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Abstract

A scalable workstation is one vision of a mainstream parallel computer: a machine that combines
scalable, fine-grain communication facilities for parallel applications with virtual memory and pre-
emptive multiprogramming to support general-purpose workloads. A key challenge in a scalable
workstation is the Virtual Network Interface (VNI) problem. The problem is that high performance
communication for parallel programming depends on a tight coupling between the application and
the network while multiprogramming and virtual memory effects disrupt such coupling.

This thesis introduces and evaluates the "direct" virtual network interface: a solution to the VNI
problem for fine-grain messages in a scalable workstation. The direct VNI employs two compiemen-
tary architectural techniques to reconcile speed and protection. First, two-case delivery optimistically
provides direct, user-level access to network interface hardware but also transparently backs the direct
system with a robust, software-buffered system. Two-case delivery allows the scalable workstation
to support both good parallel application performance through the fast hardware interface and good
global system performance by permitting buffering when required for multiprogramming. Second,
the software-buffered mode uses virtual buffering to provide effectively unlimited buffer capacity
by storing messages in dynamically managed virtual memory. Virtual buffering gives the user the
convenient illusion of a very large buffer while giving the operating system the means to minimize
actual, physical memory consumption.

The direct VNI ideas are implemented in an experimental scalable workstation, FUGU, consisting
of emulated hardware, a matching simulator and a custom operating system. Results from workloads
of real and synthetic applications show that the direct VNI provides high performance because the
direct case is both fast and common. Microbenchmarks show the protected direct delivery case costs
only 60% (10s of cycles per message) more than unprotected messages on the same hardware. Further,
in a mixed workload experiment, we observe that our parallel applications see only 14 - 33% of
messages buffered when 10% of the CPU time is devoted to unrelated, high-priority, interactive tasks.
Finally, results show that physical buffering requirements remain naturally low in real applications
despite the combination of unacknowledged messages and unlimited buffering.
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Chapter 1

Introduction

The design of a parallel computer to be used as a general-purpose machine must include both
efficient, scalable communication facilities and support for standard, multiuser operating system
features. The problem is that high performance communication for parallel programming depends
on a tight coupling between the application and the network while the effects of operating system
features of multiprogramming and virtual memory disrupt such coupling. Consequently, most
existing systems either do not address protection for multiple users or virtualize the communication
system only at the expense of either limited performance or of restrictions to the programming model.

This thesis introduces and evaluates the direct virtual network interface (direct VNI): a set of
techniques for providing communication in the form of fine-grain message passing in a way that is
both efficient and protected. The application controls a hardware network interface directly when
possible while operating system software transparently synthesizes a virtual interface by buffering
messages in memory when (rarely) required. Like virtual memory, the direct VNI gives an application
performance near that achievable on the bare hardware while giving the operating system the ability
to multiplex and manage limited resources.

The direct VNI ideas are implemented in an experimental multiprocessor, FUGU, consisting of
emulated hardware, a matching simulator and a custom operating system. Results from workloads
of real and synthetic applications show that the direct VNI provides high performance because
applications commonly use the fast interface in hardware. Microbenchmarks show that message
delivery via the protected hardware interface costs only 60% (10s of cycles per message) more than
unprotected messages on the same hardware. Using a mixed workload experiment, we observe that
our parallel applications see at most 14 - 33% of messages buffered when 10% of the CPU time
is devoted to unrelated, high-priority, interactive tasks. Finally, results show that physical memory
requirements remain naturally low in real applications despite the convenience of a programming
model that effectively guarantees delivery of messages.

The remainder of this chapter defines and further motivates the problem domain, briefly intro-
duces the direct VNI solution and then summarizes the contributions of the thesis. Section 1.1
introduces the scalable workstation, our vision of a general-purpose parallel computer, Section 1.2
summarizes the challenges arising in a scalable workstation, including the key virtual network
interface problem, Section 1.3 describes the direct VNI and Section 1.4 summarizes contributions.



Table 1-1. Qualitative comparison of machines in terms of support for efficient communication,
support for scalable communication and support for multiuser operation. SMPs, clusters and MPPs
each exhibit some of the desired qualities.

1.1 A Scalable Workstation

Parallel processors are currently widely used but have yet to become ubiquitous. A scalable
workstation is one view of the result of evolution in general-purpose parallel computers: a machine
that combines high performance, scalable communication mechanisms with support for protection.
Existing machines exhibit a subset of the desirable features of good communication performance,
scalable performance and protected, multiuser operation.

Parallel processors have become commonplace as high-end workstations, as clusters and as
large, dedicated machines. Small-scale symmetric multiprocessors (SMPs) are used as high-end
workstations or as servers. Such machines are expected to run a mixed workload of interactive,
workstation-like applications as well as parallel applications. Work on larger parallel applications is
increasingly focussed on making use of clusters of workstation-class uniprocessors or SVMP-based
multiprocessors connected with commodity local-area network (LAN) components. Clusters are
again expected to support a mixed workload of parallel, interactive applications, such as world-wide
web search services or data mining services, as well as parallel, compute-intensive applications such
as scientific and engineering simulation models. A few commercial, massively-parallel processors
(MPPs) exist running primarily parallel, scientific codes.

An ideal, general-purpose multiprocessor design would be capable of high performance with
mixed workloads and good cost/performance over a range of machine sizes. Existing SMPs, clusters
and MPPs each fall short of some aspect of this goal. Table 1-1 summarizes the characteristics of
each type in the space of communication performance (crucial to parallel performance), scalability
(communication performance that scales with with the number of processors) and support for standard
multiuser operating system features. Each of the existing machine types exhibits some but not all of
the desired qualities of a general-purpose multiprocessor. We discuss each of the rows in Table 1-1
below.

Current SMPs work well as small, general-purpose multiprocessors but are limited by the
use of a broadcast bus (or other broadcast medium) as the interprocessor interconnect. The bus
structure makes communication efficient and, in particular, makes cache-coherent shared memory
easy to support. However, the bus forms a global bottleneck that limits the scale of SMP machine
sizes to a few nodes. The solution is to replace the bus with a point-to-point network and to
synthesize shared memory communication by using hardware or software to communicate via
messages over this network. Hardware solutions using directory-based cache coherence have been

Approach Efficient Scalable Multiuser
Communication Interconnect Features

SMPs x x
Clusters x x
MPPs x x
Scalable Workstations x x x



demonstrated in research prototypes [46, 1, 41] and high-end commercial machines [36, 42, 49, 79].
prototypes [48, 10, 35, 30, 65, 67, 37, 21] using a variety of techniques. Future solutions are likely
to make use of judicious combinations of hardware and software support in hybrid machines that
support both shared memory and message passing communication [62, 1].

Clusters of workstations or SMPs interconnected by a LAN provide support for multiple users and
can provide scalable cost and performance, but current clusters provide only inefficient inter-node
communication. Clusters typically support only message-passing for inter-node communication
in hardware and synthesize shared memory (if desired) in software. The bottleneck in clusters is
the interface to the interconnection network and sometimes the network itself. Network interfaces
(NIs) for cluster nodes have evolved according to the demands of local area networks, i.e., using
heavyweight protocols that tolerate uncertain network characteristics and the view that the network
is a peripheral device. Current work in cluster NIs seeks to reduce protocol overhead, to tighten the
integration of the NI with the processors and to take advantage of the characteristics of the so-called
System Area Network (SAN) environment [77, 64, 81, 6, 19, 17, 29, 13].

Higher performance network interfaces suitable for significantly finer-grain parallel problems
have been demonstrated in massively-parallel processors as research prototypes [70, 7, 16, 1, 61, 2, 56]
and as commercial machines [45, 69, 72]. However, MPP work has largely ignored issues of mixed
workloads that require multiprogramming, demand paging and interactive scheduling.

A scalable workstation represents one vision of the convergence of SMP, cluster and MPP
goals and technologies that combines efficient communication, a scalable interconnect and multiuser
support. Specifically, a scalable workstation has the following characteristics:

* It will run a mixed workload, consisting of both interactive, response-time sensitive jobs and
compute- and communication-intensive parallel jobs.

* It will support efficient communication including both explicit communication through mes-
sage passing and implicit communication through shared memory.

* It will use a scalable, point-to-point interconnect with the characteristics of a SAN, e.g., high
reliability, effective hardware flow control and low latency.

Scalable workstations are expected to run a mix of the workloads that desktop workstations and
SMP servers run now and to enable the use of parallel programs for more applications. Scalable
workstations fit naturally into either a "workstation" or a "network computer" model of organization.
In a workstation model, scalable workstations serve as desktop computers tailored in size to the needs
of the user. In a network-computer model, desktop machines are minimally functional and are backed
by group-level or departmental-level scalable workstations as servers tailored in size to the needs of
the group. Despite partial centralization, the network-computer model remains workstation-like if
each desktop head is guaranteed the resources of some number of processors in the backing server.

A scalable workstation supports a full set of communication primitives. Shared memory is
widely considered more easily programmable than message passing. Message passing remains
desirable as well for several reasons. First, the strengths of message-passing for bulk transfer
and explicit synchronization are complementary to the strengths of shared memory for automatic
communication [38], making a mixed model attractive. Second, raw message-passing can have
performance benefits over shared memory in reduced interconnect traffic and more robust latency



Multiprogramming Virtual Memory
Message Isolation Page faults in handlers
Passing Parallel scheduling DMA coherence

Translation for DMA
Shared (Isolate using VM)
Memory Parallel scheduling Translation Coherence

Table 1-2. Challenges arising from the integration of four features desired in a scalable workstation.
Message passing and shared memory are features desired for high performance parallel processing
while multiprogramming and virtual memory are features desired for general-purpose, multiuser
operation.

tolerance [12]. In particular, even if written assuming a shared-memory programming model, a
program in which communication patterns are amenable to compile-time analysis might make better
use of compiler-generated message passing communication than of even hardware-supported shared
memory [14, 12]. Third, distributed shared memory and message passing implementations are
naturally similar at a low level, so if an implementation provides shared memory in hardware the
additional cost of exposing message passing is low [40]. Finally, one reading of technology trends
is that shared memory systems increasingly will be implemented in software using messages to
minimize hardware [1, 31] and/or to take advantage of application-specific knowledge [62].

Finally, a scalable workstation is made "scalable" by its point-to-point interconnect which allows
the communication performance of the machine to scale with the number of processors in the machine.
Scalability has two consequences. First, the global bandwidth of the network potentially scales up
as processors are added. Scaling network bandwidth with the number of processors allows good
application speedups for larger machines and for a larger class of applications than a system with a
fixed network bandwidth. Second, the cost of the interconnect scales with the number of processors.
The benefit is that a single machine implementation can exhibit good cost/performance for a wide
range of machine sizes including small sizes. In contrast, for instance, the bus in an SMP is cost
effective for only a narrow range of machine sizes.

A scalable workstation is an attractive vision. However, the combination of mixed workloads,
mixed communication models and the distributed nature of the system leads to a number of challenges,
described next.

1.2 Challenges in a Scalable Workstation

The primary challenges in a scalable workstation arise from the integration of communication features
with multiuser features. Message passing and shared memory are the two communication models.
Multiprogramming and virtual memory are features arising from the goal of supporting a mixed,
multiuser workload. Table 1-2 enumerates the challenges that arise from integrating these features
by considering the intersection of each of the communication models with each of the multiuser
features.



There are a number of important challenges, only the first of which is pursued in detail this thesis.
The discussion below explains each challenge listed in the table and regroups them into four named
problems.

First is the "Virtual Network Interface" (VNI) problem which encompasses the top row of
items in Table 1-2. Messages in a multiuser system must be isolated from one another and
resilient to disruptions such as page faults in virtual memory.' At the same time, the interface
must allow for efficient communication. Research on communication mechanisms supports
that view that efficiency comes from tight coupling of the network with the application. The
demands of isolation tend to interfere with tight coupling from both directions. For protection
reasons, the network may not be able to deliver a message immediately. Similarly, due to
multiprogramming, an application may not be able to receive a message immediately. Demand-
paged virtual memory causes a similar effects: a page fault (or a remote shared memory miss)
in message handling code introduces a delay in message reception that may be intolerable
to the network. We proposed a solution to the VNI problem in [50] and partly evaluated it
in [51]. This VNI solution is implemented in FUGU and is the focus of this thesis. Other recent
network interface work addresses the VNI problem with similar goals, notably CNI [58], the
*T family [61, 2] and the M-machine [25]. These projects are described as related work in
Chapter 8.

Second is the DMA problem. Efficient bulk transfer through messages requires the support of
Direct Memory Access (DMA) hardware or equivalent functionality provided by a coprocessor.
Using DMA with virtual memory requires virtual address translation for the DMA engine.
Either the DMA engine itself must be capable of performing such translations or there must be
a secure means for the DMA engine to receive physical addresses from the processor. Further,
combining DMA with virtual memory (or with shared memory) introduces a data coherence
problem because the DMA engine becomes an additional source of memory operations. We
proposed a solution to the DMA problem in [50] and some elements of that solution are
implemented in FUGU (Appendix A). Others have addressed DMA with virtual memory in
network interfaces as well [80, 68].

* Third is the translation coherence problem. Virtual memory combined with shared memory
introduces coherence problem with cached translations because virtual-to-physical mappings
are conventionally cached at the processors. A solution to translation coherence needn't be
as efficient as data cache coherence but must be scalable. We proposed a scalable solu-
tion to translation coherence in [50]. Teller examined a number of solutions to translation
coherence [75].

* Finally, there is the scheduling problem. Parallel schedulers for mixed workloads are not
yet fully understood. It appears important to be able to schedule some applications with
traditional, per-processor, priority-based scheduling and others with coordinated scheduling
("coscheduling"). Network scheduling in Table 1-2 refers to the problem of controlling the
impact of one application's network traffic on another. Traffic effects can be ameliorated by
communication models that minimize blocking such as sender-based messages. Ultimately,

'The integration of shared memory with message passing presents problems that are similar to those presented by
virtual memory. For instance, a cache miss to a remote shared memory location is similar to a page fault and could be
handled in the same way.



however, network effects must be considered by a parallel scheduler. A "flexible coscheduling"
parallel scheduler was proposed in [44] and is partly implemented in FUGU. Others are working
on the same problem [22, 73].

While DMA, translation coherence and scheduling have each been studied to some extent in the
FUGU system, the focus of this document is on the solution to the VNI problem.

1.3 An Efficient Virtual Network Interface

Existing solutions to the VNI problem compromise in one of three ways: in performance, by reducing
the performance of the implementation, in protection, by limiting the support for multiprogramming,
or in programmability, by limiting the flexibility of the communication model and therefore limiting
its efficiency as a programming target.

This thesis presents the "direct" virtual network interface as a solution to the VNI problem that
meets all three parts of the challenge. The direct VNI supports an aggressive, low-level message
model, User Direct Messages (UDM), in which user messages logically correspond one-to-one with
one-way, unacknowledged messages sent through the network. Messages are isolated for protection
by tagging each message with a global identifier corresponding to the communicating application
and by interpreting the tags appropriately.

The direct VNI architecture reconciles efficiency with protection by recognizing that protection
failures are uncommon. The thesis introduces two complementary techniques as part of the architec-
ture. First, the direct VNI uses two-case delivery to optimistically provide direct, user-level access
to network interface hardware with a transparent, software-buffered fallback delivery system. The
result is a system that simultaneously supports both good parallel application performance through
an efficient, low-level interface and enables good global system performance through flexible mul-
tiprogramming. Second, the software-buffered mode uses virtual buffering to provide effectively
guaranteed message delivery while giving the operating system the freedom to automatically manage
physical buffering resources.

The two-case delivery and virtual buffering ideas are evaluated using workloads of real and
synthetic applications running on a simulator and partly on emulated hardware. The results answer
two main questions. First, results show the direct path is also the common path under most conditions,
justifying the use of software buffering. Experiments show that only 14 - 33% of messages in our
sample parallel applications take the buffered path when 10% of CPU time is devoted to uncorrelated
interactive tasks on 16 processors. Second, further results show that physical buffering requirements
remain low (a few pages) for our sample applications despite the combination of unacknowledged
messages and unlimited buffering.

The combination of UDM with an implementation based on two-case delivery and virtual
buffering makes for a network interface that is both efficient and virtualized and that is particularly
appropriate for the environment of a scalable workstation. The ideas are usable separately.



1.4 Contributions

The FUGU project has been a cooperative effort involving a number of people making overlapping
contributions. The particular contributions of this thesis are fourfold:

1. We identify the virtual network interface problem and enumerate its major issues.

2. We present the direct virtual network interface, which applies the architectural techniques of
two-case delivery and virtual buffering with overflow control to the virtual network interface
problem. The thesis includes a detailed description of the two techniques. The essence of the
UDM programming model and the specific hardware used to virtualize user interrupts have
also been described by Kubiatowicz in the context of the Alewife machine [40].

3. We report on the implementation of a scalable workstation, FUGU, that uses the direct virtual
network interface. FUGU consists of emulation-based hardware, a companion instruction-level
simulator and a custom operating system. Features of the hardware have been previously
described by Michelson [55] and by Lee [43].

4. We present an evaluation of the direct virtual network interface based on simulation and
emulated hardware. The evaluation makes three basic points. First, the direct VNI in FUGU
has best-case receive-side overhead near that of an unvirtualized interface built on the same
hardware (within 60% or 10s of cycles). Second, the direct case is in fact the common case;
under realistic mixed workload conditions our parallel applications see only 14 - 33% of
messages buffered with 10% of CPU time is devoted to unrelated, interactive tasks. Finally,
we observe that memory consumption remains naturally low in reasonable applications for a
broad definition of reasonable and is controllable in other applications.

1.5 Roadmap

The rest of the document is organized as follows. Chapter 2 describes the aspects of the VNI
problem and concludes with the thesis problem statement. Chapter 3 presents our direct VNI
solution, including the programmer-visible model and an overview of the architectural approach.
Chapters 4 and 5 describe and discuss the details of the two-case delivery and virtual buffering
architectural techniques, respectively. Chapter 6 introduces the experimental FUGU system used to
evaluate the direct VNI ideas. Chapter 7 describes the experimental evaluation and presents the
results from application workloads run on the FUGU system. Chapter 8 summarizes related work and
Chapter 9 concludes.





Chapter 2

The Virtual Network Interface Problem

A key issue in a scalable workstation is the problem of reconciling efficient communication with
standard support for multiprogramming. Efficient communication implies a tight coupling between
application code and the communication systemr: the processes running an application can rely
on timely action by the communication system and vice versa. Multiprogramming and related
support, notably demand-paged virtual memory, prevent a process in an application from being able
to guarantee its own timely behavior. We call the problem of reconciling communication efficiency
with multiuser support the virtual network interface problem.

A full solution to the problem must address three major issues:

* Programmability: the interface to the communication system must serve as an efficient target
for a programmer, a compiler or a runtime system. Assuming a good implementation, an
interface model is good when it expresses naturally what the user needs to do and when it
exposes the fundamental underlying costs of communication.

* Protection: the communication system must provide protection for multiprogramming and
must be compatible with virtual memory and scheduling for mixed workloads.

* Performance: the communication system must transport data with low latency and high
bandwidth. Ideally, given a particular programming model, the protected communication
system will perform as well as raw, unprotected hardware.

Each of these three issues in isolation is not difficult. Supporting a programmable, protected
interface while providing high performance is the real challenge. This chapter discusses each of the
three issues and attempts to define an "ideal" for each against which any system should be compared.
We will refer back to these points in the rest of the thesis when discussing the solutions in the direct
VNI and in related work.

2.1 Programmability

The first issue is that the communication model must be both general and efficient In the realm of
fine-grain message passing models, low-level models that expose fundamental costs are attractive
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Figure 2-1. Existing communication models take a variety of approaches to bridging the program-
mer's notion of communication with the capabilities of the hardware. Here, an arbitrarily chosen set
of models are arrayed on the right along an axis of "close to the program" at the top to "close to the
hardware" at the bottom.

because they give the programmer the means to mini-ize those costs. We describe the desired
functionality of a low-level model and enumerate the sources of costs.

The communication model of most interest in this thesis is the model for fine-grain messages. As
described in the introduction, a scalable workstation is expected to support both shared memory and
message passing communication models. Shared memory integrates naturally with virtual memory
and multiprogramming so we consider only message-passing issues here. Further, message passing
has two main purposes with different requirements: small, synchronizing messages and large, bulk
transfer messages [38]. Fine-grain messages for combined data transfer and synchronization require
low overhead and latency for maximum utility. Messages for bulk transfer demand chiefly high
bandwidth because latency and per-message overhead are amortized over the time of the transfer.
Thus, while low-overhead bulk transfer extends the usefulness of a bulk transfer mechanism, overhead
is a secondary issue. We consider only small messages as the focus of this thesis and assume that
bulk transfer messages are supported separately. 'Low-overhead bulk transfer support in FUGU is
implemented as an extension of the direct VNI mechanism and is described in Appendix A.

Message-passing models for small messages are varied and controversial because, like an in-
struction set, a message model must balance naturalness as a programmer's abstraction with imple-
mentability in hardware. The model must serve as an efficient target for the application programmer,
compiler or library writer. Simultaneously, the model must be implementable with high speed and
using acceptable amounts of hardware. The tension between expressiveness and implementability
leads to a tradeoff. Figure 2-1 sketches the tradeoff and loosely places some existing models in
the space of the tradeoff. For instance, MPI [54] is a relatively high-level model. MPI defines
synchronous send/receive operations and multicast/reduction operations as primitives. These primi-
tives correspond to multiple messages in the network hardware. Close to the other extreme, Active
Messages [78] is a low-level model with primitives that correspond closely to fundamental hard-
ware operations. Each user message in Active Messages corresponds to a single hardware message
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through the network which invokes a user handler at the destination.

While a final conclusion awaits further research, we believe that the most successful interfaces
in the long run are likely to be low-level ones that expose the fundamental costs of communication.
In analogy to RISC instruction sets, a low-level abstraction both allows the hardware to be focused
on support for a few, simple, fast primitives and gives software the opportunity to synthesize
compound operations in an application-specific manner. At a minimum, a low-level model such
as Active Messages can efficiently emulate a higher-level model such as MPI given a sufficiently
low-overhead implementation. Efficiency in this context means that the emulation overhead of an
Active Message implementation of, for instance, send/receive in MPI over a native implementation is
negligible compared to fundamental costs such as data transfer time. More important than emulation,
a low-level model offers the promise that network traffic and protocol overhead may be reduced over
that required by a higher-level model by programmer specialization [78] or through automatic,
compile-time analysis and specialization [23, 34].

An ideal low-level model provides a complete set of communication operations and exposes fun-
damental costs. The programmer is thus given the ability to craft communication protocols tailored
to the application and to minimize communication costs using application-specific knlowledge. The
fundamental communication operations for fine-grain messages passing are data transfer and control
transfer:

* Ideal data transfer moves data words from the right place to the right place, i.e., from reg-
ister/cache/memory of the source process to the register/cache/memory of the destination
process, depending on the needs of the source and the destination. Small messages are likely
to be transferred from register to register on the assumption that they are intended to be sent
as soon as they are generated and to be consumed as soon as they are received.

* Ideal control transfer allows the sender and receiver to synchronize in the most convenient
way; by having the receiver poll for a message, receive an interrupt when a message arrives, or
with no synchronization at all. Both polling and interrupts have advantages and disadvantages
in performance and in programmability. In terms of performance, interrupts work well for
moderately frequent but latency-critical messages. Polling works well for predictable, high-
volume message patterns or for latency-tolerant applications. In terms of programmability,
interrupts give predictable performance without tuning. This is an advantage because periodic
polling is often difficult to synthesize accurately. With polling, the atomicity model is clearer
and less error-prone: a faulty polling-based application tends to deadlock, which is much
easier to debug than a synchronization failure. [8].

The fundamental costs of communication arise from the operations of data and control transfer.
Costs per message are due to latency and resource consumption in the network, in the endpoint (the
network int-rface and/or the processor) and in any memory used if messages are buffering:

* Messages consume network bandwidth and suffer latency due to the network. Network
resource consumption is a per-message cost.

* Message handling at the sending and receiving endpoints consumes computation bandwidth
in the processor or network interface. Such computation also adds latency to the message.



Endpoint resource consumption is a per-message cost in a low-level model like Active Mes-
sages. A more complex model may use hardware or a coprocessor to reduce the endpoint cost
for messages that are part of the complex model's protocol.

* Messages that are buffered in memory at some point consume memory storage space and
consume message system bandwidth. Memory consumption is a per-message cost when
buffering is used.

In addition:

* A message system incurs additional, possibly substantial, costs in the network, the endpoints
and memory if a layer of protocol is required to synthesize message reliability, ordering, flow
control, etc. [33], needed by the application.

The ideal communication model is both natural to program and is effective at minimizing the
costs of communication. Low-level models work by exposing the fundamental operations and
the fundamental costs based on the assumption that a compiler, a library implementation or the
application programmer can best minim,,e the costs. In a lightweight, asynchronous model, each
logical message specified by the programmer corresponds one-to-one with a message through the
physical interconnect. This correspondence give the programmer maximum control over the traffic
generated by the application and thus control over the per-message costs. Having each message
invoke a handler on the processor gives the programmer the "glue" to build arbitrary protocols that
minimize the required messages.

We have presented desirable programmability features and enumerated costs for fine-grain
message-passing. The fine-grain messages mechanism is assumed to be complemented by sup-
port for bulk-transfer messages and for shared memory. The programmability of the virtual network
interface in a scalable workstation is tempered by the need to support protection, described next.

2.2 Protection

The second isEue in a virtual network interface is that the architecture must be compatible with
multiuser operation in a scalable workstation. Multiuser operation requires protection between
applications in all elements of the system: in the processors, in memory and in the network. A
virtual network interface architecture must provide the protection for the network and must tolerate
the effects of protection in the other elements of the system. The primary effect of protection from
the point of view of the message system is that protection mechanisms can render network messages
undeliverable, temporarily or permanently. This section discusses the undeliverability problem,
protection for the network in particular and then protection for memory and the processor in a
general way.

Undeliverable Messages. The primary consequence of the various aspects of protection from the
point of view of the message system is that a message is not always deliverable to the destination
process at the time a sender wishes to send. A message may be undeliverable due to application
choice if the programmer's model allows a receiver to refuse messages. Multiuser protection features
exacerbate the problem by introducing new reasons for messages to be undeliverable, i.e., because
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Figure 2-2. Protection requirements can make messages undeliverable. Here an incoming message
from a different application has been mixed in with a parallel application's messages. The currently
running (light colored) application cannot receive the (dark colored) message at the head of the queue
for protection reasons. If the architecture permits potentially undeliverable messages to be launched
into the network, the receiver must buffer, NACK or drop such messages.

the wrong process is scheduled at the receiver or because the receiving process takes a page fault.
Figume 2-2 illustrates a situation in which a message has been launched from the sender on the left
but the receiver is not ready to receive. How the receiver responds is a major architectural issue in a
virtual network interface.

