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ABSTRACT 

Vitreoretinal surgery aims to treat disorders of the retina, vitreous body, and macula, such 

as retinal detachment, diabetic retinopathy, macular hole, epiretinal membrane and retinal 

vein occlusion. Challenged by several technical and human limitations, vitreoretinal 

practice currently ranks amongst the most demanding fields in ophthalmic surgery. Of 

vitreoretinal procedures, membrane peeling is the most common to be performed, over 

0.5 million times annually, and among the most prone to complications. It requires an 

extremely delicate tissue manipulation by various micron scale maneuvers near the retina 

despite the physiological hand tremor of the operator. In addition, to avoid injuries, the 

applied forces on the retina need to be kept at a very fine level, which is often well below 

the tactile sensory threshold of the surgeon. Retinal vein cannulation is another 

demanding procedure where therapeutic agents are injected into occluded retinal veins. 

The feasibility of this treatment is limited due to challenges in identifying the moment of 

venous puncture, achieving cannulation and maintaining it throughout the drug delivery 

period. 

Recent advancements in medical robotics have significant potential to address most of the 

challenges in vitreoretinal practice, and therefore to prevent traumas, lessen 

complications, minimize intra-operative surgeon effort, maximize surgeon comfort, and 

promote patient safety. This dissertation presents the development of novel force-sensing 

tools that can easily be used on various robotic platforms, and robot control methods to 

produce integrated assistive surgical systems that work in partnership with surgeons 

against the current limitations in vitreoretinal surgery, specifically focusing on membrane 

peeling and vein cannulation procedures. Integrating high sensitivity force sensing into 
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the ophthalmic instruments enables precise quantitative monitoring of applied forces. 

Auditory feedback based upon the measured forces can inform (and warn) the surgeon 

quickly during the surgery and help prevent injury due to excessive forces. Using these 

tools on a robotic platform can attenuate hand tremor of the surgeon, which effectively 

promotes tool manipulation accuracy. In addition, based upon certain force signatures, 

the robotic system can precisely identify critical instants, such as the venous puncture in 

retinal vein cannulation, and actively guide the tool towards clinical targets, compensate 

any involuntary motion of the surgeon, or generate additional motion that will make the 

surgical task easier. The experimental results using two distinct robotic platforms, the 

Steady-Hand Eye Robot and Micron, in combination with the force-sensing ophthalmic 

instruments, show significant performance improvement in artificial dry phantoms and ex 

vivo biological tissues. 
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Figure 3.26. (a) The standard 23 Gauge disposable micro-forceps by Alcon Inc. vs. the 

manufactured prototype of our motorized force-sensing micro-forceps. (b) Close-up view 

of the distal force-sensing segment. A fine-polished filleted stainless steel piece (23 

Gauge trocar) was bonded at the distal end of guide tube, to modify the jaw/guide tube 

interface so that the reaction force during tool actuation is consistently smaller and its 

adverse influence on axial FBG sensor is minimal [110]. ................................................ 56 

Figure 3.27: (a) Geometric parameters of the jaw model, guide tube and the trocar 

attachment used in finite element simulations, (b) The micro-forceps kinematics with and 

without the trocar attachment. While fully open, the jaw tips are 0.7 mm apart; full 

closure requires driving the motor about 1240 µm without the trocar and 1400 µm with 

the trocar. An almost linear response is obtained with the trocar [110]. .......................... 58 

Figure 3.28: Finite element simulation results showing the axial FBG response to tool 

actuation for various levels of friction coefficient (Cf) at the jaw/guide tube interface (a) 

without the trocar and (b) with the trocar attachment at the guide tube’s tip. Larger 

friction coefficients produce more strain. Lower strain levels are observed with the trocar. 

(c) The force-induced strain on the axial FBG vs. the applied axial load when the trocar 

attachment is used: the strain is linearly correlated with the axial load, and the sensitivity 

is almost identical for all levels of jaw opening (JO) [110]. ............................................. 61 

Figure 3.29: Force computation algorithm using an experimentally identified model to 

cancel the actuation-induced drift in FBG sensor readings based on the motor position 
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and two distinct (linear and nonlinear) methods for transforming the corrected sensor 

readings into transverse (Fx and Fy) and axial (Fz) force information [110]. .................... 63 

Figure 3.30: Experimental setup. (a) The 3-DOF force-sensing micro-forceps was 

mounted on two rotary stages to control the roll (α) and pitch (β) angles of the tool. (b) 

By hanging washers onto the grasped hook, the magnitude of the applied force was 

changed. (c) Modulating the tool orientation (α and β), thus the direction of the applied 

force, various combinations of Fx, Fy and Fz were applied at the tool tip [110]. .............. 65 

Figure 3.31: The effect of opening/closing the forceps on the lateral (FBG 1,2,3) and 

axial (FBG 4) sensors while operating (a) in air and (b) in water. The actuation induces 

high levels of wavelength shift on the axial sensor (up to 167 pm in air and up to 222 pm 

in water), which exhibit a consistent variation among repeated trials, and hence can be 

modeled as a function of motor position for each environment [110]. ............................. 67 

Figure 3.32: Response of (FBG 1,2,3) and axial (FBG 4) sensors during two sample 

loading conditions: (a) pure transverse loading and (b) pure axial loading. Probability 

distribution of Bragg wavelength shift errors for lateral (c-e) and axial (f) FBG sensors 

under 168 different combinations of transverse and axial forces. The standard deviations 

are less than 0.6 pm for the lateral FBGs and is about 1.96 pm for the axial FBG, 

indicating a highly repeatable response [110]. ................................................................. 69 

Figure 3.33: Thermal drift in lateral (a) and axial (b) FBG sensor readings during 4 test 

sessions each spanning a period of 225 minutes. (c) The Bragg wavelength shift in the 

axial FBG sensor shows a linear correlation with the common mode (average Bragg 

wavelength shift) of lateral FBG sensors with a proportionality constant of κ=0.92 [110].
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Figure 3.34: Global linear calibration results for transverse forces: (a,b) Calculated Fx and 

Fy versus the actual values. (c,d) residual errors versus the actual forces, (e,f) probability 

distribution of residuals (bin size = 0.1 mN). The global linear fitting can predict the 

applied forces with an rms error of 0.25 mN and 0.52 mN for Fx and Fy, respectively 

[110]. ................................................................................................................................. 73 

Figure 3.35: Axial force (Fz) computation error versus the concurrent transverse load 

along (a) x-axis and (b) y-axis based on the global linear calibration. The magnitude of 

errors rapidly grows when larger transverse forces are applied, deteriorating the linearity 

of the axial FBG [110]. ..................................................................................................... 74 

Figure 3.36: Axial force computation results for local linear calibration using samples 

with limited roll (α≤30⁰) and pitch (β≤15⁰) angles (black), and for global nonlinear 

calibration (blue): (a,b) The comparison of computed values to the actual force level, 

(c,d) variation of error with respect to the axial force magnitude, (e,f) probability 

distribution of residuals (bin size = 0.1 mN). The latter provides almost the same sensing 

accuracy as the local fitting, but for the entire range of force directions [110]. ............... 75 

Figure 3.37: Results of local nonlinear calibration using samples with limited roll (α≤30⁰) 

angles for computing Fx (red), Fy (green) and Fz (blue): (a-c) The comparison of 

computed values to the actual force level, (d-f) variation of residuals with respect to the 

force magnitude, (g-i) probability distribution of residuals (bin size = 0.1 mN). By 

limiting the roll angle (α≤30⁰), samples with excessive Fy (>11.7 mN), which are not very 
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likely in an actual membrane peeling operation, were excluded from calibration. The rms 

errors in estimating Fx, Fy and Fz are 0.12, 0.07 and 1.76 mN respectively [110]............ 77 

Figure 3.38: Results of the validation experiment for computing Fx (red), Fy (green) and 

Fz (blue): (a-c) The comparison of computed values to the actual force level, (d-f) 

variation of residuals with respect to the force magnitude, (g-i) probability distribution of 

residuals (bin size = 0.1 mN). Tested data consists of loading conditions that were not 

involved during calibration. The identified local nonlinear regression can still accurately 

predict the applied forces with rms errors of 0.16, 0.07 and 1.68 mN for Fx, Fy and Fz, 

respectively [110].............................................................................................................. 78 

Figure 3.39: Conceptual design of our motorized force-sensing microneedle for retinal 

vein cannulation. The needle has a modular design that allows an easy integration with 

robotic devices, such as the handheld micromanipulator: Micron. .................................. 82 

Figure 3.40: (a) Components of the design: force sensitive motorized unit, and the 

disposable prebent needle (b) Assembled prototype (c) Tool actuation: the microneedle is 

exposed by retracting the guide tube as much as 2.4 mm. ................................................ 83 

Figure 3.41: Sample integration of the motorized force-sensing microneedle with a 

handheld micromanipulator, Micron. (a) The controller board for the tool’s motor was 

located on Micron’s handle inside the two hand pieces. (b) A force-sensing resistor was 

mounted on one of the hand pieces, under the operator’s thumb, to control the 

microneedle’s actuation by squeezing or releasing the hand piece. The injection line 

passes through the center of the instrument and is connected to a syringe via polyethylene 

tubing to deliver fluid to the microneedle. ........................................................................ 86 

Figure 3.42: Motorized actuation of the tool for retracting the guide tube back and 

exposing the prebent microneedle. The inner tube of the tool shaft delivers the injection 

fluid, while 3 FBG sensors on the outer tube sense transverse forces on the microneedle.

........................................................................................................................................... 87 

Figure 3.43: (a) Setup for calibration experiments: The force-sensing micro-needle was 

held horizontal and mounted on a rotary stage to modulate its axial orientation (θ). (b) 

The microneedle tip was inserted into a soft plastic piece carrying a wire hook. Forces 

were applied at the needle tip by hanging washers of known weight on the hook. .......... 88 

Figure 3.44: (a) Calibration results: linear response for all FBGs when the needle is 

loaded along x and y axes. (b) The force-sensing coordinates relative to the target vein 

and the histogram of residual errors in each direction. (c) Computed forces vs. the actual 

forces along the x and y axes. ........................................................................................... 89 

Figure 3.45: Effect of actuation on the sensed forces during 3 cycles of cover/expose 

cycles. Although the microneedle is not contacting any tissue, covering and exposing the 

microneedle shifts the force readings by about 2 mN in Fx and 6 mN in Fy with a 

consistent behavior. In practice, these undesired components due to actuation can be 

eliminated from the force readings by automatically rebiasing the FBG readouts once the 

motor position reaches the fully exposed position (2400 µm).......................................... 91 

Figure 3.46: (a) Coordinate systems associated with the robotic systems and force-

sensing tools. (b) Setup for finding the transformation from the robot’s tool mount frame 

to the force-sensing tool’s coordinate system for their integrated use.............................. 92 
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CHAPTER 1 : INTRODUCTION 

1.1 Thesis Statement 

Continual monitoring of tool-tissue interaction forces combined with augmented control 

methods of robotic assistance provides a safer and easier operation during existing 

common procedures in vitreoretinal surgery, and can promote new and more effective 

treatment methods that cannot be performed due to their high risks in conventional 

manual microsurgery today. 

The elements comprising the argument: 

- Force sensing mechanisms that can precisely detect the very fine forces between 

the surgical instrument and the retina during microsurgery. 

- Tool architectures with integrated force sensing mechanisms that preserve the 

functions of standard retinal surgery tools and that can operate in combination 

with multiple robotic platforms. 

- Methods of robotic control based upon the acquired tool-tissue interaction force 

information to promote safety and surgeon comfort during routine procedures, 

reduce complications, diminish surgical risks, and potentially enable novel and 

more effective treatment methods. 

1.2 Vitreoretinal Surgery 

Vitreoretinal surgery refers to the subset of intraocular surgical procedures that treat 

retina related disorders, including but not limited to retinal detachment, macular pucker, 

and macular holes. The typical setup in the operating room during vitreoretinal surgery is 

shown in Fig. 1.1. The lead surgeon generally sits above the head of the patient while an 

ophthalmic operating microscope provides a magnified view of the interior of the eye. To 
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bring current surgical tools into the eye, typically a three-port approach is followed where 

three incisions are made in the pars plana, avoiding the lens, the retina, and bleeding. 

Then inserting tools through these ports, the surgeons begin to operate. The diameter of 

the ophthalmic tools range from 27 Gauge (Ø 0.41mm) to 20 Gauge (Ø 0.91mm). In 

order to provide tool access to the posterior of the eye, the vitreous is removed via 

vitrectomy. The first incision in the three-port approach is the infusion sclerotomy (port 1 

in Fig. 1.1.b), typically in the inferotemporal (lower lateral) quadrant. The infusion line is 

secured with cannula/trocar or with suture. This infusion supplies saline liquid to 

maintain the intraocular pressure. The other two incisions (ports 2 and 3 in Fig. 1.1.b) are 

for inserting an endoilluminator and the surgical instruments such as a vitreous cutter, 

pick, forceps, scissors or a laser probe. After vitrectomy, the surgeon can proceed with 

additional surgical treatments, such as membrane peeling, laser, air-fluid exchanges or 

even retinal vein cannulation. 

 

Figure 1.1: (a) The typical setup in the operating room during vitreoretinal surgery. (b) 

Tool-retina interaction after pars plana vitrectomy. (Image credit to Mark Erickson and 

Jireh Design) 
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1.2.1 Epiretinal Membrane Peeling 

Vision-threatening diabetic retinopathy afflicts 8.2% of diabetic adults over 40 in the US 

[1], or 0.6% of the overall population within this age range [2]. By 2050 the number of 

Americans with vision-threatening diabetic retinopathy within this age range is estimated 

to triple to 3.4 million [3]. Membrane peeling is an essential and challenging component 

of the surgical treatment of advanced diabetic retinopathy [4]. It also plays an important 

role in treating macular pucker [5], prevalent in 3.8% of the population aged 45-84 [6], as 

well as macular holes [7], affecting approximately 0.3% of Americans over 50 [8]. 

Epiretinal membrane surgery is the most common vitreoretinal surgery performed, over 

0.5 million times annually, as reported by the Centers of Medicare and Medicaid Services 

[9]. The procedure involves the dissection of a thin (micron-scale) fibrocellular tissue 

adherent to the inner surface of the retina, which requires first inserting the surgical tool 

tip to a desired depth for lifting the membrane edge without harming the underlying 

retina. After grasping the membrane edge using mostly a micro-forceps tool, the surgeon 

pulls the membrane away from the retinal surface very slowly trying to avoid deleterious 

force transfer to the retina. 

1.2.2 Retinal Vein Cannulation 

Retinal vein occlusion (RVO) is one of the most common retinovascular diseases, 

affecting approximately 16.4 million people worldwide [10] and has a prevalence of 

1.8% and 0.5% for central and branch retinal veins, respectively [11]. RVO typically 

occurs when there is thickening of the crossing artery, low flow, hyper-coagulability, or 

thrombosis in the central or the branched retinal veins of the eye. This results in the 

affected retinal vein becoming dilated, tortuous and hemorrhaging into the retinal tissue. 
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In many cases, the resulting ischemia leads to macular edema and even death of retinal 

cells. Other serious complications of RVO include neovascularization, vitreous 

hemorrhage, and retinal detachment [12,13]. Patients with RVO are reported to 

experience blurred or distorted vision, and in severe cases blindness results [14]. 

The available treatments for RVO – including photocoagulation, hemodilution, radial 

optic neurotomy, vitrectomy and intra-vitreal injections – currently are focused on limiting 

the damage induced by the occlusion, rather than directly resolving the occlusion [15-19]. 

Retinal vein cannulation (RVC) is an experimental surgical procedure proposed to treat 

RVO by direct therapeutic agent delivery methods to the site of occlusion. The procedure 

involves three main steps: (1) accurately bringing a sharp tipped cannula onto the 

occluded retinal vein, (2) puncturing through the vein wall and precisely halting the 

cannula tip at the right depth, and (3) maintaining the cannula inside the vein for several 

minutes, during which time the therapeutic agent – presently tissue plasminogen activator 

(t-PA) [20] or ocriplasmin [21] – is delivered to dissolve the obstructing thrombus. This 

is a very demanding and risky procedure because of the small size and fragility of retinal 

veins – especially if the occlusion is at a branch retinal vein (typically Ø<200 μm) rather 

than the central vein [22]. 

1.3. Challenges in Vitreoretinal Surgery 

Arguably the most technically demanding field of ophthalmic surgery, vitreoretinal 

practice has faced significant challenges due to present technical and human limitations. 

This section presents a summary of the main difficulties associated with the two targeted 

applications in this domain: epiretinal membrane peeling, and retinal vein cannulation. 
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1.3.1 Epiretinal Membrane Peeling 

Membrane peeling procedures consist broadly of two main phases. The first phase is 

approaching the membrane-retina interface, creating an edge, and grasping/lifting the 

membrane edge using either a hook or a micro-forceps tool. To then dissect the 

membrane off the retina, very precise tool manipulation and careful monitoring of 

interaction between the tool and the tissue, as well as the effect of applied forces on the 

tissue. Applied forces may injure the retina at the point of tool contact and also remote 

from the point of tool contact, if the forces applied result in traction and tearing. 

Therefore, the second phase is membrane delamination from the retina by moving the 

membrane grasping tool strategically and slowly in order to limit the forces exerted on 

the retina. Excessive peeling forces can damage retinal tissue and its blood supply [23] 

and cause serious complications such as iatrogenic retinal breaks [24], vitreous 

hemorrhage [25] and subretinal hemorrhage [26], leading to potentially irreversible 

damage and loss of vision. Prior work has found that iatrogenic retinal breaks, not related 

to the sclerotomy, occur in as many as 9.6%-10.7% of cases, and may result in retinal 

detachments in 1.7%-1.8% of cases [27,28]. The problem is exacerbated by the fact that 

the forces involved are below the tactile perception threshold of the surgeon in the 

majority of instrument-to-tissue contact events in retinal microsurgery. Among these 

forces, 75% were shown to be less than 7.5 mN in porcine cadaver eyes and only 19% of 

events with this force magnitude can be felt by surgeons [29]. Currently, the knowledge, 

and hence skill, to apply appropriate peeling forces is acquired mostly through visual 

substitution and is qualitatively conveyed from expert surgeons to trainees through years 

of training and many hundreds of case observations. Continual quantitative monitoring of 
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tool-tissue interaction forces via a sensitized instrument is becoming appreciated to be 

essential to inform the operator and limit applied forces to a safe level either manually 

through auditory feedback or via robotic assistance [30]. 

1.3.2 Retinal Vein Cannulation 

Cannulation of retinal vessels has been previously explored using a variety of in vivo 

models. Prior work shows that puncturing larger vessels in porcine eyes is technically 

easier than piercing the distal smaller veins [31]. Nevertheless, when a small branch vein 

is occluded, cannulation of a nearby larger vessel may diminish the effectiveness of the 

treatment [32]. To easily pierce the retinal vasculature and enable injection directly into 

such small branch veins, glass micropipettes with very fine sharp tips have been used [33-

42]. However, the transparent small tips are hard to visualize under the microscope and the 

fragile glass structure raises safety concerns for real time intraocular use. As alternatives, 

stainless steel microneedles (Ø 50 µm) have been used to inject balanced saline solution to 

disrupt the clot [43], or soft thin (Ø 100 µm) wires have been used to advance through the 

lumen of a 37-Gauge needle and mechanically fragment the thrombi [44]. Tests on 

porcine eyes showed feasibility, and this was further supported by successful clinical 

demonstrations on human retinal veins with few intraoperative and postoperative 

complications [45]. In these approaches, using a curved cannula or an angulated tip was 

found to enable a more gradual and therefore safer approach into the vein, as well as to 

allow easier venous puncture, and improve safety by reducing the likelihood of double 

puncturing through the vein. However, there were challenges in introducing the bent tip 

into the eye through the sclera, requiring a larger incision and introduction of a trocar 

through the sclera. In order to enhance the intraocular distal dexterity, a stent deployment 
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unit with an adjustable approach angle via concentric tubes was devised, and the optimal 

approach angle while cannulating vasculature on the chorioallantoic membrane (CAM) of 

fertilized chicken eggs – an accepted in vivo model for RVC studies [46] – was explored, 

revealing a range of 25°-35°, which is not easy to achieve via typically straight 

instruments [47]. Flexible pre-bent stainless steel microneedles, which are normally held 

straight inside a protective shaft to be more easily introduced into the eye through the 

sclerotomy, have been developed so that, when fully deployed, the angle between the 

needle tip and vein surface falls within the identified optimal range [48,49]. 

Despite the aforementioned progress in improving the available instruments and realizing 

effective RVC, the procedure still remains at the limit of human performance. There are 

three main challenges that hinder the success of cannulation. First, a proper cannula is 

required that is not only thin enough to be inserted into the retinal vein (Ø < 100 µm) but 

can also withstand the forces while puncturing the vein and can easily be seen under the 

microscope. This challenge has partially been resolved by using stainless steel 

microneedles in replacement of the transparent and fragile glass micropipettes. The 

second challenge is the physiological hand tremor of the vitreoretinal surgeon, which is 

comparable in amplitude to the size of retinal veins [50]. Due to tremulous tool tip 

motion, it is hard to accurately aim at the thin branch retinal veins and to maintain the 

cannula within the lumen after piercing the vein throughout the drug delivery which can 

take several minutes [20]. The third challenge in RVC stems from the fact that 

cannulating retinal veins occurs at forces that are almost imperceptible to humans, which 

makes it very hard to identify the instant of venous puncture, halt needle advancement 

and appropriately begin the injection of agents (t-PA or balanced saline solution) at the 
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correct depth. Unlike cannulating retinal veins, conventional venipuncture occurs on 

larger structures and the resulting tactile forces are both perceptible and familiar to 

experienced phlebotomists. Specifically, the clinician can feel the moment of vessel 

puncture [51]. Tests on the CAM model [46] have confirmed that most RVC forces lie 

below the human perception threshold, yet there is still a sharp force drop upon venous 

puncture, as observed in a conventional venipuncture [52]. Continual monitoring of these 

very fine tool-tissue interactions via a very sensitive force sensor therefore has the 

potential to inform the operator of the moment of venous puncture during RVC. 

Combining a force-sensing cannulation tool with a robotic assistant is a powerful potential 

solution to overcome the challenges in RVC. Precisely identifying the moment of venous 

puncture and fixating the cannula to attain an extended period of intravenous cannula 

stability during delivery of the drug are each important to success. 

1.4 Dissertation Overview 

This dissertation presents novel sensitized tools for vitreoretinal surgery which can 

collect accurate tool-tissue force information, and which can be used on various robotic 

platforms to provide useful force feedback and motion guidance to surgeons during the 

procedure, and hence enable safer interaction with patients. The developed control 

methods fuse position and force information during the surgery and produce integrated 

assistive surgical systems that work in partnership with surgeons against the current 

limitations in vitreoretinal surgery, specifically focusing on membrane peeling and vein 

cannulation procedures. 

Chapter 2 presents a review on the state of the art in force sensing and robotic systems 

that were motivated by ophthalmic applications. 
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Chapter 3 presents the developed surgical instruments that are sensitized to detect the 

very fine tool-to-tissue interaction forces during membrane peeling and retinal vein 

cannulation procedures. 

Chapter 4 describes how the acquired force information from the sensitized instruments 

can be fused with the aid of robotic platforms for assisting the membrane peeling 

procedure, and evaluates the developed methods on two robotic platforms (Micron and 

the Steady-Hand Eye Robot) via phantom experiments. 

In combination with the same robotic systems, Chapter 5 demonstrates methods of using 

the force information from the sensitized microneedle for better performance during 

retinal vein cannulation. Chapter 6 summarizes the contributions of this dissertation and 

proposes future research directions. 



1 

 

CHAPTER 2 : RELATED WORK 

2.1. Force Sensing 

There have been numerous studies proposing various techniques for quantifying tool-

tissue interaction forces in microsurgery and minimal invasive surgery (MIS). 

Semiconductor strain gauges were used as force sensors on robotic microgrippers [53], 

though the resulting geometry had an overall length of 17 mm, width of 7.5 mm and 

thickness of 0.4 mm. Using microelectromechanical-systems-based diffractive optical 

encoders, a silicon-nitride cell manipulation probe was built providing a micronewton 

level force sensing [54]. For laparoscopic instruments in MIS, a tri-axial force sensor was 

developed based on intensity-modulated fiber optic sensing [55]. This sensor had a 

diameter of 5 mm and provided a force sensing resolution of 0.01 N. Another tri-axial 

fiber optics based sensor was developed for capturing forces during tissue palpation in 

MIS with a resolution of 0.02 N [56]. Again, for MIS, a 6-degree of freedom (DOF) 

force-sensing forceps was designed using 6 strain gauges mounted on a Stewart platform 

producing a force resolution of 0.05 N for transverse loads and 0.25 N for axial loads [57]. 

For stapedotomy, a force-sensing micro-forceps was developed using fiber Bragg grating 

(FBG) strain sensors, and was used in combination with a robot to quantify the forces 

involved in crimping a stapes prosthesis, ranging from 2.4 N to 5.2 N [58]. Based on a 

monolithic structure flexure and photo-sensors, a compact axial force sensor was 

developed providing a force resolution of 0.48 N [59], and was shown to properly work 

with a handheld robotic device to maintain a fixed contact force (200 and 400 mN) at the 

tool tip [60]. Recently, by integrating two sets of strain gauges in two orthogonal 

directions a force-sensing bipolar forceps was developed to quantify axial and planar 
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forces ranging up to 1.20 N during neurosurgical tasks in cadaveric brain experiments 

[61]. 

The force sensing methods in the above studies have several limitations that impede their 

application to vitreoretinal surgery. In order to measure the very fine forces (typically less 

than 10 mN with gradual changes, i.e. small pace of generation, to prevent retinal injuries 

based upon studies using animal models [62]), sensing instruments with millinewton 

resolution and accuracy are required. A miniature tri-axial force sensor with sub-

millinewton resolution was developed based on strain gauges, which was designed to be 

mounted on the handle of a microsurgical instrument [63]. However, in retinal 

microsurgery, the tools are inserted through an incision on the sclera, and the contact 

forces at the insertion port are considerably larger than the tissue manipulation forces at 

the tool’s tip. Therefore, a handle mounted force sensor is not practical for vitreoretinal 

surgery, as the measurements would involve not only the tool-tissue interaction forces but 

also the adverse effect of frictional and displacement forces at the insertion port [64]. 

This necessitates positioning the force sensor proximal to the tool tip inside the eye, 

which imposes strict dimension constraints as well as biocompatibility, sensitivity and 

safety requirements, and hence limits the available sensors for this use. 

2.2. Robotic Systems for Ophthalmology 

Robotic systems to enhance microsurgical accuracy have been a topic of extensive 

research during the past 20 years [65]. During this time, various teleoperated [66-69], 

cooperatively-controlled [70,71] and handheld [72-78,81,82] robotic devices have been 

proposed with the common goal of suppressing involuntary motion components, such as 

physiological hand tremor in surgeons. These systems were shown to improve the tool 
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manipulation accuracy in studies using artificial phantoms and animal models, and 

therefore posed the potential to facilitate the safety and performance of the surgery. 

However, it wasn’t until recently that any of these systems appeared in an actual retinal 

microsurgery. In September 2016, using the Preceyes Surgical System, a motion-scaling 

tremor-suppressing teleoperated robot [69], surgeons at Oxford’s John Radcliffe Hospital 

performed the world’s first robot-assisted vitreoretinal surgery for a membrane peeling 

operation in a human [79]. In January 2017, eye surgeons at University Hospitals Leuven 

were the first to demonstrate robot-assisted RVC using another system to inject t-PA into 

the patient’s occluded retinal vein [80]. These are two of the more recent major steps 

forward for showing the benefits and feasibility of robot-assisted tool manipulation 

during vitreoretinal surgery. 

2.3.2 Hand-held Robots 

Handheld robotic devices are ungrounded and used in a very similar way to conventional 

manual tools. They are often relatively compact, low-cost, and easily integrated into a 

clinical workflow. Riviere et al. have developed a 6-DOF handheld active tremor 

canceling microsurgical tool called Micron [81,82]. Its optical tracking system, 

Apparatus to Sense Accuracy of Position (ASAP), measures the tool movement. Its 

control system distinguishes between desired and undesired user motions, and then 

actively cancels the involuntary motions by actuation of the tool tip. Micron can provide 

useful assistive behaviors using computer vision [83,84] and optical coherence 

tomography (OCT) [85]. Micron offers the surgeon a very intuitive interface to enhance 

manipulation precision, but Micron preserves a 1:1 force feedback ratio and cannot 

provide scaled force feedback. This is mostly likely to be seen as unfavorable in 
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vitreoretinal surgery. Another drawback of Micron is the exceedingly small workspace 

constrained by its external tracking system. Several hand-held robotic tools were 

developed to provide scaled force feedback to users. Setten et al. [86] designed force 

magnifying surgical tools that can apply a magnified force at the back of the users’ hands. 

Payne et al. [74,87] investigated another possibility in which the scaled force feedback 

was exerted as a linear push on the index finger. While preliminary experimental results 

have shown the effectiveness of scaled force feedback, these devices only provide force 

feedback in one direction, i.e., along the tool axis. Song et al. [88] developed a 

microsurgical forceps tool that can actively stabilize tool tip motion along the tool axis. 

This tool uses a fiber-optic OCT to measure the distance between tool tip and the target 

tissue. A piezoelectric motor servos the tool tip to the desired distance for safe tissue 

manipulation. This positioning can be particularly useful for 1-DOF motion stabilization 

when a target tissue and an environment is delicate, and undesired collision need to be 

avoided. 

2.3.3 Cooperatively-Controlled Robots 

Cooperative control is a shared control scheme between the operator and the robot, where 

they both hold the surgical instrument [89-94]. The force exerted by the operator guides 

the robot to comply with the operator’s movements. Using various control modes, the 

robot can provide precise, tremor-free, smooth, and steady manipulation. The result is a 

manipulation system with the precision and sensitivity of a machine, but with the 

manipulative transparency and immediacy of hand-held instruments that surgeons can 

comfortably every day. Compared to other robotic systems, the advantages of our 

approach for micromanipulation include the following: simplicity, a potentially lower 
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implementation cost, more direct coupling to natural kinesthetic human senses, a 

straightforward integration into existing application environments, and greater 

“immediacy” for the human operators. Two generations of the Steady-Hand Eye Robot 

were designed and extensively used in phantom and in vivo experiments [91-93]. The 

newest generation is the Eye Robot 2.1 (ER2.1). In contrast to Eye Robot 2 (ER2), ER2.1 

has a new robot wrist design that addresses the limitations found with the previous 

versions of the Eye Robot and provides new safety and ergonomics features. These 

features make the Steady-Hand Eye Robot well suited for the clinical environment. 
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CHAPTER 3 : FORCE-SENSING INSTRUMENTS FOR ASSISTED 

VITREORETINAL SURGERY 

3.1 Introduction 

3.1.1. Background and Motivation 

The forces associated with vitreoretinal microsurgery are routinely less than 7.5 mN [29]. 

Measuring these very tiny forces demands a sensing instrument with sub-mN accuracy. 

In design, the size and weight of the sensing instrument are important factors since the 

sensitized tool may be used handheld in a manual operation or mounted on a handheld 

manipulator for robot-assisted surgery. In addition, the sensitized instrument should have 

a slender shaft that can pass through a maximum of 20 Gauge scleral opening (Ø 0.91 

mm) so that the sensor can be introduced into the eye and be located close to the tool tip. 

Only in this way, can force measurements pertain solely to the instrument's tip, with no 

adverse contribution from the frictional forces at the sclera. 

Fiber Bragg grating (FBG) sensors are optical strain gauges with periodically inscribed 

refractors, called gratings, in the core of the fiber [95]. The gratings are created using 

ultraviolet light and work as a wavelength specific reflector or filter. Depending on the 

distance between gratings, a narrow spectral component at a particular wavelength, 

termed the Bragg wavelength, is reflected, while the spectrum without this component is 

transmitted through the optical fiber. Therefore, if the sensitive segment of the fiber 

experiences strain, due to factors such as external forcing or ambient temperature 

variation, the distance between the gratings change inducing a shift in the Bragg 

wavelength given by the following linear correlation: 

λB = 2neΛ                                                                                                                                     (3.1) 
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where λB  denotes the Bragg wavelength, ne  is the effective refractive index of the 

grating, and Λ denotes the grating period. 

FBG sensors can detect fine changes in strain (less than 1µε) in real time, have generated 

increased interest in various medical applications for shape [96], force [97] and 

temperature [98] sensing purposes. They are very small (Ø 60-200 µm) and hence can fit 

through narrow openings, inherently safe, biocompatible, sterilizable, relatively 

inexpensive, and highly sensitive; furthermore, their output is immune from electrostatic 

and electromagnetic noise. To provide the surgeon with real-time physiological 

information and assist maneuvers during vitreoretinal practice, this chapter aims at 

transforming the current ophthalmic instruments into “smart” tools that are compatible 

with robotic assistance platforms and introduces various force-sensing instruments based 

on FBG sensors. The tool architecture and force computation methods extend from earlier 

static tools for membrane peeling [99]. 

3.1.2. Contributions 

Main contributions reported in this chapter are as follows: 

Force-sensing micro-forceps for membrane peeling: These tools were developed in two 

groups. The first group senses tool tip forces only perpendicular to the tool shaft in 2 

dimensions [101-104]. The novelty is the extension of this method to actuated tools by 

developing both manually actuated and motorized designs, and modeling/eliminating the 

artifact induced by tool actuation in sensor readings as a function of forceps opening. The 

second group has axial force sensing capability in addition to transverse forces 

[105,106,108,110]. These are the first micro-forceps tools that can sense 3-DOF forces at 

the tool tip and be potentially used in retinal microsurgery. The main contribution lies in 
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the calibration procedure and force computation methodology based on FBG sensor 

readings. 

