123 research outputs found

    Efficient Multiprogramming for Multicores with SCAF

    Get PDF
    As hardware becomes increasingly parallel and the availability of scalable parallel software improves, the problem of managing multiple multithreaded applications (processes) becomes important. Malleable processes, which can vary the number of threads used as they run, enable sophisticated and flexible resource management. Although many existing applications parallelized for SMPs with parallel runtimes are in fact already malleable, deployed run-time environments provide no interface nor any strategy for intelligently allocating hardware threads or even preventing oversubscription. Prior research methods either depend upon profiling applications ahead of time in order to make good decisions about allocations, or do not account for process efficiency at all, leading to poor performance. None of these prior methods have been adapted widely in practice. This paper presents the Scheduling and Allocation with Feedback (SCAF) system: a drop-in runtime solution which supports existing malleable applications in making intelligent allocation decisions based on observed efficiency without any changes to semantics, program modification, offline profiling, or even recompilation. Our existing implementation can control most unmodified OpenMP applications. Other malleable threading libraries can also easily be supported with small modifications, without requiring application modification or recompilation. In this work, we present the SCAF daemon and a SCAF-aware port of the GNU OpenMP runtime. We present a new technique for estimating process efficiency purely at runtime using available hardware counters, and demonstrate its effectiveness in aiding allocation decisions. We evaluated SCAF using NAS NPB parallel benchmarks on five commodity parallel platforms, enumerating architectural features and their effects on our scheme. We measured the benefit of SCAF in terms of sum of speedups improvement (a common metric for multiprogrammed environments) when running all benchmark pairs concurrently compared to equipartitioning --- the best existing competing scheme in the literature. If the sum of speedups with SCAF is within 5% of equipartitioning (i.e., improvement factor is 0.95X < improvement factor in sum of speedups < 1.05X), then we deem SCAF to break even. Less than 0.95X is considered a slowdown; greater than 1.05X is an improvement. We found that SCAF improves on equipartitioning on 4 out of 5 machines, breaking even or improving in 80-89% of pairs and showing a mean improvement of 1.11-1.22X for benchmark pairs for which it shows an improvement, depending on the machine. Since we are not aware of any widely available tool for equipartitioning, we also compare SCAF against multiprogramming using unmodified OpenMP, which is the only environment available to end-users today. SCAF improves or breaks even on the unmodified OpenMP runtimes for all 5 machines in 72-100% of pairs, with a mean improvement of 1.27-1.7X, depending on the machine