'The focus of the discussion here is on protection rather than virtualization (naming) because
it is protection that ultimately causes the undeliverability effect. Virtualization features, such as a
mechanism to translate a virtual processor number in a message headers into a physical processor
number, are useful, but protection is fundamental.

Network Protection. In the abstract, protection means preventing one application from discovering
the results of another application or altering the execution of another application. Applied to the
message system, protection means preventing an application from reading, forging or destroying
another application's messages. More subtly, an application also must be prevented from unduly
delaying messages belonging to another application. The effect of protection in the network is that
messages may be made undeliverable at times due to protection conflicts.

Rigid scheduling strategies in a multiprocessor, i.e., space partitioning or strict gang scheduling,
can effectively solve the network protection problem by permitting only one application's messages
in a portion of the network at a time. Rigid scheduling solves both the problems of isolation of data
and of delay effects between individual messages. The CM-5 [45], for instance, provides protected
multiprogramming by strict gang scheduling. Application messages are isolated because only one
application is active in a partition at a time. The CM-5 network interface allows an application process
to block the network, but the CM-5 limits the delay effect of such blocking to other applications by
saving and restoring network state at application switch times. However, requiring rigid scheduling
at all times is undesirable for interactive performance reasons.

Flexible scheduling implies that the messages of multiple applications may be active in the net-
work at the same time. The network architecture must solve the two problems of isolating messages
of multiple applications and of controlling the delay of one application on another application. Both
problems lead to undeliverable messages.

The first part of network protection is isolating network data. With multiple applications sending
messages simultaneously, isolation of network data requires tagging each message indelibly with
information that allows it to be identified to a protection system which can in turn determine which
process or processes may have access to the message. Tagging requires three mechanisms: the
sending network interface must include a mechanism to apply the tag in a trusted way, the message



in transit must encode the tag indelibly and the receiving network interface must include a mechanism
to interpret the tag in a trusted way. The flexibility and expressiveness of the protection mechanisms
may be arbitrarily elaborate, but at the bottom level the consequences are simple: messages must be
identifiable while in transit and certain messages may be undeliverable due to protection conflict.

The second part of network protection is minimizing the delay effect of one application on
another. Some amount of interaction between applications is inevitable since the applications share
resources. However, for instance, if one application refuses to receive its own messages, perhaps
because it polls only infrequently, the result can be a network blockage. The network interface
must receive messages and keep network traffic moving whether the application is ready to receive
messages or not. This problem is another instance of undeliverability.

Memory and Processor Protection. Memory and processor protection are conventional in unipro-
cessor workstations and largely extend naturally into scalable workstations. From the point of view
of the network interface, memory and processor protection are simply other potential sources of
undeliverability: a message can become undeliverable because it requires a memory or processor
resource that is temporarily or permanently unavailable. For instance, a message handler that takes a
page fault on its first instruction renders that message undeliverable for the (presumably intolerable)
period required to service the fault. Parallel scheduling is a whole topic unto itself. We discuss
it here in the context of message passing because scheduling has an impact on what the message
system can expect.

A scalable workstation requires a system scheduler that caters to needs of both interactive,
response-time-sensitive applications and parallel, synchronization-intensive applications. A system
with an interactive workload needs a scheduler that provides good response time to interactive events.
Standard, priority-based scheduling addresses this requirement well [74]. The natural extension
of a priority-based scheduler to a multiprocessor is to schedule processes independently on each
processor of the multiprocessor. However, parallel jobs, particularly ones that perform inter-process
synchronization frequently, often require some form of coscheduling for best performance [60]. The
conflict in scheduler requirements is stark in a scalable workstation where we want to run mixed
workloads. A standard solution does not yet exist although a number of researchers are working
on the problem [22, 73, 44]. Essentially what is required is a scheduler that works well in both
interactive- and coscheduled modes.

Beyond the scheduler, the virtual network interface itself needs to operate efficiently in both
modes. Coscheduled applications can easily make use of the low latency of a direct interface since
coscheduling means that the sender and receiver of a message tend to be scheduled simultaneously.
Applications running under standard, priority-based scheduling may be able to make use of a direct
interface sometimes or "optimistically" but in general will require buffering of messages that arrive
when the wrong process is scheduled.

The ideal support for protection in a virtual network interface provides isolation between indi-
vidual messages so that multiple applications may be scheduled independently on each processor
if application characteristics do not demand coscheduling. Ideally, the message system isolates
the virtual networks of applications both in terms of correctness and in terms of performance and
imposes no additional overhead in either the independently-scheduled or coscheduled scenarios.



2.3 Performance

Finally, a virtual network interface architecture must address the issue of' performance given the
demands of programmability and protection. The challenge of programmability with a low-level
model is to provide full functionality with overheads near hardware limits. The complication
introduced by protection is the problem of undeliverable messages. This section discusses the
challenges of a low-level model and of undeliverability from the perspective of performance, then
concludes by comparing the characteristics of two means of building a network interface in hardware:
direct and buffered. A direct interface which brings network queues all the way to the processor offers
low overhead for the operations in a low-level model. A buffered interface which queues messages
in memory can solve the undeliverability problem. We conclude that a successful approach will
combine the characteristics of each.

Programmability. A low-level model, as described in Section 2.1, demands full functionality and
addresses communication costs by relying on the compiler, library or programmer to minimize
messages. The performance challenge in the architecture and implementation is minimizing the
per-message costs.

A particularly difficult case is the situation of message delivery via interrupt. There are two
overheads associated with delivery via interrupt: the cost of having the processor take the interrupt
and the delay of transporting the first word of data from the network interface to the processor.

A low-level model is most useful if the network provides reliable, exactly-once message transport
semantics and flow control so that low-level operations can be used without an additional layer of
protocol-level fault tolerance. A point-to-point network in one cabinet (a System Area Network or
SAN) may be made to be sufficiently reliable that protocol-level fault tolerance becomes unattractive
compared to a combination of link-level fault tolerance (e.g., via ECC) and simple end-to-end fault
detection. Other researchers take the same view [9, 25]. MPP manufacturers have found it feasible to
build reliable networks for machines with several hundreds of nodes [69]. Placing the network in one
cabinet avoids most of the practical causes of failures, e.g., those due to unpluggings, independent
power supply failures, cable damage and electromagnetic interference.

Protection. As discussed above, a consequence of the various aspects of protection is that messages
are not always deliverable to the destination at the time a sender wishes to send. Messages may be
undeliverable even in a single-user system due to application choice if the programmer's model allows
a receiver to refuse messages. Multiuser protection features exacerbate the problem by introducing
new reasons for messages to be undeliverable, e.g., because the wrong process is scheduled at the
receiver. There are a small number of possible solutions to undeliverability. Of these, buffering is
attractive because, in the spirit of a low-level model, it works without adding the requirement of
additional protocol messages.

There are four options for dealing with undeliverable messages, one sender-side and three
receiver-side. The first option is to rule out undeliverable messages by prenegotiating all resources
needed for a message transfer before a message is launched. The second, third and fourth options
are to drop, to negatively acknowledge (NACK) or to buffer such messages.

Prenegotiation is widely used. For instance, with a remote-write model, the system can require
that the sender can only name locations at the destination that are known to physically exist. As
another instance, with a synchronous send/receive model, the receive statement can be used to trigger
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Figure 2-3. A network interface my delivery messages directly, may buffer all messages in memory
or may take a hybrid approach. The annotations on the arcs represent relative frequencies along each
path.

the send. Prenegotiation has costs in extra protocol overhead and potentially in delay. Prenegotiation
is most useful when its costs are amortized over a bulk transfer or when the idea of prenegotiation is
propagated all the way back to the model, e.g., a shared memory or remote memory model, so that
the programmer can work around its costs.

Of the three receiver-side options, dropping is the least desirable because it introduces unreliabil-
ity into a system that may otherwise have adequately reliable hardware. Dealing with unreliability
adds the extra costs of buffering copies at the sender and of extra traffic to manage the copies.

NACKs introduce complexity into the network interface, add traffic and overhead for buffer
management and require a reserved back-path. The "return-to-sender" strategy, used in the T3E [69]
and the M-machine [25] is a form of NACK that avoids much of the common-case buffer overhead.
Return-to-sender assumes a reliable network. Both dropping and NACKing have the effect of
increasing network demand under load. Further, dropping and NACKing are subject to livelock
unless additional steps are taken to prevent it.

Finally, buffering has the advantage of letting messages always make forward progress, at least
with respect to traversing the network. However, buffering only postpones the undeliverability
problem unless the buffer is effectively infinite in size or the total buffer space required by the
workload is provably limited by some means. The SP-2 takes the "effectively infinite" approach
by providing a very large (8MB) physical buffer [72]. Infinite buffering offers the lowest overhead
provided the real costs of buffering can be kept low. The next section talks about the performance
cost of providing support for buffering in hardware.

Undeliverability is described here in terms of protection for correctness but there is also a related
performance issue. If the message system does not demand prenegotiation of all resources, then
undeliverability in terms of correctness becomes a receiver-side protection issue. However, there is
also a similar performance issue: it might be beneficial to remove messages from the network (or,
symmetrically, not to inject them) just to improve traffic flow within the network. Mukherjee, et
al [58], found it beneficial to buffer messages at the receiver automatically in some applications.

Direct vs. Buffered Interfaces. Message passing network interfaces developed for high-performance
parallel machines have taken two general approaches: direct and memory-based. Direct interfaces
allow the processor to handle messages directly out of the network. Memory-based interfaces provide
special hardware to extract messages out of the network and buffer them in memory; the proces-
sor then accesses the message buffers in memory. Although a definitive conclusion awaits further
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research, past research indicates that direct interfaces tend to be more efficient than memory-based
interfaces. Direct interfaces that can be accessed at cache speeds offer even better performance [28].
For example, the CNI paper [56] showed that a direct, cache-level interface exhibited 50% higher
bandwidth than their best interface placed on the memory bus. Direct interfaces are challenging to
protect without sacrificing efficiency or seriously impairing the multiprogramming model. There-
fore, one appeal of memory-based interfaces is that they may be protected through standard memory
mapping mechanisms.

Figure 8-1 gives schematic views of the different approaches to message delivery. Figure 8-
la shows a direct interface with no buffering and Figure 8-lb shows a memory-based interface.
Hybrid schemes are also possible. The two-case delivery system to be described in this thesis uses
hardware for direct delivery and software for buffering as in Figure 8-1c. A two-case delivery system
using all- or mostly-hardware by having the network interface manage memory itself is shown in
Figure 8-Id. For instance, Mukherjee, et al's CNII6Qm [56, 57] interface provides both a fast path
and a (potentially virtual) buffered path by using the network interface to buffer messages. Hybrid
solutions will be discussed in more detail in Chapter 8.

Direct network interfaces, Figure 8-1a have been used in research machines [16, 7, 61, 1, 56]
and one commercial machine, the CM-5 [45]. These interfaces feature low latency by allowing the
processor direct access to the network queue. Direct NIs can be inefficient unless placed close to
the processor. Anticipating continued system integration, we place our NI on the processor-cache
bus. The CNI paper showed how to partly compensate for a more distant NI by exploiting standard
cache-coherence support [56].

Memory-based interfaces, Figure 8-lb in multicomputers [6, 9, 66, 69, 72] and workstations [17,
19, 76, 77] provide easy protection for multiprogramming if the NI also demultiplexes messages into
per-process buffers. Automatic hardware buffering also deals well with sinking bursts of messages
and provides the lowest overhead (by avoiding the processors) when messages are not handled
immediately.

Memory-based application interfaces provide low overhead when access to the network hardware
is relatively expensive (true for most current systems), when latency is not an issue so that messages
can be handled in batches, or when buffering is actually required. Increased integration of computer
systems and the mainstreaming of parallel processing challenges these assumptions. On-chip network
interfaces can have low overhead. Further, parallel programs frequently require low latency; so much
so that they may require coordinated scheduling to keep latencies low and predictable. Coordinated
scheduling has the effect of reducing the need for buffering. Buffering may still be required
occasionally for protection reasons but the occasions are rare.

Direct interfaces tend to provide the best performance while buffering provides a means of solving
the undeliverability problem. Table 2-1 summarizes the tradeoff between direct and memory-based
interfaces by listing the operations required to receive messages using each of the control transfer
mechanisms described in Section 2.1. For instance, messages received via interrupt using a direct
interface (Figure 2-1, middle left) suffer the overhead of a user interrupt and the (minimal) overhead
of reading the message payload from the tightly-coupled network interface. The direct interface is
assumed to be accessed via load/store instructions that proceed at the speed of the level 1 cache. In
contrast, the buffered interface suffers two extra overheads for reception via interrupt (Figure 2-1,
middle right): the cost of reading data from memory and the cost of buffer management.

There are three other observations to make about this table. First, interrupts are demanding: it



Delivery Delivery of data
of control Direct H/W Buffered
Polling: <Inter-poll time> <Data placed in memory>

Poll on network <Inter-poll time>
Read data from network Poll on memory
Run handler Read datm from memory

Run handler
Buffer management

Interrupt Interrupt <Data placed in memory>
w/upcall: Read data from network Interrupt

Run handler Read data from memory
Run handler
Buffer management

Interrupt <Data placed in memory>
w/thread: OS: Interrupt

OS: Schedule thread
OS: Run handler thread
Read data from memory
Run handler
Buffer management
OS: Reschedule thread

Table 2-1. The sequence of operations used to receive a message for direct and memory-based
data access modes using polling, upcall-based user interrupts and a thread signaled by an interrupt.
Buffered operations differs from direct in the addition of overhead to store and fetch message data
from memory and of buffer management overhead. Polling differs from interrupts by avoiding
interrupt overhead, but adds the overhead of failed polls and the latency due inter-poll time. Thread-
based interrupt handling differs from upcalls in the addition of scheduling overhead.



is easy for the overhead and latency of interrupts to become high, especially if a full thread model
(Figure 2-1, lower right) is used. Second, polling can be either faster or slower than interrupts. The
overhead of a successful poll is almost certainly lower than the overhead of an interrupt, but not all
polls are successful and a polling application suffers additional latency due to the time between poll
points. Third, most of the costs of control transfer and of memory access can be made to disappear
if the application can be written so that messages are handled in batches. A memory-based interface
then amortizes memory access costs over cache lines or could even apply prefetching. However,
depending on a batching effect in a design reduces the usability of an interface. In other words, it
is easy to provide communication for embarrassingly parallel applications using any technique; the
challenge is to support the widest range of applications.

Between the demands of programmability and the consequences of protection, the best interface
then depends on the situation:

Low latency Buffering required Many opportunities for
is crucial because messages are latency tolerance

undeliverable and batching

Direct Memory-based Either

Summarizing this section, the ideal VNI architecture and implementation in terms of performance
would suffer the minimum amount of extra cost in all situations over what is absolutely required to
support the communication model and protection. Since direct and buffered interfaces have different
strengths, the ultimate solution is likely to be a hybrid. The solution described in this thesis is one
such hybrid. Other hybrid approaches are discussed in the related work presented in Chapter 8.

2.4 Problem Statement

The problem is to build a virtual network interface that addresses the three issues described in this
chapter:

1. Programmability: The programming model must be an efficient target for the application
programmer, a library developer or the compiler.

2. Protection: The system must coexist with flexible multiprogramming and the usual features
of a multiuser machine (virtual memory) in order to support mixed workloads.

3. Performance: The implementation must be fast despite multiuser effects. Ideally the imple-
mentation is as fast as an implementation that is not burdened with multiuser features.

The design space is large and there is interesting work to be done in approaches that compromise
one or more of the three points above. The goal of this work (and others), however, is to preserve all
three points. The next chapter describes our solution.





Chapter 3

A Direct Virtual Network Interface

A virtual network interface must address the issues of programmability, protection and performance.
This chapter introduces the heart of the thesis: a "direct" virtual network interface that achieves the
three virtual network interface goals for message-passing communication with short messages. This
chapter defines the programming and protection models and then overviews the architecture of the
direct VNI that gives performance given the models. In other words, for the purposes of the thesis,
the programmability and protection features are taken as design choices while the focus is providing
good performance given these choices.

The direct VNI takes a novel approach to the VNI problem: the direct VNI provides a very
low-level message model that optimistically maps to direct, user-level access to physical network
hardware and then virtualizes that access through transparent emulation only when required for
protection. The result is a solution that achieves performance near that of a single-user, all-hardware
system with the flexible protection of a much more elaborate, software-based system.

The direct VNI achieves the goals of programmability, protection and performance:

* The direct VNI achieves the goal of programmability through its low-level model. The
low-level model used is User Direct Messages (UDM), described here as well as by Kubia-
towicz [40]. The particular model is arguably desirable, as we will show, but amounts to a
design choice.

* The direct VNI provides protection that is compatible with multiprogramming, virtual memory
and arbitrary scheduling policies, with some caveats. Isolation is based on labeling all the
processes in an application with a single Group Identifier (GID) and permitting communi-
cation only between processes with the same GID. This protection mechanism is simplistic,
but, combined with virtual memory and scheduling, produces the full set of undeliverability
problems discussed in Section 2.2. The direct VNI architecture is thus applicable to systems
with more general protection mechanisms.

* The direct VNI architecture achieves good performance because most messages proceed at
hardware speeds, allowing performance approaching that of a dedicated, single-user machine
without protection. The architecture achieves this goal via two techniques, two-case delivery
and virtual buffering.



Problem: Virtual Network Interfaces (VNIs)

Programmability: ? 7 "Solution: Direct Virtual Network Interface
Protection: ?

Performance: ?
Programmability: User Direct Messages (UDM) model

Protection: Group Identifiers (GIDs)
(simplistic but complete)

Performance: through two-case delivery
and virtual buffering
(architectural techniques)
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Figure 3-1. Summary of the problem, the solution to the problem at the architecture level, and the
implementation of the architecture in FUGU.

Figure 3-1 depicts the relationship between the problem described in the last chapter, the solu-
tion architecture overviewed in this chapter and the architecture and implementation details to be
described in subsequent chapters. Virtual Network Interfaces are network interfaces for multiuser
machines. Any multiuser multiprocessor needs to address the VNI problem. The direct virtual
network interface is the solution explored in this thesis. The focus of the thesis is on providing good
performance given an aggressive, low-level communication model, represented by UDM, and a full
set of protection features. The implementation applies the complementary architectural techniques
of two-case delivery and virtual buffering in the FUGU prototype.

The remainder of this chapter is organized as a description of how the direct VNI addresses
the issues of programmability, protection and performance as introduced in the previous chapter.
Section 3.1 describes the UDM model which gives the direct VNI programmability. Section 3.2
describes the model of protection. The protection model used for this thesis is simplistic, but
gives rise to the full set of protection-induced complications described in the previous chapter.
Section 3.3 overviews the architecture of the direct VNI solution including the two-case delivery and
virtual buffering techniques and describes how the solution achieves good performance. Section 3.4
concludes with a discussion of alternate design choices that arise at this point.

3.1 Programmability

The direct VNI addresses programmability by providing a low-level model, User Direct Messages
or UDM. UDM is an abstract model for message-passing communication intended to represent a
minimal but complete representation of the capabilities of a raw hardware interface. The UDM model
is "programmable" in two senses. First, it is programmable in the sense that it is a natural, low-level

Implementation: FUGU Prototype

Programmability: UDM model

Protection: GIDs

Performance: two-case in H/W + S/W,
virtual buffering in S/W
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target for a programmer, for a compiler or as a building block for other protocols (e.g., send/receive,
RPC) in a library. Second, although it could be implemented in terms of other primitives, UDM is
sufficiently low-level to be implemented efficiently as a direct interface in hardware. UDM primiti, es
correspond one-to-one with network hardware primitives and UDM is thus "programmable" in thlat
it exposes the fundamental costs of the hardware.

The novelty of UDM with respect to other low-level models (such as Active Messages [78]) is
that UDM defines the control transfer mechanisms along with the data transfer mechanisms as part of
the model. UDM includes both polling and a user-level interrupt for message delivery notification.
The key feature is a set of atomicity (interrupt disable) operations that allow an application using
UDM to construct message receive code with the same flexibility and efficiency as an in-kernel
device driver.

UDM provides all of the facilities commonly desired from fast message interfaces within a
multiprocessor: low-overhead message construction and launch, as well as low-overhead reception
via interrupts or polling. UDM allows the programmer to view the network hardware as a dedicated,
user-level resource with effectively unlimited buffering. The buffering serves as an aide to deadlock
avoidance in user protocols. The network is virtualized in the same sense that the CPU and memory
are virtualized in a virtual machine. It is up to the hardware and runtime system to maintain these
illusion.

As mentioned above, UDM has two major components, corresponding to data and control.
First, the UDM model has a notion of messages, which are the unit of communication, along with
operations to inject messages into the network at the source and extract them from the network at
the destination. Second, and uniquely, UDM provides an explicit atomicity mechanism, which is
a low-overhead, virtualized interrupt disable. The atomicity mechanism grants user code explicit
control over the arrival of message interrupts, allowing a smooth integration of both polling and
interrupts as mechanisms for notification of message arrival. The data and control parts of the model
are discussed below, followed by a discussion of unlimited buffering used for deadlock avoidance.

Data Transfer Model. Data are transferred as the payload of a message. A message is a variable-
length sequence of words. Two of these words are specialized: the first is an implementation-
dependent routing header which specifies the destination of the message. The second specifies a
handler to be run at the destination to receive the message, as in Active Messages. Remaining words
represent the data payload and are unconstrained.'

The semantics of messaging are asynchronous and unacknowledged. At the source, messages
are injected into the network at any rate up to and including the rate at which the network will accept
them. The injection operation is atomic in that messages are committed to the network in their
entirety; no "partial packets" are ever seen by the communication substrate [39]. This atomicity
property is useful for multiprogramming because it allows the output interface to be multiplexed
preemptively easily. Message injection can be viewed in the following fashion:

'The details of the data message constraints and layout are outside the scope of the UDM model. For concreteness, the
following details are actually implemented in FUGU's direct VNI. First, the "destination" is a integer between 0 to P - 1
corresponding to one of the P virtual processors in the current parallel application. Second, since the protection model
(described in Section 3.2) limits messages to within a single application, the message "handler" is specified as the raw
virtual address of the handler code. Third, the FUGU hardware supports messages of up to 16 words without the use of
DMA.
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Figure 3-2. Message timeline for interrupt-based delivery on the fast path. The action at the sending
node is at the top, at the network in the middle and at the receiving node at the bottom. The message
is launched by an inj ect operation from a thread at the sender. After traversing the network, and
after a possible delay due to interrupts disabled at the receiver, the arrival of the message invokes an
interrupt handler at the receiver. The interrupt handler executes with interrupts disabled by default.

inject (header, handler, wordO, wordl, ... )

The inject operation may block temporarily if the message system is unable to proceed for
any reason (e.g., resource contention in the network), but will eventually succeed. For performance
reasons, blocking can be avoided by using a conditional, non-blocking version of inject, called
inj ectc. Once a message has been injected into the network, the UDM model guarantees that it
will eventually be delivered to the destination specified in its routing header.

At a destination, messages are presented sequentially for extraction. 2 A message is extracted
from the network with an atomic operation that reads the contents of the message and frees it from
the network:

extract () = (header, handler, wordO, wordl,...)

Implicit in this syntax is that the message contents are placed directly in user variables without a
redundant copy operation. The network provides a message available flag which can be examined to
see if an extract operation will succeed. It is an error to attempt an extract operation when no
message is available. Note that, in addition to the extract operation stated above, UDM provides
a similar operation called peek which permits examination of the next message without dequeuing
it.

By wrapping user-level network operations in inject and extract abstractions, UDM vir-
tualizes these operations, permitting the underlying system to switch transparently between physical
and virtual network access as needed. This is one of the central features of UDM, which we exploit
for two-case delivery in later sections.

2Message ordering is implementation-dependent. FUGU preserves FIFO ordering between pairs of virtual processors.



Control Transfer Model. Control transfer is the other half of the UDM model. By providing full
and explicit control over the reception of messages, UDM allows the programmer to interact with
the network with the same flexibility and efficiency as an in-kernel device driver.

UDM assumes an execution model in which one or more threads run on each processor. Messages
interact with those threads through the control transfer model. At the sender, the application transfers
control of the message to the network in a single, atomic transaction. The inject may block for
some period of time, but time amount of time is predictably small. At the receiver, message
arrival time may or may not be predictable. UDM provides a polling operation, generally intended
for situations in which message arrival is predictable, and a user-level message-available interrupt
intended for situations when arrivals are unpredictable.

Polling and interrupts are stitched together with an atomicity operation, which disables and
enables the user interrupt.

atomicity(onI of)

Setting atomicity on disables the user interrupt. Periods of execution in which interrupts are
disabled are called atomic sections because they execute atomically with respect to the message-
available interrupt. When atomicity is on, notification is entirely through the message available
operation:

message-available () =- true I false

In this mode, the currently running thread must poll the network interface with message.avai lable
and extract messages with extract as they arrive.

In contrast, when atomicity is off, the existence of an input message causes a user interrupt. The
user interrupt causes the current thread to be suspended and an independent handler, to be initiated.
The sequence of events is illustrated in Figure 3-2. The handler begins execution in an atomic section
(i.e., with interrupts disabled), at the handler address specified in the message. A handler is required
to extract at least one message from the network before exiting or re-enabling interrupts.

A handler is not a full thread. However, when a handler exits, some runnable thread is resumed.
This thread might be a thread awakened by the handler, a thread created by the handler, or the
interrupted thread; the exact scheduling policy is defined by a user-level thread scheduler, not by
the UDM model.3 In particular, UDM is compatible with extremely lightweight thread systems in
which message handlers are occasionally or routinely converted to threads after executing only the
minimal code required to communicate with the network interface.

The key to control transfer in UDM is the atomicity operation. User-level atomic sections
permit user code to construct interrupt handlers, to poll, and to construct critical sections that are
atomic with respect to interrupts. This level of control over interrupts is typical, if ad hoc, in
kernel-level device drivers. Providing this control at user level allows application code to interact
with the network interface with the same efficiency and flexibility as kernel code. As with inj ect
and extract, the atomicity operation is an abstraction for a physical interrupt disable: in

3The FUGU thread scheduler supports all three options.



Figure 3-3. Code that sends a message in a handler may create a circular dependence and thus
deadlock. Here, both processors A and B are waiting to inject messages, but the network is
already filled with messages. Some message must be received before either inject operation can
proceed.

the common case, the user's requests for atomicity interact directly with the network hardware to
defer interrupts. When necessary, however, these requests may be virtualized to free up the physical
interface while maintaining the illusion of atomicity to the user.