Credit: The 2-DOF manually actuated micro-forceps tool (Section 3.2.1.2) was designed 

and assembled by Ismail Kuru. Other tools were assembled by Berk Gonenc with help 

from Iulian Iordachita. Tool design in Section 3.2.1.3 and its functional evaluation was 

completed with contributions from Ellen Feldman. Finite element simulations in Section 

3.2.2.2 were performed with the help of Alireza Chamani. Calibration experiments and 

software development for Micron system were carried out by Berk Gonenc and Nate Tran. 

Force-sensing microneedle for retinal vein cannulation: This tool extends the 

transverse force-sensing principle to a microneedle for detecting venous puncture, and 

makes use of a motorized mechanism to retract/expose the pre-bent tip [49]. This is the 

first actuated force-sensing microneedle that can be introduced through an opening under 

1 mm, and that has a small enough tip (Ø 70 µm) for injections into retinal veins. 

Credit: Tool assembly and calibration was completed by Berk Gonenc with help from 

Iulian Iordachita. 

3.2 Force-Sensing Micro-Forceps for Membrane Peeling 

Membrane peeling is often performed either by using a hook or a micro-forceps. Due to 

the inherent grasping capability, the latter is usually considered safer and preferred by 

surgeons. It enables easier and more controlled removal of the membrane from the eye 

with less slippage of the tissue and reduced number of grasping attempts close to the 

retina surface [100]. The available disposable instruments today range from 27 Gauge to 

20 Gauge in tool diameter (Ø 0.41-0.91 mm), and come with several types of jaws for 

grasping various structures as shown in Fig. 3.1. Preserving the firm grasping 
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Figure 3.1: Standard disposable micro-forceps for membrane peeling in vitreoretinal 

surgery by (a) Alcon and (b) D.O.R.C. The shafts of the shown instruments fit through a 

23 Gauge scleral incision. The jaws can be of various types depending on the operation. 

(Image credit to Alcon, Inc. and D.O.R.C.) 

a

b

functionality and tool diameter constraints, in the following sections we build force 

sensing capabilities into micro-forceps instruments in a form that enables integrated use 

with robotic assistance platforms for safer and easier vitreoretinal surgery. 

3.2.1. 2-DOF Force-Sensing Micro-Forceps 

This section introduces micro-forceps tools which can sense the transverse forces at the 

tool tip, i.e. the 2 dimensional forces perpendicular to the tool shaft (Fxy) as shown in 

Fig. 3.2. 

3.2.1.1. Force Computation Algorithm 

When a transverse force is applied at the tool tip, the tool shaft will deform, which can be 

modeled as a cantilever beam. The resulting strain will be linearly dependent on the 

moment and thus proportional to the transverse forces applied at the tool tip: 



 19 

 

Figure 3.2: 2-DOF force sensing principle for membrane peeling. The FBG strain sensors 

are integrated on the tool shaft and located proximal to the tool tip to measure the forces 

perpendicular to the tool axis (Fx and Fy). The tool shaft is modeled as a cantilever beam; 

when transverse forces are applied at the tool tip, tool shaft deforms and normal stresses 

are induced on the attached FBG sensors. 

FBGs

F = [Fx Fy]
Fx

Fy

ε =
M r

E I
=
Fxy d r

E I
                                                                                                                       (3.2) 

where ε is the local strain at the FBG sensor, M is the bending moment due to the 

transverse forces Fxy at the tool tip, d is the distance between the tool tip and the FBG 

sensor, E is the Young’s modulus, I is the moment of inertia, and r is the radial distance 

between the bending neutral axis and the FBG sensor. Linearly dependent on both the 

local strain due to external forcing (ε) and the ambient temperature change (ΔT), the 

Bragg wavelength of the sensor will shift by Δλ which can be formulated as: 

Δλ = kεε + kΔTΔT                                                                                                                      (3.3) 

where kε and kΔT are constants associated with the strain due to forcing and temperature, 

respectively. Although the temperature in patients’ eyeball is fairly constant, FBG 

sensors are typically very sensitive to temperature changes (approximately 10 pm/⁰C). 

Hence, force sensing robustness against small thermal fluctuations is a desired feature. 

Combining equations 3.2 and 3.3, the following is obtained: 
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Δλ = kε
Fxy d r

E I
+ kΔTΔT = kxFx + kyFy + kΔTΔT                                                            (3.4) 

When multiple FBG sensors (n=3 for the tools presented in this section) are attached 

along the tool shaft, the common mode of the sensors will be due to axial forcing (if any) 

and temperature changes only. To detect transverse forces only, the common mode 

(Δλmean) can be removed by subtracting the mean of the Bragg wavelength shifts of all 

three FBG sensors. 

Δλi
diff = Δλi − Δλ

mean = kxiFx + kyiFy −
1

n
∑(kxjFx + kyjFy)

n

j=1

                                   (3.5) 

The remaining differential mode of each sensor (Δλi
diff) can be transformed into force 

information using a calibration matrix (K). Using 3 sensors around the tool shaft, Fx and 

Fy can be computed as: 

[Fx Fy]T = K [∆λ1
diff ∆λ2

diff ∆λ3
diff]T                                                                               (3.6) 

The coefficients forming the calibration matrix are found via an experimental calibration 

procedure which will be detailed for each tool separately in the following sections. 

3.2.1.2. Concept 1: Manual Actuation 

3.2.1.2.1. Design and Fabrication 

Reusable forceps must be cleaned and sterilized after every operation. As the tool goes 

through many cycles of surgery, cleaning and sterilization, material fatigue may occur 

and surface properties may change. Consequently, forceps cannot grasp the membrane as 

required and in a worst case they break during the surgery. In order to avoid such 

problems and reduce the associated cost, the current trend in vitreoretinal surgery is to 
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Figure 3.3: Fabricated prototype of the manually-actuated 2-DOF force-sensing micro-

forceps [101]: (a) jaws open, and (b) jaws closed configurations. Squeezing the handpiece 

closes the jaws. The jaws and the handle mechanism were taken from a standard 23 

Gauge disposable micro-forceps. 3 FBGs were attached onto the 23 Gauge nitinol tube 

forming the tool shaft. The quick release mechanism enables integration with the Steady-

Hand Eye Robot and an easy dismounting for safety in case fast removal of the tool from 

the eye is needed during the procedure. 

a

b

Jaws 23 Ga Nitinol Tube + FBGs

Quick-Release Mechanism

Optical Fibers

Handle Mechanism

use disposable forceps. Another important advantage of disposable forceps is the axially 

symmetric handle which is very convenient for rotating the tool around the tool shaft, 

since rotation is crucial for membrane peeling surgery to grasp the membrane at the right 

angle. 

The idea of integrating force sensing into disposable forceps is a challenging design task 

since using new sensors for every operation would not be a cost-effective solution. 

Another challenge is maintaining the present rotation functionality: FBG sensors could 

easily be damaged or could block a surgeon's maneuvers during rotation. We have solved 

these problems by building two mechanically decoupled functional parts: the force 

sensing module and the forceps mechanism. 
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Figure 3.4: The force sensing module and its fabrication steps [101]. First, three half 

tubes were located on the nitinol tube (upper). Second, FBGs were inserted through half 

tubes to achieve axi-symmetric configuration (lower). 

The force sensing module, shown in Fig. 3.4, is a 23 Gauge nitinol tube with three 

embedded FBG strain sensors. FBG strain sensors (Smart Fibers, UK) are preferred 

mainly due to their small dimension, high sensitivity, biocompatibility, sterilizability and 

immunity from electrostatic and electromagnetic noise. For axially symmetric FBG 

positioning around the nitinol tube, first we built a small apparatus that could place three 

half tubes on the nitinol tube. Then we inserted the FBGs through these half tubes. After 

the FBGs were glued the half tubes were removed. The nitinol tube with force sensors 

was mounted into a custom quick-release mechanism that connected the steady-hand 

robot tool holder. In order to monitor the FBG strain sensors, an optical sensing 

interrogator, sm130-700 from Micron Optics Inc. (Atlanta GA), was used. 

Our forceps mechanism consists of an actuating tube and graspers. For this mechanism, 

we have customized disposable forceps from Alcon, Inc. (Fort Worth, TX) as shown in 

Fig. 3.3. The graspers were taken off from a 23 Gauge disposable forceps and actuation 

tube was built with a 27 Gauge stainless steel hypodermic needle. The handle of a 
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Figure 3.5: (a) Squeezing the handle slides the actuation tube (green) in distal direction 

and closes the graspers (blue). (b) The graspers (blue) and the actuation tube (green) can 

be rotated together in the nitinol tube (red) by rotating the handle. 

Handle

FBG (stationary)

Nitinol tube 

Graspers (open)

Grasping

Actuation tube (sliding)

Graspers (closing)

Graspers (open)

Graspers (rotating)

Rotation

FBG (stationary)

Nitinol tube 

a b

disposable forceps tool was customized, so that the graspers and the actuation tube could 

easily be replaced after each operation. As shown in Figs. 3.3 and 3.5.a, the mechanism 

can be actuated by squeezing the tool handle. The squeezing motion causes the actuation 

tube to slide in the distal direction so that the graspers are closed. The graspers open 

again if the handle is released. Fig. 3.5.b shows the rotation functionality, where the tool 

tip can be rotated by rotating the tool handle. In either case, the force sensing module 

remains stationary relative to the easy-release mechanism. 

Finally, the customized forceps mechanism was inserted through the force sensing 

module. In this design, the optical fibers leave the tool right after the easy-release 

mechanism as shown in Fig. 3.3. This inhibits any interference with the surgeon’s hand at 

the handle during the operation. Furthermore, the fibers never get twisted or bent since 
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Figure 3.6: Calibration results in x-axis direction (left) and in y-axis direction (right). 

Linear behavior is observed for all FBGs in both axes. 
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they are separated from all of the rotating components. The complete design can be 

actuated and rotated just like the original tool. 

3.2.1.2.2. Calibration 

The calibration setup, calibration protocol, and the force computation steps follow [99]. 

Due to the interaction between the actuation tube and the nitinol tube with FBGs, a 

constant offset in force measurement exists when the micro-forceps is open. Since 

measuring the tool-to-tissue interaction forces after grasping the membrane is critical, the 

micro-forceps was kept closed during the calibration. A linear reproducible behavior was 

observed for all FBGs during both x and y axis calibration procedure as shown in Fig 3.6. 

The following calibration matrix was determined: 

K = [
0.0213 −0.1525 0.1311
−0.1523 0.0686 0.0836

]  mN/pm 

To verify our calibration results, we rotated the forceps mechanism and the tool shaft 

relative to the force sensing module while monitoring the change in measured forces 

under constant loading on tool tip. The rotation caused a shift in the force measurement, 
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but did not affect the linear trend of the calibration functions except for the starting 

points. Since the initial linear trend is preserved, recalibration is not required during the 

operation. The shift in the starting points can easily be eliminated by rebiasing the system 

during use. After the system rebias, the errors in our tests were less than 0.3 mN in the 

relevant force range of 0-10 mN. This shows that our tool is able to measure the forces in 

any direction in the xy-plane and in any orientation of the graspers relative to the tool, 

with an accuracy of 0.3 mN and precision of 0.25 mN. 

3.2.1.3. Concept 2: Motorized Actuation 

Currently a standard tool for membrane peeling is the disposable micro-forceps by Alcon 

Inc. (Fort Worth, TX), which is shown in Fig. 3.7.c. This tool operates based on a 

squeezing mechanism [101]: when the tool handle is compressed, the tubular tool shaft is 

pushed forward, and squeezes the flexible jaws anchored to the back of the tool handle; 

when the tool handle is released the spring-loaded mechanism pulls the tubular tool shaft 

back opening the jaws. Due to the moving parts within the mechanism during this 

actuation, studies have shown significant motion artifact at the tool tip [78], which limits 

tool tip positioning accuracy while trying to catch the membrane edge to begin 

delamination. Furthermore, such mechanical coupling between the tool handle and tip for 

actuation challenges the integration of the tool with many of the available systems for 

robot-assisted surgery as it can easily interfere with the operation of the attached robotic 

system. To address these issues, the design goal in our work has been devising a compact, 

lightweight and modular unit that can be controlled independently and remotely when 

necessary regardless of its site of attachment (such as a manual tool handle, a handheld 

micromanipulator [72-78,81,82] or a teleoperated/cooperatively-controlled robot [66-
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Figure 3.7: (a) Motorized force-sensing micro-forceps integrated with a handheld 

micromanipulator (Micron) [102], (b) 2-DOF force-sensing micro-forceps for the Steady-

Hand Robot from Section 3.2.1.2, (c) Standard 23 Gauge disposable forceps (Alcon, 

USA). 
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71]), resulting in the motorized micro-forceps shown in Fig. 3.7.b. 

3.2.1.3.1. Design and Fabrication 

Our motorized micro-forceps tool consists of two mechanically decoupled pieces: the 

handle mechanism, and the motorized force-sensing tip. The handle mechanism, shown 

in Fig. 3.8.a, was designed to clamp around any cylindrical micromanipulator body up to 

25 mm in diameter with the help of set screws, transforming it into a micro-forceps 

handle. It preserves the intuitive actuation principle on the standard disposable micro-

forceps tools, and does not interfere with the operation of the micromanipulator. The 

disposable Alcon forceps is actuated simply by squeezing the sides of the instrument 

handle, which causes the tube forming the tool shaft to slide in the distal direction so that 

the graspers are closed [101]. In our case, however, such rigid coupling between handle 
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Figure 3.8: Design of the motorized 2-DOF force-sensing micro-forceps: (a) handle 

mechanism, (b) motorized force-sensing tip with replaceable jaws. The tool can be 

inserted through a 20 Gauge trocar into the eye. Squeezing the handle mechanism from 

the sides drives a sliding potentiometer, which is used to control the linear micro motor in 

the tip module [102]. 

Micromanipulator 

Body

motion and tip actuation is not possible since it would significantly interfere with the 

actuators of the micromanipulator. Instead of such a mechanical coupling, we used a 

sliding potentiometer on the handle to assess forceps closure. The sides of the handle 

mechanism are normally kept propped open by two springs. Compressing the sides 

causes the sliders to move up along the tool handle, inducing a voltage change in the 

potentiometer output, and driving the motor of the tip forward to close the graspers. 

To design a clinically feasible micro-forceps tip that is compatible with various 

micromanipulators, there are four main challenges that need to be resolved: (1) 

integrating accurate force sensing capabilities while preserving the grasping motion of 

the forceps, (2) avoiding interference between the micromanipulator’s own actuation and 

the opening/closing action of the forceps, (3) generating a self-standing universal module 

for compatibility with various handheld manipulators, and (4) enabling easy replacement 

of the grasper jaws for accommodating different jaw types for different surgical tasks, 
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and for disposable use. This requires a very compact and lightweight micro-forceps 

module that is motorized so that it can be actuated independently regardless of the 

micromanipulator motion, and that carries all of the force-sensing elements on it. Under 

these constraints, we designed our “drop-in” micro-forceps as shown in Fig. 3.8.b. 

Reusable forceps require cleaning and sterilization after every operation. As the tool goes 

through many cycles of operation, the resulting material fatigue and change in surface 

properties diminish the grasping quality. Consequently, the forceps jaws cannot grasp the 

membrane as required and in the worst case they may break during the surgery. In 

addition, depending on the thickness and type of the targeted tissue, surgeons may need 

to use micro-forceps with varying grasper jaw profiles as shown earlier in Fig. 3.1. To 

enable the easy change of disposable jaws and switch between differing types of jaws 

(Fig. 3.1) preserving the force-sensing motorized unit, the design of the tip module was 

modified as shown in Fig. 3.9.a. 

 

Figure 3.9: (a) Motorized force-sensing micro-forceps: an earlier prototype (left) vs. the 

more compact latest prototype (right) of the tip module. (b) Components of the tip 

module: The disposable jaws can be easily replaced to accommodate different jaw types 

for different surgical tasks and prolonged use. (c) The handle mechanism and the tip 

module can be integrated with assistive robotic systems, such as the handheld 

micromanipulator, Micron [103]. 
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Figure 3.10: The linear micro motor in the tip module (Squiggle-RV-1.8) is used to drive 

the slide assembly back and forth. Moving forward pushes the steel tube carrying the 

FBGs towards the tip, thus squeezing and closing the jaws. Opposite motion releases and 

opens back the compliant jaws. During actuation, the position of the slide assembly, 

carrying a bar magnet attached on its side, and therefore the motor position is detected by 

a magnetic sensor located on the side of the module [102]. 

Components of the current design are presented in Fig. 3.9.b. The disposable jaws are at 

this time taken from the standard 23 Gauge Alcon micro-forceps. The normally open 

jaws are fixed to the base via a set screw located on the lid. By releasing the set screw, 

the jaws can easily be replaced and switched between different types, such as the thicker 

profile in Fig. 3.12.a for peeling dense epiretinal membranes and the slimmer profile in 

Fig. 3.12.b for delamination of finer internal limiting membranes. The lid, base and slider 

shown in Fig. 3.9.b are polycarbonate parts. The tool shaft is a 23 Gauge stainless steel 

tube. It is attached to a slider, which is moved back and forth along the pins of the base 

by a linear micro motor, Squiggle-RV-1.8 by New Scale Technologies Inc. Driving the 

slider forward pushes the tool shaft towards the tip, thus squeezing and closing the 

forceps jaws. The selected micro motor supplies enough force for this task in a very small 

FBGs

Micromanipulator tip

Jaws: Open

Jaws: Closed

Slide assemblySQUIGGLE RV motor

Magnetic position sensor

Steel tube Steel rod
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(2.8x2.8x6 mm), and light weight (0.16 grams) package. Fully opening and closing the 

jaws requires a travel distance of 0.8 mm, which is well below the motor’s limit (6mm). 

A bar magnet is attached on the side of the slider. The position of the slider, and thus of 

the micro motor, is tracked via the magnetic position sensor fixed on the side of the base. 

To integrate force sensing capabilities, FBG strain sensors (Smart Fibers, UK) were 

preferred mainly due to their small dimension, high sensitivity, biocompatibility, 

sterilizability, and immunity from electrostatic and electromagnetic noise. Following the 

fabrication method presented in [99], 3 FBGs were fixed evenly around the 23 Gauge 

tubular tool shaft using medical epoxy adhesive. The outer diameter of the finalized tool 

shaft is approximately 0.9 mm, and is small enough to fit through a 20 Gauge trocar. The 

module weighs about 1.9 grams. 

3.2.1.3.2. Calibration 

The micro-forceps module is capable of sensing the transverse forces exerted at its tip via 

the 3 FBG strain sensors attached evenly around the tool shaft. To find the calibration 

constants required by equation 3.5, we took measurements using the setup in Fig. 3.11.a. 

The tip module was mounted on a rotary stage and held horizontal while transverse forces 

were applied by hanging washers of known weight at the tool tip. The varying loading at 

the tool tip induced changes in the Bragg wavelength of each FBG sensor, which 

normally depends linearly on both the local strain and the temperature variation. During 

calibration, the effect of temperature change was removed by subtracting the mean 

wavelength shift from each sensor measurement. Resulting temperature-compensated 

sensor readings exhibit a linear reproducible behavior during both the x- and y-axis 
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calibration procedures, as shown in Fig. 3.11.a. The slopes of the response curves form 

the calibration matrix (K): 

K = [
0.2127 −0.1283 −0.0843
0.0183 0.1613 −0.1797

]  mN/pm 

The shaft of the disposable jaws in comparison to the actuation tube is very thin, and thus 

has no significant effect on the overall stiffness of the tool shaft. Thus, even if the tip is 

replaced, the calibration matrix remains the same. 

 

Figure 3.11: (a) Calibration results: linear response for all FBGs when the tip is loaded 

along x and y axes. (b) Computed forces versus the actual forces along x and y axes. (c) 

The histogram of the residual errors [104]. 
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Figure 3.12: Varying nonzero forces are observed due to inner actuation forces as the 

jaws are opened and closed. The force profile varies depending on the jaw type. Artifact 

on sensor reading while using jaws for (a) thicker membranes and (b) thinner membranes. 

The force shift is consistent throughout the open/close cycles, and can be modeled as a 

function of the motor position [103]. 
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In order to monitor the FBGs, we use an optical sensing interrogator (sm130-700 from 

Micron Optics Inc., Atlanta, GA). The wavelength resolution of the interrogator is 1 pm. 

Based upon the obtained calibration matrix, this corresponds to a transverse force 

resolution of about 0.21 mN. To verify sensor operation, the tool tip was loaded and 

unloaded repeatedly (3 times) in different angles (0°, 45° and 90°), and the computed 

forces were compared with the actual tip loading. Results showed consistency with the 

actual values for both Fx and Fy, and a close fit to the ideal straight line (slope=1) passing 

through the origin (Fig. 3.11.b). The root mean square error was 0.14 mN and 0.17 mN 

respectively for Fx and Fy. The histogram of the residual errors in Fig. 3.11.c show that 

the probability of errors beyond 0.5 mN is very low. 

The grasping action in this design is provided by squeezing the forceps jaws by sliding 

the tubular tool shaft forward. During this motion, various external loads and friction 
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forces are exerted on this tube, which is also carrying the force-sensing FBGs. As the 

forceps is closed and opened, FBGs are influenced by these inner actuation forces 

resulting in a shift in force readings even when there is no external loading on the tip. The 

force variation due to actuation depends on (1) the type of the attached forceps jaws, and 

(2) the jaw orientation relative to the base. The sensed actuation forces are usually 

comparable (up to 3 mN as in Fig. 3.12.b and 3.12.c) with the amplitude of most forces 

during vitreoretinal practice (routinely below 7.5 mN). Due to various structural factors, 

such as the grasper jaw geometry, friction forces and material properties, the effect of 

inner actuation forces is usually complex, and thus normally hard to predict. However, 

because the actuation is provided by a motorized system, the force shift exhibits a very 

consistent trend during repeated open/close cycles, and can be modeled as a function of 

motor position. In order to cancel this systematic error, we implemented a correction 

routine that is performed after each jaw replacement (Fig. 3.13). 

Before the operation, the desired jaws are mounted using the set screw on the lid (Fig. 

3.8.b). Then, with no external loading on the tip, the grasper jaws are opened and closed 

three times while the variation in sensed forces is recorded. This results in a mapping 

between the micro motor position and force error specific to that particular jaw type and 

mounting orientation. Then a polynomial is fit to the acquired data. Based on the best fit 

and sensed motor position, the induced forces due to actuation can be estimated (within a 

±0.15 mN envelope) and subtracted from the measured values to obtain a corrected force 

reading. This provides a significant reduction in force variation as the forceps is closed 

and opened repeatedly. As shown in Fig. 3.13, without such correction, opening the 

forceps jaws induces an error that is slightly larger than 3 mN. The correction routine 
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Figure 3.13: The implemented correction routine for compensating against the inner 

actuation forces and maintaining the accuracy of force readings while opening and 

closing the grasper jaws [103]. 
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lowers the error down to 0.3 mN. This indicates that our tool is able to sense transverse 

forces within an accuracy of 0.3 mN after correction. The jumps on the corrected data 

correspond to the instant when the actuation tube starts and stops moving, and are mainly 

due to inertial effects. These jumps can further be reduced by integrating the acceleration 

term in the correction routine, but has no significance for practical use since the forces 

while grasping the tissue (while the jaws are stationary) are of interest. 

In vitreoretinal practice, surgeons may need to manipulate tissues with varying thickness. 

Depending on the grasped layer thickness, the jaw opening and the final motor position 

would change, resulting in different offsets in the raw force reading. The force correction 

routine based on motor position ensures that the computed tip forces remain accurate 
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Figure 3.14: The effect of grasped layer thickness on the force sensing accuracy. A 

multilayered bandage was grasped from 3 different segments to compare the measured 

forces with the actual loading on the tool tip. Measured forces normally deviate from the 

ideal line more if thicker layers are grasped. The correction routine ensures that the 

measured tip forces remain accurate regardless of the thickness of the grasped material 

[103]. 
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regardless of the thickness of the grasped material. To validate this, we did experiments 

for 3 different layer thicknesses, and 3 different tip load levels on the setup shown in Fig. 

3.14. The colored grasping tab carrying the loads is made of bandages and has a non-

uniform cross section. The red segment consists of a single layer bandage, while adjacent 

white and black segments have layers stacked on top of each other, resulting in 0.08mm, 

0.16mm and 0.24mm thick material respectively. 

During the test, the strip was grasped from one of these segments, and washers were hung 

to increase the forces on the tool tip gradually. The force readings were recorded with and 

without the proposed correction routine while loading and removing washers. The test 

was repeated for each segment on the strip. When grasped from the thinnest segment, the 
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Figure 3.15: Transient response characteristics of the force sensor: (a) setup, (b) step 

response of the sensor. Simulated response of a first order system with a time constant of 

0.005 seconds matched the measured force profile [104]. 
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measured forces were observed to be very close to the actual values, even without the 

correction routine. However, as the grasped layer got thicker, the measured values 

deviated from the ideal line, and thus the correct force value, more if the proposed 

correction routine was not applied. With the correction routine, the measured forces 

always remained accurate, regardless of the thickness of the grasped segment. 

Accurate measurement of membrane peeling forces in the presence of fast variations, 

such as while using micro-vibrations which will be detailed in Section 4.4, requires not 

only sub-mN force-sensing resolution but also a very fast responding force sensor. In 

order to characterize the transient response of our force-sensing micro-forceps we used 

the setup shown in Fig. 3.15.a. The micro-forceps module was mounted onto a 

micromanipulator, Micron, fixed in a vise. The forceps jaws were put between two elastic 

rubber bands. Then, Micron was given a step input to move the tool tip towards one side 

laterally while the resulting reaction force was recorded. Measurements were taken for 3 
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levels of step amplitude (50, 150 and 250 µm). In all cases, the force output of the micro-

forceps matched a first order system response with 0.005 s time constant as shown in Fig. 

3.15.b, proving a fast-enough response to track rapid force variations even in the presence 

of high frequency micro-vibrations (up to 50 Hz). 

3.2.2. 3-DOF Force-Sensing Micro-Forceps 

In this section, force-sensing micro-forceps that can firmly grasp layers and detect not 

only the transverse forces (Fx, Fy) but also the axial tension (Fz) during membrane peeling 

via their integrated FBG sensors are presented. To the best of our knowledge, these are 

the only micro-forceps at this scale (tool shaft diameter < 0.9 mm) that can sense 3-DOF 

forces at the tool tip and be potentially used in retinal microsurgery. The main 

contribution of our study is the calibration procedure and force computation methodology 

based on FBG sensor readings. In the following sections, for each design concept, we 

first discuss how a set of FBG sensors can be configured to accurately capture tool-tissue 

forces while preserving the grasping functionality of the micro-forceps. This will be 

followed by methods to transform the optical information from the FBG sensors into 

force values, and calibration experiments and verification of the sensor readings. 

3.2.2.1. Concept 1: Manual Actuation 

3.2.2.1.1. Design of the Actuation Mechanism 

In this design, shown in Fig. 3.16, we modified the handle of disposable forceps by Alcon 

such that squeezing the tool handle retracts the tool shaft instead of pushing it forward, 

but still leads to opening of compliant jaws, which are custom built and normally closed 

as will be detailed in the next section. The tool shaft is composed of two concentric tubes 
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Figure 3.16: Manually-actuated 3-DOF force-sensing micro-forceps for membrane 

peeling: Basic components and actuation principle [105]. 
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which are connected to the inner and outer arms of the grasper jaws. Besides this flexible 

coupling at the distal end, the proximal end of each tube is also held rigidly by different 

parts of the actuation mechanism. The inner tube is fixed to the handle body while the 

outer tube is grasped by the ribs of the handle. When the user squeezes the hand piece, 

the outer tube is retracted into the handle body while the inner tube is held stationary. In 

this way, the outer arms of the jaws are pulled up to open the forceps. In contrast to the 

existing Alcon tool design, in our concept, the adjustable pre-tension spring on the handle 

keep the jaws normally closed. Upon releasing the ribs, the jaws close under the force 

applied by this pre-tension spring and the jaws’ own stiffness. 

3.2.2.1.2. Design of the Forceps Jaws 

There are two main approaches in designing forceps depending on the neutral position of 

the grasper jaws: a normally closed design vs. a normally open configuration. In our 

design, the grasper jaws function as a flexible coupling between the outer and the inner 

tubes. Thus, this part has a significant effect on the required actuation forces, and the 

resulting inner stresses. Apart from providing actuation, the inner and outer tubes also 

carry the force sensing elements. In vitreoretinal practice, it is desired to sense the forces 
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Figure 3.17: Topology optimization: (a) Design domain and boundary conditions; (b) 

final concept output; (c) simplified design and associated parameters; (d) levels used in 

the optimal value search [106]. 
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at the tool tip mostly after the tissue is grasped. Thus, the influence on the sensing 

elements from inner actuation forces must be minimized when the jaws are closed, which 

necessitates normally closed configuration. Furthermore, due to the limited strain that 

each FBG can take (9000 μstrain), the pulling force on the outer tube while opening the 

jaws need to be minimized. However, reducing this force too much would also result in 

very flexible jaws and poor grasping force. Therefore, the actuation force should be 

minimized while satisfying the minimum grasping force requirement (20 mN). We solved 

this optimization problem in two steps: (1) topology optimization, (2) linear search. 

During these steps, the material was specified as nitinol (SE508 from Nitinol Devices & 

Components, Inc.) for its super-elastic properties. 

Topology optimization is a finite-element-based approach which provides the optimum 

structural layout to satisfy a target design requirement in a well-defined design domain 

[107]. In our case, it is important to find a concept that will provide minimal actuation 

force. Utilizing symmetry, the design domain for half of the graspers is set to be within a 

0.7mm x 7.5mm rectangular region. The domain is divided into 50μm x 50μm squares to 

get a total of 2100 elements as schematized in Fig. 3.17.a. Then the conceptual design 

generated by topology optimization (Fig. 3.17.b) was simplified considering 



 40 

manufacturability. Also, in order to make this part replaceable, the outer and inner arm 

ends were slightly modified so that the grasper jaws click into the slots on the outer and 

inner tubes of the tool shaft, and can be taken out by squeezing and pulling them out. 

The optimal values for the dimensions of this concept were found via linear search, by 

static analyses on 75 different designs in SolidWorks. The design parameters and the 

explored values for each are shown in Fig. 3.17.c and Fig. 3.17.d, respectively. Analyses 

showed that increasing the jaw length, the jaw width and decreasing the arm thickness 

provide smaller actuation force. The effect of jaw length on the actuation force is most 

significant when greater arm thicknesses are considered while the jaw width is not critical 

especially for longer jaws. On the other hand, tuning all these parameters so as to 

minimize actuation force reduces the grasping force. For this reason, the minimum 

grasping force criterion defines a bound on these variables. In addition to functional 

requirements, the design variables are also limited by application based facts and 

manufacturing capabilities. The jaw length cannot be greater than 14 mm since the adult 

human eye ball is typically below 24 mm in diameter, 10 mm of which is already 

occupied by the active segment of FBGs. The jaw width cannot be increased too much 

since the instrument has to pass through a 20 Gauge trocar (0.9 mm ID). However, this 

limit can be slightly exceeded as long as the tool can be squeezed to pass through the 

trocar without breaking. Finally, the links on the jaws cannot be thinner than 50 microns 

as smaller values would make laser cutting really challenging, or in some cases even 

impossible depending on the equipment available. Under these constraints, our linear 

search aimed to maximize two objective functions simultaneously: (1) opening 
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Figure 3.18: The effect of design parameters on the opening compliance and grasping 

stiffness. The optimization goal is to maximize both functions while satisfying the 

limiting factors [106]. 
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compliance (jaw opening/actuation force) for smaller actuation force, and (2) grasping 

stiffness (grasping force/jaw deformation) for better grasping. 

The effect of design parameters on the objective functions and associated limits are 

shown in Fig. 3.18. In order to maximize both functions, it is desirable to increase the jaw 

width. However, the tool tip needs to fit through at least a 20 Gauge trocar (I.D.≈0.9mm). 

On the other hand, the jaw length, and the jaw thickness both have opposite effects on the 

objective functions. Therefore, it is not possible to maximize both grasping stiffness and 

opening compliance at a single value of jaw length or width. The optimum values of 

these parameters (3.19.a) were selected considering the target performance limits, which 

are set as 1N/mm for the minimum grasping stiffness (Kgrasp), and 0.5 mm/N for the 

minimum opening compliance (Copen) considering tissue properties (for grasping), and 

maximum allowable strain on the FBGs during actuation. 
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Figure 3.19: Optimal jaw design: (a)Dimensions (b) Stress distribution while opening the 

jaws with 1N of actuation force, (b) Fatigue life under 1 N cyclic loading: more than 

60,000 cycles of actuation cycles before failure based on nitinol use (E=41 GPa, ν=0.33) 

[106]. 

