requires a 

means of decoupling εs(θ) from εd(θ). It is proposed here that the use of a single 
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FBG on the blade can facilitate the measurement of both εs(θ) and εd(θ). These 

individual strain components acting on the FBG sensor are separated using a 

novel decoupling technique. This is the first time that this decoupling technique 

has been implemented and consequently offers a new contribution in the field of 

FBG sensing in surgical instruments. Decoupling can be achieved by analysing 

the total strain measured by the FBG during blade opening and closing to allow 

for the extraction of reliable estimates of εs(θ) and εd(θ). To distinguish between 

strain measured by the FBG during opening and closing the direct strain εd(θ) 

will be denoted as εo(θ) during opening and εc(θ) during closing. Note, that when 

closing the blades without any tissue present between them (empty pass), the 

direct strain εd(θ) becomes εf(θ) which is the strain resulting from blade friction 

forces only. The strain values measured by the FBG during the closing phase are 

therefore expressed as,  

 c s fε θ ε θ ε θ( ) ( ) ( )  (5.9) 

where εf(θ) is negative due to compression of the blade upper surface resulting 

from friction forces being applied to the blade at xc. During the opening phase 

the direction of the friction force is reversed inducing tension in the blade upper 

surface, hence, 

 o s fε θ ε θ ε θ( ) ( ) ( )  (5.10) 

The inherent lateral curvature of the scissor blades dictates that the blade will 

deflect outward during closing whilst returning to their original shape upon 

opening. It is reasonable to assume from this that, over a complete opening and 

closing cycle, the net εs(θ) equates to zero. Therefore, utilising equations (5.9) 
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and (5.10) results in an expression which estimates εf(θ) directly from the total 

strain measured by the FBG without need for further manipulation, as follows, 

 o c
f

ε θ ε θ
ε θ

( ) ( )
( )

2
 (5.11) 

The strain profiles for a cut cycle using typical force values for an empty cut are 

illustrated in Figure 5-5, where the blade cutting edge angle θ is a function of xc 

and can be calculated as, 

 -12tan
2

b

c

t
θ

x
 (5.12) 

This suggests that from a theoretical perspective, accurate εf(θ) and εs(θ)  values 

can be obtained via a single FBG sensor located on the blade. The resultant 

strains are proportional to the applied loads and as a result the friction-to-lateral 

strain ratio is defined as the kinetic friction coefficient µk. Therefore, 

 f
k

s

ε
μ

ε
 (5.13) 

It is notable from Figure 5-5 that when the blades are closed to a blade angle of 

~10° there is a difference in the opening strain value, εo(θ), and the closing strain 

value, εc(θ), of 30 με under these particular loading conditions.  
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Figure 5-5 Theoretical lateral, friction and total strain values for an empty pass 

Consequently, the nature of the strains being experienced by the FBG changes 

from compressive (closing cycle) to tensile (opening cycle). This is due to the 

normal force between the blades holding them together and inducing a friction 

torque that causes the blade to hog when the external opening torque is applied 

to the scissor handles. The hogging blade creates tensile strain on its upper 

surface which materialises as tensile strain readings from the FBG.  

5.2.4 Fracture Induced Strain 

The strain profiles illustrated in Figure 5-5 are representative of an empty cut 

devoid of any material between the blades. However, the cutting of material 

during the closing phase creates additional compressive effects on the blade 

upper surface. This further compresses the fibre and reduces the total strain 
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measured by the FBG in proportion to the generated fracture forces. This change 

in measured strain will allow friction as well as fracture force information to be 

obtained during cutting (Figure 5-6). This enables accurate force reflection of 

forces generated at the cutting interface and facilitates the collection of material 

property data pertaining to the fracture toughness of the materials being cut.  