    Adaptive memory hierarchies for next generation tiled microarchitectures

    Get PDF
    Les últimes dècades el rendiment dels processadors i de les memòries ha millorat a diferent ritme, limitant el rendiment dels processadors i creant el conegut memory gap. Sol·lucionar aquesta diferència de rendiment és un camp d'investigació d'actualitat i que requereix de noves sol·lucions. Una sol·lució a aquest problema són les memòries “cache”, que permeten reduïr l'impacte d'unes latències de memòria creixents i que conformen la jerarquia de memòria. La majoria de d'organitzacions de les “caches” estan dissenyades per a uniprocessadors o multiprcessadors tradicionals. Avui en dia, però, el creixent nombre de transistors disponible per xip ha permès l'aparició de xips multiprocessador (CMPs). Aquests xips tenen diferents propietats i limitacions i per tant requereixen de jerarquies de memòria específiques per tal de gestionar eficientment els recursos disponibles. En aquesta tesi ens hem centrat en millorar el rendiment i la eficiència energètica de la jerarquia de memòria per CMPs, des de les “caches” fins als controladors de memòria. A la primera part d'aquesta tesi, s'han estudiat organitzacions tradicionals per les “caches” com les privades o compartides i s'ha pogut constatar que, tot i que funcionen bé per a algunes aplicacions, un sistema que s'ajustés dinàmicament seria més eficient. Tècniques com el Cooperative Caching (CC) combinen els avantatges de les dues tècniques però requereixen un mecanisme centralitzat de coherència que té un consum energètic molt elevat. És per això que en aquesta tesi es proposa el Distributed Cooperative Caching (DCC), un mecanisme que proporciona coherència en CMPs i aplica el concepte del cooperative caching de forma distribuïda. Mitjançant l'ús de directoris distribuïts s'obté una sol·lució més escalable i que, a més, disposa d'un mecanisme de marcatge més flexible i eficient energèticament. A la segona part, es demostra que les aplicacions fan diferents usos de la “cache” i que si es realitza una distribució de recursos eficient es poden aprofitar els que estan infrautilitzats. Es proposa l'Elastic Cooperative Caching (ElasticCC), una organització capaç de redistribuïr la memòria “cache” dinàmicament segons els requeriments de cada aplicació. Una de les contribucions més importants d'aquesta tècnica és que la reconfiguració es decideix completament a través del maquinari i que tots els mecanismes utilitzats es basen en estructures distribuïdes, permetent una millor escalabilitat. ElasticCC no només és capaç de reparticionar les “caches” segons els requeriments de cada aplicació, sinó que, a més a més, és capaç d'adaptar-se a les diferents fases d'execució de cada una d'elles. La nostra avaluació també demostra que la reconfiguració dinàmica de l'ElasticCC és tant eficient que gairebé proporciona la mateixa taxa de fallades que una configuració amb el doble de memòria.Finalment, la tesi es centra en l'estudi del comportament de les memòries DRAM i els seus controladors en els CMPs. Es demostra que, tot i que els controladors tradicionals funcionen eficientment per uniprocessadors, en CMPs els diferents patrons d'accés obliguen a repensar com estan dissenyats aquests sistemes. S'han presentat múltiples sol·lucions per CMPs però totes elles es veuen limitades per un compromís entre el rendiment global i l'equitat en l'assignació de recursos. En aquesta tesi es proposen els Thread Row Buffers (TRBs), una zona d'emmagatenament extra a les memòries DRAM que permetria guardar files de dades específiques per a cada aplicació. Aquest mecanisme permet proporcionar un accés equitatiu a la memòria sense perjudicar el seu rendiment global. En resum, en aquesta tesi es presenten noves organitzacions per la jerarquia de memòria dels CMPs centrades en la escalabilitat i adaptativitat als requeriments de les aplicacions. Els resultats presentats demostren que les tècniques proposades proporcionen un millor rendiment i eficiència energètica que les millors tècniques existents fins a l'actualitat.Processor performance and memory performance have improved at different rates during the last decades, limiting processor performance and creating the well known "memory gap". Solving this performance difference is an important research field and new solutions must be proposed in order to have better processors in the future. Several solutions exist, such as caches, that reduce the impact of longer memory accesses and conform the system memory hierarchy. However, most of the existing memory hierarchy organizations were designed for single processors or traditional multiprocessors. Nowadays, the increasing number of available transistors has allowed the apparition of chip multiprocessors, which have different constraints and require new ad-hoc memory systems able to efficiently manage memory resources. Therefore, in this thesis we have focused on improving the performance and energy efficiency of the memory hierarchy of chip multiprocessors, ranging from caches to DRAM memories. In the first part of this thesis we have studied traditional cache organizations such as shared or private caches and we have seen that they behave well only for some applications and that an adaptive system would be desirable. State-of-the-art techniques such as Cooperative Caching (CC) take advantage of the benefits of both worlds. This technique, however, requires the usage of a centralized coherence structure and has a high energy consumption. Therefore we propose the Distributed Cooperative Caching (DCC), a mechanism to provide coherence to chip multiprocessors and apply the concept of cooperative caching in a distributed way. Through the usage of distributed directories we obtain a more scalable solution and, in addition, has a more flexible and energy-efficient tag allocation method. We also show that applications make different uses of cache and that an efficient allocation can take advantage of unused resources. We propose Elastic Cooperative Caching (ElasticCC), an adaptive cache organization able to redistribute cache resources dynamically depending on application requirements. One of the most important contributions of this technique is that adaptivity is fully managed by hardware and that all repartitioning mechanisms are based on distributed structures, allowing a better scalability. ElasticCC not only is able to repartition cache sizes to application requirements, but also is able to dynamically adapt to the different execution phases of each thread. Our experimental evaluation also has shown that the cache partitioning provided by ElasticCC is efficient and is almost able to match the off-chip miss rate of a configuration that doubles the cache space. Finally, we focus in the behavior of DRAM memories and memory controllers in chip multiprocessors. Although traditional memory schedulers work well for uniprocessors, we show that new access patterns advocate for a redesign of some parts of DRAM memories. Several organizations exist for multiprocessor DRAM schedulers, however, all of them must trade-off between memory throughput and fairness. We propose Thread Row Buffers, an extended storage area in DRAM memories able to store a data row for each thread. This mechanism enables a fair memory access scheduling without hurting memory throughput. Overall, in this thesis we present new organizations for the memory hierarchy of chip multiprocessors which focus on the scalability and of the proposed structures and adaptivity to application behavior. Results show that the presented techniques provide a better performance and energy-efficiency than existing state-of-the-art solutions