The true scale deformation under 0.7 N of actuation force and the corresponding stress 
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opening and closing motion of the jaws. Shown in Fig. 3.19.c is the total life of the 

optimal design considering an average actuation force of 1N. Accordingly, the instrument 

is expected to function for over 60,000 opening-closing cycles before failure. This 

approximate value will be lower with greater applied forcing and because of the wear and 

tear caused by sterilization. Nevertheless, the estimated lifetime is more than sufficient 
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3.2.2.1.3. Integration of Force Sensing 

Due to both form factor constraints and measurement resolution requirements, accurate 

sensing of tool to tissue interactions in vitreoretinal surgery is a significantly challenging 

task. In order to measure forces applied solely at the instrument tip without any 

contribution from the sclerotomy site, the force sensor has to be functioning inside the 

eye close to the tool tip. This requirement implies several limitations in terms of 

availability of force sensing technologies: (1) the sensing part should be thin so that it can 

be introduced into the eye through at least a 20 Gauge trocar; (2) it has to be either 

inexpensive for a disposable design or sterilizable for multiple uses; (3) the sensor itself 

has to be biocompatible as it will be introduced into the eye during the surgery; (4) the 

measurements should have sub-mN resolution since the forces associated with 

vitreoretinal microsurgery are routinely less than 7.5 mN. Under these limitations, using 

FBG strain sensors is a possible good option. 

Using FBGs has revealed promising results in 2-D force sensing instruments in previous 

sections. In these designs, 3 FBGs were mounted around the tool shaft to sense transverse 

loading at the tool tip. In designing 3-DOF forceps we followed a similar approach. The 

transverse loading is still measured via the 3 lateral FBGs on the outer tube of the 

forceps. However, additionally, a 4th axial FBG is located in the central tube for 

measuring the axial forces (Fig. 3.16). The tubes carrying the lateral and axial FBGs are 

connected to each other via the arms of the grasper jaws, which function as a flexure 

besides grasping. This flexure provides the decoupling of axial and transverse forces so 

that the axial FBG remains insensitive to transverse loading. Similarly, due to design of 

the grasper jaws and the coupling with tubes, the strain on lateral FBGs is minimal in the 
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presence of axial forces. The axial-transverse force decoupling is verified through 

sensitivity analyses in the next section.  

3.2.2.1.4. Sensitivity Analysis 

In order to determine the strain induced on each FBG under various loading cases, 

simulations were done using SolidWorks. The axis directions, applied loads and resulting 

strains in these simulations are shown in Fig. 3.20. When the loading was increased 

gradually, linearly increasing strain response was obtained, as expected. The slope of 

each line in this figure denotes the relative sensitivity of the associated FBG with regard 

to the related loading case. When there is pure axial loading on the tool tip, almost no 

strain is induced on the lateral FBGs. Similarly, application of only transverse forces does 

not cause a significant variation in axial FBG strain. The strain curves in Fig.3.20 and the 

associated slope values in Table 3.1 indicate that successful transverse-axial force 

decoupling has been accomplished. 

 

Figure 3.20: Induced normal strain on each FBG sensor under principle loading 

conditions. Linear rise in strain with increasing tip load, and success in decoupling 

lateral-axial forces [106]. 
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ε = 1.9925 Fx + 0.027

ε = 0.0462 Fx - 0.0045

ε = -0.0004 Fx + 0.0173

ε = -1.988 Fx - 0.0676

ε = 1.7985 Fy + 0.021

ε = -0.0127 Fy + 0.0102

ε = -0.9508 Fy + 0.0204

ε = -0.9193 Fy - 0.0233

ε = 0.8169 Fz + 0.0124

ε = 0.0413 Fz - 0.0001

ε = -0.0444 Fz + 0.0001

ε = -0.0448 Fz - 0.0002

Fy [mN]

Fz [mN]

Fx [mN]

Axial FBG

Lateral FBG 1

Lateral FBG 2

Lateral FBG 3
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Table 3.1: Results of the sensitivity analysis. 

 

3.2.2.1.5. Force Computation:  

The measured wavelength shift for each FBG channel (λ) is related to the force induced 

normal strain (εF) and the temperature induced strain (εT) via equation (3.7): 

𝜆 = 𝑐𝐹𝜀𝐹 + 𝑐𝑇𝜀𝑇 (3.7) 

The contribution from the ambient temperature variation can be eliminated by taking the 

average of all measurements and subtracting this mean value from the actual readings to 

form a new data set (Δλ). The linear relationship (3.8) gives the tip forces based on the 

force induced strain, where S is the sensitivity matrix and S+ denotes its pseudoinverse: 

[

Fx
Fy
Fz

] = S+εF = 
1

cF
S+

[
 
 
 
 
Δλaxial
Δλlateral1
Δλlateral2
Δλlateral3]

 
 
 
 

                                                                                           (3.8) 

where S = [
0.0004
−0.0127
0.8169

1.9925
−0.9508
−0.0444

0.0462 −1.988
1.7985 −0.9193
0.0413 0.0448

] µstrain/mN 

3.2.2.2. Concept 2: Motorized Actuation with Asymmetric Jaws 

For easy integration with robotic platforms, in this section we focused on a modular 

micro-forceps that is motorized similar to previously introduced 2-DOF force-sensing 

tool in Section 3.2.1.3, but with a modified design to add axial force sensing capability. 

Forces
Sensitivities [microstrain/mN]

Axial FBG Lateral FBG 1 Lateral FBG 2 Lateral FBG 3

Fx 0.0004 1.9925 0.0462 -1.988

Fy -0.0127 -0.9508 1.7985 -0.9193

Fz 0.8169 -0.0444 0.0413 -0.0448
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Figure 3.21: Force-sensing micro-forceps conceptual overview. (a) Epiretinal membrane 

peeling. (b) Axial FBG in the center: actuation force (Fact) degrades the sensor reading. 

(c) Axial FBG attached on the flattened arm of the jaw: bypassed Fact and direct exposure 

to tool tip forces (Fax and Ftr) [108]. 
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3.2.2.2.1. Design and Fabrication 

The tool consists of a grasping mechanism and force-sensitive elements as shown in Fig. 

3.21. The actuation unit houses a compact (28 x 13.2 x 7.5 mm) and lightweight (4.5 g) 

piezoelectric linear motor (M3-L, New Scale Technologies Inc., Victor, NY) with its 

embedded driver and encoder providing precise position control, which is used for 

opening and closing the forceps jaws. The normally-open compliant jaws are passed 

through a 23 Gauge guide tube and firmly anchored to the actuation unit via a set screw. 

The guide tube is attached to the shaft of the linear motor, so that when the motor is 

actuated, the guide tube is moved up and down along the tool axis, releasing or squeezing 

the forceps jaws. 

In order to sense the applied forces after the membrane is grasped, the design employs 4 

FBGs (Ø80 µm by Technica, GA, USA). Following a similar strategy as in our previous 
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2-DOF force-sensing micro-forceps, 3 lateral FBGs are fixed evenly around the guide 

tube to capture the transverse forces at the tool tip. This results in a sufficiently small tool 

shaft diameter of 0.9 mm. New in this work is the fourth FBG responsible for detecting 

the tensile axial forces while the membrane is pulled away from the retina. The location 

of this sensor is critical to maximize accuracy. Our initial concept hypothesized that 

centrally locating this sensor inside the guide tube at the distal end of jaws (Fig. 3.21.b) 

could provide the best decoupling between transverse and axial forces. In this 

configuration, although the sensor is positioned along the neutral axis for transverse loads 

and thus should sense only the axial loads, our preliminary experiments have shown that 

the frictional and elastic deformation forces generated at the guide tube/jaw interface 

during tool actuation significantly degrades the response of the sensor. As a remedy, we 

studied an alternative concept, where the forceps jaws are modified by flattening one arm 

(Fig. 3.21.c). When the guide tube is moved up and down, the flat arm is kept straight 

always while the other bent arm in contact with the guide tube elastically deforms to 

open/close the jaws. The central FBG is fixed on the flat arm of the jaws, where the 

sensitive region of the fiber is maintained close to the jaw tip outside the guide tube, 

bypassing the undesired actuation forces at the guide tube/jaw interface. 

3.2.2.2.2. Force Computation Algorithm 

A. Linear Method 

Due to the asymmetry of the jaws, to grasp the membrane, this tool needs to be held at a 

certain orientation, which will induce transverse forces mostly along the open/close axis 

of the jaws as illustrated in Figs 3.21.b and 3.21.c. Hence in this study, instead of 

defining x and y components separately, we focused on this particular direction of the 
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transverse force, and modeled the elastic deformation of the guide tube as an Euler-

Bernoulli beam under the transverse (Ftr) and axial (Fax) loading at the tool tip, inducing 

a linearly proportional local elastic strain on each of the attached lateral FBGs and thus a 

linearly proportional shift in the Bragg wavelength of each sensor. In addition, even 

slight variations in ambient temperature (ΔT) may cause a drift in the Bragg wavelength. 

Then, the combined Bragg wavelength shift (∆λi) for each lateral FBG (FBGs 1, 2 and 3) 

can be expressed as  

∆λi = Ci
F_trFtr + CF_axFax + CΔTΔT  , where i = 1,2,3                                                (3.9) 

where Ci
F_tr, CF_ax and CΔT are constants associated with the transverse force, the axial 

force and the temperature change, respectively. Since the lateral FBGs are closely located 

within the same ambient, ideally, they are equally affected from the axial load (C1
F_ax =

C2
F_ax = C3

F_ax = CF_ax) and the temperature variation (C1
ΔT = C2

ΔT = C3
ΔT = CΔT). When 

the mean Bragg wavelength shift in all three lateral sensors is computed, due to 

axisymmetric distribution of lateral FBGs around the guide tube (120⁰ apart from each 

other), the terms related to the transverse forces cancel each other, resulting in the 

common mode (∆λmean ) which is a function of the axial force and the temperature 

change only. 

∆λmean = CF_axFax + CΔTΔT                                                       (3.10) 

The effect of temperature change and axial force in sensor readings can be eliminated by 

subtracting the common mode from Bragg wavelength shift of each sensor. 

∆λi
diff = ∆λi − ∆λ

mean = Ci
FtrFtr    ,     i = 1,2,3                                                        (3.11) 
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The remaining differential mode of each sensor (∆λi
diff) can then be used in the following 

equation to compute the transverse forces: 

Ftr = Ctr [∆λ1
diff ∆λ2

diff ∆λ3
diff]T                                                       (3.12) 

where Ctr  is a 1x3 coefficient matrix that represents the linear mapping from optical 

sensor readings to the force domain, and will be found via a calibration procedure. 

In addition to the elastic strain due to axial load, the axial FBG (FBG 4) experiences also 

a bending moment induced by the transverse force at the tool tip. Furthermore, changes in 

ambient temperature will induce a drift in the measured Bragg wavelength. Since the 

axial and transverse FBGs share the same environment, we hypothesize that the thermal 

drift of the axial FBG and that of the common mode of the three lateral FBGs are linearly 

correlated. Based upon this hypothesis, multiplying the common mode of lateral FBGs 

(∆λmean)  with a proper coefficient (κ ) and subtracting it from ∆λ4 , the effect of 

temperature change can be eliminated. 

∆λ4
diff = ∆λ4 − κ ∆λ

mean = CaxFax + C4
F_trFtr                                                        (3.13) 

Since Ftr is already found based upon lateral FBGs, the axial load can be computed after 

Cax and C4
F_tr constants are identified via calibration. 

Fax = (∆λ4
diff − C4

F_trFtr)/Cax                                                        (3.14) 

B. Nonlinear Method 

Due to the very small dimensions and imperfections in tool fabrication, it may not be 

possible to accurately decouple the effect of axial and lateral loads using a linear model, 

especially on the axial FBG. We hypothesize that such a linear fitting may perform well 
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only locally, when the transverse forces are much smaller than the axial load. In order to 

obtain a global estimate of force, a nonlinear fitting method based on second order 

Bernstein polynomials can be used as 

F = ∑ ∑ ∑ ∑ cijklbi,n(Δλ1
∗)bj,n(Δλ2

∗)n
l=0 bk,n(Δλ3

∗)bl,n(Δλ4
∗)n

k=0
n
j=0

n
i=0                 (3.15) 

where cijkl denotes constant coefficients and Δλi
∗ denotes the differential mode (thermal 

drift eliminated response as described by equations (3.11) and (3.13)) of each FBG scaled 

down to [0,1] interval – since Bernstein polynomials exhibit good numerical stability 

within this range [109] – using the following equation: 

Δλi
∗ =

∆λi
diff−∆λi,min

diff

∆λi,max
diff −∆λi,min

diff  for i = 1,2,3,4                                                          (3.16) 

bv,n(Δλi
∗) terms in equation (3.15) are the Bernstein basis polynomials of order n defined 

as follows: 

bv,n(Δλi
∗) = (

n
v
)Δλi

∗v(1 − Δλi
∗)1−v   for   v = 0…n   and   i = 1,2,3,4                      (3.17) 

In our approach, in order to avoid overfitting with a reasonable sample size, we use a 2nd 

order regression by setting n=2 and defining 

Bjklm = bj,2(Δλ1
∗)bk,2(Δλ2

∗)bl,2(Δλ3
∗)bm,2(Δλ4

∗)                                                         (3.18) 

Then, equation (3.15) can be rearranged as 

[Ftr Fax] = ∑ ∑ ∑ ∑ Bijkl cijkl
2
l=0

2
k=0

2
j=0

2
i=0 = B CBernstein                                        (3.19) 

where B is a 1x81 row vector formed by the product of Bernstein basis polynomials and 

CBernstein  is a 81x2 constant matrix. The coefficients in CBernstein  can be found by 
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Figure 3.22: (a) Fabricated prototype and experimental setup. (b) Thermal drift in lateral 

(FBGs 1-3) and axial (FBG 4) sensor readings. (c) Linear correlation between the 

common mode of lateral FBGs and the axial FBG [108]. 
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applying known forces (Ftr and Fax) in various directions at the tool tip and monitoring 

the corresponding FBG data (Δλi
∗). 

3.2.2.2.3. Calibration Experiments 

In order to identify the constants used in our force computation algorithm, we performed 

a set of calibration experiments. The goal in our first experiment was to test the 

hypothesis of linear correlation between the temperature drift in common mode of lateral 

FBGs and the axial FBG. Using an optical sensing interrogator (sm130-700 from Micron 

Optics Inc., Atlanta, GA), we recorded the Bragg wavelength of all FBGs during a 180 

minute period with 15 minute intervals while exposing the tool to routine changes in 

room temperature. The wavelength shift of the lateral FBGs were observed to be almost 

identical (Fig. 3.22.b). The change in the common mode of lateral FBGs and the shift in 
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the axial FBG could be linearly correlated as shown in Fig. 3.22.c (R2=0.93). The 

corresponding proportionality constant was found to be κ=0.69. 

Our second experiment was for modeling the lateral and axial FBG response under 

various forces. For this, we mounted our forceps on a rotary stage and used the jaws to 

grasp a wire hook (Fig. 3.22.a). By hanging various loads on the hook and modulating the 

tool orientation (𝛳) the axial and transverse forces at the tool tip were changed. 

Measurements were taken for loads ranging from 0 to 25 mN with 5 mN intervals and at 

angles from 𝛳=0° (entirely axial loading) to 𝛳=90° (entirely transverse loading) with 15° 

intervals. This produced 42 distinct loading cases; and at each orientation, the tool tip was 

repeatedly loaded/unloaded 3 times. The obtained response for 3 illustrative orientations 

is shown in Fig. 3.23. When the tool was held at 𝛳=0°, the entire loading was axial, 

therefore affecting only the axial FBG linearly with a slope of 0.78. This suggests 

Cax=0.78 pm/mN in eqn. (3.14). At 𝛳=90°, the induced force was purely transverse 

which caused a linear response in all FBGs. The sensitivity of the axial FBG in this 

orientation revealed C4
F_tr = 2.32 pm/mN. Based upon the slope of lateral FBG response 

curves, the coefficient matrix in eqn. (3.12) was found as Ctr=[-0.0342 0.089 -0.0548] 

mN/pm. The wavelength resolution of our interrogator is 1 pm, which propagates to a 

transverse force resolution of 0.17 mN and an axial force resolution of 1.8 mN 

considering the identified coefficients for the linear method. Finally, using the entire data 

set of 252 measurements, the least squares problem formulated in eqn. (3.19) was solved 

to find CBernstein. The identified coefficient provided a transverse force resolution of 0.08 

mN and an axial force resolution of about 1.08 mN. The fit polynomial could estimate the 
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Figure 3.23: Lateral (FBGs 1-3) and axial (FBG 4) sensor response to loading (0-25 mN) 

at the tool tip for three different orientations (𝛳 = 0º, 45°, 90º) [108]. 
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transverse and axial forces in the calibration data set with mean absolute residual errors 

of 0.11 mN and 1.23 mN and RMS errors of 0.15 mN and 1.69 mN, respectively. 

3.2.2.2.4. Validation Experiments 

Forces ranging from 0 mN to 25 mN were applied on the tool with 5 mN intervals at 20°, 

40° and 70° orientations; each test was repeated 6 times, producing 108 measurements. 

The data set was extended by adding 15 more measurements at randomized angles (0°-

90°) and forces (0-25 mN). Our first attempt to estimate applied force using a linear 

model performed well for the transverse load with an RMS error of 0.13 mN (Fig. 

3.24.a), though did not provide an adequate accuracy in finding the axial force (Fig. 

3.24.b). The linear method produced an RMS error of 2.05 mN for cases with a 

transverse force less than 5 mN, but when larger (up to 25 mN) transverse loads were 

involved, the RMS error in the computed axial force rose up to 5.14 mN. This indicates 

that the linearity of sensor response is lost when large transverse forces are applied at the 
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tool tip in addition to axial loads. Our second approach, the Bernstein polynomial 

method, showed similar success in estimating the transverse force with an RMS error of 

0.22 mN (Fig. 3.24.c). More importantly, the accuracy in axial force estimation was 

significantly improved with a much smaller RMS error of 1.99 mN (Fig. 3.24.d) for the 

entire force range (0-25 mN), which is closer to the required accuracy for feasibility in 

membrane peeling. Our future work aims at investigating other tool architectures 

preserving the axial symmetry of the tool and providing better axial force sensing 

accuracy. 

 

Figure 3.24: Computed transverse and axial forces vs. the actual values. Similar accuracy 

for both methods in estimating the transverse load, better performance with the 

polynomial method for estimating the axial load [108]. 
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Figure 3.25: (a) Epiretinal membrane peeling using our motorized force-sensing micro-

forceps with the force-sensitive region of the tool inserted into the eye through a 20 

Gauge sclerotomy. (b) Components of the design (c) Motorized actuation mechanism 

driving the guide tube up/down for opening/closing the jaws. (c) The tool coordinate 

frame and FBG sensor configuration. The axial FBG sensor (FBG 4) at the center inside 

the guide tube and three lateral FBG sensors integrated on the guide tube (FBGs 1-3) 

measure axial (Fz) and transverse forces (Fx and Fy) at the tool tip, respectively [110]. 

3.2.2.3. Concept 3: Motorized Actuation with Symmetric Jaws 

Unlike in the previous section, this design concept uses symmetric jaws, and is intended 

to measure tool tip forces about the x, y and z axes of the tool separately. The assigned 

coordinate system of the forceps is shown in Fig. 3.25. The x and y axes form the 

transverse plane while the z-axis lies along the tool axis. During the grasping action, the 

jaws elastically deform to move toward each other along the x-axis. After grasping the 

membrane edge, the tool is moved mostly along its z-axis and x-axis to respectively pull 

and peel the membrane away from the adherent inner retina surface. 

3.2.2.3.1. Design and Fabrication 

Similar to the previous concept, the grasping functionality is provided by a piezoelectric 

linear motor (M3-L, New Scale Technologies Inc., Victor, NY) with its embedded driver 

and encoder providing precise position control. The normally-open compliant jaws are 



 56 

taken out from a standard disposable 23 Gauge micro-forceps (Alcon Inc., Fort Worth, 

TX). They are passed through a 23 Gauge stainless steel guide tube and firmly anchored 

to the motor body. The guide tube is attached to the shaft of the linear motor, so that 

when the motor is actuated, it drives the guide tube up and down along the z-axis, 

releasing or squeezing (thus opening or closing) the forceps jaws (Fig. 3.25.c). The parts 

connecting the guide tube to the motor shaft, housing the motor, anchoring the jaws to the 

motor body and the lid shielding the mechanism were built using 3D printed Acrylonitrile 

Butadiene Styrene (ABS). The assembled actuation (Fig. 3.26.b) unit occupies a space of 

1.8 x 1.8 x 3.5 mm and weighs approximately 8.9 grams, which is close to the weight of 

Alcon’s 23 Gauge disposable micro-forceps (about 7.9 grams). 

 

Figure 3.26. (a) The standard 23 Gauge disposable micro-forceps by Alcon Inc. vs. the 

manufactured prototype of our motorized force-sensing micro-forceps. (b) Close-up view 

of the distal force-sensing segment. A fine-polished filleted stainless steel piece (23 

Gauge trocar) was bonded at the distal end of guide tube, to modify the jaw/guide tube 

interface so that the reaction force during tool actuation is consistently smaller and its 

adverse influence on axial FBG sensor is minimal [110]. 
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The exerted forces in membrane peeling are typically along the x-axis of the instrument 

during delamination and mostly tensile in the z-axis while pulling the membrane away 

from the retina. Experiments in porcine cadaver eyes demonstrate that the forces utilized 

in peeling are generally less than 7.5 mN [29]. Measuring these very fine forces without 

adverse contribution from contact at the sclerotomy requires locating the sensor inside the 

eye, hence a sensor that (1) can fit through a small incision (Ø≤0.9mm) on the sclera, (2) 

is sterilizable and biocompatible, and (3) can provide sub-mN accuracy for transverse 

force measurements and predict the axial load within an accuracy less than 2 mN. Based 

upon these constraints, our design employs 4 FBG sensors which all have one 3 mm FBG 

segment with center wavelength of 1545 nm (Technica S.A., Beijing, China). 

Following a similar strategy to the previously described tools, we fixed 3 lateral FBGs 

(Ø=80 µm) evenly around the 23 Gauge guide tube using medical epoxy adhesive 

(Loctite 4013, Henkel, CT) to capture the transverse forces (Fx and Fy) at the tool tip (Fig. 

3.25.d). Although the previous motorized 3-DOF micro-forceps architecture (in section 

3.2.2.2) ensured that the axial sensor response is not affected from tool actuation, the 

asymmetric design complicated the calibration procedure as well as the force decoupling 

and computation steps. In our new concept, instead of customizing the jaws, we 

maintained the axial FBG in the tool center inside the guide tube preserving the axial 

symmetry of the tool and modified the jaw/guide tube interface by attaching a fine-

polished and filleted piece, the introduction section of a standard 23 Gauge trocar with 

the cannula section trimmed off [111] at the distal end of the guide tube as shown in Fig. 

3.26.b. The inner diameter of the trocar fit onto the guide tube, and the flange member at 

its proximal end was trimmed to fit through a 20 Gauge opening (Ø=0.9 mm). Using 
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medical epoxy adhesive (Loctite 4013, Henkel, CT), it was bonded onto the guide tube 

such that the flange member of the trocar is at the distal end of the tool and the filleted 

end of the trocar’s hollow bore contacts the jaws for squeezing and closing them. This 

modification aimed at lowering the frictional forces during the actuation of the tool, 

preventing the jaws from getting stuck, enabling the applied axial forces to generate 

sensible strain on the axial FBG with the same sensitivity regardless of the opening state 

of the jaws. This functionality will be verified through finite element simulations in the 

next section, and the effect of actuation on the axial FBG response will be experimentally 

characterized in the following section. 

 

Figure 3.27: (a) Geometric parameters of the jaw model, guide tube and the trocar 

attachment used in finite element simulations, (b) The micro-forceps kinematics with and 

without the trocar attachment. While fully open, the jaw tips are 0.7 mm apart; full 

closure requires driving the motor about 1240 µm without the trocar and 1400 µm with 

the trocar. An almost linear response is obtained with the trocar [110]. 
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3.2.2.3.2. Finite Element Analyses 

The motorized and encoded actuation provides a highly repeatable response, which 

enables a consistent correlation between the motor position and the opening between the 

jaws. In order to identify the kinematics of our tool, we first found the geometric 

parameters of the jaws taken out from Alcon’s disposable 23 Gauge micro-forceps. We 

used a digital microscope to capture projection images of the jaws, and then used 

Digimizer (MedCalc Software, Belgium) software to process these images. Resulting 

geometric parameters are shown in Fig. 3.27.a. Next, we implemented the identified jaw 

model and the 23 Gauge guide tube in ABAQUS 6.13 (Dassault Systems, USA) software 

to simulate the opening/closing action of jaws both with and without the trocar at the 

distal end of the guide tube. The material of jaws and the guide tube were both set as 

stainless steel, SS316 (Young’s modulus=193 GPa and Poisson ratio=0.3). The jaws were 

maintained fixed while an increasing displacement was applied to the proximal end of the 

guide tube to gradually close the jaws, generating the plots shown in Fig. 3.27.b. 

According to simulation results, when the jaws are fully open, the forcep tips are about 

0.7 mm apart. As the guide tube is driven forward, the jaw opening decays nonlinearly at 

a decreasing rate without the trocar attachment. When the trocar is used, the jaws close 

with an almost linear response, at a rate of about 0.48 µm/µm. For full closure, using the 

trocar requires slightly larger translation of the guide tube, approximately 1400 µm in 

comparison to the 1240 µm without the trocar; however, this is still within the travel 

range of the linear actuator (6 mm) and does not correspond to a significant difference in 

the time it takes to fully close the jaws thanks to the fast response of the actuator 

(>5mm/s). 



 60 

Next, we simulated the variation of the strain induced on the axial FBG during the 

actuation of the forceps. Since the exact value of the friction coefficient at the jaw/guide 

tube interface is not known, we analyzed the behavior for three different coefficients (Cf 

=0.4, 0.5 and 0.6) considering typical steel-steel dry contact properties. Results in Fig. 

3.28.a show that using the bare guide tube, the strain rises very rapidly initially at a 

decreasing rate during the first 300 µm of motor actuation. The trocar attachment leads to 

a more gradual increase in strain. After the jaws are fully closed (motor position reaches 

1240 µm without the trocar and 1400 µm with the trocar), driving the motor forward 

further does not change the jaw opening but squeezes the jaws more, producing higher 

grasping force, and leading to a rapid rise in strain in all cases. Higher friction 

coefficients generate greater strain during actuation regardless of the trocar. However, for 

each value of friction coefficient, the use of trocar clearly lowers the strain level. For 

instance, for Cf =0.5, without the trocar, full closure of the forceps generates of about 140 

µstrains as compared to 98.5 µstrains with the trocar. The actual effect in the Bragg 

wavelength of the axial sensor will be characterized experimentally in Section 3.2.2.3.4. 

In order to monitor the influence of axial forces at the tool tip, we ran additional 

simulations for the configuration with the trocar attachment. We applied forces at the tip 

of jaws along the z-axis for various levels of jaw opening. Simulations involved forces 

ranging from 0 to 25 mN in increments of 5 mN. For each load condition, the motor was 

moved from 0 (fully open state) to 1400 µm (fully closed state), and the strain on the 

axial FBG sensor was recorded at each 100 µm step. After subtracting the previously 

identified actuation-induced strain component for each motor position (Fig. 3.28.b), we 

computed and plotted the strain purely due to the applied axial load for each jaw opening. 
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Results in Fig. 3.28.c show that with the modified jaw/guide tube interface, the variation 

of force-induced strain on the axial FBG is linear for all jaw states (from fully closed to 

fully open); and the slope of the response remains almost the same regardless of the 

opening between the forceps jaws. 

 

Figure 3.28: Finite element simulation results showing the axial FBG response to tool 

actuation for various levels of friction coefficient (Cf) at the jaw/guide tube interface (a) 

without the trocar and (b) with the trocar attachment at the guide tube’s tip. Larger 

friction coefficients produce more strain. Lower strain levels are observed with the trocar. 

(c) The force-induced strain on the axial FBG vs. the applied axial load when the trocar 

attachment is used: the strain is linearly correlated with the axial load, and the sensitivity 

is almost identical for all levels of jaw opening (JO) [110]. 
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3.2.2.3.3. Force Computation Algorithm 

In order to transform the optical wavelength information from each embedded sensor to 

x-y-z force values, we use the force computation algorithm summarized in Fig. 3.29. The 

FBG sensors in our design are bonded to parts that move during the actuation of the 

forceps, i.e. opening/closing the jaws induces undesired drift in sensor readings. Since the 

actuation is performed by a precision motor with an integrated encoder, the deformation 

and resulting reaction forces during actuation are highly repeatable, and the influence on 

each FBG sensor can be modeled as a function of the motor position. This model 

accounts for the frictional and elastic deformation forces at the jaw/guide tube interface 

inducing strain especially on the axial FBG. The effect of actuation on lateral FBGs are 

presumably minor since the lateral FBGs are mostly sensitive to the transverse 

deformations, which ideally do not take place assuming perfectly aligned parts and purely 

linear translation of the guide tube. Furthermore, apart from the material and dimensions 

of the forceps structure, the model may vary depending upon the medium in which the 

forceps tool is operated (air, water, etc) as the coefficient of friction at the jaw/guide tube 

interface may change. We will verify these assumptions and identify the actuation 

influence through experiments in Section 3.2.2.3.4. 

During the actual use of the micro-forceps, based on the identified actuation model and 

sensed motor position, the readings from each FBG sensor are corrected, simply by 

subtracting the estimated Bragg wavelength shift due to actuation. After the actuation 

effect correction, we cancel out the drift due to thermal changes based on the common 

mode of lateral FBGs. 
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Figure 3.29: Force computation algorithm using an experimentally identified model to 

cancel the actuation-induced drift in FBG sensor readings based on the motor position 

and two distinct (linear and nonlinear) methods for transforming the corrected sensor 

readings into transverse (Fx and Fy) and axial (Fz) force information [110]. 

Different than the previous concept, the axial FBG (FBG 4) in this design lies along the 

tool axis ideally centered inside the guide tube, which would result in an ideal decoupling 

of transverse and axial loads, i.e. an axial FBG response immune to Fx and Fy, sensing 

purely Fz. However, due to the very small dimensions and imperfections resulting from 

tool assembly, this condition is very hard to achieve. Even if the axial FBG is slightly off-

centered, besides the elastic strain due to Fz, the axial FBG will experience a bending 

moment due to Fx and Fy. In addition, excessive off-centered loading at the tool tip may 

also induce torsion on the axial fiber and deteriorate the FBG response, which we assume 

will be negligible considering the targeted force range (0-25 mN) and the small tool 

diameter (0.9 mm). 

To compute tool tip forces from the corrected and temperature compensated sensor 

readings, we explored the use of two distinct methods which were previously introduced 

in Section 3.2.2.2.2: (1) a linear method based on ideal decoupling of transverse and axial 

forces, and (2) a nonlinear regression based on second order Bernstein polynomials. In 
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the derived equations for both methods (eqns. 3.8-3.18), the transverse force terms (Ftr) 

were replaced by Fx and Fy to detect forces in 3 dimensions separately. For the linear 

method, the forces are computed as follows: 

[Fx Fy]T = Ctr [∆λ1
diff ∆λ2

diff ∆λ3
diff]T                                                                (3.19) 

Fz = C
ax[∆λ1

diff ∆λ2
diff ∆λ3

diff ∆λ4
diff]T       (3.20) 

Ctr is a 2x3 coefficient matrix, and Cax is a 1x4 coefficient vector, which are found via 

calibration experiments. The nonlinear method computes the forces based on: 

[Fx Fy Fz] = ∑ ∑ ∑ ∑ Bijkl cijkl
2
l=0

2
k=0

2
j=0

2
i=0 = B CBernstein          (3.21) 

where B is a 1x81 row vector formed by the product of Bernstein basis polynomials and 

CBernstein  is a 81x3 constant matrix. The coefficients in CBernstein  can be found by 

applying known forces (Fx, Fy and Fz) in various directions at the tool tip, acquiring FBG 

wavelength data and forming a B vector for each recorded sample, and finding the best fit 

in the least-squares sense. 

3.2.2.3.4. Tool Calibration 

A. Setup 

Using the setup shown in Fig. 3.30, we performed a series of experiments to model the 

effect of forceps actuation on force sensor readings, examine the repeatability of sensor 

outputs, identify calibration constants and validate our linear and nonlinear force 

computation methods. In order to acquire the Bragg wavelength of each FBG sensor, the 

setup employed an optical sensing interrogator (sm130-700 from Micron Optics Inc., 

Atlanta, GA). The force-sensing micro-forceps was mounted on a rotary stage to adjust 
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Figure 3.30: Experimental setup. (a) The 3-DOF force-sensing micro-forceps was 

mounted on two rotary stages to control the roll (α) and pitch (β) angles of the tool. (b) 

By hanging washers onto the grasped hook, the magnitude of the applied force was 

changed. (c) Modulating the tool orientation (α and β), thus the direction of the applied 

force, various combinations of Fx, Fy and Fz were applied at the tool tip [110]. 
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the axial orientation (roll angle, α) of the tool. The stage was attached onto a second 

rotary stage to modify the pitch angle (β) and tilt the tool in the vertical plane. The jaws 

of the forceps were closed to grasp a thin (~80 µm thick) layer of tape carrying a wire 

hook. The wire hook was used to hang aluminum washers and apply varying forces at the 

tool tip (Fig. 3.30.b). 