 

 

Figure 5-6 Friction, fracture and lateral forces acting on the scissor blades  

The use of scissor blades is a convenient means of obtaining material fracture 

toughness by using equations 3.6 and 3.7. The respective force values Fff  and Ff 

are obtained from the decoupled FBG measured strains, εff(θ) and εf(θ), which 

are independent of the inherent lateral strain effects. To obtain strain resulting 

from tissue cutting, the total FBG strain during closing is modified using the 

following, 

 ff c sε θ ε θ ε θ( ) ( ) ( )  (5.14) 

where εs(θ) was found to be constant during both empty and material cutting 

cycles. Theoretical strain profiles based on the cutting of standard copier paper 

with a measured fracture toughness of 4.36 kJ/m2 are presented in Figure 5-7.  
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The total FBG strain data in Figure 5-7(a) contains three coupled strain effects, 

εs(θ), εff(θ) and εf(θ) resulting from their corresponding force inputs to the blade 

Fs, Fff and Ff.  Since εs(θ) is readily ascertained by combining equations (5.9) and 

(5.10) it can be subtracted from εc(θ) to leave strain information pertaining to Fff 

over the blade length as shown in Figure 5-7(c). Comparing εff(θ) in Figure 5-7(c) 

to εf(θ)  in Figure 5-5, there is approximately a 40% increase in εd(θ) due to the 

additional forces required to fracture the paper sample.  It should be noted that 

during the cutting of dry paper samples there is no lubricant present between 

the blades and as a consequence Ff remains constant throughout the cycle. It is 

reasonable to claim that the presence of fluids while cutting real tissue may alter 

the kinetic friction coefficient compared to dry conditions. However, 

experiments carried out by [74] on three different types of scissor blades 

demonstrated that for each pair of scissors, the same friction force readings 

were obtained during dry and lubricated conditions. The hydrodynamic effects 

are limited during cutting owing to the low velocities involved as well as the very 

small contact area between the blades.  However, further experiments should be 

carried out using a range of lubricant types to ascertain the extent to which the 

friction coefficient remains constant.  
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Figure 5-7 (a) Theoretical total FBG cutting strain (b) lateral strain only (c) 
combined fracture and friction strains decoupled from εs(θ) 

Experiments carried out by Atkins [143] on the guillotining of ductile metal 

plates also demonstrated that the force component present between the blades 
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due to friction was virtually the same for dry and lubricated cuts.  The friction 

force component, however, was small in comparison to the shear, fracture and 

bending components which may have masked any discrepancy between the 

lubricated and dry friction force values.  

5.3 Sensorised Blade Experimental Setup 

The characterisation test-bed described in Section 3.6 [144] was modified to 

include a FBG force sensor attached to one of the scissor blades. A set of 

experiments were carried out using the sensorised blade to: 

 
1. Validate the effectiveness of the strain decoupling technique employed 

to segregate the various strain components acting on the FBG. 

2. Validate the direct force measurements obtained using the sensorised 

blades against the values obtained from the commercial load cell.  

 
A standard single mode 125 µm diameter FBG sensor (similar to the fibre used in 

Section 4.6.3) was bonded to the upper surface of one of the cutting blades in the 

test-bed (Figure 5-8). A surface bonded FBG configuration (as opposed to a 

embedded FBG configuration) was deemed adequate for the purpose of 

validating the decoupling theory and validating the sensorised blade against a 

commercial load cell. The commercial load cell used in the test-bed will allow a 

direct comparison to be made between force values measured by the FBG and 

those measured by the load cell. A temperature compensation FBG located on 

the blade can be used to counteract temperature variation. However, in the 
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present case the internal temperature sensor of the FBG interrogation unit has 

been used to compensate for the influence of fluctuating ambient temperature 

effects on the strain readings. 

 

 

Figure 5-8 Experimental characterisation test-bed showing the location of the FBG 
on the blades 

This method of compensation was deemed suitable for this study as the duration 

of the cutting cycles are short (approximately 9 seconds) and temperature 

fluctuation over that duration was minimal. Moreover, the ambient temperature 

sensed by the interrogation unit is similar to that of the FBG due to the close 
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proximity of the interrogator to the blades. Future work will address this 

shortcoming by incorporating an unbonded FBG temperature sensor into the 

sensorised instrument. The unbonded FBG will sense localised temperature 

changes enabling compensation to be implemented. This is imperative when 

FBGs are being used in an environment where there are significant fluctuations 

in the localised temperature [95]. Moreover, the integration of a FBG for 

temperature measurement must also be done so as not to impede the 

functionality and performance of the instrument. Partially embedding the 

(unbonded) FBG within the instrument is a solution that could address this 

problem. 

