
ABSTRACT

Title of dissertation: EFFICIENT MULTIPROGRAMMING
FOR MULTICORES WITH SCAF

Timothy Mattausch Creech
Doctor of Philosophy, 2015

Dissertation directed by: Professor Rajeev Barua
Department of Electrical and
Computer Engineering

As hardware becomes increasingly parallel and the availability of scalable paral-

lel software improves, the problem of managing multiple multithreaded applications

(processes) becomes important. Malleable processes, which can vary the number of

threads used as they run [1], enable sophisticated and flexible resource management.

Although many existing applications parallelized for SMPs with parallel runtimes

are in fact already malleable, deployed run-time environments provide no interface

nor any strategy for intelligently allocating hardware threads or even preventing

oversubscription. Prior research methods either depend upon profiling applications

ahead of time in order to make good decisions about allocations, or do not account

for process efficiency at all, leading to poor performance. None of these prior meth-

ods have been adapted widely in practice. This paper presents the Scheduling and

Allocation with Feedback (SCAF) system: a drop-in runtime solution which sup-

ports existing malleable applications in making intelligent allocation decisions based

on observed efficiency without any changes to semantics, program modification, of-

fline profiling, or even recompilation. Our existing implementation can control most

unmodified OpenMP applications. Other malleable threading libraries can also easily

be supported with small modifications, without requiring application modification

or recompilation.

In this work, we present the SCAF daemon and a SCAF-aware port of the

GNU OpenMP runtime. We present a new technique for estimating process efficiency

purely at runtime using available hardware counters, and demonstrate its effectiveness

in aiding allocation decisions.

We evaluated SCAF using NAS NPB parallel benchmarks on five commodity

parallel platforms, enumerating architectural features and their effects on our scheme.

We measured the benefit of SCAF in terms of sum of speedups improvement (a com-

mon metric for multiprogrammed environments) when running all benchmark pairs

concurrently compared to equipartitioning — the best existing competing scheme

in the literature. If the sum of speedups with SCAF is within 5% of equipartition-

ing (i.e., improvement factor is 0.95X < improvement factor in sum of speedups <

1.05X), then we deem SCAF to break even. Less than 0.95X is considered a slow-

down; greater than 1.05X is an improvement. We found that SCAF improves on

equipartitioning on 4 out of 5 machines, breaking even or improving in 80-89% of

pairs and showing a mean improvement of 1.11-1.22X for benchmark pairs for which

it shows an improvement, depending on the machine.

Since we are not aware of any widely available tool for equipartitioning, we

also compare SCAF against multiprogramming using unmodified OpenMP, which is

the only environment available to end-users today. SCAF improves or breaks even

on the unmodified OpenMP runtimes for all 5 machines in 72-100% of pairs, with a

mean improvement of 1.27-1.7X, depending on the machine.

EFFICIENT MULTIPROGRAMMING FOR
MULTICORES WITH SCAF

by

Timothy Mattausch Creech

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Rajeev Barua, Chair/Advisor
Professor Donald Yeung, Co-Advisor
Professor Bruce Jacob
Professor Manoj Franklin
Professor Peter Keleher, Dean’s Representative

c© Copyright by
Timothy Mattausch Creech

2015

Acknowledgments

I would like to express my sincere gratitude to my advisor, Prof. Rajeev Barua,
for his guidance, patience, and enthusiasm throughout my graduate studies. Whether
I was stuck on a problem or losing focus, our discussions were always the key to
progress. His advice throughout the years has certainly shaped and improved me as
a writer and researcher. It is no overstatement to say that this work would not have
been possible without his support.

I would also like to thank Prof. Donald Yeung, Prof. Bruce Jacob, Prof. Manoj
Franklin, and Prof. Peter Keleher for their guidance and feedback. Large portions of
this work are directly resultant from this advice, and represent significant improve-
ments.

This work was supported by a NASA Office of the Chief Technologist’s Space
Technology Research Fellowship (Grant NNX11AM99H). As a result, I was able to
work with many fine people at the NASA Goddard Space Flight Center and the
Ames Research Center. Specifically, I would like to thank Dan Mandl, Vuong Ly, and
Don Sullivan, among others, for their support and advice throughout the years. The
compute resources made available to me through the NSTRF program were simply
invaluable, as was the experience of working alongside these engineers.

I would also like to thank the University of Maryland’s Institute for Advanced
Computer Studies (UMIACS) for providing access to additional compute resources. I
thank my labmates and friends in A.V. Williams—Jounghoon, Mark, Aparna, Kapil,
Khaled, Fady, Kyungjin, Alex, Danny, Julien, and Matt—for their companionship
and advice over the years.

I thank Karen Shih, whose friendship and encouragement have been a tremen-
dous influence throughout both my undergraduate and graduate studies.

Finally, I can’t thank my parents, Jay and Laura Creech, enough. They have
always encouraged my education, and have been a continuous source of support and
inspiration.

ii

Contents

List of Tables v

List of Figures vi

List of Abbreviations viii

1 Introduction 1
1.1 Problem Description and Overview 1
1.2 Contributions . 3

2 Background 6
2.1 Multithreading on Unix-like Operating Systems 6

2.1.1 Threads vs. Processes . 6
2.1.2 Evolution of Threads . 7
2.1.3 Malleable Processes . 8

2.2 Multiprogramming Strategies . 9
2.2.1 A Tool for Observing Multiprogramming: pidpcpu 9
2.2.2 Exclusive scheduling . 10
2.2.3 Fine-grained multiprogramming 13
2.2.4 Gang Scheduling . 15
2.2.5 Space Sharing . 18
2.2.6 Discussion . 23

3 Related Work 25
3.1 Distributed Memory Systems . 27
3.2 Shared Memory Systems . 28
3.3 Related Implementations . 33

4 Design 35
4.1 System Overview . 35
4.2 Conversion from Time-sharing to Space-sharing 36
4.3 Sharing Policies . 37

4.3.1 Minimizing the “Make Span” 37
4.3.2 Equipartitioning . 38
4.3.3 Maximizing System IPC . 39
4.3.4 Maximizing the Sum Speedup 43
4.3.5 Maximizing the Sum Speedup Based on Runtime Feedback . . 46

5 Implementation 57
5.1 The SCAF Daemon . 59
5.2 The libgomp SCAF Client Runtime 64

5.2.1 Lightweight Serial Experiments 64
5.2.2 Computing Efficiency . 69

5.3 Supporting Non-malleable Clients . 70
5.4 Supporting Long-running Parallel Sections 72
5.5 The intpart library . 74

iii

6 Adaptation to Various Platforms 76
6.1 Hardware Characteristics . 78

6.1.1 Hardware Multithreading . 79
6.1.2 Non-Uniform Memory Access 83
6.1.3 Out-of-order Execution . 85

6.2 Optimizations . 86
6.2.1 Avoiding Bad Allocations . 86
6.2.2 Rate-limiting to Reduce Overheads 87
6.2.3 Virtual Memory Management 89
6.2.4 “Lazy” Experiments . 92

7 Evaluation 93
7.1 Multiprogramming with NPB Benchmark Pairs 93
7.2 Detailed 3-Way Multiprogramming Scenario 106
7.3 Oracle Comparison . 110

7.3.1 TileGX . 111
7.3.2 Dual Opteron 6212 . 112

8 Future Extensions to SCAF 118
8.1 Porting additional runtime systems 118
8.2 Expanding results to additional hardware platforms 118
8.3 Periodic lightweight experiments . 119
8.4 Supporting applications at the thread level 119
8.5 Resource allocation toward power efficiency 120
8.6 Linux scheduler improvements for groups of tasks 120
8.7 Resource allocation across virtual machines 121
8.8 Automatic software-based heartbeats 121

9 Conclusion 123

A Appendix 124
A.1 Detailed Hardware Topologies . 124
A.2 Using IPC ratios to estimate true speedup on TileGX 130

Bibliography 140

iv

List of Tables

2.1 Summary of multiprogramming techniques in CG-LU scenario 22
2.2 Summary of multiprogramming techniques 22

3.1 Feature comparison of related implementations (ad hoc acronyms used
for brevity) . 26

4.1 Results of Max-IPC compared to Equipartitioning 43
4.2 Using IPC ratios to estimate speedup for runtime feedback 48
4.3 Summary of all multiprogramming techniques in CG-LU scenario,

including 3 space sharing policies . 56

6.1 Summary of platforms used to evaluate SCAF 76
6.2 Summary of platform characteristics and their impact on SCAF . . . 77
6.3 Heuristically-chosen chunk sizes used for each machine 87

7.1 Summary of mean pairwise results. Only “tempo-mic0” does not per-
form well. 105

7.2 Summary of the 3-way multiprogramming scenario 107

v

List of Figures

2.1 Exclusive scheduling on TileGX/Linux 12
2.2 Fine-grained multiprogramming on TileGX/Linux 14
2.3 Gang-scheduled multiprogramming on TileGX/Linux 17
2.4 Equipartitioned multiprogramming on TileGX/Linux 20

4.1 Space sharing allocated for maximum system IPC on TileGX/Linux . 40
4.2 Runtime feedback loop in SCAF’s partitioning scheme 52
4.3 Space sharing allocated for maximum system speedup via SCAF on

TileGX/Linux . 55

5.1 Illustration of lightweight serial experiments 67

6.1 FT benchmark scaling on “bhindi” (2x Opteron 6212) 80
6.2 UA benchmark scaling on “triad” (UltraSparc T2) 81
6.3 MG benchmark scaling on “tempo-mic0” (Xeon Phi 5110p) 82
6.4 BT benchmark scaling on “openlab08” (2x Xeon E5-2690, Hyper-

Threading disabled) . 85
6.5 Tile-GX: Slowdowns with unmodified virtual management due to fork() 90

7.1 Distribution of improvement over equipartitioning on all machines. 4
out of 5 machines perform well. Only “tempo-mic0” does not show
an improvement, so we recommend that SCAF not be used for that
and similar machines for which our test suite performs poorly. 96

7.2 Distribution of improvement over an unmodified system on all machines. 97
7.3 Results on a Tilera Tile-GX with 36 hardware contexts 98
7.4 Results on a dual Xeon E5-2690 with 16 hardware contexts 99
7.5 Results on a Xeon Phi 5110P with 240 hardware contexts 101
7.6 Results on an UltraSparc T2 with 64 hardware contexts 103
7.7 Results on a dual Opteron 6212 with 16 hardware contexts 104
7.8 SCAF behavior during a 3-way multiprogramming example 108
7.9 Exploration of all static partitionings of SP+LU on Tile-GX. The two

intersecting lines represent SP and LU’s individual speedups, while
the upper line represents their sum of speedups. 113

7.10 Exploration of all static partitionings of CG+FT on Tile-GX. The two
intersecting lines represent CG and FT’s individual speedups, while
the upper line represents their sum of speedups. 114

7.11 Exploration of all static partitionings of LU+BT on a dual Opteron
6212 machine. The two intersecting lines represent LU’s and BT’s in-
dividual speedups, while the upper line represents their sum of speedups.116

7.12 Exploration of all static partitionings of FT+LU on a dual Opteron
6212 machine. The two intersecting lines represent FT’s and LU’s in-
dividual speedups, while the upper line represents their sum of speedups.117

A.1 Hardware Topology of a 36-core TileGX 125
A.2 Hardware Topology of a 16-core Xeon E5-2690 126
A.3 Hardware Topology of a 60-core Xeon Phi 5100p 127

vi

A.4 Hardware Topology of an 8-core UltraSparc T2 128
A.5 Hardware Topology of an 8-core Opteron 6212 129
A.6 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the BT benchmark . 131
A.7 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the FT benchmark . 132
A.8 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the MG benchmark . 133
A.9 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the CG benchmark . 134
A.10 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the IS benchmark . 135
A.11 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the SP benchmark . 136
A.12 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the EP benchmark . 137
A.13 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the LU benchmark . 138
A.14 Comparison of IPC ratio (points) to true speedup (lines) on TileGX

for the UA benchmark . 139

vii

List of Abbreviations

API Application Program Interface

CG Conjugate Gradiant (an NPB benchmark)
CMT Clustered Multithreading
COW Copy on Write

DDC Dynamic Distributed Cache

EQ Equipartitioning

FT Fast Fourier Transform (an NPB benchmark)

GNU GNU’s Not Unix (recursive)

IPC Instructions per Cycle

LU Lower-Upper symmetric Gauss-Seidel (an NPB benchmark)

NAS NASA Advanced Supercomputing
NASA National Aeronautics and Space Administration
NPB NAS Parallel Benchmarks
NUMA Non-Uniform Memory Architecture

OS Operating System

PAPI Performance Application Programming Interface
POSIX Portable Operating System Interface

RC Resistor-Capacitor (circuit)

SCAF Scheduling and Allocation with Feedback
SMP Symmetric Multiprocessing
SMT Simultaneous Multithreading
SP Scalar Pentadiagonal (an NPB benchmark)
SUIF Stanford University Intermediate Format

TBB Thread Building Blocks
TLB Translation Look-aside Buffer

viii

UA Unstructured Adaptive (an NPB benchmark)
UMIACS University of Maryland Institute for Advanced Computer Studies
UNIX not an acronym; a family of operating systems

VM Virtual Memory; sometimes Virtual Machine
VMM Virtual Memory Manager

ix

Chapter 1

Introduction

1.1 Problem Description and Overview

When running multiple parallelized programs on many-core systems, such as

Tilera’s TilePro64, or even large Intel x86-based SMP systems, a problem becomes

apparent: each application makes the assumption that it is the only application

running; therefore parallel applications generate enough threads to use the entire

machine, and consequently the machine is quickly oversubscribed if multiple pro-

grams are running. A machine is said to be oversubscribed when the number of

computationally intensive threads exceeds the number of available hardware con-

texts. When the number of cores is at least equal to the number of time-intensive

applications, then space-sharing the cores between those applications becomes an

option. With space-sharing, each process uses some portion of the cores exclusively,

avoiding oversubscription. However, in practice this is rarely done on interactive

systems. Modern operating systems attempt to time-share the hardware resources

by context switching, but this is a poor solution. The context switching incurs addi-

tional overhead as the kernel must save and restore the state of the hardware context.

Caches may be repeatedly refilled as access patterns oscillate. Further, when some

threads participating in a barrier are context-switched out, other threads in the same

barrier may incur long waiting times, reducing system throughput. Finally, some

synchronization techniques, such as spinlocks, depend heavily on the presence of ded-

1

icated hardware contexts for reasonable performance. When each process is capable

of fully loading the machine, space sharing is an efficient and simple alternative to

fine-grained time-sharing. A more detailed discussion of other alternatives as well as

justification for choosing space sharing can be found in chapter 2.

In this paper, we define the parallel efficiency of executed code to be E ≡ S
p
,

where executing the code in parallel on p hardware contexts yielded a speedup S

over serial execution. We say that a multiprogrammed parallel system has high total

efficiency when the sum of speedups achieved by its processes is high. That is, the

average hardware context contributes a large speedup.

When dealing with truly malleable parallel programs, the ideal solution is

to actually change the number of software threads that need to be scheduled, ap-

proximating space sharing. We argue that this should be done automatically and

transparently to the system’s users. Existing parallelization runtimes generally allow

users to specify the maximum number of threads to be used at compile-time or

run-time. However, this number remains fixed for the duration of the program’s

execution, and it is unreasonable to expect users on a system to manually coordinate.

Furthermore, even on a single-user system it is not always clear how best to allocate

hardware contexts between applications if good total system efficiency is desired:

scalability may vary per application and across inputs. Finally, in order for a solution

to be adopted, it should not require new programming paradigms or place excessive

demands on the users. That is, users should not be required to rewrite, recompile,

profile, or spend time carefully characterizing their programs in order to benefit. We

believe that this cost to the user is the primary reason that none of the literature’s

2

existing solutions have enjoyed widespread adoption.

As a result, we sought to create a scheme which satisfies the following require-

ments:

• Total system efficiency is optimized, taking individual processes’ parallel effi-

ciencies into account

• No setup, tuning, or manual initialization of any participating application is

required before runtime

• No modification to, or recompilation of, any participating application is required

• Effectiveness in both batch and real-time processing scenarios

• System load resulting from both parallel processes which are not truly malleable,

as well as processes which are not participating in the SCAF system, is taken

into account

1.2 Contributions

Looking at existing research and experiments, the ingredients seem to be avail-

able. Some solutions gather information on efficiency by making use of pre-execution

profiling [2, 3], while others do not require profiling and do not account for program

efficiency [4–7]. However, it is nontrivial to measure and account for program effi-

ciency without profiling. This task is made more difficult by the fact that we want

to avoid modifying or even recompiling any applications – instrumentation and com-

munication between SCAF processes must be added only as modifications to the

3

compiler’s parallelization runtime libraries.