The washers were weighed by using a precision scale (Sartorius GC2502, Germany) 

which has a resolution of 1 mg and a repeatability of ±2 mg. The maximum test load was 

23.35 mN, and each washer weighed about 4.67 mN. By changing the tool orientation (α 
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and β) and the load hanging at the tip (Fload), various combinations of Fx Fy and Fz were 

generated as shown in Fig 3.30.c. The resulting forces at the tool tip can be resolved into 

their x, y and z components using the following formulae: 

Fx = ‖Fload‖ cos α sin β   (3.22) 

Fy = ‖Fload‖ sin α sin β   (3.23) 

Fz = ‖Fload‖ cos β  (3.24) 

B. Effect of Actuation 

The goal of this experiment was to generate a model for compensating the detrimental 

effect of grasping motion on the FBG sensors. For this, the linear motor of the micro-

forceps was actuated back and forth in discrete steps of 100 µm, and gradually 

opening/closing the forceps jaws. The jaws were fully closed after the motor was driven 

about 1400 µm forward from the fully open state, which is consistent with the simulation 

results previously presented in Fig. 3.27.b. After each 100 µm step, the motor was 

stopped and the wavelength shifts of the FBG sensors were recorded. The open/close 

cycle was repeated 3 times, leading to 6 measurements for each sensor at each motor 

position. Following the identical procedure, the experiment was repeated whilst the tool 

tip was immersed in water. 

Results in Fig. 3.31 show that the motorized actuation does not induce a detectable 

change in the output of lateral sensors (FBGs 1, 2 and 3). However, the Bragg 

wavelength of the axial sensor (FBG 4) significantly varies depending on the motor 

position and therefore the opening state of forceps jaws in air and water. The wavelength 

shift profiles closely follow the axial strain variation trend that was predicted through 
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Figure 3.31: The effect of opening/closing the forceps on the lateral (FBG 1,2,3) and 

axial (FBG 4) sensors while operating (a) in air and (b) in water. The actuation induces 

high levels of wavelength shift on the axial sensor (up to 167 pm in air and up to 222 pm 

in water), which exhibit a consistent variation among repeated trials, and hence can be 

modeled as a function of motor position for each environment [110]. 
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simulations in Fig. 3.28.b. While operating in air, wavelength shifts up to 167 pm are 

recorded. These recordings show much better consistency among the 6 measurements 

taken per each motor position in comparison to our earlier prototype without the trocar 

attachment [112]. When the test is repeated in water, slightly larger shifts up to 222 pm 

are observed in the axial FBG output, and the consistency of readings at each motor 

position is relatively deteriorated. The small change can be attributed to the floating 

impurities inside water which can get stuck between the jaws and guide tube, and lead to 

larger reaction forces during actuation. Hence, the model relating wavelength shift to 

motor encoder readings is dependent also on the properties of the surrounding medium 
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and needs to be experimentally tuned before each operation by opening/closing the 

forceps several times. 

C. Repeatability 

This experiment explored the consistency of the FBG sensor readings in response to axial 

and transverse loads. Forces were applied at the tool tip in 28 different directions by 

orienting the tool at 4 roll (α) and 7 pitch (β) angles. The roll angle ranged from 0⁰ to 90⁰ 

with 30⁰ increments while the pitch angle was altered from 0⁰ to 90⁰ in steps of 15⁰. The 

magnitude of applied forces varied evenly at 6 levels within 0-23.35 mN. For each 

direction, the forcing was gradually increased up to 23.35 mN and then decremented back 

to zero by unloading the washers at the tool tip. The wavelength information from all four 

FBGs was acquired after the oscillations due to loading/unloading were fully damped out. 

This cycle was repeated 3 times, generating 6 measurements for each load case. For each 

measurement, 500 samples were recorded. As an example, Fig. 3.32.a and 3.32.b show 

the recorded sensor response for purely transverse and axial loading conditions. 

The log data involved a total of 168 distinct loading conditions, 1008 measurements and 

504,000 samples. To examine the repeatability of each sensor’s response, the recorded 

samples were grouped into 168 subsets so that each subset contained 3000 samples 

associated with the same loading condition. Within each subset, after identifying the 

mean Bragg wavelength shift for each FBG sensor, the deviations from the mean value 

(residuals) were computed. The residuals of all subsets were then combined to obtain the 

standard deviation for each FBG sensor as a measure of repeatability. 

Figs. 3.32.c-e show the probability distribution of the residuals for each FBG sensor. The 

standard deviations for the lateral FBG sensors (FBG 1, 2 and 3) are 0.47, 0.58 and 0.59 
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Figure 3.32: Response of (FBG 1,2,3) and axial (FBG 4) sensors during two sample 

loading conditions: (a) pure transverse loading and (b) pure axial loading. Probability 

distribution of Bragg wavelength shift errors for lateral (c-e) and axial (f) FBG sensors 

under 168 different combinations of transverse and axial forces. The standard deviations 

are less than 0.6 pm for the lateral FBGs and is about 1.96 pm for the axial FBG, 

indicating a highly repeatable response [110]. 
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pm, respectively. The axial FBG sensor (FBG 4) exhibits slightly a more variable 

response with a standard deviation of 1.96 pm. Our optical sensing interrogator has a 
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wavelength repeatability of 1 pm; its wavelength stability is 2 pm typically and 5 pm at 

maximum. Considering these values, we can conclude that the FBG sensors on our tool 

provide reliable repeatability that is consistent with the intrinsic properties of our optical 

sensing interrogator. 

D. Calibration Experiments 

In order to identify the coefficients used in our force computation algorithm, we 

performed a set of calibration experiments. The goal in our first calibration experiment 

was to test the hypothesis of linear correlation between the temperature drift in common 

mode of lateral FBGs and the axial FBG. We recorded the Bragg wavelength variation in 

each FBG sensor while the tool was exposed to routine changes in room temperature, 

which involved gradual changes within ±2.5⁰C. In order to avoid disturbances due to air 

flow in the room, the setup was maintained inside a plastic box while acquiring data. The 

test was completed in 4 sessions; each session spanned a 225 minute period during which 

a measurement was taken in every 15 minutes. In between the sessions, we altered the 

roll and pitch angles to capture the effect of tool orientation on the thermal drift 

coefficient, if any. 

The results are shown in Fig. 3.33, which display the changes in Bragg wavelength of 

each sensor due to 2 main sources. The larger jumps while moving to the next set of 

measurements are due to the modified tool orientation, thus the new loading at the tool 

tip. The rest of the variations within each session are purely due to thermal effects. We 

observe from Fig. 9a that the lateral FBGs exhibit almost identical sensitivity to thermal 

changes, whereas the drift in the axial FBG was slightly smaller (Fig. 3.33.b). For a 

quantitative comparison of thermal effects, we evaluated the wavelength shift of all four 
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Figure 3.33: Thermal drift in lateral (a) and axial (b) FBG sensor readings during 4 test 

sessions each spanning a period of 225 minutes. (c) The Bragg wavelength shift in the 

axial FBG sensor shows a linear correlation with the common mode (average Bragg 

wavelength shift) of lateral FBG sensors with a proportionality constant of κ=0.92 [110]. 

sensors within each session, and computed the common mode of lateral FBGs. The 

wavelength shift in the axial FBG and the common mode of the lateral FBG sensors 

revealed a linear correlation with a covariance of 0.94. The corresponding proportionality 

constant was found to be κ=0.92 (Fig. 3.33.c). 

Our second calibration experiment was aimed at monitoring the FBG response under 

various combinations of transverse and axial forces. In order to collect sufficient data 
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with a fine enough sampling grid, we took the measurements recorded for repeatability 

tests (504,000 samples of log data with 6 levels of forcing in 28 different directions) and 

performed 4 additional analyses: global linear calibration, local linear calibration, global 

nonlinear calibration, and local nonlinear calibration. 

Global Linear Calibration 

After computing the differential mode of each sensor, the linear system of equations 

described in Section 3.2.2.3.3 was formed and solved by using the method of least 

squares. The resulting coefficient matrix for the transverse forces in equation (3.19) was 

Ctr = [
0.0992
−0.1007

0.0400
0.1435

−0.1392
−0.0428

]mN pm⁄  

Considering the wavelength resolution of the optical sensing interrogator (1 pm) and the 

identified coefficient matrix, the linear method produces a transverse force resolution of 

about 0.14 mN, which is within the initial design target of 0.25 mN. The linear fitting 

results are shown in Fig. 3.34.a and 3.34.b for Fx and Fy, respectively. The estimated Fx 

values closely follow the actual forces with a root mean square (rms) error of 0.25 mN 

and a mean absolute error of 0.18 mN. A similarly accurate estimation is observed for Fy 

up to about 10 mN. However, beyond this level, slight deviations from the actual value 

are observed, leading to an overall rms error of 0.52 mN and a mean absolute error of 

0.36 mN. The sliding contact between the jaws and the guide tube provides firm support 

along the x-axis of the tool, but not along the y-axis as shown in Fig. 3.30.c. Therefore, 

large Fy forces can deform and dislocate the jaws inside the guide tube, which may 

change the overall geometry and deteriorate the linearity of the force sensor response. 

Nevertheless, this is not a major concern in membrane peeling since most of the applied 
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Figure 3.34: Global linear calibration results for transverse forces: (a,b) Calculated Fx and 

Fy versus the actual values. (c,d) residual errors versus the actual forces, (e,f) probability 

distribution of residuals (bin size = 0.1 mN). The global linear fitting can predict the 

applied forces with an rms error of 0.25 mN and 0.52 mN for Fx and Fy, respectively 

[110]. 
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forces lie along x-axis (peeling direction) due to the alignment of jaws, and excessive 

side loads (Fy) are highly unexpected. The histograms of the residual errors (Fig. 3.34.e 

and 3.34.f) show that the probability of errors beyond 1 mN is very low for both Fx and 

Fy, which have standard deviations of 0.27 mN and 0.49 mN respectively indicating a 

good repeatability. 

Solving the system of equations given by (3.20), we were not able to identify an 

adequately accurate fitting to estimate the axial load. The resulting coefficient Cax led to 

very large errors (an rms error of 8.34 mN, a mean absolute error of 6.19 mN, and a 

standard deviation of 3.87 mN) especially in the presence of significant transverse loads 
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Figure 3.35: Axial force (Fz) computation error versus the concurrent transverse load 

along (a) x-axis and (b) y-axis based on the global linear calibration. The magnitude of 

errors rapidly grows when larger transverse forces are applied, deteriorating the linearity 

of the axial FBG [110]. 
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in addition to axial forces. Fig. 3.35 shows that the magnitude of errors in axial force 

computation steeply rises with greater magnitude of transverse forces (both Fx and Fy), 

which suggests that the assumption of modeling the axial FBG response as a linear 

combination of axial and transverse load effects does not hold globally. 

Local Linear Calibration 

In membrane peeling, forces applied in the transverse plane are mostly along the peeling 

direction, which corresponds to the x-axis of our tool. Our previous membrane peeling 

experiments on various types of artificial phantom also support that transverse loads 

containing large Fy (associated with α>30⁰) are not very likely in practical use of the 

micro-forceps [113]. In an attempt to find a more accurate linear fitting for the axial 

force, we first analyzed a subset of the calibration data associated with α≤30⁰. However, 

limiting α and hence Fy alone did not lead to any significant improvement in axial force 

sensing accuracy. The rms error in estimated Fz was still 7.08 mN and the mean absolute 

error was 5.41 mN. Next, we considered a smaller subset limiting both the pitch (β≤15⁰) 
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Figure 3.36: Axial force computation results for local linear calibration using samples 

with limited roll (α≤30⁰) and pitch (β≤15⁰) angles (black), and for global nonlinear 

calibration (blue): (a,b) The comparison of computed values to the actual force level, 

(c,d) variation of error with respect to the axial force magnitude, (e,f) probability 

distribution of residuals (bin size = 0.1 mN). The latter provides almost the same sensing 

accuracy as the local fitting, but for the entire range of force directions [110]. 
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and roll (α≤30⁰) angles so that both of the transverse force components were constrained 

(Fx<6.04 mN and Fy<3.02 mN), and the applied forces were dominantly axial. For this 

subset of 72,000 samples, it was possible to obtain 

Cax = [1.3216 −0.3652 −0.3717 0.7369] mN/pm 

which indicates an axial force resolution of about 1.32 mN. Fig. 3.36.a illustrates the 

resulting fit, and the distribution of residuals is shown in Figs. 3.36.c and 3.36.e. 

Accordingly, the errors are reduced to an rms value of 3.17 mN and a mean absolute 

value of 2.38 mN. The standard deviation is 3.09 mN, indicating slightly better 

repeatability. The improved accuracy with this reduced data set verifies our hypothesis on 
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the loss of linearity in the presence of dominant transverse loads. Yet, this method is not 

feasible for estimating axial forces, not only because the resulting error is still over our 

accuracy target (2 mN), but also because in membrane peeling a significant portion of the 

exerted forces are transverse rather than axial, which remains in contrast to the extremely 

confined workspace of this method. 

Global Nonlinear Calibration 

Using the entire log data of 504,000 samples, we fit a nonlinear regression model based 

on 2nd order Bernstein polynomials to better estimate both the transverse and axial forces. 

The obtained coefficient vector CBernstein derives a resolution of 0.074 mN for Fx and Fy, 

and 1.85 mN for Fz, respectively. The accuracy in computing the transverse forces are 

slightly better than the linear method with an rms error of 0.15 mN for Fx and 0.25 mN 

for Fy. More importantly, the axial force estimation is significantly improved in 

comparison to the global linear fitting results. The residual error spans approximately 

±4.33 mN while the mean absolute error is 3.34 mN. Although the results displayed in 

Fig. 3.36 are still unsatisfactory based upon our accuracy criterion (2 mN), they show an 

important improvement: the nonlinear regression provides a global axial sensing accuracy 

similar to what could be obtained by the linear fitting only locally. 

Local Nonlinear Calibration 

Considering that forces associated with large Fy forces are not very probable during an 

actual membrane peeling operation as discussed previously, we repeated our nonlinear 

calibration method using a reduced dataset (α≤30⁰), without limiting Fx (0-23.35 mN) 

which is expectedly the dominant force component along the peeling direction but 

constraining Fy below 11.7 mN. This corresponds to a dataset of 252,000 samples with 84 
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Figure 3.37: Results of local nonlinear calibration using samples with limited roll (α≤30⁰) 

angles for computing Fx (red), Fy (green) and Fz (blue): (a-c) The comparison of 

computed values to the actual force level, (d-f) variation of residuals with respect to the 

force magnitude, (g-i) probability distribution of residuals (bin size = 0.1 mN). By 

limiting the roll angle (α≤30⁰), samples with excessive Fy (>11.7 mN), which are not very 

likely in an actual membrane peeling operation, were excluded from calibration. The rms 

errors in estimating Fx, Fy and Fz are 0.12, 0.07 and 1.76 mN respectively [110]. 
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distinct loading conditions. The regression analysis revealed a coefficient vector 

(CBernstein) providing a finer force resolution in comparison to all of the previous fittings: 

0.01 mN for Fx and Fy and 0.38 mN for Fz. The resulting force estimates and associated 

errors are plotted in Fig. 3.37. The rms errors are 0.12, 0.07 and 1.76 mN for Fx, Fy and Fz, 

respectively, which are all sufficiently smaller than our initial design target (0.25 mN for 

transverse and 2 mN for axial forces). For the axial load, the magnitude of the residual 

error remains mostly within the ±5 mN envelope across the entire force range as shown 
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Figure 3.38: Results of the validation experiment for computing Fx (red), Fy (green) and 

Fz (blue): (a-c) The comparison of computed values to the actual force level, (d-f) 

variation of residuals with respect to the force magnitude, (g-i) probability distribution of 

residuals (bin size = 0.1 mN). Tested data consists of loading conditions that were not 

involved during calibration. The identified local nonlinear regression can still accurately 

predict the applied forces with rms errors of 0.16, 0.07 and 1.68 mN for Fx, Fy and Fz, 

respectively [110]. 
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in Fig. 3.37.f. Fig. 3.37.g-i illustrates the probability distributions of the residuals, which 

show that with the local nonlinear calibration errors mostly stay under 0.5 mN for Fx and 

Fy, and 5 mN for Fz. The standard deviations of errors are 0.12, 0.07 and 1.76 mN 

respectively, which show significantly better repeatability of readings in comparison to 

the aforementioned calibration methods. 

E. Validation Experiments 

For validating the performance of our nonlinear force computation method, we took 

measurements at loading conditions that were not used during the calibration, still 
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limiting the transverse loads to the range of interest in membrane peeling, i.e. α≤30⁰. We 

investigated if the identified local calibration constants could still accurately predict the 

applied forces. The validation experiment consisted of forces ranging from 0 mN to 23.35 

mN in increments of 4.67 mN while holding the tool at 2 different roll angles (α=0⁰,30⁰) 

and 3 different pitch angles (β=20⁰,40⁰,70⁰). Each case was repeated 6 times and 500 

samples were collected per case. The data set was further extended by adding 15 more 

measurements per each roll angle at randomized pitch angles (0⁰-90⁰) and forces (0-23.35 

mN), producing a total of 66 distinct loading conditions and 123,000 samples. 

Using validation dataset, we observed a similar force computation performance to what 

was obtained with the calibration dataset (Fig. 3.38). Our locally fit nonlinear model is 

able to accurately predict the applied transverse forces within the considered force range, 

0-25 mN for Fx and 0-11.7 mN for Fy. The rms errors are 0.16 mN and 0.07 mN for Fx 

and Fy, respectively. The axial forces are captured with an rms error of 1.68 mN, which is 

satisfactorily smaller than our design target of 2 mN. The standard deviation of errors 

indicates a force sensing repeatability of 0.15 mN, 0.07 mN and 1.67 mN about x, y and z 

axes, respectively. These results demonstrate that the 3-DOF force-sensing micro-forceps 

with the nonlinear force computation method can provide measurements within the 

desired sensitivity and accuracy.  

F. Discussion 

Our earlier works demonstrated that the temperature compensation method described in 

Section 3.2.2.3.3 provides robust transverse and axial force measurements against 

thermal changes for other tools [99,114]. In this work, the first set of our calibration 

experiments explored the thermal influence on each FBG sensor output in response to 
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slow and gradual ambient temperature variation, which revealed similar behavior to that 

observed in our previous 3-DOF force-sensing pick tool [114]. In case of sudden ambient 

temperature variations though, such as the instant when the tool is inserted into the eye, 

whether the linear correlation between the axial sensor response and the common mode 

of lateral sensors is valid remains controversial. In practice, this issue can be alleviated by 

rebiasing the force sensor to adapt to the new temperature level right after the tool is 

placed inside the eyeball. After this time, the expected thermal fluctuations inside the eye 

will be relatively small and gradual so that our thermal drift method cancelling based on 

common mode of lateral sensors can be used. There are several potential solutions that 

can improve the robustness of our force-sensing tool to thermal changes: adding a 

separate reference FBG [115], using two different wavelengths [116], or using different 

optical modes [117,118]. In the future, further exploration of these methods may lead to 

faster and more accurate compensation of thermal drift in our 3-DOF force-sensing 

micro-forceps. 

In order to compute forces from the optical sensor information, we explored the use of a 

nonlinear fitting based on second order Bernstein polynomials. Increasing the polynomial 

order may potentially improve the sensing accuracy, especially in the axial direction. 

However, identifying a higher order polynomial without overfitting requires calibration 

experiments that capture the FBG sensor outputs for a finer grid of forces. Such extensive 

dataset is quite challenging to acquire with the presented setup. Furthermore, the manual 

operation of rotary stages and loading/unloading of washers to modulate the loading 

induced at the tool tip is prone to human error. However, using a robotic calibration 

approach similar to [114], it is possible to collect more samples reliably in a shorter time 
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and identify a more accurate higher order nonlinear force computation model. 

In our calibration and validation experiments, the applied forces in the axial direction 

were always tensile. Therefore, the identified models do not describe the behavior for 

compressive loads. In addition, the final accuracy and resolution values were obtained for 

a limited force range of 0-25 mN with minor force component perpendicular to the 

peeling direction (Fy<11.7 mN). Although, these may be interpreted as limitations of our 

approach, they are highly relevant to the actual clinical scenario. In epiretinal membrane 

peeling, to avoid retinal injuries, the magnitude of forces need to be maintained typically 

below 10 mN [62]. Also, the membrane is pulled away from the retina surface, which 

causes axial loads on the micro-forceps tip to be tensile if any. The exerted forces in the 

transverse plane follow the direction of tool motion, which means they are usually along 

the opening/closing direction of the jaws (x-axis of our tool). These practical facts 

support the constraints of our force computation model for epiretinal membrane peeling. 

Nevertheless, using the same experimental method, the instrument can be calibrated to 

the desired force domain for a different application as well. 

Based on the practically relevant force ranges, using our nonlinear method showed that 

the rms error in axial force sensing could be lowered under 2 mN. This is a significant 

improvement on our previously reported results [108], and is presumably useful for 

limiting intra-operative forces and preventing retinal injuries in epiretinal membrane 

peeling. A future direction in this work is to evaluate the force-sensing performance 

during actual peeling tasks using ex vivo bovine eyes and in vivo animal models. In 

addition, for quantitative assessment of differing surgical techniques, objective evaluation 

of the surgical performance and accurate modeling of retinal tissues, our future work 
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Figure 3.39: Conceptual design of our motorized force-sensing microneedle for retinal 

vein cannulation. The needle has a modular design that allows an easy integration with 

robotic devices, such as the handheld micromanipulator: Micron. 

aims to further improve the axial sensing accuracy. Some potential methods include using 

higher order nonlinear models for force computation, and exploring customized sensor 

architectures that provide better decoupling between axial and transverse forces [119]. 

3.3 Force-Sensing Microneedle for Retinal Vein Cannulation 

3.3.1. Actuation Mechanism 

Injecting t-PA into thin branch retinal veins (Ø<200 µm) requires the use of even thinner 

and sharp tipped cannulae. Targeting Ø100-500 µm veins (most vessels in the retina are at 

most 125 µm in diameter), we devised a motorized force-sensing microneedle with an 

outer diameter of 70 µm at the tip (Fig. 3.39). This is a compact lightweight modular unit 

carrying all the necessary sensors (FBGs and an encoder) and a linear motor that can be 

independently actuated, which enables an easy integration with various types of tool 



 83 

 

Figure 3.40: (a) Components of the design: force sensitive motorized unit, and the 

disposable prebent needle (b) Assembled prototype (c) Tool actuation: the microneedle is 

exposed by retracting the guide tube as much as 2.4 mm. 
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handles, either manual or robotic, without interfering with their operation. 

The tool has a sharp beveled (15°) and bent (45° relative to the tool shaft) tip. If a straight 

and blunt tipped microneedle were used, the vein walls would be pushed towards each 

other severely making the already thin lumen even smaller. In addition, after piercing the 

vein wall, the instantaneous release of stress would cause the tissue to recoil towards the 

needle, which would make overshooting the target vein almost inevitable. To avoid 

overshoot, it is important to approach the retina at an angle, and move the needle tip 

almost parallel to and with minimal vertical motion into the vein. This way, the tissue will 

deform less and along the vein axis, so that any relative motion due to tissue relaxation 

after venous puncture will not force the needle tip out of the vein lumen. Based upon these 

factors, the optimal approach angle while cannulating the vasculature on CAM was 

previously explored, which revealed a range of 25°-35° between the needle tip and vein 

surface [47]. Due to constraints at the sclerotomy, it is not easy to approach the retinal 
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surface at this angle with a straight tool. Using a flexible prebent tip can help, however the 

angle between the tool axis and tool axis is an important design factor: bending the 

microneedle too much in order to achieve a very shallow approach angle may not only 

cause severe deformation of the needle while pushing it against the vein, but will also lead 

to excessive resistance to fluid flow inside the lumen at the bend, and may require too 

much pressure to inject t-PA through. Considering these limitations, the approximate pars 

plana position for tool insertion (3.5 mm posterior to the limbus to avoid lens or retinal 

injury [120]), the dimensions of the typical adult eye (the average vertical and horizontal 

diameters are 23 and 23.5 mm, respectively [121].), and targeting an ideal approach angle 

of about 30° [47], we bent the needle tip 45° relative to the tool shaft as shown in Fig. 

3.40.b. The bent needle tip was bonded to a 30 Gauge stainless steel tube using medical 

device adhesive (Loctite 4013 Prism, Henkel, CT) to form the injection line of our tool. 

Due to the bent structure of the thin needle, it is not easy to introduce the tool into the eye 

through a small incision (Ø<1 mm) without damaging the tip. In order to keep the sharp 

and prebent microneedle protected and flexed straight while passing it through the sclera, 

we devised a motorized module with a retractable guide tube functioning as a protective 

sheath. As depicted in Fig. 3.40.a and 3.40.b, the injection line (30 Gauge tube with the 

bent microneedle attached at its tip) is passed through a 23 Gauge guide tube and firmly 

anchored to the body of the module with the help of a set screw. This component is 

designed to be disposable since the needle tip may gradually lose its sharpness and impede 

venous puncture in case of consecutive cannulation attempts. By releasing the set screw, 

the old injection line with the dull tip can easily be replaced with a new one while 

preserving the rest of the module. The guide tube is fixed onto a slider mechanism driven 
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by a linear micro motor (Squiggle-RV-1.8, New Scale Technologies Inc., Victor, NY), so 

that when the motor is actuated, the guide tube moves along the tool shaft to cover or 

expose the needle tip. While inserting the tool into the eye and approaching the retina 

surface, the needle tip is flexed and held straight inside the guide tube. Upon reaching the 

target vessel site, retracting the guide tube deploys the bent needle tip out (Fig. 3.40.c). 

Fully covering or exposing the microneedle requires a travel of 2.4 mm. The selected 

motor supplies enough force and travel range for this task in a very small (2.8x2.8x6 

mm), and light weight (0.16 grams) package. There is a bar magnet located on the side of 

the slider (Fig. 3.42.a). The position of the slider, and thus of the micro motor, is tracked 

via the magnetic position sensor (NSE-5310, ams AG, Austria) located on the side of the 

base. This enables closed loop position control of the motor and ensures accurate motion 

of the guide tube despite the potentially variable friction at the insertion port through the 

sclera. The parts holding the guide tube, housing the motor, anchoring the injection line 

to the module and the lid shielding the slider mechanism were built using 3D printed 

Acrylonitrile Butadiene Styrene (ABS) with a resolution of 0.254 mm. The assembled 

actuation unit occupies a space of 13.0 x 15.5 x 9.3 mm and weighs only about 2.9 grams. 

The modular design enables easy integration with robotic systems. An example 

application is shown in Fig. 3.41, where we attached the motorized module to Micron’s 

tool mount. The fluid line (30 Gauge tube protruding from the back of the tool in 

Fig.3.41.a) was passed through the hollow center of Micron handle, and connected to a 

syringe with a 30 Gauge needle via a sealed polyethylene tubing (PE-10, Warner 

Instruments, Hamden, CT) to deliver the injection fluid. The infusion rate and amount can 

be controlling the syringe with a standard infusion pump (11 Pico Plus Elite, Harvard 
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Figure 3.41: Sample integration of the motorized force-sensing microneedle with a 

handheld micromanipulator, Micron. (a) The controller board for the tool’s motor was 

located on Micron’s handle inside the two hand pieces. (b) A force-sensing resistor was 

mounted on one of the hand pieces, under the operator’s thumb, to control the 

microneedle’s actuation by squeezing or releasing the hand piece. The injection line 

passes through the center of the instrument and is connected to a syringe via polyethylene 

tubing to deliver fluid to the microneedle. 
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Apparatus, Holliston, MA). The controller board of the linear actuator was located inside 

the tool handle. A force-sensing resistor (FSR 400, Interlink Electronics, Westlake 

Village, CA) was attached on the tool handle under the operator’s thumb (Fig. 3.41.b), 

and interfaced with the micro motor controller such that the target position of the motor 

varies linearly with the exerted force on the resistor. Simply by releasing or squeezing the 

hand piece, the operator can cover or expose the microneedle, respectively. 

3.3.2. Force Sensor Integration 

Detection of the very fine tool-tissue interaction forces while cannulating retinal veins 

requires the use of a very sensitive force sensor with sub-mN resolution. In addition, the 

location of the force sensor is critical. Since the forces at the sclera insertion port can be 
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Figure 3.42: Motorized actuation of the tool for retracting the guide tube back and 

exposing the prebent microneedle. The inner tube of the tool shaft delivers the injection 

fluid, while 3 FBG sensors on the outer tube sense transverse forces on the microneedle. 
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much larger than the typical cannulation forces at the tool tip, a handle mounted force 

sensor measuring a combination of these two forces would not be appropriate. In order to 

capture only the tool tip forces, the sensor needs to be located proximal to the tool apex 

and inside of the eye. Bringing the sensor into the eye puts strict requirements and limits 

the available sensors for this use. FBG strain sensors (Technica S.A., Beijing, China) with 

their small dimension (Ø=80 µm), high sensitivity, biocompatibility, sterilizability, and 

immunity from electrostatic and electromagnetic noise satisfy these criteria. 

While inserting the needle into the vein, forces induced at the needle tip will be mostly 

along the axis of the needle, and hence will be dominantly perpendicular to the tool shaft 

due to the bent tip. Previously, our team has developed several ophthalmic tools capable of 

sensing the transverse forces at the tool tip with a 0.25 mN resolution during other retinal 

procedures [99,101,102,122]. Following a similar architecture, we bonded 3 FBG sensors 

evenly around the guide tube using medical device adhesive (Loctite 4013 Prism, Henkel, 

CT) as shown in Fig. 3.42.b. This led to an overall tool shaft diameter less than 0.9 mm, 
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Figure 3.43: (a) Setup for calibration experiments: The force-sensing micro-needle was 

held horizontal and mounted on a rotary stage to modulate its axial orientation (θ). (b) 

The microneedle tip was inserted into a soft plastic piece carrying a wire hook. Forces 

were applied at the needle tip by hanging washers of known weight on the hook. 
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which is sufficiently small for insertion through the sclera. 

In order to transform the optical wavelength information from each embedded sensor to 

force domain, the linear model presented in Section 3.2.1.1 was used. In order to find the 

constant matrix K in eqn. (3.5), we performed a calibration experiment using the setup 

shown in Fig. 3.43.a. We mounted our force-sensing tool horizontally on a rotary stage to 

modulate its axial orientation (θ). A soft plastic piece carrying a wire hook was attached 

to the microneedle tip (Fig. 3.43.b). By hanging aluminum washers on the wire hook, 

varying forces (pure Fx at θ=0⁰ and pure Fy at θ=90⁰) were induced at the tool tip. The 

washers were weighed using a precision scale (Sartorius GC2502, Germany) which 

provides a resolution of 0.01 mN and a repeatability of ±0.02 mN. The maximum test 

load was 20.6 mN, and each washer weighed about 1.03 mN. The Bragg wavelength of 

each FBG sensor was acquired using an optical sensing interrogator (sm130-700 from 

Micron Optics Inc., Atlanta, GA). Measurements were taken for 20 different levels of 

loading at each orientation. For each test condition, 1000 samples were recorded at a rate 

of 200 Hz. 



 89 

 

Figure 3.44: (a) Calibration results: linear response for all FBGs when the needle is 

loaded along x and y axes. (b) The force-sensing coordinates relative to the target vein 

and the histogram of residual errors in each direction. (c) Computed forces vs. the actual 

forces along the x and y axes. 

The calibration results in Fig. 3.44.a show that all FBGs exhibit a linear reproducible 

behavior to forcing along both the x- and y-axis. The slope for each FBG indicates the 

following calibration matrix (K): 

K = [
−0.2128 0.2455 −0.0327
−0.1418 −0.0927 0.2346

] mN/pm 

The wavelength resolution of our optical sensing interrogator is 1 pm. Based upon the 

obtained calibration matrix, this corresponds to a resolution of about 0.25 mN for both Fx 
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and Fy. The optical sensing interrogator has a scan rate of 1 kHz, and the time constant of 

the sensor is about 5 ms [104], providing a fast-enough response for accurate tracking of 

quick force variations in RVC. To validate sensor operation, the tool tip was 

loaded/unloaded repeatedly at 3 different orientations (0°, 45° and 90°). 20 different load 

conditions (0-20.6 mN) were tested at each orientation, and each case was repeated 6 

times (3 load/unload cycles). For each test, 1000 samples were recorded at a rate of 200 

Hz. When the computed forces were compared with the actual force values, the root mean 

square error was 0.31 mN and 0.24 mN respectively for Fx and Fy. The histograms of the 

residual errors (Fig. 3.44.b) show that the probability of errors beyond 0.5 mN is very low. 

For 0-10 mN range, computed forces match the actual values for both Fx and Fy, 

producing a close fit to the ideal straight line (slope=1) passing through the origin in Fig. 

3.44.c. Above 10 mN, although Fy accuracy is preserved, Fx is observed to gradually 

deviate from the ideal line as the loading is increased. This effect can be attributed to the 

torque generated due to the distance between the tip of bent needle and the tool shaft 

center. Such error can in theory be corrected by modeling the error. However during RVC, 

since the needle insertion will take place mostly along the needle axis (y-axis of the tool), 

forces exceeding 10 mN along the x-axis are highly unexpected. Thus, the slightly bigger 

errors in predicting Fx at larger amplitudes is not a major concern. 

3.3.3. Effect of Actuation on Force Sensor Response 

In this design concept, the force sensitive elements are integrated on a functional 

component that moves and goes under stress during the actuation of the tool. As shown in 

Fig. 3.44, this causes a shift in FBG sensor readings, which produces an erroneous reading 

of about 2 mN in Fx and 6 mN in Fy when the guide tube is fully retracted back (motor 
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Figure 3.45: Effect of actuation on the sensed forces during 3 cycles of cover/expose 

cycles. Although the microneedle is not contacting any tissue, covering and exposing the 

microneedle shifts the force readings by about 2 mN in Fx and 6 mN in Fy with a 

consistent behavior. In practice, these undesired components due to actuation can be 

eliminated from the force readings by automatically rebiasing the FBG readouts once the 

motor position reaches the fully exposed position (2400 µm). 
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position=2.4 mm) although the needle tip is not interacting with the tissue yet. In addition, 

the computed calibration matrix is valid for the fully exposed configuration of the needle. 