5.3.1 Blade Calibration 

Calibration of the sensorised scissor blade was carried out over the maximum 

available cutting range of the scissor blades (25° to 10.4°). This angular range is 

a function of linear distance along the blade cutting edge xc from the pivot to the 

point of intersection of the blades (16 mm to 39 mm).  The calibration procedure 

involved securing the scissor blades in a clamping fixture and applying a series 

of static loads at a number of locations along the prescribed cutting envelope. A 

miniature button load cell was coupled to a micrometer load applicator unit 

which in turn is connected to a linear precision stage enabling translation of the 

load cell from blade tip to pivot (Figure 5-9). Direct loads Fd were applied normal 

to the blade cutting edge, in 2 N increments over a 0-30 N load range, 

representing direct loading of the blade structure during closing.  
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Figure 5-9 Blade calibration set-up for static direct loading conditions 

The button load cell was then translated along the blade cutting edge in 3 mm 

increments. The corresponding load cell force readings and strain measured by 

the FBG were subsequently taken. The relationship between Fd and εd(θ) 

measured by the FBG was found to be linear at each load application point along 

the blade. The ratio of Fd to εd(θ) at location xc is defined as the calibration ratio 

R. This theoretical input-output ratio can be estimated by rearranging equation 

5.7 such that, 

 
2( )( )

6( )

g b g bd

d c g

E nx w mx tF
R

ε x x
 (5.15) 

Experimental values for R and blade sensitivity are plotted along with their 

respective theoretical values in Figure 5-10. A close correlation is obtained, 
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indicating that the representation of the blade as a double cantilever structure is 

reasonable.  

 

Figure 5-10 Experimental and theoretical direct force-strain calibration ratio and 
blade sensitivity 

It can be seen from these results that the sensitivity of the sensorised blade is 

high from blade tip up to xc =20 mm. Thereafter, there is a decrease in blade 

sensitivity as the applied loads approach the FBG sensor location (xc =14 mm).  

Since surgeons typically operate scissors over the first one third of the blade 

length (26 mm to 39 mm) [75] there is little concern about the lower sensitivity 

beyond this region.  

5.3.2 Lateral Strain Sensitivity 

Using the experimental setup described in Section 5.3.1, direct strain on the 

sensorised surgical blade, with the 5 mm FBG, can be measured with a load 
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applied at multiple points along the blade from its tip towards the pivot. The 

measured direct strains for different loads applied at different blade positions 

for the surgical blade are shown in Figure 5-11. It can be observed that the 

maximum strain measured by the FBG occurs when the load is applied to the tip 

of the blade. The strain response is linear with respect to the applied load. 

However, during a typical cutting cycle the forces on the blades vary along its 

length over a typical working envelope between 10° and 23°. This is equivalent 

to a linear range of between 0 mm and 26 mm from the blade tip. In practical 

cutting applications the load position, xc, can be obtained if the blade opening 

angle is known hence the corresponding strain can be measured. 

 

  

Figure 5-11 Direct strain measured along the blade length 
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During a typical cutting cycle, scissor blades experience laterally applied loading 

due to the curved nature of the blades along their length. The strain resulting 

from the lateral load measured by the FBG attached to the top side of the blade is 

shown in the Figure 5-12. Loads are applied, at 3 mm intervals, in the range of 0-

10 N along the lateral side of the blade from the tip towards the pivot. Although 

the FBG sensor is less sensitive to the lateral load, it is clear that the lateral 

loading of the blade affects the direct strain output from the FBG sensor. A 

lateral load of 10 N applied to the tip of the blade introduces a maximum error of 

16  in the measured direct strain.  

 

 

Figure 5-12 Measured lateral strain from lateral loading of the blade along its 
length 
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The magnitude of the error decreases when the applied load moves towards the 

blade pivot. Thus, the accuracy of the direct strain measurement is limited due to 

the inadvertent lateral loading arising from the deflection of the blade during 

cutting. However, this can be minimised by characterising the blade for a dry cut 

(without any tissue) and using the results, a calibration correction factor 

established to eliminate the influence of the lateral force.  