Deadlock Avoidance. As mentioned earlier, the UDM model provides a single network with
conceptually "unlimited" buffering. Unlimited buffering is provided as a means to help avoid
deadlock in user-level protocols.

All communication protocols must address the possibility of deadlock. For instance, when
implementing a remote memory read protocol atop UDM, it is convenient to send a "reply" message
from within the atomic section of a "read request" handler. Figure 3-3 illustrates a deadlock situation
with two processors waiting to send such a reply message while each is in an atomic section. The
processors are deadlocked because the network between the two processors happens to be completely
full of (unrelated) messages in both directions. A circular dependence has been created involving
the two handlers and the two paths through the network.

Deadlocks situations can be avoided by writing programs that avoid deadlock in ad-hoc ways.
However, it is useful to have the communication system provide some help. The infinite buffering
approach in UDM is one form of help. In the direct VNI, a deadlock is eventually detected by the
timeout on network blockage. Timeouts cause messages to be routed through the buffered path.
Buffering breaks the circular dependence that caused the deadlock. The approach of detecting
deadlock when it happens is based on the assumption that deadlock situations are rare. The Alewife
machine provides software buffering in "Network Overflow" to break deadlocks in it's hardware
shared memory system [40].4

It is insightful to compare the deadlock avoidance strategy provided by the direct VNI to other
possibilities. Many systems (e.g. Active Messages [78]) define separate logical "request" and
"reply" networks and handlers to solve exactly the situation depicted in Figure 3-3. The two logical
networks are can be two actual, physical networks or just one network with two priorities where reply
messages use the higher priority. The two logical networks are used with the following discipline:
request handlers are permitted to send reply messages but reply handlers are not permitted to send
any messages. Given this discipline, request handlers execute atomically with respect to request

4Network overflow is a limited form of two-case delivery; its usefulness inspired the more general usage in the direct
VNI.



handlers (but not with respect to reply handlers). Reply handlers execute atomically with respect to
reply handlers. With separate request/reply networks, a communication protocol is deadlock-free as
long as it adheres to the request/reply discipline.

However, not all protocols are easily mapped to the request/reply discipline. For instance, the
"remote-writer" optimization in a shared-memory protocol results in a three-way trip. Solving
deadlock in such a protocol requires three logical networks. The Remote Queues [8] model defines
communication through multiple named queues. An application can define as many queues (which
correspond to multiple logical networks) as necessary to avoid deadlock, presuming the queues are
big enough.

UDM defines a programming model with efficient data transfer and control operations and
with the convenient fiction of unlimited buffering for deadlock avoidance. The model is described
in terms of virtualized networks with virtualize resources. Multiplexing the virtual networks and
virtual resources onto physical networks and resources requires protection, described next.

3.2 Protection

The protection issue in a virtual network interface arises from the several features that are standard
in a multiuser machine: multiprogramming, demand paged virtual memory and priority-based
scheduling. The main consequence of protection, as described in Section 2.2 is the undeliverability
problem: the destination process may not always be able to receive a message at a given point in
time, yet, for protection, the system must be able to empty the network to allow other unrelated
messages to proceed.

The direct VNI used in this thesis incorporates a simple model of protection and the FUGU system
includes limited virtual memory and a priority-based scheduler. However, the simple protection
model and other features give rise to the full suite of undeliverability situations, so the direct VNI
solutions are fully general.

The protection model associated with UDM is simply that each application views a private,
isolated virtual network. Isolation is achieved by tagging all messages with a "Group Identifier"
(GID) corresponding to the group of messages that make up a parallel application. An application's
messages are indelibly tagged with the GID at inject time and the application may only see
incoming messages that have a matching tag. Figure 3-4 shows a typical layout of applications with
this minimal protection model. A parallel application consists of a set of processes with the same
GID spread across multiple processors. Processes with the same GID on different processors are
permitted to communicate with UDM. Communication between processes on different processors
with differing GIDs is not supported.5

Beyond GIDs, there is no other protection of messages in the direct VNI. In particular, messages
are addressed with unchecked physical processor numbers, so it is possible to misaddress messages.
Such misdirected messages are detected by the operating system at the receiving processor. While
this receiver-based protection is sufficient, a real system would likely support destination address

5Different processes on the same processor may communicate via conventional uni-processor inter-process communi-
cation (IPC) mechanisms. The GID-based protection model supports client-server computing with the restriction that the
client and/or the server must be distributed so that cross-domain communication is local to a processor.
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Figure 3-4. Protection between applications is based on Group Identifiers (GIDs). All the processes
in an application are labeled with a single GID. A process may only send messages to another process
with the same GID.

translation, both to eliminate misdirected messages and to ease process migration.

The direct VNI interacts with the virtual memory system and the scheduler system in the FUGU
system. Again, these systems are limited in capability, but we use them without loss of generality
because they give rise to the same undeliverability situations as more complex systems. The virtual
memory system generates page faults which may delay message reception for an extended period.
The scheduler is capable of performing priority-based scheduling independently on each processor,
a technique that can cause many mismatched messages.

GID-based protection is minimalist and a commercial system wou!J almost certainly provide
more flexible and expressive mechanisms. However, the GID-based protection, along with virtual
memory and the scheduler, produces the full range of undeliverability situations for the direct VNI.
The next section describes how the direct VNI architecture provides performance given the model
and the effects protection.

3.3 Performance

The direct VNI supports programmability via the UDM model and protection as described above.
The goal of the direct VNI architecture is to provide good performance given these design choices.
The architecture makes use of two-case delivery and virtual buffering techniques to achieve that goal.
Each technique has performance benefits but also a potential performance tradeoff. This section
briefly explains the ideas and explains the sources of the tradeoffs. We conclude by summarizing
the implications of the architecture to the programmer in an informal model.

I



Delivery Delivery of data
of control Direct H/W Buffered S/W Buffered
Polling: <Inter-poll time> <Data placed in memory> OS: Interrupt

Poll on network <Inter-poll time> OS: DMA data to memory
Read data from network Poll on memory <Inter-poll time>
Run handler Read data from memory Poll on memory

Run handler Read data from memory
Buffer management Run handler

OS: Buffer management
Interrupt Interrupt <Data placed in memory>
w/upcall: Read data from network Interrupt

Run handler Read data from memory (not supported)
Run handler
Buffer management

Interrupt <Data placed in memory> OS: Interrupt
w/thread: OS: Interrupt OS: DMA data to memory

OS: Schedule thread OS: Schedule thread
(not supported) OS: Run handler thread OS: Run handler thread

Read data from memory Read data from memory
Run handler Run handler
Buffer management OS: Buffer management
OS: Reschedule thread OS: Reschedule thread

Table 3-1. Delivery operations for direct, hardware-buffered and software-buffered interfaces with
three control transfer techniques. Two-case delivery makes use of a combination of the direct and
software-buffered techniques. The hardware-buffered technique is included for comparison



3.3.1 Two-Case Delivery

The direct VNI architecture reconciles communication performance with the undeliverability prob-
lem from Section 2.2 by using two-case delivery. Tw\o-case delivery provides both a direct path and a
buffered path for message reception, giving the message system the advantages of both approaches.
At the source of a message, the inject operation always makes use of a user-accessible, direct
interface in hardware. At the destination of a message, the extract operation ordinarily uses the
direct interface but may sometimes be required to receive a message via a buffer in memory. 'The
direct case gives the interface speed while the buffered case gives the system robustness.

Two-case delivery addresses performance given the programming and protection models in two
ways:

1. The direct case gives the message system high speed. When messages are commonly received
via the direct path, the message system exhibits performance that approaches that of an entirely
unprotected, single-user machine.

2. Splitting delivery into two cases allows much of the implementation complexity to be handled
in software. The hardware support is kept small and the hardware design is focussed on the
performance of the common case.

A performance tradeoff arises in two-case delivery because, since the direct access mode gives
the interface speed, we take the opportunity to save on hardware complexity and implement the
buffering mode largely in software. Two-case delivery thus performs better than a competitor that
always buffers messages in hardware only if the direct case is the common case. Table 3-1 extends
Table 2-1 from the previous chapter with the sequences of operations used to receive messages
through software buffering. The operations for software buffering are similar to those for hardware
buffering with the addition of an operating system interrupt handler used to insert new messages into
the buffer.

Polling delivery in two-case delivery uses either the direct case with polling (upper left in
Table 3-1) or software-buffered case with polling (upper right). Interrupt delivery uses either the
direct case with upcall-based interrupts (middle left) or the software-buffered case with thread-based
interrupts (lower right). The key to two-case delivery, as will be described in Chapter 4, is that the
system provides the same UDM model transparently in both direct and software-buffered modes.
The programmer writes one program and the operating system decides how to manage the network
interface modes.

Comparing the direct and software buffered cases in Table 3-1 to the hardware buffered case
makes clear the tradeoff between two-case delivery and a system that always buffers messages in
memory using hardware. Direct messages cost less than hardware-buffered messages, but software-
buffering costs yet more. The premise of two-case delivery is, then, that there exist situations in
which buffering is required to solve the problem of undeliverable messages, but that those situations
are (or can be made to be) uncommon. We will show that the premise is true in Chapter 7.



Buffer Scheme Application Consequences System Consequences
No buffering Must deal with arbitrary dropped Trivial.

messages.
Small, fixed Use protocol or proof to avoid ex- Any runnable application must

ceeding the buffer limit. have a small physical buffer.
Large, fixed Buffer consumption is not a prac- Any runnable application must

tical problem (if the buffer is have a large physical buffer.
large enough).

User-pinned Like small or large but the appli- Physical buffers must be supplied
cation can pick the size. but many applications may need

only small buffers.
Virtual Like large; buffer size is a per- The system may allocate and

formance issue, not a correctness deallocate buffer space on de-
issue. mand but must avoid deadlock.

Table 3-2. Options for implementing the buffered part of two-case delivery ranging from no buffering
to virtual buffering. Virtual buffering gives the programmability advantage of a very large buffer
without the physical memory requirement.

3.3.2 Virtual Buffering

Two-case delivery is complemented by the second technique, virtual buffering. Virtual buffering
stores the buffered messages in virtual memory allocated on demand. Buffering in virtual memory
gives the application and the system several important and unique advantages over buffering in
physical buffers. A cost is that the virtual buffer performance will generally degrade as more
buffering is used. Although applications will rarely need to limit buffer consumption for correctness,
some may still need to limit buffering for performance.

Virtual buffering addresses performance given the programming and protection models in three
ways:

1. It stores messages in paged virtual memory, which makes it practical to provide the "unlimited
buffering" anti-deadlock feature of the UDM model.

2. It guarantees message delivery, which allows the message system to avoid all protocol overhead
in the fast case. In contrast, a system with small, fixed buffers must always account for the
limited buffer space, which adds complexity and overhead.

3. It allocates and may page buffer storage on demand, which allows the operating system to
manage and presumably to minimize physical memory requirements for buffering.

The benefits and costs of virtual buffering are made plain by comparing virtual buffering to alter-
natives. Table 3-2 lists options for buffering used with two-case delivery, including the degenerate
case of no buffering. If the amount of buffering is fixed and "small", the application must explicitly
deal with that restriction. The easiest way is for the application to use a low-level protocol that



limits the buffering required. The programmer might also prove that the program can never require
more than a fixed amount of buffer space. If the amount of buffering space is fixed but "large", the
programmer can just trust the program not to exceed the buffer space. Larger buffers are easy on the
programmer but hard on the operating system, which must now guarantee space to every application
that might communicate. User-directed pinning of pages can ease the amount of physical buffer
space required as long as most programs do not pin many pages.

Compared to physical buffering alternatives, virtual buffering addresses both the application
programmer's problems and the system's memory consumption problem at the cost of some extra
complexity in the operating system. With virtual buffering, the amount of available space can
be considered unlimited. Buffer consumption becomes a matter of performance rather than of
correctness for an application. From the operating system's perspective, pages used for buffering
are dynamically allocated and pageable, freeing up physical memory. Compared to a system with
a large (effectively infinite) physical buffer, a performance cost of virtual buffering is that virtual
memory management costs will tend to degrade performance as more buffer space is used. The
premise of virtual buffering, like two-case delivery, is that it is important to be able to buffer in some
situations, but that those situations are uncommon.

3.3.3 Programmer-Visible Performance Tradeoffs

The UDM model and the direct VNI architecture give the programmer a lot of freedom. The UDM
model gives each application the illusion of a private network, virtualized resources and control over
every logical message passed through the network. In practice, there are two subtle performance
issues that the programmer faces when using the direct VNI.

* The combination of one-way, asynchronous messages and unlimited buffering means that the
problem of flow control has largely been pushed up to the level of the UDM user. This design
decision is a benefit - the application does not incur the cost of unnecessary flow control
protocol overhead - but also a burden. An application must either limit the flow of messages
by construction or make use of a user-level library that includes a flow control protocol.
The message system includes a coarse form of flow control ("overflow control", described
in Chapter 5) but only as a last resort defense against temporarily or permanently runaway
applications.

* The buffering system breaks deadlock scenarios, but use of buffering incurs performance costs.
For instance, an application is free to attempt to send a message from within an atomic section,
but if a deadlock occurs it is detected by a timeout only after some amount of delay. Further,
an application may choose to depend on the existence of a fixed amount of buffering, but
buffering has a real cost. An astute UDM programmer will depend on the buffering system
only in the "optimistic" sense in which is was intended, i.e., only when the chance of an actual
deadlock is known to be low.

Effectively, correctness is separated from performance. It is possible to write an application with
little attention to the effects of the message system and then concentrate effort on the performance of
sections that matter. There are two performance effects to keep in mind. First, the buffered delivery
path incurs extra cost. Second, the virtualization of buffering can introduce even higher costs when
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Figure 3-5. Direct virtual network interface operating modes as a state diagram. In the fast, common
case, at left, message reception is handled entirely in software. Buffering has additional costs which
increase as demands for buffer storage space increase.

physical memory resources are low. These effects are described below and quantified in Chapters 4
and 7.

Figure 3-5 summarizes the operating modes of the FUGU system as a state diagram model. In the
ordinary case, on the left, UDM messages are extracted directly out of the hardware NI at full speed
using polling or upcall-based interrupts. Next, buffering, when invoked, adds some cost but operates
similarly to a memory-based system as long as buffer space is available in physical memory. Third,
virtual buffering system can continue to buffer messages for an application even when physical
buffering space is exhausted by paging and buffering simultaneously. This case is quite slow but
breaks potential deadlocks arising from dynamic allocation of buffer space. Finally, at the right, it
is possible to exhaust the application's virtual buffer, but only by exhausting the application's swap
space.

The messages to the programmer are two. First, some applications will give better performance
if a little protocol overhead is added for the sake of avoiding buffering. We have no direct examples
of this effect; all our sample applications (in Section 7.4) avoid buffering naturally. Second, it is
possible to write programs that consume even "effectively unlimited" buffers. Like any system that
supports unacknowledged messages, the FUGU programmer (or library) must either keep the message
generation rate below the message consumption rate or provide synchronization to do so in order to
avoid filling up the buffer.6

3.4 Discussion

This chapter has described the programmability, protection and performance aspects of the direct
virtual network interface architecture. The model and protection features are accepted as design
choices while the focus is on providing performance in the face of those choices. The two-case
delivery and virtual buffering techniques described above will be revisited in detail in the next
chapter. At the level of the architecture, however, several alternate design decisions or extensions
are possible.

6Further, given the in-order delivery used in the FUGU implementation of the direct VNI, any flow control scheme
must make sure to clear the buffer before reenabling messages. Flow control schemes based on, for instance, fixed-sized
windows may never clear the buffer.



Bulk Transfer. The direct VNI as described here is oriented to support for small messages where the
primary consideration is low latency from processor to processor. Large messages for bulk transfer
have the different goal of high bandwidth from memory to memory. The direct VNI is compatible
with efficient solutions to bulk transfer (see [50]). Appendix A describes limited extensions for bulk
transfer actually implemented and used in PUOU.

Source Buffering. The direct VNI applies buffering only at the receiver and largely for reasons of
protection. It is possible to invoke buffering for performance reasons as well. Further, buffering
for performance might use buffering at the sender as well as buffering at the receiver. Transparent
buffering at the sender could be implemented with very similar techniques to the ones described here
used at the receiver.

User Pinning. Table 3-2 lists user pinning as a means of managing physical resources. User pinning
could be extended to be as flexible as virtual buffering. The key trick is that the application (or
library) has to be able to renegotiate for buffer space at the moment a message arrives to avoid
dropping any messages.7 Alternatively, virtual buffering could (and should) be extended to take
advantage of advice from sophisticated applications that know the amount of buffering needed. A
dynamic default policy plus a means for using advice is probably the right way to approach any
resource management problem.

Bulk transfer, source buffering and user pinning are possible extensions to the direct VNI but
do not change its basic architecture based on two-case delivery and virtual buffering. The next
two chapters describe the two-case delivery and virtual buffering architectural techniques in detail,
respectively.

7 FUGU's Exokernel operating system does in fact use user-level virtual memory in exactly this way.



Chapter 4

Two-Case Delivery Technique

The direct virtual network interface uses two-case delivery and virtual buffering techniques to achieve
the goal of performance given the constraints of programmability and protection, as described in
the previous chapter. This chapter describes the first of the two techniques: two-case delivery. We
describe the technique in detail using examples from the FUGU implementation for concreteness.
The next chapter describes virtual buffering.

Two-case delivery provides performance by optimistically giving user-level access to data and
user-level atomicity control in hardware. The UDM model described in the previous chapter provides
the abstract interface to the communication mechanism. The send-side of the UDM abstraction is
implemented in hardware in the direct VNI. The receive-side is implemented two ways, in hardware
and in software, corresponding to the two cases in two-case delivery. The runtime system then
choses between the two cases according to system conditions.

Two-case delivery provides two alternate means of receiving a message: a direct path intended
for minimum overhead and a buffered path included to solve the problem of undeliverability. The
mechanics of the two paths are illustrated in the form of timelines in Figures 4-1 and 4-2. In the
fast case, the network interface hardware is controlled directly by the application. The application is
notified of message arrival by polling or by a user interrupt. The application reads the message from
the network interface and implicitly blocks the network while doing so. In essence, the application
reads data directly "from the wire" for lowest overhead. In the buffered case, an operating system
handler intercepts incoming messages and places them in a queue in memory. The application then
polls for messages in the queue or receives messages via "interrupts" orchestrated by an operating
system thread.

The basic assumption is that messages ordinarily arrive under perfect conditions so that they
may be delivered via the fast path. Some "undeliverable" messages may in fact be deliverable under
some conditions. For instance, a message for another process may be delivered via a cross-domain
upcall. If everything fails, the runtime system switchs to a buffering mode with the same abstract
interface but a completely different implementation.

This remainder of the chapter is organized around the parts of two-case delivery. First, Section 4.1
describes the fast case by giving an ISA-level description of the memory-mapped network interface
hardware and its use. The fast case includes hardware protection to support multiprogramming. The
central feature of the fast path is the revocable interrupt disable mechanism that permits protected
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Output message buffer

descriptor-length register I [0 message-available flag
space-available register I

UATOMC register
user visible (see Table 3)
kernel visible

S1 GID register

I I atomicity-timeout register

S--I atomicity-countdown register

01 divert-mode bit

Figure 4-3. Direct virtual network interface registers.

control over atomicity for user interrupts and direct polling. Section 4.2 describes the buffered
delivery case and shows how it provides semantics identical to the fast case. Section 4.3 puts the
two cases together by describing how the interface to the two modes is kept transparent and how
transition is invoked. Finally, Section 4.4 overviews the research questions raised by the two-case
delivery technique and discusses possible alternate implementations.

4.1 Direct Access Path

The direct VNI consists of a set of memory mapped registers shown in Figure 4-3, a set of atomic
operations listed in Table 4-1 and a set of interrupts and traps listed in Table 4-2. The operations are
implemented as instructions in FUGU but might be encoded as writes to additional memory-mapped
registers. The user-level registers, operations and the message-available interrupt are manipulated
directly by user code when the fast mode is enabled, i.e., under ordinary conditions. The kernel
registers and the rest of the interrupts and traps both control the transition from fast to buffered mode
in response to exceptional conditions and support operation in buffered mode. Further discussion of
buffering is deferred to Section 4.2.

Send and Receive. The inject operation of the abstract model is decomposed into a two-phase
process of describe and launch, as in [39]. To send a message, an application first writes all of
the message data into the output message buffer starting at zero offset from the beginning of this
buffer. The send buffer is special in that store operations at a given offset will block if the network is
currently unable to accept a message as large as one that is implied by the offset. The space-available
register, used to implement inj ectc, reflects the number of send buffer words that may be written
without blocking. The buffer in our implementation is limited to 16 words; larger messages utilize
an associated user-level DMA mechanism [50] (described in Appendix A).

Once the message has been completely described, it is guaranteed that the network will accept
it. At that point, the message is injected into the network with an atomic launch instruction whose
operand reflects the length of the message. The inj ect operation remains atomic because launch

Input message buffer



Table 4-1. Direct virtual network interface operations.

Interrupt/lrap
message-available

mismatch-available

atomicity-timeout
atomicity-extend
dispose-extend
dispose-failure

bad-dispose

protection-violation

Event Signaled
User interrupt: raised when a message

is available for reading
Interrupt: message available with

mismatched GID (or all messages
when divert-mode is set)

Interrupt: atomic section timer expired
Trap: optional at end of atomic section
Trap: optionally triggered by dispose
Trap: triggered by dispose when

application fails to free message
Trap: triggered by dispose with

no pending message.
Trap: user access to kernel registers

or user launch with kernel message

Table 4-2. Direct virtual network interface interrupts and traps.

Operation Description
launch (N) If header == kernel message then

cause a protection-violation trap.
elseif descriptor-length > 0 then

Commit an N-word message to the network;
set descriptor-length := 0

dispose If divert-mode set then
cause a dispose-extend trap,

elseif message-available not set then
cause a bad-dispose trap,

else
delete current incoming message.

beginatom (MASK) set UAC := (UAC V MASK).
endatom (MASK) If dispose-pending is set then

cause a dispose-failure trap.
elseif atomicity-extend is set then

cause an atomicity-extend trap.
else

set UAC := (UAC A (-MASK))



is atomic: at any point before launch, the contents of the output buffer may be transparently unloaded
and later reloaded if necessary for a context switch. The descriptor-length register reflects the number
of words in the buffer that would need to be swapped at any given time. After a launch, data in
the send buffer may be altered immediately without affecting any previously injected messages.

The extract operation is decomposed in an analogous way. The contents of the next pending
message are made available beginning at offset zero from the input message buffer. Access to
data within the message is performed by reading data from the buffer, then executing a dispose
instruction. The dispose operation then exposes the next message, if available, for extraction.
Atomicity of extract is maintained because dispose is atomic.

The application is notified of the arrival of a new message either by a message-available interrupt
(converted to a user-level interrupt) or by explicitly polling the message-available flag in the network
interface. The selection between the two modes is performed by the revocable interrupt disable
mechanism described below.

Protection. The network interface hardware includes protection mechanisms sufficient to enable
multiprogramming. The emphasis is on keeping the common case fast while reflecting all other
cases to software. There are three hardware facilities used:

1. Isolation between users is maintained by labeling all messages with a Group Identifier (GID)
stamped by hardware at the sender and checked by hardware at the receiver.

2. The duration of a user interrupt or upcall handler is bounded by a timeout timer (discussed
below).

3. A reserved, second network exists for occasional use by the operating system in situations
otherwise subject to deadlock (see Section 4.2).

The GID labels a group of processes (virtual processors) operating together, e.g., the processes
corresponding to the processors in a parallel application. UDM provides the simplest GID-based
demultiplexing system in hardware: at the receiver, if the GID in the header matches the GID of the
current application, the application is notified of message arrival via the message-available interrupt
or via the message-available bit for polling. Otherwise, a mismatch-available interrupt is generated,
allowing operating system software to perform the rest of the demultiplexing in this uncommon case.

As described in Section 3.2, the direct VNI applies all protection at the receiver. The sender
is controlled only indirectly by the global scheduler. Messages directed to incorrect destinations
are detected because they cause mismatch-available interrupts. The operating system handler then
uses the global scheduler to find and to perform the appropriate action against the offending sending
application.

Revocable Interrupt Disable. As was discussed in Section 3.1, UDM includes an explicit notion of
atomicity, i.e., the ability to disable message interrupts. The atomicity mechanism is an abstraction.
Although the user is presented with the illusion of a dedicated network interface, there are several
reasons not to allow the user to directly block the network interface by disabling interrupts:

* Malicious or poorly written code could block the network for long periods of time, preventing
timely processing of messages destined for the operating system or for other users, even on
other nodes.



I Kernel Controls I Description
dispose-pending Set by OS in the message-available stub, reset by dispose. See

endatom in Table 4-1.
atomicity-extend Requests an atomicity-extend trap. See endatom in Table 4-1.

Table 4-3. Detail of individual flags in the User Atomicity Control (UAC) register.

* When the user is polling, the system as a whole may still need to receive messages on the local
node via interrupts to ensure forward progress.

* The operating system must demultiplex messages destined for different users. This process
should be neither visible to nor impeded by any particular user.

At the same time, the user should enjoy similar efficiency in the common case to the operating
system, extracting messages directly from the network interface.

These problems are solved by implementing atomicity through a revocable interrupt disable
mechanism. The main idea behind this mechanism is that the user is allowed to temporarily disable
hardware message interrupts. As long as the network continues to make forward progress, the
user is allowed to continue disabling interrupts. Should a message stay blocked at the input queue
for too long, the system revokes the interrupt disable privileges, switching from physical atomicity
(i.e., disabling of the actual queue) to virtual atomicity (i.e., buffering messages in memory and
hiding them from the user until the atomic section is exited). Thus, the revocable interrupt disable
mechanism can trigger an explicit entry into buffering mode.

The central feature of the revocable interrupt disable mechanism is a dedicated atomicity timer
which can be used to detect lack of forward progress. By dedicating this timer the system can
provide low-cost "instructions" which reset the timer and which enable the timer when the network
is blocked. In addition, the atomicity mechanism is designed to affect messages destined for the
currently scheduled user: when messages destined for other users (or the operating system) arrive at
the head of the queue, they cause interrupts to the operating system, even if the user has requested
atomicity. Further, when the buffered path is in use, all messages interrupt the operating system,
regardless of whether the user has requested atomicity.