The sensitivity may differ for middle positions and fully covered states, which are not 

relevant to the practical use of the needle. In our force computation algorithm, to get an 

accurate measurement of forces during cannulation, after the motor position reaches 2.4 

mm and the needle is fully exposed, each FBG sensor is automatically rebiased to 

eliminate the actuation artifact and set a zero-force reference for the subsequent 

measurements. After touching the retinal surface, the interaction forces are computed 

relative to this baseline using the calibration matrix obtained in the previous section. 

3.4 Integration with Robotic Systems 

Combining force-sensing instruments with robotic assistants is a progress towards 

overcoming important challenges encountered during vitreoretinal surgery. Preventing 
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Figure 3.46: (a) Coordinate systems associated with the robotic systems and force-

sensing tools. (b) Setup for finding the transformation from the robot’s tool mount frame 

to the force-sensing tool’s coordinate system for their integrated use. 

involuntary movements of the operator and providing valuable information regarding tool-

to-tissue interactions in real time will greatly enhance surgeon capabilities. Among the 

available robotic manipulators, the handheld Micron [72] runs based on the detected tool 

tip position in its optical tracker (ASAP) frame, which requires an accurate knowledge of 

the end-effector tip position relative to the robot frame located at the robot’s tool mount 

( p⃗ tip 
robot ). Similarly, while operating the Steady-Hand Eye Robot [89-94], we use the 

measured tool tip position and speed, for which the instrument tip position needs to be 

defined in the robot frame. Meanwhile the force-sensing instrument (either micro-forceps 

or microneedle) reports forces at the tool tip in its own coordinate system defined by the 

calibration of the tool ( F⃗ tip 
tool ). To manipulate these tools using robotic devices based 

upon the detected forces, the sensed tool tip position and forces need to be transformed 

into the same frame, such as the world frame or a phantom coordinate system. The 

coordinate frames and transformations associated with the operation of Micron and the 

Steady-Hand Eye Robot are shown in Fig. 3.46.a. 

After attaching the force-sensing tool onto the robotic platform, a pivot calibration is 

performed, by taking multiple measurements in different poses of the force-sensing tool 
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while the tool tip is maintained on the same spot. The measurements are used to solve for 

p⃗ tip 
robot  in a least-squares sense. This step is a one-time procedure that needs to be 

performed for each tool presented in Sections 3.2 and 3.3 separately. Using the computed 

p⃗ tip 
robot , the tool tip position can be transformed, for instance to ASAP coordinates 

while using Micron as follows: 

p⃗ tip 
ASAP = R  robot 

ASAP p⃗ tip 
robot + p⃗   robot 

ASAP                                                                      (3.25) 

The force-sensing tools presented in Sections 3.2 and 3.3 output forces in their own 

coordinate frame, as defined during their calibration. To register the force-sensing tool to 

the robotic manipulator, the tip of the tool (the microneedle or the forceps jaws) is pushed 

into a soft sponge affixed to the table as shown in Fig. 3.46.b. Then the robotic system 

(the Steady-Hand Eye Robot as in Fig. 3.46.b, or the Micron system with the hand piece 

clamped in a vise) is commanded to move the tool tip first along its x-axis and then along 

its y-axis. Since the tool tip is embedded inside the elastic sponge, moving the tool will 

induce reaction forces on the tool shaft. The resulting forces can be used to construct the 

rotation matrix from the world frame (either ASAP tracker coordinates in case of Micron 

or world coordinates in case of the Steady-Hand Eye Robot) to the force-sensing tool 

coordinates ( Rtool  
world ). For this, each force vector is first negated (since the reaction forces 

point opposite to the direction of motion), then normalized to obtain the x and y unit 

vectors of the robot frame in the force sensor coordinates, which form the first two 

columns of Rtool  
world . The third column of Rtool  

world  is found via the cross product of the first 

two vectors. Once Rtool  
world  is computed, the measured pose of the robot ( Rrobot  

world ) is used 

to compute the rotation from the robot frame at the tool mount to the force sensor frame 
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( Rtool  
robot ), which completes the registration of the force-sensing tool to the robotic 

manipulator. While using the tool, the measured tool tip forces are transformed into 

world coordinates by multiplying the time-variant robot pose ( R(t)robot  
world ) – measured by 

the ASAP tracker while using Micron, or given by the forward kinematics of the Steady-

Hand Eye Robot – with the fixed rotation from the robot frame to the force sensor frame 

( Rtool  
robot ) and the force sensor output ( F⃗  

tool ) as follows: 

F⃗ = 
world R(t)  R  F⃗  

tool  tool  
robot 

robot  
world                                                                               (3.26) 

The computed tool tip position and force information, both of which are now expressed 

in the same (world) frame, can be used in various ways to accomplish different goals 

during membrane peeling and vein cannulation procedures, as will be discussed in 

chapters 4 and 5. 

3.5 Conclusion 

In this chapter, two main categories of ophthalmic tools were presented: micro-forceps 

and microneedle. A key feature of these tools is the integrated force sensing at the tool 

tip, either in 2 dimensions (transverse forces) or in 3 dimensions (transverse and axial 

forces). The design challenge is to strategically embed sensors such that the tool shaft fits 

through a sub-millimetric incision on the sclera. This goal was accomplished by the use 

of thin (Ø 80 µm) Fiber-grating fibers, which led to a maximum tool diameter of 20 

Gauge (Ø 0.9 mm) and very fine force sensing capabilities (0-25 mN range within an 

accuracy of 0.25 mN for transverse and 2 mN for axial forces). The advantage of the 

presented tool architectures is that the tool-tissue interaction forces can be directly 

measured in real time without the adverse effect of sclerotomy contact. Methods have 
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been implemented to eliminate the drift from sensor readings due to ambient temperature 

variation and tool actuation. 

In designing micro-forceps both manual and motorized tool actuation were explored. The 

manually actuated tools rely on a mechanical coupling between the tool handle and tool 

tip. They can work either handheld or in combination with the cooperatively controlled 

Steady-Hand Eye Robot. The motorized concept mechanically separates the tool 

actuation from the hand piece. The devised modular tool can be actuated independent 

from its site of attachment, and hence can be integrated with the handheld Micron system, 

or similarly other handheld or teleoperated robotic platforms, without interfering with 

their operation. 

Our 3-DOF tools are able to capture axial forces in addition to transverse forces. Relative 

to transverse forces, the axial sensing is challenged by the much higher axial stiffness of 

the tool and thus lower sensitivity and limited wavelength resolution of the optical 

sensing interrogator (1 pm). In order to avoid the detrimental effect of frictional forces 

during tool actuation on the axial force readings, three alternative concepts were 

explored. The first concept proposes a customized compliant mechanism for the jaws, 

which was shown through simulations to provide a successful decoupling between axial 

and transverse forces; nevertheless, this design was not fabricated due to its 

manufacturing and assembly challenges. The second concept uses asymmetric jaws, 

which measures forces properly when held at a certain orientation relative to the peeling 

trajectory. The third concept attenuates the frictional actuation forces by modifying the 

sliding interface between jaws and the tool shaft. Validation experiments including 

random samples shows that this tool with the nonlinear force computation method can 
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predict 3-D forces with an rms error under 0.15 mN in the transverse plane and within 2 

mN accuracy in the axial direction. 

The force-sensing microneedle presented in this chapter enables approaching vasculature 

at an optimal angle with its bent tip. Using the motorized mechanism, it is possible to 

hold the microneedle initially straight and protected inside a guide tube while introducing 

the tool into the eye through the sclera. After reaching the retina surface the needle is 

deployed out to flex to its normally bent state. The optical fibers embeded on the guide 

tube track forces along the needle axis almost in real time within an accuracy of 0.25 mN. 

As proof of concept instruments, the presented work in this chapter bears the drawbacks 

of manual assembly. Based upon the developed calibration and force computation 

methods the tool structure and fabrication process can further be optimized to improve 

the force sensing accuracy. In addition, further downsizing of tool shaft diameter to 23 

Gauge with improved fabrication and assembly will deliver greater 

clinical impact. Currently, the sensors and actuators in our designs add to the cost of the 

instrument. For this reason, the force-sensitive parts were designed to be sterilizable 

while the motorized actuation unit can be protected inside a drape. In the future, with 

mass production, the cost of these force-sensing instruments could be dramatically 

reduced so that they could become disposable. 

The calibration procedure followed for transforming optimal readings into force 

information is currently based upon static measurements, where samples are acquired 

after the response of each sensor reaches steady-state. Investigating the dynamic response 

of our 2-DOF tools revealed a first order system response with a time constant of 5 ms. A 

similar strategy needs to be followed for the 3-DOF tools as well to evaluate their 
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performance in estimating rapidly changing force profiles in future experiments. Future 

work includes more validation experiments, both benchtop and in vivo, and exploring the 

potential of these conceptual tools in other microsurgeries such as vascular and cochlear 

implant surgeries, as well as in catheterization procedures. 
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CHAPTER 4 : FORCE-BASED ROBOTIC ASSISTANCE METHODS FOR 

EPIRETINAL MEMBRANE PEELING  

4.1 Introduction 

4.1.1. Background and Motivation 

Epiretinal membrane peeling is a typical task in vitreoretinal surgery, where a very thin 

(micron scale) fibrous membrane adherent to the retina surface is delaminated, either by 

using a pick or a micro-forceps tool. To catch the membrane edge without injuring the 

underlying retina, very precise manipulation of the tool to the correct depth under the 

membrane is required. In addition, the peel needs to be completed by exerting very fine 

forces with a small pace of generation on the retina [62]. Application of excessive forces 

with abrupt changes may damage retinal vasculature [23], and lead to serious 

complications, such as iatrogenic retinal injury and breaks [24], vitreous hemorrhage, or 

subretinal hemorrhage [25,26]. The required peeling forces for a safe operation routinely 

lie below the surgeon’s sensory threshold. Currently, the surgeons adjust their peeling 

rate, and therefore applied forcing, using indirect visual cues, such as changing light 

reflections from the deforming tissue, which requires a great concentration and 

significant experience. 

4.1.2. Contributions 

The sensitized instruments presented in Chapter 3 enable quantitative monitoring of tool-

to-tissue interaction forces during the surgery. To assist surgeons in completing 

membrane removal without facing the complications, this chapter describes methods 

based on detected tool-tissue forces that will inform the operator and robotically assist in 

maintaining forces at a safe level, and if possible facilitate delamination to minimize the 
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forcing on the retina. To limit the peeling force, an auditory force-feedback mechanism 

will be tested on two distinct robotic platforms and a new automatic tissue release method 

will be developed. To further reduce the peeling force, a micro-vibratory modulation 

method will be explored. 

Credit: Auditory force feedback algorithm was developed by Balicki et al. for the Steady-

Hand Eye robot. The Micron system was originally developed by Cameron Riviere and his 

team at Carnegie Mellon University. Based on this infrastructure, software components 

were developed to implement the auditory force feedback, micro-vibratory modulation and 

automatic tissue release modes by Berk Gonenc. Experiments in Section 4.2.2 were 

carried out by Ismail Kuru and Berk Gonenc. 

4.2 Auditory Force Feedback 

4.2.1. Algorithm 

To keep applied forces at a safe level in epiretinal membrane peeling, auditory feedback 

is a potential method to inform the operator of the magnitude of the interaction forces at 

the tool tip, which otherwise lie below human sensory thresholds [29]. Therefore, in 

current retinal practice, control of force is based predominantly on visual cues. During 

surgery, the surgeon visually monitors local surface deformation and changing light 

reflections to assess the stress applied to the tissue. However, during such visual sensory 

substitution, there is a great reliance on prior experience, secondary rather than primary 

tissue changes and somewhat unpredictable light reflexes. Therefore, the surgeon is left 

with incomplete and sometimes false data with which to make crucial surgical decisions 

intraoperatively. 
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Since tool manipulation and decision making while trying to maintain the exerted forces 

at a safe level relies on the real-time information received from the environment, this 

information needs to be presented to the surgeon in an intuitive, real time, easy to process 

and overlay means. It should specifically not become and additional distraction to a 

surgeon who is already at the point of sensory overload due to multiple competing 

information inputs. With this in mind, studies [123-125] have shown that visual feedback 

can improve surgical performance in minimally invasive surgery, whereas retinal 

surgeons prefer not to have additional visual cues introduced into the already demanding 

visual channel. Visual feedback was experimented with and found distracting by retinal 

surgeons, while haptic and auditory feedback have been identified as the potentially 

useful methods that can be directly perceived, and have minimal conflict with other 

human sensing channels [126]. 

It was previously shown by Kitagawa et al. that continuous real-time auditory feedback 

representing the applied force could be a useful cue that significantly improved human 

performance in complex surgery [124]. Balicki et al. [127] developed an auditory 

feedback scheme that modulates “beeps" played at different frequencies depending on the 

measured force magnitude at the surgical tool’s tip. Cutler et al. [30] investigated and 

compared this method with another binary mode that signaled a continuous high-pitch 

alarm when the force exceeded the given threshold. While both modes were shown to 

significantly reduce the forces during membrane peeling, the auditory feedback, 

frequency modulated first mode revealed a more consistent force application throughout 

the operation. 
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For precise tool manipulation, when a tremor canceling robotic platform is used, such as 

Micron or the Steady-Hand Eye Robot, simultaneous control of tool position and force 

can be achieved by implementing auditory sensory substitution to work jointly with the 

tremor canceling control loop of the robotic device. In this section, we implement a 

frequency modulated auditory feedback mechanism with both the Micron and the SHER 

systems. After the forces at the tool tip are measured using one of the sensitized 

instruments described in Section 3.2, depending on the magnitude of the force, the 

surgeon is provided with three different tempos of audio “beeps” representing three 

safety zones. The borders of these zones were defined based on typical vitreoretinal 

operations [122]. The audio remains silent until 1 mN or greater force is measured. 

Between 1 mN and 3.5 mN, a constant slow beeping is emitted, which is designated to be 

a “safe zone”. The second zone is between 3.5mN and 7 mN. A proportionally increasing 

tempo is generated to indicate this “caution zone”. Beyond 7 mN is a "danger zone" for 

potential retinal breaks and tears, which is represented by a constant high beeping. 

4.2.2. Experiment 1: Evaluation of the Steady-Hand Eye Robot with a Force-Sensing 

Micro-Forceps 

4.2.2.1. Setup and Procedure 

In order to assess the performance of our micro-forceps in robot assisted membrane 

peeling, we conducted four types of experiments on the setup shown in Fig. 4.1. In all 

tests, we used the inner shell membrane (ISM) and the chick chorioallantoic membrane 

(CAM) as a biological phantom since it has previously been reported to be a suitable 

model for vitreoretinal microsurgical instrument studies [46]. 
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Figure 4.1: (a) Setup for membrane peeling experiments on 12-day fertilized chicken 

eggs using the Steady-Hand Eye Robot and a force-sensing micro-forceps. 

After removing the eggshell gently, ISM of the chicken embryo becomes accessible. 

Attached under this thin layer is the CAM. In our experiments, the ISM simulates the 

ILM while the CAM serves as a phantom for the retina. The task is to peel off the ISM 

without breaking the CAM using the force sensing micro-forceps. In order to assist the 

subject, force sensor output is translated into auditory signals the frequency of which is 

modulated based on the magnitude of the measured force as described in Section 4.2.1. In 

order to assess the effect of such auditory force feedback and robotic assistance, we 

studied four different cases: 

(1) Freehand peeling with auditory force feedback 

(2) Robot-assisted peeling with auditory force feedback 

(3) Robot-assisted peeling with force scaling 

Steady-Hand 
Eye Robot

Optical Sensing 
Interrogator
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(4) Robot-assisted peeling with auditory force feedback and force scaling 

10 trials were performed for each case, and the mode of operation was changed in 

random order. For all cases, the 2-DOF force sensing forceps was held perpendicular to 

the direction of the peeling motion to minimize axial forces. The tool tip force and video 

were recorded. Based on the video timestamp, starting and ending points of the peeling 

motion were identified in the acquired data. The assessment was based on the applied 

forces during delaminating motion. 

4.2.2.2. Results and Discussion 

A typical force measurement from each of the test cases is presented in Fig. 4.2. 

According to Fig. 4.2.a, freehand membrane peeling forces exhibit two main types of 

variations during the delaminating period: (1) low frequency changes due to varying 

peeling speed and heterogeneous tissue structure, (2) high frequency oscillations due to 

hand tremor. Using the steady-hand robot, most of the hand-tremor based components 

were eliminated as shown in Fig. 4.2.b. 

When force scaling feature of the Steady-Hand Eye Robot is activated, the force on the 

tool tip is multiplied by a cofactor (300x) and applied to the operator’s hand, which is 

further described in [127]. Practically, this provides a stiffer tool manipulation in the 

direction of the applied force. The results presented in Fig.4.2.c indicate that force scaling 

feature provides enhanced stability and smoother force variations during the procedure as 

compared to the trials without force scaling. The fluctuations in Fig.4.2.b are attenuated 

upon activation of force scaling mode in Fig. 4.2.c and d. However, force scaling alone 

cannot keep the forces within the safe zone (below 7 mN). Fig. 4.2.d. shows that only the 
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combination of robot assistance, force scaling and auditory force feedback can provide 

relatively stable and limited forces during membrane peeling. 

 

Figure 4.2: Membrane peeling forces on chicken embryo from a test sample: (a) 

completely unaided, (b) robot assisted with only auditory force feedback, (c) robot 

assisted with only force scaling, (d) robot assisted with auditory force feedback and force 

scaling. High frequency oscillations in delaminating forces are reduced by steady-hand 

robot. Force scaling provides smoother force variations. Auditory feedback (yellow line 

is the threshold for the caution signal and red line indicates the threshold for the danger 

warning) is beneficial for keeping the forces within the safe operation zone (below the 

red line). 

4.2.3. Experiment 2: Evaluation of Micron with a Force-Sensing Hook 

4.2.3.1. Setup and Procedure 

To simulate membrane peeling, a series of experiments have been performed by a single 

novice user on the setup shown in Fig. 4.3. The tool velocity was tracked by ASAP 

optical sensors. In order to monitor the integrated force sensor, an optical sensing 

interrogator, sm130-700 from Micron Optics Inc. (Atlanta GA), was used. 

a

b

c

d
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Figure 4.3: Setup for membrane peeling experiments using the Micron system with a 

force-sensing hook [128]. 

 

Figure 4.4: Experiments were done on two types of phantoms: (a) bandage phantom and 

(b) inner shell membrane of raw chicken eggs [128]. 

In this experiment, two sets of tests were done. The performance of a non-surgeon 

researcher was analyzed for different cases. The challenge in all cases was to keep the 

tool velocity as uniform as possible (~0.5 mm/s) and the delaminating forces below the 

danger threshold (~7 mN). For each phantom type, an extensive training period (~3 hrs) 

was allowed before data collection. 

(1) Membrane Peeling on Bandage Phantom: Sticky tabs from 19 mm Clear Bandages 

(RiteAid brand) were sliced to produce strips 2 mm wide. The subject was asked to peel a 

10 mm section of the strip steadily and without stopping while holding the Micron 

ASAP Optical Sensors

Micron

Optical Sensing Interrogator

Laptop

Microscope

FBG Fibers

Inner shell membrane

Bandage 
strips

Peeling direction

Peeling direction

a bForce-Sensing 
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instrument almost perpendicular to the bandage surface in order to minimize the forces 

along the tool axis. 

(2) Membrane Peeling on Raw Chicken Eggs: The inner shell membranes of raw 

chicken eggs were peeled following a linear trajectory. Unlike the bandages, this phantom 

accounted for biological factors such as heterogeneous tissue structure and its effect on 

force. A single egg shell was used for each test, and it was assumed that the membrane 

structure did not vary significantly between eggs. 

 

Table 4.1: Membrane Peeling Performance Test Cases 

 

 

For each experiment set, four different cases were evaluated as shown in Table 4.1. Five 

trials were performed in random order for each of these scenarios. The tool tip force, 

position, speed and video were recorded. Based on the video timestamp, starting and 

ending points of the peeling motion were identified in the acquired data. The assessment 

was based on the applied forces during delaminating motion. 

Case (n=5 trials/case) Tremor Suppression Force Feedback

Completely unaided No No

Only Micron-aided Yes No

Only with auditory feedback No Yes

Micron aided with auditory feedback Yes Yes
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Figure 4.5: Force sensing Micron control scheme. The measured forces on the tool tip are 

translated into auditory signals to guide the surgeon while Micron supresses hand-tremor 

in another loop [128]. 

4.2.3.2. Results and Discussion 

4.2.3.2.1. Membrane Peeling on Bandage Phantom 

In Fig. 4.6, the results of a test set on bandage phantom are presented for all cases. 

Accordingly, freehand membrane peeling forces exhibited two main types of variations 

during the delaminating period: low frequency changes due to varying peeling speed and 

high frequency oscillations due to hand tremor. In the absence of auditory and tremor 

suppression aids, peeling forces exceeding 7 mN were recorded with high frequency 

oscillations. Upon activation of Micron, these oscillations were significantly reduced. 

However, still, forces in danger zone were observed due to lack of force feedback. When 

auditory sensory substitution was used alone, almost all forces were kept below the safety 

threshold successfully, nevertheless with high frequency oscillations, which appeared 

both in speed and force plots. In the last case, combination of active tremor canceling 

together with auditory sensory substitution provided the best performance, where peeling 

forces were kept within the safe operation zone free of high frequency oscillations. 

Danger

Caution

Safe

Sensory 
Auditory 
Feedback

Surgeon

Force Measurement
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Figure 4.6: Measured membrane peeling force samples for four different cases using 

bandage phantom. Maximum allowable operation zone (3.5 mN - 7mN) is between the 

green dashed and red solid lines. High frequency oscillations in the force and speed due 

to hand tremor (left) are eliminated when Micron is activated (right). Without the 

auditory sensory substitution, the exerted forces may exceed the safety threshold shown 

in red (upper), whereas with the auditory feedback they are mostly maintained at a safe 

level (lower). 

 

Figure 4.7: Frequency analysis of recorded forces for all 4 cases on bandage phantom: 

with auditory feedback (left), without auditory feedback (right), with tremor suppression 

(blue), and without tremor suppression (red). 
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Beyond 2 Hz until 20 Hz, the magnitude of forces is greatly reduced in both the absence 

and presence of auditory force feedback. In this range, the recorded reduction is 60%-

90% with auditory sensory substitution, and 70%-90% without auditory sensory 

substitution as shown in Fig. 4.7.a and 4.7.b respectively. 

 

Figure 4.8: Micron aided to free-hand force magnitude ratio with respect to frequencies. 

Significant reduction in 2-20 Hz forces: (a) 60%-90% with auditory feedback, (b) 70%-

90% without auditory feedback. 

4.2.3.2.2. Membrane Peeling on Raw Chicken Eggs 

Although a different phantom type is used, the results are in great agreement with 

bandage phantom observations as shown in Fig. 4.9. The peeling forces exhibit very 

similar characteristics for each of the tested cases. In free hand tests (Fig. 4.9.a), high 

force variations with occasional non-safe forces were observed. Micron was successful in 

eliminating the high frequency oscillations (Fig. 4.9.b) while auditory feedback reduced 

overall forces below the safety threshold (Figs. 4.9.c and 4.9.d). 

with auditory feedbackwithout auditory feedback
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Figure 4.9: Membrane peeling forces on raw chicken eggs:(a) completely unaided, (b) 

only Micron aided, (c) only with auditory feedback, (d) Micron aided with auditory 

feedback. Oscillations in delaminating forces are highly reduced by Micron while 

auditory feedback could prevent application of forces above 7 mN. 

Frequency analysis of forces measured in Micron-activated and Micron-deactivated cases 

revealed a significant reduction between 2-10 Hz, which is shown in Fig 4.10. In free-

hand peeling tests (red plot in Fig. 4.10), a peak was observed again at 10 Hz, which 

disappeared upon activation of Micron (blue plot in Fig. 4.10). Despite the smoother tool 

motion with Micron’s assistance, the forces still could go beyond the safety limits when 

no auditory guidance was provided. When Micron’s tremor canceling was used together 

with auditory sensory substitution, the operation was accomplished within the desired 

zone successfully. 
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Figure 4.10: Frequency analysis of recorded forces on raw chicken eggs: with tremor 

suppression (blue), and without tremor suppression (red). 

4.2.4. Experiment 3: Performance Comparison Between Micron versus the Steady-Hand 

Eye Robot 

4.2.4.1. Setup and Procedure 

A series of membrane peeling experiments were conducted aiming to compare the 

performance of the Steady-Hand Eye Robot and Micron with and without auditory force 

feedback. The setup for each system is presented in Fig. 4.11.a and 4.11.b, respectively. 

Being a table mounted system, the Steady-Hand Eye Robot occupies a larger footprint in 

the operation area as compared to the hand-held Micron. On the other hand, Micron 

requires an additional equipment, ASAP optical sensors, for tracking the tool motion. 

These trackers have a limited field of view, therefore while setting up the system one 

needs to position the trackers carefully such that the phantom falls inside the working 

volume of the tracker. In both systems, the applied forces are monitored by using an FBG 

optical sensing interrogator, sm130-700 from Micron Optics Inc. (Atlanta GA). The tests 

were done on two types of phantoms, which have been used in the previous experiments 
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in Sections 4.2.2 and 4.2.3: the bandage phantom and the inner shell membrane (ISM) of 

12-day old fertilized chicken eggs. 

 

Figure 4.11: Setup for membrane peeling experiments using (a) the Steady-Hand Eye 

Robot with a force-sensing micro-forceps, and (b) Micron with a force-sensing hook. 

[129] 

 

Figure 4.12: Membrane peeling procedure using bandage phantom (left) and inner shell 

membrane in chicken embryo (right) [129]. 

Bandage Phantom: This phantom has 2 mm wide strips that are produced by slicing 

sticky tabs from 19 mm Clear Bandages (RiteAid brand). At the end of each strip, there is 
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a flap for holding/grasping. Each strip can be used several times without significant 

change in the required force. 

ISM of Chicken Embryo: The eggshell is removed gently to access the ISM chicken 

embryo. Under the thin ISM layer, there is chorioallantoic membrane (CAM), which 

serves as a good surrogate for retina. Peeling the ISM off without breaking the CAM is 

similar to the challenge involved in the epiretinal membrane peeling surgery. 

Using these phantoms, experiments were done by a single novice non-surgeon researcher 

for different test cases of both systems. The studied cases are summarized in Table 4.2. 

Table 4.2: Tested cases for membrane peeling with Micron or the Steady-Hand Eye 

Robot on the bandage phantom and ISM of fertilized chicken eggs. 

 

Procedure on the Bandage Phantom: The subject was asked to peel a 10 mm section of 

the bandage strip steadily and without stopping while holding the tool perpendicular to 
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the peeling direction so that the task is completed with pure transverse loading on the tool 

tip. 3 cases were studied and 10 trials per case were conducted in random order. 

Procedure on ISM of Chicken Embryo: The subject was asked to peel off the ISM 

without breaking into the CAM by following a linear trajectory. The tool was again held 

perpendicular to the peeling direction to minimize axial forces. 2 cases were studied and 

2 tests were done per case. A new embryo was used for each trial and it is assumed that 

there is no significant difference between embryos. 

 

Figure 4.13: System overview with robotic assistance and integrated force sensing. 

Auditory feedback is provided to the user based on sensed forces at the tool tip. 

For each case, an extensive training period (~3 hrs) was allowed before data collection. 

The challenge in all cases was to complete the peeling task by moving the tool with a 

uniform velocity (~0.5 mm/s) and by applying forces below the danger threshold (~7.5 

mN). Robot-assisted and freehand tests were done in random order. Only in some cases, 

the user was provided with auditory feedback whereas force sensing was used only for 

data acquisition purposes in the rest. During the experiments, we recorded the tool tip 
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force, position, speed and video. Based on the video timestamp, the recorded data was 

segmented into two phases: (1) catching/lifting the membrane edge and creating a flap, 

(2) delaminating the membrane. The forces measured during the delaminating period 

after creating the flap form the basis of our performance evaluation. 

4.2.4.2. Results 

4.2.4.2.1. Membrane Peeling on Bandage Phantom 

Measured forces on bandage phantom are shown for all trials in Fig. 4.14. Consistent 

characteristics were visible among the trials in each case. In freehand trials, highly 

oscillatory forces exceeding the safety threshold were observed. When the user was 

supplied with force information through auditory feedback, some of these forces could be 

reduced below the safety limit. In this case, although the user clearly knew the applied 

force, there were challenges in controlling the tool motion precisely due to physiological 

hand tremor. The assistance of either Micron or the Steady-Hand Eye Robot was able to 

eliminate this problem. Compensating for the unintentional high frequency motion, tool 

control of the user was greatly improved. In this case, knowing the force level through 

auditory feedback, the user was able to complete the task very precisely such that in the 

delaminating period, almost all of the forces were kept below 7.5 mN free of high 

frequency vibrations. 
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Figure 4.14: Measured peeling forces (blue) using bandage phantom for all trials (10 

trials/case). Auditory feedback helps in keeping forces below the safety threshold (red 

horizontal line). Robotic assistance helps in eliminating oscillations. Additional effort and 

longer duration in grasping the bandage while using micro-forceps with the Steady-Hand 

Robot due to additional system inertia. 

Despite the improvement in tool control while peeling, difficulty in initial grasping was 

observed at the beginning of each trial when micro-forceps were used with the Steady-

Hand Eye Robot. The additional inertia introduced on the user hand makes certain 

maneuvers more challenging for a novice user. This extra effort can clearly be seen from 

the first 10 seconds of case 6 in Fig. 4.14. On the other hand, being a hand-held tool, 

Micron has better dexterity but a more limited workspace. The user can still perform 

similar maneuvers as a manual tool, but while paying attention to stay within the 

boundaries of the workspace. For this reason, the manipulation problem in case 6 does 

not exist in case 3. 
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The hand tremor reduction characteristics for each device can better be seen when the 

measured forces are analyzed in frequency domain as shown in Fig. 4.15. Accordingly, 

presence of auditory force feedback does not change the frequency distribution of forces 

very much for either the hook or the micro-forceps. However, utilizing robotic assistance 

has great impact on the characteristics. The bandwidth of human eye-hand feedback is 

usually from 0.5 Hz to 2 Hz [130]. Thus, the region below 0.5 Hz in Fig. 4.15 represents 

controlled actions, whereas frequencies above 2 Hz indicate the unintentional motion of 

the user. The postural hand tremor frequency in normal humans is at about 8-10 Hz 

[130]. The prominence of a peak at 10 Hz in all freehand trials is primarily due to this 

reason. When Micron is used, this peak is eliminated and the high frequency components 

(2-15 Hz) are overall reduced by 60-80%. The reduction zone for the Steady-Hand Eye 

Robot is slightly broader with a similar reduction ratio as compared to Micron. 

 

Figure 4.15: Frequency analysis on forces applied in all trials on bandage phantom. 60-

80% reduction in 2-15 Hz oscillations by using Micron (left), Steady-Hand Eye Robot 

(right) [129]. 
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4.2.4.2.2. Membrane Peeling on ISM of Chicken Embryo 

Having proven the benefits of force sensing capability in the first part of our experiments, 

we did all trials in this section using auditory force feedback. The aim was to account for 

heterogeneous tissue properties in our comparison between Micron and the Steady-Hand 

Eye Robot by using a more realistic biological phantom. Consequently, we observed 

significantly different characteristics for each device as compared with the bandage 

phantom. 

The measured forces for all trials are shown in Fig. 4.16. Since all tests were done under 

auditory feedback, most of the measured forces were maintained successfully below the 

safety threshold (7.5 mN). However as opposed to our bandage phantom trials, the user 

had to grasp the membrane and peel it several times to complete the task, which can be 

attributed to two main reasons: First, it is not possible to remove the whole ISM in a 

single linear peel. Second, the ISM is more slippery and deformable than the bandage 

phantom, which makes it hard to hold firmly. This fact is most apparent while using hook 

in cases 7 and 8 due to inability to grasp ISM with this type of tool. Micro-forceps have 

performed better in this respect with only 1-3 delaminating periods in cases 9 and 10. 

Frequency analysis of measured forces on ISM is shown in Fig. 4.17. In all results, an 

increase in low frequency oscillations as compared to bandage phantom results is 

prominent. This is an expected result of using biological phantom with non-uniform 

tissue properties. By using a hook manually in case 7, high frequency oscillations were 

observed in Fig. 6. However, 10 Hz peak corresponding to the physiological hand tremor 

is not visible for this case in Fig. 4.17. This is mainly due to poor grasping and slippage 

of the tissue, and resulting disturbance on the force measurement. But still 40-50% 
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reduction in high frequency oscillations was recorded with Micron assistance. Using 

micro-forceps, a behavior that is similar to the results on bandage phantom is obtained. 

10 Hz peak is clearly visible in manual use of micro-forceps. Utilizing Steady-Hand 

Robot assistance with this tool has decreased 2-15 Hz oscillations by 50-60%. 

 

Figure 4.16: Measured peeling forces (dark blue) using ISM of chicken embryo for all 

trias (2 trials/case). Shorter multiple peeling periods (light blue rectangles) as opposed to 

bandage phantom trials [129]. 
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Figure 4.17: Frequency analysis on forces applied in all trials on ISM of chicken embryo. 