5.3.3 Experimentally Obtained Friction Strain 

Investigations into the nature of the strains expected from the FBG involved the 

opening and closing of the blades without any tissue being cut. Friction between 

the blades is an inherent part of scissor functionality and therefore an 

understanding of how kinetic friction forces contribute to the overall force 

measurement is required. The blades were secured in the characterisation test-

bed with opening and closing achieved via pneumatic actuation. Opening and 

closing rates were kept constant at a rate of 6 degrees·s-1. The Wx-02 

commercial FBG interrogator unit measured the reflected wavelength shift at a 

rate of 1500 samples·s-1 with the corresponding strain being obtained with a 

strain sensitivity of 1.2pm·µε-1 [71]. The strain results for one complete cycle of 

the blades are presented in Figure 5-13. The total strain measured by the FBG 

(blue) is the sum of εf(θ) (friction strain) and εs(θ) (lateral strain). The positive 

and negative εf(θ) profiles are extracted by implementing a simple algorithm 

based on equation 5.11. Strain values increase towards the end of the cut as 

expected, due to the blade curvature deflecting the blade laterally. It can be 
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observed from the data presented in Figure 5-13 that the εf(θ) to εs(θ) ratio is 

consistent throughout the cutting cycle. This is the kinetic friction coefficient μk 

between the blades during a dry cutting cycle and was found to be 0.23 for the 

particular scissor blades used in these experiments. 

 

 

Figure 5-13 Experimental strain data, for an empty pass, obtained from a single 
FBG attached to the scissor blade 

5.3.4 Cutting Paper Samples 

A number of cutting experiments were carried out on paper samples to evaluate 

the performance of the FBG sensor during the cutting cycle. Paper was chosen 

for these experiments over soft synthetic samples as paper does not have the 

elastic properties which introduce high levels of strain energy in the sample 
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being cut. This allows the fracture toughness of the paper sample to be obtained 

using the force measurements from the FBG without residual strain energy 

within the sample affecting the efficacy of the results. In turn this enables a 

direct comparison to be made between force values obtained from the FBG 

attached to the blade and values obtained from the commercial load cell. 

Cuts were carried out within the maximum working envelope of the cutting 

blades (23° to 10.4°). Paper samples measuring 100×60×0.1 mm were securely 

fixed between the blades. The total FBG strain (blue) resulting from combined Fs, 

Fff and Ff over a complete opening and closing cycle are shown in Figure 5-14. 

Analysis shows that there is a distinct decrease in εc during closing, resulting 

from forces required to fracture the paper in front of the blade intersection 

point. However, this strain decrease is a combination of uncoupled εs(θ), εff(θ) 

and εf(θ). From the perspective of accurate force reflection to the user and the 

acquisition of material property data sets, decoupling of the strain components 

is required. The εff(θ) is obtained by subtracting εs(θ), for an empty cut, from 

εc(θ). These strains (εff(θ)) reflect the forces expected to be felt by the user 

during cutting due to Fff  being exerted on the blade. 

It was observed that the cuts made were clean, free from burring and material 

dragging. These observations, combined with the high blade stiffness, suggest 

that any additional lateral deflection of the blades during paper cutting is 

negligible compared to that of an empty cut. It is reasonable to assume that a 

sharp scissor blade cutting a soft tissue will be exposed to negligible lateral 

deflection in addition to that incurred during empty cuts. Any additional 
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increase in the blade lateral deflection and strain would introduce errors into 

the estimated fracture toughness values. This is due to the fact that accurate 

strain decoupling requires that the lateral strain remains constant for both 

empty and tissue cutting cycles. 