SCAF solves this problem with a technique which allows a client to estimate

its efficiency entirely at runtime, alleviating the need for pre-execution profiling. To

understand how, consider that parallel efficiency can only be measured by know-

ing speedup vs serial execution. However, in a parallel program there is no serial

equivalent of parallel sections; hence serial measurements are not directly available.

Running the entire parallel section in serial is possible, but can greatly slow down

execution, overwhelming any benefits from malleability.

We solve the problem of measuring serial performance at low cost by cloning

the parallel process into a serial experimental process the first time each parallel

section is encountered dynamically. During this first run, the serial experiment is run

concurrently with the parallel code as long as the latter executes. Since the serial

code is not available in a parallel application, and our goal is to avoid re-compilation,

we run the parallel code serialized on one context as the serial code. This is valid

since the only relevant speedup for SCAF is versus this serialized parallel code. The

parallel process runs on N − 1 cores, and the serial process on 1 core, where N is

the number of threads the parallel process has been allocated. Crucially, the serial

thread is not run to completion (which would be expensive in run-time overhead);

instead it is run for the same time as the current parallel section. We find this gives

a good enough estimate of serial performance to be able to estimate efficiency. The

run-time overhead of the serial experiment is very low because it is run only once

during the first dynamic instance of the parallel section. Subsequent dynamic runs

of the parallel section run on N cores without running the serial experiment.

4

We evaluate the SCAF system in various multiprogramming scenarios and on

a wide variety of hardware, showing that SCAF generally improves system efficiency,

as measured by sum of speedups for a parallel workload, over both simple equiparti-

tioning and an unmodified OpenMP runtime. Furthermore, we closely examine the

major architectural features of our test platforms, and conclude that while NUMA

architectures do not seem to be problematic for our scheme, forms of simultane-

ous hardware multithreading (i.e. SMT) create complex and unpredictable speedup

behavior.

We plan to make SCAF open-source by the time of publication. An executable

version will be available for users. A source-code version will be available to aid

researchers.

5

Chapter 2

Background

2.1 Multithreading on Unix-like Operating Systems

Threads on Unix-like systems have evolved in terms of implementation, purpose,

and standards. To avoid confusion, this section briefly reviews the concept of threads,

and clarifies the type of threading implementations targeted by our work.

2.1.1 Threads vs. Processes

While a “process” is an instance of a computer program, a “thread” can be seen

as a sort of sub-process working in some way to implement or complete its parent

process. In the simplest case, a process is not multi-threaded, and consists of only a

single implicit thread. In other cases, a process may request of a threading library

that additional threads be created. The work or code executed by these threads

must be explicitly provided by the process, either by a low-level programmer or via

a higher-level library which has special knowledge of how to task the threads. For

example, it is common to write a program which may run on an arbitrary number of

threads by employing a high-level language and runtime which knows how to chunk

up work known to be independent and distribute it to worker threads. OpenMP is

an example of one such language; here, the programmer most commonly asserts to

the language that the iterations of certain loops are independent, although other

6

constructs are available.

Note that the operating system can no more control the number of threads

per process than it can the number of processes. There cannot be a paradigm

where thread creation is denied for the sake of controlling the degree of parallelism

because not all applications use threads to implement parallelism. The process itself

determines the number of threads to be used, and how to use them.

2.1.2 Evolution of Threads

It is important to note that the purpose and implementations of software

threads have changed over the past few decades. Specifically, before multiprocessor

hardware became commonly available, threading implementations were not expected

to provide true parallelism. These implementations therefore used what is known

today as the “N:1” threading model, where all N threads requested by a process

were implemented by the operating system as a single entity that would map to only

one hardware processor at any point in time [8]. As a result, multithreaded programs

implemented on these systems could not benefit from any available parallelism in

hardware. This was entirely acceptable on uniprocessor hardware, with no available

parallelism. Instead, the purpose of such threading implementations was to allow

threads within a common process to be quickly switched between by the threading

library without the need to run any kernel code. In a nutshell, the threading libraries

implemented concurrency efficiently, without parallelism.

However, with parallel, hardware multithreading processors becoming more

7

readily available, it became increasingly desirable to implement concurrency with

parallelism. As a result, almost all major operating systems, including Linux, Solaris,

FreeBSD, and OS X now provide threading implementations which abandon the N:1

model in favor of the 1:1 model [8]. The 1:1 model implements each of a process’s

threads as separate kernel entities which may be scheduled to different hardware

contexts simultaneously. As a result, the cost of context-switching is higher, but true

parallelism is achieved.

In this work, we expect that all threading implementations are now using the

1:1 model, with threads used for the purpose of increasing parallelism.

2.1.3 Malleable Processes

As threads become more commonly used to take advantage of parallel hardware,

many parallel programs and runtimes have been written with the ability to run on

parallel hardware with varying degrees of parallelism. In other words, the resulting

programs are malleable. For example, if a programmer writes a multithreaded image

processing program, it will be desirable for that program to be able to run on 1-

core, 8-core, 64-core, or even larger machines with minimal effort. Ideally, no code

modification or recompilation would be necessary. Parallel languages and runtimes,

such as OpenMP, often make effecting this portability quite easy by abstracting the

hardware detection and thread creation away from the programmer and user. As a

result, a great number of parallel programs are actually malleable. For example, in

order to make redistribution easy, all of the OpenMP NAS Parallel Benchmarks [9]

8

can be run with any number of threads.

2.2 Multiprogramming Strategies

The basic problem of scheduling and allocating for multiple multithreaded

processes has a large solution space. While there are many ways to avoid over-

subscription, the solutions discussed in this paper largely focus on transforming

fine-grained time sharing (the de-facto standard in use today) into space sharing.

In this section, we explore several other high-level multiprogramming strategies in

order to understand why we chose space sharing for SCAF. The set of strategies

described here are meant to be representative of the available alternatives, although

there are certainly many more possibilities.

In this section, we explore our options in terms of a specific multiprogramming

scenario: running NAS benchmarks CG and LU on a 36-core Tilera Tile-GX running

Linux. All of the illustrative examples provided are actual recordings of real runs on

real hardware.

2.2.1 A Tool for Observing Multiprogramming: pidpcpu

To better explore and observe multiprogramming, we have created a new utility

called pidpcpu and a corresponding plotpidpcpu which can be used to plot the

results. These tools were born out of necessity: the usual Unix tools (i.e., top, ps,

mpstat, etc.) report total CPU time per process tree or thread, but provide little

insight into where the threads are being scheduled. For example, top may reveal that

9

PID 1234 is using 4 CPUs on average over the last 2 seconds, while PID 5678 used

2. However, any detail beyond this is lost: were the threads involved being moved

around to different processors after context switches? Was PID 5678 using 4 CPUs

half of the time? pidpcpu aims to provide more insight.

pidpcpu accepts one or more process IDs as its arguments, and begins tracking

where each is run. Because we are interested in observing multithreaded processes,

all child processes and threads of the specified PIDs are tracked as one entity. It is

potentially expensive to track a large number of threads via conventional methods;

therefore, pidpcpu uses Linux’s recent “CGroups” (“control groups”) [10] function-

ality to obtain accounting information from the specified thread trees. This strategy

allows the tool to sample at a relatively high rate (on the order of 100ms) on a live

system without significant overhead. Listing 2.1 provides an example of pidpcpu

invocation and output, with comments provided by the author.

An important feature of pidpcpu is that it requires no heavy profiling, and is

meant for interactive use. There needn’t be any record/analyze cycle. In fact, output

from pidpcpu can be piped to plotpidpcpu for live system analysis — similar to

top or prstat, but graphical. plotpidpcpu uses feedgnuplot [11] and ultimately

gnuplot [12] as its backend.

2.2.2 Exclusive scheduling

A trivial form of multiprogramming would be exclusive scheduling, where the

users or runtime strictly avoid multiprogramming by coordinating process execution.

10

Listing 2.1: pidpcpu example on a 4-core Linux system

> PERIOD =1 pidpcpu 1111 2222
time pidtree@cpu usage
0.0 1111@1 0.99 # PID 1111 on CPU 1...
0.0 1111@2 1.00 # ...and CPU 2.
0.0 1111@3 0.00
0.0 1111@4 0.00
0.0 2222@1 0.00
0.0 2222@2 0.00
0.0 2222@3 0.99 # PID 2222 on CPU 3...
0.0 2222@4 0.98 # ...and CPU 4.

1.0 1111@1 0.99 # 1 second later , no change.
1.0 1111@2 0.99
1.0 1111@3 0.00
1.0 1111@4 0.00
1.0 2222@1 0.00
1.0 2222@2 0.00
1.0 2222@3 0.99
1.0 2222@4 0.98

2.0 1111@1 0.99
2.0 1111@2 0.00
2.0 1111@3 1.00 # Now on CPU 3 rather than CPU 2.
2.0 1111@4 0.00
2.0 2222@1 0.00
2.0 2222@2 0.99 # Switched with PID 1111; now on 2.
2.0 2222@3 0.00
2.0 2222@4 0.98
^C

In other words, processes are run one by one. Using pidpcpu, let’s examine what

actually occurs with Linux 3.14 on our 36-core TileGX. Figure 2.1 shows output

from plotpidpcpu after both processes finish execution, with CG launched first. The

horizontal axis of the plot depicts time, while the vertical axis shows CPU time for

the shaded process. Note that the vertical space of the graph is segmented per CPU,

and essentially 36 vertically stacked plots.

11

 0

 6

 12

 18

 24

 30

 36

 0 20 40 60 80 100 120 140 160 180

C
P

U
s

Time (s)

 CG LU

Figure 2.1: Exclusive scheduling on TileGX/Linux

In Figure 2.1, we see that CG begins, and immediately is scheduled across all

36 cores. This is because the OpenMP runtime which CG uses detected 36 hardware

cores, and accordingly spawned 36 software threads to load them. During the time

period between 0 and 90 seconds, the Linux scheduler sees 36 runnable threads and

36 available hardware contexts; therefore, it schedules a 1-to-1 mapping. This is the

scenario that the Linux scheduler and OpenMP runtime anticipate. As a result, each

12

benchmark runs with minimal context switching and parallel efficiency is reasonably

high. In this scenario, the CG benchmark achieves a speedup of 28.9X compared

to serial execution, and then LU achieves a speedup of 22.4X compared to serial

execution.

2.2.3 Fine-grained multiprogramming

Fine-grained multiprogramming is the de-facto standard, given that it describes

what happens when multiprogramming is uncoordinated, and thread scheduling is

left solely to the operating system. Figure 2.2 shows output from plotpidpcpu

when the CG and LU benchmarks are run simultaneously. (E.g., launched from two

different shell instances.)

13

 0

 6

 12

 18

 24

 30

 36

 0 50 100 150 200 250 300 350 400 450

C
P

U
s

Time (s)

 CG LU

Figure 2.2: Fine-grained multiprogramming on TileGX/Linux

In Figure 2.2, we see CG and LU run concurrently. However, the OpenMP

runtimes for both CG and LU each still launch 36 threads, since neither is aware of the

other. The result is 36× 2 = 72 runnable threads, which the Linux thread scheduler

must map in some way to only 36 cores. A machine in this situation, where there

are more runnable threads than available hardware contexts, is “oversubscribed”. In

order to avoid tracking groups of threads, the Linux scheduler schedules all 72 threads

14

from the two processes in exactly the same way that it might schedule 72 threads from

72 single-threaded processes. The result is relatively high-speed, fine-grained context

switching, as the kernel tries to fairly schedule the 72 threads. Unfortunately, the two

groups of threads have dependencies on one another by way of synchronization, which

can result in imbalanced progress. Furthermore, the fine-grained context switching

of two or more threads on a single hardware context effectively results in threads

sharing the hardware. For example, two threads may constantly evict each others’

data from a core’s local cache, resulting in many cache misses and the need to go

to main memory. On both TileGX and x86, LU contains userspace spin-locks and

memory fence operations that perform quite badly when not executed on dedicated

hardware contexts.

As a result, we see that the parallel efficiency for both processes involved is

dramatically lower when the Linux kernel is left to do fine-grained time-sharing.

When compared to the processes running alone (exclusively) on the hardware, CG

went from 28.9X speedup to 6.4X speedup, and LU from 22.4X to only 4.1X speedup.

Note that this is more of a loss in speedup than the 50% one might expect when

halving the hardware resources for each process. We argue that this means that the

multiprogramming is not efficient.

2.2.4 Gang Scheduling

One interesting option which avoids the kernel’s fine-grained time sharing is

“gang scheduling.” With gang scheduling, the threads from a process form a “gang,”

15

and only one gang runs at a time. While one process is running, the other is essentially

paused. In the context of our example, each process forms a gang, and the gangs run

for 4 seconds before relinquishing the system to the other process. In this way, the

processes are running concurrently, but only 36 threads are runnable at any point

in time. In other words, gang scheduling avoids oversubscription.

Figure 2.3 shows CG and LU multiprogrammed via gang-scheduling on the

TileGX. Here, we have implemented gang scheduling via the Unix SIGSTOP and

SIGCONT signals. Although gang scheduling effects some context switches, it is

relatively low-speed. During the multiprogrammed scenario, CG achieves a speedup

of 15.6X, which is significantly higher than the 6.4X achieved during oversubscription,

and about half of the 28.9X achieved alone. Similarly, LU achieves 10.8X speedup, a

marked improvement over 4.1X during oversubscription, and about half of the 22.4X

achieved alone. Comparing Figure 2.3 with Figure 2.1, we see that coarse-grained

gang scheduling behaves like exclusive (non-multiprogrammed) scheduling but with

alternating slices of each process’s execution time in order to effect concurrency.

16

 0

 6

 12

 18

 24

 30

 36

 0 20 40 60 80 100 120 140 160 180

C
P

U
s

Time (s)

 CG LU

Figure 2.3: Gang-scheduled multiprogramming on TileGX/Linux

We can then see that gang scheduling is an efficient form of multiprogramming:

with two processes sharing the machine, we see each slow down by about 50%

compared to running exclusively. Unfortunately, the coarse-grained time sharing

leaves all but one process completely stopped and unresponsive at any point in

time. For this reason, we do not believe that gang scheduling is appropriate for

general-purpose use on SMP servers, workstations, and personal computing devices.

17

Consider a PC with a multi-threaded video player (decoder) in one window, and

an unrelated multi-threaded image processor running in another: the video player

would effectively pause every 4 seconds! As another example, if a server executing

multi-threaded transaction processing such as a web server, an e-commerce site, or

a bank site, uses gang scheduling, then the potential transaction delay is increased

linearly with the number of gang-scheduled jobs. This would degrade response time

to customers to an unacceptable extent. We can of course reduce the period of time

which the active gang is runnable, but this will incur more context switches and

hardware contention. We argue that gang scheduling is only effective and suitable

for particular processing environments and scenarios.

2.2.5 Space Sharing

Given our desire to avoid both fine-grained time sharing and the coarse-grained

time sharing of gang scheduling, another attractive option is space sharing. With

space sharing, the hardware cores split into physical partitions, and processes are

constrained to running within those fractions of the hardware. For malleable pro-

grams, this can be done by influencing the number of threads that each multithreaded

process uses. Fine-grained time sharing and gang scheduling effectively both strive

to deal with the condition of oversubcription on the machine, while space shar-

ing avoids oversubscription altogether. The operating system’s thread scheduler is

then still used, but its job has been made much easier: all it needs to do is map

N runnable threads to N hardware contexts, just as with exclusive scheduling or

18

non-multiprogrammed scenarios.

It is worth noting that both fine-grained time sharing and gang scheduling are

solutions which can be implemented within an operating system’s thread scheduler.

By contrast, space sharing is effectively a higher level form of multiprogramming in

that it cannot be performed by the operating system itself. The reason for this is

that the operating system does not control the number of threads used by a process:

the process itself does. As a result, space sharing must be effected in participation

with the part of the processes that manages threads — usually a parallel runtime.

In the case of OpenMP programs, the programmer is not in charge of the number

of threads used unless they go out of their way to ask the OpenMP runtime for this

responsibility. Assuming they do not, the program is then malleable and it is the

OpenMP runtime library itself which manages the number of threads used for any

given piece of parallel code.