Reduction in 2-15 Hz oscillations: 40-50% by Micron (left), 50-60% by the Steady-Hand 

Eye Robot (right). 10 Hz peak corresponding to physiological hand tremor is not visible 

while using hook (upper) due to the inability to grasp, hence the tissue slippage [129]. 

4.2.4.3. Discussion 

The acquired force data for each case was analyzed based on average values of five main 

criteria, which are summarized in Table 4.3. On the bandage phantom, using either 

Micron or the Steady-Hand Eye Robot have provided similar improvements, which are 

significant in terms of reducing the standard deviation of forces (by 63% with Micron and 

60% with the Steady-Hand Eye Robot) and the danger zone percentage (4.97% with 

Micron and 4.26% with the Steady-Hand Eye Robot). Hence, a more consistent and safe 

operation was provided through the assistance of either robotic system. 

In contrast to the consistent peeling environment provided by the bandage phantom, the 

ISM of chicken embryo exhibited non-uniform tissue properties. It was more challenging 
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percentage was already low in all trials as compared to the previous cases. Thus, the 

robotic assistance on ISM did not provide much benefit in terms of keeping the forces 

below the safety threshold. This could be either a difference between the two types of 

phantoms, or a matter of the user's learning curve since ISM tests were done after 

completion of the bandage experiments which need to be addressed in future 

experiments. 

Table 4.3: Comparison of force and duration of unsafe forces during peeling experiments. 

 

4.2.5. Experiment 4: Evaluation of Micron with a Force-Sensing Micro-Forceps 

4.2.5.1. Setup and Procedure 

The experiment in Section 4.2.4 revealed the necessity of a micro-forceps instrument for 
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where, instead of a flat surface, the bandage strips were attached to a curved base (Ø 25 

mm) resembling the back of the eye. In addition, a rubber sclerotomy constraint was 

located approximately 9.5 mm above the bandage strips. 

 

Figure 4.18: Setup for membrane peeling experiments in an artificial eye model with 

bandages using Micron with a force-sensing micro-forceps [102]. 

During the experiment, the subject was asked to (1) insert the micro-forceps tool through 

the sclerotomy point, (2) grasp and lift the bandage edge, and (3) peel the strip off of the 

plastic surface while keeping the tool velocity as uniform as possible (~0.5 mm/s) and the 

delaminating forces below the danger threshold (~7.5 mN) based on the provided 

auditory force feedback. The goal of the experiment was to identify any interference 

between the micro-forceps and Micron operation, and to determine whether the 

implemented hardware modifications affect the device's tremor canceling characteristics. 

For this reason, the experiments were done in two sets by turning the tremor cancellation 

feature on and off. Five peels were recorded per category, and the tests were performed in 

alternating order. Before data collection, an extensive training period (~1 hrs) was 

allowed for the subject to become accustomed to the system and phantom, and to 
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minimize learning curve effects in the recorded measurements. During data collection, 

the tool tip force and position, and micro-forceps motor position were recorded with time 

stamp. Based upon the micro-forceps motor position, the grasp/release instants, hence the 

starting/ending points of the delamination period were identified in the acquired data. The 

assessment was based on the applied forces and tool tip positions during this period. 

4.2.5.2. Results and Discussion 

Measured forces on the bandage phantom are displayed for all trials in Fig. 4.19. The 

starting time of the task is set at the point when the user starts closing the grasper jaws. 

The delaminating period begins after the forceps are closed, and the forces after this time 

are of interest. During the delaminating period, the exerted forces in all trials remained 

below the safety threshold (7.5 mN), which displays the effectiveness of the auditory 

force feedback and agrees with our previous results [128,129]. On the other hand, high 

frequency oscillations were visible when the tremor suppression feature of the system 

was not used. Upon activation of Micron, these oscillations were significantly reduced. 

The effect of physiological hand tremor is also visible in velocity and tip position plots. 

In all trials, the user managed to keep the peeling speed around 0.5 mm/s as desired; 

however, oscillations and difficulty increased in the absence of Micron tremor aid. Fig. 

4.20 shows that the tool tip in Micron-assisted trials followed a much smoother trajectory 

with higher positioning accuracy in comparison to the cases without tremor cancellation. 
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Figure 4.19: Measured peeling forces using bandage phantom for all trials (5 trials/case). 

One of the trials was shown in darker color to highlight the important characteristics. 

Auditory feedback helps in keeping forces below the safety threshold (7.5 mN). The 

peeling speed is kept below 0.5 mm/s successfully in all cases, but with much difficulty 

when Micron is off. The tremor canceling feature of Micron helps in reducing high 

frequency oscillations in both tip force and tip velocity [102]. 

To assess the tremor canceling effect of Micron in our tests, we performed frequency 

analyses based on both position and force measurements. The results are presented in Fig. 

4.21. The bandwidth of human hand-eye feedback usually is from 0.5 Hz to 2 Hz [130]. 

Below 0.5 Hz, hand-eye feedback becomes effective. Thus, the regions below 0.5 Hz in 

these figures represent controlled actions, whereas frequencies above 2 Hz indicate the 

unintentional motion of the user. The postural hand tremor frequency in normal humans 

is approximately 8-10 Hz [130]. The prominence of a peak around 9 Hz in Micron-off 

trials is primarily due to the subject’s hand tremor. When the tremor suppression feature 

is activated, this peak is eliminated and the high-frequency components (2-20 Hz) are 

overall reduced by 60-95% in both the tip force and tip position spectra. 
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Figure 4.20: Tool tip trajectory during the delaminating period. The arrow indicates the 

peeling direction. Higher positioning accuracy and smoother paths are observed with 

Micron use. [102] 

The significant reduction in the 2-20 Hz band and percentages comparable to our 

previous results with Micron [128,129] confirm that there is no adverse effect in tremor 

suppression characteristics due to the newly-introduced micro-forceps tip module. On the 

contrary, the forceps allow for grasping—and thus a more rigid connection between the 

tool tip and membrane—which now enables us to relate the characteristics of the 

measured forces to the tool tip dynamics. The common power spectral density traits in 

Fig. 4.21 strongly indicate this connection. Previously, when using the force-sensing 

hook, such direct comparison did not yield reliable results, especially during trials using 

the ISM of chick embryos as shown earlier in Fig. 4.17, due to slippage between the tool 

and the tissue. Furthermore, with the new forceps tip, the user can accomplish the peeling 

task in a single attempt, whereas a pick instrument could necessitate multiple attempts 

due to associated challenges in tissue manipulation. This is not only important for ease of 

use, but also significantly increases safety, since multiple delamination attempts intensify 

the risk of retinal damage. 
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Figure 4.21: Frequency analysis on tip position and peeling forces. Highly correlated 

spectral density traits due to strong grasping provided by forceps use: a peak at 9 Hz due 

to physiological hand tremor and a 60-95% reduction in 2-20 Hz oscillations in both tip 

force and position spectra [102]. 

4.3 Micro-Vibratory Modulation 

4.3.1. Algorithm 

Membrane peeling is essentially a two-phase procedure. In the first phase, the surgeon 

needs to approach the membrane, grasp and lift it to create an edge. For this task, 

positioning accuracy, and thus tremor suppression is important. The second phase is the 

delamination of the grasped membrane, where the main concern is limiting the exerted 

forces on the retina rather than canceling the tremor. Although several micromanipulators 

were developed for assisting vitreoretinal surgery before, the focus has so far been on 

suppressing the hand tremor, primarily focusing on the initial phase. For assisting the 

second phase of this procedure, there are motivating applications in other fields, such as 

inserting a biopsy needle, where reciprocation of the needle was shown to facilitate the 

advance of the needle through tissue and penetration of the site of interest [131]. The 

potential impact of introducing such vibrations while delaminating membranes in 

vitreoretinal practice is novel. 
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Figure 4.22: System overview. A handheld micromanipulator (Micron) was combined 

with a force-sensing micro-forceps to assist membrane peeling previously. A novel 

feature, vibrating the tool tip along the peeling direction, is added to the system to 

facilitate membrane delamination (shown in orange) [103]. 

This section aims to develop a system that (1) attenuates hand-tremor when accurate 

positioning is needed, (2) provides auditory force feedback to the user so that the exerted 

forces are kept at a safe level, and (3) pulsates the tool tip at high frequency to provide 

ease in delaminating membranes. An overview of such system based on the Micron 

system is presented in Fig. 4.22. In modulating the micro-vibrations, deciding on an 

optimal frequency and amplitude that will reduce the force, and updating the micro-

vibration parameters adaptively in response to the changing tissue properties requires the 

knowledge of each parameter’s individual effect on the peeling behavior, which we will 

investigate through experiments in the remainder of this section. 
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4.3.2. Experiment 1: Obtaining a faster peel with the same force  

4.3.2.1. Setup and Procedure 

To simulate membrane peeling, tests were done on two types of phantoms, which have 

previously been used in this chapter: bandage phantom, and inner shell membrane (ISM) 

of raw chicken eggs. Bandage phantom provides a very consistent platform, and is easy 

to obtain enabling ample tests. ISM of raw chicken eggs is a biological tissue exhibiting 

heterogeneous properties, and thus is a more realistic phantom for membrane peeling 

trials. However, the number of tests that can be done using ISM is limited since a single 

egg shell is used for each test. 

The goal of the experiments was to observe the effect of controlled vibrations at various 

frequencies in comparison to freehand and regular tremor cancellation performances. For 

this reason, the tests were done in 5 sets exploring the following conditions:  

(1) Freehand peeling; 

(2) Micron-assisted peeling with regular tremor cancellation; 

(3,4,5) Micron-assisted peeling with tremor cancellation and controlled vibrations at 10 

Hz, 30 Hz, and 50 Hz. 

In sets 3 to 5, sinusoidal oscillations at the specified frequency were injected to the 

commanded forceps tip trajectory to oscillate the tool tip back and forth along the peeling 

direction. The amplitude of vibrations was kept constant at 100 µm. 

For each test condition, 15 trials on the bandage phantom and 5 trials on ISM were 

completed. The experiments were performed by a non-surgeon user by alternating the 

sequence of sets initially on bandage phantom, and then on ISM using the setup shown in 
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Fig. 4.23. In all cases, the user was provided with auditory force feedback, clearly 

indicating whether the applied forces are close to or beyond the safety threshold (7.5mN). 

The challenge was to peel the membranous layer off as quickly as possible while 

maintaining the peeling force below the threshold, and thus adjusting the peeling speed 

based on the force feedback. By fixing the exerted forces at their maximum allowable 

level, the corresponding peeling speed was observed to evaluate the ease of peel in each 

set. 

 

Figure 4.23: Setup for membrane peeling experiments on bandage phantom and inner 

shell membrane of raw chicken eggs [103]. 

Before data collection, an extensive training period (~1 hr) was allowed for the subject to 

become accustomed to the system and phantoms, and to minimize learning curve effects 

in the recorded measurements. For each peel, the tool tip force and position data was 

collected. The micro-forceps motor position was also recorded to determine the starting 

and ending points of the delamination phase in the recorded data. The assessment was 

based upon the tool tip force and position measurements during this phase. Welch's 

power spectral density estimate was used to verify tremor canceling and vibration 

behavior. The mean peeling force and speed from each set were compared using one-way 
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ANOVA followed by Tukey's HSD (honest significant difference) test separately for 

each phantom type. Statistical significance was defined as p<0.05. 

4.3.2.2. Results and Discussion 

4.3.2.2.1. Membrane Peeling on Bandage Phantom 

Sample force measurements from each test condition is shown in Fig. 4.24. With the aid 

of the auditory feedback, in all trials, the subject tried to maintain a mean peeling force of 

under 7.5 mN while the induced micro-vibrations induced oscillations in the applied force 

as well at about the same frequency. 

To verify the accuracy of performed motion in response to the commanded frequencies, 

and to check the correlation between the oscillatory tip position and peeling force 

measurements after the grasping and lifting phase, during membrane delamination (phase 

II in Fig. 4.24), we performed frequency analyses. Results for 3 sample trials per set are 

shown in Fig. 4.25. The prominence of a peak around 10 Hz in the plots of freehand trials 

is primarily due to subject's hand tremor. When the tremor cancellation feature of Micron 

was activated, this peak was largely attenuated and the high frequency components (2-20 

Hz) were overall reduced by 80-90% in both position and force spectra. This confirms that 

the structural modification done for transforming the micromanipulator into a micro-

forceps tool, and thus the added inertia at the tip, does not adversely affect the tremor 

cancelling functionality of Micron. The effect of adding controlled vibrations on tool tip 

trajectory is clearly visible as peaks at the specified frequencies (10, 30, and 50 Hz), 

meaning that the low inertia of the designed micro-forceps module allows resonating the 

tip at high frequencies accurately within Micron's 1N force capability. The common traits 

between the tip position and the tip force spectra in all cases indicate a rigid connection 
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between the tool tip and the bandage layer provided by strong grasping of forceps, even 

when the tip is resonating at 50 Hz. 

 

Figure 4.24: Sample force measurements while peeling off bandages with a force-sensing 

micro-forceps under five different conditions with varying micro-vibration frequency. 

The mean peeling force and speed for each set is displayed in Table 4.4. Within each set, 

consistent results were obtained as indicated by the low standard deviation values due to 

high repeatability of tests on this type of phantom. In all sets, the mean peeling force was 

maintained just below the set safety threshold (7.5 mN) while trying to maximize the 

peeling speed as required. The variance analysis showed no significant difference in 

peeling forces among the sets, meaning that the bandages were peeled off by exerting 
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similar forces (around 7 mN) with the help of the auditory force feedback (p=0.32). 

However, there was a statistically significant difference among the mean of peeling speeds 

(p<0.05). Further analysis with Tukey's HSD revealed that the mean peeling speed 

significantly increased as higher frequency oscillations were introduced on the tool tip 

trajectory during delamination. The mean peeling speed was 0.1392 mm/s in freehand 

trials whereas upon pulsating the tip at 10, 30 and 50 Hz, it rose respectively to 0.1789, 

0.2232 and 0.2809 mm/s. Thus, tremor cancellation combined with 50 Hz vibrations 

enabled significantly faster peeling as compared to all other sets (p<0.05), and thus 

provided easier delamination. There was no statistical difference in terms of peeling speed 

between the freehand trials and the trials with sole tremor cancellation (p=0.21). 

 

Figure 4.25: Power spectra of tip position and tip forces measured while peeling 

bandages (3 arbitrary trials per set are shown). Freehand trials exhibit a peak at 10 Hz due 

to physiological hand tremor. 80-90% reduction in 2-20 Hz oscillations and visible peaks 

at 10, 30, and 50 Hz at both spectra reveal success in tremor canceling, strong grasping, 

and accurate fast tip vibrations [103]. 
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Figure 4.26: Sample force measurements while peeling off the ISM of raw chicken eggs 

with a force-sensing micro-forceps under five different conditions with varying micro-

vibration frequency. 

4.3.2.2.2. Membrane Peeling on Raw Chicken Eggs 

Peeling experiments on ISM of raw chicken eggs revealed similar force profiles to those 

obtained for bandages for each test condition. A sample measurement from each set is 

presented in Fig. 4.26. The Power density spectra for the measurements during the 

delamination phase is shown for 3 samples per case in Fig. 4.27. Compared with the 

bandage trials a slightly larger amplitude variation between the sets was observed. The 10 

Hz peak due to hand tremor was still clearly visible in freehand trials. By tremor 
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cancellation, the oscillations in 2-20 Hz band were reduced by 45-90% and 5-85% 

respectively in the tip position and tip force spectra. 

 

Figure 4.27: Power spectra of tip position and tip forces measured while peeling inner 

shell membrane of raw chicken eggs (3 arbitrary trials per set are shown). More deviation 

between trials as compared with bandage phantom, but the main traits were preserved: 

45-90% and 5-85% reduction in 2-20 Hz band of tip position and force spectra 

respectively with tremor cancellation; visible peaks at 10, 30, and 50 Hz at both spectra 

[103]. 

The common properties of the position and force spectra, and the prominence of 10, 30, 

and 50 Hz peaks in the trials using the new "controlled vibrations mode" strongly indicate 

that our micro-forceps is able to provide a rigid connection between the tool and the 

membrane being peeled also on this biological tissue, even when resonating the tip at 

high frequencies. Previously, when using a pick instrument instead of a micro-forceps 
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tool (in Section 4.2.4), the slippage between the tool and the tissue was causing problems 

in manipulation of ISM, and such correlation between the tool tip dynamics and tool-to-

tissue forces was not possible. 

Peeling ISM of chicken eggs requires slightly larger forces than those for the bandage 

phantom. These forces are in fact a combination of tearing and delaminating forces in 

contrast to sole delaminating forces involved in bandage peeling. As shown in Table 4.4, 

in freehand trials, the recorded peeling forces averaged approximately 7.7 mN, which is 

slightly above the set threshold (7.5 mN). The corresponding mean peeling speed though 

is very slow (0.0868 mm/s). In these freehand trials, the user tried to stay below 7.5 mN 

threshold by peeling the membrane as slow as he could. This was however limited by the 

unintentional tool motion due to hand tremor. In addition, being a biological tissue, ISM 

exhibits slight variations in tissue properties within the same layer as well as between the 

eggs. Using ISM, it is harder to adjust peeling forces, since the exerted forces are not 

only related to tool tip speed, but also depend on local tissue properties. This behavior 

more closely simulates the real vitreoretinal practice. Due to these variations, the standard 

deviations in all sets were higher than those for the bandages. 

The ANOVA analysis revealed that the difference in the mean peeling force among 

groups is not statistically significant (p=0.47). However, similar to the results for 

bandages, the tested cases significantly differ in terms of average peeling speed (p<0.05). 

Based on Tukey's HSD, controlled micro-vibrations of the tool tip provided ease in 

peeling, enabling faster delamination at the same force level. The mean peeling speed 

was 0.0868 mm/s in freehand trials whereas upon pulsating the tip at 10, 30, and 50 Hz, it 
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rose respectively to 0.1416, 0.1850, and 0.2948 mm/s. The difference between freehand 

trials and trials with sole tremor cancellation was not statistically significant (p=0.20). 

Table 4.4: Evaluation of bandage and ISM peeling cases based on the average peeling 

force and speed measured during each trial. 

 

4.3.3. Experiment 2: Obtaining reduced forces at the same peeling rate 

4.3.3.1. Setup 

There are various factors affecting the forces in membrane peeling. Some of these pertain 

to tissue properties, such as tissue width and thickness, while some are related to the 

motion of the peeling instrument, such as the peeling speed. In order to isolate the 

influence of micro-vibrations, all other factors affecting the peeling force need to be 

eliminated in a very reproducible experimental setup. Using a handheld micromanipulator, 

it is hard to keep the peeling speed constant. To avoid peeling speed alterations during and 

between trials, we fixed the Micron handle to a clamp, and used a linear stage to drive 

phantoms relative to Micron (Fig. 4.28). The micro-forceps module was attached onto 

Micron for grasping the phantom before peeling. This setup is only for identifying the 

effect of microvibrations in membrane delamination. The practical use of our system will 

Experiments Number of Trials
Peeling Forces [mN] Peeling Speed [mm/s]

Mean Std. Dev. Median Mean Std. Dev. Median

B
an

d
ag

es

Freehand 15 6.86 0.37 6.88 0.14 0.02 0.14

Tremor Cancellation 15 6.78 0.29 6.79 0.15 0.02 0.15

Tremor Cancellation + 10Hz Vibrations 15 7.05 0.35 7.02 0.18 0.02 0.18

Tremor Cancellation + 30Hz Vibrations 15 6.94 0.32 6.86 0.22 0.05 0.21

Tremor Cancellation + 50Hz Vibrations 15 6.92 0.44 6.97 0.28 0.06 0.27

Eg
gs

Freehand 5 7.71 0.70 7.91 0.09 0.02 0.08

Tremor Cancellation 5 7.31 1.26 6.79 0.10 0.03 0.10

Tremor Cancellation + 10Hz Vibrations 5 7.29 0.98 7.14 0.14 0.06 0.13

Tremor Cancellation + 30Hz Vibrations 5 6.96 1.52 6.81 0.18 0.03 0.17

Tremor Cancellation + 50Hz Vibrations 5 6.34 1.35 6.57 0.29 0.06 0.26
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eventually work based on this identified behavior, but will be handheld (not with a linear 

stage). 

 

Figure 4.28: Experimental setup: (a) To ensure constant peeling speed, the phantoms 

were moved on a linear stage. (b) Peeling inner shell membrane of raw eggs produces 

triangular shaped strips, and requires both tearing and delaminating forces. Using sliced 

egg shell membranes (c) and bandages (d), the effect of tearing forces and varying 

membrane width throughout delamination were avoided [104]. 

To simulate epiretinal membrane, inner shell membrane (ISM) of raw chicken eggs can 

normally be used. However, in this phantom, the membrane routinely comes off the egg 

shell creating a non-uniform triangular piece of membrane if a linear peeling trajectory is 

followed (Fig. 4.31.b). The varying width of the peeled tissue significantly affects the 

forces, and the dimensions of this wedge shape varies between the phantoms. To peel 

consistent and constant width membrane strips, a helical trajectory needs to be followed 

as in [132]. However, such dexterous motion is not possible using a linear stage. 

Furthermore, while peeling the ISM, the measured forces stem from two main sources: 

(1) the tearing force between the peeled section and the surrounding membrane; (2) the 
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delaminating force due to the adhesion between the peeled section and the underlying 

shell. Of these components—for purposes of epiretinal and/or internal limiting membrane 

peeling—we believe the delaminating force is more critical, and needs to be 

reduced/limited as it is the force that is directly applied onto the delicate retinal surface. 

In order (1) to eliminate the tearing forces and focus purely on the delaminating forces, 

and (2) to fix the width of the peeled layers for consistency between trials, we used two 

different phantoms: sliced bandages and sliced shell membranes of raw chicken eggs. 

The bandage phantom provides a consistent platform that enables ample testing with the 

same peeling behavior. Repeated peeling tests using a single bandage strip on the setup 

shown in Fig. 4.28.a revealed that the adhesion between the bandage strip and its backing 

decays with each peel initially (Fig. 4.29.a). However, after approximately the 10th peel, 

the bandage sticks back on consistently, requiring similar amount of delamination force 

for a prolonged time. This enables the use of each strip numerous times by brushing it 

back in place with its consistent level of adhesion after each peel, and provides a very 

repeatable platform for conducting multiple tests. 

The membrane inside the raw chicken egg shell was sliced similarly using a razor (Fig. 

4.28.c). Both the inner and the adherent outer shell membranes are cut together. Thus, 

while peeling the cut strips, both membranes need to be delaminated off the egg shell 

surface, which requires a larger force as compared to the removal of ISM alone. In 

contrast to the bandage phantom, each membrane strip can be used only once, limiting 

the total number of tests on this phantom. Yet, assuming that the membrane structure 

does not vary significantly between the eggs, this phantom provides a consistent platform 

for studying the effect of micro-vibrations on peeling biological tissue. 



 139 

4.3.3.2. Procedure 

Peeling tests on the bandage phantom were done in 2 sets, each set having a different 

speed setting (0.15 mm/s and 0.3 mm/s). In each set, a total of 10 operational modes were 

examined. In the first mode, delaminating forces during regular peeling were monitored. 

The remaining modes explored the effect of micro-vibrations at 3 frequencies (10, 30 and 

50 Hz) and 3 amplitudes (50, 100 and 150 µm). 15 trials per mode were completed using 

a single bandage strip for each speed setting. Each bandage was peeled and brushed back 

10 times before starting the trials, so that the adhesion between the bandage and its 

backing remained consistent throughout the experiments (Fig. 4.29.a). For the egg trials, 

the experimental conditions were limited to 1 speed setting (0.15 mm/s), 2 frequencies 

(30 and 50 Hz) and 2 amplitudes (100 and 150 µm). Ten shell membrane strips were 

peeled for each setting, and each strip was used only once. 

The experiments were conducted by alternating the order of experimental modes. Each 

strip was peeled continuously for a 60 second period. The measured tool tip force was 

acquired at 1 kHz. The recorded force profile was segmented into two phases based on 

the recorded video as shown on the sample recordings in Fig. 4.29.b: (1) grasping and 

lifting of the membrane edge, (2) delamination of the membrane. For each mode of 

operation, the average and maximum peeling force (Faverage and Fpeak) during the 

delamination (second) phase were analyzed using one-way analysis of variance 

(ANOVA) followed by a t-test assuming unequal variance. Statistical significance was 

defined as p<0.05. 
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Figure 4.29: (a) A single bandage strip was peeled at constant speed (0.15 mm/s) and 

brushed back on several times. The required delamination force leveled off after 

approximately the 10th peel. (b) Sample recordings for 3 different micro-vibratory 

settings: Increasing the micro-vibration amplitude causes larger oscillations in force, the 

micro-vibration frequency correlates with the frequency of oscillations in the peeling 

force. 
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4.3.3.3. Results and Discussion 

4.3.3.3.1. Frequency of Micro-Vibrations 

The variation of delaminating forces with respect to micro-vibration frequency is shown 

in Table 4.5 and Fig. 4.30.a for both phantoms. For Faverage, no statistically significant 

difference was identified between the different frequency settings with a 50 µm 

amplitude (p=0.62). Faverage remained around 5mN and 8 mN respectively for 0.15 mm/s 

and 0.30 mm/s speed settings regardless of the induced micro-vibrations. However, at 

larger amplitudes (100 and 150 µm), the change in force was significant. In the slower 

speed setting, Faverage was minimized at 30 Hz to 4.80 mN and 4.64 mN respectively for 

100 µm and 150 µm vibrations (p<0.05). Doubling the speed changed this profile to a 

monotonically decreasing curve for 100 µm vibrations, but a similar concave trend with a 

minimum (7.19 mN) at 30 Hz appeared for 150 µm vibrations (p<0.05). Faverage for shell 

membranes (20.2 mN) was much larger as compared to bandages (5.02 mN). Introducing 

micro-vibrations with increasing frequency gradually decreased this force, down to 9.02 

mN at 50 Hz. The drop was statistically significant for all settings (p<0.05) except for 30 

Hz vibrations at 100 µm (p=0.24). The change in Faverage combined with the amplitude of 

force fluctuations due to induced vibrations affected Fpeak as well. Peeling bandages with 

10 Hz vibrations resulted in a reduced Fpeak for the slower speed setting. Though for the 

faster peeling case, only 10 Hz and 50 µm vibrations produced this result. In most 

cases—excluding the slower peeling tests with 150 µm vibrations—Fpeak gradually rose 

as the frequency was increased (p<0.05). 
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Figure 4.30: Variation of average peeling force (Faverage) with respect to the (a) frequency and (b) amplitude of micro-vibrations. 

Dotted lines represent the mean, and the shaded region is ±1 standard deviation. Inducing micro-vibrations at an "optimal" frequency 

among the tested cases—at 30 Hz for bandages, and at 50 Hz for the egg shell membranes within the tested frequency interval—

minimized Faverage. The force-frequency trend varied depending upon the peeling speed (0.15 mm/s in blue vs. 0.30 mm/s in striped 

grey) as seen from bandage peeling with 100 µm vibrations. Increasing the amplitude of micro-vibrations lowered Faverage in most 

cases, except for bandage peeling with 50 and 100 µm vibrations at 10 Hz. 
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Table 4.5: Mean and standard deviation of the measured average and peak peeling force for each micro-vibration setting. 

 

 

Number of 

Trials
Amplitude

Peeling Speed = 0.15 mm/s Peeling Speed = 0.30 mm/s

f = 0 Hz f = 10 Hz f = 30 Hz f = 50 Hz f = 0 Hz f = 10 Hz f = 30 Hz f = 50 Hz

B
an

d
ag

es

15 50 µm
F

av
er

ag
e

[m
N

]

5.02 ± 0.19

4.98 ± 0.17 4.96 ± 0.09 4.96 ± 0.10

8.28 ± 0.44

7.96 ± 0.40 8.01 ± 0.44 7.86 ± 0.56

15 100  µm 4.90 ± 0.09 4.80 ± 0.09 4.84 ± 0.06 8.17 ± 0.44 7.88 ± 0.35 7.53 ± 0.48

15 150  µm 4.81 ± 0.07 4.64 ± 0.08 4.76 ± 0.10 7.80 ± 0.55 7.19 ± 0.45 7.42 ± 0.47

15 50 µm

F
p
ea

k
[m

N
]

6.32 ± 0.28

6.07 ± 0.15 6.13 ± 0.21 6.25 ± 0.25

10.86 ± 1.61

10.57 ± 1.46 11.53 ± 1.69 12.04 ± 1.51

15 100  µm 6.05 ± 0.14 7.00 ± 0.26 7.91 ± 0.39 11.48 ± 1.62 14.30 ± 1.93 15.17 ± 2.26

15 150  µm 6.24 ± 0.30 8.12 ± 0.34 8.09 ± 0.42 11.49 ± 1.19 14.92 ± 2.05 17.98 ± 3.06

Eg
gs

10 100 µm

F
av

er
ag

e
[m

N
]

20.24 ± 2.75

— 19.14 ± 3.64 14.58 ± 5.65

10 150  µm — 12.92 ± 3.39 9.02 ± 3.16

10 100 µm

F
p
ea

k
[m

N
]

25.07 ± 3.47

— 28.46 ± 5.04 27.06 ± 7.72

10 150  µm — 23.92 ± 4.01 22.91 ± 4.88
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Figure 4.31: Variation of maximum peeling force (Fpeak) with respect to micro-vibration 

amplitude at different frequencies while peeling bandages with 0.15 mm/s speed. Solid 

lines represent the mean, and the shaded region is ±1 standard deviation. Above 10 Hz, 

the peak force increased with greater micro-vibration amplitude due to larger fluctuations 

in force. 
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4.3.3.3.2. Amplitude of Micro-Vibrations 

The effect of vibration amplitude on Faverage is shown in Fig. 4.30.b. On bandages, 

introducing 50 and 100 µm vibrations did not change Faverage significantly at 10 Hz 

(p=0.13). However, when keeping the frequency at 10 Hz, and increasing the amplitude 

to 150 µm, the force for both speed settings was lowered (p<0.05). At 30 Hz and 50 Hz, a 

common trend was observed in both bandages and eggs: Faverage monotonically decreased 

with larger amplitude. This decay was more significant in shell membrane and faster 

(0.30 mm/s) bandage peeling trials. Despite the inverse relation between the vibration 

amplitude and Faverage, the cost of using larger vibrations is increased force fluctuation, 

which may in fact result in larger Fpeak (Table 4.5). This trend can clearly be seen in 

slower (0.15 mm/s) bandage peeling trials (Fig. 4.31). At 10 Hz trials, no significant 

change in Fpeak can be observed since the reduction in Faverage was greater than the amount 

of force fluctuation even for 150 µm oscillations. However, at 30 and 50 Hz, as the 

vibration amplitude is increased, the drop in Faverage fails to compensate for the resulting 

force fluctuation, producing a larger Fpeak. This implies that the amplitude of micro-
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vibrations cannot simply be maximized to reduce Faverage, but rather requires careful 

tuning to produce a smaller Faverage while keeping Fpeak below dangerous levels. 

4.4 Automatic Tissue Release 

Motorized and sensitized architecture of the micro-forceps enables control of the 

grasping action based on the detected peeling forces. This functionality can be used as a 

safety precaution to automatically release the grasped tissue in case the detected tool-

tissue interaction forces reach a critical level to effectively prevent deleterious force 

transfer to the delicate anatomy, and prevent retinal injuries during vitreoretinal 

procedures. 

The motorized grasping action can normally be controlled via a touch sensor or a linear 

potentiometer located on the robotic or manual tool handle: the distance between the 

grasper tips are linearly proportional to the sensed pressure by the touch sensor, and the 

proportionality constant can be adjusted to accommodate user’s comfort as shown earlier 

in Section 3.2.1.3. In a peeling procedure, using a micro-forceps tool rather than a hook 

provides a firm grasp of the membrane for a more controlled manipulation without 

slippage. However, this also leads to a more rigid tool-tissue coupling and hence a direct 

correlation between tool tip motion and the exerted forces on the retina. In addition, the 

adhesion between the membrane and the retina can vary locally. Adapting to the 

nonuniform tissue properties throughout the peeling process and maintaining the applied 

forces below injurious levels is not trivial. In case rapidly increasing forces are detected 

at a critical level, opening the forceps and releasing the grasped membrane can be an 

effective and simple solution to prevent direct transfer of excessive forces and hence 

damage to the retina. For proper operation, though, the knowledge of critical force levels 
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Figure 4.32: Experimental setup for testing the automatic tissue release feature. (a) 

Micron with the motorized force-sensing micro-forceps was held fixed in a vise while the 

phantom platform with attached bandages was mounted on a linear stage. (b) A bandage 

strip on the phantom was grasped using the micro-forceps, and the phantom was driven 

relative to the tool by actuating the linear stage to perform the peel at constant speed. To 

simulate nonuniform tissue properties, a second layer (shown in orange) was attached 

onto the bandage strip after about the 5th mm. 
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causing retinal injuries is needed, which has not been studied in human eyes yet, mainly 

due to the lack of force-sensitive functional instruments in vitreoretinal practice until this 

time. Earlier experiments using animal models reported that retinal injuries (hyaloid 

detachment and retinal tear) are associated with forces beyond 7.5 mN [29]. Taking this 

as a reference, we programmed our micro-forceps to automatically open and release the 

grasped tissue if the detected tissue manipulation forces reach 7.5 mN. 