    Working Sets Past and Present

    Get PDF

    Apprehending Joule Thieves with Cinder

    Get PDF
    Energy is the critical limiting resource to mobile computing devices. Correspondingly, an operating system must track, provision, and ration how applications consume energy. The emergence of third-party application stores and marketplaces makes this concern even more pressing. A third-party application must not deny service through excessive, unforeseen energy expenditure, whether accidental or malicious. Previous research has shown promise in tracking energy usage and rationing it to meet device lifetime goals, but such mechanisms and policies are still nascent, especially regarding user interaction. We argue for a new operating system, called Cinder, which builds on top of the HiStar OS. Cinder's energy awareness is based on hierarchical capacitors and task profiles. We introduce and explore these abstractions, paying particular attention to the ways in which policies could be generated and enforced in a dynamic system

    Major Trends in Operating Systems Development

    Get PDF
    Operating systems have changed in nature in response to demands of users, and in response to advances in hardware and software technology. The purpose of this paper is to trace the development of major themes in operating system design from their beginnings through the present. This is not an exhaustive history of operating systems, but instead is intended to give the reader the flavor of the dif ferent periods in operating systems\u27 development. To this end, the paper will be organized by topic in approximate order of development. Each chapter will start with an introduction to the factors behind the rise of the period. This will be fol lowed by a survey of the state-of-the-art systems, and the conditions influencing them. The chapters close with a summation of the significant hardware and software contributions from the period

    Improving the SLLC Efficiency by exploiting reuse locality and adjusting prefetch