19

 0

 6

 12

 18

 24

 30

 36

 0 20 40 60 80 100 120 140 160 180

C
P

U
s

Time (s)

 CG LU

Figure 2.4: Equipartitioned multiprogramming on TileGX/Linux

Figure 2.4 shows CG and LU multiprogrammed via space sharing on our

TileGX. The reader may expect to see the top 18 cores’ bars running one process,

and the bottom 18 cores’ bars running the other. However, with space sharing,

the regions shared are not necessarily contiguous. The matter of placing threads

to specific hardware resources is still left entirely to the operating system’s thread

scheduler as an orthogonal problem. In fact, Linux now has sophisticated knowledge

20

of hardware topologies, and attempts to do this mapping intelligently. While space

sharing does not deal with placing threads, it does ensure that the total combined

number of runnable threads is equal to the number of hardware contexts. Scanning

the time axis of figure 2.4, we can verify that although threads may migrate between

cores, there are exactly 18 threads running each process at any point in time.

With space sharing, we see no high-speed context switching and no contention

between software threads for hardware resources. Additionally, both processes are

running at all times, ensuring responsiveness as with fine-grained time sharing. At

the same time, with space sharing we see that CG achieves 17X speedup and LU

achieves 12X speedup. This is an impressive result in terms of efficiency: during

exclusive scheduling, the machine achieved either 28.9X speedup or 22.4X speedup,

depending on which process was running. With space sharing, at any point in time

during the multiprogrammed region, the machine was achieving about 17+12 = 29X

speedup. This represents an improvement in terms of efficiency for the machine’s

36 cores. It’s not hard to see how this is possible: space sharing works by reducing

the number of threads and therefore the degree of parallelism used by each process,

and in general parallel processes are more efficient at lower degrees of parallelism.

(Specifically, in the common case where parallel efficiency looks like 1
(1−par+ par

p
)·p ,

where par is the fraction of runtime that is parallel and p is the number of threads,

efficiency only decreases as p increases.)

21

Technique
CG LU

Advantages Disadvantages
Speedup Speedup

Exclusive Avoids all Must wait to
scheduling

28.9X 22.4X
concurrency start LU

Fine-grained Allows Low speedups
time sharing

6.4X 4.1X
concurrency from contention

Avoids Impacts
Gang scheduling 15.6X 10.8X

contention latency
High efficiency, Requires

Space sharing 17.0X 12.0X
latency unaffected thread control

Table 2.1: Summary of multiprogramming techniques in CG-LU scenario

Technique
Shared

Concurrency Responsiveness
Oversub-

Dimension scription

Exclusive
scheduling

time no yes no

Fine-grained
time sharing

time yes yes yes

Gang scheduling time yes degraded no
Space sharing space yes yes no

Table 2.2: Summary of multiprogramming techniques

22

2.2.6 Discussion

Table 2.1 summarizes the four multiprogramming techniques described in this

section. Exclusive scheduling is examined mostly as a baseline: it does not achieve

multiprogramming, but demonstrates the scalability of CG and LU while running

alone on the TileGX. Fine-grained time sharing, which is what is used by default on

most major multi-threaded operating systems that we’re aware of, correctly achieves

concurrency, but exposes too much parallelism to the operating system’s thread sched-

uler. Furthermore, LU and the OpenMP runtime library itself utilize synchronization

strategies which perform poorly when threads must share hardware contexts. It is

possible to avoid these strategies (e.g., spin-locks) in general to avoid this contention,

but changing synchronization mechanisms may incur its own performance penalty.

Gang scheduling is another interesting technique which guarantees that each process

runs on the entire machine, and therefore that each thread runs on its own hardware

context. In our simple example, the performance results from gang scheduling are

good, and a rough sort of concurrency is achieved. However, this is accomplished

via a sort of coarse-grained time sharing which impacts latency. In particular, we

can imagine this being unacceptable for transaction processing and interactive ap-

plications. Space sharing avoids this problem by controlling the number of threads

used, and therefore the fraction of the machine used by each process. This avoids

contention, maintains responsiveness, and scales well for for multiprogramming sce-

narios with more than two processes. The disadvantage to space sharing is that it

requires cooperation from processes in some way. They must be malleable, or able to

23

control the number of runnable threads. Fortunately, because parallel applications

are already developed to be portable to machines with varying numbers of hardware

contexts, malleable processes are not uncommon. As a result, we focus on facilitating

multiprogramming specifically by way of space sharing malleable programs in our

efforts.

24

Chapter 3

Related Work

SCAF seeks to solve performance and administrative problems related to the

execution of multiple multithreaded applications on a many- or multi-core shared-

memory system. This section outlines related work, both in the world of shared-

memory parallelism, and in the world of distributed-memory parallelism. Table 3.1

contains a summary of the features of related work, and compares them to SCAF. All

of the methods enumerated in the table are discussed in more detail in this section.

25

Im
p
le

m
en

ta
ti

on

A
vo

id
s

re
co

m
pi

la
tio

n

A
vo

id
s

m
od

ifi
ca

tio
ns

Con
sid

er
s

pr
oc

es
s

effi
cie

nc
y

A
vo

id
s

a
pr

io
ri

te
st

in
g

/
se

tu
p

M
ul

ti-
pr

oc
es

s

su
pp

or
t

S
C
A
F

X
X

X
X

X
R

S
M

[4
]

×
×

×
X

X
D

T
iO

[5
]

X
X

×
(N

/A
)

X
E

R
M

fM
A

[6
]

×
×

×
(N

/A
)

X
A

P
iC

P
C

[2
]

×
X

X
×

X
H

o
o
d

[1
3]

×
×

×
(N

/A
)

X
P

C
fM

S
M

P
[7

]
X

X
×

(N
/A

)
X

L
it

h
e

[1
4]

X
X

×
(N

/A
)

×
C

D
P

A
S

[3
]

×
×

X
×

X

T
ab

le
3.

1:
F

ea
tu

re
co

m
p
ar

is
on

of
re

la
te

d
im

p
le

m
en

ta
ti

on
s

(a
d

h
o
c

ac
ro

n
y
m

s
u
se

d
fo

r
b
re

v
it

y
)

26

3.1 Distributed Memory Systems

Flexible and dynamic scheduling for distributed memory parallel applications

and systems has been an active area of research. SCAF does not compete in the

distributed memory world, as it is designed to solve problems pertaining to shared-

memory systems. In particular, work in the distributed memory domain tends to focus

on mechanisms allowing applications to dynamically migrate and adapt [15–25], or

on scheduling for batch-type systems [1,15,26–37]. On single shared-memory systems,

migration is not an issue and batch scheduling is rarely used. However, since the

problems of distributed systems are similar at a high level, we briefly describe some

of the related work in this section.

Kale et al [38] implemented a system for dynamically reconfiguring MPI-based

applications through a system using a processor virtualization layer. Crucially, this

allows the migration of work from one node of the distributed system to another.

Load balancing is effectively achieved by creating many virtual processes for each

physical processor. The system then can reconfigure parallel jobs at runtime based

on the arrival or departure of other jobs. However, recompilation of a participating

application is required, and small modifications to the source code are necessary.

Sudarsan et al [39] improved on this work with ReSHAPE, their framework

for dynamic resizing and scheduling. Using the provided resizing library and API,

application users can specify shared variables suitable for redistribution between

iterations of an outer loop. The points at which redistribution is safe must be specified

by the programmer. Between each iteration, a runtime scheduler makes decisions on

27

whether to expand or shrink a job based on node availability and observed whole-

application performance. The primary disadvantage of ReSHAPE is that it requires

applications to be significantly rewritten to use their API.

3.2 Shared Memory Systems

Relatively little work has been done concerning multiprogrammed, multithreaded

scheduling and the problem of oversubscription. Tucker et al [7] observed serious

performance degradation in the face of oversubscription on shared-memory multipro-

cessors. They showed that by modifying a version of the Brown University Threads

package used on an Encore Multimax, a centralized daemon can (strictly) limit the

number of running threads on the system to avoid oversubscription by suspending

threads when necessary. By modifying only the system’s threads package, they were

able to support many programs using that threads package without modification.

However, their work has several disadvantages as compared to SCAF work: (1) the

partitioning policy does not take into account any runtime performance measure-

ments, but assumes all processes are scaling equally well, and (2), the scheme’s ability

to control the running number of threads depends on the use of the specific par-

allel paradigm where the programmer creates a queue of tasks to be executed by

the threads, and the assumption that the application does not depend on having

a certain number of threads running. If an application does not meet both require-

ments, then it may run incorrectly without warning. This is a restriction of operating

within a threads package where unsupported program behavior cannot always be

28

detected at runtime. By contrast, SCAF offers modified runtime libraries which pro-

vide higher-level abstractions. Unsupported program behavior which would imply

non-malleability is detected as it is requested, after which SCAF avoids incorrect

behavior by holding the number of threads fixed for that running program.

Arora et al [40] designed a strictly user-level, work-stealing thread scheduler

which was implemented in the “Hood” [13] prototype C++ threads library, and

later in the Cilk-5 [41] language’s runtime system. Work stealing is an approach

in which the programmer specifies all available parallelism in a declarative manner,

and then the implementation schedules parallel work to a certain number of worker

threads (using deques, or simply work stealing queues) which are allowed to “steal”

work from one another in order to load balance. The number of worker threads is

usually equal to the number of available hardware contexts. The problem that Arora

solves is that when multiple processes are running, each doing work stealing with

multithreading, then having independent worker threads for each process leads to

more worker threads than hardware contexts, leading to over-subscription of the

machine and poor performance. Their approach is to combine the work-stealing

queues across applications, and using a number of shared workers that does not

result in oversubscription. Their approach also accounts for serial processes when

avoiding oversubscription.

The approach used in Hood [13] has several differences with the goals and

capabilities of SCAF. First, Hood can only reduce oversubscription when the par-

allel processes all utilize work-stealing libraries. In contrast, SCAF reduces over-

subscription for any malleable parallel processes, regardless of whether they use work

29

stealing or not. Second, although Hood and SCAF have the same goal of avoiding

oversubscription, they do so using different mechanisms: SCAF relies on malleable

processes to reduce the number of threads, whereas Hood has a specialized solution

for work stealing that relies on the work stealing programming model, without taking

advantage of malleability. Third, parallel threads using Hood are not allowed to use

blocking synchronization, since Hood might swap out a lock-holding thread, which

would prevent other threads from making progress. SCAF has no such restriction,

since it reduces the number of threads created, rather than allowing threads to be

swapped out. Fourth, the implementation of Hood is complex and difficult since it

has the same restriction as user processes, in that Hood code must not use blocking

synchronization, which is simpler, but might cause tremendous slowdowns if the

kernel preempts a process which holds locks, causing other workers to block. Fifth,

Hood does not take any run-time measurements, and hence cannot favor processes

with better scalability, whereas SCAF does, which helps to improve overall system

throughput by rewarding processes that scale better.

Hall et al [2] performed experiments that emulate using a similar centralized

daemon and modifications to the Stanford SUIF auto-parallelizing compiler to dy-

namically increase or decrease the number of threads at the start of a parallel section

based on system load and runtime measurements of how effectively each parallel

section uses its hardware contexts. Kazi et al [3] adapted four parallel Java applica-

tions to their own parallelization model and implementation so that each application

reacts to observed system load and runtime performance measurements in order to

increase or decrease its number of threads at runtime before each parallel section.

30

SCAF builds on ideas developed in these works. Compared to SCAF, their systems

have the following drawbacks: (1) they require recompilation or modification of the

programs in order to control the number of threads; and (2) despite controlling

compilation, they are unable to avoid depending on a priori profiling for making

allocation decisions. SCAF works with unmodified, SCAF-oblivious binaries, and

collects all of its information regarding efficiency during program execution, avoiding

the need for careful application profiling.

Suleman et al [42] describes a feedback-based system for choosing the optimal

number of threads for a single program at runtime. Specifically, the system can

decrease the number of threads used in order to improve efficiency in the face of

critical sections and bus saturation. This system requires no a priori knowledge

of programs, and utilizes a serialized “training” phase to reason about serial and

parallel performance. However, the system does not attempt nor claim to reason

about multiprogramming, and it is unclear if it could be adapted to do so. SCAF

carefully avoids any serialization and seeks primarily to handle multiprogramming.

Other related works use varying techniques and metrics to control single-program

parallelism [43–51], but similarly do not explore multiprogramming.

More recently, Pan et al [14] created the “Lithe” system for preventing hardware

oversubscription within a single application, or process, which composes multiple

parallel libraries. This is a separate problem from the one discussed in this paper.

For example, consider a single OpenMP-parallelized application which makes a call

to an Intel TBB-parallelized library function. The result is often significant oversub-

scription: on a system with N hardware contexts, the OpenMP parallel section will

31

allocate N threads, and then each of those threads will create another N threads

when Intel TBB is invoked, resulting in N2 threads. The Lithe system transparently

supports this composition in existing OpenMP and/or Intel TBB binaries by provid-

ing a set of Lithe-aware dynamically-loaded shared libraries. However, it should be

made clear that Lithe makes no attempt to coordinate multiple applications running

concurrently, and does not vary the number of threads which the application is using

at runtime. Like much of the work it improves upon [52–55], Lithe strictly avoids

oversubscription potentially resulting from composition of parallel libraries within

a single process. SCAF builds on Lithe’s idea of supporting existing applications

via modified runtime libraries, but focuses instead on the composition of parallel

libraries used in separate, concurrently-executing executables.

McFarland [4] created a prototype system called “RSM,” which includes a

programming API and accompanying runtime system for OpenMP applications.

The application must be modified to communicate with the runtime system via

API calls between parallel sections. Once recompiled, the application communicates

with the RSM daemon and depends upon it for decisions regarding the number of

threads to load beginning with the next parallel section. The RSM daemon attempts

to make allocation decisions according to observations of how much work is being

performed by each process at runtime. An application’s useful work is taken to be

the number of instructions retired per thread-seconds. Processes are given larger

allocations if they perform more useful work. Unlike RSM, SCAF does not require

program recompilation. Further, SCAF compares efficiency observed at runtime,

32

considering the improvement in IPC1 gained by parallelization, whereas RSM only

considers the absolute IPC of each process.

In the interest of preserving existing standards and interfaces, Schonherr et al [5]

modified GCC’s implementation of OpenMP in order to prevent oversubscription.

The implementation supports applications without recompilation. However, their

system implements only a simple “fair” allocation policy, where all applications are

assumed to scale equally well, and no runtime performance information is taken into

account.

Hungershöfer et al [6] implements a runtime system and daemon for avoiding

oversubscription in SMP-parallel applications. Their system requires modifications

to the applications involved, and provides a centralized server process which controls

thread allocation. However, their method for maximizing accumulated speedup de-

pends on significant offline analysis of the applications for determining their speedup

behaviors, parallel runtime components, and management/communication overheads.

3.3 Related Implementations

As part of related work, some solutions have been implemented and explored.

These are listed below in order of their similarity to SCAF, and their features are

enumerated in Table 3.1.

1. RSM, [4]

2. Dynamic Teams in OpenMP, [5]

1Instructions per cycle

33

3. Efficient Resource Management for Malleable Applications, [6]

4. Adapting parallelism in compiler-parallelized code, [2]

5. Hood, [13]

6. Process control and scheduling issues for multiprogrammed shared-memory

processors, [7]

7. Lithe, [14]

8. A comprehensive dynamic processor allocation scheme for multiprogrammed

multiprocessor systems, [3]

34

Chapter 4

Design

4.1 System Overview

A system running SCAF consists of any number of malleable processes, any

number of non-malleable processes, and the central SCAF daemon. The SCAF dae-

mon is started once, and one instance serves all users on the system. All processes

are SCAF-oblivious, and are started by users in the usual uncoordinated fashion.

Parallel binaries load SCAF-compliant runtime libraries in place of the unmodified

runtime libraries — this does not require program modification or recompilation. The

SCAF-compliant libraries automatically determine whether a process is malleable

at runtime, transparently to the user. A non-malleable process will proceed as usual,

requiring no communication with the SCAF daemon, while a malleable process will

consult with the SCAF daemon throughout its execution. A process which loads

no SCAF-compliant parallel runtime libraries is assumed to be non-malleable and

proceeds normally. The SCAF daemon is responsible for accounting for the load

incurred by any non-malleable processes. Specifically, hardware contexts used by

non-malleable processes must be considered unavailable to malleable processes.

35

4.2 Conversion from Time-sharing to Space-sharing

By default, modern multi-user operating systems support the execution of

multiple multithreaded applications by simple time-sharing. Parallel processes are

unaware of one another, and each assume that the entire set of hardware contexts

is available. In general, this results in poor efficiency and performance unless the

system is otherwise quiescent (i.e., unloaded). Refer back to Section 2.2.3 for more

details on this behavior. As an extreme example, we found that on a small 4-core

Intel i5 2500k system running Linux 3.0, the per-instance slowdown when running

two instances of the NAS NPB “LU” benchmark (each on 4 threads) was as much as

a factor of 8 when compared to using space sharing. With the same hardware running

FreeBSD 9.0 the penalty was much greater, exhibiting a slowdown by a factor of

more than 100. An investigation revealed that LU implements spinlocks in userland

which perform poorly without dedicated hardware contexts [56]. Modifying the

synchronization primitives used by the system’s libgomp runtime library won’t help,

since the problematic synchronization lies in LU itself. Short of perhaps modifying

the application, the best solution is space sharing.