 

 

Figure 5-14 Experimental data obtained from the FBG during paper cutting 

5.3.5 Force Measurement Validation 

Quantifying the direct forces Fd exerted on the blade is carried out using the 

calibration equation (equation 5.15 in Section 5.3.1) where εd(θ) is the strain as 

measured by the FBG due to Ff or Fff. Comparing the direct forces measured by 

the FBG to those measured by the load cell on the test-bed (Figure 5-15), it can 

be seen that there is a close correlation between the two. This shows that the 
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methodology employed, of decoupling εd(θ) from εs(θ) and using the calibration 

ratio R, is an effective means of determining typical cutting characteristics 

during cutting. It is clear from both force profiles that the point at which the 

blades make initial contact with the paper occurs at approximately 21°. At this 

point a sudden increase in force from 0.3 N to 2 N is measured as the blades 

compress the paper sample prior to fracture. From 21° to 10° characteristic 

peaks, representing a series of localised compression, deformation and fracture 

sequences, can be observed. The peaks are not present during the opening 

sequence as no material is being cut but there are fluctuations due to blade 

frictional contact.  

Based on observations of the fluctuation in the measured strain signal (±3 με 

approx.) caused by noise in the interrogation system, the force resolution over 

the first third of the blade was calculated. At θ=15° the resolution is ±0.48 N, 

however, as sensitivity increases towards the blade tip the estimated resolution 

improves to ±0.23 N.  These values are based on the change in sensitivity of the 

sensorised blade at different locations along its length. The location of the blade 

intersection point xc is 26.36 mm at θ=15° and from Figure 5-10 the calibration 

ratio R at this point is 0.1613 N με-1. This equates to an error of ±0.48 N when 

interrogator noise of ±3 με is considered. Likewise the error at the blade tip is 

calculated to be ±0.23 N based on a calibration ratio of 0.0754 N με-1. The error 

bars shown in Figure 5-15 represent the force resolution variation over a 

complete cutting cycle. These results show that, with adequate filtering of the 
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FBG readings, the forces measured are comparable to those obtained from the 

load cell.  

 

 

Figure 5-15 Comparing fracture and friction forces obtained from the FBG 
sensorised blade and a commercial load cell 

5.3.6 Fracture Toughness Estimation 

Ff and Fff values at the scissor handles were inferred from the corresponding 

forces on the blade and used to determine the fracture toughness of the paper 

samples used. Using equation 3.6, the external work done due to combined 

fracture and friction, Wff, was obtained by integrating under the fracture force-

displacement profile in Figure 5-16. Similarly, the external work done due to 

friction only, Wf, was obtained and subtracted from Wff resulting in work done 

due to material fracture only. The cut length, Lc, of the sample was acquired by 
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subtracting the distance xc at the start of the cut from xc at the end of the cut 

resulting in a cut length of 18.8 mm. This was verified by measuring the length of 

the slit in the sample after cut completion. A fracture toughness value of 4.36 

kJ/m2 was obtained using equation 3.7, comparable to that found in other 

literature [59]. Error bars are included to convey the force resolution, which 

improves towards the end of the cut as the blades are closed by the scissor 

handles. These results show that the FBG sensorised instrument is capable of 

reliably measuring the intrinsic cutting forces and as a result, the fracture 

toughness of the material can be obtained.  

 

Figure 5-16 Fracture and friction force values at the scissor handles   

5.3.7 Summary 

This chapter has reported on the preliminary evaluation of sensorised surgical 

scissor blades employing a FBG sensor attached to the blade surface. The FBG 
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force sensing element is placed as close as possible to the site of force 

generation. The closeness of the sensor to the cutting interface ensures that 2-D 

interaction force information is obtained independent of any external force 

influences other than inherent friction forces present during scissor cutting. This 

inter-blade friction has considerable impact on the total interaction force 

measurement and this work quantifies these effects. The combined blade-sensor 

arrangement facilitates the estimation of the kinetic friction coefficient between 

the blades during operation, through the acquisition of both lateral and friction 

induced strain effects. The nature of the direct and lateral strains experienced by 

the smart sensing structure, during a typical cutting cycle, was explored by 

representing the blade as a double cantilever beam element. A theoretical means 

of decoupling the lateral and friction strain effects was presented and verified 

experimentally using an application-specific test-bed. A unique feature of scissor 

instruments compared to most other surgical instruments is that forces occur 

along the blade length as opposed to a single location at the instrument tip. 