Control over user-level interrupts is implemented with four atomicity control bits in the User
Atomicity Control (UAC) register which are manipulated via the beginatom and endatom
operations. Table 4-3 details the individual flags in the UAC register. Two of the bits are modifiable
only in kernel mode and are configured by the hardware or kernel code before giving control of
the processor to the user. The other two bits can be set and reset by the user via beginatom and
endatom, respectively. Under certain conditions, noted in Table 4-1 (but generally whenever either
of the kernel bits is set), endatom executed in user mode will trap to return control to the operating

User Controls Description
interrupt-disable When set, prevents message-available interrupts. In addition, if a

message is pending, enables atomicity timer; dispose operation
briefly disables (i.e., presets) timer.

timer-force When set, enables atomicity timer unconditionally.
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FUGU FUGU FUGU
Item kernel hard soft

mode atomicity atomicity
(cycles) (cycles) (cycles)

I -Message Send
Descriptor construction 6 6 6
launch 1 i 1

send total: 7 7 7

Message Receive (interrupt)
Interrupt overhead 6 6 6
Register save 16 16 16
GID check - 10 10
Timer setup - 1 13
Virtual buffering overhead - 8 8
Dispatch (+ upcall) 10 13 13

subtotal: 32 54 66
Null handler (w/dispose) 5 5 5
Upcall cleanup - 10 10
Timer cleanup - 1 17
Registbr restore 17 17 17

interrupt total: 54 87 115

Message Receive (polling)
Poll 3 3
Dispatch 5 5
Null handler (w/dispose) 1 1

polling total: 9 9 n.a.

Table 4-4. Cycle counts to send and receive a null message. Add 3 cycles per argument to the
send cost and 2 cycles per argument to the receive handle'r cost for non-null messages. The "soft
atomicity" numbers include overhead to emulate the atomicity mechanism on the first silicon CMMU
and the current simulation system.



system.

The atomicity timer mechanism is comprised of a decrementing counter and a preset value,
atomicity-timeout. While the timer is disabled, the counter is preset to the atomicity-timeout value.
When the timer is enabled, the counter decrements for each user cycle, flagging an atomicity-timeout
interrupt if it reaches zero. The counter is enabled during atomic sections by the user UAC bits, as
described in Table 4-3.

The use of the revocable interrupt disable mechanism is best illustrated by example. Figure 4-
4 illustrates several differep • uses of the atomicity mechanism: for polling, user-level message
interrupts, and for user-level message interrupts during priority inversion. The timeout timer provides
a bound on the user c.iitrol over the processor and the network. Note that the exact timeout value is
a free parameter that may be changed without affecting correctness. Paths through this figure which
exit to the left represent fast-path usages of atomicity, while exits to the right represent entry into
buffer mode (or errors).

Fast Path Performance. The fast path in the direct virtual network interface can have performance
close to unprotected messages in a single-user machine. To show the performance of the direct VNI,
Table 4-4 details the cost of sending and receiving messages in FUGU at kernel level and at user level
using two different atomicity mechanisms. The cycle counts are made from simulator traces of a
simple ping-pong benchmark and the timings have been verified against the hardware.

The send side of the direct VNI always uses hardware. The send cost of seven cycles shown in
Table 4-4 corresponds to a null message sent via a blocking inject operation. The receive cost
is given two ways, corresponding to reception via an interrupt and reception via polling loop. The
interrupt-basedc receive cost represents the basic fast path cost. The interrupt path includes two trips
through the operating system plus the minimal time for a null handler. The polling cost represents a
polling loop that receives exactly one type of message. The loop checks the message type by testing
the handler address. This sort of polling loop is useful in applications that orchestrate communication
closely.

The atomicity mechanism and GIlD manipulations are performed in software in the current system
("soft atomicity" in Table 4-4). However, Table 4-4 also includes predictions of the performance
expected using the revocable interrupt disable mechanism by eliminating the appropriate categories.
The result is that the overhead of the fast path for user-to-user communication in FUGU is comparable
to the overhead for unprotected, kernel-to-kernel communication.

4.2 Buffered Path

The buffered path allows undeliverable messages to be received and stored in order to preserve the
semantics of the UDM model in the face of uncommon but unpredictable cases. The objective of
the buffered path is to provide identical semantics to the fast path using memory for data access and
user thread manipulations for atomicity control. The objective is achieved using a combination of
hardware and software mechanisms and software conventions.

This section discusses the mechanics of buffering and reports the performance of the implemen-
tation on on microbenchmarks. For the purposes of this section, the buffer is assumed to be unlimited
in size. The means of accomplishing that illusion (virtual buffering) are described in Chapter 5. The
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Figure 4-5. Software buffering uses two components: buffer insertion code that runs as the mismatch-
available interrupt handler and buffer extraction code which runs as an independent thread. The
buffer extraction code runs in a loop the invokes the appropriate user handler for each buffered
message as long as there are messages.

performance of buffering in real applications is deferred to Section 7.4

Buffering Mechanics. Switching to the buffered case serves as a uniform response to all situations
where fast case delivery is not possible or not sufficiently timely. Buffering is a per-process mode.
In the buffered-mode steady state, the operating system stores messages in a software buffer in
the virtual memory of the application performing the communication and the application reads the
messages from the software buffer as if from the network interface. A process remains in buffered
mode until the last buffered message is handled. On exit from buffered mode, the operating system
reverts to allowing user messages to be received directly from the network interface.

Buffering mode uses operating system software with hardware support in the form of the divert-
mode bit in the network interface (Figure 4-3). The software consists of two pieces depicted in
Figure 4-5: buffer insertion code that runs as an interrupt handler and buffer extraction code that runs
as a thread. The divert-mode bit supports both buffer insertion and buffer extraction. The steady
state of buffering mode is illustrated as a timeline in Figure 4-2.

Buffer insertion is accomplished by the message-available interrupt handler. When divert-mode
is set, all incoming messages cause kernel mismatch-available interrupts. The mismatch-available
interrupt handler in the operating system (top in Figure 4-5) demultiplexes incoming messages into
the software buffer of the application indicated by the GID in the message header. The DMA option
on the dispose instruction is used to efficiently copy the message to memory.

Buffer extraction makes use of a thread (bottom in Figure 4-5) that loops, calling the handler
for each message, as long as there are message in the queue. The divert-mode bit supports buffer
extraction as well. Divert-mode set causes the user-mode dispose instruction (in the user handler)



I Item Cycles I
Minimum buffer-insert handler 180
Maximum handler (w/vmalloc) 3,162
Execute null handler from buffer 52
Overhead for an isolated null message about 1400

Table 4-5. Cycle counts for overhead to insert and extract messages from the software buffer. Add
roughly 4.5 cycles per argument word to the extraction cost for non-null messages.

to take the dispose-extend trap. The dispose-extend trap handler then emulates the disposal of a
message in the software buffer of the current application. In our current implementation, queued
messages are always processed in order.

The buffered delivery mode presents the user with the same atomicity semantics as the fast
path hardware by a combination of buffer management and thread priority manipulation. First,
if software buffering was invoked because of a timeout or page fault in an atomic section, the
thread scheduler defers handling subsequently buffered messages until the suspended atomic section
completes, preserving atomicity. Second, handler execution is made atomic in buffered mode by
elevating the priority of the message-handling thread so that it always runs in preference to other
background threads. If the application was in the midst of a handler or polling for messages at the
time buffering was invoked, then that handler or polling thread becomes the high-priority, message-
handling thread and can continue to run, reading messages from the software buffer, as long as it
keeps atomicity on. Alternatively, if there is no such existing thread or the existing thread exits its
atomic section (as detected by atomicity-extend), then a new message-handling thread is created to
run the handlers of the messages remaining in the buffer.

Buffering Performance. Buffering adds a performance cost when used. The buffered path intro-
duces two components of overhead over the fast path. First, there is an extra copy operation: an
operating system handler must copy the message from the network interface to memory. Second,
the user handler must now retrieve the message from main memory DRAM rather than from the
faster network interface SRAM. For message handlers that run for a long time, the extra overhead
of buffering will be insignificant. For short handlers or for messages with large amounts of data,
the extra overhead can dramatically increase the total processor (or DMA) cycles consumed by the
message. Any extra overhead is important, even to applications where message latency is not a
concern, because the cost of copying represents wasted cycles, and total handler overhead strictly
limits the maximum observable messaging rate, as observed in Section 7.4.2.

The implementation of the buffered path is evaluated using a microbenchmark that causes many
messages to be buffered. The overheads, including allocation of virtual memory on demand, are
tabulated in Table 4-5, listing the minimum and maximum buffer insertion times and the buffer
extraction overhead. The minimum overhead per message is 232 (= 180 + 52) cycles, or about 2.7
times the fast path overhead of 87 cycles, for null messages. For non-null messages, the difference
increases due to the extra cost of pulling the messages from DRAM of 2 cycles per word plus 10
cycles per 4 words for cache misses. The buffer insertion handler uses DMA to copy the message
so there is no direct overhead to the processor for extra words inserted into the buffer. The null



handler time already includes the cost of one expected cache miss for fetching the message header.
The virtual buffering scheme allocates page frames from the operating system on demand. These
allocations are expensive (3,162 cycles), but occur so rarely as to be negligible in our simulations.

4.3 Transparent Access

The key to two-case delivery is that the direct and buffered modes of operation must appear identical
to user software. This principle of transparent access must apply to both the messaging and atomicity
primitives of the UDM model. Given transparent access, the runtime system is free to switch to and
from buffered mode at any time. As a consequence, the buffered mode provides a unified means
of dealing with all exceptional circumstances that prevent a user-level application from proceeding
immediately.

Transparency Mechanisms. Transparency of the messaging primitives is achieved through a com-
bination of hardware mechanisms and software conventions. First, inject operations are always
directed at hardware queues. As a consequence, only the extract and atomicity manipulation
operations must be virtualized.

As discussed in Section 4.1, an extract operation is decomposed into memory-mapped reads
from the network interface, followed by a dispose instruction. Access to receive data is made
transparent by employing a software convention of using a known base register to point to the input
message buffer. In the fast case, this register points at the hardware queue. When delivery must be
shifted from fast to buffered mode, the base register is altered to point to the buffered copy of the
message (if any) in main memory. The dispose instruction is made transparent by causing it to
be trapped and emulated whenever the the user is in buffered mode.

Atomicity control is made transparent by switching seamlessly between modes. In the fast
mode, the atomicity bits control message interrupts directly. In the buffered mode (divert-mode set),
all interrupts are diverted to the operating system and atomicity is emulated by manipulating user
threads as described in Section 4.2.

Mode T'Iransition. Transitions to buffered mode take place when the user cannot or will not make
forward progress. In FUGU, there are three reasons to switch the active task from fast to buffered
mode (these are demanded for protection and context-switching): page faults in the handler, atomicity
timeouts, and scheduler quantum expirations. All three of these events are "soft" in that they merely
cause a transparent switch to buffered mode. The user observes an increase in the cost of messaging,
but no change in program semantics.

Transparency is important at the beginning of a scheduler quantum, since it allows the scheduler
to start a user thread in buffered mode, letting the thread process messages that were received while
other threads were scheduled. When the buffered messages have been exhausted, transparency can
again be invoked to switch back to the fast mode of reception.



4.4 Discussion

The two-case delivery technique raises a number of research questions. The major question is
whether two-case delivery can provide a performance benefit over a system that simply always
buffers messages. We have shown in this chapter (Table 4-4) that the implementation of two-case
delivery in FUGU achieves low-level message overheads near those of unprotected hardware. The
primary experiment in Chapter 7 will show that fast-case performance is achievable over a useful
range of mixed, multiprogrammed workloads expected in a scalable workstation.

Two-case delivery raises several other miscellaneous but interesting questions that are not further
pursued in this thesis. Three of these questions are discussed briefly below: whether to use upcalls
or to buffer on mismatched messages, how the message handling timeout should be tuned for
performance and how the two-case delivery buffering system might be integrated with an application-
specific buffering system. Finally, some of the design decisions in FUGU might be somewhat different
if the relative costs of operations were different.

Upcall on Mismatch. FUGU offers both upcall-based and buffer-based modes of delivery of messages
that arrive for the wrong application. It is unclear which mode, if either, is better in general. Upcalls
give the lowest overhead and certainly the lowest latency for the application receiving the upcall.
Low latency may be crucial for user-level shared memory implementations. On the other hand,
buffering probably gives the least disruption to the application that happens to be running when the
mismatched message arrives. The buffer insertion handler is known to be fast and to have a limited
cache and TLB footprint.

Handler Timeout. The timeout on handler/atomic section execution time is a free parameter that
the operating system can adjust as required for performance. Since the difference between direct and
buffered modes is transparent to the application, the operating system can cause a switch to buffered
mode at any time. There might be different timeouts for each application or different timeouts for
same-domain and cross-domain upcalls. Changing the timeout is a scheduling issue: long timeouts
are presumably good for the application that is receiving messages. Short timeouts are good for the
rest of the system because the short timeout will limit the amount of congestion in the network or
the amount of time taken away from an interrupted application.

Further, the timeout might be useful as a means of introducing buffer to benefit even a single
application. Mukherjee notes in [58] that judicious use of buffering can improve the performance
of some applications running standalone by reducing sender stall time and network congestion. The
timeout in message handlers in FUGU could be used as a heuristic for detecting opportunities to
improve performance through buffering. Other cues such as whether the input hardware FIFO is full
or hybrid heuristics are possible. The ramifications of the timeout are not examined in this thesis.

Buffering Systems. Programmers using active messages apparently often build ad-hoc buffering
systems. It is not clear the extent to which two-case delivery can obviate the need for ad-hoc
solutions. Alternatively, if the application benefits from some kind of specialized buffering system,
it might be useful to merge the system's two-case delivery with the applications. The exokernel-
based implementation of buffering in FUGU is amenable to such specialization but we have not tried
to take advantage of it.

As a separate buffering issue, the software buffer cleanup thread currently executes the handler



for every buffered message before returning to direct delivery mode. This policy allows us to preserve
the ordering of messages in the network. However, this policy can also cause the system to remain
in buffered mode if the send rate exceeds the receive rate even if the receiver is making progress. An
alternative policy would be to forgo ordering and process direct and buffered messages alternately,
using the atomicity timeout to limit the time spend in the handlers of buffered messages.'

Relative Costs. The buffer enqueue handler overhead is important to system performance, as will be
shown in detail in Chapter 7. The minimum buffer enqueue handler overhead of 180 cycles listed in
Table 4-5 includes a user interrupt time. In another implementation of two-case delivery, the relative
costs of operations could be quite different. Here are the basic tradeoffs which we will revisit in
Chapter 7:

* Cross-domain upcalls in FUGU are only slightly more expensive than ordinary user interrupt
upcalls because of a tagged TLB and the fact that Sparcle's multiple register sets can be
protected from one another. More expensive domain crossings would make buffering on
mismatches significantly more attractive.

* The buffer enqueue handler time could be improved by tail-polling in the interrupt handler,
or by downloading into the kernel the most common case of the buffer enqueue code. If a
small amount of extra hardware were to be invested in FUGU, a good use would be a limited
automatic DMA function to accelerate the most common case of buffer enqueue.

* The thread scheduling overheads in FUGU are abysmal, as revealed in the cost to receive an
isolated message via the buffered path (Table 4-5). Support for threads could be made as fast
as 10 Os of cycles (as in the "featherweight" threads proposed in [40]). With fast threads, the cost
a single message handled on the buffered path would be dominated by the cost of servicing
the inevitable cache miss.

Applicability. Two-case delivery is the primary architectural technique that gives the direct VNI
performance given the UDM model and the requirements for protection. Two-case delivery is usable
in any system with a direct interface. However, two-case delivery is particularly attractive if the
system can also guaranteed delivery. Guaranteed delivery allows the fast path to avoid all buffer
management overhead (pointer manipulation and acknowledgment messages). Guaranteed delivery
requires a reliable network and unlimited buffering. While some systems have provided effectively
unlimited buffering by providing large amounts of physical buffering (e.g., the SP-2 [72]), pinning
down physical memory is inconvenient in general, particularly in a multiprogrammed system where
it is desirable to be able to guarantee some minimum amount of buffering to each application.

This chapter has described the first architectural technique, two-case delivery, used to support
the direct VNI. The next chapter describes the second architectural technique, virtual buffering, that
maintains the illusion of unlimited buffer space while requiring only limited amounts of physical
memory in practice.

'As yet another separate buffering issue, we could buffer at the sender as well at the receiver with nearly the same
hardware. The required addition would be a sender-side divert mode bit which would cause launch instructions to trap.
The policy decisions of when to turn sender-side buffering on and off are unclear.



Chapter 5

Virtual Buffering Technique

Two-case buffering, detailed in the previous chapter, achieves much of the triple goal of programma-
bility, protection and performance for the direct virtual network interface. Virtual buffering, the
topic of this chapter, is a complementary architectural technique that provides two-case delivery with
an effectively unlimited buffer at the receiver. The buffer is made to be "effectively unlimited" in
size by storing buffered messages in pages of virtual memory allocated on demand. The maximum
buffer space available to a process is limited only by the swap space available to the process. At the
same time, the buffer is physically "small" from the perspective of the operating system because the
buffer is demand allocated and pageable. Despite the large, guaranteed buffer of the programming
model, the amount of physical memory required can be minimal.

The benefits of virtual buffering correspond closely to the challenges that arise in the design
of the virtual buffering system architecture. The benefits and challenges are described here along
with the general architecture of the virtual buffering system. The rest of the chapter is devoted to
examining each of the challenges in detail. As introduced in Chapter 2, virtual buffering offers three
primary benefits over a system that buffers messages in a fixed amount of physical memory:

1. Unlimited Buffering. Virtual buffering aids the programmability of the direct VNI by im-
plementing the unlimited buffer space feature of the UDM model. The existence of a very
large buffer space helps programs avoid deadlock: a protocol will not deadlock due to a lack
of resources in the network.

2. User Flow Control. Virtual buffering allows improved application performance by allowing
the application to specialize away flow control (and buffer management) protocol overheads.
Providing unlimited buffering at the receiver removes the need for a buffer management or
flow control protocol in the message system in the common, direct case. Buffer management
overhead is incurred only in the uncommon, buffered case and flow control is provided,
explicitly or implicitly, by the UDM user. Virtual buffering thus permits improved performance
of the direct VNI compared to a system with a small, fixed-size buffer that must incur buffer-
related costs on every message.

3. Virtualized Resources. Virtual buffering allows improved performance of the system as a
whole by decoupling the physical resources used for buffering from the logical resources. The
operating system is allowed to manage (and presumably to minimize) the physical resources



dynamically.

In short, the existence of an effectively unlimited buffer at the receiver both aides the programmer
and improves the performance of the fast-case, hardware part of the message system. The premise
of virtual buffering, like two-case delivery, is that demand for buffering is rare: good programs and
ordinary conditions naturally keep buffering requirements low and the operating system is at liberty
to devote memory resources to other purposes. The costs and complexity of virtual buffering are
then confined to the support for rare cases of unusual programs and operating conditions where
performance is less of a concern.

The challenges in the design of the virtual buffering system are associated with each of the three
benefits:

1. Unlimited buffering aides the programmer in avoiding deadlock, but the virtual buffering
system must be constructed in such a way that it does not, itself, deadlock when it runs low
on physical memory. Since virtual buffering tends to be invoked when the network is filled
with messages, some mechanism is required to assure a path to backing store. The direct VNI
makes use of a reserved, second, logical network to support virtual buffering, but we find that
the performance requirement for this second network is low.

2. User flow control is a benefit to applications because it potentially allows the application to
depend on implicit or customized limits on message generation rather than suffer the costs
of flow control solely for the sake of the low-level message system. However, the virtual
buffering system must contend with applications that fail to limit messages and therefore fail
to limit their buffering demands, temporarily, erroneously or deliberately. The direct VNI
includes an overflow control mechanism that applies a coarse form of flow control on such
applications via the scheduler. Overflow control reduces the demand for buffering in marginal
programs or, at worst, prevents runaway programs from slowing down the rest of the machine.

3. Decoupling virtual buffer space from physical storage introduces the need for the operating
system to automatically manage the storage resources and to reconcile the storage demands of
virtual buffering with other consumers of physical memory such as virtual memory. We have
explored resource management only minimally, other than the resource management implicit
in overflow control.

The virtual buffering system consists of several software components that address the three
challenges. Figure 5-1 depicts the components as an expanded version of the generic software
buffering system illustrated in Figure 4-5 of the previous chapter. Most actions are initiated by the
buffer insertion and extraction routines, as in any software buffering scheme. The virtual buffer
insert handler must occasionally allocate fresh physical pages for storage, (A). The allocator and
the extract code interact with the memory manager, (B), to maintain the supply of fresh pages.
A combination of insert/extract events and memory supply conditions trigger the overflow control
module, (C), which uses the scheduler to modulate the flow of messages indirectly.

The actions of the various components of the virtual buffering system are illustrated in Figure 5-2.
In the common case, (1) messages are consumed immediately by the application via the fast case and
no part of the buffering system is involved. In the usual buffering case, (2), messages are buffered
in memory, using the buffer insert/extract modules and, when necessary, the allocator (Figure 5-1A)
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Figure 5-1. Virtual buffering (VB) makes use of three software modules in addition to the buffer
insertion and extraction modules that are common to any software buffering scheme. The virtual
buffering buffer-insert handler must be able to allocate fresh pages quickly (A) and to perform
paging if necessary (B) without using the main network. The memory manager, triggered by buffer
insertions and extractions, interacts with the overflow control module (C) to detect and throttle
applications that appear to be temporarily or permanently out of control.



Figure 5-2. There are three message reception cases. In the fast case, (1), messages are received
directly by the processor. In the ordinary buffering case, (2), messages are buffered by software in
memory, but the memory is physical memory that is resident on the node. In the worst case, (3), a
node can continue to receive messages while simultaneously paging out message buffers. A reserved
second network is used to assure. that paging can proceed without deadlock in the worst case as well
as for the overflow corirol mechanism that helps avoid paging.

and memory manager (B) modules. When physical memory runs low, (3), the second network serves
as a guaranteed path for paging by the memory manager, (B) if required. The second network also
serves as a path for control messages passed by overflow control, (C), and used to throttle the sender.

The three challenges arise in various parts of the buffering system. The deadlock avoidance
issue arises in all modules that may be invoked to insert a message, i.e., the buffer insert code and
modules (A), (B) and (C) in Figure 5-1. All must be able to continue to operate while the main
network is blocked. User flow control is addressed by the overflow control mechanism and policy
implemented in the overflow control module, (C). Resource management policy is the domain of the
virtual buffering memory manager, (B), in combination with the rest of the virtual memory system.

The prototype direct VNI we have implemented includes all parts of the virtual buffering system
except that the memory manager, (B), is limited. The memory manager supports allocation and
participates in overflow control but does not perform paging. We discuss the requirements for
paging in this chapter, but more subtle aspects of memory management are not well developed.

The remainder of the chapter discusses each of the three virtual buffering design challenges in
turn. Section 5.1 discusses the support for unlimited buffering using a reserved second network
to avoid deadlock. Section 5.2 describes overflow control used to preserve system performance
under high buffer demand and faulty user flow control. Section 5.3 describes the simple resource
management policy used in the prototype and discusses the issues that would arise in a more complete
system. Finally, Section 5.4 wraps up with a discussion of tradeoffs and of research questions for
future work.

5.1 Unlimited Buffering

The unlimited buffering feature of UDM and the direct VNI aids the application in avoiding deadlock.
Therefore, for the sake of irony as well as for correctness, it is crucial that the virtual buffering system
must not, itself, deadlock. The buffer must be able to accept new messages under all circumstances,



including when physical memory is low and the main network is blocked. Further, since buffering
is uncommon but does still occur regularly, it is important for the buffering system to operate as
efficiently as possible. For instance, memory allocation should not ordinarily require message traffic
or an expensive thread switch.

The fact that the buffer system must accept messages under all circumstances has two conse-
quences. First, all the code potentially invoked to buffer a message must be able to run under
restricted conditions. The buffer insertion interrupt handler (Figure 5-1) that inserts messages into a
virtual buffer usually just adds the message to several already buffered on an existing physical page.
If necessary, the handler invokes the operating system to quickly allocate a fresh physical page to
extend its buffer. The allocation decision is made locally and the allocator in fact runs in the interrupt
handler. Second, in order to continue buffering messages to the limits imposed by the swap space,
the buffer system requires a guaranteed ability to transfer pages from physical memory to backing
store. The ability to transfer pages out allows the memory system to recycle those physical pages
and continue buffering without deadlock.

Second Network. For the direct VNI, we choose to supply a second network as the guaranteed path
to backing store. The second network is used infrequently for this purpose so its performance is not
critical. The network might be shared with some other use, such as supporting shared memory. An
extra virtual channel [16] in the main network, a LAN or a service network could serve as an adequate
second network. Our emulator hardware provides a custom but very simple, bit-serial network.

The virtual memory system in our prototype system handles demand allocation, but does not
perform paging, so paging via the second network has not been implemented. The key services in
the virtual buffering path (e.g., , paging) would use a communication abstraction that uses the main
network when the main network is clear, but otherwise resorts to the second network.

We considered and discarded two alternatives to a second network for guaranteeing the ability
to page. First, we could have require a paging device be attached to every node in the machine. This
requirement limits the machine configuration as well as the amount of swap space available to any
one node. A second network is much more flexible and can also carry other miscellaneous memory
management traffic beyond just the bulk data that needs to be moved to backing store. Second, we
could guarantee that the operating system could use the main network by introducing a mechanism
to globally shut off user traffic before physical memory resources on any node of the machine drop
below a critical level. While such an approach may be practical, the bounding the amount of space
and time required is difficult.

The purpose of providing unlimited buffering is as a deadlock avoidance technique. Other high-
performance anti-deadlock schemes make use of a second logical network as well. For instance, the
common request/reply discipline makes two logical networks explicit. In contrast to request/reply,
the two networks in virtual buffering are highly asymmetrical: the second network exists to guarantee
a solution but is rarely used. Also, the strict gang scheduler in the CM-5 uses a separate control
network to initiate gang switches for protected multiprogramming. The direct VNI's second network
is used similarly to provide protection, but only on demand.

Performance. The performance of the message system degrades gracefully as demand for buffering
increases. Referring to Figure 5-2, in the fast, common case, (1), the message system runs at
hardware speeds. Message reception overhead in the prototype is 115 cycles for a null message
(from Table 4-4). When buffering is invoked, but physical space is available for buffer storage, every
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Figure 5-3. Flow control is applied at different levels of the message system for different purposes.
At the hardware level, (A), flow control is applied flit-by-flit to avoid dropping the data of individual
messages. At the protocol level, (B), a message protocol may count the number of outstanding
messages to limit resource consumption. An explicit layer of protocol may not be necessary if
flow control is implicit in the characteristics of the application, Finally, overflow control, (C), is an
indirect technique, a form of "network scheduling", that has the effect of applying flow control at a
coarse grain.

message must pass through memory, (2), at a reduced rate. In the best case (no allocations and
messages are handled in batches), the overhead per message received is about 232 cycles for a null
message (the sum of 180 cycles insertion time and 52 cycles extract time from Table 4-5).