The objective of the SCAF system is essentially to effect space-sharing among

all hardware contexts running on the system, such that the operating system can

schedule active threads to idle hardware contexts and avoid the fine-grained context-

switching and load imbalances incurred by heavy time-sharing.

36

4.3 Sharing Policies

In order to justify the policies which the SCAF daemon implements, a brief

discussion of possible policies is useful. The following terminology is used:

• Runtime of a process j: Tj

• Speedup of a process j: Sj

• Threads allocated to process j: pj

• Number of hardware contexts available: N

• Number of processes running: k

Additionally, we define per-process “efficiency” as E ≡ Sj

pj
.

4.3.1 Minimizing the “Make Span”

In distributed memory systems, where users generally submit explicit jobs to a

space-sharing job manager, the de facto goal is to minimize the “make span,” which

is the amount of time required to complete all jobs.

However, the algorithms to solve this problem require precise information

concerning not only the speedup behavior of each job, but also accurate estimates

of the total work required until a job’s completion. This implies a batch-processing

model, possible for large distributed memory machines. On shared-memory systems,

jobs are run without prior intimation by the user, so the run-time system cannot

predict when applications will start, nor when a running application will end. As

a result, the make span cannot be applied. Multithreaded processes which operate

37

on a virtually infinite stream of input data or requests are also not uncommon. In

these cases, the “make span” cannot be applied since processes do not necessarily

terminate. This actually represents a large class of applications including web servers,

web caching software, file servers, transaction processing, database servers, customer

relationship management software, and many more.

Therefore, a new goal is required for a runtime system such as SCAF. Given

that the future system load cannot be predicted by the run-time system, we seek

an instantaneous metric which will allow SCAF to reason about the performance of

processes at runtime. Furthermore, the optimization problem should be constrained

such that the system’s behavior is consistent with the expectations of an interactive

shared-memory machine.

4.3.2 Equipartitioning

When performing equipartitioning, fully “fair” sharing of the hardware re-

sources is achieved, without concern for how efficiently said resources are being used.

Each process occupies an equal number of hardware contexts:

pj ←
⌊
N

k

⌋
(4.1)

The remaining (N mod k) hardware contexts are distributed arbitrarily among

(N mod k) processes to ensure full utilization.

The clear advantage to equipartitioning is simplicity. In fact, with equipar-

titioning, there is no optimization problem, and no performance metrics need be

considered: it is merely a policy. Oversubscription and underutilization are avoided,

38

and no a-priori performance measurements are required. The problem with equipar-

titioning is that it can result in low system efficiency. For example, given program

A with SA(pA) = 1 + 4
5
(pA − 1) and program B with SB(pB) = 1 + 1

8
(pB − 1), one

might intuitively want to allow the better-behaved program, A, to use more hard-

ware contexts than B since it makes better use of each hardware context. However,

equipartitioning ignores observed speedup. The number of threads that each process

receives is simply fixed, with no optimization goal in mind. With SCAF, we seek to

improve on the equipartitioning allocation policy by rewarding processes with more

threads when they are observed to scale well with more threads.

4.3.3 Maximizing System IPC

In order to improve upon equipartitioning and make smarter allocations, a

tempting approach is to maximize system-wide IPC (Instructions Per Cycle). How-

ever, in this subsection we will see that this optimization goal leads to a poor

allocation policy.

IPC is an attractive metric for processes because it can actually be sampled as

an instantaneous metric for an individual process, including all threads. (See Section

2.1.1 for a discussion of threads and processes.) Perhaps equally important is the

fact that IPC is already a familiar performance metric for computer architects and

software developers.

Consider an allocation policy, “max-IPC,” for space sharing which allocates pj

threads to process j such that the sum of IPC achieved over all N hardware contexts

39

is maximized. In the context of the TileGX example examined in Section 2.2, what

would this look like? Figure 4.1 shows output from pidpcpu and plotpidpcpu (see

Section 2.2.1), showing the behavior of CG and LU when space-shared optimally

for system IPC. For comparison, refer back to Figure 2.4, which shows CG and LU

space-shared according to equipartitioning.

 0

 6

 12

 18

 24

 30

 36

 0 20 40 60 80 100 120 140 160 180

C
P

U
s

Time (s)

Figure 4.1: Space sharing allocated for maximum system IPC on TileGX/Linux

In Figure 2.4, during the multiprogrammed section (time 0 to 100 seconds) CG

40

is achieving 6.1 IPC, while LU is achieving 11.7 IPC. After time 100 seconds, LU

finishes its execution and multiprogramming ends.

The important thing to note about Figure 4.1 is that while both processes are

running, the LU process has been given all threads except four. Why is this? The

allocations were chosen by our max-IPC policy at all points in time to maximize the

system’s total achieved IPC, and it turns out that the individual threads in LU have a

much higher IPC than those in CG. As a result, the strategy for max-IPC in this case

is simple: give LU all of the threads. Since assigning CG 0 threads would devolve our

system into exclusive scheduling, we instead allocate CG 4 cores and LU the other

32. This strategy does indeed improve IPC: with equipartitioning, CG achieved 6.1

IPC on 18 cores, while LU achieved 11.7 IPC on the other 18 cores; with max-IPC,

CG achieved only 1.2 IPC, while LU achieved a whopping 22.4 IPC. Just the 22.4

IPC achieved by LU alone is now significantly greater than the 6.1 + 11.7 = 17.8

IPC seen with equipartitioning.

We have seen that system IPC has been improved, and the author asserts that

this is indeed the configuration which maximizes IPC in this example. We are left

with the impression that by maximizing IPC, we have in some sense maximized the

utilization or efficiency of the machine. Unfortunately, we will see that this is untrue.

Did maximizing IPC actually make better use of the hardware? To judge this, we’ll

refer to Table 4.1, which summarizes the changes seen in our CG+LU scenario when

moving from equipartitioning to max-IPC.

Crucially, Table 4.1, includes high-level efficiency and speedup numbers, only

available after each process finishes execution. We see while system IPC has improved

41

from 17.8 to 23.6 IPC by increasing LU’s allocation, total system efficiency (i.e., the

average speedup contributed by each core) has decreased from 0.81 to 0.67! In fact,

giving LU more cores was exactly the wrong move: it turns out that CG is easily

the more efficient parallel process, and therefore would have made better use of

additional cores.

Max-IPC favored LU merely because it had a higher IPC than CG. However,

in general, two IPC metrics are only meaningfully comparable when the instructions

(“I”) are the same. This is due to the fact that some instructions require more or less

time to execute, depending on the hardware architecture. In the field of computer

architecture, a higher IPC is often used as evidence of faster hardware, with the

assumption that the workload binary remains constant. By favoring processes with

threads running at higher IPC rates, the optimization goal of Max-IPC is implicitly

doing exactly the opposite: concluding that one binary’s execution is outperforming

another’s on the same hardware based on its higher achieved IPC. This comparison is

essentially meaningless, since we cannot assume that our processes consist of similar

streams of instructions.

For example, a floating square root instruction on a given machine may require

100 cycles, while an integer addition instruction may only require 2 cycles. As a

result, a square root-intensive parallel process will likely exhibit a very low IPC per

speedup (say, 0.01), while an integer addition-intensive parallel process may exhibit

very high IPC per speedup (say, 1.0). Now, say both processes are implemented with

perfect parallel efficiency. Max-IPC would dictate simply giving the addition-intensive

parallel process the entire machine, simply because it uses shorter instructions! This

42

Technique Process Threads Total IPC Speedup Efficiency

EQ


CG 18 6.1 17X 0.94
LU 18 11.7 12X 0.67

Sum/system 36 17.8 29X 0.81

Max-IPC


CG 4 1.2 4X 1.00
LU 32 22.4 20X 0.63

Sum/system 36 23.6 24X 0.67

Table 4.1: Results of Max-IPC compared to Equipartitioning

is plainly undesirable: the higher per-thread IPC of the integer workload is merely

an artifact of the instructions used, with no bearing on parallel or even architectural

efficiency. We argue that maximizing system IPC is not a meaningful goal: it does

not directly take scalability into account, and in many cases will simply unfairly

allocate in favor of processes with denser sequences. We are certainly not the first

to argue that IPC is likely misleading when naively used to analyze multi-threaded

behavior: Alameldeen and Wood [57] arrives at much the same conclusion.

4.3.4 Maximizing the Sum Speedup

Another appealing goal is to maximize the total sum of speedups achieved by

the running processes. That is, given a function Sj(pj) describing the speedup of

each process with pj threads, maximize
∑
∀j Sj(pj) by choosing pj for all j = 1 . . . k.

By maximizing the sum speedups, the average speedup obtained per process is

maximized. If allocations such as pj are fixed throughout a program’s execution,

then this optimization problem only needs to be evaluated one time, when the

processes begin execution.

43

Maximizing the sum of speedups achieved makes sense in the context of choos-

ing core allocations: the ideal outcome of allocating a core is that it will contribute a

large improvement to the relevant process’s performance. This is exactly “speedup.”

Consider a theoretical “Max-speedup” allocation policy, which has perfect knowledge

of all process’s current and near-future speedup behavior. In other words, it knows

Sj(pj) for all j, all current conditions, and for all points in time of process execution.

At a given instant in time, to maximize speedup, Max-speedup can follow a simple

44

algorithm to maximize total speedup:

Algorithm 1: Max-speedup, given perfect knowledge of speedup behaviors

Navailable ←− N

for j ←− 1 to k do

pj ←− 1

Navailable ←− Navailable − 1

while Navailable ≥ 1 do

improvementmax ←− 0

chosenProcess←− NONE

for j ←− 1 to k do

improvement←− Sj(pj + 1)− Sj(pj)

if improvement > improvementmax then

improvementmax ←− improvement

chosenProcess←− j

pchosenProcess ←− pchosenProcess + 1

Navailable ←− Navailable − 1

Algorithm 1 will result in ideal allocations p, but fatally depends on a fully

defined and accurate Sj for all j ∈ k. Discovering and describing S becomes a

complex problem with malleable processes where both the speedup function Sp and

process allocations can effectively change over time. For example, different parallel

sections of code in the same program may vary in how well they make use of hardware

45

contexts. Even if we perform extensive testing and characterization of each parallel

section in applications before runtime, in general parallel efficiency may still vary

unpredictably due to inputs to the processes. Not only would fully describing S

be enormously complex, it would also expensive in terms of testing time, and a

significant setback for users. We seek to implement a system which is as easy to use

as current systems, without requiring that all of the applications involved be heavily

profiled and deeply understood for all possible inputs. Therefore, what is needed is

a system which simplifies the problem slightly, such that efficiency observed only at

runtime is taken into account, and optimization of allocations is made with only the

near future in mind.

4.3.5 Maximizing the Sum Speedup Based on Runtime Feedback

This is the approach we have devised which is used in SCAF. The goal is to

partition the available hardware contexts to processes quickly, adjusting over time

according to information available at runtime. Rather than optimizing for the entire

duration of process runtimes, which cannot be known, we optimize only for the near

future. However, the details of such a system are not immediately clear. When should

allocation decisions be made? How do we reason about speedups?

One can begin to imagine a system in which allocation decisions are made

per parallel region. However, these parallel regions often begin and end execution

at a very high frequency. Hence changing the thread allocation for each parallel

region is infeasible since the costs of thread initialization and termination as well as

46

allocation computation would result in prohibitively high overhead. Ideally, the allo-

cation should change relatively infrequently and asynchronously. However it should

change after longer intervals during an application’s run-time, since the application’s

behavior may change over time, perhaps because it moves to a different phase in

the execution. As a corollary, since we cannot possibly react to individual parallel

regions, we should reason about speedups in a per-process manner. This also has

the advantage of keeping the scheme adaptable to parallel processes that do not use

the paradigm of parallel regions.

Consequent to the discussion above, SCAF clients must maintain and report

a single efficiency estimate per process. It is the client’s responsibility to distill its

efficiency information down to this single constant, and refine it over time. This

is a nontrivial task for a pure runtime system since capturing efficiency informa-

tion requires information on the serial performance of sections. SCAF’s lightweight

serial experiments, discussed in section 5.2.1, represent a solution for gaining this

information without incurring the penalty of temporary serialization, which can be

extremely expensive.

This strategy for estimating efficiency is best explained by referring back to

our CG+LU example. Starting with equipartitioning, we would like to be able to

reason somehow that CG will scale better than LU, and allocate more threads to CG.

However, at run time we cannot resort to temporarily serializing a parallel section

for timing purposes, since it may run for an unknown period of time. Therefore, the

“speedup” and “efficiency” columns in this table are unavailable at run time. (Gray

shading is used to indicate this.) We have IPC rates for each parallel process, but

47

Total Serial
Process Threads IPC IPC IPC Ratio Speedup Efficiency

CG 18 6.1 0.35 6.1/0.35 = 17.4 17X 0.94
LU 18 11.7 0.85 11.7/0.85 = 13.7 12X 0.67

Table 4.2: Using IPC ratios to estimate speedup for runtime feedback

they are not comparable: CG speeds up better than LU yet has a lower IPC. However,

if we can somehow obtain an idea of the serial IPC of each process, then we find that

the ratio of parallel IPC to serial IPC provides a reasonable approximation of the

unavailable speedup. In the case of CG and LU, we see that CG’s lower parallel IPC

explained by its lower serial IPC. More importantly, we see that CG nets a greater

relative IPC improvement than LU when run in parallel. With serial experiments

providing a serial IPC estimate, we can usefully compare these improvements and

attempt to reason about speedup and efficiency. Without serial experiments, we have

no context for IPC measurements and thus no basis for comparison.

To support our claim that using the ratio of parallel IPC to serial IPC for a

program can usefully approximate speedup, please refer to Figures A.6-A.14 in the

Appendix, which compare the IPC ratio (plotting with points) to actual speedup for

nine NAS benchmarks on TileGX. Although the results here are very accurate, we

do not claim that IPC ratio is a perfect indicator of speedup in general. When cycles

counts include instructions which are not useful work (such as barriers), this estimate

can be misleading. Our hope is that SCAF clients can avoid counting these cycles

since many of these synchronization constructs will be in the modified runtimes (e.g.,

libgomp) themselves.

48

By default, lightweight experiments return instructions per cycle (IPC) as mea-

sured by the PAPI runtime library [58] since this is generally available from hardware

counters. PAPI returns the IPC achieved by the calling thread alone. However, it’s

worth noting that experiments could return any metric which is generally indicative

of program progress. For example, floating point operations completed per second

(also available from PAPI) may be a more reliable indicator of work if, for example,

it is known that the machine is primarily used for floating point work. This is a

simple compile-time option in SCAF. However, while it is well understood that IPC

is not an ideal work performance metric, we choose to use it by default in SCAF in

order to avoid limiting SCAF’s usefulness to just floating point workloads.

From a lightweight experiment, SCAF obtains an estimate of the serial IPC of a

section. This measurement is then used later at runtime to compare against observed

parallel IPC measurements in order to estimate the efficiency for that specific parallel

section and the process.

The efficiency estimate allows the central SCAF daemon to reason about

how efficiently each process makes use of more cores relative to the other clients

(processes). Specifically, the daemon uses this efficiency estimate to build a simple

speedup model

Sj(pj) ≈ 1 + Cj log pj, where Cj ←
Ejp

′
j − 1

log p′j
(4.2)

where Ej is the reported parallel efficiency from client j, and p′j is the previous

allocation for j. This can be thought of as the simplest form of curve fitting, where the

49

only parameter to the curve is the constant factor Cj. The model describes a simple

sublinear speedup curve specified by tuples (number of threads, speedup) which goes

through the points (1, 1) and (p′j, Ejp
′
j), since Sj = Ejp

′
j. More sophisticated speedup

models have certainly been developed [59,60]. However, SCAF’s simple “fitting” is

performed repeatedly, adjusting to each round of feedback from the client and reacting

dynamically rather than depending on a static model. Such a static model would fail

to react to changes in scalability over time, and would require profiling the entire

application beforehand.

The above model works well since Cj can be adjusted to approximate speedup

curves of real applications using only a single measurement representing recent

efficiency. A dynamic system which fits using multiple distinct speedup points might

overfit to the application’s current behavior, and will react less quickly to changing

behavior.