Calibration of the sensorised blades over the entire blade length ensures that 

accurate interaction force details can be obtained through a cutting cycle 

particularly over the high sensitivity region preferred by surgeons. The force 

information obtained can be reflected to the user in a telerobotic application 

ensuring a greater sense of user immersion. Additionally, the acquired force 

information can be utilised in the evaluation of tissue properties such as fracture 

toughness. The experimental data presented compares the force information 

obtained from the FBG sensorised blade with that of a commercially available 
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load cell. Good correlation is observed between the two sensing modes with 

typical contact and fracture characteristics being evident. 

The key conclusions from this chapter can be summarised as follows; 

 Modelling the scissor blade using double tapered elementary beam 

theory allows accurate estimation of lateral and direct strains resulting 

from direct and lateral loading of the blade. The double tapered model 

can also be used to estimate the sensitivity of particular blade geometry 

with a FBG attached at any location on or within its structure.  

 A method of decoupling total, lateral and direct strain using a single FBG 

attached to the blade is demonstrated theoretically and verified 

experimentally. Decoupling is particularly important when attempting to 

ascertain the true forces acting on the blade arising from tissue fracture, 

blade friction and blade curvature. 

 A novel means of estimating the kinetic coefficient between the blades 

was demonstrated using a single FBG attached to one blade. The ability to 

accurately estimate blade friction coefficient will have significance for 

researchers attempting to understand the complex interactions between 

scissor blade and the tissue with which they interact.  

 The fracture toughness of samples cut using the sensorised blades can be 

estimated using this direct force sensing technique which employs a FBG 

as the sensing element. However, noise due to the sensitivity of the blade-

FBG combination limits the resolution of the current system to ±0.48 N 

close to the location of the FBG.  
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Chapter 6 

6 Conclusions and Future Research 

This chapter presents the overall conclusions of the research carried out. The 

work presented in this thesis investigated in detail the implementation of a 

direct force sensing solution for minimally invasive surgical cutting instruments 

used in MIRS. The approach adopted required the integration of a FBG sensor 

onto the blades enabling the blade itself to act as a sensing device. A direct 

sensing approach facilitates the acquisition of cutting force data that greater 

reflects the actual forces occurring at the interaction site in comparison to non 

direct sensing methods.  

6.1 Conclusions 

The overarching aim of this work was to investigate and experimentally 

characterise a compact FBG-sensorised scissor blade end-effector as an 

integrated, direct force measurement solution to the problem of obtaining 
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interaction force values generated at the blade-tissue interface. The specific 

conclusions of this work are as follows; 

 A characterisation test-bed was successfully implemented enabling forces 

acting on a pair of scissor blades to be obtained. Force data obtained from 

the test-bed while cutting synthetic tissue samples showed typical soft 

tissue cutting characteristics such as sequences of compression and 

fracture profiles consistent with other literature. The test apparatus was 

found to be repeatable and capable of discriminating between 

homogeneous tissue samples of varying mechanical properties.  

 The effect of blade curvature on the accuracy of the measured cutting 

forces was measured by attaching miniature strain gauges to the blade 

surface. Results showed that the placement of a small force sensor on the 

blades upper surface could detect direct forces generated during cutting 

but also inadvertently detected lateral strain components due to the 

blades deflecting laterally while opening and closing. This proved that 

while the combined blade-sensor arrangement has sufficient sensitivity, 

further work was required in decoupling the lateral strain components 

from direct strain components.  

 Two methods of determining the effective fracture toughness (J*) of soft 

tissue samples using scissor cutting were assessed. Method 1 estimated J* 

by considering the work done during cutting over the full cut length while 

method 2 estimated the average work done over a series of individual 

fractures. The mean J* values obtained using method 2 were generally 
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higher than values obtained using method 1 with an average 15% 

difference. This would indicate that method 2 is more sensitive to the 

thickness of the material being cut as well as the mechanics of the scissor 

cutting method.  

 A surface mounted fibre was modelled using numerical simulations and it 

was shown that a minimum adhesive thickness coupled with an adhesive 

bond length at least 55% longer then the FBG length was required to 

ensure that an ASTC close to unity was achieved. Experimental results 

confirmed that a bond length 55% greater than the FBG does achieve an 

ASTC of close to unity (0.98). Analysis of the reflected FBG spectrum at 

zero and maximum load revealed that no errors occurred in the FBG 

strain measurements as a result of strain non-uniformity along the 

grating. 