We tested our automatic tissue release feature by peeling a nonuniform bandage strip 

using our motorized force-sensing micro-forceps from Section 3.2.1. In the setup shown 

in Fig. 4.32.a, the force-sensing tool is attached to the Micron, and Micron is held 

stationary clamped in a vise. The bandage phantom is placed on a linear stage to be 

driven relative to the micro-forceps at a fixed speed. In our experiments, we adjusted the 

speed of the linear stage to have a peeling rate of 0.15 mm/s, which is within the range 

encountered in an actual ERM peeling procedure. The total length of the bandage strip 
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Figure 4.33: Sensed forces while peeling off a bandage strip at a constant rate (a) without 

and (b) with the automatic tissue release feature. With the automatic tissue release, after 

reaching the double layered segment of the phantom, when the force reaches a critical 

level (dashed red line at 7.5 mN), the forceps jaws are quickly opened (motor 

position=800 µm) to release the tissue and prevent excessive forces. 
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was approximately 9 mm taking around 60 seconds per peel. However, to introduce 

inhomogeneity to peeling properties, after about the 5th mm, an extra second layer (about 

2.5 mm long, marked in orange in Fig. 4.32.b) was attached onto the bandage strip, 

leading to a local change in peeling behavior and emulating a stickier region in case of a 

real ERM peeling. Experiments were performed in 2 sets, each set consisting of 3 trials, 

the first set using the default force-sensing mode and the second set using the automatic 

tissue release mode of our micro-forceps. Results in Fig. 4.33 show that all 3 trials in 

each set output similar performance, indicating a high repeatability of the experiment. 

Without the auto-release feature, the detected forces rapidly increase and go beyond the 

safe level right after reaching the double layered portion of the phantom. When the 

automatic tissue release mode is used, as soon as the force reaches the critical value (7.5 

mN), the jaws are opened by quickly retracting the forceps motor and releasing the 
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bandage. The peel could not be completed in a single grasp in this case, but the transfer 

of forces beyond the safety threshold has been successfully avoided. 

The automatic tissue release mode, may increase the overall operation time, as the 

operator will need to approach the membrane to grasp it again and attempt to peel slower 

each time the tissue is released. Nevertheless, this will ensure the completion of the peel 

without any forces beyond the set safety threshold. Figs. 4.34.a and 4.34.b demonstrate 

the results from two peeling tests on the same bandage phantom, with and without the 

automatic release feature, respectively. Different from the previous trials, in this 

experiment, the phantom was maintained fixed while the micro-forceps tool was moved 

by hand to approach, grasp and peel off the bandage. During the first trial, the user was 

provided with auditory feedback to help maintain the forces below 7.5 mN manually as 

detailed in Section 4.2. Despite the effort, forces exceeding 7.5 mN still appear in Fig. 

4.34.a. When the automatic release feature was used, the forceps let go of the bandage as 

soon as the applied force reached 7.5 mN threshold, which happened 8 times in total, 

mostly while peeling off the double layered sticky segment of the phantom. After each 

release, the bandage had to be grasped again to continue the peel. This caused a slight 

delay, leading to a task completion of 141.96 seconds in comparison to 106.30 seconds 

with the default auditory force feedback mode. However, the applied forces were 

successfully maintained below the safety threshold, 7.5 mN, throughout the peel as 

shown in Fig. 4.34.b. 
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Figure 4.34: Forces measured while peeling the bandage (a) with auditory force feedback 

and (b) with the automatic tissue release feature. With the auditory feedback, its 

challenging to adapt to the changing phantom properties and peel off the double layered 

segment of the bandage while keeping the applied force below the safety threshold 

(dashed red line at 7.5 mN). The automatic tissue release mode prevents forces above the 

threshold, but may lead to longer task completion time since the tissue may need to be 

regrasped multiple times. In this sample trial, 8 releases were recorded during the peel, 

which are marked as red dots (micro-forceps’ motor position=800 µm). 

4.5 Conclusion 

This chapter reported the use of force-sensing tools integrated with two distinct robotic 

platforms, Micron and the Steady-Hand Eye Robot, under various assistance modes to 

limit applied forces during membrane peeling. First contribution of this chapter is the 

implementation and evaluation of an auditory force feedback mechanism, where the 

measured forces were mapped into audio signals to inform the operators, and let them 

adjust their maneuvers and the peeling rate to keep the peeling forces at a safe level. 

When combined with the tremor canceling feature of the robotic platforms, and therefore 

improved precision and control in tool tip motion, experiments using phantoms (bandage 

phantom and ISM of chicken embryo) showed that forces could be maintained mostly 

below a predefined danger level. A performance comparison study between Micron and 

the Steady-Hand Eye Robot with force-sensing tools was performed, where systems 
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provided similar tremor reduction and force limiting success. Use of micro-forceps on 

either robotic platform provided a more controlled manipulation of the tissue with a firm 

grasp and therefore less slippage, which led to a stronger correlation between tool tip 

velocity and applied forcing. The results of our single-user studies in this chapter are 

encouraging and provide the basis for a multi-user study in order to assess the influence 

of various system parameters, and inspect the existence of optimal values for different 

tasks. Performance analyses with both surgeon and non-surgeon users can provide a more 

extensive comparison between the two systems also accounting for ergonomics, 

feasibility, workflow, and the learning curves. 

The second contribution of this chapter is a micro-vibratory modulation method which 

makes use of the firm grasping capability of micro-forceps. Through experiments on 

different types of membranes (bandages and ISM of chicken eggs), it was shown that 

vibrating the tool tip along the peeling trajectory could facilitate membrane delamination 

at a material dependent optimal frequency and amplitude, and reduce the mean peeling 

force. The interaction between the main parameters that influence membrane peeling 

forces: membrane properties, peeling speed, micro-vibration amplitude and frequency 

were described in this chapter, however the viscoelastic mechanisms behind these 

findings have yet to be fully explored. Based upon the identified behavior, an adaptive 

control scheme can be implemented for optimal selection and real-time update of the 

micro-vibration parameters to minimize delamination forces. Before this method can be 

proposed as a clinically feasible assistance option, the effect of micro-vibrations on 

underlying retinal tissues also needs to be critically examined via experiments on live 

tissues and in animal models. 
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The third contribution of this chapter is an automatic tissue release mode that 

demonstrates a potential benefit of motorizing and sensitizing the micro-forceps. 

Experiments have demonstrated that automatically opening the jaws (when the sensed 

forces reach a certain level) and quickly releasing the tissue can effectively keep the 

forces below a predefined threshold. Although it will require multiple grasp attempts to 

catch the membrane edge and complete the peel, which may increase the overall 

operation time, the automatic tissue release feature may be beneficial especially in case of 

highly nonuniform adhesion properties (and sudden variations) across the membrane, 

where the operator is challenged by dynamically adjusting the peel rate. Yet, the 

method’s feasibility needs to be assessed through peeling experiments using 

inhomogeneous phantoms and biological membranes. 
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CHAPTER 5 : FORCE-BASED ROBOTIC ASSISTANCE METHODS FOR 

RETINAL VEIN CANNULATION 

5.1 Introduction 

5.1.1. Background and Motivation 

Retinal vein cannulation is a demanding procedure proposed to treat retinal vein 

occlusion by direct therapeutic agent delivery methods. After the cannula is brought onto 

the occluded vein, it is pushed against the vein wall to pierce through. During this phase 

of the procedure, identifying the moment of venous puncture is critical to stop needle 

penetration in a timely manner – right after piercing through the superficial vessel wall 

and before piercing through the inferior vessel – to avoid double puncturing the vein. In 

addition, after the cannula is placed inside the vein, any unintentional movement, not 

only the higher frequency tremulous components but also the lower frequency drift in 

tool position, needs to be counteracted to maintain the cannula in place for a longer 

period with minimal trauma to the vasculature until the infusion is completed. 

The physiological hand tremor of the vitreoretinal surgeon, which is comparable in 

amplitude to the size of retinal veins, it is hard to accurately aim especially the thin 

branch retinal veins, and to maintain the cannula within the lumen after piercing the vein 

throughout the infusion time. In addition, in contrast to conventional venipuncture, the 

forces in cannulating retinal veins are associated with much smaller forces, which makes 

the event of puncture almost imperceptible to the operator. Challenges in identifying the 

moment of venous puncture, achieving cannulation and maintaining cannulation during 

drug delivery currently limit the feasibility of the procedure. In this chapter, we respond to 

these problems with assistive systems combining robotic manipulators, either Micron or 
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the Steady-Hand Eye Robot, with a force-sensing microneedle. The aim is to precisely 

detect the moment of venous puncture and maintain the cannula securely inside the vein 

following venous puncture until drug delivery is completed. 

5.1.2. Contributions 

Contributions of this chapter are threefold. By fusing the measured forces at the 

microneedle tip with the available position information from the robotic manipulators, a 

novel method will be developed to capture the instant of venous puncture quickly and 

reliably despite the variable tissue behavior [133]. Second, a new “position-holding 

control mode” will be presented, which adds onto the default “tremor-canceling mode” of 

the robotic systems to fixate needle inside the vein after the event of venous puncture 

[134]. These are to the best of our knowledge, the first assistive RVC systems that can 

detect venous puncture and act automatically. Third, evaluation studies using phantoms 

will be conducted to demonstrate the improvement in the total time the needle could be 

maintained stably inside of the vein, the decrease involuntary movement of the cannula 

after the puncture, and compare the performance of two distinct robotic platforms. 

Credit: Software for the venous puncture detection and automatic position holding were 

developed by Berk Gonenc. Experiments were carried out by Berk Gonenc, veterinary 

surgeon Jeremy Chae, and vitreoretinal surgeon Peter Gehlbach. 
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5.2 Venous Puncture Detection 

5.2.1 Force-Based Method 

5.2.1.1. Algorithm 

In earlier needle puncture studies using rabbit ear veins [51] and CAM of fertilized 

chicken eggs [52], a characteristic force behavior was reported. After the needle tip 

touches the tissue surface, the tool-tissue interaction force gradually rises until a sharp 

drop signaling the entrance of the needle tip into the vein. Our first method aims to 

quickly identify this instant by continually checking the time derivative of forces 

measured by the sensitized microneedle. For this, a custom LabVIEW program was 

developed. During the operation, first, the wavelength information from each FBG 

channel is collected and processed at 1 kHz and transmitted over TCP/IP to the 

LabVIEW environment. Using the calibration matrix, the transverse force at the tool tip 

is obtained. Then, the time derivative of tip force is computed and passed through a 

second-order low-pass filter. The optimal filter parameters (cutoff frequency and 

damping coefficient) are tuned based on measured force profiles in [52] so that the sharp 

oscillations due to measurement noise is filtered properly and the sharp drop in force is 

easily detectable with minimal delay (within 60 ms). When the filtered derivative of force 

turns negative (d|F⃗ needle| dt⁄ < 0), or falls below a certain threshold value (P) that 

distinguishes venipuncture from tool retraction ( d|F⃗ needle| dt⁄ < 𝑃 ), a puncture is 

reported by this algorithm, right after which the operator can be warned via an auditory 

signal or helped with a robotic assistance method to halt needle advancement and 

maintain its position fixed. 
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5.2.1.2. Experiments 

To assess the feasibility of our force-based puncture detection method, vein cannulation 

experiments were performed on the setup shown in Fig. 5.1.a by a non-surgeon subject 

with no prior experience. To simulate the retina and its vasculature, CAM of 12-day-old 

chicken embryos (Fig. 5.1.b) were used due to their similar anatomical features and 

histological properties [46]. The force-sensing microneedle was mounted on Micron, and 

the embedded LEDs on its handle were used for accurate tool tip tracking with the ASAP 

tracker [135]. The hand piece of Micron was fixed on a linear stage for driving the 

microneedle at constant speed into the target vein. 

Before starting the experiment, the eggshell was partially removed to access the inner 

shell membrane (ISM). Then, the ISM was carefully peeled off using fine forceps to 

remove any variability in tests due to ISM thickness, and directly expose CAM. The 

target vessels on CAM were chosen to be within 100-140 µm in diameter using a fine 

fiber (Ø 125 µm) for reference. After identifying the target, the microneedle was aimed 

and driven toward the target vessel using the linear stage at two different speed settings in 

alternating sequence: 0.3 mm/s and 0.5 mm/s. For each speed setting, 8 trials were 

performed. The task in each trial was to cannulate a small vessel and inject air into it 

using an infusion pump (11 Pico Plus Elite, Harvard Apparatus, Holliston, MA). The tip 

forces were monitored and an alarm sound was provided by the system upon sensing a 

puncture event. After hearing the alarm sound, the linear stage was stopped by the 

operator, and air injection was started. The success of vessel puncture and thus of the 

implemented force feedback mechanism, was assessed based on the observation of air 

bubbles flowing inside of the vessel as shown in Fig. 5.1.c. 
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Figure 5.1: (a) Setup for vein cannulation experiments on CAM of 12-day fertilized 

chicken eggs. (b) Using a linear stage, the force-sensing microneedle was driven into the 

target vein on CAM at constant speed while its position was recorded by the ASAP 

tracker. (c) After vein puncture is detected, air injection was started. The success of 

cannulation was assessed based on the observation of air bubbles inside the vein. 

5.2.1.3. Results and Discussion 

Typical results for each speed level are shown in Fig. 5.2.a. In all trials, after the 

microneedle touched the CAM surface, a gradually rising force, thus a positive force 

gradient was observed. At the end of phase (a), the microneedle entered the vessel, which 

caused a sharp drop in the force and a sudden negative gradient triggering the auditory 

feedback mechanism. After the alarm sound, the stage was stopped manually and the 

needle was held in place during phase (b) while the operator started air injection to verify 

successful cannulation. During this time, the force at the tool tip remained at the same 

level. Then, the needle was retracted back while smaller forces in the opposite direction 

were measured at the tool tip.  
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Figure 5.2: (a) A representative cannulation trial from each speed setting. The sharp drop 

in force signifies vessel puncture and generates an alarm to warn the operator. (b,c) Force 

statistics for 8 trials per speed setting. 

Regardless of the speed setting, successful cannulation was achieved in all trials. 

Although the overall force trend remained the same, statistical analyses of all trials 

revealed the effect of linear stage speed on the observed force variation and peak force 

values. As shown in Fig. 5b, the mean rate of change in force during phase (a) was higher 

in 0.5 mm/s setting (0.0027 mN/s) than the 0.3 mm/s setting (0.0019 mN/s) (p=0.0043). 

The mean peak force also increased with higher insertion speed (Fig. 5c), yet this was not 

a statistically significant difference (p=0.588). In both Fig. 5b and 5c, the variation 
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among the tests within each speed setting is mainly due to minor differences between 

embryos and selected vessel diameters. 

5.2.2. Force-and-Position-Based Method: 

5.2.2.1. Algorithm 

The previous study showed the feasibility of identifying the instant of venous puncture 

based on solely the time derivative of measured forces, and alerting the operator via 

auditory feedback. In testing our force-based method, the microneedle was driven into the 

target vein using a linear stage, which provided a unidirectional continuous needle 

motion at a fixed speed. In this case, checking only the time derivative of force was found 

to be sufficient since any force drop during the needle insertion could easily be related to 

a puncture event. Using a linear stage to drive the microneedle though, does not provide 

the necessary dexterity required while working inside a real eye. In cannulating retinal 

veins, either manipulating the tool by hand either manually or with the aid of a robotic 

micromanipulator, it is difficult to guarantee a constant insertion speed. As shown in 

Table 5.1, while pushing the needle against the vein wall, moving the tool slightly slower 

or retracting it before the venipuncture can cause a decline in the force magnitude 

(|F⃗ needle|), which can be misinterpreted still as a puncture event if the sensing system is 

checking only the sign of the exerted force’s time derivative (d|F⃗ needle| dt⁄ < 0). To 

distinguish a venous puncture from retraction events, a threshold value (P) needs to be 

specified such that only a sufficiently sharp drop in force (d|F⃗ needle| dt⁄ < P) will be 

reported as a venous puncture. Identifying a proper threshold though requires careful 

tuning [48,136] and may differ depending on the local mechanistic properties of the 
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inhomogeneous retinal tissue as well as the operator’s skill level. On the contrary, 

keeping track of both the force and position of the tool tip can give a more generalized 

and reliable prediction of the venous puncture without having to worry about the force 

derivative threshold. 

Table 5.1: Variation of tool tip force and position before and at the instant of puncture. 

 

Venous puncture is an event associated with a sharp drop in force while the needle is 

moving into the vein, which distinguishes it from a retraction event where the needle is 

moved away from the tissue. After the needle tip touches the vein wall, pushing it in will 

gradually deform the tissue and generate an increasing force at the needle tip. In contrast, 

retracting the needle backward will relax the tissue and therefore decrease the interaction 

force. Therefore, as long as the vein is not pierced, the law of action-reaction requires that 

the time derivative of the sensed tool tip force (dF⃗ needle dt⁄ ) and the velocity of the tool 

tip (dp⃗ needle dt⁄ ) always oppose directions; hence, the inner product of these two vectors 

is normally negative. Upon piercing the vein, however, this rule is reversed as the force 

variation vector (dF⃗ needle dt⁄ ) instantly flips its orientation and points in the same 

direction as the velocity vector. Therefore, the venous puncture can be detected by 

continually checking the sign of the inner product of the force variation and velocity 
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vectors, which will spike up to some positive value at the instant of venous puncture 

(dF⃗ needle dt⁄ ∙ dp⃗ needle dt⁄  0). Since our microneedle is bent 45° relative to the tool 

shaft, the insertion will induce mostly transverse (negligible axial) forces at the tool tip. 

Thus, although the force sensing properties of the microneedle are limited to only two 

dimensions (Fneedle
x  and Fneedle

y
), puncture of the vein can still be captured effectively by 

taking dFneedle
z /dt = 0. 

5.2.2.2. Experiments 

The setup shown in Fig. 5.3 was designed to replicate the main challenges of RVC, and 

as a very consistent platform to enable extensive testing. To simulate the retina and its 

vasculature, CAM is an anatomically similar model in both scale and the composition of 

structure and morphology [46]. However, using CAM, the number of trials for each test 

case remains limited, and it is hard to guarantee phantom consistency throughout the 

trials due to slight differences in the size of cannulated veins, and the anatomical 

variation between the eggs. To simulate the vein wall with consistent mechanical 

behavior, we created an artificial phantom with a thin membranous layer by stretching a 

vinyl layer (analogous to the polydimethyl siloxane sheet used in [68]) onto an acrylic 

insert with laser cut slots. The channels (1 mm wide) were cut much larger than the 

typical diameter of retinal veins to leave room for membrane deformation and 

unintentional drift of the operator’s hand without letting the needle tip contact the acrylic 

surface, and were made small enough to create support for the vinyl membrane’s surface 

tension. 
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Figure 5.3: Experimental setup for cannulation experiments using an artificial phantom. 

(a) Stretched vinyl membranes simulating the vein walls were punctured using the force-

sensing micro-needle under an ophthalmic microscope. (b) An acrylic insert with 

channels (1mm wide) was used to tension the vinyl layer. The phantom was placed inside 

a container filled with balanced salt solution (BSS). To approach the channels on the 

phantom, the needle was inserted through the trocar on the movable (as shown with red 

arrows) sclerotomy port. A digital microscope was used to monitor the operational area 

from the side and assess the moment of puncture: (c) before puncture, (d) after puncture. 

Previous studies showed that the applied force while cannulating retinal veins can range 

anywhere from 5 mN to 35 mN depending on the angle of approach, the needle tip bevel, 

and the vein size [52]. The width of the acrylic insert in our phantom determines how 

stretched the vinyl membrane is, which affects the force required to pierce the membrane. 

The dimensions in the current setup produces a tension such that the piercing force varies 

within 5-15 mN. Fig. 5.4 shows the measured forces during 10 consecutive punctures at 

different locations on the phantom. Accordingly, the peak force (min: 7.72 mN, max: 

13.48 mN) and rate of force drop at the instant of piercing the membrane (min: -35.21 

mN/s, max: -8.73 mN/s) vary. The difference between punctures can be attributed to the 

slight discrepancies in the local surface tension of the membrane, variations in approach 

angle and insertion speed. 
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Figure 5.4: Measured forces during 20 consecutive punctures on the stretched vinyl 

membrane phantom. Grey zones correspond to the needle insertion phase while the white 

regions are for the retraction of the needle after puncture. During the insertion phase, 

most of the forces are along the needle axis (y-axis of the tool), with minor side load 

(Fx<5 mN). The peak force before puncture ranges from 7.72 mN to 13.48 mN as the 

stretch of the phantom was adjusted targeting a range of 8-15 mN. The rate of force drop 

at the instant of piercing the membrane (marked with red dots in the lower plot) vary with 

a minimum of -35.21 mN/s and maximum of -8.73 mN/s for this set of trials. 

The phantom was placed inside a container, which was filled with balanced salt solution 

(BSS) to emulate the aqueous environment inside the eye after vitrectomy. A white 

silicone port (fabricated as outlined in [113]) was mounted above the phantom to 

simulate the sclera. To reach the phantom surface, the needle is first passed through the 

trocar on the silicone port. Analogous to the movable eyeball while manipulating the 

tools during surgery, the silicone port is not a hard constraint but can be rotated and 

translated as shown in Fig. 5.3.b. Experiments were performed under an ophthalmic 

microscope (OPMI Lumera, Zeiss), providing only the top view of the phantoms. For 

analysis of collected data, a side view of the operation side (Fig. 5.3.c-d) was recorded 

using a digital microscope (USB2-Micro-200X, Plugable Technologies). 

Using the force-sensing microneedle in combination with a handheld micromanipulator 

(Micron), the phantom was punctured several times at different locations. The experiment 
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was performed by 2 subjects with differing skill and experience: (1) a non-surgeon with 5 

years of experience on the robotic system but with no prior cannulation experience, (2) an 

ophthalmology fellow with moderate cannulation experience and 2 hours of training on 

the robotic system. To prevent significant performance degradation in time due to fatigue, 

tests were completed in 3 periods, each period involving a total of 8 trials, with a 10-

minute break between the periods. Similar to the procedural flow in RVC, the task in 

experiments was to puncture the vinyl membrane by moving the microneedle almost 

entirely laterally (in the direction the needle tip is pointing), and as slowly as possible 

without retracting the instrument before the puncture. After piercing the membrane – as 

observed from the side view of the operation site monitored by the digital microscope – 

the users were informed via auditory feedback, after which they tried to maintain the 

needle fixed for the following 45 seconds. Since each puncture causes the membrane to 

lose its tension locally, every new trial was done at a sufficiently distant location from the 

previous puncture point. 

During the experiments, the Bragg wavelength of each FBG sensor was acquired using an 

optical sensing interrogator (sm130-700, Micron Optics Inc., Atlanta, GA) and the tool-

tissue interaction forces were computed at 1 kHz. Similarly, the needle tip position was 

monitored using the ASAP tracker of the Micron system at 1 kHz. After completing the 

trials, the exact timing of each puncture was identified from the video recorded by the 

side-view digital microscope. The recorded forces and tool tip position were used to test 

the feasibility of the force-and-position-based puncture detection method, and compare 

its performance to the force-based technique. 
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5.2.2.3. Results and Discussion 

As shown in Fig. 5.4 earlier, the rate of force drop upon piercing the membrane can vary 

significantly between trials even for the same user, depending on the local surface tension 

of the membrane, the insertion speed of the needle and the approach angle between the 

needle tip and membrane surface. In addition, there may be differences between the 

users. This makes it quite challenging to define a generalized threshold for detecting 

every puncture using the force-based method. 

The recorded force characteristics for each user and the performance of the developed 

puncture detection methods are summarized in Table 5.2. In addition, sample 

measurements from each user are presented in Fig. 5.5. The exerted forces by the first 

user involve force drops ranging from -119.10 mN/s to -49.23 mN/s. On the other hand, 

the second user’s data reveals a wider range from -141.20 mN/s to -19.67 mN/s. Using 

the force-based method from the previous section, if the first subject’s data is taken as the 

basis for puncture detection (d|F⃗ needle| dt⁄ = −49.23 mN/s, the black dashed line in 

Fig. 5.5), then the first user’s all punctures can be accurately identified with only 2 trials 

involving a faulty detection after the actual puncture (false positives), which can be 

attributed to the involuntary movements and resulting force oscillations while trying to 

maintain the needle inside the membrane after the puncture. Despite the good results for 

the first user, this threshold is not appropriate for the second user’s performance as one 

third of the punctures, which have softer force drops, will be missed. The trial shown in 

Fig. 5.5.b exemplifies this issue, where the puncture leads to a force drop of 

d|F⃗ needle| dt⁄ = −45.51 mN/s , and the threshold indicated by the dashed black line 

(d|F⃗ needle| dt⁄ = −49.23 mN/s) does not intersect the force variation profile failing to 
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detect the puncture. To remedy, if the threshold is set to a higher value (d|F⃗ needle| dt⁄ =

−19.67 mN/s), then all punctures for both users can be accurately sensed. Though 

among the 24 trials, in 3 of the trials in the second user’s performance, due to a 

momentary retraction of the needle before the actual puncture, the force profile follows a 

fluctuating trend rather than a steady rise, causing a faster force drop than the threshold 

value. This causes the force-based method with the elevated threshold to misinterpret 

these instances as puncture events. The sample trial shown in Fig. 5.5.b illustrates one 

such case, where the blue dashed threshold (d|F⃗ needle| dt⁄ = −19.67 mN/s) intersects 

the force profile before the actual puncture due to the momentary retraction of the needle 

as evident from the trajectory plots. The retraction causes a force drop of d|F⃗ needle| dt⁄ =

−36.76 mN/s, which is under -19.67 mN/s and hence reported as a puncture by the 

force-based method. In addition, the elevated threshold triggers several false positives 

due to involuntary tool motion and rapidly fluctuating forces after the puncture for both 

users (in %83 of the trials for the first user, and %63 of the trials for the second user). 

In contrast to the force-based method, monitoring the inner product of force variation and 

tool tip velocity gives a much clearer image, and helps with distinguishing between 

needle retraction and puncture events. As shown in the sample data for each user in Fig. 

5.5, the puncture leads to sharp positive peak in the product. Although the value of this 

peak can vary between users and trials, since the rest of variations in force and position 

lead to negative oscillations, the puncture, as the only prominent positive peak, remains 

very clear. As a result, using the force-and-position-based method, all punctures can be 

precisely detected for both users without any false positives before the actual puncture. 

This method performs satisfactorily as long as the filtered force and velocity information 



 167 

accurately describe the tool-tissue interactions. On the contrary, in the presence of rapid 

changes the method can still lead to erroneous detection of punctures. After the actual 

puncture, while trying to compensate the user’s drift and maintain the needle fixed in 

place, the micromanipulator can run out of its workspace (limited to 0.5 mm along each 

axis), which leaves no range to cancel user’s hand tremor. In this case, due to the 

tremulous tool motion and the complicated interactions while the tip is inside the 

membrane, the method will fail and report several faulty punctures. In terms of the faulty 

detections after the puncture, the force-based method with the lower threshold seems to 

have the best performance (Table 5.2), though it has the risk of failing to detect the actual 

puncture – only %67 of the actual punctures were detected for the second user. The force-

and-position-based method can identify all the actual punctures for both users, and 

meanwhile provides much less frequent false detection after the puncture (46% and 50% 

of trials for users 1 and 2 respectively) in comparison to what the force-based method 

with the elevated threshold causes (83% and 63% of trials for users 1 and 2 respectively). 

The rate of false detections after the puncture These false positives can presumably be 

avoided by tuning the parameters of the low-pass filters on the velocity and force signals. 

However, this is not preferable as it would also induce a delay in predicting the actual 

puncture, and since for practical purposes, identifying the initial puncture precisely in a 

timely manner is of utmost importance. Without any false positives before the actual 

puncture and with a full detection rate of the actual puncture, the force-and-position 

based method has shown feasibility in predicting the instant of puncture quickly (within 

90 ms) with less dependence on local mechanical properties of the phantom and the 

user’s performance. 
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Figure 5.5: Measurements from a sample trial for each user: needle tip force (Fx in grey, 

Fy in red), needle tip position (x in grey, y in red, z in black), the variation of force 

( d|F⃗ needle| dt⁄ ) and the inner product of tool velocity and variation of force 

(dF⃗ needle dt⁄ ∙ dp⃗ needle dt⁄ ). The timing of the actual puncture in each trial is marked 

with a green dashed line. (a) Data for the first user: The elevated threshold (the dashed 

blue line at d|F⃗ needle| dt⁄ = −19.67 mN/s) may intersect the time derivative of force 

multiple times, and may trigger faulty detections after the actual puncture. (b) Data for 

the second user: The low threshold (the dashed black line at d|F⃗ needle| dt⁄ =

−49.63 mN/s) fails to intersect the force variation curve while the elevated threshold 

intersects it twice, leading to a faulty detection before the actual puncture using the force-

based method. In both trials, the inner product of the force variation and tool velocity 

clearly displays the instant of actual puncture with a prominent positive peak. The force-

and-position-based method, relying on the inner product value, is able to distinguish the 

event of puncture. 

 

User 1 User 2

Threshold= -49.23 mN/s
Threshold= -19.67 mN/s

Actual Puncture Actual Puncture

Fx, Fy Fx, Fy

a b

x, y, z x, y, z



 169 

Table 5.2: Puncture detection rates with the force-based versus the force-and-position-

based methods for two users with differing skill and experience (n=24 trials per user). 

 

5.3 Automatic Position Holding 

Following venous puncture, the operator needs to maintain the needle tip inside the vein 

throughout the infusion. This can take up to 2 minutes or even longer [20]. Given the 

fragility and small size of retinal veins, the physiological hand tremor and unintentional 

drift of user’s hand during the manual operation, it is very challenging to quickly stop 

needle insertion right after venous puncture is detected and hold it fixed for a prolonged 

injection. Robotic assistants can attenuate high-frequency components of involuntary 

motion, such as surgeon's physiological hand tremor, which is beneficial for accurately 

positioning the needle tip on the target vein before puncture. However, they remain 

insufficient for identifying the instant of venous puncture or eliminating the low-

frequency drift of the cannula after the puncture. To promote longer intravenous stability 

of the cannula for a longer period, this section uses the force-and-position-based puncture 

detection method from Section 5.2 and focuses on altering the operation modes of both 

Micron and the Steady-Hand Eye Robot (SHER) as shown in Table 5.3. 

5.3.1 Algorithm 

Micron normally operates in "Tremor Canceling Mode" (TCM), which attenuates 

physiological hand tremor by continually tracking the tool handle motion via its ASAP 

trackers, filtering it to compute a goal position for the tool tip, and using its actuators to 

Puncture 

Criterion

Force-Based Method Force-and-Position-Based Method

         
  

< −  .      / 
         

  
< −  .      / 

         
  

 
        
  

  

Detected the 

Actual Puncture

False Detection 

Before Puncture

False Detection 

After Puncture

Detected the 

Actual Puncture

False Detection 

Before Puncture

False Detection 

After Puncture

Detected the 

Actual Puncture

False Detection 

Before Puncture

False Detection 

After Puncture

User 1 100% 0% 8% 100% 0% 83% 100% 0% 46%

User 2 67% 0% 17% 88% 13% 63% 100% 0% 50%
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counteract the tremulous components of motion. This is a beneficial feature that enables a 

stable and safer approach to the target vein. Once the needle pierces the vein 

(dF⃗ needle dt⁄ ∙ dp⃗ needle dt⁄  0), the goal of operation changes into fixating the needle at 

the detected puncture position. This can be accomplished by switching Micron’s 

operation mode to a "Position Holding Mode" (PHM) as soon as a puncture is sensed, so 

that the goal position is constantly set to the position detected at the instant of puncture 

(Fig. 5.6). In this mode of operation, even if the user unintentionally moves the Micron 

handle, Micron deflects its tip to actively compensate any (both high and low frequency) 

motion so that the tip is held fixed right at the puncture point. This active position holding 

mode is functional within the limits of Micron's actuators (within a sphere of ~0.5 mm 

radius). Deviating from the puncture point beyond these limits will saturate the actuators, 

and thus may not be compensated. The operator still maintains the gross positioning 

control while Micron makes fine adjustments to fixate the tool tip. In this way, Micron 

actuation can be overridden if needed, in case the needle needs to be quickly removed 

from the tissue. 

On the other hand, SHER normally operates in a "Cooperative Control Mode" (CCM), 

where the robot complies proportional to the user forcing. Upon venous puncture, the 

mode can be altered into a PHM similar to Micron by setting the controller admittance 

gain to zero (K=0) so that the needle is held fixed (unless the operator wants to disable 

the mode via a foot pedal, which was implemented as a safety measure). On both 

systems, when the PHM is activated, the user is informed of the venous puncture via 

auditory feedback to signal the right time to start injecting the medicine. 
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Table 5.3: Operation mode regulation for Micron and the Steady-Hand Eye Robot 

(SHER). 

 

 

Figure 5.6: The control scheme of the integrated system for Micron. The time derivative 

of needle position and force are computed and filtered. The inner product of the two turns 

positive at the event of vein puncture. When puncture is detected (1) the operator is 

informed with an alarm sound, and (2) Micron operation mode is switched from default 

"only tremor canceling" to "active position holding". 

5.3.2. Experiment 1: A Multi-User System Evaluation 

5.3.2.1. Setup and Procedure 

We performed an experimental study to quantify the effects of our system on operator 

performance during simulated cannulation trials using the setup shown in Fig. 5.7. The 

experimental procedures involving human subjects described in this section were 

approved by the Institutional Review Board. 