A fresh page allocated and mapped by the operating system costs 3,162 cycles. Allocations are
rare both because many small messages will fit on a page and because the buffer system caches a
few free pages in a local free page list rather than re-allocating every time. Finally, when the system
is in the mode of paging and accepting messages simultaneously, the rate of incoming message data
it limited to the rate of outgoing pages, i.e., trivially:

BWi, = BWout (5.1)

This demand on the second network isn't as formidable as it may seem at first glance for two reasons.
First, the messages coming in are likely to be be small messages so that BWin is less than the primary
network's full bandwidth. In contrast, paging traffic on the second network is in the form of bulk
messages so that BWout can be a high fraction of the achievable bandwidth of the second network.
Second, and more importantly, this demand on the second network would only be decisive if the
system were to run in this mode for extended periods. The purpose of overflow control, described
in the next section, is to avoid the paging mode. Overflow control also uses the second network, but
depends on the second network's latency rather than on its bandwidth.
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Figure 5-4. Virtual buffering system operating modes with software oversight. The system sched-
uler is expected to help keep the fast case common by favoring coscheduling of applications that
communicate intensely. The overflow control mechanism works to slow applications that appear to
consume large amounts of buffer space.

5.2 User Flow Control

Virtual buffering gives the application control over protocol-level flow control. Such an arrangement
is beneficial because much of the time the application may need no additional flow control beyond
what is implicit in the algorithm. In essence, the application is given the ability to rely on the
hardware-level flow control for best performance in the common case. Because virtual buffering
provides unlimited buffering, however, the system must also include the means to limit the effects
of individual applications that demand excessive buffering.

Flow control can be implemented at different levels in a message system, as illustrated in Figure 5-
3. At the bottom, (A), the hardware (in a reliable network) provides flit-by-flit backpressure so that
no messages flits are dropped. At the middle level, (B), message systems often provide a flow control
protocol using extra processing and messages to limit the number of possible outstanding messages.
The protocol serves the purpose of dealing with a limited buffer. In the direct VNI, we forgo the
middle-level flow control protocol, leaving that to the user, and add a top-level "overflow control",
(C), based on minimally invasive measurements and coarse feedback through the scheduling system.

The concept of using system software to indirectly "oversee" the operation of the application
pervades the direct VNI message system. Figure 5-4 depicts the modes of the virtual buffering system
(as originally shown in Figure 3-5) with the addition of the two entities used to oversee the smooth
operation of the system. First, the system scheduler, (A), is expected to coschedule applications that
benefit from coscheduling and thereby reduce the demand for buffering. The scheduler has the effect
of "pushing" the system from the buffered cases to the direct-access case. Second, the purpose of
the overflow control system, (B), is to keep the virtual buffering system from paging.

The second network provides a guarantee of deadlock avoidance, but performance would degrade
severely if we were to routinely block the main network while paging. In practice, high consumption

I
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Figure 5-5. Overflow control mechanics. The buffer insertion code for each process monitors the
amount of buffer space used compared to the physical memory resources available on a node. When
demand for buffering is high, one node (here the rightmost), switches the whole application into
overflow control mode using messages sent on the second network.

of virtual buffering space corresponds to severe misscheduling of an otherwise reasonable application
or to an application that is maliciously or erroneously out of control. Excessive demand for virtual
buffering in our system is analogous to thrashing of virtual memory. Accordingly, we employ a
technique reminiscent of the anti-thrashing strategy in Unix: we identify the offending application
and take gross control of its scheduling. First, an application on the verge of exhausting physical
memory is globally suspended while paging clears out space on the node. Second, a well-behaved
application will recover from buffering if gang scheduled (Section 7.4.2), so the buffering system
advises the scheduler to gang schedule the application.

Overflow Control. The system that detects excessive demand for buffering and feeds that informa-
tion back to the scheduler is called overflow control. Overflow control has much the same effect as
a very coarse-grain flow control mechanism. We have implemented one overflow control mecha-
nism and policy using the second network to deliver messages with low latency given that the main
network is likely to be blocked.

The overflow control mechanism stops all the processes in an application when one process
detects an excess of messages. Figure 5-5 illustrates the stopping action. When any one process
observes a potential problem, it causes all other processes in the application to halt temporarily. The
overflow control mechanism uses the second network to deliver "stop" messages to all processes in
a job once the buffer space in any one process exceeds a threshold and the number of free pages on
a node falls below a low-water mark. On reception of such a stop message, each affected process
switches to an "overflow" mode in which it only consumes messages (using a heuristic based on our
knowledge of which threads do what in our system). All processes in the job remain in overflow
mode until message buffers in the job have shrunk to zero size or the number of free pages on the
node rises above a high-water mark. When the job is released from overflow mode, all processes in
the job return to normal mode.

Figure 5-6 depicts the paging system high and low water marks and Figure 5-7 shows the threshold
in the message buffer. Note that the high and low water mark in the paging system represent an
ordinary implementation of virtual memory management [74]. The switch from normal to overflow
mode and back again is then governed by two equations:

Normal =- Overflow if 3processes ((Lqueue > Lthreshold) A (Npages < Niowwater)) (5.2)

Normal ,= Overflow if Vprocesses ((Lqueue = 0) V (Npages > Nhighwater)) (5.3)
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Figure 5-6. In a conventional paging system, the pager starts when the number of free frames on a
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The overflow control policy assumes that either the application will clear its messages or that
the system pager will free up pages to the high-water mark. The former is characteristic of a
well-behaved application. The latter has the effect of turning runaway memory consumption into a
slowdown. The slowdown affects only the application using buffering since overflow control system
reacts before the node runs out of free pages.

Performance. Overflow control uses the second network to pass its control messages. The main
demand on the second network arises because the latency of overflow control messages affects the
amount of reserved space required on the node to avoid paging. In detail, when a node decides it
is time to apply overflow control, it sends out overflow control messages. However, in the interval
between when the overflow messages are launched and when the messages are received, some
additional messages will be injected into the network. The worst case arises if the network is running
at full bandwidth:

Mrequired = Tiatency ' BWin + Mnetwork (5.4)

where Mrequired is the amount of reserve memory required, Tiatency is the latency of an overflow
control request, both in hardware and in software (presumably mostly software), BWin is the message
data bandwidth into a node as before and Mnetwork is the amount of storage in buffers of the network
fabric and in network interface hardware. The network buffers must be counted because the receiving
node still needs to be able to empty the network after the overflow control messages have stopped
the senders.

The best policy for overflow control remains an open question. In our implementation, overflow
control stops and later restarts all the processes in an application together on the assumption that
the whole application will either correct itself or should be treated as permanently misbehaved.
A complimentary mechanism (not implemented) is that the occurrence of an episode of overflow
control should be treated by the scheduler as a suggestion to coschedule that application. Lee [43]
experimented with stopping one process (just the apparent sending process) of an application. Such an
approach might be able to help automatically manage the scheduling of threads within an application
for the benefit of the application.

5.3 Resource Management

Virtual buffering gives the operating system the opportunity to manage physical resources used
for buffering. Given that freedom, the operating system then needs a policy for allocating and
deallocating physical page frames used for virtual buffering. This policy needs to coexist with other
consumers of page frames in the operating system, i.e., the virtual memory manager and the file
cache manager.

We have not proposed or evaluated any such policies, other than the resource management
implied by overflow control. One interesting question is what information is needed to best optimize
buffer usage. For instance, message rates could be measured as well as simple buffer sizes. A second
interesting question is how virtual buffer management should interact other demands for physical
memory, i.e., virtual memory and file caching. The page frame cache could be partitioned or unified.
A third interesting question is what kind of API one might export to take advantage of application
"advice".



5.4 Discussion

The virtual buffering technique raises several research questions. Beyond basic feasibility, the major
question is whether, having given the user the offer of "unlimited" buffering, the demand for real
buffering is in fact overwhelming. The second experiment in Chapter 7 (Section 7.4) will show that
demand for buffering remains low in our sample applications, even when buffering is artificially
induced. The sample applications provide adequate flow control implicitly due to their intrinsic
characteristics. While flow control can always be added in a user-level library, we will show that the
conditions for avoiding excessive buffering in the direct VNI are quite mild. Further, the overflow
control mechanism described above in Section 5.2 is evaluated in Section 7.5, where we show that
it can effectively throttle runaway applications, to their benefit and to the benefit of the rest of the
system.

In addition to the major question, three research questions were raised above in this chapter and
only partly addressed. First, the second network, used for deadlock avoidance and as part of overflow
control, is intended to be used rarely and thus as a component has only a second-order impact on
performance. However, the exact performance requirement of the second network in a real system
is unknown. The bandwidth and latency issues described in Sections 5.1 and 5.2 are described in
additional detail by Lee [43]. Second, the domain of overflow control mechanisms and policies is
broad; the scheme described in Section 5.2 is only one simple possibility. Third, as mentioned in
Section 5.3, we have not addressed the resource management questions in virtual buffering beyond
the use of our overflow control policy.

Cross-Domain Messages. Another issue that is only minimally addressed in the direct VNI is
the question of cross-domain messages. Cross-domain messages are incompatible with the idea of
unlimited buffering. The problem is that one application can flood another application's swap space
with messages, which implies that the applications must trust one another. There are three possible
approaches to reconciling virtual buffering with cross-domain communication between mutually
distrustful applications:

* The first approach is to allow cross-domain communication with unlimited buffering but to
store the buffered messages in swap space charged to the sending application.

* The second approach is to abandon unlimited buffering for cross-domain messages and instead
provide some other guarantee, such as a fixed-size buffer negotiated at the time the cross-
domain connection is set up. Protocols built atop cross-domain messages would the have to
explicitly take the buffer size limit into account.

* The third approach, taken in the direct VNI architecture, is just to outlaw cross-domain
messages. Either the server or the client must be distributed (even if only as a "stub") so
that inter-process communication is always local to a processor. This organization is actually
quite natural for a scalable workstation in which all the kernels are trusted. For instance, a
distributed server such as the web server used for the experiments in Chapter 7, can optimize its
internal communication and perform caching transparently. The server interface abstraction
is decoupled from the server's communication requirements, which is a useful property.

Applicability. Since the mechanisms of virtual buffering are non-trivial, it is convenient to be able
to implement the mechanisms in software. Using virtual memory is particularly natural when the



processor initiates all the buffering because existing support for virtual memory (e.g., the processor's
TLB) is reused. It requires a relatively complex DMA engine or coprocessor to manipulate virtual
memory independently [26, 57, 66, 80].

However, virtual buffering is usable in any system that employs buffering. For instance, a system
that performs limited buffering in hardware could implement virtual buffering by using interrupts to
dynamically expand the buffers [56, 57, 80]. One simple way to perform limited buffering would
be to give the hardware a small table of active page frames indexed by the GID. The hardware
would perform buffer insertion into these pages automatically until the page frame was full and
then cause an interrupt. The hardware methods have all the same software complexity issues as
our all-software method, albeit with a less demanding time constraint since traps occur less often.
The interrupt handler that responds to a hardware buffer overflow must still be able to allocate a
page frame in an unusual situation and the system must still address deadlock, overflow control and
resource management.

The previous chapter and this chapter have described the architectural techniques of two-case
delivery and virtual buffering used to support programmability, protection and performance in the
direct VNI. These chapters have been oriented to the architecture, although we have covered many
of the implementation details as concrete examples. The next chapter describes the experimental
system in which the direct VNI was implemented and evaluated.



Chapter 6

Experimental System

The direct virtual network interface architecture described in the previous two chapters introduces
several new ideas that demand detailed evaluation. We chose to evaluate the ideas using an experimen-
tal hardware and software system ('"Pou"). This chapter describes the details of the experimental
system, its capabilities and the limitations required to make its construction tractable.

Systems that require customized hardware and a customized operating system are particularly
difficult to evaluate in a research environment with limited resources. An ideal evaluation system
would include all hardware features operating at full speed, a full operating system implementation
and multiple real-world applications running simultaneously. The construction of an evaluation
system for research purposes requires compromises.

Figure 6-1 categorizes three possible compromise approaches used in systems research. All
three approaches work by building something more tractable than the actual target system, and then
bridging the difference with simulation and analysis:

* The first approach (6-1A) is to build a limited version of the system, concentrating on a key
component and evaluating its performance in detail. The hope is that the performance of the
key component can be extrapolated to predict the performance of the full system.

* The second approach (6-1B) is to build a variant of the full software system on stock hardware
and attempt to account for the differences in hardware and software separately. One drawback
here is that much conventional operating systems work is oriented to accommodating stock
hardware so the point of the experiment may be lost: rather than exhibiting a combined
hardware/software solution, the focus shifts to how cleverly one can work around limitations
of the stock hardware.

* The third approach (6-1C), taken in FUGU, is to build the full system using hardware that can be
easily modified. The resulting "emulated" system is accurate in many senses but runs slowly,
speed being the typical trade-off for easy mutability.

We performed our direct VNI experiments on two platforms. First, we constructed an emulator
of FUGU hardware by adding a small amount of additional hardware to an existing experimental
multiprocessor, Alewife [1]. Second, we built a custom simulator of the system, T2. The two
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Figure 6-1. Three compromise approaches to mixed hardware-software system evaluation: (A)
build a limited version of the right thing, (B) build something different but related on stock hardware,
(C) build a full version on emulated (slow) hardware.

platforms are described in Section 6.1. The bulk of the direct VNI system is implemented in
operating system software. The FUGU operating system is based on Exokernel techniques [20].
Glaze is the kernel part of the OS and PhOS is the library part of the OS. The FUGU system also
makes use of an external scheduler that runs as a separate application, microkernel-style. Section 6.2
describes the operating system and the scheduler. Finally, Section 6.3 describes communication
libraries used atop the UDM messaging model.

6.1 Hardware

The FUGU hardware is implemented two ways: in the form of emulated hardware and in the form
of a fast simulator. The hardware is an "emulator" in the sense that it is based on a modification of
an obsolete (ca. 1993) processor set. However, the base machine, Alewife, has the virtue of being
a complete, balanced implementation for its generation. The conclusions about the message system
should continue to be applicable to current and future machine generations. The simulator is a fast,
instruction-level simulator with support for instruction-driven (as opposed to true structural) timing
models. The timing in the simulator is loosely calibrated to match the hardware.

6.1.1 Emulated Hardware

The FUGU hardware is constructed using the chipset of the Alewife machine and extending it with a
User Communication Unit (UCU) component, implemented as an FPGA. Figure 6-2 shows the block
diagram for a (1-processor) node with the UCU component shaded. Figure 6-3 shows a photograph
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Figure 6-2. Each FUGU node contains a processor ("Sparcle"), an FPU coprocessor, a User Com-
munication Unit (UCU), a Communication and Memory Management Unit (CMMU), a one-level
cache, DRAM and a network component. The white components are from the Alewife chipset; the
UCU component (shaded) was the only additional hardware required for FUGU.

Figure 6-3. A FUGU node is implemented as a single 4.66" by 9.91" PCB. Multiple nodes are
connected together via a point-to-point network embedded in a passive backplane. The four major
ICs at the left are, clockwise from top left, the FPU, the Sparcle IPU, the CMMU and the UCU. The
major IC at the right is the network component, a Caltech Mesh Routing Chip (MRC).
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of one node. The node PCB measures 4.66" by 9.91".

The Alewife chipset includes a Sparcle (SPARC V7-derived) processor, a stock SPARC floating-
point unit, 64KB of direct-mapped cache organized as 16-byte lines, 32MB of DRAM, a Caltech
Elko-series Mesh Routing Chip (EMRC) and a Communication and Memory Management Unit
(CMMU) gate array. The CMMU component implements shared memory, the message passing
interface and the revocable interrupt disable mechanism as well as acting as the cache controller,
DRAM controller and network buffer.

The machine reuses much of the Alewife infrastructure beyond the chipset: the FUGU nodes are
connected together by placing them in a corner of an unused Alewife backplane, FUGU is connected
to a host workstation via the same boards and cables used for Alewife and the communication server
program running on the workstation is a modified version of the corresponding program used for
Alewife.

Alewife is a single-user, physically-addressed machine while FUGU supports multiprogramming
and virtual memory. In a machine built from the ground up, such support would be designed into
each relevant component: the TLB in the processor, protection checks in the network interface, etc.
For FUGU, new protection and virtualization features are added externally to the Alewife chipset in
the UCU FPGA.' The UCU component extends the Alewife chipset with three main features:

1. A translation cache (TLB) to support virtual memory. The TLB is 4-way associative with 128
entries. It supports user-level probe operations to support translation for DMA [55].

2. A GID-check mechanism intended to be used during polling (not tested).

3. A rudimentary second network. The second network is a 1-bit, token-passing ring network [43].

The direct VNI approach allows the network interface hardware to remain quite small. The
network interface consumes about 20K gates plus 640 bytes in compiled SRAM arrays in about
0.40mm2 of the CMMU, an LSI 300K-series gate array. That's roughly 20KB of cache SRAM in
the same technology.2

The implementation of FUGU using an add-on FPGA to an existing machine represents a com-
promise approach in two ways. First, the system is slow compared to the machines we ultimately
want to represent.3 The Alewife chipset alone is capable of running at 20MHz; the external FPGA
added to the critical address path makes it even slower. The projected maximum system clock speed
is 7MHz, although at the time of writing it has not been tested above 2.5MHz. Second, several
protection features proved fundamentally difficult to implement in the UCU and are left unprotected
in the prototype. These features could be trivially implemented correctly if we were building a ma-
chine from scratch. There are three such features: the GID stamp is left to user code; the hardware
GID check on polling relies on a particular access idiom in user code (the header must be touched
first); DMA translation uses an unprotected TLB probe operation followed by a user-level write to
the send- or receive-descriptor.4

'Jon Michelson [55] and Victor Lee [43] designed and implemented the UCU FPGA. Victor also built the PCB.
2The size estimate is based on the relative areas of the network interface to the cache tags array in the CMMU. The

cache tags are implemented as a compiled SRAM array, so the comparison is highly unfavorable to the network interface,
which is dominated by the area of random gate array logic.

3300MHz processors are common in 1997.
4Heinlein describes a scheme for safely passing both virtual and physical addresses to an NI in [27]



A two-node FUGU machine exists running a subset of our applications. We used the machine
to run the microbenchmarks behind Tables 4-4 and 4-5 and for gross calibration of the simulator
against applications. Most of the results in Chapter 7 come from the simulator.

6.1.2 Fast Simulator

Most of the results come from a fast simulator, T2, used for system development. 5 The simulator
uses dynamic compilation to achieve speed and flexibility. The simulator design emphasizes speed
and employs an "incremental" approach to timing accuracy [4]. Compared to measurements of the
emulated hardware, the simulator reports cycle counts within +0/-30%. We believe the distortions
introduced do not qualitatively affect the results.

The simulator models timing using an instruction-driven approach. The simulator does not model
detailed timing of, for instance, pipelines in the processor, but instead assigns an execution time to
each instruction based on conditions at the time the instruction is executed. The simulator includes
models for the processor, the memory hierarchy, the network and filesystem I/O:

* The processor model includes static integer instruction times but not pipeline stalls. Floating
point instruction timing is not modeled.

* The memory model includes the timing of cache misses to local memory. The default
parameters mirror the hardware: the hierarchy is single-level using a 64KB, direct-mapped,
unified cache with 16-byte lines and a 10-cycle miss penalty. Shared memory is included but
the applications used for the evaluation in Chapter 7 do not make use of it and its timing is not
modeled.

* The network model provides for a fixed wire delay plus structural delays due to buffer limita-
tions and message ordering. We model limited network buffering in two places. First there is
a lumped model placed at the receiver representing all the send/network/receive queues along
the message path. Second, there is a model for the visible send queue window. Contention
inside the network is not modeled.

* I/O in the FUGU system is implemented by having the operating system exchange messages
with the host workstation. The host appears as a node in the network that is logically outside
the set of processors. I/O messages are roughly at the level of Unix system calls (e.g.,
open/close/read/write/stat). 1/O timing in the simulator is modeled crudely as either a fixed
delay or a random, exponentially distributed, delay added to each 1/0 message. I/O time is
not significant in any of the applications, so we use a small, randomized delay solely to vary
timings across multiple runs.

The fact that the simulator tends to underestimate processor time makes the effects of the network
interface relatively more important. The importance of costs we introduce in the message system
(e.g., via software buffering) are thus not hidden behind processing overhead.

5The simulator was designed and initially implemented by Robert Bedichek.



6.2 System Software

The FUGU system software consists of the operating system, a scheduler and several communication
libraries we have ported to the machine. The operating system is an extensively modified version
of a research OS and the scheduler is fully custom while the libraries are ported with minimal
modifications from other systems. The compiler used is a standard GCC (version 2.7.2.1) for the
Sparc. We use the -mflat and -mno-app-regs flags to suppress the use of register windows
and most global registers, respectively, for Sparcle. All parts of the system system and applications
are compiled with the optimizer on (-03).

6.2.1 Operating System

The FUGU operating system is a custom multiuser operating system organized as an Exokernel [32].
As an exokernel, the OS consists of two pieces: "Glaze" is the in-kernel portion and "PhOS" is the
library operating system portion. Glaze and PhOS are directly derived from the original Aegis/ExOS
exokernel [20] and reuse much of that code.

Glaze and PhOS support preemptive multiprogramming, virtual memory, user-level threads and
a low-cost interprocess communication (IPC) mechanism. The virtual memory implementation is
limited in that there is no paging to disk. However, it does use page faults to allocate and zero-fill
pages on demand and to propagate pages of shared memory on demand. These page faults introduce
the situation of messages rendered undeliverable due to the memory system.

Glaze and PhOS implement the software side of two-case delivery and virtual buffering. The
two-case delivery implementation switches to buffering mode in response to page faults, a certain
DMA case (described in Appendix A) and optionally in response to mismatches. Message timeouts
are currently fatal. The timeout value is set to a large value for debugging purposes.

As an exokernel, both message-available and mismatch-available interrupts are propagated from
Glaze to PhOS as user interrupts. User interrupts in Glaze use a reserved pair of register windows
in the Sparcle processor to accelerate saving and restoring registers. The mismatch-available user
interrupts are implemented as cross-domain upcalls involving a context switch. The context switch
is relatively inexpensive because of the tagged TLB in the UCU and because the register window
support is still usable across protection domains.

There are two consequences of the design decision to make mismatch-available interrupts into
cross-domain upcalls. First, the virtual buffer enqueue handler always involves the full cost of a user
interrupt. As we will show in Chapter 7, the buffer enqueue throughput is particularly crucial to the
system so in retrospect this design decision was flawed. The second, positive, consequence is that it
is easy for PhOS to support multiple buffering policies. In Chapter 7, we make use of upcall-always,
buffer-on-mismatch and, for illustration, buffer-always policies. Since the policy decision is made
in PhOS, not Glaze (or in hardware), it is easy and natural to change policies on a per-application
basis for experimental purposes.

Several versions of overflow control are implemented in PhOS, including the version integrated
with the virtual memory system, as described in Chapter 5 and a simpler version used for experi-
ments in Chapter 7. A third version was implemented by Lee for [43]. Since overflow control is
implemented in PhOS, the mechanism is partly cooperative. As with most resource management
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Figure 6-4. A single FUGU node supports multiple applications running on an Exokernel-based
operating system. Glaze is the kernel part of the exokernel; PhOS is the library part, which is shared
by all applications. The system scheduler runs as a user application in microkernel fashion.

mechanisms in Exokernels, the cooperative mechanisms must ultimately be backed by some coercive
mechanism in the kernel. We have not implemented a kernel version of overflow control.

Figure 6-4 illustrates how the various software components are used together Glaze is the kernel
part of the Exokernel and PhOS is the library part. We use only a single library OS linked with
all the applications although PhOS supports some convenient per-application specializations such
as the ability to change the message buffering policy for experimental purposes. CRL and Cilk
are additional communication and load balancing libraries, respectively, used by some applications
described in Section 7.1. The scheduler, described below, is implemented as an ordinary application.
In particular, it has access to the same communication facilities as other applications, which is
convenient because the direct VNI functionality is not available to the kernel. As an application, the
scheduler is unique only in that it has permission to control CPU allocation.

Figure 6-5 depicts the assignment of applications to processors for one of the experiments in
Chapter 7 Each box represents a distinct protection domain. The flock of Web Robots and the Web
Server, described in Chapter 7, form an interactive, client-server application. Barnes, also described
in Chapter 7, is a fine-grain scientific application using the CRL library. The Sequencer is a short-
running, sequential application used to select and run the main applications for the experiment.
Finally, the Scheduler and Propagator (a part of the scheduler), described next, are parts of the global
runtime system.

6.2.2 Scheduler

The FUGU scheduler is Walter Lee's experimental "flexible coscheduling" scheduler that supports
both conventional scheduling based on priority queues and coordinated (gang or co-) scheduling
based on synchronized clxcks [44]. The desired scheduling mode is applied per-application. The
flexibility in the scheduler allows us to explore the tradeoffs that two-case delivery permits. Ideally,
the scheduler would switch between scheduling modes autonomously and dynamically based on its
evaluation of the effect of the tradeoff for each application and for the system as a whole. For our
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Figure 6-5. A FUGU system runs a mixed workload of multiple parallel and sequential applications
distributed across the machine. Here the x axis represents the eight processors in this machine while
the y axis represents process "slots" on each processor. The workload represents a typical set of
applications for one of the experiments in Chapter 7. Four applications, including the scheduler, are
parallel applications conceptually running on eight virtual processors while others are sequential.
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purposes, we set the mode of the scheduler manually for each application in each experimental run.

The scheduler utilizes the notion of a scheduling "round". A round is several timeslices-worth
of pre-planned activity. The scheduler pre-plans the execution of ganged jobs in a round but merely
reserves space for non-ganged jobs in the round. The use of a round allows the scheduler to amortize
the cost of computing and communicating the gang schedule over several time slices. The cost of
using the round is a decrease in responsiveness for scheduling ganged jobs.

For ease of development, we implemented the scheduler as a separate, user-level server program
in micro-kernel style (Figure 6-4). The scheduler program is distinguished from other applications
only in that it owns all the "CPU slices" exported by Glaze. Thus, at the end of each timeslice, Glaze
transfers control to the scheduler since the scheduler always owns the next CPU slice. The scheduler
then directly yields to the application it chooses to run.

6.3 Libraries

The low-level UDM communication model described in Chapter 3 is intended to serve as a building
block for more programmer-centric communication abstractions. We have used three communication
models with FUGU. One is a minimal abstraction atop the UDM primitives and is defined in this
section. The second is the CRL software shared memory system [30] ported to use UDM. The
third (unused in the experiments) is the Cilk language and its associated load-balancing runtime
system [5].