 A close correlation was obtained (2.4% difference) between ASTC results 

obtained from the analytical model compared to results from the FE 

model for a partially embedded fibre. Numerical simulations of the 

partially embedded FBG showed that the bond length could be reduced 

by 18% when compared to the surface mounted FBG. Reducing the bond 

length facilitates more compact packaging of the sensor on the blade.   

 Partially embedding the FBG within the blade structure also results in a 

reduction in sensitivity when compared with the surface mounted FBG 

under direct loading conditions. A reduction in sensitivity of 9.2% was 

found between the blade with a surface mounted FBG (5.88 με/N) and 
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one with an embedded FBG (5.34 με N-1). The closer the sensor is placed 

to the blades central longitudinal axis the greater the reduction in blade 

sensitivity.  

 Experiments where a surface mounted and a partially embedded FBG was 

loaded laterally showed that the sensor-blade combination was sensitive 

to both lateral loading as well as direct loading. The strain effects of 

lateral loading must be compensated for as the lateral-induced strain will 

introduce errors into the direct force readings. These laterally induced 

errors have particular importance when the forces being measured are to 

be used in the measurement of tissue elastic and fracture properties.  

 Numerical simulations where a series of strain gradients up to 14% were 

applied showed that the strain measured by the FBG is the strain 

coincident with the FBG centreline. However, it is believed that there is a 

need for more detailed knowledge of the adhesive properties being used 

in the simulations to more accurately reflect the complex interaction 

between fibre, adhesive and host material. Experimental results show 

that the coincident strain measured by the FBG correlated well with 

results from an electrical strain gauge and the numerical simulations.  

 Modelling the scissor blades using double tapered elementary beam 

theory accurately estimates lateral and direct strains resulting from 

direct and lateral loading of the blade. The proposed double tapered 

model can also be used to estimate the sensitivity of a particular blade 

geometry with a FBG attached at any location on or within its structure.  
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 A method of decoupling total, lateral and direct strain using a single FBG 

attached to the blade was modelled theoretically and verified 

experimentally. This is a key element when integrating a FBG sensor 

directly onto the scissor blades which takes advantage of the lateral 

sensitivity of the FBG sensor. Decoupling is particularly important when 

attempting to ascertain the true forces acting on the blade arising from 

tissue fracture, blade friction and blade curvature during dynamic cutting.  

 A further benefit of the decoupling process was that a novel means of 

estimating the kinetic coefficient between both blades was demonstrated 

using a single FBG attached to one blade. It is proposed that the effect of 

lubricating the blades be assessed further to determine its impact on the 

accuracy of the results obtained. The ability to accurately estimate blade 

friction coefficient will have significance for researchers attempting to 

understand the complex interactions between scissor blades and the 

tissue with which they interact.  

 The fracture toughness of paper samples that were cut using the 

sensorised blades were estimated using this direct force sensing 

technique. The results obtained correlated closely with values obtained in 

literature. The decoupling technique used to accurately ascertain the 

fracture toughness values was validated against data obtained from a 

commercial load cell used in the characterisation test-bed. Noise due to 

the sensitivity of the blade-FBG combination limits the resolution of the 

current system to ±0.48 N close to the location of the FBG.  



 
 
 

 
210 

 
 

 

6.2 Summary of Key Conclusions 

The key conclusions from this research are; 

 An instrumented characterisation test-bed is a viable way of determining 

the nature of the complex interaction forces generated between surgical 

scissor blades and soft tissue samples. 

 Inadvertent lateral strain arising from blade curvature is a key factor 

when considering a direct force sensing approach. The lateral strain 

effects need to be compensated for to enable the true friction and fracture 

interaction forces to be obtained. 

 Strain energy within soft tissue samples is a parameter that affects the 

accuracy with which the true fracture toughness of the samples can be 

obtained. Strain energy is significant during scissor cutting owing to the 

way in which the blades compress the tissue during the cutting process.  

 Adhesive bond length, stiffness and thickness are key elements which 

effect strain transfer from the blade structure to the core of a FBG sensor 

whether surface mounted or partially embedded. Partially embedding the 

FBG within a groove in the blade reduces the bond length assuming the 

same adhesive thickness and stiffness. 