Next, we discuss exactly how the daemon arrives at such allocations. Using the

speedup model in equation 4.2, the SCAF daemon is faced with the optimization

problem

max
p

{
k∑

i=1

Si(pi)

∣∣∣∣∣p > 0
∧ k∑

i=1

pi = N

}
(4.3)

or, equivalently using equation 4.2,

max
p

{
k∑

i=1

1 + Ci log pi

∣∣∣∣∣p > 0
∧ k∑

i=1

pi = N

}
(4.4)

Let Qi be defined as Qi = Ci∑
j Cj

. Since
∑

j Cj (a sum of constant quantities)

and 1 are constant quantities, we can equivalently express our optimization problem

50

as

max
p

{
k∑

i=1

Qi log pi

∣∣∣∣∣p > 0
∧ k∑

i=1

pi = N

}
(4.5)

Next, we define Pi to be pi
N

, such that
∑

i Pi = 1. Since 1
N

is constant, we can

express our optimization problem as

max
P

{
k∑

i=1

Qi logPi

∣∣∣∣∣P > 0
∧ k∑

i=1

Pi = 1

}
(4.6)

We can obtain an equivalent minimization problem by taking the negative of

the objective function. Then, we add the constant quantity
∑

iQi logQi, resulting

in

min
P

{
k∑

i=1

Qi logQi −
k∑

i=1

Qi logPi

∣∣∣∣∣P > 0
∧ k∑

i=1

Pi = 1

}
(4.7)

or, after combining sum terms,

min
P

{
k∑

i=1

Qi log
Qi

Pi

∣∣∣∣∣P > 0
∧ k∑

i=1

Pi = 1

}
(4.8)

If we now interpret Q and P as discrete probability distributions, we see that

equation 4.8 describes the relative entropy of of Q with respect to P , or the Kullback-

Leibler divergence of P from Q. This relative entropy is known to be always non-

negative, and equals zero only if Q = P . Therefore, the single optimal solution is at

P = Q. In other words, pi = NQi, or

pi =
NCi∑
j Cj

(4.9)

As per equation 4.9, the SCAF daemon sets the allocations p by computing

the vector C, then assigning pi to be the fraction Ci/
∑
C of N . Of course, the real

allocation needs to be an integer, and starvation must avoided by ensuring that no

51

feedback loop

Client foo scafd Client baz

OS’s time-sharing scheduler

performance metric

Efoo = f1(pfoo)

performance

metric Ebaz

resource allocation

pfoo = f2(Efoo)

resource alloca-

tion pbaz

available resources N

Figure 4.2: Runtime feedback loop in SCAF’s partitioning scheme

process receives an allocation less than 1. Section 5.1 describes how p is used to

create partitions satisfying these requirements.

It can be shown that had our assumed speedup model been linear instead of

logarithmic, then the optimization problem becomes immediately uninteresting: the

optimal solution is always to allocate the entire machine to the single process with

the greatest speedup function slope, starving other processes. This would be an

undesirable allocation.

Figure 4.2 illustrates the feedback loop design in SCAF. Consider a machine

with 16 hardware contexts. Say process foo is observed to scale fairly well, achieving

an efficiency of 2/3 on 12 threads, while baz is observed scaling poorly, achieving

an efficiency of only 3/8 on 4 threads. The SCAF daemon, applying the speedup

52

model and solving the optimization problem, will arrive at Cfoo = 8−1
log 12

, Cbaz = 3/2−1
log 4

and compute new allocations pfoo = b14.18c = 14, pbaz = b1.82c+ 1 = 2. (Note the

actual strategy for converting precise allocations to integers is simplified here: see

Section 5.5 for more details.) If the resulting feedback indicates a good match with

the predicted models, then the same model and solution will be maintained, and

allocations will remain the same. If one or more feedback items indicate a bad fit,

either due to a change in program behavior or poor modeling, then a new model will

be built using the new feedback information. For example, if foo scales better than

the 1 + 8−1
log 12

log 14 = 8.43X speedup anticipated by the previous model, then a new

model will be created accordingly, and foo’s allocation will increase further.

For comparison with Max-IPC (Figure 4.1), equipartitioning (Figure 2.4), gang

scheduling (Figure 2.3), an unmodified fine-grained time sharing system (Figure 2.2),

and exclusive scheduling (Figure 2.1), please refer to Figure 4.3, which depicts our

CG+LU scenario running with space sharing allocated via SCAF’s max-speedup

policy. Finally, Table 4.3 summarizes all of the scheduling techniques discussed in

this paper thus far, including the three space-sharing allocation policies discussed in

this chapter.

In Table 4.3, the rightmost column shows the average efficiency of the entire

system during the multiprogrammed period of runtime. Because we are computing

efficiency over all 36 of the TileGX’s cores, one can equivalently think of average

efficiency as the average speedup obtained for each core on the system. Please note

that the speedups reported in this table are all effective speedups based on serial

runtime divided by parallel runtime: they are not based on the internal speedup or

53

efficiency estimates that SCAF’s runtime feedback mechanism uses.

Exclusive scheduling, which is not a form of multiprogramming, will have the

efficiency equal to that of each program running individually on the entire system.

The whole-system efficiency of CG is relatively high, at 0.80, while LU only achieves

an efficiency of 0.62. Due to hardware contention, the unmodified system (utilizing

fine-grained time sharing of threads) suffers from low speedups and low system

efficiency. Gang scheduling effectively averages the efficiencies of the two processes

(compared to exclusive runs) because it is simply toggling between the two in time.

Equipartitioning notably improves on this average due to the fact that each process

is now running on fewer hardware contexts via space sharing, which in general results

in higher efficiency. Next we see the experimental “Max-IPC” policy applied to space

sharing. The only difference between equipartitioning and max-IPC is that a larger

fraction of the 36 cores is given to LU in max-IPC. The result is an increase of 8X

speedup for LU, but a larger decrease of 13X speedup for CG, leading to a lower sum

of speedups and lower system efficiency. Finally, we see the SCAF system, which

allocates for space sharing according to an optimization goal of maximizing sum of

speedups. With SCAF, rather than giving LU more threads due to its higher IPC,

we allocate more threads to CG because of its higher observed efficiency. The result

(when compared to equipartitioning) is a decrease of only 4X speedup for LU, and a

larger 6.2X increase for CG, leading to an overall improvement in sum of speedups

and system efficiency.

54

 0

 6

 12

 18

 24

 30

 36

 0 20 40 60 80 100 120 140 160 180

C
P

U
s

Time (s)

 CG LU

Figure 4.3: Space sharing allocated for maximum system speedup via SCAF on

TileGX/Linux

55

P
ro

ce
ss

36
-c

or
e

T
ec

h
n
iq

u
e

A
ll
o
ca

ti
on

S
h
ar

in
g

C
G

L
U

∑
E

ffi
ci

en
cy

P
ol

ic
y

M
ec

h
an

is
m

S
p

ee
d
u
p

S
p

ee
d
u
p

S
p

ee
d
u
p

(s
p

ee
d
u
p
/c

or
e)

E
x
cl

u
si

ve
sc

h
ed

u
li
n
g

N
on

e
N

on
e

28
.9

X
22

.4
X

(N
/A

)
0.

80
,

th
en

0.
62

F
in

e-
gr

ai
n
ed

,
“U

n
m

o
d
ifi

ed
”

N
on

ea
ti

m
e

sh
ar

in
g

6.
4X

4.
1X

12
.5

X
0.

35

C
oa

rs
e-

gr
ai

n
ed

,
G

an
g

sc
h
ed

u
li
n
g

E
q
u
al

b

ti
m

e
sh

ar
in

g
15

.6
X

10
.8

X
26

.4
X

0.
73

E
q
u
ip

ar
ti

ti
on

in
g

E
q
u
al

S
p
ac

e
sh

ar
in

g
17

.0
X

12
.0

X
29

.0
X

0.
81

“M
ax

-I
P

C
”

M
ax

-I
P

C
S
p
ac

e
sh

ar
in

g
4.

0X
20

.0
X

24
.0

X
0.

67

S
C
A
F

M
ax

-s
p

ee
d
u
p

S
p
ac

e
sh

ar
in

g
23

.2
X

8.
0X

31
.2

X
0.

87

T
ab

le
4.

3:
S
u
m

m
ar

y
of

al
l

m
u
lt

ip
ro

gr
am

m
in

g
te

ch
n
iq

u
es

in
C

G
-L

U
sc

en
ar

io
,

in
cl

u
d
in

g
3

sp
ac

e
sh

ar
in

g
p

ol
ic

ie
s

a
O

S
th

re
a
d

sc
h
ed

u
le

rs
g
en

er
a
ll
y

h
av

e
m

a
n
y

so
p
h
is

ti
ca

te
d

sc
h
ed

u
li
n
g

p
o
li
ci

es
av

a
il
a
b
le

,
b
u
t

in
te

n
ti

o
n
a
ll
y

te
n
d

to
d
ea

l
w

it
h
th
re
a
d
s

ra
th

er
th

a
n

p
ro

ce
ss

es
.

b
M

o
re

so
p
h
is

ti
ca

te
d

g
a
n
g
-s

ch
ed

u
li
n
g

p
o
li
ci

es
a
re

p
o
ss

ib
le

b
y

va
ry

in
g

th
e

d
u
ty

cy
cl

e
o
f

ea
ch

p
ro

ce
ss

.
H

ow
ev

er
,

w
e

re
fe

r
to

o
n
ly

th
e

m
o
st

g
en

er
ic

ca
se

h
er

e:
ot

h
er

va
ri

at
io

n
s

su
ff

er
fr

om
th

e
sa

m
e

d
is

a
d

va
n
ta

g
es

fo
r

o
u
r

p
u

rp
o
se

s.

56

Chapter 5

Implementation

SCAF easily integrates into existing systems without requiring modification

or recompilation of programs by providing SCAF-aware versions of parallel runtime

libraries. Specifically, our implementation supports OpenMP programs compiled

with the GNU Compiler Collection as clients.1 Just before execution begins, such

programs load a shared object which contains the OpenMP runtime, libgomp [61]. A

user or administrator can specify that the SCAF-aware version of the runtime should

be used, making any subsequently launched processes SCAF-aware. SCAF-aware

and traditional processes may coexist without issue.

The SCAF-aware implementation of libgomp is a one-time modification of the

original, involving only a few lines of changed code and about two days of graduate

student time. (Mostly spent understanding libgomp.) These minor changes call into

a libscaf client library which is designed to easily support development of additional

runtime ports with similar ease. Intel’s libiomp5 has also been ported. Currently,

the libscaf library itself consists of less than 2000 lines of C.

Although SCAF supports all malleable OpenMP programs, it is important

to note that not all OpenMP programs are malleable. Specifically, the OpenMP

1We have also ported the Intel OpenMP Runtime because the Xeon Phi requires the use of

Intel’s compiler for good performance. The changes required are the same as those required for

libgomp.

57

standard permits programs to request or explicitly set the number of threads in use

by the program [62]. Programs that make use of this functionality are assumed by

SCAF to be non-malleable, since they may depend on this number. An example of

a C OpenMP program with this non-malleable behavior is shown in Listing 5.1:

Listing 5.1: OpenMP code which depends on the number of threads initially used

/* Here the code notes the number of initial threads. */
unsigned num_threads = omp_get_max_threads ();
float ** buckets = malloc(sizeof(float*) * num_threads);
for(i=0; i<num_threads; i++){

buckets[i] = malloc(sizeof(float) * BUCKETSIZE);
}

for(i=0; i <1024; i++){
#pragma omp parallel for

for(j=0; j <1024; j++){
/* Here , the parallel loop is expecting *
* that the number of parallel threads has *
* not changed. */

process_bucket(buckets[omp_get_thread_num ()])
}
aggregate_buckets(buckets , num_threads);

}

In Listing 5.1, “buckets” are set up as temporary processing buffers, one per

thread. Before any parallel loops are run, the total number of threads is recorded via

omp get max threads(). A number of temporary buffers are allocated according to

this number, and then during the execution of parallel loops, threads are expected

to populate these buffers. If the number of threads executing the parallel loop (i.e.,

executing the iterations of for(j)) deviates from num threads, then this may result

in buckets being populated incorrectly. Therefore, while this program can begin

execution on any number of threads, it must not change the number of threads

during execution, and it is implicitly not malleable.

58

Since SCAF implements the client’s OpenMP interface, it can detect when a

non-malleable program requests the number of threads, and simply consider that

application’s thread count to be fixed after that point. As a result, SCAF is safe to

use as a drop-in replacement for GNU OpenMP on a system even if the system runs

a mixture of malleable and non-malleable OpenMP applications.

Finally, we would like to note that implicitly non-malleable code such as in

Listing 5.1 is technically not portable to all OpenMP runtimes, since the OpenMP

specification explicitly allows OpenMP implementations to change the number of

threads unless omp set dynamic(0) is used by the programmer to indicate that it is

not allowed. As a result, an OpenMP implementation using SCAF does not violate

any specifications even without SCAF fixing the number of threads to the value

returned by omp get max threads().

5.1 The SCAF Daemon

Listing 5.2: Running the scafd SCAF daemon, printing status every 1 second

$ scafd -t 1
PID NAME THREADS NLWP
all - 16 -
PID NAME THREADS NLWP
all - 16 -
1234 foo 4 4
5678 bar 12 12

The system-wide SCAF daemon, scafd, communicates with the SCAF clients

using a portable software bus, namely ZeroMQ [63]. For the sake of portability, the

SCAF daemon is implemented entirely in userspace. The scafd implementation is

59

itself multithreaded for the sake of concurrency, with various threads performing

distinct tasks. While the SCAF daemon could run on a separate host, it incurs a

small enough load that this is not necessary. The SCAF daemon has five jobs: 1)

monitor load on hardware contexts due to uncontrollable processes, 2) maintain and

monitor the list of malleable clients, 3) compute the hardware context partitioning

using runtime feedback from the clients, 4) service requests from SCAF clients for

their current hardware context allocation, and 5) print or log its status to standard

output. In this section, we describe the implementation of these five functions.

1. Uncontrollable (non-malleable) process load is monitored through the operating

system’s facilities in a “lookout” thread. For example, on FreeBSD and Linux,

the lookout thread monitors the number of kernel timer interrupt intervals

(i.e., “ticks” or “jiffies”) which have been used by processes which it does not

know to be SCAF-compliant processes and uses this to compute the number

of hardware contexts which are effectively occupied. This is the same general,

inexpensive method used by programs like top. The lookout thread queries the

kernel only once per second by default. The lookout thread is also responsible

for noticing any client processes which have not reported an efficiency estimate

recently, for purposes of detecting long-running sections as described in Section

5.4.

2. The daemon is notified of new clients by their first message over the software

bus. A “reaper” thread runs periodically to poll and check if any client processes

have exited unexpectedly, so that their allocations may be released. However,

60

libscaf normally uses the POSIX atexit(3) mechanism, which allows us

to add a cleanup function to the exit of any process without recompilation.

Normally, this allows a process to actively notify the SCAF daemon when

it exits, and so the reaper is only a backup system. The list of clients and

their state are maintained in a single efficient “UTHASH” hash table structure,

written by Hanson [64]. The client hash table is then shared among all threads in

the scafd process, with POSIX threads-based synchronization where exclusive

access is appropriate. Note that there is no need for SCAF clients to have

access to this table: it is only accessible within scafd.

3. The partitioning of hardware contexts to processes is performed only periodi-

cally at a tunable rate, completely asynchronously from clients’ requests, by

the “referee” thread. By default, the referee computes partitions as described

in section 4.3. Algorithm 2 describes scafd’s computation of new allocations.

Note that the conversion of exact allocations to integers is a surprisingly non-

trivial process which required the implementation of a small library, intpart,

which is distributed with SCAF. intpart and its interfaces are described in

Section 5.5.

An alternative referee which implements equipartitioning is included in the

scafd implementation, since there is no other publicly-available solution for

equipartitioning that we are aware of. The equipartitioning referee can be

requested of scafd either by specifying the -e option upon launch, or by sending

SIGUSR1 to the scafd process after launch. (This can be done while clients

61

are running.) Algorithm 3 describes scafd’s computation of equipartitioned

allocations.

4. Requests from SCAF clients, received over the software bus, arrive in the

form of a message containing the client’s most recent efficiency metric. These

messages are received by the parent scafd thread. This information is stored

immediately but not acted upon immediately, since it arrives at a high rate.

In order to respond to the requests at the same rate, the daemon periodically

evaluates the stored set of client efficiencies and computes a new set of hardware

context allocations. This scheme allows the daemon to respond immediately to

any requests by returning the latest computed allocation, which may not have

incorporated the very latest reported client measurements yet. Other than the

initial message a client sends to announce itself to scafd, this is the only kind

of communication necessary between the clients and the daemon. The rate at

which the daemon computes new allocations is tunable, and defaults to 4 Hz.