    Get PDF
    Desde los teléfonos móviles inteligentes hasta nuestro ordenador portátil los sistemas electrónicos que incluyen chips multiprocesador (CMP) están presentes en nuestra vida cotidiana de una manera abrumadora. Los CMPs contienen varios núcleos o CPUs que tienen que ser alimentados con datos provenientes de la memoria. Pero la velocidad a la que los núcleos que forman el CMP necesitan los datos es mucho mayor que la velocidad a la que la memoria es capaz de proporcionar dichos datos. De hecho, esta diferencia ha ido aumentando desde prácticamente el día en el que ambos dispositivos fueron concebidos. Esta diferencia en el rendimiento de ambos dispositivos se ha venido a llamar "the memory gap". Al mismo tiempo que dicha diferencia aumentaba, los lenguajes de programación proporcionaban a los programadores modelos de memoria que podían acceder a un espacio prácticamente infinito y al que, además, se accedía de manera instantánea. Pero el tamaño de cualquier estructura hardware está íntimamente relacionado con su tiempo de acceso y éste será mayor cuanto mayor sea el tamaño la estructura hardware a acceder. Con el ánimo de deshacer esta aparente contradicción, los arquitectos de computadores incluyeron memorias intermedias entre las CPUs y la grande, aunque al mismo tiempo lenta, memoria principal. Estas memorias intermedias se denominan memorias cache o simplemente caches. Debido a la gran diferencia que existe entre la velocidad del procesador y la de la memoria principal. Los CMPs en la actualidad están provistos de una jerarquía de memorias cache que tiene dos o tres niveles. Las caches que están cerca del procesador sólo contienen unos pocos kilobytes (entre 4 y 64) accesibles en uno o pocos ciclos de reloj, mientras que las que se encuentran más alejadas del procesador pueden llegar a contener varios megabytes y tener un tiempo de acceso de varias decenas de ciclos. Los programas al ser ejecutados muestran una propiedad llamada localidad que se expresa en los ejes espacial y temporal. La localidad temporal es la propiedad que dice que el programa volverá a usar datos que usó recientemente, cuanto más recientemente los usó, más probable es que vuelva a hacerlo. Mientras que la localidad espacial es la propiedad que dice que el programa tenderá a usar datos que están próximos en el espacio de memoria a datos que usó recientemente. Las memorias cache han sido diseñadas tradicionalmente para explotar la localidad. En concreto, la localidad temporal se explotaba mediante una adecuada política de reemplazo, mientras que la localidad espacial se explota al contener cada bloque de cache varios datos o palabras. Un modo adicional de conseguir explotar una mayor cantidad de localidad espacial es mediante el uso de la técnica llamada prebúsqueda. La política de reemplazo influye de manera crítica en la tasa de aciertos de la memoria cache. En un CMP provisto de una jerarquía de memorias cache, la localidad temporal se explota en aquellos niveles más cercanos a los núcleos. Así que muchos de los bloques insertados en la SLLC son de un solo uso, es decir, estos bloques no experimentarán ningún acierto más durante todo el tiempo que permanezcan en la SLLC. Sin embargo, aquellos bloques que lleguen a experimentar un acierto en la SLLC, normalmente experimentarán muchos más aciertos. Por lo tanto, que la política de reemplazo base sus decisiones en la posible explotación de la localidad temporal, es una asunción inválida cuando hablamos de la SLLC. Por el contrario, Este comportamiento indica que dicha política de reemplazo de la SLLC debería estar basada en el reúso1 en lugar de en la localidad temporal. La prebúsqueda hardware tiene por objetivo cargar en la cache datos antes de que sea el procesador quien los pida. La validez de esta técnica a la hora de reducir la latencia media de acceso a memoria ha sido ampliamente demostrada. La prebúsqueda funciona especialmente bien en las jerarquías de memoria de sistemas monoprocesador, donde solamente hay un flujo de datos entre el procesador y la memoria. Sin embargo, cuando la prebúsqueda se usa en un sistema multiprocesador donde diferentes aplicaciones se están ejecutando al mismo tiempo, las prebúsquedas asociadas a un núcleo podrían interferir con los datos cargados en la cache por otro núcleo, provocando la eliminación de los contenidos de otra aplicación y dañando su rendimiento. Es necesario por tanto un mecanismo para regular la prebúsqueda asociada a cada uno de los núcleos. Este mecanismo debería tener por objetivo el mejorar el rendimiento general del sistema. 1 Aunque el DRAE no contenga su definición, usaremos aquí el verbo reusar (así como sus formas derivadas) como sinónimo de volver a utilizar. Cada fallo en la SLLC provoca un acceso a la memoria principal que se encuentra fuera del chip. Además la memoria principal está hecha de chips de DRAM. Ambos factores incrementan su latencia de acceso, latencia que se suma a cada uno de los accesos que falla en la SLLC, penalizando a la vez la latencia media de acceso a memoria. Por lo tanto, la tasa de aciertos de la SLLC es un factor crítico para lograr una latencia media de acceso a memoria óptima. Esta tesis fija su atención en la eficiencia de los dos aspectos comentados con anterioridad: la eficiencia de la prebúsqueda y la eficiencia de la política de reemplazo. Las contribuciones principales de esta tesis son las siguientes: 1) Enunciamos una propiedad llamada localidad de reúso que dice que i) los bloques de cache que hayan sido usados más de una vez tienen una alta probabilidad de ser usados muchas veces en el futuro. ii) Los bloques de cache recientemente reusados son más útiles que otros reúsados previamente. Defendemos en esta tesis que el patrón de acceso a la SLLC muestra localidad de reúso. 2) En esta tesis se proponen dos algoritmos de reemplazo capaces de explotar la localidad de reúso, Least-recently reused (LRR) y Not-recently reused (NRR). Estos dos nuevos algoritmos son modificaciones de otros dos muy bien conocidos: Least-recently used (LRU) y Not-recently used (NRU). Dichos algoritmos fueron diseñados para explotar la localidad temporal, mientras que los nuestros explotan la local- idad de reúso. Las modificaciones propuestas no suponen ninguna sobrecarga hardware respecto a los algoritmos base. Durante esta tesis se muestra que nuestros algoritmos mejoran consistentemente el rendimiento de los originales. 3) Proponemos un novedoso diseño para la SLLC llamado Reuse Cache. En este diseño los arrays de etiquetas y datos de la cache están desacoplados. Solamente se almacenan en el array de datos aquellos bloques que hayan mostrado reúso. El array de etiquetas se usa para detectar reúso y mantener la coherencia. Esta estructura permite reducir el tamaño del array de datos de manera drástica. Como ejemplo, una Reuse Cache con un array de etiquetas equivalente al de una cache convencional de 4MB y un array de datos de 1MB, tiene el mismo rendimiento medio que una cache convencional de 8MB, pero con un ahorro de almacenamiento de en torno al 84%. 4) Un controlador de bajo coste llamado ABS capaz de ajustar la agresividad de la prebúsqueda asociada a cada uno de los núcleos de un CMP pero con el ánimo de mejorar el rendimiento general del sistema. El controlador funciona de manera aislada en cada uno de los bancos de la SLLC y recoge métricas locales. Para optimizar el rendimiento global del sistema busca la combinación óptima de valores de la agresividad de prebúsqueda. Para inferir cuál es esa combinación óptima usa una estrategia de búsqueda hill-climbing