 Decoupling the strains obtained from a single FBG sensor is a key method 

in the determination of the friction and fracture forces arising between 

scissor blades and the samples being cut.  
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6.3 Future Research Challenges 

The work presented in this thesis explored the factors that need to be taken into 

consideration when employing a direct force sensing technique using a FBG on 

surgical scissor blades. Areas of future research have been identified from this 

work and are presented as follows; 

1. Soft Tissue Fracture Toughness Estimation: During this research work 

a greater understanding was obtained of how interaction forces between 

scissor blades and soft tissue arise during cutting. It was assumed that the 

maximum forces occurred at the intersection point between the blades. 

However, due the changing angle of the blades during closing the tissue 

experiences a degree of compression between the blades cutting edges. 

To collect true fracture data in relation to the tissue being cut a greater 

understanding of the distribution of the forces along the tissue 

compression region is required. This will enable the separation of the 

forces required to fracture the tissue from the forces that are 

compressing the tissue and which contribute in no way to the work of 

fracture. It is proposed that a detailed FE model be developed which 

mimics scissor blade cutting edges cutting soft tissue samples. The tissue 

models would incorporate empirically derived tissue properties such as 

stiffness, viscoelasticity and fracture toughness. The overall aim of this 

strand of research would be to ascertain the degree of strain energy 

experienced by the tissue in the vicinity of the blade intersection point. 
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The current characterisation test-bed could be used in parallel with the 

modelling research to collect pertinent force data for model validation. 

2. Strain Transfer Modelling: The analytical FE models developed in this 

research assume linear elastic material properties. While this is 

reasonable for the FBG material (Silica) and perhaps the FBG coating 

(Polyimide) it may not be reasonable to assume linear elastic properties 

for the adhesive used to bond the FBG. This could be particularly relevant 

at higher strain values or as the adhesive experiences heating-cooling 

cycles due to a series of sterilisation cycles over the instruments lifetime. 

This research showed that the strain values in the blade are quite low and 

unlikely to cause nonlinearities or hysteresis during the strain transfer 

process. However, the effect of the sterilisation process on the adhesive 

properties does warrant investigation.  

3. Embedding the Sensor: This research investigated the effects of 

partially embedding the FBG senor within a groove machined into the 

blade. Results have indicated that the possibility of fully embedding the 

FBG is feasible once consideration is given to the adhesive layer length, 

the adhesive layer thickness and the position of the FBG relative to the 

centreline of the blade. The challenge associated with a fully embedded 

approach would be in machining a blind hole in the blade to 

accommodate the fibre. A coated fibre has a diameter of ~125 μm to 140 

μm; therefore, the required hole diameter would need to be slightly 

greater to accommodate an adhesive thickness. Achieving this diameter 
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along a length long enough to accommodate the FBG would prove 

challenging and would be influenced by the length of the blade under 

consideration. A micromachining or EDM process may prove to be 

suitable for creating the tunnel but the suitability of these processes and 

others would need to be explored. An advantage associated with a fully 

embedded approach would be the unobtrusive way in which the sensing 

is achieved. Moreover, the fibre would be fully encapsulated within the 

blade enhancing further its sterilisability and biocompatibility. 

4. Future Sensorised Devices: In this thesis a FBG sensor was used as the 

primary sensing element in the sensorised scissor blades. Current 

advancements in the field of optical sensing include sensors that have 

strain sensitivities comparable to FBGs but are insensitive to change in 

localised temperatures. An example of this particular sensor type is a 

Photonic Crystal Fibre (PCF). Temperature insensitivity would bring 

additional benefits for future smart-sensing instruments and devices and 

consequently should be explored further. Moreover, the length of a PCF 

based sensor can be considerably smaller than its FBG counterparts. 

Recent research [145] has shown that a PCF sensor as small as 200 μm 

can be successfully attached to a traditional single mode fibre and used 

for the measurement of interaction forces acting on the arms of a clip 

applicator. This further demonstrates that optical sensing will play a 

significant part in the development of smart sensing surgical instruments 

that may in time be used in modern MIRS systems.  
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