The minimal abstraction atop UDM (conventionally referred to as just "UDM"), wraps the
inj ect and extract operations in do.on statements and the abstraction of "handler" declarations
for procedures, respectively. The doon/handler abstraction implemented for FUGU is strictly
interrupt-driven.

A doon statement looks like this:

do-on (dst, handlername [, arg [, argl [, ... [, argl3]]]])

The dst argument is an integer representing a virtual processor number and handlername is a pointer
to the handler procedure to be invoked on that virtual processor. The arguments, argO, argl, etc.,
are arbitrary items that are passed by value (the value must fit into a single, 32-bit word). The
do-on statement simply compiles into a table lookup to translate the dst node number into a header
followed by an inject operation.

A handler declaration looks like this:

void handler (handlername [, arg [, argl [, ... [, argl3]]]])

(atomic handler code)
user-active-global () ;
(thread code)

}
The handler declaration compiles into a procedure and an initial stub containing the extract



operation to load the procedure arguments (if any) into registers. The handler procedure is invoked
automatically as a user interrupt and runs with atomicity on (interrupts disabled). The handler
optionally includes a user-active-global () statement, which converts the handler into a
thread and then invokes the atomicity (off) operation described in Chapter 3.

Since all actual uses of inj ect and extract operations are wrapped in the stylized doon and
handler forms (even CRL and Cilk are implemented atop do-on/handlers), we took some liberties
in the implementation of the direct VNI in the name of expediency. These two shortcuts also have
the effect of closing an atomicity "hole" between TLB probes and the storing of physical addresses
for DMA. The direct VNI description in Chapter 4 describes how to maintain transparency in access
to the network interface in the face of arbitrary user instructions.

The first shortcut is in doon. If a context switch occurs in the middle of a partially constructed
message, the design chapter prescribes saving and restoring the message output buffer registers
(Figure 4-3). Instead, we roll back the current thread's PC to the point in the compiled do-on code
at which the output buffer registers are first written. The constraint placed by this technique is that
the block of code (generated by the compiler) beginning with the first store to an output register and
ending with the launch instruction must be idempotent.

Second, since extract operations in FUGU appear only in handlers, we took the liberty of using
a dual-stub-and-rollback approach to transparency instead of emulating the dispose instruction
in buffering mode as described in Chapter 4. The dual-stub approach works like this: the compiler
actually generates two versions of the initial stub containing the extract operation, one for direct
mode and the other for buffered mode. The direct-mode stub is constructed to be idempotent up until
the dispose instruction. If the system must switch to buffered mode while a handler is running
but before the dispose point, the handler is merely restarted using the buffer-mode stub.

Beyond raw UDM, we ported two libraries to the machine. One is CRL [30], an all-software
shared-memory system. CRL is strictly a runtime library that operates by passing messages. We use
this library extensively in our experiments in the next chapter. The other is Cilk [5], a programming
language and runtime system that performs automatic load balancing through work stealing. This
version of Cilk (version 4) communicates through shared memory. Since the focus of the thesis is on
message-passing, we do not include any Cilk-based applications in our evaluation. The next chapter
introduces the experimental evaluation and presents the results.



Chapter 7

Results

The previous chapters have shown that direct virtual network interface provides programmability
through the UDM model, is compatible with protection for multiuser operation and provides low-
level performance near that of unprotected hardware. This chapter turns to the performance of
the direct VNI with real applications, alone and under multiprogrammed conditions. The central
hypothesis is that the performance benefits of a direct interface persist over a useful range of mixed
workload conditions expected in a scalable workstation. The chapter describes the test applications
used to form a mixed workload and then proceeds to make two main points in response to the
questions raised in the design chapters, Chapters 4 and 5:

1. The first and most important point is that the "optimistic" approach to performance of two-case
delivery remains justified for a broad range of workload conditions and with an achievable
set of system parameters. Using a mixed workload of an interactive application running
against compute-intensive parallel applications, we observe that only 14 - 33% of messages
are buffered in our parallel applications while 10% of the CPU time is devoted to interactive
work.

2. The second point is that the logically unbounded buffers provided by virtual buffering do not
lead to unbounded real buffer consumption. "Well-behaved" applications naturally limit their
demand for buffering and ill-behaved applications can be throttled by overflow control.

Before introducing the applications and mixed workload experiments, the potential benefits of
the direct VNI approach in terms of programmability, protection and performance should be clear
from the previous chapters:

* Programmability comes from the UDM model described in Section 3.1. UDM provides
kernel-like control over interrupts and the ability to treat the network as private, reliable
and with unbounded buffering. UDM is powerful enough to implement the efficient Active
Messages [78] and Remote Queues [8] models directly.

* Protection is enabled because the combination of two-case delivery and virtual buffering solves
the undeliverable message problem (Section 2.2), permitting protected multiprogramming and
demand-paged virtual memory.



* Performance in terms of speed comes from the direct interface. Microbenchmark results
presented in Chapter 4 (Table 4-4) show that the base message-passing costs in FUGU are
comparable to the costs of an unprotected, direct interface on a single-user machine built on
the same hardware base. Others have shown that tightly-coupled, direct interfaces tend to be
more efficient than indirect, memory-based interfaces [28, 56]. Thus FUGU's peak performance
is high.

Two-case delivery and virtual buffering provide good system performance in terms other than
speed as well. Virtual buffering enables low memory consumption compared to a system that must
provide a fixed amount of physical buffering per application. The operating system is at liberty
to deallocate or page out message buffers that appear to be rarely used. Performing buffering in
software helps keep the direct VNI hardware small by limiting its functionality to input/output FIFOs
and a simple DMA engine. The processor's address translation hardware is reused and all policy
complexity is pushed into software. The FUGU NI hardware occupies the area of only about 20KB
of L1 cache made in the same technology.

Section 7.1 introduces the set of parallel and interactive applications used to evaluate FUGU in
the remainder of the chapter. We review how these applications benefit from the direct VNI when
running standalone. The focus of the evaluation, however, is to determine whether the possible high
performance is in fact achieved with real applications in multiprogrammed workloads. As mentioned
above, there are two main questions.

The first question is whether optimism in message delivery is justified in the presence of
interactive applications. Section 7.2 introduces an experiment to generate a realistic, mixed
interactive/compute-intensive workload under controlled conditions. The real applications are run
together in this mixed workload. The results show that FUGU offers graceful degradation in parallel
perforniance as interactive demands increase because the majority of messages are still delivered
along the fast path. This property allows FUGU to have better performance than a system that always
pays the overhead of buffering or a system that provides multiprogramming only through strict
gang scheduling. Section 7.3 compares the direct VNI approach to a network interface that always
buffering messages in memory using hardware support. The comparison is based on a model of the
costs of messaging and measurements from the real applications. We find that software buffering is
justified for an achievable range of system parameters.

The second question is whether the design decision to effectively guarantee buffering can lead
to an uncontrollable demand for buffering. The last two sections approach this question from two
directions. Section 7.4 shows that ordinary, well-behaved applications naturally limit their demand
for buffering. Through an experiment that artificially induces buffering in a controlled manner, the
demand for buffering is observed to increase gracefully in our applications as buffering is induced. A
synthetic application is used to define the meaning of"well-behaved". Finally, Section 7.5 evaluates
one overflow control policy for controlling buffer consumption in an ill-behaved application. The
section shows that buffer consumption in an ill-behaved application can be effectively converted into
a slowdown for that application alone.



App. Description Data set Model
Barnes N-body simulation 2048 bodies, 4 iterations CRL
Water Particle-in-cell simulation 512 molecules, 4 iterations CRL
LU Blocked matrix decomposition 256x256 matrix, 16x16 blocks CRL
Enum Triangle puzzle 6 pegs/side UDM
Barrier 10000 barriers
Null Busy wait - -
Webserver Parallel, caching web server 242 documents (774MB) UDM
Webrobot Synthetic client (uniprocessor) 1000 random requests

Table 7-1. Application descriptions. Barnes, Water, LU and Enum are real, parallel applications.
Barrier and Null are synthetic applications included to illustrate extremes in application charac-
teristics. The Webserver and Webrobot applications together form an interactive, client-server
application.

App. Measured Cycles Tot. msgs Tinterhandler Thandler
Barnes 3rd iter. 45.7M 107,849 3390 337
Water 3rd iter. 47.6M 36,303 10,500 419
LU all 13.4M 7,564 14,200 478
Enum all 72.7M 610,148 953 320
Barrier all 18.5M 240,177 615 149

Table 7-2. Application base measurements (eight processors). Tinterhandler represents the average
time between messages launched or received, including the time to launch or to receive. Thandler
represents the average time for message reception, including the interrupt overhead of 115 cycles
(all the applications use interrupt-based message delivery).

7.1 Applications and Standalone Performance

The goal of the scalable workstation is provide good performance across a range of mixed workloads.
The direct VNI supports mixed workloads by providing a programmable message-passing model with
good performance for parallel applications and by supporting protection for multiprogramming with
priority-based scheduling for interactive applications. Accordingly, for the evaluation, we develop a
set of both parallel and interactive applications that can be combined together in a workload. This
section discusses those applications and their performance when running alone on the FUGU system.

The experiments in the remainder of the chapter depend on a set of real and synthetic applications
ported to FUGU. The characteristics of the applications used are tabulated in Tables 7-1 and 7-
2. Table 7-1 gives general information and Table 7-2 summarizes their characteristics through
measurements of selected benchmarks running standalone on an eight-processor system. In the
experiments, application running time is taken to be either the execution time of the third iteration
for the iterative benchmarks (Barnes and Water) or the execution time of the whole application.
The table shows execution time in cycles, the total number of messages, the average time between



Table 7-3. Application run times in millions of cycles over a range of machine sizes. The run times
are measured using the 3rd iteration for iterative applications (Barnes and Water) or the full run time
for others.

messages, Tinterhandler, (derived from the totals) and the average time spent per handler, Thandler,
(measured separately) for each application.

Compute-Intensive Applications. Three applications, LU, Water and Barnes are standard scientific
benchmarks. Water and Barnes are from the SPLASH [71] suite. LU, Water and Barnes are shared-
memory programs that have been modified to make use of the CRL all-software shared-memory
system [30]. CRL presents a message-passing load that is representative of other coherence protocols
such as Stache [62] or Shasta [65] and can be considered operating-system-like: many low-latency
protocol packets mixed with larger data packets. Of the three CRL applications, Barnes exhibits the
finest granularity in terms of message rate (smallest T interhandler).

A fourth application, enum, solves a simple "triangle puzzle" game by exhaustive, breadth-first
search [47]. The implementation used here is a fine-grain, data-parallel version that exchanges
numerous unacknowledged short messages and synchronizes only infrequently. From Table 7-1, the
ratio of Thandler to Tinterhandler in enum is extremely high: a third of the time of the application
is spent in handlers. Enum is a potentially challenging application for the direct VNI because the
combination of a high message rate, substantial computation in handlers and little synchronization
can in theory lead to excessive buffering. In practice, however, as Section 7.4 will show, the
characteristics of enum are still within the realm of "well-behaved" applications and excessive
buffering is not a problem.

The compute-intensive parallel applications obtain competitive speedups on FUGU. Figure 7-1
and Table 7-3 summarize the speedups achieved by the parallel applications. The speedups are
relative to the parallel code running on one processor. The speedups for the CRL applications are
comparable to those reported in [30] for the Alewife machine. The speedup for enum is noticeably
superlinear due to cache and TLB capacity misses that decrease with machine size.

Finally for the compute-intensive, parallel applications, barrier and null are synthetic
applications included to illustrate opposite extremes of sensitivity to scheduling. Barrier consists
entirely of barriers and thus represents a synchronization-intensive application that is extremely
sensitive to how it is scheduled. Barrier makes essentially no progress unless all its processes
are scheduled simultaneously. Null, at the other extreme, is an embarrassingly parallel application.
Each process in null busy-waits for a fixed number of iterations without communication.

Interactive Application. The one interactive application used in the experiments in this chapter

# procs Barnes Water LU Enum
1 254.0 305.0 78.1 713.0
2 148.0 158.0 42.8 306.0
4 83.2 84.1 24.7 142.0
8 47.4 46.4 13.9 75.0
16 26.0 26.4 8.6 37.6
32 16.3 15.5 5.8 21.1
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Figure 7-1. Application speedup for applications running standalone. The speedups are relative to
the parallel code running on one processor. The speedup for enum is superlinear due to cache and
TLB capacity effects.

is a client-server system using multiple processes. The system is composed of a single, parallel
"webserver" application along with a constellation of sequential client "webrobot" applications.

The webserver listed in Table 7-1 is one interactive, parallel application. The server answers
HTTP requests for web pages stored as files on disk. Service is parallelized by using a hash on
the web page URL to distribute work among the processors. Pages are cached and in practice the
cache fills quickly so that disk activity is a minor part of the run time. The server is always run
on all processors. Requests arrive locally via a socket-like interface that uses fast inter-process
communication (IPC) supported by Glaze/PhOS between clients and the server.

The webserver is exercised by a synthetic client application, the webrobot. Each robot is a
uniprocessor application that generates random requests with a random inter-request time. The
requests are selected uniformly from a list of all the known web pages. The inter-request time
is an exponentially-distributed random variable with an expected value that is programmable via
a parameter to the robot application. The combination of the server and robots makes a realistic
parallel interactive application.

Standalone Performance. The direct VNI offers good application performance by giving message
system performance close to that achievable with an unprotected network interface on the same
hardware. Others have shown that direct interfaces and low-level messaging models give good
application performance. We show here that the virtualized interface achieves performance close to
a dedicated interface.

Others have shown that tightly-coupled direct interaces and reliable message subsystems offer
performance benefits to applications. Henry and Joerg [281 quantified the value of placing the
message interface close to the processor and of providing hardware support for buffer management.
The CNI work [56] shows the benefit of a tightly-coupled direct interface versus the best current

C
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Figure 7-2. Impact of increased message overhead. The gray lines represent the application runtime
using a buffer-always policy normalized to the runtime using upcalls. The buffer-always path incurs
as much as 1400 cycles of overhead per message while upcalls cost only 115 cycles per message.

memory-based interface with real applications. As discussed in Chapter 2, direct interfaces offer
lower latencies for single messages because they eliminate cache miss costs and buffer management
overhead. Karamcheti and Chien [33] found that 50-70% of active message overhead in the CM-5
was attributable to the costs of providing flow control, ordering and reliability in software. The uNet
paper [77] suggests that buffer management overhead would cost 6uS/message on their Sparc-10-
based system. 6uS is considered relatively low extra overhead (10%) in their system but amounts to
hundreds of cycles.

We can compare the performance of the direct VNI with that of an unprotected direct interface
on the same hardware via the crude technique of looking at the difference in overhead. For instance,
according to Table 7-2, a process in an 8-processor configuration running enum receives a message
every 953 cycles. From Table 4-4, the difference in overhead between our direct VNI implementation
and unprotected, Alewife kernel messages on the same hardware is 115 - 54 = 61 cycles. So,
crudely, enum could be expected to run about 6% faster if we abandoned protection. The direct VNI
implementation could certainly be improved as well, even on the same hardware. From Table 7-2, a
implementation using the hardware-supported atomicity mechanism should have a fast path overhead
of only 87 cycles. Based on the small differences in overhead, we draw the first conclusion:

Conclusion 1: The direct virtual network interface offers standalone application per-
formance close to that of an unprotected direct interface

The difference between the direct VNI and an unprotected, direct interface is small compared
to other possible techniques. If we change the VNI policy to buffer all incoming messages, we
end up with a particularly expensive form of memory-based interface. The buffering overhead
(232 cycles) in our system and cache miss cost (a 10-cycle penalty) are relatively small. However,
the interrupt-through-scheduler path we use for the buffer-buffer policy is very expensive (1000+



cycles). Figure 7-2 shows the relative runtimes of our applications with the buffer-always policy
normalized to the runtime with the default (upcall-always) policy. All of our applicatioits perform
better under the default policy than under the buffer-always policy, and the effect grows with the
number of processors. Enum slows down by 65% at eight processors over the direct VNI with
the slow message system, compared to the 6% projected gain possible from using unprotected
hardware. The buffer-always policy has to be considered a worst case, although it's essentially what
SUNMOS [63] does.

This section has shown that the direct VNI offers good performance to applications running
standalone. The performance with the (protected) direct VNI is close to that with an unprotected
direct interface on the same hardware base. The next section shows that the direct VNI performance
benefits persist under multiprogramming using a parameterized mixed workload.

7.2 Mixed Workload Performance

The main result of the thesis is that the direct VNI continues to give good parallel performance
under mixed workload conditions. This section and the next section combine to present that result
in two ways. Section 7.2.1 starts by describing the mixed workload experiment and how scheduling
is performed. Then, Section 7.2.2 makes the first point: we run real applications in that framework
and show that, despite multiprogramming, most messages are still received via the fast case. The
next section (Section 7.2.2) makes the second point: we examine the tradeoff between the direct
VNI and a hardware-supported, memory-based VNI in detail to circumscribe the domain in which
hardware-supported buffering can be beneficial and show that the domain is vanishingly small.

A mixed workload is difficult to support because compute-intensive parallel applications and
interactive applications have contrary scheduling requirements. Compute-intensive parallel applica-
tions, such as the CRL applications in our workload typically benefit from having all processes in
the application scheduled simultaneously on all processors for long time slices. Scheduling together
allows the component processes to communicate with predictable, low latencies. On the other hand,
interactive applications, such as a web server, a database engine, or any application in an I/O-bound
phase, benefit from traditional, independent, priority-based scheduling. Independent, priority-based
scheduling will give high priority to the interactive application so that its component process or
processes can service incoming interactive requests with predictable, low response times.

Reconciling the two demands is an important problem that is unsolved in general. If the
interactive demands are sufficiently low, it is clearly useful for the system to employ independent,
priority-based scheduling because the disruptions to the compute-intensive application are low. If
disruptions are too high, there is emerging agreement [15, 22, 3, 73, 44], that it becomes useful to
explicitly co-schedule the processes of the compute-intensive application by one means or another.

Section 7.2.1 introduces a parameterized workload that pits a compute-intensive application
against an interactive application. This workload is used to generate a full range of situations and to
illustrate the tradeoffs between them. In particular, results from the workload illustrate why some
applications should be coscheduled in some situations.

Section 7.2.2 presents results using real applications in this workload running on FUGU. These
results confirm the qualitative expectation that most messages arrive via the fast path. First, with low
interactive demands, two-case delivery improves performance because most messages arrive via the
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Figure 7-3. In a mixed workload under ideal conditions, the interactive application runs whenever
it has work to do and the compute-intensive application runs profitably at all other times. Here,
the execution of applications multiprogrammed on an eight-processor machine are represented as a
section of a timeline. Time runs from top to bottom and the eight processors are represented from
left to right. Shaded blocks represent segments of time in which the interactive application is running
on a particular processor.

fast path. Second, at high demand, it is advantageous to switch to coscheduling where, again, most
messages arrive via the fast path. As mentioned above, it is often desirable to switch to coscheduling
anyway because of application characteristics unrelated to the direct VNI. In the middle ground there
is a tradeoff between the two-case delivery approach and an alternate approach that always buffers
messages in memory. Section 7.3 goes on to examine this tradeoff in detail.

7.2.1 A Mixed Workload Experiment

This section introduces a framework for evaluating system performance with a mixed workload. We
describe the experiment, describe what goes on internally during the experiment, and then show
sample graphs illustrating the range of expected results. The basic experiment multiprograms two
applications, one compute intensive, and one interactive, on a parallel machine and measure their
runtimes. Each application uses all the available processors. Our scheduler (Section 6.2.2) is
programmable in two modes. One mode is independent, priority-based scheduling. The other is
coscheduling with fixed timeslices.

Consider first what happens with independent, priority-based scheduling. The interactive appli-
cation immediately and permanently gets the higher priority because the scheduler detects it blocking.
Therefore, each interactive process runs whenever it has work to do. Ideally, the interleaving of
the two applications in time will look like Figure 7-3. The component processes of the interactive
application run at high priority whenever there is work for them to do. The compute-intensive
application soaks up all cycles that are unused by the interactive application.

In reality, Figure 7-3 represents a best case. The compute-intensive application is apparently
embarrassingly parallel. When processes in a compute-intensive application synchronize with one
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Figure 7-4. A compute-intensive application that also synchronizes intensely may slow down
considerably when multiprogrammed with an interactive application. In the worst case, the compute
application may only make forward progress when all of its processes are scheduled on the machine
simultaneously. If demand interactive processing occurs randomly and independently across the
processors, much of the CPU time may be wasted.

another, a process may be delayed simply because a peer process has been delayed. In the worst
case, if the compute-intensive application synchronizes very frequently, it may require all of its
constituent processes to be scheduled near-simultaneously to make progress. Figure 7-4 illustrates
the extreme case where much of the CPU time is unusable to the compute-intensive application
because of interruptions. The problem of unusable CPU time becomes worse as the number of
processors increases and as the amount of CPU time devoted to the interactive application increases.

Assume f represents the fraction of CPU time used by the interactive application. The slowdown
of the compute-intensive application ranges from the best case (Figure 7-3) of

1

(1 - f)
to a worst case (Figure 7-4) of

1

(1 - f)P
for P processors if work arrives independently for each processor. Arpaci et al [3] document this
effect in a network of workstations for disruptions caused by periodic daemon processes.

Coscheduling improves the performance of the compute application although possibly at the ex-
pense of the interactive application. In coscheduling mode, the scheduler allocates fixed-size times-
lices across the machine to each application using synchronized clocks. The effect of coscheduling
is illustrated in Figure 7-5. Coscheduling wastes CPU time because the interactive application can-
not necessarily use all of its assigned time slice. Coscheduling also can dramatically increase the
response time of the interactive application. However, coscheduling limits the slowdown observed
by the compute-intensive application to a known value. With fixed-size timeslices, the slowdown
with two applications is limited to two. A more elaborate coscheduler than ours could adjust the
relative size of the timeslices to further improve slowdown and to reduce wasted CPU cycles.

Time
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Figure 7-5. Coscheduling assigns blocks of time across multiple processors to a single parallel
application. Here, half of the CPU time on all the processors is assigned to the compute-intensive
application, so the slowdown of that application is at worst a factor of two. The other half of the
CPU time is scheduled in a conventional, independent fashion. The coscheduling pattern repeats
periodically in time.

App. 1 App 2.

Runtime 1

Runtime 2

I
App. 2 continueswith the same

kind of work

Figure 7-6. Multiprogrammed workloads requires some effort to measure. For our experiments, the
faster application is kept running performing the same kind of work so that the measurements are
kept symmetric. The runtime measurement thus accurately represents the "instantaneous" effect of
one application on another.
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Figure 7-7. The expected range of slowdowns Figure 7-8. The expected slowdown of
of the compute-intensive application under inter- the compute-intensive application with fixed-
active scheduling varies over a huge range. The timeslice gang scheduling is limited to a factor
slowdown is plotted against the fraction of total of two with two applications.
CPU time devoted to the interactive application.

The chief metric for the experiment is the slowdown of the multiprogr unmed application over
the same application running standalone. To keep the effects of one application, on the other clear,
we contrive to measure slowdowns that reflect the "instantaneous" effect of one application on the
other. To measure this effect, we measure the time for each application to complete a fixed amount
of work. However, as shown in Figure 7-6, the application that finishes its work eirly continues
performing the same kind of work until both applications have finished. This contrivance is easily
achieved with synthetic applications. For the real applications, we altered the interactive application
(the web robot in Table 7-1) to wait for the compute-intensive application to exit.

The interactive applications are fed work as a random process with exponentially-distributed
inter-arrival times. For the experiments, we vwry the rate of work across a range. The rate of work is
converted into a fraction of CPU time, f, by measuring the CPU time consumed by the interactive job
at each rate setting. The CPU time consumed is measured indirectly by performing the experiment
with the embarrassingly parallel null application and measuring the slowdown of null.

Figures 7-7 and 7-8 illustrate the range of expected slowdown effects for a parallel, compute-
intensive application when scheduled against an interactive application running under priority
scheduling and coscheduling, respectively. The graphs plot the slowdown of the compute-intensive
application versus the fraction of CPU time used by the interactive application.

With priority scheduling in Figure 7-7, the slowdown varies across an enormous range bounded
by the two dotted lines. The lower dotted line predicts the best possible slowdown based on the
amount of CPU time used by the interactive application (Figure 7-3). This slowdown corresponds
to 1/(1 - f) for an embarrassingly parallel application. The upper dashed line predicts the worst
possible slowdown based on the amount of time the compute-intensive application has control of all



16 processors (Figure 7-4). The upper dashed line is a function of the number of processors in the
system (1/(1 - f) 16 in this case) and, as can be seen, can grow to be alarmingly steep.

With fixed-timeslice coscheduling, the worst-case slowdown is limited to a factor of two with
two applications. Coscheduling in the style of Figure 7-5 as used in FUGU allows the compute-
intensive application to slowdown somewhat less because some of the priority-scheduled CPU time
is recoverable. Figure 7-8 again shows two dotted lines corresponding to the worst and best possible
slowdowns. An even better coscheduler that could vary the size of the timeslices could limit the
slowdown of the compute-intensive application to 1/(1 - f) in all cases.

The cost of coscheduling is in its effect on the interactive application. The response time of
the interactive application may be increased dramatically by the fact that the interactive application
is not runnable for whole timeslices of time. We do not pursue this cost in detail in this thesis.
Instead, we assume that there is a tradeoff available; i.e., when the compute-intensive application
has a slowdown of more than two, the scheduler clearly has a tradeoff that it is choosing to make.
A system that only supports coscheduling or only supports interactive scheduling does not have the
opportunity to exploit such a tradeoff.

The slowdown observed in FUGU with two-case delivery is a combination of application effect
and message-system effect since some messages are diverted from the fast path. Section 7.2.2
presents results for the mixed workload with real applications, illustrates the application effects and
makes qualitative points about the effect of two-case message cost. Section 7.3 will examine the
two-case tradeoff in detail.

7.2.2 Mixed Workload with Real Applications

The parameterized mixed workload experiment described above serves as a means to distinguish
between message system effects. This section presents the results of running several real applications
together in the mixed workload.

In our experiment, we run pairs of compute-intensive/interactive applications on a simulated,
16-node system. The compute-intensive application in each case is one of the four real parallel
applications listed in Table 7-1. The interactive application consists the web server from Table 7-1
plus one web robot as a client per node. Each robot generates requests at a controlled rate. We vary
the rate to vary the amount of CPU time used by the interactive processes and thus the amount of
CPU time available to the compute-intensive application.