    XChange: A market-based approach to scalable dynamic multi-resource allocation in multicore architectures

    Full text link
    Efficiently allocating shared on-chip resources across cores is critical to optimize execution in chip multiprocessors (CMPs). Techniques proposed in the literature often rely on global, centralized mechanisms that seek to maximize system through-put. Global optimization may hurt scalability: as more cores are integrated on a die, the search space grows exponentially, making it harder to achieve optimal or even acceptable oper-ating points at run-time without incurring significant over-heads. In this paper, we propose XChange, a novel CMP resource allocation mechanism that delivers scalable high through-put and fairness. Through XChange, the CMP functions as a market, where each shared resource is assigned a price which changes over time, and each core seeks to maximize its own utility, by bidding for these shared resources. Because each core works largely independently, the resource alloca-tion becomes a scalable, mostly distributed decision-making process. In addition, by distributing the resources propor-tionally to the bids, the system avoids unfairness, treating each core in an unbiased manner. Our evaluation shows that, using detailed simulations of a 64-core CMP configuration running a variety of multipro-grammed workloads, the proposed XChange mechanism im-proves system throughput (weighted speedup) by about 21% on average, and fairness (harmonic speedup) by about 24% on average, compared with equal-share on-chip cache and power distribution. On both metrics, that is at least about twice as much improvement over equal-share as a state-of-the-art centralized allocation scheme. Furthermore, our re-sults show that XChange is significantly more scalable than the state-of-the-art centralized allocation scheme we com-pare against. 1