The rate at which clients check in is variable, depending on the duration and

frequency of parallel sections in their progams, but generally much higher than

4 Hz in our test suite.

5. Finally, a “scoreboard” thread optionally runs at a chosen interval and prints

current allocations and metrics deemed useful for analyzing scafd behavior.

62

Algorithm 2: scafd’s allocation computation algorithm, targeting max-

speedup

while sleep 1
4

seconds do

sumC ←− 0

rwLock(clients) // exclusive access to client structures

numClients←− hashCount(clients)

for current ∈ clients do

Ccurrent ←− Ecurrent×pcurrent−1
log (pcurrent)

// Compute coefficients

sumC ←− sumC + Ccurrent

for current ∈ clients do

exactAlloccurrent ←− Ccurrent/sumC // Normalize C

availThreads←− N − duncontrollableUsagee

p̂←− intpartFromFloatpart(availThreads, numClients, exactAlloc)

unlock(clients) // release lock and sleep

63

Algorithm 3: scafd’s alternate allocation computation algorithm, target-

ing equipartitioning. No runtime feedback is used.

while sleep 1
4

seconds do

rwLock(clients) // exclusive access to client structures

numClients←− hashCount(clients)

availThreads←− N − duncontrollableUsagee

p̂←− intpartEquipartition(availThreads, numClients)

unlock(clients) // release lock and sleep

5.2 The libgomp SCAF Client Runtime

The meat of the SCAF implementation lies in the libscaf client library, but

for the sake of clarity it is described here in the context of the libgomp client runtime

which uses it. The clients perform three interesting functions: 1) recording baseline

serial IPC using lightweight serial experiments, 2) recording parallel IPC, and 3)

computing parallel efficiency relative to the experiment results as the program runs.

5.2.1 Lightweight Serial Experiments

Figure 5.1 illustrates the lightweight serial experiment technique. In SCAF, a

lightweight serial experiment allows the client to estimate the serial performance of

a parallel section of code. This allows the client to then compute its recent efficiency,

and provide a meaningful metric to the SCAF daemon. By default, the client will

perform an experiment only the first time it executes each parallel section, thus

64

reducing its overhead, although the user is able to tune the client so that it re-runs

the experiment periodically. Experiments proceed as follows: given an allocation of

N hardware contexts to run parallel section A on for the first time, the libscaf will

recognize that it has no serial experiment result for A and is due for an experiment

run. Provided a function pointer to the parallel section, libscaf creates a new

process which will run the parallel section A serially on a single hardware context

concurrently with the original parallel process. Although the experimental process

is a separate proper process, it must share the allocation of N hardware contexts

in order to avoid oversubscription. Oversubscription would likely hurt performance,

but more importantly, it would almost certainly adversely affect the experiment’s

measurements. To accomplish this, libscaf simply reduces the number of hardware

contexts on which the non-experimental process runs on to N − 1. The end result is

an experimental process running on 1 thread for the sake of measuring its achieved

IPC, while the original program still makes progress as usual with N − 1 threads.

Note that the serial execution of the section is not timed, since it may be interrupted

early. Instead, its IPC is recorded, since this will still be meaningful.

The act of creating a new process with the state and instructions required

to proceed as an experimental process may sound technically daunting, unreliable,

or possibly highly specific to libgomp. We assure the reader that this couldn’t be

further from the truth. All that is required to implement this is the ability to set the

number of threads to 1, and the fork(2) system call. Any parallel runtime which

supports malleable processes necessarily supports setting the number of threads to 1.

fork(2) is actually the mechanism by which most processes on a UNIX-like system

65

are created, which virtually ensures its availability. Finally, we note that fork(2)

implements nearly all of the steps required for running an experimental copy of a

process since the child process begins life as a single threaded with exactly identical

memory and process state to the parent. Therefore, at a high level, all that is needed

for experiment creation is for the parent process to set the number of threads to 1,

ensure that the experiment will stop when interrupted or completed, and then call

fork(2) to begin the experiment.

Experiment duration Assuming some speedup is being achieved, the

serial experiment process would take longer to complete than the parallel process

doing the same work. We cannot afford to wait that long. Thus, we end the experi-

mental process as soon as the parallel process finishes the section. The experiment is

interrupted using POSIX signals, and then the experimental result is communicated

back to the parent process using ZeroMQ. The achieved IPC of the serialized section

is recorded by the parent in order to compare it to parallel IPC measurements.

Maintaining correctness Since there will be two instances of the orig-

inal section in execution, care must be taken to avoid changing the machine’s state

as perceived by its users. The forked experimental process begins as a clone of the

original parallel process just before the section of interest. The new process’s mem-

ory is a copy of the original process’s, so there is no fear of incorrectly affecting the

original process through memory operations. The only other means a process has

to affect system state is through the kernel, by way of system calls. For example,

printf(3), fprintf(3), and other high-level functions must eventually use the ker-

nel’s write(2) system call to write to a file or terminal. Similarly, connect(2) must

66

S
er

ia
l

ex
ec

u
ti

on

T
h

re
ad

s
sp

aw
n

ed

P
ar

al
le

l
ex

ec
u

ti
on

work

work

work

work

work

work

work

S
er

ia
l

ex
ec

u
ti

on

(a
)

P
a
ra

ll
el

se
ct

io
n

w
it

h
ou

t
a

li
gh

tw
ei

gh
t

se
ri

al
ex

p
er

im
en

t

S
er

ia
l

ex
ec

u
ti

on

T
ra

in
in

g
co

n
tr

ol
th

re
ad

sp
aw

n
ed

T
h
re

ad
s

sp
aw

n
ed

C
on

tr
ol

th
re

ad
fo

rk
s

tr
ai

n
-

in
g

p
ro

ce
ss

P
ar

al
le

l
ex

ec
u
ti

on

work

work

work

work

work

work

S
er

ia
l

ex
ec

u
ti

on

sy
sc

al
ls

in
te

r-
ce

p
te

d

control

work

T
ra

in
in

g
en

d
s

(b
)

P
ar

al
le

l
se

ct
io

n
w

it
h

a
li
gh

tw
ei

gh
t

se
ri

al
ex

p
er

im
en

t

F
ig

u
re

5.
1:

Il
lu

st
ra

ti
on

of
li
gh

tw
ei

gh
t

se
ri

al
ex

p
er

im
en

ts

67

be used in order for any communication via sockets or the network. Other system

calls, such as gettimeofday(2) or getuid(2) do not affect the machine’s state, and

can be allowed within the experiment. Fortunately, ptrace(2) on platforms such

as FreeBSD and Linux provides a mechanism for intercepting and denying system

calls selectively. On Solaris, the proc(4) filesystem can be used to the same effect.

Therefore, the experimental process runs until an unsafe system call is requested. For

example, a read from a file descriptor is allowed. A series of writes may be allowed,

but only if the write is redirected to /dev/null. (Nowhere.) A series of writes fol-

lowed by a read is not allowed, as the read may be dependent on the previous writes,

which did not actually occur. Fortunately, we have found that the sophistication of

the runtime’s system call filtering is rather unimportant: parallel sections tend to

contain few system calls, and terminating experiments due to unsafe system calls is

the exception rather than the norm. For example, none of the NAS NPB benchmarks

contain such unsafe system calls in their parallel sections.

Performance of fork() On modern UNIX or UNIX-like OSs, fork only

copies the page table entries, which point to copy-on-write pages. This avoids the

penalty associated with allocating and initializing a full copy of the parent’s memory

space. As a result, fork is still more expensive than thread initialization, but is not

prohibitively expensive when used infrequently for serial experiments. See section

6.2.3 for more in-depth discussion of virtual memory management’s importance to

SCAF.

68

5.2.2 Computing Efficiency

The SCAF runtime calculates an effective efficiency in order to report it back to

the SCAF daemon before each parallel section. The client receives an allocation of N

threads, which it uses in order to compute the next parallel section. This allocation

is considered fixed across any serial execution that occurs between parallel sections.

In the OpenMP port, the client constantly collects five items in order to compute

its reported efficiency:

1. Tparallel : wall time spent inside the last parallel section

2. Pparallel : the per-thread IPC recorded in the last parallel section

3. Tserial : wall time spent after the last parallel section executing serial code

4. S : an identifier for the last parallel section, generally its location in the binary

5. N : the thread allocation used since the start of the last parallel section

Here it is important to note that Tserial and Tparallel refer to time spent in different

work; in particular, non-parallelized OpenMP code and explicitly parallelized OpenMP

code, respectively, and not to time spent performing the same work. That is, Tserial

is not related to any lightweight serial experiment measurements.

The client then can compute the following efficiencies, given that it has the

serial IPC P (S) of S from a completed lightweight experiment:

Eparallel ← Pparallel/P (S) =
PparallelN/P (S)

N
≈ speedup

N

Eserial ← 1/N ≈ speedup

N

69

Since processes report efficiencies only at the beginning of each parallel section,

thus Tparallel + Tserial is the time since the last efficiency report to the SCAF daemon.

Efficiency since the last report is then estimated as

Erecent ←
Eserial · Tserial + Eparallel · Tparallel

Tserial + Tparallel

Finally, before being reported to the SCAF daemon, this efficiency value is

passed through a simulated RC low-pass filter, with adjustable time constant RC:

E ← α · Erecent + (1− α) · E, with

α← (Tserial + Tparallel)/(RC + Tserial + Tparallel).

This is a simple causal filter which requires only one previous value to be held

in memory. This keeps the efficiency rating somewhat smooth, but at the same time

does not punish a process for performing poorly in the distant past. The hope is

that the recent behavior of the program will be a good predictor for its behavior in

the near future.

5.3 Supporting Non-malleable Clients

While the preferred mechanism for controlling parallelism with SCAF is to

change the number of busy threads in processes, SCAF can also support non-

malleable OpenMP programs. Non-malleable programs are by definition those whose

number of threads cannot be changed at run-time by the scheduler. Hence SCAF

cannot change the number of threads to avoid the overheads of time sharing for

that process. For non-malleable programs we present an alternative approach which

70

relies on keeping the number of threads unchanged, but changing their affinity to

specify how many hardware threads the process can run on. We outline this method

below, including how it impacts the various aspects of SCAF, including controlling

parallelism, lightweight serial experiments, recording parallel IPC, and computing

parallel efficiency.

Instead of changing the number of threads that exist in a non-malleable process

in order to control parallelism, scafd changes the number of threads from that process

which are allowed to run simultaneously. For example, if a non-malleable process

“foo” is running on a machine with 16 hardware contexts, it will consist of 16 threads.

Another process, “bar” begins execution. If foo were malleable, we could eliminate

eight of its threads, leaving 8 hardware contexts unused for bar. Instead, since foo

is not malleable, we use OS facilities to administratively restrict it to using only

the first eight hardware contexts of the machine. (We specify that it should have

an “affinity” for those contexts.) Specifically, both Solaris and Linux allow a process

and all of its threads to be limited to a given set of hardware contexts; it is not

necessary to specify which hardware context each particular thread should use. This

allows bar to use the other 8 contexts with no competition, effecting space sharing

on the machine. We note that this method of controlling parallelism should not be

used unless necessary, since it will incur oversubscription within the eight hardware

contexts that foo is running on. Another subtle disadvantage to this mechanism is

that it requires SCAF to specify the particular set of hardware contexts to restrict

the process to, and we want to leave this up to the OS’s thread scheduler as much

as possible. However, this is a simple way of safely effecting space-sharing in the

71

presence of non-malleable processes, so we use it.

Serial experiments within non-malleable processes are also possible. Consider

the case of foo and bar again, where foo is non-malleable. In order to run a serial

experiment on foo, we shrink the number of allowed contexts used by the main

foo process by one, leaving one explicitly available for the serial experiment. This

prevents the experiment’s run from being subject to fine-grained time sharing with

the 16 parallel threads making normal progress in foo, and results in a more realistic

experiment.

Finally, the computation used to estimate parallel IPC and efficiency must be

modified slightly for foo in order to account for the fact that it has more threads than

hardware contexts allocated. Instead of computing Pparallel as the per-thread IPC

for the last parallel section, Pparallel must represent the IPC achieved per hardware

context. For example, if foo achieves 0.1 IPC during a parallel section on each of its 16

threads, Pparallel should be 0.2 IPC. This allows foo’s reported efficiency to reflect the

entire process’s performance. We note that if foo does suffer a large slowdown due

to its contained oversubscription, this should be reflected in its reported efficiencies,

allow SCAF to reduce its allocation accordingly.

5.4 Supporting Long-running Parallel Sections

In some cases, an OpenMP program is malleable, but has long-running parallel

sections. In other words, the entry points of parallel sections (the only points at

which SCAF can change the number of threads in the process) may come only

72

infrequently, or only once. In the worst case, a program may consists of one single

long-running parallel section, giving SCAF no chance to use experimental results

or evaluate parallel efficiency or even instruct the parallel runtime to change the

number of running threads.

We support these programs by way if a timeout mechanism in scafd: if scafd

notices that a program began a parallel section but has not been heard from again

in more than 10 seconds, it will pretend as though the process is non-malleable.

This allows SCAF to safely control the parallelism of the program using the same

affinity-based mechanism described in section 5.3.

However, one problem remains: how can we obtain performance feedback as

the program runs given that control is never returned to the SCAF code in the client

runtime? A serial experiment that has been launched will never never end, because

the SCAF code that normally runs at the end of parallel sections does not get a

chance to run.

We solve the problem of obtaining feedback within a long-running section by

asynchronously injecting feedback collection points into the section. When scafd

notices it hasn’t heard from a process in 10 seconds, it will send a POSIX signal

to the process, which invokes a pre-configured signal handler in the unresponsive

process. The signal handler first ends any running experiments, gathers its result,

and uses it to estimate the long-running parallel section’s efficiency thus far. It

replies to scafd after computing the process’s estimated efficiency, and then returns

control to the interrupted parallel section. Essentially, the signal handler behaves

as a SCAF-injected, very short serial section, which runs only in order to report

73

efficiencies. Because the parallel section must resume running on its original number

of threads, control over parallelism must be done using the affinity-based mechanism

described in section 5.3. As the long-running section continues, scafd may send the

signal periodically in order to continue to receive feedback.

5.5 The intpart library

In this section we describe the functionality provided by the intpart library,

whose source code is distributed with SCAF. intpart accepts a specific precise

partitioning p of 1.0 and an integer N , and outputs the single integer partitioning

p̂ of N which best approximates the ratios seen in p. This is an important problem

to SCAF because SCAF implements a feedback loop: integer allocations (p̂) should

reflect the optimal floating point solution (p) as much as possible in order to provide

and responsive useful feedback. The original implementation of SCAF used truncation

to convert precise floating point allocation ratios to integer core allocations, allocating

any leftover cores to allocations which were truncated the most. However, as testing

in more scenarios went on and “chunk” sizes were introduced (see Section 6.2), it

became apparent that a naive conversion of floating point to integer partitions was

affecting the feedback loop. intpart was written to solve this general problem.

intpart primarily implements the intpartFromFloatpartChunked function,

which generates the integer partitioning subject to a given chunkSize. Both the input

(floating point) and output (integer) partitions are of cardinality l. Very high-level

pseudo-code for this routine can be found in Algorithm 4.

74

Algorithm 4: Pseudo-code for the intpart from floatpart chunked rou-

tine in intpart

remainingChunks←− N/chunkSize

p̂←− p× remainingChunks // Initial crude truncation

Compute vector of errors between p̂ and p

while remainingChunks > 0 do

if an empty partition exists then

needy ←− partition index of first empty partition

else

needy ←− partition index with greatest error

remainingChunks←− remainingChunks− 1

Compute vector of errors between p̂ and p

while Empty partitions exist in p̂ do

Steal chunks from the non-empty partition with least error

Compute vector of errors between p̂ and p

p̂←− p̂× chunkSize

return p̂

75

Chapter 6

Adaptation to Various Platforms

While adapting SCAF to several diverse platforms, we have discovered that

the key to significant improvements with SCAF is to make the machine appear to

scale in a simple, predictable manner. If a class of computer does not naturally scale

in this manner, we present methods to adapt SCAF, or the machine’s behavior, to

make the machine appear as if it does scale in a simple, predictable manner.

Table 6.1 enumerates the platforms used and their key features. We selected

these platforms in an effort to explore a wide set of system architectures with different

approaches toward memory access, exploiting parallelism, and interconnects.