The slowdowns observed by our sample parallel applications in the mixed workload experiment
under interactive scheduling are moderate. Figures 7-9 and 7-11 illustrate the effect of the interactive
application on the compute-intensive application when the system scheduler performs independent,
priority-based scheduling.1 Figure 7-9 shows the slowdown of each compute-intensive application
multiprogrammed over the same application run standalone versus the fraction, f, of each processor's
CPU time devoted to servicing the interactive application. The slowdown is again bounded by dashed
lines at 1/(1 - f) and 1/(1 - f) 16. The actual slowdowns can be observed to fall between these
extremes, depending on application characteristics. The enum application synchronizes infrequently
and thus comes nearest to the minimum slowdown of 1/(1 - f). The other applications synchronize

'The slowdown of the interactive application under independent, priority-based scheduling is always close to one.
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Figure 7-9. The performance of the compute-
intensive application in a mixed workload with
interactive scheduling is plotted against the frac-
tion of CPU time devoted to interactive tasks (16
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Figure 7-10. The performance of the compute-
intensive application in a mixed workload with
coscheduling is plotted against the fraction of
CPU time devoted to interactive tasks (16 pro-
cessors).
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Figure 7-11. The fraction of messages taking
the buffered path, f~f in a mixed workload with
interactive scheduling versus the fraction of CPU
time devoted to interactive tasks (16 processors).
The dashed line at fbf = f represents a naive
expectation.

Figure 7-12. The fraction of messages tak-
ing the buffered path in a mixed workload with
coscheduling versus the fraction of CPU time de-
voted to interactive tasks (16 processors).
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a moderate amount but show nowhere near the slowdown of barrier in Figure 7-7.

The fraction of messages buffered by the sample applications in the experiment roughly follows
the fraction of interactive CPU time, as one would expect. Figure 7-11 shows the fraction of total
messages, fbul, in each compute-intensive application that take the buffered path versus the fraction
of CPU t!mne devoted to the interactive application. The fraction fbf is nonzero as f approaches zero
because of effects other that the interactive application. In particular, the microkernel-style system
scheduler is another user-level application that runs periodically and thus induces a fixed amount of
buffering.

The fraction of messages buffered rises with a slope less than unity, eventually falling below the
fbuf = f line for the CRL applications, because synchronization-induced slowdown tends reduce
the demand for buffering. In an application with little synchronization, like enum, the number of
messages buffered tends to follow f. If one process in the application is stalled and buffers a message
due to multiprogramming, the other processes in the application continue sending messages at the
same rate. However, in an application that synchronizes, the number of messages buffered is lower.
If one process in the application is stalled and has to buffer a message, some other process may slow
down because it is waiting on a reply to that message. The result is that the demand for buffering
falls.

The slowdown effects observed by parallel applications other than barrier under interactive
scheduling are moderate. For comparison, Figures 7-10 and 7-12 plot the slowdown and fraction
of messages buffered, respectively, for the real applications under fixed-timeslice coscheduling as
described in conjunction with Figure 7-5. The slowdowns are limited to a factor of about two, as
expected. 2 The fractions of messages buffered are similarly limited.

There are two points to take away from the plots, both qualitative. The first is the main point
of the thesis: two-case delivery is justified in much of the graph in Figure 7-9. The performance
of each compute-intensive application smoothly approaches a (perfect) slowdown of one at the left
as the CPU time used for interactive work diminishes. Optimistic message delivery is justified in
this regime because most messages are delivered to the correct process immediately and few are
buffered. From Figure 7-11, when about 10% of the CPU time is devoted to interactive tasks, only
about 45% of messages are taking the buffering path. In this regime, an alternate system with
hardware-managed buffering pays a performance and implementation cost penalty for hardware that
is going unused.

Second, towards the right of Figure 7-9, the slowdowns observed eventually justify coordinated
scheduling of jobs instead of independent scheduling of processes. Some of the applications in Fig-
ure 7-9 exhibit slowdowns disproportionate to the amount of CPU usage, as explained in conjunction
with Figure 7-4. The slowdown is due to application characteristics, not the message system, because
there still are not very many messages buffered (Figure 7-11). With FUGU, the decision to switch to
coscheduling becomes a tradeoff of message cost versus scheduling flexibility. A system such as the
CM-5 that uses coscheduling for protection always suffers the slowdown of coscheduling.

Conclusion 2: The direct virtual network interface is desirable because most messages
are delivered via the fast path.

2Some of the slowdowns are still less than two at the extreme right due to a scheduler bug. Similarly, the fraction of
messages buffered is non-zero at the right side of the graph due to the same bug.
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Figure 7-13. An artist's conception of a comparison of hardware buffering to two-case delivery.
Two-case delivery is desirable at the left because relatively few messages are buffered. Two-case
delivery is desirable at the right if coscheduling is used and application characteristics may demand
coscheduling anyway.

In short, at the far left, two-case delivery is desirable because most messages are delivered via the
fast path, even with independent, priority-based scheduling favoring the interactive application. At
the far right, two-case delivery is desirable if the system switches to coscheduling and it is probably
useful to switch to coscheduling for application reasons alone. The tradeoff in the middle of the
graph is less clear. The next section explores this tradeoff.

7.3 Mixed Workload Analysis

This section compares the performance of the direct VNI approach with two-case delivery and
software buffering to a hypothetical system using hardware-supported buffering in main memory.
The comparison uses experimental measurements from Section 7.2.2, an analytical model, parameters
from the direct VNI implementation in FUGU and estimated parameters for possible implementations
of a hardware-supported memory-based approach. The results are favorable to the direct VNI with
one exception. Applications that are embarrassingly parallel do not need to be coscheduled. An
application that is both communication-intensive with small messages and embarrassingly parallel
application can perform better with hardware buffering than with the direct VNI unless switched
to coscheduling. However, such applications are amenable to many other techniques as well, such
as explicit batching through a library that performs source buffering. Finally, as an extra result,
we show analytically that the advantages of coscheduling increase as communication overhead and
latency drop. In other words, if coscheduling is not widely recognized as a problem now, it may be
because network interface overheads are generally high.

The basic tradeoff is between the cost of messages handled immediately and the cost of messages



a. direct VNI b. memory-based

Figure 7-14. Using the direct VNI, (a), messages are received by the application with high probability
or take a software-managed route through memory with low probability. In a memorj-based system,
(b), all messages traverse memory although the NI-to-memory connection is assumed to have
hardware support.

handled after some delay. With two-case delivery, messages handled immediately cost the least
because they take the fast, direct path. Messages that are delayed cost more because of the extra
overhead of buffering. With hardware-supported buffering, the opposite is true, messages handled
immediately suffer extra cost over direct delivery because of the latency of the trip through memory.
Messages that are delayed, however, may be handled quite efficiently if they can be handled in
batches.

Figure 7-13 sums up the comparison in terms of the mixed workload experiment from the
previous section. The ideal curve represents application slowdown if a direct delivery path could
be used for every message. The ideal is naturally unattainable. The two-case delivery curve adds
a cost that increases with f, the fraction of CPU time used by the interactive application. The
hardware-buffered curve adds a cost that decreases with f. For low f, two-case delivery has a clear
advantage. For high f, hardware buffering has the advantage. However, for all but embarrassingly
parallel applications, it is advantageous (at least to the compute-intensive application) to switch to a
coscheduling strategy once the slowdown exceeds two. With coscheduling, two-case delivery will
again do well. This section quantifies the range of tradeoffs using measurements of applications
running on FUGU combined with a simple model to predict performance with with hardware-supported
buffering.

Model. We propose a simple model for the runtime of the compute-intensive application in the
mixed workload experiment for the purpose of separating out the effects due solely to the message
system. We then use the model to predict performance with a different message system that uses
hardware-supported buffering in memory. The model is simplistic, but the assumptions made are
conservative given the intended purpose of predicting performance under hardware buffering. The
runtime is taken to be the sum of three terms:

* Ro is the standalone execution time without message overhead.

* Rother (f) is additional runtime due to the application-specific effects of the interactive appli-
cation when the interactive application consumes a fraction, f, of the available CPU time.

* A third term representing message overhead in terms of Odir and Obf , the overhead of han-
dling a message immediately and after buffering, respectively, ff, the fraction of messages



that must be buffered and M, the average number of messages per processor.

The runtime of an application in the mixed workload experiment, Rmix, is then:

mixed runtime, Rmix = Ro + Rother(f) + M . ((1 - fbuf) -Odir + fbuf * Obuf) (7.1)

In contrast, the standalone runtime, Rsa, can be computed by assuming that the time due to multi-
programming, Rother is zero and that the fraction of messages buffered, fbur is zero:

standalone runtime, Rsa = Ro + M - Odir (7.2)

Finally, the runtime under coscheduling with fixed-size timeslices, R,,o, is taken to be at worse two
times the standalone runtime:

coscheduling runtime, Rco = 2. R8 a = 2 (Ro + M - Odir) (7.3)

The model terms may be interpreted in terms of the four plots in Section 7.2.2. The y axis
in Figure 7-9 is Rmix/Rsa: the slowdown in the plot is the ratio of the runtime under the mixed
workload to the runtime standalone. Figure 7-11 plots fbuf against f for the same experiment.
The y axis in Figure 7-10 is the slowdown under coscheduling. The slowdown under coscheduling,
Rco/RSa, is taken to be a constant two as a worst case in the model. Figure 7-10 shows actual
slowdowns of less than two for all the applications except the synthetic barrier, but Figure 7-10
represents a more relaxed form of coscheduling than fixed timeslices. The scheduler used to produce
Figure 7-10 mixes fixed timeslices with priority-scheduled timeslices (as depicted in Figure 7-5),
allowing the compute-intensive job to scavenge extra unused CPU time. Accordingly, the fraction of
buffering, fbuf for coscheduling plotted in Figure 7-12 is not zero as Equation 7.3 suggests because
some amount of priority-based scheduling is still going on.3

Given the model and measurements of the parameters for the direct VNI system, we can proceed
to predict the performance of the same applications with a different message system. We discuss
the parameters of the direct VNI in FUGU and the estimated parameters for a hardware-supported
buffering system next, and then come back to analyzing the tradeoff between two-case delivery and
hardware buffering depicted in Figure 7-14.

Numbers. Table 7-4 gives measured and estimated possible values for the Odir and Obuf parameters
in the mixed workload model using interrupt-based delivery. There are three sets of numbers. The
first set consists of the values measured from our direct VNI implementation (Tables 4-4 and 4-5)
along with estimates for a range of costs with a hardware buffered system. The hardware buffering
Odir cost is estimated to be the direct-path upcall cost in FUGU, plus 42 cycles to manipulate the
queue (based on the queue extract cost in Table 4-5 minus a 10-cycle cache miss time), plus a cache
miss time. Two numbers are given to represent a range of cache fill times from memory. The lower
bound corresponds to 10 cycles, as in the FUGU prototype hardware. Cache refill times in more
modern machines have climbed far beyond this number, however; 200 cycles is used as an upper
bound. The Obf time for hardware-supported buffering is estimated to be the just queue extract

3The fraction fbuf should be zero at the left and right extremes of Figure 7-12. It is nonzero on the left because of
the effects of fact that the scheduler itself is another application that exerts a constant effect on the compute-intensive
application. The fraction is nonzero at the right due to the scheduler bug.



Hardware Mode Odir ObuJ
cycles rel. cycles rel.

Current Buffer on mismatch 115 (1) 232 (2.02)
implementation (measured)

Hardware buffering 167- (1.45) 52 (0.45)
(estimated) 357 (3.10) 52 (0.45)

Aggressive Buffer on mismatch 87 (1) 80 (0.92)
reimplementation (estimated)
(fast upcall, Hardware buffering 139- (1.60) 52 (0.57)
in-kernel enqueue) (estimated) 329 (3.78) 52 (0.57)

Miscellaneous Upcall always 115 (1) 145 (1.20)
for comparison (measured)
(see text) Buffer always 1400 (12) 232 (2.02)

(measured)

Table 7-4. Measured and estimated parameter values for the model of the mixed workload experi-
ment. Values are given both in cycles and in a relative value normalized to the Odir for the two-case
delivery implementation in each group. Estimates for hardware buffering are given as a pair based
representing a range of main memory fill times of 10 cycles (in the actual FUGU hardware) to 200
cycles.

cost of 52 cycles from Table 4-5. We assume, optimistically to both hardware- and software-based
buffering, that any cache miss cost in the buffered case can be successfully amortized or tolerated
over a batch of buffered messages.

We will use the measured FUGU numbers from the first set of numbers in Table 7-4 in the
comparison below. In retrospect, though, the direct VNI implementation in FUGU performs only
moderately well. The overhead of buffer enqueue in software is a particular limit as we will see
shortly below and then again in Section 7.4.2. The second set of numbers in Table 7-4, presented
here for comparison, are speculative estimates of overhead costs in a re-implementation of the direct
VNI. The protected upcall in the direct case could be reduced from 115 cycles to 87 cycles using
atomicity hardware, as shown in Table 4-4. Further, the common case of the queue insert interrupt
handler could be speeded up significantly. The current implementation always uses an upcall to the
library part of the Exokernel to insert a message into the software queue with a common-case cost of
180 cycles. This cost can be reduced by tail-polling or by installing the common case insert handler
into the kernel. Based on an in-kernel implementation, we speculated that the overhead could be as
low as 30 cycles.

The description and analysis of the two-case interface has been based on a policy of buffering
all messages that arrive with a mismatched GID. The FUGU implementation is a bit more flexible
than that and, although we do not pursue the alternatives further in this thesis, the third set of
numbers in Table 7-4 present measurements for two alterate policies. First, buffering on mismatches
is only a policy; the operating system in fact supports message delivery via a cross-domain upcall
in mismatched-GID situation. Cross-domain upcalls cost only 30 cycles more than intra-domain
upcalls, so this mode is quite efficient. The tradeoff between upcall-always and buffer-on-mismatch
mode is an interesting question for further research. Second, it is also possible to configure the

100



operating system to buffer all messages. The overhead of delivering a single, isolated message
(Odir) with buffering is very high, about 1400 cycles, in the implementation due to the cost of thread
scheduling. 4 This 1400 cycle overhead is extremely high for the domain of small message delivery
in a scalable workstation but is roughly the cost of an interrupt in some current workstation operating
systems.

Tradeoff in Real Applications. Using the model, measurements and estimates above, we can
construct the tradeoff between two-case delivery and hardware buffering posed in Figure 7-14 for
the data from the real applications in the mixed workload experiment.

We assume that the execution times used to produce Figure 7-9 in Section 7.2.2 correspond
to Rmi for two-case delivery (call it Rmi,_2c) in Equation 7.1. The rest of the terms except
(Ro + Rother(f)) are known, so we can reconstruct an estimate of the runtime under hardware
buffering, Rmizw_, by solving for (Ro + Rother(f)) and substituting the value into an equation for
Rmi..hw. In equations, assume:

mixed two-case runtime, Rmix.2c = Ro + Rother(f) + M ((1 - fbuf) Odir-2c + fbuf -Obuf..2c)
(7.4)

and:

mixed two-case runtime, Rmizhw = Ro+ Rother ( f ) + M ((1 - fu) Odir.hw + fbuf Obu fhw)
(7.5)

where fbuf comes from the data used to produce Figure 7-11, M is taken to be the average number of
messages per processor as quoted in Table 7-2 and the overhead cycle counts come from Table 7-4.

Equations 7.4 and 7.5 embody a number of assumptions by using the same values for (Ro +
Rother(f)), M and fb,, in the two cases. However, given that Rmi_hw exceeds Rmizjc (as we
shall see), the assumptions conservatively favor the hardware case:

* The CPU and application slowdown effects, Rother (f), will stay the same or go up if message
overhead goes up; assuming Rother (f) stays the same favors the system with higher costs.

* The fraction of messages delayed, fuf, may go down with hardware buffering since hardware
buffering clears the buffer more quickly.

* The number of messages, M, is not likely to change.

Figures 7-15 and 7-16 plot measured two-case slowdowns and predicted hardware slowdowns
for the barnes and enum applications, respectively, against the fraction of CPU time devoted to
interactive work, f. These two applications were chosen because they exhibit the highest messaging
rates for the real applications. Each graph includes four curves. All the curves represent execution
times normalized to Rsa.2c (Rsa with two-case delivery, i.e., standalone runtime as measured) for
each application. The bottommost of the four curves is R.ix,_2c (measured) up to the point where it
equals Rco.2c, at which point we assume the user either switches to coscheduling or chooses not to
as part of a deliberate performance tradeoff. The next two curves (shaded in between) bound a range

4The buffer-always policy invokes the lower-right sequence of operations in Table 3-1 for every message. The scheduler
manipulations along this path are not particularly optimized in FuGubecause they have little impact in other, normal modes
of operation.
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Figure 7-15. Performance tradeoff for the Figure 7-16. Performance tradeoff for the enum
barnes application (16 processors). application (16 processors).

of (normalized) Rmiz,_h execution times computed by using the values for Odir and Obu given in
the top section of Table 7-4. The Ri,_hw curves are also flattened off at the point where they equal
Ro,,_,. Finally, for a gross comparison, the topmost line in each of the two plots is the normalized
time measured using the alternate, buffer-always policy which incurs 1000+ cycle thread switches
instead of upcalls in the direct case,

The interpretation of Figures 7-15 and 7-16 is that window in which hardware-supported buffering
in memory outperforms two-case delivery is very small. Two-case delivery performs well at the
extremes, as noted in the previous section. In the middle ranges of f, hardware buffering outperforms
two-case delivery in enum for very small (i.e., improbably small) cache miss costs. As mentioned
earlier in connection with Table 7-4, the two-case delivery performance could be improved quite a
bit which would make the comparison with hardware buffering even more favorable. Thus we refine
the last conclusion:

Conclusion 3: The fact that most message are delivered via the fast path justifies not
only two-case delivery, but also the use of software in the buffered path.

Physical Interpretation of Equations. The "breakeven" point between two-case delivery and
hardware buffering leads to an insightful physical interpretation. We can compute the point at
which two-case delivery is no longer attractive compared to hardware-supported buffering by setting
Equations 7.4 and 7.5 equal to one another and solving for f7f:

(1 - fbuf) - Odir_2c + fbuf Ouf..2c = (1 - fuf) - Odir-hw + fbuf * ObUf hw (7.6)

(Odirjhw - Odir..2c)fbufbreakeven= + (O 2 - Ob(7.7)(Odir-hw - Odir-2c) + (Obuf-2c - Obuf w)
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The terms in Equation 7.7 have a physical interpretation that gives insight into the performance
tradeoff. First, (Odir-hw - Odir.2c) is the time for b:ffer management and buffer cache misses
incurred in hardware buffering but not in a direct interface. Second, (Obuf.-2c - Obufhw) is exactly
the time of the buffer enqueue handler used for software buffering.

(O buffer management + O cache fill)fb=J.beakeven (7.8)
(O buffer management + O cache fill) + O software enqueue

Equation 7.8 (Equation 7.7 rewritten) makes it clear what is being traded. The extra costs of buffered
over direct gives us something to trade. The software enqueue handler is what is being traded. We
can make the tradeoff at all because we expect to coschedule when f (and therefore fbuf) exceeds
some threshold like two. The main point made by Equation 7.8 is that the software enqueue handler
needs to be fast. In particular, we need to avoid cache misses in that handler. It is possible to do
so because our DMA engine forwards data from from network to the DRAM without going through
the caches or processor.

Importance of Coscheduling. Finally, the there is an extra point to extract from the tradeoff between
the direct VNI and a hardware buffered system: coscheduling is more important when message
overheads are lower. Message overhead adds a constant cost to the runtime of the applications
under interactive scheduling. But it adds a multiplicative slowdown with coscheduling. The result
is that coscheduling increases in importance as message overhead is reduced. The implications of
the equation can be observed graphically in Figures 7-15 and 7-16.

Two-case delivery under coscheduling has a slowdown of 2 x. The two-case delivery curve under
interactive scheduling observes a 2x slowdown for a pretty small f, so there is an early incentive
to switch to coscheduling. Hardware buffering under gang scheduling suffers a slowdown of more
than 2x because of the extra overhead involved. The hardware buffering curve under interactive
scheduling reaches the coscheduling line at a point that is consistently to the right (higher f) than
the switchover point for two-case delivery. This observation helps mitigate the fact that two-case
delivery occasionally demands help from the system scheduler: improving the performance of any
network interface has the effect of increasing the reliance on the system scheduler.

The mixed workload experiment described above demonstrates the flexible protection enabled
by the direct VNI approach: we are able to run multiple applications together using scheduling
policies as the applications themselves demand. The mixed workload experiment let us draw two
conclusions about the performance of two-case delivery. First, two-case delivery offers a clear
advantage when either the rate of interactive disruptions is low or disruptions are sufficient to prompt
a switch to coscheduling. The advantage comes because under these conditions, most messages take
the direct path, giving the direct VNI performance close to that of unprotected hardware. Secondly,
the software overheads achievable in a implementation of two-case delivery are low enough to allow
two-case delivery to outperform a system using hardware-supported buffering in memory. Using
hardware to support buffering in memory amounts to supporting an uncommon case. The tradeoff
only looks more favorable to two-case delivery with technology trends and aggressive applications.
The next section moves on to the other major question in the direct VNI: how to manage the
potentially unbounded demand for buffering.
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7.4 Buffer Consumption

The virtual buffering system in the direct VNI supports performance and programmability by pro-
viding the illusion of unbounded buffering. Maintaining this illusion would be costly or impossible
if applications tend to abuse it. We approach the problem of unbounded demand for buffering from
two perspectives in this section and the next section. First, in this section, we show that "well-
behaved" applications naturally avoid extensive buffering. Our sample applications are found to
be well-behaved and we define the limits on acceptable application behavior. Second, section 7.5
evaluates one technique, overflow control, for applying feedback to an ill-behaved application by
way of scheduling mechanisms. Overflow control effectively reduces the demand for buffering or,
at worst, turns buffer consumption into a slowdown that affects the offending application alone.

This section details experiments that induce buffering artificially in applications using the direct
VNI. The results make two points. First, ordinary applications naturally avoid buffering mode.
Physical memory requirements tend to be low even under adverse scheduling conditions. Virtual
buffering thus improves memory performance because it avoids consuming physical memory unless
the application requires it. Second, experiments with a synthetic application show in detail the limits
on application behavior required to avoid buffering. The conclusion is that it is still important to
keep a low overhead in the buffered case because the batch throughput of the buffered case sets a
limit for certain programming styles that synchronize infrequently.

There are two experiments. One induces buffering in real applications though an artificial policy
and artificial scheduling. The second is a synthetic application study that attempts to define the
region of "stability" with respect to buffering. The stability is applicable to any system with a direct
interface, but particularly interesting in Fugu where we promise effectively unbounded buffering.

7.4.1 Artificially Induced Buffering

We evaluate the performance of our implementation by examining the effects of buffering in the
applications described in Section 7.1 under conditions that induce buffering artificially. The condi-
tions are as follows. First, we use a buffer-on-mismatch policy so that buffering can be conveniently
induced by the scheduling effects alone. Second, we modify our gang scheduler to deliberately in-
troduce "skew" between the scheduling times of applications on different processors, as depicted in
Figure 7-17. This (perverse) scheduling arrangement allows us to generate arbitrarily bad scheduling
in a controlled manner.

The experiment is to run each application multiprogrammed with a "null" (busy-waiting) appli-
cation with varying amounts of scheduling skew. Skew will induce buffering through the buffer-on-
mismatch policy. The scheduler gang-schedules the pair of applications using the local cycle count
register on each node as a cue to perform a gang switch. The schedule quality is varied by skewing the
cycle count register on each node to produce artificially poor schedules in a controlled manner. This
skew creates a window at the beginning and end of each timeslice during which arriving messages
will generate a mismatch-available interrupt, forcing the application into buffered mode. The skew
is varied from zero (perfect gang scheduling) to 90% across the machine. We measure the effects on
the real application in each case.

The runtime represents either the third iteration for the iterative applications (water and
barnes) or the whole program. The runtime represents all the cycles used on behalf of the
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Figure 7.17. Buffering is induced by using coscheduling with "skew". Here, a segment of a timeline
for process scheduling on a four-processor machine is shown. The application under test, (A), is
multiprogrammed with a synthetic null application, (B) that does nothing but busy-wait. In addition,
the timeslice clock is skewed uniformly from processor to processor so that processes are deliberately
mis-scheduled for an interval around the beginning of each timeslice.
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barrier

60 90
Percent skew across machine

Figure 7-18. The fraction of messages buffered for applications multiprogrammed with a null
application is plotted against decreasing schedule quality (eight processors). The fraction is limited
by synchronization effects in the CRL applications.
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Figure 7-19. The maximum pages of virtual buffer space required per processor for applications
multiprogrammed with a null application remains low across the range of scheduling quality (eight
processors).
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Figure 7-20. Relative runtimes of applications multiprogrammed with a null application are plotted
against decreasing schedule quality (eight processors). Runtimes are normalized to the runtime with
perfect gang scheduling, which is within 1% of 2x the runtime of the application running alone.
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application, including the cost of buffer insertion handlers that actually run while "null" is sched-
uled. We use a null application rather than two copies of a real application because the experiment
is more easily controlled.

Figure 7-18 makes the main point of the experiment: that the demand for buffering is relatively
small and increases gracefully. Figure 7-18 plots the fraction of messages that take the buffered
path versus decreasing scheduler quality. The applications with intrinsic synchronization exhibit
essentially a constant fraction of messages buffered corresponding to the maximum number of
messages that can be outstanding simultaneously in the application. Enum exhibits buffering linearly
with skew as expected for an application with many messages and little synchronization: the
likelihood of a message arriving when a process is not scheduled is proportional to the skew between
processors.

The maximum number of physical pages required during any run is low, less than seven
pages/node, in all cases. The total is small in each case either because the number of messages
outstanding is limited or because (in the case of enum) the messages are small and are accumulated
at only a moderate rate compared to the length of a timeslice. Because the required buffer space
is small in the common case, the virtual buffering system will only rarely need to page to disk or
invoke the overflow control system.

The applications in the experiment slow down with increased skew largely because of the skew
itself and to a small extent because of the cost of buffering. Figure 7-20 lists the relative runtime of
each application normalized to the runtime of the application run with zero skew, which is within 1%
of 2x the runtime standalone. The barrier application is very sensitive to skew because it makes
progress only when all processes in the job are simultaneously scheduled: its slowdown is almost
exactly the inverse of the skew. Because the enum application tolerates latency well it is relatively
insensitive to poor schedule quality. The runtime increase in enum is due only to the added cost of
message buffering. Although the Barnes, Water and LU applications are sensitive to latency, they
communicate less frequently than barrier and enum and so observe intermediate slowdowns.

Conclusion 4: Application characteristics can naturally limit the demand for buffering
without the introduction of explicit flow control.