    Towards multiprogrammed GPUs

    Get PDF
    Programmable Graphics Processing Units (GPUs) have recently become the most pervasitheve massively parallel processors. They have come a long way, from fixed function ASICs designed to accelerate graphics tasks to a programmable architecture that can also execute general-purpose computations. Because of their performance and efficiency, an increasing amount of software is relying on them to accelerate data parallel and computationally intensive sections of code. They have earned a place in many systems, from low power mobile devices to the biggest data centers in the world. However, GPUs are still plagued by the fact that they essentially have no multiprogramming support, resulting in low system performance if the GPU is shared among multiple programs. In this dissertation we set to provide the rich GPU multiprogramming support by improving the multitasking capabilities and increasing the virtual memory functionality and performance. The main issue hindering the multitasking support in GPUs is the nonpreemptive execution of GPU kernels. Here we propose two preemption mechanisms with dierent design philosophies, that can be used by a scheduler to preempt execution on GPU cores and make room for some other process. We also argue for the spatial sharing of the GPU and propose a concrete hardware scheduler implementation that dynamically partitions the GPU cores among running kernels, according to their set priorities. Opposing the assumptions made in the related work, we demonstrate that preemptive execution is feasible and the desired approach to GPU multitasking. We further show improved system fairness and responsiveness with our scheduling policy. We also pinpoint that at the core of the insufficient virtual memory support lies the exceptions handling mechanism used by modern GPUs. Currently, GPUs offload the actual exception handling work to the CPU, while the faulting instruction is stalled in the GPU core. This stall-on-fault model prevents some of the virtual memory features and optimizations and is especially harmful in multiprogrammed environments because it prevents context switching the GPU unless all the in-flight faults are resolved. In this disseritation, we propose three GPU core organizations with varying performance-complexity trade-off that get rid of the stall-on-fault execution and enable preemptible exceptions on the GPU (i.e., the faulting instruction can be squashed and restarted later). Building on this support, we implement two use cases and demonstrate their utility. One is a scheme that performs context switch of the faulted threads and tries to find some other useful work to do in the meantime, hiding the latency of the fault and improving the system performance. The other enables the fault handling code to run locally, on the GPU, instead of relying on the CPU offloading and show that the local fault handling can also improve performance.Las Unidades de Procesamiento de Gráficos Programables (GPU, por sus siglas en inglés) se han convertido recientemente en los procesadores masivamente paralelos más difundidos. Han recorrido un largo camino desde ASICs de función fija diseñados para acelerar tareas gráficas, hasta una arquitectura programable que también puede ejecutar cálculos de propósito general. Debido a su rendimiento y eficiencia, una cantidad creciente de software se basa en ellas para acelerar las secciones de código computacionalmente intensivas que disponen de paralelismo de datos. Se han ganado un lugar en muchos sistemas, desde dispositivos móviles de baja potencia hasta los centros de datos más grandes del mundo. Sin embargo, las GPUs siguen plagadas por el hecho de que esencialmente no tienen soporte de multiprogramación, lo que resulta en un bajo rendimiento del sistema si la GPU se comparte entre múltiples programas. En esta disertación nos centramos en proporcionar soporte de multiprogramación para GPUs mediante la mejora de las capacidades de multitarea y del soporte de memoria virtual. El principal problema que dificulta el soporte multitarea en las GPUs es la ejecución no apropiativa de los núcleos de la GPU. Proponemos dos mecanismos de apropiación con diferentes filosofías de diseño, que pueden ser utilizados por un planificador para apropiarse de los núcleos de la GPU y asignarlos a otros procesos. También abogamos por la división espacial de la GPU y proponemos una implementación concreta de un planificador hardware que divide dinámicamente los núcleos de la GPU entre los kernels en ejecución, de acuerdo con sus prioridades establecidas. Oponiéndose a las suposiciones hechas por otros en trabajos relacionados, demostramos que la ejecución apropiativa es factible y el enfoque deseado para la multitarea en GPUs. Además, mostramos una mayor equidad y capacidad de respuesta del sistema con nuestra política de asignación de núcleos de la GPU. También señalamos que la causa principal del insuficiente soporte de la memoria virtual en las GPUs es el mecanismo de manejo de excepciones utilizado por las GPUs modernas. En la actualidad, las GPUs descargan el manejo de las excepciones a la CPU, mientras que la instrucción que causo la fallada se encuentra esperando en el núcleo de la GPU. Este modelo de bloqueo en fallada impide algunas de las funciones y optimizaciones de la memoria virtual y es especialmente perjudicial en entornos multiprogramados porque evita el cambio de contexto de la GPU a menos que se resuelvan todas las fallas pendientes. En esta disertación, proponemos tres implementaciones del pipeline de los núcleos de la GPU que ofrecen distintos balances de rendimiento-complejidad y permiten la apropiación del núcleo aunque haya excepciones pendientes (es decir, la instrucción que produjo la fallada puede ser reiniciada más tarde). Basándonos en esta nueva funcionalidad, implementamos dos casos de uso para demostrar su utilidad. El primero es un planificador que asigna el núcleo a otros subprocesos cuando hay una fallada para tratar de hacer trabajo útil mientras esta se resuelve, ocultando así la latencia de la fallada y mejorando el rendimiento del sistema. El segundo permite que el código de manejo de las falladas se ejecute localmente en la GPU, en lugar de descargar el manejo a la CPU, mostrando que el manejo local de falladas también puede mejorar el rendimiento.Postprint (published version