The Tile-GX is a 6x6 grid of small single-thread cores, using a mesh network

for cache coherence and communication with two memory controllers located at the

edges of the grid [65]. The Xeon E5-2690 system consists of two sockets, each with its

Machine Pro
ce

ss
or

s

N
U
M

A
H
ar

dw
ar

e

M
ul

tit
hr

ea
di

ng

In
te

rc
on

ne
ct

O
ut

-o
f-o

rd
er

Exe
cu

tio
n

C
or

es

T
hr

ea
ds

tilegx Tile-GX 8036 2 nodes No Mesh No 36 36

openlab08 2x Xeon E5-2690 2 nodes No (disabled) P2P Yes 16 16

tempo-mic0 Xeon Phi 5110p No Simultaneous Ring-bus No 60 240

triad UltraSparc T2 No Temporal Crossbar No 8 64

bhindi 2x Opteron 6212 4 nodes Simultaneous P2P Yes 8 16

Table 6.1: Summary of platforms used to evaluate SCAF

76

Characteristic Hinders

SCAF?

Reason Fix Impact of Fix Evidence

Temporal mul-

tithreading

No Needs TLP; usually

scales

monotonically

triad vs

bhindi,

tempo-mic0

Simultaneous

multithread-

ing

Yes IPC per thread

unpredictable

allocate in

“chunks”

more predictable,

still low potential

for improvement

tempo-mic0,

bhindi

NUMA No Sufficient

interconnect

openlab08 vs

tilegx, t2

OoO

execution

No Affects thread IPC

uniformly

openlab08 vs

tilegx,

tempo-mic0

Slow TLB

flushes

Yes Slows

copy-on-write and

experiments

Linux 3.6+

tlb.c

faster fork;

overhead vastly

decreased

tempo-mic0

“Home” cache

movement on

fork

Yes Threads

permanently slower

after experiments

Improved

DDC

heuristics in

Linux MM

homes preserved;

slowdown

eliminated

tilegx

Table 6.2: Summary of platform characteristics and their impact on SCAF

77

own set of 8 single-threaded cores, memory controller and main memory [66]. Within

a socket, a ring bus is used for coherence communication, while a point-to-point link

is used for coherence and remote memory access between sockets. The Xeon Phi

consists of 60 lightweight cores connected to one another and memory controllers

via a ring-bus network [67]. The UltraSparc T2 system consists of 8 lightweight

cores connected to on-chip memory controllers with a crossbar network [68]. Finally

the Opteron 6212 system consists of two sockets, each with two memory controllers

and four “modules”, where each module consists of a sophisticated out-of-order core

with two integer pipelines [69]. Please see Figures A.1-A.5 in the appendix for more

detailed topology information.

Table 6.2 summarizes our findings across all platforms, including both hardware

features and notable operating system issues. The ideas summarized in Table 6.2

are detailed next in sections 6.1 and 6.2.

6.1 Hardware Characteristics

Although SCAF assumes a simple speedup model, there are of course many

features of real platforms which can result in more complex speedup behavior. In this

section, we enumerate and discuss the important features we encountered in our eval-

uation of SCAF on five distinct platforms, including representative speedup curves

to illustrate machine behavior. Detailed results on these platforms are presented in

chapter 7.

78

6.1.1 Hardware Multithreading

The largest complication for speedup behavior we have discovered is hard-

ware multithreading. In our test systems, we found that specifically simultaneous

multithreading is unpredictable, while forms of temporal multithreading are less

problematic for SCAF. Three of our platforms employ some form of hardware mul-

tithreading, each distinct from the others. All three systems are described in this

section, which is itself summarized in Table 6.2.

Bhindi Our Opteron 6212 test system, “bhindi,” implements a variant on

simultaneous hardware multithreading which AMD calls “Clustered Multithreading,”

or “CMT.” In this scheme, each thread has its own integer pipeline and L1 data

caches, but the floating point unit, L1 instruction cache, instruction fetch unit, and

L2 cache are shared by two threads. For organizational purposes within this paper,

we classify CMT as simultaneous hardware multithreading because CMT allows

instructions from different threads to be issued in the same cycle.

However, we found that for many of our benchmarks, per-thread performance

drops when using both threads in the integer cluster, resulting in the complex speedup

behavior seen in Figure 6.1. The Opteron 6212’s cores are relatively sophisticated

out-of-order cores with deep pipelines and speculative execution, intended to achieve

good single-threaded performance. We believe that when both hardware threads are

in use, per-thread performance can decrease due to frequent pipeline restarts after

invalidating probes hit on speculative loads. For example, if a process is running

on 8 threads, its threads may be placed one-per-core by Linux. If we increase the

79

5 10 15

20
00

60
00

10
00

0

Threads

M
op

/s

Figure 6.1: FT benchmark scaling on “bhindi” (2x Opteron 6212)

allocation from 8 threads to 9 threads, then Linux must schedule the additional

thread to one of the 8 cores, using both of its integer pipelines. Now, 2 of 9 threads

are progressing significantly slowly, creating a load imbalance. In some cases the

resulting program speedup can actually decrease significantly. For example, FT on

8 threads spread across all cores achieves about 6.7X speedup, but this drops to

5.5X speedup when using 9 threads. At 16 threads, all pairs of integer pipelines are

scheduled and FT sees about 8.1X speedup. Comparing the speedups on 8 vs 16

threads, we observe only a small increase in performance by doubling threads. We

observe this behavior on several benchmarks, even those that scale well on other

computers, showing that the extensive hardware sharing in CMT takes its toll on

performance.

The effect of this behavior with SCAF is that benchmarks tend to have a

natural decrease in parallel efficiency after the 8-thread mark. This pulls the optimal

allocation for 2-way multiprogramming scenarios toward equipartitioning. Addition-

80

0 10 20 30 40 50 60

1
2

3
4

5
6

Threads

M
op

/s

Figure 6.2: UA benchmark scaling on “triad” (UltraSparc T2)

ally, the potential load imbalance means that odd-numbered thread allocations in

2-way multiprogramming are generally undesirable: even if the OS is able to schedule

one process across 7 cores, it cannot schedule the other process’s 9 threads across

cores without scheduling two threads to one of them.

Triad We found that our UltraSparc T2-based system, “triad,” generally

exhibits simple speedup curves as seen in Figure 6.2. The UltraSparc T2 implements

a highly-threaded design with 8 cores, 2 integer pipelines per core, and 4-way temporal

multithreading on each integer pipeline. The T2 is not designed to have high single-

threaded performance. Thread-level parallelism should be used in order to hide

latency to main memory, allowing the use of small, simple, in-order cores. When a

thread encounters a long-latency event such as a cache miss, instructions from other

threads are issued. We found that running additional threads on a core generally

allows the processor to remain busy, and resulted in improved throughput. This

works well in the context of SCAF, since allocating additional threads results in

increased speedup.

81

0 50 100 150 200

0
50

00
15

00
0

25
00

0

Threads

M
op

/s

Figure 6.3: MG benchmark scaling on “tempo-mic0” (Xeon Phi 5110p)

Tempo-mic0 Our Xeon Phi test system, “tempo-mic0,” often sees a de-

crease in efficiency beyond 120 out of 240 threads, as seen in Figure 6.3. Most often,

this results in optimal allocations (for two-way multiprogramming) near equiparti-

tioning. The Xeon Phi 5110p implements a form of simultaneous multithreading

with four hardware threads for each of the 60 cores where only two threads can have

instructions issued simultaneously. Due to its two-cycle pipelined instruction decoder,

it cannot issue instructions from the same thread in consecutive cycles. However,

if there are multiple threads scheduled to the core it will issue 2 instructions per

cycle. As a result, while scheduling 1 thread per core will generally scale well, maxi-

mum instruction throughput requires at least 1 threads per core. If 3 or 4 threads

are scheduled per core, speedup behavior becomes complex, with larger allocations

sometimes resulting in very small or no performance gains.

82

6.1.2 Non-Uniform Memory Access

We found that NUMA did not introduce any unusual speedup behavior, al-

though it is worth pointing out that the machines we consider next in this section are

only 2 and 4-node systems. NUMA systems are comprised of NUMA nodes, which

each have their own local memory. Some form of inter-processor communication

is used for access to non-local memory and cache coherence. It is easy to imagine

that such a system might introduce non-monotonic speedup behavior. For example,

increasing a process’s processing allocation may add non-local processors to those ac-

cessing the working set of memory, resulting in a speedup curve that might be lower.

Fortunately, we did not observe any major difficulties due to NUMA architectures,

thanks to a combination of fast interconnects and NUMA aware thread scheduling.

SCAF specifically avoids dictating placement of threads as much as possible, ei-

ther to processing units or memory controllers. The affinity-based parallelism control

described in section 5.3 does restrict a process to a specific portion of the machine,

but the placement of individual threads within that space on the machine is left

entirely to the operating system. This allows us to benefit from Linux kernel’s nu-

merous techniques and policies for dynamically placing processes near local memory.

These techniques are sophisticated enough to handle multiprogrammed scenarios.

Because SCAF is only concerned with deciding on the number of threads that pro-

cesses should be scheduled, the two problems are somewhat orthogonal. While SCAF

decides upon the number of threads that the processes should use, the Linux ker-

nel attempts to place the threads close to the memory they are using, potentially

83

migrating memory allocations between NUMA nodes.

84

5 10 15

50
00

15
00

0
25

00
0

35
00

0

Threads

M
op

/s

Figure 6.4: BT benchmark scaling on “openlab08” (2x Xeon E5-2690, HyperThread-

ing disabled)

Figure 6.4 shows an example of excellent 2-node NUMA scalability on “open-

lab08,” which has 2 NUMA nodes spread across two sockets. In this speedup curve,

the OS is scheduling threads across NUMA nodes as much as possible. The inter-

connect between NUMA nodes is fast enough that speedup increases linearly with

the number of threads. The result is a machine which is very well-behaved and

predictable as SCAF modifies allocations. Table 6.2 summarizes our experience with

NUMA architectures’ impact on SCAF.

6.1.3 Out-of-order Execution

We did not observe any complications due to out-of-order execution with our

test machines. Although out-of-order execution can have varying benefits depending

on the code being run, the benefits tended to be generally uniform across the hardware

contexts in the machine. For example, the Tile-GX and the Xeon E5 systems both

have two memory controllers and no multithreading. One major way in which they

85

differ is that the Tile-GX has simpler cores with in-order instruction execution,

while the Xeon E5 employs extensive out-of-order techniques. The Xeon E5’s per-

thread performance is of course dramatically higher, but both exhibit generally

simple scalability. As a result, we believe that the presence or absence of out-of-order

execution alone does not adversely affect the effectiveness of SCAF.

6.2 Optimizations

6.2.1 Avoiding Bad Allocations

As described in section 6.1.1, the most problematic hardware feature we encoun-

tered was simultaneous multithreading. SMT causes unpredictable speedup behavior

because of the fact that individual thread performance depends greatly on a combi-

nation of the program being executed and the operating system’s decisions regarding

where to place threads. This problem can be alleviated somewhat by avoiding certain

“bad” allocations, based on knowledge of the topology of the target system.

For example, we found on our Opteron-based test system that allocations of

odd numbers of threads are essentially never beneficial because of the effects of 2-

way SMT as described in section 6.1.1. More importantly, odd-sized allocations are

unpredictable. Due to our knowledge of the machine, we can say that allocations that

are not multiples of 2 will not be advantageous, and are not worth exploring. This

naturally leads to a simple strategy: if the system employs simultaneous multithread-

ing, then restrict the system to selecting allocations that are multiples (“chunks”)

of the number of threads per core.

86

Machine SMT? Chunk size restriction

tilegx No 1
openlab08 No 1
tempo-mic0 4-way 4
triad No 1
bhindi 2-way 2

Table 6.3: Heuristically-chosen chunk sizes used for each machine

We implemented this heuristic in our implementation of scafd. The chunk

sizes used for each machine can be found in Table 6.3. (A chunk size of 1 indicates

that any allocation size is allowed.)

6.2.2 Rate-limiting to Reduce Overheads

Because the SCAF client runtime works by adding extra logic and instrumen-

tation between parallel sections, we must be sure to avoid allowing this overhead to

become excessive. Serial experiments execute only once per section, but a process

must evaluate its parallel efficiency throughout execution. Reading hardware coun-

ters, timers, and computing efficiency estimates can cause a quickly-iterating parallel

process to significantly increase the amount of time spent between parallel sections.

If this overhead grows to be excessive, then any benefits from improved allocations

may be negated. We discovered that the Xeon Phi and Tile-GX in particular were

sensitive to this overhead, likely due to their simple cores and otherwise good scala-

bility. The average cost for an E5 Xeon core to read hardware counters is less than

1000 cycles. By comparison, the average cost to read hardware counters on a Xeon

Phi thread is about 3600 cycles, and the average cost to read hardware counters on a

87

Tile-GX core is about 5000 cycles. When combined with the facts that the Xeon Phi

and Tile-GX cores are additionally more parallel and clocked significantly slower,

the cost of instrumentation becomes relatively high.

As a result, we independently rate-limit (i.e., lower the frequency of) two

periodic events in the libscaf client library: reading hardware counters for instru-

menting parallel sections, and communication with the central SCAF daemon. This

rate-limiting is implemented using a token-bucket technique, which works as follows.

Each client maintains “allowance” variables for instrumentation and communication

which are evaluated every time the client would communicate with the SCAF dae-

mon or read hardware counters before a parallel section. The wall time since the

last evaluation is used to increment allowances according to the maximum allowed

rate. If the allowance then has a value of at least one, the rate-limited action is

allowed, and the allowance is decreased by one. If the allowance is less than one, then

the action is skipped. We store the most recent IPC measurement for each parallel

section so that it may be re-used in the event that a section’s instrumentation is

skipped. The effect of communicating with the SCAF daemon less often is that new

allocation decisions will be delayed until the next communication is allowed.

As an example, consider the UA benchmark on the Xeon Phi. UA is a bench-

mark which iterates through parallel sections on the order of a thousand times per

second. In order to evaluate the overhead due to communication with scafd and

instrumentation, we disabled serial experiments and ran UA by itself, in a non-

multiprogrammed scenario. Using an unmodified OpenMP runtime, UA achieves

a speedup of about 75.6X over one thread. With a non-rate-limited libscaf, this

88

drops to less than less than 48X – lower by a factor of more than 1.5X. Such a large

slowdown cannot be overcome in a multiprogrammed scenario, and would result in

poor system efficiency. With communications with scafd limited to 5 Hz and the

number of sections instrumented per second limited to 32 Hz, the slowdown due to

SCAF’s instrumentation and communication is reduced to less than one half of one

percent. This per-process overhead is small enough to accept as the cost necessary to

improve overall system efficiency. To be clear, because there is no multiprogramming

in this test SCAF is not expected to ever provide any improvement; it can only

match the unmodified (non-SCAF) OpenMP runtime.

6.2.3 Virtual Memory Management

On Tile-GX and Xeon Phi we encountered two significant difficulties related

to virtual memory management. SCAF uses fork() in a high-performance context

which is probably not frequently tested by Linux kernel developers. Serial experiments

depend on fork() to copy the process’s state just before a parallel section’s first

execution begins. This should ideally be done quickly and should have no lasting

effects on the main process. However, on the Xeon Phi we found that fork() could

be unusually slow, and on the Tile-GX we found that the main process’s performance

was severely impacted after for() had completed.

Xeon Phi/Linux 2.6.38 When we first ported SCAF to the Xeon Phi, we

discovered that the fork() system call itself was prohibitively slow when forking a

multithreaded process. We found that the Phi cores have only 8 interrupt vectors for

89

bt
.A

.x

cg
.A

.x

cg
.B

.x

ep
.A

.x

ft.
B

.x

lu
.A

.x

m
g.

C
.x

sp
.A

.x

ua
.A

.x

unmodified
SCAF before fixes

S
pe

ed
up

0

5

10

15

20

25

30

Figure 6.5: Tile-GX: Slowdowns with unmodified virtual management due to fork()

TLB invalidations, and that fork()’s time was mostly spent doing TLB shootdowns.

The Phi’s Intel-maintained Linux 2.6.38 kernel project was using an outdated TLB

shootdown strategy, so we have backported a series of patches contributed by Intel

to mainline Linux (3.6+) in 2012 which improved TLB shootdown performance. The

resulting kernel has acceptable fork() system call performance, in line with our

other platforms. These findings are summarized in Table 6.2.

Tile-GX/Linux 3.4 When we first ported SCAF to Tile-GX, we discovered

that our benchmarks were catastrophically slowed down after serial experiments ran,

as seen in Figure 6.5. The culprit turned out to be some Tile-GX-specific heuristics

within the Linux kernel’s memory management.