We conclude that the demand for buffering remains low in our applications despite the use
of unacknowledged messages and despite (artificially) adverse conditions. In general, we expect
applications to suffer buffering overhead only rarely because buffered mode is entered only under
unusual conditions and because ordinary applications will clear buffered messages quickly. The
second of these expectations is not immediately obvious, so we explore the incidence of buffering
with a synthetic application, below.

7.4.2 Limits to Buffering Behavior

If a node must start buffering, several factors help guarantee that the buffer will clear relatively
quickly.5 The first is that any application that requires a reply after message send inherently limits its
own communication rate. Limiting the number of outstanding requests guarantees that, if buffering

5This section is largely the work of Matt Frank as part of [51]
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Figure 7-21. Fraction of messages buffered versus send interval (Tinterhandler) with N messages (for
synth-N) sent per synchronization point and 1% scheduler skew (four processors). The fraction is
measured over the whole run of the application. The synth-10 application synchronizes sufficiently
often that very few messages are buffered. The other applications incur buffering, but only for
extremely small values of Tinterhandler.

mode is entered at all, the maximum number of messages buffered will be finite (and usually small).
In addition, the low-level network flow control mechanism guarantees that the maximum short-
term injection rate will be limited by the maximum rate at which messages can be diverted (one
message pei 163 cycles). There remains a class of applications that pass messages and perform
little or no synchronization. If such an application launches messages at very high rates for long
periods of time, a large fraction of its messages may be diverted through the buffered path. At some
point, an application written this way must simply be considered poorly behaved because it will
perform poorly on any machine. With the direct VNI, such applications will not interfere with other
programs, because the divert mechanism clears messages out of the network quickly, but they will
tend to observe both higher average latencies and overheads for message handlers.

Our synthetic application, synth-N, performs producer-consumer communication between four
processors with various amounts of synchronization. At the consumer node, each incoming message
from the producer invokes a request handler that stalls for a short period, and then sends a reply
message. The time to process one of these request messages is fixed in our experiment at 290 cycles,
including interrupt and kernel overhead. Reply messages cost 110 cycles. Each node iteratively
generates groups of N messages, directed randomly to the other nodes, and then waits for all
the acknowledgements from that group of requests, effectively creating a synchronization point and
limiting the maximum number of outstanding requests to N. The interval between individual message
sends is a uniformly distributed random variable with an average of Tinterhandler instructions.

We tested three cases of synth-N with N set to 10, 100 and 1000 messages. The scheduler
skew for this experiment was held constant at a small value, 1%, that is sufficient to force the
application to enter buffering mode periodically. Figure 7-21 presents the results, giving the fraction
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Figure 7-22. Fraction of messages buffered versus cost of the buffered path given T interhandler= 27 5
cycles (four processors).

of messages buffered on the consumer node versus Tinterhandler. There are two features to observe
in the results. First, all versions of synth-N show a small fraction of messages buffered when
Tinterhandler > (Thandler + Tbufferingreception-overhead). In this region, the application is well-
behaved by virtue of having a low enough send rate so that the consumer's buffer is guaranteed
to eventually drain. Second, buffering is reduced as the frequency of synchronization increases
(smaller N). In this application, synchronizing has the effect of "manually" clearing the software
buffer, so the node is in buffering mode only from the time buffering mode is triggered until the next
synchronization. The synchronization in synth-100 and synth-10 occurs more often than timeslices,
so these versions are subject to buffering proportionately less often.

On the other hand, Figure 7-22 demonstrates the importance of keeping the cost of the buffered
path relatively small. In this experiment Tinterhandler is held constant at 275 instructions, but we
artificially added latency to the buffer handler. Again, synth-10 buffers only a small fraction of its
messages because the benchmark's internal synchronization balances the send rate with the receive
rate. For the synth-100 and synth-1000 applications, the number of messages buffered remains small
as long as the cost of the buffered path remains below the send rate.

The send rate we used in this experiment is very high compared to the benchmarks listed in
Table 7-1, which communicate only once every 615 cycles (for barrier) to 14,200 cycles (for
LU). If the cost of the buffered path is too large to support the average communication rate, then
applications with few synchronization points will tend to buffer a large percentage of their messages.
Because the cost of the buffered path as implemented in FUGU and Glaze is only 232 cycles, the
system is able to handle very high sustained message rates while buffering only a small fraction of
the total messages.

The limit on buffering is set by the best-case throughput of the buffering system, i.e., by the
minimum, per-message overhead. As noted in Chapter 2, buffering systems work best on batches
of messages rather than single messages because of thread scheduling overhead and cache misses.
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Figure 7-23. Overflow control experiment.

If the buffering system is invoked when the message rate is high, messages quickly become batched
which then helps the system escape from buffering.

A buffering system where buffer-insertion is performed in hardware can have a higher throughput
in this batch-buffering mode than a system using software buffering because insertion cost is part of
the minimum per-message overhead. Compared to a system with hardware buffering, An application
on a system with two-case delivery must accept either a lower average message throughput or a rate
of synchronization higher than the rate of buffering incidents to avoid runaway buffering. Runaway
buffering is handled by overflow control. We examine overflow control next.

7.5 Overflow Control

The previous section shows that demand for buffering in the direct VNI is not an issue for well-
behaved applications. There remains the case of ill-behaved applications, including applications
under development and applications encountering unexpected conditions at runtime. This problem
is unique to systems like the direct VNI that provide virtual buffering and guaranteed delivery.
Systems with limited buffering avoid the problem by performing flow control as part of the message
protocol. Rather than adding flow control overhead to every message, the direct VNI approach is
to provide "overflow control" at a much coarser level via scheduling. This section evaluates an
implementation of one overflow control mechanism and policy.

We use a limited version of the overflow control algorithm described in Chapter 5. The paging
system in Glaze/PhOS is incomplete; rather than introduce a paging system, we use overflow control
with the "low water" mark, No,1 effectively set to infinitely. The resulting system is subject to
deadlock, but is sufficient for our purposes because the test application does not deadlock. To briefly
reiterate, the algorithm works as follows:

* The buffer-insert handler of the virtual buffering system for an application compares the
number of pages currently in use for buffering, Lqueue, to a threshold, Lthreshold. If the
number of pages in any one process exceeds the the threshold, then the application globally
switches into an overflow-control mode (Figure 7-23).

* In overflow-control mode, the thread schedulers in each process of the application schedule
only threads that tend to consume messages (i.e., the virtual buffering system's cleanup thread).

* The application remains in overflow-control mode until the number of pages in use falls back
to zero. At that point, the application globally switches back to its normal mode.

The second network is used to communicate the transition from normal mode to overflow mode
since the main network tends to be blocked at the time. The main network is used for all other
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Table 7-5. Overflow control limits the number of pages required to the threshold value with a few
isolated exceptions. The table lists the maximum number of pages used over all processors and over
the lifetime of the application with overflow control versus the control threshold. A threshold of oo
corresponds to disabling overflow control.

communication. The implementation is limited in that the mechanism is cooperative in two ways.
First, the virtual buffering system and the thread scheduler are implemented in a user-level library
that an application can contrive to avoid or change. Second, the mechanism makes assumptions
about which threads send messages. In particular, we assume that message handlers do not send
(many) messages.

We use a synthetic test application because, as shown in Section 7.4, our real applications do not
incur excessive buffering. The test application runs alone, in parallel on all processors. Each process
in the application runs a loop that sends messages to a neighboring process. The messages handlers
are contrived so that they all induce buffering - they invoke DMA across a page boundary, a case the
operating system currently handles by irvoking buffering voluntarily, as described in Appendix A.

Overflow control keeps the number of pages required for buffering low. Table 7-5 tabulates the
maximum number of pages required per process (Lqueuc) over the lifetime of the application in each
experimental run. Each run uses a different threshold, Lthreshold). The features of the table are as
follows. First, with overflow control disabled (threshold of oo), the number of pages required per
processor is about 500. This number is a characteristic of the test application. Second, for the bulk
of the table, the number of pages required is within about three of the high-water setting, showing
pretty good control. The maximum number is higher than the threshold because the overflow control
mechanism takes some time to throttle the influx of messages. During that time, more messages can
be received. Finally, several data (indicated in boldface) show that occasionally even more pages
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Threshold Pages

5 8 7 7 7 7 7 7 10
6 9 8 23 9 8 8 8 9
7 10 9 38 9 9 9 9 9
8 11 10 10 11 10 10 11 13
9 12 11 43 11 12 11 11 11
10 13 12 12 12 17 12 12 12
11 14 13 13 13 13 13 13 13
12 15 14 14 15 14 14 14 14
13 16 15 15 15 15 15 15 15
14 17 16 16 16 22 16 16 17
15 18 17 17 17 30 17 17 17
16 19 18 18 18 18 18 18 19
17 20 19 19 19 20 19 19 20
18 21 20 20 20 20 20 20 20
19 22 21 21 21 21 21 22 21
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Figare 7-24. A plot of the average of the maximum number pag, used over all processors over the
lifetime of the application with overflow control versus the control threshold (eight processors).

are required. This effect is possible because the overflow control mechanism itself is implemented
at user level, not in the kernel, and thus is subject to the slowdowns from page faults, unfortunate
scheduling, etcetera. Any slowdown in the application of the overflow control mechanism leads to
more pages in the buffer.

The result is that this overflow control mechanism shows good control over the number of pages
required. Figure 7-24 shows how the number of pages required generally follows the threshold.
We conclude that overflow control is a promising approach to limiting buffer consumption without
introducing protocol overhead into the fast case:

Conclusion 5: Physical buffer consumption can be controlled via nonintrusive overflow
control.
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Chapter 8

Related Work

The direct VNI builds on work from a number of sources. Likewise, other projects share the goal
of combining programmability and protection with performance. This chapter describes the more
closely related work in message models, in network interfaces and in techniques that appear in the
direct VNI.

8.1 Messaging Models

The UDM model is related to other low-level message models that are intended to serve as building
blocks for custom communication at user level within a single protection domain. The Active
Messages work [78] gave a name to this style of model which appeared earlier in Mosaic [70],
the J-machine [16] and others. UDM is similar to Active Messages and related to Remote Queues
(RQ) [8].

UDM shares the Active Message goal of providing a minimal building block and uses the same
convention of specifying a handler by a raw procedure address. UDM differs from Active Messages
in two important ways. First, UDM codifies explicit control over message delivery (polling or
interrupts with user atomicity) as part of the model for full functionality and efficiency. A UDM
programmer has the ability to control the communication system with the same flexibility as an
in-kernel device driver. Second, while Active Messages defines separate logical request and reply
networks and handler types as an anti-deadlock discipline, UDM relies on unlimited buffering to
break deadlocks.

The original Active Messages work was on the CM-5 and coexisted with multiprogramming
only through strict gang scheduling. Subsequent work on Active Messages broadens its applicability
to general multiprogramming [52] by defining indirection tables to safely map handler specifiers to
handlers.

UDM is closely related to Remote Queues. The RQ implementation on Alewife used a software
version of user-controlled atomicity and the RQ paper outlined a hardware design in progress.
Chapter 4 presented the details of that hardware atomicity mechanism here in the context of FUGU.
Like RQ, UDM depends on buffering to avoid deadlock rather than on explicit request and reply
networks, although some RQ implementations also offer multiple, named queues. Remote queues
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provide a polling-based view of a network interface with support for system interrupts in critical
situations while UDM offers a more general view in which the application freely shifts between
polling and user-interrupt modes.

8.2 Network Interfaces

A number of network interface designs have appeared in both research and commercial machines.
Some of these NIs have addressed parts of the virtual network interface problem or have attacked
the whole problem in ways other that the approach taken by the direct VNI. We'll concentrate on
the ones that attack all three parts of the VNI problem. That is to say, direct interfaces with some
support for protection, memory-based interfaces that provide performance and hybrids in a similar
vein to our direct VNI.

The use of a coprocessor as part of the network interface can be viewed as an issue that is
orthogonal to the VNI problem. The role of a coprocessor can be interpreted two ways, either as
part of the hardware or as an independent, programmable entity. Simple coprocessors, as in the
SP-2 [72] or in *T-Voyager [2], can be viewed as a hardware implementation technique. More
elaborate coprocessors, as in the CS-2 [66], Flash [41] or Typhoon [62], that are programmable need
a network interface themselves. Either the coprocessor is an opaque hardware component and the
VNI problem arises as the processor, or the coprocessor is a user-programmable entity in which case
we have to think about the VNI problem at the coprocessor's interface to the network.

Protected Direct Interfaces. The direct VNI in FUGU builds on work in direct network interfaces
in a number of previous machines [70, 16, 7, 61, 1, 45, 25]. Direct interfaces allow and require
the processor to handle messages directly out of the network with minimal buffering. The direct
approach maps naturally to a programmable, low-level messaging model and has high performance
but has been difficult to protect. A few machines, the CM-5 [45], *T [61] and the M-machine [25]
and have provided this kind of interface with protection.

The CM-5 reconciles its direct interface with a restricted form of multiprogramming via par-
tioning, strict gang scheduling and by context-switching the network partitions with the processors.
By context-switching the processors and the network together, the CM-5 solves the isolation and
undeliverability problems. The CM-5 provides hardware support in the network switches in the
form of an "all-fall-down" mode, which allows the kernel to quickly and transparently unload and
reload user messages found in the network at the time of the switch. If one application clogs the
network with user messages, the network is unloaded before the next application runs (and dutifully
reclogged for the original application). The CM-5 has four networks in hardware: request and
reply user networks, a "control" network and a debugging network. Strict gang scheduling is a
form of multiprogramming but is a severe restriction that hampers the development of, for instance,
client-server applications. The CM-5 supports virtual memory with swapping but not with demand
paging.

The network interfaces in *T and the M-machine, like the direct VNI hardware, provide protection
sufficient for the operating system to demultiplex messages, although operating systems for these
machines have not been developed. The direct VNI system could be 'v.plemented on these platforms.
*T would have included GID checks and a timeout on message hand :.g for protection as in the direct
VNI. The M-machine protects a direct interface by restricting message reception to trusted handlers.
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a. Direct: b. Memory-based: c. Hybrid: d. Hybrid:
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(e.g. CM-5) (e.g. SP-2, T3E) (e.g. FUGU) (e.g. CNI 1 69,)

Figure 8-1. Approaches to buffering. The annotations on the arcs represent relative frequencies
along each path.

The M-machine's MAP processor is multithreaded, so that the cost of forwarding a message from
a trusted handler to a user thread is particularly low. Although the direct VNI approach could be
implemented on the M-machine, the M-machine also offers hardware support for a return-to-sender
strategy for dealing with undeliverable messages.

Memory-Based Interfaces. Attaching a network interface to the memory system has been an
attractive way to provide network access, both in workstations and in many parallel machines, for
two reasons. First, attaching the network to the memory system allows standard processors to be
used. The memory-based approach will remain attractive until high-performance network interfaces
become sufficiently standard to be integrated on-chip in mainstream processors. Second, a bulk
transfer mechanism for coarse-grain computing is widely accepted as beneficial while fine-grain
mechanisms remain controversial. Since efficient bulk transfer requires DMA, it has been natural
to make the network interface design memory-centric with support for small messages a secondary
consideration.

Memory-based interfaces in multicomputers [6, 9, 66, 69, 72, 24] and workstations [17, 19, 76, 77]
limit the performance of the interface to the speed of memory, but provide easy protection for
multiprogrammning if the network interface also demultiplexes messages into per-process buffers.
Automatic hardware buffering also deals well with sinking bursts of messages and provides the lowest
overhead (by avoiding the processors) when buffering is required because messages are not handled
immediately. Memory-based interfaces could incorporate virtual buffering techniques to expand
the receiving buffer automatically. Virtual buffering with a memory-based interface in hardware
encounters all of the design challenges described in Chapter 5, albeit with less of a performance
requirement since hardware handles the common cases.

Sender-based message systems use network interfaces in memory but allow the sending processor
to participate in managing the receiving processor's memory. Remote-memory communication as
in SHRIMP [6] and the DEC memory-channel [24] give a sending process the means to directly
write memory in another process on another processor. More elaborate sender-based models as in
Hamlyn [81, 9] and Hybrid Deposit [59] support more communication options, e.g., the ability to
insert into a remote queue, but retain the idea that the sender manages the memory. The sender-based
approach is interesting because it exposes the fundamental costs of memory-based communication
in its programming model. Like our low-level UDM model, the programmer is given the means
to mitigate the costs of communication. The sender-based approaches must contend with memory
management, but mechanisms are exposed for providing custom memory management tailored to
the application.
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Hybrid Interfaces. The direct VNI employs a hybrid approach to network interface design that
uses both a direct interface for speed and provides buffering for convenience. Other interfaces take
a similar approach, notably Wisconsin's CNI [56, 57] and the descendants of *T, *T-NG [11] and
*T-Voyager [2]. Figure 8-1 (identical to Figure 2-3) gives a schematic view of different approaches
to message delivery. Parts (a) and (b) show direct and memory-based delivery, respectively. Part
(c) represents the direct VNI approach in which the hardware is direct but the message system
supports two paths. Part (d) represents an alternate approach, taken in the CNII6Qm, in which the
network interface provides both a fast path and a (potentially virtual) buffered path by using the
network interface hardware to manage messages. The processor accesses the network through the
CNI directly, but the CNI hardware also has the ability to transparently spill its internal buffer to
memory as necessary.

The CNI approach is potentially hardware-intensive, for instance requiring a duplicate translation
cache in the network interface. The direct VNI uses operating system software to initiate buffering
and uses a DMA engine shared with its bulk transfer mechanism to move the message data. The
hardware requirements are kept minimal for on-chip implementation and amount to a small, single
message queue and a simple DMA engine. A range of implementation options exist between the
CNI and the direct VNI, however. For instance, the translation cache could be minimal, storing only
the physical addresses of a few pages actively in use for buffering.

A subtle difference between the CNI16Qm and the direct VNI as each is currently implemented is
in when they choose to initiate buffering. The CNI16Qm apparently switches to buffering in memory
whenever the small buffer in the NI is full. [58] In contrast, the direct VNI requires some other event
(like a timeout) to enable a switch to software buffering. The hardware support for buffering in the
CNI16Qm makes it relatively lower cost to switch whereas software buffering in the direct VNI is
relatively more expensive. Again, a range of implementation options exist and the best decision
about when to switch is likely to be in between these two extremes.

A different hybrid approach is taken in the *T-NG [11] system and the subsequent *T-Voyager
system [2]. In *T-NG, the network interface hardware demultiplexes incoming messages into one
of several moderate-sized hardware queues implemented as dual-ported RAM on the L2 cache bus.
The multiple queues allow a limited number of applications to be active simultaneously. Additional
applications can be multiplexed onto these queues by negotiating for which queues should be active
or "cached". *T-Voyager implements the same idea of cached queues using a shared buffer on the
system bus of an SMP and a coprocessor to manage the queue insertions. Like the direct VNI,
*T-Voyager overflows its queues to memory if necessary. Unlike the direct VNI, *T-Voyager can
use its coprocessor to perform this work.

8.3 Miscellaneous

Techniques used in our virtual buffering system are related to several other systems. The Active
Message implementation in SUNMOS [63] on the Intel Paragon uses kernel code to unload the
message interface and to queue messages to be handled by a user thread. The SUNMOS approach
corresponds to using the software-buffered path in UDM continuously.

Fbufs [18] are an operating-system construct used to efficiently feed streams of data across
protection domains. The UDM virtual buffering system employs similar techniques in a specialized

116



implementation to manage its buffer memory.

Network overflow in Alewife [40] is a form of two-case delivery used for a restricted purpose.
Alewife supports distributed shared memory in hardware using a single network. Network overflow
uses software buffering to simulate infinite buffering in the network for the purpose of breaking
deadlocks in the shared-memory protocol.

The Polling Watchdog [53] integrates polling and interrupts for performance improvement. The
resulting programming model is interrupt-based in that application code may receive an interrupt at
any point; the application cannot rely on atomicity implicit in a polling model. A polling watchdog
uses a timeout timer on message handling to accelerate message handling if polling proves sluggish.
The direct VNI hardware includes an identical timer but uses it only to let the operating system clear
the network. A polling watchdog mode could be implemented in the direct VNI system.
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Chapter 9

Conclusion

Scalable workstations are a reasonaole vision of near-future servers. Scalable workstations combine
the scalable performance of MPP communication mechanisms and hardware with protection for
mixed, multiprogrammed workloads. The challenge in scalable wcrkstations is to integrate the com-
munication mechanisms with standard workstation protection features. This integration, captured in
the virtual network interface problem, is difficult because efficiency comes from tight coupling of
network hardware with applications but multiprogramming tends to interfere with that tight coupling.
A good virtual network interface should solve three problems:

1. Programmability: the programmer's model must be efficient.

2. Protection: the implementation must permit multiprogramming and virtual memory.

3. Performance: the communication implementation must be fast.

Conventional approaches sacrifice either the flexibility of the communication model, the flexi-
bility of multiprogramming, or the performance of the interface. The direct virtual network interface
approach presented in this thesis preserves all three goals.

The direct virtual network interface solution starts with an efficient, low-level model that gives
the user-level programmer kernel-like control over messages. The implementation meets the other
two goals using the novel techniques of two-case delivery and virtual buffering. Two-case delivery
provides a fast case implemented in hardware and a robust case using buffering in software. The
combination provides the speed of hardware with the flexibility of buffering. Virtual buffering allows
the fast case to be faster by guaranteeing delivery, eases programming by removing buffer space
limitations from the programmers model and and additionally allows the system to manage buffering
resources automatically.

The evaluation presented in this thesis makes two major points. First, experiments show that the
fast case is close in speed to unprotected hardware and that it remains the common case under almost
every set of operating conditions. Second, we show that the problem of potentially unbounded buffer
consumption due to the combination of guaranteed delivery with unacknowledged messages is not
a problem for ordinary applications and can be controlled when it occurs in unusual applications or
situations.

119

__ __



In terms of the three issues articulated in the problem statement:

1. The UDM programming model is an efficient target for the application programmer, a library
developer or the compiler. User messages correspond one-to-one with hardware messages and
the application has the opportunity to customize its protocols.

2. The direct VNI system is compatible with multiprogramming and demand-paged virtual
memory. The two-case delivery and virtual buffering techniques make multiprogramming
slightly less flexible than a system with hardware buffering because the scheduler may need
to coschedule more often. However, as noted in Section 7.3, part of the increased demand for
coscheduling comes from lower latency.

3. Latency and bandwidth in the direct VNI are good - close to those in an unprotected, kernel-
level interface - provided the interface is kept in the fast case. Because of software buffering,
the direct VNI is slightly less tolerant of borderline programs that send streams of unacknowl-
edged messages compared to a system with hardware buffering. While all such programs need
to add flow control as message rates increase, the software-buffered approach requires flow
control at a slightly iower maximum rate.

We conclude that the architectural techniques of two-case delivery and virtual buffering in
a direct virtual network interface make a tightly-coupled network interface viable in a multiuser
multiprocessor. As shown by the plot in Figure 7-11, the direct VNI allows FUGU to achieve good
parallel performance because only 14 - 33% of messages are buffered in most of our applications
while 10% of CPU time is devoted to interactive tasks. As parallel processing becomes more
mainstream and as increased system integration moves more components on-chip, the advantages of
the direct virtual network interface approach only become more important.
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Appendix A

Bulk Transfer

This appendix provides details about the bulk transfer mechanism in FUGU. The focus of the direct
virtual network interface is on support for small messages. IThere is, however, a related bulk transfer
mechanism using that uses DMA for high bandwidth. The DMA implementation follows the ideas
in [50], but is incomplete.

Model. Bulk transfer is integrated with the UDM model as an option on the inject and extract
operations defined in Section 3.1. At the send side, inj ect with DMA looks like:

inj ectdma (header, handler, wordO, wordl, ... , srcaddr, len)

where srcaddr and len are the address and length of a block to be appended to the message. The
block is simply appended: the receiver cannot tell how the message was constructed. At the receive
side, extract with DMA looks like:

extractdma (nwords, dstaddr, len) =~ (header; handler; wordO, wordl,...)

where nwords is the number of words at the beginning of the message to be extracted in the usual
way and dstaddr and len describe a block in memory to receive the data from the remainder of the
message.

DMA proceeds asynchronously after the injectdma or extractdma operation is started.
Completion notification is restricted to polling on injectdma-done and extractdma-done flags. These
flags return true when the last inj ectdma or extractdma, respectively, has completed.

Library Implementation. The bulk transfer primitives are accessed by the applications in Chapter 7
using a variation on the do-on statement and handler declarations introduced in Section 6.3. The
DMA version of do-on looks like:

do-on-dma (dst, handlername [, argO[, ... , arg3]]], addr, ndwords)

The DMA block address, addr, must be doubleword aligned. The ndwords argument must be a
compile-time constant. The DMA block must not cross a page boundary. The total size of the
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message must be less than a page (4096 bytes). The do-on-dma statement translates into a table
lookup for the dst node number, as in doon, a TLB probe operation to translate addr followed
by store of the resulting physical address to the CMMU, and then an inj ectdma operation. The
handling of the physical address from the TLB probe operation is a security hole that we accept in
the prototype. A real implementation would pass the physical address securely from the TLB to the
DMA engine, for instance using the technique described by Heinlein in [27].

void dma-handler (handlername [, argO, ... [, arg3]]], addrexp, lenexp)

{
(atomic handler code)
user-activeglobal ();
(thread code)

}

The DMA block address in the handler, addrexp, and the block length, lenexp are expressions in
terms of variables available at the receiver, including argO through arg3 if given. The address must
be doubleword aligned. The length is in bytes and must be a multiple of doublewords. The DMA
block is logically permitted to cross page boundaries, but the implementation switches voluntarily
to buffering mode in this case so it isn't very efficient. The total size of the message must be less
than a page.

Two-Case Delivery and Virtual Buffering. Bulk transfer messages are treated the same way as
small messages: the entire message is copied into the software buffer in buffering mode. Copying
large blocks is a poor idea that is worth some extra effort to avoid. There are a couple of possible
options that fall between fast mode and the slow mode, much like cross-domain upcalls in Figure 3-5.

First, as suggested in [50], extractdma operations that specify a destination block in an
inaccessible page could write to a freshly allocated page and "patch up" the differences afterward.
A page can be inaccessible because it is a virtual memory page that is swapped out or because is it
a shared memory page and portions of it are cached remotely in a write-only state. This two-phase
write-and-clean-up action is possible because the coherence semantics of DMA are explicit: the
DMA'd data is not considered readable until the extractdma-done flag is true.

A second option is more intrusive. Currently all messages handlers are executed in order whether
they are handled via the fast path or slow path. An exception could be made for some or all DMA
blocks, however. For such a block received in buffer mode, the buffer insertion code could attempt
to interpret enough of the handler to determine where the DMA block is intended to be stored.

Efficient bulk transfer in a system like FUGU is one interesting direction for future work.
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