Condition Puncture? Operation Mode

         
  

 
         
  

 0 No
Tremor Canceling Mode (Micron)

Cooperative-Control Mode (SHER)

         
  

 
         
  

 0 Yes Position Holding Mode
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To emulate the retinal vasculature, the artificial phantom previously described in Section 

5.2.2. was used. The experiments were performed by 3 subjects with differing level of 

skill and experience: (1) a non-surgeon user with 5 years of experience on the robotic 

system but with no prior cannulation experience, (2) an ophthalmology fellow with 

moderate cannulation experience and 2 hours of training on the robotic system, and (3) an 

expert vitreoretinal surgeon with 1 hour of training on the robotic system. The task in each 

experiment was to approach the phantom submerged in the BSS solution, and puncture the 

vinyl membrane by moving the microneedle almost entirely laterally, in the direction the 

needle tip is pointing, and hold the needle fixed for 45 seconds after the event of puncture. 

 

Figure 5.7: Experimental setup. (a) An ophthalmic microscope was used to monitor the 

operation site, and the optical sensing interrogator acquired the readings from the force-

sensing microneedle. (b) Trials were done on the vinyl phantom submerged in BSS. (c) 

The experimental task was to approach the vinyl membrane inserting the force-sensing 

micro-needle through the sclerotomy port, puncture it which is detected by the force-and 

position-based method, and maintain it fixed during the following 45 seconds. 

Two cases were experimented by altering the operation mode of Micron: (1) only tremor 

canceling mode (TCM), and (2) automatic position holding mode (PHM). In either case, 

the force-and-position-based puncture detection method from Section 5.2.2 was used, and 

the operator was informed upon the puncture via auditory feedback. The needle trajectory 

after this instant was recorded for analysis. To prevent significant performance 
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Wrist Resta cb
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degradation in time due to fatigue, tests were completed in 3 periods, each period 

involving a total of 8 trials (4 trials per case), with a 10-minute break between the periods. 

During the trials, Micron mode was altered between TCM and PHM in random order. 

Since each puncture on the phantom causes the membrane to lose its tension locally, every 

new trial was done at a sufficiently distant location from the previous puncture. 

Performance assessment was based upon the recorded deviation from the point of 

puncture. Analyses were done using one-way analysis of variance (ANOVA) followed by 

a t-test assuming unequal variance. Statistical significance was defined as p<0.05. 

5.3.2.2. Results and Discussion 

Sample measurements from trials with TCM and with PHM for the first subject are 

shown in Fig. 5.8. In these trials, after the microneedle touches the membrane surface 

(the simulated vein wall), a gradual rise in force is observed. Most of the forces are 

exerted along the y-axis (all the measured x-axis forces remain under 5 mN) since the 

insertion is performed by moving the tool mostly laterally along the needle axis (y-axis) 

(Fig. 5b). In both trials, the puncture is detected based on the sharp positive peak in the 

inner product of needle velocity and force variation vectors (Fig. 5.8.c). Throughout the 

45-second period following this instant, the difference in tool tip travel between TCM 

and PHM trials is clearly visible in Fig. 5.8.b. In TCM, all components of the position 

vector fluctuate, especially the z-component due to operator's poor depth perception with 

the provided 2D microscope view. Using PHM, the tool motion after the puncture is 

significantly lowered. The reduced deviation from the puncture point with PHM can 

clearly be seen in Fig. 5.8.d, which includes the needle tip trajectories recorded during 3 

sample trials of each operation mode for the first user.  
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Figure 5.8: Typical measurements taken during trials of the first user using the tremor 

canceling (blue) and automatic position holding (red) features of the system. (a) Forces 

on the needle: mostly along the y-axis with a gradual rise during insertion and a sharp 

drop at the instant of puncture. (b) Position of the needle remains fixed with the position 

holding mode in contrast to the fluctuations with only tremor canceling. (c) The event of 

puncture: a positive peak in the inner product of needle velocity and force variation 

vectors. (d) Recorded needle tip trajectories for 3 representative trials of each mode. 

Position holding mode significantly reduced tool tip deviation from the puncture point. 

The characteristics observed at the instant of puncture during the 24 trials for each user 

are summarized in Table 5.4. Accordingly, the puncture forces for all users lie mostly 



 175 

within the range that the phantom was developed for (5-15 mN), as detailed in Section 

5.2.2.2. The mean value of the puncture force did not vary depending on the mode of 

operation (TCM or PHM), revealing no statistically significant difference (p=0.83) between the 

mechanical behavior of membranes used in either test case. Furthermore, no statistically significant 

difference could be identified between the mean puncture forces of the three users 

(p=0.12). The forces for the first user (F = 10.46 ± 1.70 mN), with extensive training on 

both the robotic system and the phantom, show the lowest deviation throughout the trials. 

Similar consistency is also observed in the surgeon’s (user 3) performance (F = 8.74 ± 

1.70 mN). The rate of force drop associated with the event of puncture differs 

significantly among the users (-49.48 ± 15.75 mN/s for user 1, -67.47 ± 34.35 mN/s for 

user 2, -51.37 ± 16.06 mN/s for user 3, and p=0.019). Therefore, to detect puncture, the 

force-based method would require separate tuning for each user. Using the force-and-

position based method, the instant of puncture, which produced a clearly visible positive 

spike (8.75x103 – 7.21x105 mN.µm/s2) in the normally negative inner product of tool 

velocity and force variation, was detected precisely in all trials. 

Table 5.4: Force characteristics associated with the instant of puncture for three different 

users (n=24 trials/user). 

 

To assess the ability to maintain cannulation in veins of different sizes, using the 

measured tool tip position throughout the entire hold period (45 seconds), we computed 

the time spent inside five different zones of varying distance from the puncture point 

        
         

  
    ⁄

         
  

 
        
  

   .     ⁄

MEAN STD. MIN. MAX. MEAN STD. MIN. MAX. MEAN STD. MIN. MAX.

User 1 10.46 1.70 7.68 12.09 -49.48 15.75 -78.31 -26.14 7.08x104 4.18x104 1.53x104 1.34x105

User 2 11.66 6.90 4.55 22.45 -67.47 34.35 -141.20 -19.67 2.07x105 1.61x105 8.75x103 7.21x105

User 3 8.74 1.70 6.51 13.02 -51.37 16.06 -89.21 -29.83 8.17x104 4.53x104 2.62x104 1.69x105
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(Fig. 5.8.d). The size of each zone was chosen to represent a vein diameter, and was 

decided based upon the typical sizes of retinal vasculature (Ø 100-500 µm). In RVC, 

since both the vasculature and the microneedle are elastic, going beyond the borders of 

these zones does not necessarily mean that the needle will get out of the vein; instead, the 

needle will flex and the tissue will deform to some extent. The deviation from the 

puncture point, therefore, is a measure of the trauma that would have been induced on the 

vasculature in a clinical scenario. The results in Fig. 5.9 show that, compared with the 

TCM trials, using the PHM enabled all the users to maintain the tip within each zone for 

a significantly longer period (p<0.05). For instance, for the first user, who is the most 

experienced subject in using Micron and the phantom, the average time that the tip was 

maintained within a 100 µm distance from the puncture point was measured to be only 

5.41 seconds with TCM; and in none of the 12 TCM trials could this duration exceed 40 

seconds. In contrast, upon using PHM, the mean time was raised to 13.27 seconds, with 2 

trials reaching a hold time over 40 seconds. Similar performance improvement with PHM 

was observed in the 200 and 300 µm zones. For the 400 and 500 µm zones, in terms of 

the average time maintained inside, no statistically significant difference between TCM 

and PHM could be identified for the first user (p=0.07 for 400 µm, p=0.26 for 500 µm). 

However, even for the 500 µm zone, where the performance of TCM and PHM is closest, 

the number of trials with successful "in-zone" hold time over 40 seconds was still 50% 

greater in PHM than TCM.  
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Figure 5.9: The total time that the needle tip was maintained inside various sizes of zones 

around the puncture point using the TCM (in blue) versus the PHM (in orange) features. 

The solid bars show the mean, and the error bars represent the maximum values. The 

active position holding helps in maintaining the needle tip inside the vein for a 

significantly longer time, especially for veins smaller than 300 µm. 

The length of stay within each zone for all users with the TCM versus the PHM are 

compared in Fig. 5.10. In contrast to the first user, the limited training that both user 2 

(ophthalmology fellow) and user 3 (vitreoretinal surgeon) received on the robotic system 

is a factor affecting their performance. Despite that, with TCM, the third user could still 

maintain the needle inside the smallest zone (100 µm) for the longest time (8.47 seconds 

on the average) among others. As the zone size increases, the average time spent inside 

the zone grows for all users, following a different trend for each – with almost a constant 

rate for user 1, and with increasing rates for users 2 and 3. Nevertheless, the durations 

measured for all users, especially within the smaller zones, are far from being feasible to 
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do prolonged infusions in RVC. When PHM is used, the average time spent in each zone 

is significantly improved for all subjects (p<0.05). This shows that the PHM is helpful in 

keeping the needle close to the point of puncture for longer periods. For instance, user 3 

could maintain the needle within 300 µm around the point of puncture for an average of 

only 14.43 seconds with the TCM, whereas with the aid of PHM this period was almost 

doubled up to an average of 27.92 seconds. For the largest zone (500 µm), all subjects 

exhibited almost identical performance using the PHM; the surgeon’s average time inside 

the zone (44.19 seconds) equaled almost the full test period. 

 

Figure 5.10: The performance of each user in maintaining the needle around the point of 

puncture (zone size=distance from the puncture point). User 1 is a non-surgeon with 

extensive experience on the robotic system. Users 2 and 3 are, respectively, an 

ophthalmology fellow and an expert vitreoretinal surgeon with some training on the 

robotic system. The solid bars show the mean, and the error bars represent the maximum 

and minimum values. The automatic position holding mode aids in maintaining the 

needle close to the puncture point for a longer period for all users. 

If the length of stay in each zone is analyzed with respect to the total length of the hold 

period, a significant improvement is observed for all users as shown in Fig. 5.11. The 

ideal line in these plots corresponds to keeping the needle inside the zone for the full hold 

period. For the smallest zone, user 3 among the other subjects is closest to reaching this 

goal with the TCM (shown in blue). Using the PHM (shown in orange), the improved 
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performance of user 1, is brought up to a similar level, while for user 2, TCM remains 

ineffective in bringing the tip within 100 µm from the puncture point. This can be 

attributed to the limited motion range of the micromanipulator – Micron can correct 

erroneous movement up to 500 µm along each axis while user 2 movements average over 

700 µm, which will be analyzed in detail as a second performance metric. For bigger 

zones, the plots with PHM are above the plots with TCM, closer to the ideal line; using 

PHM all users can hold the needle within 500 µm from the puncture point during almost 

the entire hold period.  

Our second performance metric is based on the range of needle tip motion after the 

puncture—which needs to be minimized to reduce trauma—as a function of the hold 

time. For this, we analyzed the tip deviation during the first 15, 30 and 45 seconds after 

the puncture for each user. The results are shown in Fig. 5.12. Accordingly, an almost 

linear rise is observed in the maximum and mean deviation from the puncture point as the 

needle is held for longer periods for all users. This rise was inevitable, regardless of 

whether TCM or PHM was used. Nevertheless, for all hold times, when PHM was used, 

both the mean and the maximum distance from the puncture point was significantly 

lowered for all users (p<0.05). In case of a 15-second hold time for instance, the mean 

deviation from the puncture point for the first subject was reduced by more than 65% 

(from 276.18 µm to 90.34 µm). The decay was similar for the 30 and 45-second hold 

periods. The mean deviation from the puncture point during a 45-second hold exceeded 

350 µm with the TCM, whereas the PHM lowered it to below 200 µm for user 1. 

Similarly, for the second and third users, the mean drift after the puncture was reduced 

from 854.98 µm to 553.06 µm and from 812.06 µm to 412.32 µm, respectively. These 
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results show that the automatic position holding is an essential feature that can potentially 

enable the cannulation of smaller veins, and provide an extended period of intravenous 

cannula stability, and thereby allow sustained periods of drug delivery at tolerable 

pressures. 

 

Figure 5.11: The variation of time that the needle is maintained in different zones as a 

function of the hold duration for each user using the TCM (blue) vs. the PHM (orange). 

The ideal line (dashed grey) corresponds to keeping the needle inside the zone throughout 

the entire hold period. The performance of each user is closer to the ideal line when the 

PHM is used. 
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Figure 5.12: Deviation from the puncture point vs. the hold time for each user. The solid 

bars show the mean distance from the puncture point, and the error bars represent the 

maximum values. A longer hold time causes the needle to move away from the puncture 

point more. The automatic position holding mode significantly helps in keeping the 

needle tip proximal to the puncture point. 

5.3.3. Experiment 2: A Performance Comparison Between Micron and the Steady-Hand 

Eye Robot 

5.3.3.1. Setup and Procedure 

We performed a series of cannulation experiments to comparatively evaluate the 

performance of Micron and SHER with the developed microneedle, puncture detection 

method and automatic position holding features using the setups shown in Fig. 5.13.a and 

5.13.b respectively. The experimental procedures involving human subjects described in 

this section were approved by the Institutional Review Board. 

To closely replicate the vein cannulation procedure in vitro, we developed an artificial 

phantom platform similar to the one used in sections 5.2.2.2 and 5.3.2.1, which is an 

acrylic plate with 18 circular holes covered by a thin, uniformly stretched vinyl layer 

emulating the retinal vein walls. The diameter of the holes on the plate is 2.5 mm, small 

enough to create the support for the vinyl membrane’s tension while leaving sufficient 
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space for the user to perform several cannulations. The phantom was fixed on a light pad 

to clearly visualize the membrane under a digital microscope. The microscope view was 

displayed on a monitor providing only the top view of the phantom. 

 

Figure 5.13: The experimental setup for evaluating the performance of (a) Micron and (b) 

SHER on an artificial phantom. Stretched vinyl membranes, simulating the vein walls, 

were punctured open-sky using the force-sensing microneedle. 

Tests were done by a non-surgeon subject with no prior cannulation experience, but with 

extensive training on both Micron and SHER systems. The task in each trial was to 

puncture the vinyl membrane by moving the microneedle almost entirely laterally, in the 

direction the needle tip is pointing, and hold the needle fixed for 45 seconds after the event 

of puncture. 

Using Micron, two cases were experimented: only TCM, and with PHM. On SHER side, 

three cases were explored: only CCM with low gains (K=2 mm/N.s), only CCM with high 

gains (K=20 mm/N.s), and with PHM. 12 trials were completed for each case. In order to 

prevent significant performance degradation in time due to fatigue, tests were completed 

in 3 periods, each period involving a total of 8 trials for Micron and 12 trials for SHER (4 
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trials per case), with a 10-minute break between the periods. During the trials, the 

operation mode was altered in random order for either robotic system. To preserve the 

membrane’s surface tension at a similar level between trials, a new hole on the phantom 

was used for each trial. 

A detailed performance assessment on Micron trials was reported earlier in the previous 

section. In this experimental study, the focus is more on the evaluation of the SHER 

system and comparison of its performance with our earlier findings on Micron. We assess 

the performance based upon the recorded deviation from the point of puncture, which 

would be highly correlated to the trauma on the cannulated vasculature in a clinical 

scenario. Analyses are done by a t-test assuming unequal variance. Statistical significance 

is based on p<0.05. 

5.3.3.2. Results and Discussion 

Typical measurements taken from a representative trial for each test case is shown in 

Figs. 5.14 and 5.15. Until the puncture, the force is observed to rise gradually as a 

common trend between the two figures. What is different though is the variations after 

the puncture. In Fig. 5.14, the position measurements fluctuate when the default mode of 

each robotic system is used. Using the developed position holding feature, as shown in 

Fig. 5.15, leads to less movement after the puncture. For performance comparison, 

between the different operation modes and robotic platforms, we evaluated the range of 

deviation from the puncture point as a function of the hold time, analyzing the acquired 

needle tip position data during the first 15, 30 and 45 seconds after the puncture. 



 184 

 

Figure 5.14: Sample measurements from the trials using the default modes of two robotic 

platforms: Active tremor canceling mode of Micron (blue), and cooperative control of 

SHER (red). Large deviations from the puncture point are observed in both systems. 

Modulating the controller gains on the SHER system does not lead to a significant 

improvement in terms of reducing the needle movement after the puncture. 

5.3.3.2.1. CCM Gain Modulation for SHER 

In CCM of SHER, using higher controller gains is beneficial in manipulating the tool 

faster, saves operational time and results in less fatigue on the operator's hand. On the 

other hand, using low controller gains provides a slower and safer motion if the tool tip is 

moving close to critical anatomical features, which is important while approaching the 

target vein. After the needle tip punctures the simulated vein wall, results in Fig. 5.16.a 

show that with the low controller gains, the deviation from the puncture point is 

459.50±181.54 µm during the first 15 seconds. This rises to 668.54±252.69 µm for the 

full experiment period of 45 seconds. When the controller gains are increased, resulting 

in a more freely moving system similar to a handheld tool, slightly less deviation, 
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341.95±75.04 µm, is observed for the first 15 seconds (p<0.05). However, for 45 seconds 

of hold time, the deviation rises to 625.16±280.07 µm, revealing no statistically 

significant difference from the low gain case (p=0.4). Therefore, modulating the 

controller gain does not produce a significant reduction in the involuntary needle motion 

after the puncture, especially for longer hold periods. 

5.3.3.2.2. CCM vs. PHM for SHER 

Shown in Fig. 5.16.b is the comparison between the deviation obtained with regular CCM 

and with PHM. The force-based puncture detection and motion locking in PHM 

significantly reduces the motion after puncture, from 625.16±280.07 µm to 9.68±4.18 µm 

for the full experiment period of 45 seconds. In contrast to the gradually increasing 

deviation in time with CCM, the performance with PHM is not affected from the hold 

time, maintaining it fixed at the same level (p<0.05). 

5.3.3.2.3. Performance Comparison: Micron vs. SHER 

When the two robotic systems are used in their regular operational modes, namely TCM 

for Micron and CCM for SHER, the performance difference observed in the initial 15 

seconds is not statistically significant (p=0.10). However, as shown in Fig. 5.16.c, for 

longer hold times, slightly more deviation from the puncture point is observed with 

SHER (489.76±189.78 µm for 30 s and 625.16±280.07 µm for 45 s) than with Micron 

(328.86±134.19 µm for 30 s and 367.32±113.57 µm for 45 s) (p<0.05). Upon using PHM 

on both systems (Fig. 5.16.d), an opposite trend is obtained with the SHER providing 

significantly less deviation regardless of the hold time (p<0.05). Micron can attenuate the 

undesired motion after puncture by more than 65% (from 276.18 µm to 90.34 µm in case 

of a 15-second hold time for instance). However, due to its small workspace, the range of 



 186 

motion it can compensate is limited (±0.5 mm). If the tool is moved beyond this range 

after the puncture, the actuators will saturate and fail in fixing the needle tip position. 

This is why almost a linear rise in the average deviation is observed for Micron as the 

needle is held for longer periods (Fig. 5.16.d). On the other hand, SHER can stop the 

needle motion right after the puncture and lock the position without any saturation issues. 

This results in an almost 95% reduction in the deviation for all hold periods as compared 

to regular CCM (from 75.04 µm to 4.17 µm during a 15-second hold time). 

 

Figure 5.15: Sample measurements from the trials using the automatic position holding 

modes of two robotic platforms: Micron (blue) and SHER (red). Deviations from the 

puncture point are significantly reduced with Micron, and almost eliminated with SHER. 

Modulating the controller gains on the SHER system does not change the performance. 
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Figure 5.16: Experimental results: Average deviation from the puncture point during the 

initial 15, 30 and 45 seconds after the puncture. The solid bars represent the mean, and 

the error bars show ±1 standard deviation. (a) Changing the controller admittance gain of 

SHER does not create a statistically significant difference. (b) Activating the force-based 

puncture detection and PHM significantly reduces the deviation. (c) When Micron and 

SHER are used in their normal operating modes, TCM and CCM respectively, slightly 

larger deviation is observed in SHER trials. (d)  When Micron and SHER are used with 

puncture detection and PHM, SHER system fixates the needle position better since 

Micron has a smaller workspace and its actuators may saturate. 

5.4 Conclusion 

Retinal vein cannulation (RVC) is a demanding procedure, and its feasibility is currently 

limited by the challenges in identifying the moment of venous puncture, achieving 

cannulation and maintaining cannulation during drug delivery. In this chapter, we 

responded to these problems using the force-sensing microneedle developed in Chapter 3 

in combination with robotic manipulators, Micron and the Steady-Hand Eye Robot, to 

help the operator detect the instant of puncture, and maintain cannulation for a longer 

period by holding the microneedle fixed inside the vein. 

To identify the instant of venous puncture, two methods were explored. The first method 

based on the time derivative of only the tool tip forces required careful tuning of a 

threshold value that distinguishes the puncture from other force drops for each user. The 

second method which made use of both the tool tip force and position information 

together, and monitored the inner product of force variation and tool velocity vectors, 
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revealed a more reliable prediction of the puncture without requiring the adjustment of 

any user-dependent parameters. 

The second contribution of this chapter is an automatic position holding feature which 

was developed to switch from a sole tremor canceling operation to a full motion 

cancellation. After identifying the venous puncture, the robotic system, either Micron or 

SHER, is commanded to hold the cannula fixed at the detected puncture position. Using 

an artificial phantom, we conducted a multi-user study with subjects from three different 

levels of skill and experience evaluating the performance of Micron system with and 

without this new feature. Results showed that the developed puncture detection algorithm 

combined with active positive holding can maintain the needle tip inside the vein for a 

much longer time especially for smaller veins, and that it significantly attenuates the tool 

motion in the vein following venipuncture and cannulation. 

The third contribution of the chapter is a performance comparison study between two 

robotic systems for retinal vein cannulation, Micron and SHER, with or without the aid of 

puncture detection and automatic position holding features. Micron is a compact 

handheld system that feels more like a standard surgical instrument. However, it provides 

a limited workspace. If the motion artifact is beyond a certain level, the actuators saturate 

and the device cannot fully compensate the undesired motion to hold the cannula fixed. 

The SHER system does not have this saturation issue, but it has a larger footprint than the 

Micron system and exerts a higher resistance force on the user’s hand. The sensitivity and 

feel of this robot can be altered by modulating the gains on the cooperative controller. 

Our experiments have shown however that modulating the admittance control gain of 

SHER alone is not a very effective solution for preventing the undesired tool motion after 
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venous puncture. Nevertheless, after using puncture detection and automatic position 

holding, the deviation from the puncture point was significantly reduced, by 65% with 

Micron, and by 95% with SHER representing a potential advantage over freehand for 

both. 

The evaluation studies presented in this chapter is based upon a fixed phantom position, 

and are limited to the very consistent mechanical behavior of an artificial phantom. A 

performance evaluation integrating the effect of variability in tissue properties using in 

vivo models in the future may reveal more distinguishing results between the two robotic 

platforms, and may lead to greater difference in the performance of novice and expert 

operators. In a real clinical scenario, after venous puncture, the cannula needs to be 

maintained fixed relative to the tissue. Therefore, it is essential to account for potential 

movement of the tissue. Force information from the sensitized cannula may be used to 

detect relative movements and stabilize the cannula relative to the vasculature. 

Alternatively, optical coherence tomography guidance can be used after integrating an 

additional imaging fiber on the sensitized cannula to track and fixate tool-tissue distance 

after the venous puncture, which are some of the potential future directions to pursue in 

this branch. 
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CHAPTER 6 : CONCLUSIONS 

In vitreoretinal procedures, a very fine manipulation on delicate tissues is required. Given 

the physiological hand tremor of the operator and very limited tactile perception of tool-

tissue interactions, surgical task performance is constrained by natural human 

capabilities, and relies on the advanced surgical skills and experience of the surgeon. 

Previous chapters introduced novel force-sensing instruments that quantify tool-tissue 

interaction forces, methods that combine these tools with distinct robotic platforms to 

achieve motion guidance and force feedback, and demonstrated their performance for 

membrane peeling and retinal vein cannulation tasks. In this Chapter, the technical 

achievements and contribution of this dissertation are summarized along with some 

discussion of future research directions. 

6.1 Summary and Recapitulation of Contributions 

Chapter 1 introduced the clinical problems in vitreoretinal surgery focusing on two 

distinct procedures. First is epiretinal membrane peeling, which is the most common 

vitreoretinal operation. The tissue manipulation forces in this procedure are mostly 

imperceptible to the surgeon, and depending on the applied forcing on the retina, serious 

complications may arise. In addition, physiological hand tremor limits the precision while 

manipulating the surgical tool close to the retina. The second procedure is retinal vein 

cannulation, which is not a routinely performed procedure currently due to three main 

challenges. To cannulate a small retinal vein, a properly small cannula is required that is 

clearly visible under the microscope and that will endure forces without breaking during 

the procedure. The second challenge is to insert the cannula to the correct depth, in other 

words halting needle insertion at the correct time without overshooting the vein although 
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detecting the instant of venous puncture quickly is very difficult. The third challenge is to 

maintain intravenous stability after puncture and hold the needle fixed in place for several 

minutes until the infusion is completed. 

Chapter 2 reviewed the related work on force sensing in microsurgery and robotic 

systems for ophthalmology with different control approaches. These studies showed the 

significance of force sensing and force feedback in medical robotics. However, none of 

them were suited to sense forces in the vitreoretinal surgery. Consequently, the prior 

robotic platforms could not incorporate tool-tissue interaction forces and provide the 

required assistance during membrane peeling and retinal vein cannulation procedures. 

Chapter 3 presented two main categories of ophthalmic tools with integrated force 

sensing at the tool tip. The force sensing was provided by several optical fibers, fiber 

Bragg grating strain sensors, lying along and inside the tool shaft of these instruments. 

The first category consisted of micro-forceps that enabled delamination of membranes 

with a firm grasp while providing a real-time measurement of the peeling forces. Various 

architectures were developed for measuring only the transverse forces in 2 dimensions (2-

DOF tools) or all forces in 3 dimensions (3-DOF tools). A linear model was used to 

compute forces for 2-DOF tools. For the 3-DOF tools, a second-order Bernstein 

polynomial model was applied to describe the nonlinear behavior of sensors. The second 

category of tools in this chapter was a force-sensing microneedle for retinal vein 

cannulation. This instrument had a prebent tip (Ø 70 µm) for approaching the retinal 

vasculature at an optimal angle, which can be straightened while inserting through the 

sclera via an actuation mechanism. Various concepts were presented for actuating the 

tool manually and using the force-sensing tool handheld or for actuating the tool via a 
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motor in a modular compact form factor that can be easily attached onto robotic 

platforms as an end-effector. An experimental calibration approach was followed for each 

instrument to transform fiber Bragg readings to force measurements. The tools 

demonstrated very fine force-sensing capability within an accuracy of 0.25 mN and 2 mN 

in transverse and axial directions, respectively. 

Contributions: (1) novel force-sensing micro-forceps tools for membrane peeling via 

motorized actuation mechanisms and sensor configurations to capture 3 dimensional 

forces at the tool tip; (2) a novel force-sensing microneedle for retinal vein cannulation. 

Chapter 4 introduced three distinct methods to provide a precise motion and to limit 

applied forces in membrane peeling. Based on measurements from the force-sensing 

tools, an auditory feedback mechanism was implemented on two distinct robotic 

platforms: the cooperatively-controlled Steady-Hand Eye Robot and the handheld 

Micron. The performance of each system was comparatively evaluated, which revealed 

that force feedback combined with either system for tremor canceling and precise tool 

manipulation could effectively help in maintaining forces below a preset threshold. By 

introducing micro-vibrations along the peeling trajectory at an optimal amplitude and 

frequency, the mean peeling force could be attenuated. Using the motorized tools, the 

tissue could be automatically released in case excessive forces are sensed to prevent their 

transfer to the retina. 

Contributions: (1) a comparative evaluation of auditory force feedback on two distinct 

robotic systems with force-sensing tools; (2) a novel micro-vibratory modulation method 

that facilitates membrane delamination and hence reduces the peeling force; (3) an 
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automatic tissue release mode that makes use of the motorized actuation of the new tools 

developed in Chapter 3 and helps limiting the peeling force. 

Chapter 5 presented a novel puncture detection method for assisting retinal vein 

cannulation based on the force measurements from the force-sensing microneedle and the 

tracked tool tip position. The method could precisely identify the moment of venous 

puncture. Combining the force-sensing microneedle with two robotic systems, the 

Steady-Hand Eye Robot and Micron, a position holding feature was developed that aimed 

to cancel not only the hand tremor but also the drift of the operator to maintain the needle 

fixed inside the vein after the venous puncture. Experiments revealed significantly 

reduced motion and improved ability to maintain the needle closer to the point of 

puncture for a longer period on both systems. 

Contributions: (1) a novel method that reliably predicts the instant of venous puncture 

based on both the measured tool-tissue interaction force and the tracked tool tip position; 

(2) a robotic fixation method for holding the needle inside the vein after the venous 

puncture; (3) an evaluation study comparing the performance using two distinct robotic 

platforms. 

In summary, the force-sensing instruments combined with robotic assistance methods 

presented in this dissertation demonstrated their potential to provide enhanced 

information and feedback to the surgeon, to enable precise interactions with patients – 

hence, a safer and easier operation – to improve and expand the capabilities of 

vitreoretinal surgery. 
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6.2 Future Directions 

Currently in vitreoretinal practice, no quantitative record or feedback on the tool-tissue 

interactions is available yet. The performance in surgical manipulations is limited by the 

natural human capabilities and is highly dependent on the surgeon’s skills and 

experience. This dissertation demonstrated the ability to monitor tool-tissue interactions 

through force-sensing ophthalmic instruments and the ability to assist surgical 

interactions for enhanced safety via robotic assistance. The presented technology enables 

the precise measurement and control of tool-tissue interaction forces during surgery, 

which forms the foundation for a better understanding of tissue behavior during key 

surgical tasks, integrated assistive systems for safer and easier procedures, and substantial 

changes in clinical care enabling new and potentially more effective treatment methods. 

The technology presented in this dissertation has been evaluated using artificial phantoms 

or ex-vivo models. The developed force-sensing instruments and the accompanying 

robotic platforms are yet in prototype stage, which need further efforts to address various 

aspects (safety, cost and clinical workflow) and translate into clinical use. First, more 

developmental effort and extensive validation studies using animal models are required to 

assure the safety of both the hardware and the software [137-139]. Another important 

parameter for the translation of the developed device to clinical practice is their cost-

effectiveness. Sensitized instruments and robotic platforms introduce not only additional 

equipment cost to the operating room, but also may increase the cost of surgery by adding 

onto the duration and complexity of procedures. To compensate for this and promote 

acceptance by clinicians, demonstration of enhanced surgical capabilities, and evaluation 

of the longer-term benefits, such as reduced hospital stays due to safer procedures with 
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less complications or application of new more effective treatment methods, are important. 

The new sensitized robotic equipment and their method of use should also well integrate 

in the surgical workflow. Since operating rooms are already quite busy and cluttered, any 

additional system to be introduced into this environment needs to be ergonomic, easy to 

use, and minimally obtrusive. For instance, the force-sensing tools developed in this work 

carry three to four fiber optic sensors, each of which has a separate connector that needs 

to be plugged into an external additional equipment, an optical sensing interrogator, in a 

specific order. Furthermore, depending on the tool used (micro-forceps or microneedle) 

selection of the correct set of calibration parameters is required before starting the 

operation. This is currently an inconvenient procedure, though can be addressed in 

commercial products by possible improvements, for instance by using a single fiber optic 

connector and an automatic tool parameter loading method with RFID. 

Besides translation to clinical use, there are several future research directions that will 

advance the smart instrumentation and robotic guidance methods in vitreoretinal surgery. 

Force-sensing tools enable detection of the very small tool-tissue interaction forces, 

bringing the sense of feel to the operation. In a parallel branch, instruments with 

integrated imaging fibers have been developed for retinal microsurgery based on optical 

coherence tomography (OCT) [78]. These tools, via their integrated OCT fibers, can see 

what the surgeon cannot visualize through the microscope: the layers of an underneath 

the retina. Based on this feature, they can effectively detect the distance between the tool 

tip and the retinal layers, and guide the instrument to a specific layer for targeted drug 

delivery (which may enable safe cannulation of retinal vein and/or delivery of stem cells 

into the retina and gene therapies), or maintain a desired offset from delicate layers to 
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prevent injuries by actively compensating operator’s involuntary movements. In the 

future, fusion of these technologies can lead to smart instruments that can both sense and 

see, which will have great significance not only for intra-operative assistance to the 

surgeon but also for characterizing the mechanical behavior of retinal tissues. Based on 

the force and tissue motion sensing capabilities, force maps of retinal tissues can be 

generated, characterizing tissue deformation with corresponding forces. While a single 

force map represents individual tissue characteristics, a large collection of force maps can 

form a library of surgical manipulations and tissue interactions. This library can be used 

for surgical planning, monitoring, evaluation, developing virtual reality based platforms 

for faster and better training of new surgeons, and even studying new surgical methods 

that lessen trauma and increase the therapeutic effect. As we progress through these 

continuous improvements of robotic actuation, sensing and vision, new standards will be 

set in health care. 
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APPENDIX 

 

Technical Drawings and Software 

The technical drawings of the force-sensing tools developed in Chapter 3 and the 

experimental setup used in Chapters 4 and 5 are accessible at: 

\\win.ad.jhu.edu\cloud\lcsr-ciis$\bgonenc1\TechnicalDrawings 

The LabVIEW software developed for the operational modes presented in Chapters 4 and 

5 are available at: 

\\win.ad.jhu.edu\cloud\lcsr-ciis$\bgonenc1\Software 

  

file://///win.ad.jhu.edu/cloud/lcsr-ciis$/bgonenc1/TechnicalDrawings
file://///win.ad.jhu.edu/cloud/lcsr-ciis$/bgonenc1/Software
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