    Exploiting Natural On-chip Redundancy for Energy Efficient Memory and Computing

    Get PDF
    Power density is currently the primary design constraint across most computing segments and the main performance limiting factor. For years, industry has kept power density constant, while increasing frequency, lowering transistors supply (Vdd) and threshold (Vth) voltages. However, Vth scaling has stopped because leakage current is exponentially related to it. Transistor count and integration density keep doubling every process generation (Moore’s Law), but the power budget caps the amount of hardware that can be active at the same time, leading to dark silicon. With each new generation, there are more resources available, but we cannot fully exploit their performance potential. In the last years, different research trends have explored how to cope with dark silicon and unlock the energy efficiency of the chips, including Near-Threshold voltage Computing (NTC) and approximate computing. NTC aggressively lowers Vdd to values near Vth. This allows a substantial reduction in power, as dynamic power scales quadratically with supply voltage. The resultant power reduction could be used to activate more chip resources and potentially achieve performance improvements. Unfortunately, Vdd scaling is limited by the tight functionality margins of on-chip SRAM transistors. When scaling Vdd down to values near-threshold, manufacture-induced parameter variations affect the functionality of SRAM cells, which eventually become not reliable. A large amount of emerging applications, on the other hand, features an intrinsic error-resilience property, tolerating a certain amount of noise. In this context, approximate computing takes advantage of this observation and exploits the gap between the level of accuracy required by the application and the level of accuracy given by the computation, providing that reducing the accuracy translates into an energy gain. However, deciding which instructions and data and which techniques are best suited for approximation still poses a major challenge. This dissertation contributes in these two directions. First, it proposes a new approach to mitigate the impact of SRAM failures due to parameter variation for effective operation at ultra-low voltages. We identify two levels of natural on-chip redundancy: cache level and content level. The first arises because of the replication of blocks in multi-level cache hierarchies. We exploit this redundancy with a cache management policy that allocates blocks to entries taking into account the nature of the cache entry and the use pattern of the block. This policy obtains performance improvements between 2% and 34%, with respect to block disabling, a technique with similar complexity, incurring no additional storage overhead. The latter (content level redundancy) arises because of the redundancy of data in real world applications. We exploit this redundancy compressing cache blocks to fit them in partially functional cache entries. At the cost of a slight overhead increase, we can obtain performance within 2% of that obtained when the cache is built with fault-free cells, even if more than 90% of the cache entries have at least a faulty cell. Then, we analyze how the intrinsic noise tolerance of emerging applications can be exploited to design an approximate Instruction Set Architecture (ISA). Exploiting the ISA redundancy, we explore a set of techniques to approximate the execution of instructions across a set of emerging applications, pointing out the potential of reducing the complexity of the ISA, and the trade-offs of the approach. In a proof-of-concept implementation, the ISA is shrunk in two dimensions: Breadth (i.e., simplifying instructions) and Depth (i.e., dropping instructions). This proof-of-concept shows that energy can be reduced on average 20.6% at around 14.9% accuracy loss

    An efficient virtual network interface in the FUGU scalable workstation dc by Kenneth Martin Mackenzie.

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 123-129).Ph.D
    corecore