The Tile-GX is unique in that it exposes a virtual cache subsystem to the

Linux kernel and user space. Each page of memory can be marked as either “homed”

at a specific tile, or cached in a distributed L3 cache, using a hash function (“hash-

for-home”) to determine a home tile for each cache line in the page. The hope is

that L2 misses can be fulfilled by another tile via the L3 cache rather than main

memory.

90

The Tilera Linux kernel has various heuristics which it uses to automatically

decide how to cache pages. By default, stack pages are homed local to the tile on

which a software thread is executing, while heap and data pages are cached using

hash-for-home. Upon a fork, the Linux kernel has to set up a copy-on-write (COW)

copy of the process’s address space. This includes the individual stacks for each of

the threads in the process. Setting up the COW mapping does not allocate any new

physical pages or change any homing attributes. There are now two problematic

scenarios:

1. If the child process terminates without writing to a COW page, the kernel

“breaks” the COW for that page, removing the read-only mapping for the child

and marking the parent’s copy as read-write again. At this point, the original

heuristics re-home the page to the particular tile that called the fork. In our

case, where a multithreaded program is being forked, this has the effect of

re-homing all of the process’s threads to a single thread.

2. If the parent (that is, any thread in the process) does write to a COW page,

then Linux must make a physical copy of the page. In this case, it decides to

home the page again at the particular tile that called the fork. This again has

the effect of re-homing all of the process’s threads to a single thread.

In these cases, performance drops massively: the threads no longer have stacks

homed locally, and the forking thread’s tile struggles to satisfy cache requests from

all of the other threads. These two scenarios are not specific to SCAF, but the

use of fork to clone a multithreaded process’s address space for a child process is

91

uncommon.

We modified the VMM code in Linux specific to Tile-GX in order to improve the

heuristics in the case of forking a multithreaded process. Specifically, a page should

not be re-homed on COW-break or COW-copy if it is a stack page for another thread

in the process. We found that these heuristic changes eliminated the slowdowns

we had previously observed. Table 6.2 summarizes our experience with SCAF and

Tile-GX’s kernel-exposed cache subsystem.

6.2.4 “Lazy” Experiments

The last optimization we have applied to our scheme is a policy of “lazy”

experiments. The objective of this policy is to avoid any overhead associated with

experiments until we are actually in a multiprogrammed scenario. SCAF clients

receive the total number of active clients from scafd, and simply defer experiments

while they are the only client. Another benefit of this scheme is that it can allow clients

to avoid running experiments for setup-oriented parallel sections, which often only run

once. The overhead incurred by serial experiments when running multiprogrammed

scenarios is generally justified by the benefits of improved allocations. With lazy

experimenting in non-multiprogrammed scenarios, there is no overhead due to serial

experiments because they are never needed.

92

Chapter 7

Evaluation

In this section, we offer results which demonstrate the advantages of deploying

SCAF on a multiprogrammed system. We compare three configurations: 1) the

system’s unmodified OpenMP implementation, 2) simple equipartitioning, and 3)

the fully dynamic SCAF implementation, as described in this paper. In practice, the

unmodified configuration is by far the most common since it requires no setup and

is readily available. The second configuration, equipartitioning, represents the state

of the art which does not require a priori testing. However, we are not aware of any

widely-available OpenMP runtimes which implement equipartitioning. SCAF is the

configuration presented in this paper, which also needs no a priori profiling.

7.1 Multiprogramming with NPB Benchmark Pairs

For each platform and configuration we evaluated all 36 pairs of 9 NPB bench-

marks. The NAS Parallel Benchmarks (NPB benchmarks) [9], developed by the

NASA Advanced Supercomputing Division, is a collection of parallel programs pri-

marily drawn from the field of computational fluid dynamics. They are widely used

to test the performance of parallel computers, from workstations to supercomputers.

In this paper, we evaluate our system with nine of ten benchmarks in the OpenMP

version of NPB. The ‘DC’ benchmark is omitted because it is storage oriented, and

93

several of our platforms (Xeon Phi and Tile-GX) have no local storage. The re-

maining 9 benchmarks are included: ‘IS’, which is an example of a non-malleable

process supported as described in section 5.3; ‘EP’, which consists primarily of a

single long-running parallel section supported as described in section 5.4; ‘LU’; ‘BT’;

‘MG’; ‘FT’; ‘UA’; ‘SP’; and ‘CG’. In each multiprogramming pair, program 1 first

begins execution, and then after 10 seconds program 2 begins execution. This series

of events could easily occur when two users are interactively using a remote machine,

launching processes while unaware of one another. The 10 second delay was intro-

duced in order to avoid unrealistic precisely-simultaneous starts, but our results are

not dependent on this delay. Problem sizes for each benchmark were chosen such

that solo runtimes would be as similar as possible, with a size of ‘T’ indicating a

custom problem size we created out of necessity. The average benchmark runtime is

roughly one to three minutes, depending on the platform.

Figure 7.1 shows the distribution of SCAF’s improvement factors over equipar-

titioning across all benchmark pairs for all 5 machines. The pairs are sorted (per

machine) in order of their improvement factors, so that the distribution is clear.

Examining Figure 7.1, we can see that with the exception of “tempo-mic0,” the

Xeon Phi, the majority of pair scenarios see either no significant harm or a benefit

from SCAF over equipartitioning. Overall, the Xeon Phi does not tend to benefit

from SCAF vs simple equipartitioning. As a result, we recommend that SCAF be

used only it its limited equipartitioning-only mode on the Xeon Phi. (In this mode,

serial experiments are not necessary.) Figure 7.2, similarly, shows the distribution of

SCAF’s improvement factors over an unmodified system for all 5 machines. Exam-

94

ining Figure 7.2, we see that the overwhelming majority of scenarios benefit from

SCAF by significant (1.1X - 1.5X) factors. These significant improvements are of-

ten due to the conversion of fine-grained time sharing to space sharing. (I.e., by

avoiding oversubscription.) The interesting exception is the UltraSparc T2, “triad,”

on which fine-grained time sharing seems to incur a smaller penalty. Unfortunately,

triad manages this using commercial Solaris thread scheduler and synchronization

implementations, the sources for which are unavailable. Please note that pair names

are not shown in Figures 7.1 or 7.2 because each pair has a different rank on each of

the machines when sorted by its improvement factor.

Figure 7.3 shows all pairwise results on the Tile-GX-based “tilegx.” Here, SCAF

is significantly faster than the unmodified runtime in all cases except the (bt.A,is.T)

pair, where the sum of speedups about breaks even (improvement factor = 0.99X).

When compared to equipartitioning, SCAF is faster or about equal in all but 4 pairs.

In the 23 pairs where SCAF is significantly faster than equipartiting, the mean

improvement is a factor of 1.18X. Overall, SCAF does very well on the Tile-GX due

to its lack of hardware multithreading and predictable scalability.

Figure 7.4 shows all pairwise results on our 2-way Xeon E5-2690 “openlab08”

machine. SCAF shows significant improvement of about 1.18X in 17 pairs, and breaks

even in about 13 pairs. SCAF is generally faster than the unmodified configuration;

the average improvement is about a factor of 1.4X. Here SCAF is able to make an

improvement because this system uses no hardware multithreading, and scales in a

predictable manner.

Figure 7.5 shows all pairwise results on our Xeon Phi “tempo-mic0,” excluding

95

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.81.01.21.4

Improvement factor over equipartitioning

●
til

eg
x

op
en

la
b0

8
te

m
po

−
m

ic
0

tr
ia

d
bh

in
di

B
en

ch
m

ar
k

pa
irs

, s
or

te
d

by
 im

pr
ov

em
en

t f
ac

to
r

F
ig

u
re

7.
1:

D
is

tr
ib

u
ti

on
of

im
p

ro
ve

m
en

t
ov

er
eq

u
ip

ar
ti

ti
on

in
g

on
al

l
m

ac
h

in
es

.
4

ou
t

of
5

m
ac

h
in

es
p

er
fo

rm
w

el
l.

O
n

ly
“t

em
p

o-

m
ic

0”
d
o
es

n
ot

sh
ow

an
im

p
ro

ve
m

en
t,

so
w

e
re

co
m

m
en

d
th

at
S
C

A
F

n
ot

b
e

u
se

d
fo

r
th

at
an

d
si

m
il
ar

m
ac

h
in

es
fo

r
w

h
ic

h
ou

r

te
st

su
it

e
p

er
fo

rm
s

p
o
or

ly
.

96

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

1.01.52.02.53.0

Improvement factor over unmodified

●
til

eg
x

op
en

la
b0

8
te

m
po

−
m

ic
0

tr
ia

d
bh

in
di

B
en

ch
m

ar
k

pa
irs

, s
or

te
d

by
 im

pr
ov

em
en

t f
ac

to
r

F
ig

u
re

7.
2:

D
is

tr
ib

u
ti

on
of

im
p
ro

ve
m

en
t

ov
er

an
u
n
m

o
d
ifi

ed
sy

st
em

on
al

l
m

ac
h
in

es
.

97

ep.B+is.T
lu.A+is.T
bt.A+is.T

mg.C+is.T
ft.B+is.T

ua.A+is.T
sp.A+is.T
cg.B+is.T
lu.A+ep.B
bt.A+ep.B

mg.C+ep.B
ft.B+ep.B

ua.A+ep.B
sp.A+ep.B
cg.B+ep.B
bt.A+lu.A

mg.C+lu.A
ft.B+lu.A

ua.A+lu.A
sp.A+lu.A
cg.B+lu.A

mg.C+bt.A
ft.B+bt.A

ua.A+bt.A
sp.A+bt.A
cg.B+bt.A
ft.B+mg.C

ua.A+mg.C
sp.A+mg.C
cg.B+mg.C
ua.A+ft.B
sp.A+ft.B
cg.B+ft.B

sp.A+ua.A
cg.B+ua.A
cg.B+sp.A

Speedup

01020304050
T

ile
ra

 T
ile

−
G

X
 8

03
6

M
ul

ti
pr

og
ra

m
m

in
g

U
nm

od
 1

U
nm

od
 2

E
Q

 1
E

Q
 2

SC
A

F
 1

SC
A

F
 2

F
ig

u
re

7.
3:

R
es

u
lt

s
on

a
T

il
er

a
T

il
e-

G
X

w
it

h
36

h
ar

d
w

ar
e

co
n
te

x
ts

98

ep.T+is.T
lu.T+is.T
bt.T+is.T

mg.D+is.T
ft.T+is.T

ua.C+is.T
sp.T+is.T
cg.T+is.T
lu.T+ep.T
bt.T+ep.T

mg.D+ep.T
ft.T+ep.T

ua.C+ep.T
sp.T+ep.T
cg.T+ep.T
bt.T+lu.T

mg.D+lu.T
ft.T+lu.T

ua.C+lu.T
sp.T+lu.T
cg.T+lu.T

mg.D+bt.T
ft.T+bt.T

ua.C+bt.T
sp.T+bt.T
cg.T+bt.T
ft.T+mg.D

ua.C+mg.D
sp.T+mg.D
cg.T+mg.D

ua.C+ft.T
sp.T+ft.T
cg.T+ft.T

sp.T+ua.C
cg.T+ua.C
cg.T+sp.T

Speedup

05101520

D
ua

l X
eo

n
E

5−
26

90
 M

ul
ti

pr
og

ra
m

m
in

g

U
nm

od
 1

U
nm

od
 2

E
Q

 1
E

Q
 2

SC
A

F
 1

SC
A

F
 2

F
ig

u
re

7.
4:

R
es

u
lt

s
on

a
d
u
al

X
eo

n
E

5-
26

90
w

it
h

16
h
ar

d
w

ar
e

co
n
te

x
ts

99

the (FT.U,MG.U) pair due to a lack of main memory. (Smaller data sets would result

in runtimes that are too small.) This is the only machine for which we generally see

no significant improvement or loss from SCAF when compared to equipartitioning.

This is due to the fact that that all but one of the benchmarks scale very similarly,

with good efficiency until around half of the hardware contexts are used, resulting

in a relatively low potential for SCAF to make improvement. SCAF is still generally

significantly faster than an unmodified system, yielding an average improvement by a

factor of 1.72X. As a result, we don’t recommend the full SCAF scheme on the Xeon

Phi; equipartitioning is generally better. The SCAF distribution will include special

recognition for the Phi, and recommend using only equipartitioning. Additionally,

the distribution will include an automated test suite based on the NAS benchmarks

which can be used to identify any other systems where SCAF is unhelpful. For such

machines, we recommend SCAF should be turned off. Once SCAF becomes open-

source software, we hope that the open-source community will maintain a list of

machines for which SCAF is not helpful.

Figure 7.6 shows pairwise results on “triad,”, our UltraSparc T2. The T2’s

results are interesting because the unmodified system, with heavy oversubscription,

is actually competitive with equipartitioning. (We suspect this is due in part to the

scheduler in Solaris 11.2, although its implementation is not available for examina-

tion.) Still, because the T2 uses primarily a form of temporal hardware multithread-

ing, its speedup behavior is predictable for SCAF. The SCAF system still improves

on equipartitioning by an average factor of about 1.22X in 20 pairs, and on the

unmodified system by an average factor of 1.27X in 14 pairs, and was the best choice

100

ep.C+is.T
lu.B+is.T
bt.U+is.T

mg.U+is.T
ft.U+is.T

ua.U+is.T
sp.U+is.T
cg.C+is.T
lu.B+ep.C
bt.U+ep.C

mg.U+ep.C
ft.U+ep.C

ua.U+ep.C
sp.U+ep.C
cg.C+ep.C
bt.U+lu.B

mg.U+lu.B
ft.U+lu.B

ua.U+lu.B
sp.U+lu.B
cg.C+lu.B

mg.U+bt.U
ft.U+bt.U

ua.U+bt.U
sp.U+bt.U
cg.C+bt.U

ua.U+mg.U
sp.U+mg.U
cg.C+mg.U
ua.U+ft.U
sp.U+ft.U
cg.C+ft.U

sp.U+ua.U
cg.C+ua.U
cg.C+sp.U

Speedup

05010
0

15
0

20
0

25
0

30
0

35
0

X
eo

n
P

hi
 5

11
0P

 M
ul

ti
pr

og
ra

m
m

in
g

U
nm

od
 1

U
nm

od
 2

E
Q

 1
E

Q
 2

SC
A

F
 1

SC
A

F
 2

F
ig

u
re

7.
5:

R
es

u
lt

s
on

a
X

eo
n

P
h
i

51
10

P
w

it
h

24
0

h
ar

d
w

ar
e

co
n
te

x
ts

101

in the most pairs.

Figure 7.7 shows all pairwise results on “bhindi,” our 2-way Opteron 6212

machine. Although SCAF is faster than equipartitioning in 14 of the pairs by an

average of 1.11X, it only breaks even for 17 pairs. As discussed in section 6.1.1, the

use of a form of simultaneous multithreading results in complex speedup behavior

which can’t always be successfully reasoned about with SCAF’s simple speedup

model.

Table 7.1 summarizes the results shown in Figures 7.1 through 7.7. The achieved

improvement factor in the sum-speedup of each pair compared to equipartitioning and

an unmodified system is considered on a pair-by-pair basis. We consider improvement

factors deviating from 1.0X by more than 0.05X in either direction to be significant.

An improvement factor of 1.05X or greater is classified as a significant “win,” an

improvement factor less than 1.05X but greater than 0.95X as “breaking even,” and

an improvement factor below 0.95X as a loss. For each machine, we provide the

percentage of pairs falling in to each category and the mean improvement factor

within each category when compared to both equipartitioning and an unmodified

system.

102

ep.C+is.T
lu.B+is.T
bt.B+is.T

mg.C+is.T
ft.B+is.T

ua.A+is.T
sp.B+is.T
cg.C+is.T
lu.B+ep.C
bt.B+ep.C

mg.C+ep.C
ft.B+ep.C

ua.A+ep.C
sp.B+ep.C
cg.C+ep.C
bt.B+lu.B

mg.C+lu.B
ft.B+lu.B

ua.A+lu.B
sp.B+lu.B
cg.C+lu.B

mg.C+bt.B
ft.B+bt.B

ua.A+bt.B
sp.B+bt.B
cg.C+bt.B
ft.B+mg.C

ua.A+mg.C
sp.B+mg.C
cg.C+mg.C
ua.A+ft.B
sp.B+ft.B
cg.C+ft.B

sp.B+ua.A
cg.C+ua.A
cg.C+sp.B

Speedup

01020304050

U
lt

ra
SP

A
R

C
 T

2
M

ul
ti

pr
og

ra
m

m
in

g

U
nm

od
 1

U
nm

od
 2

E
Q

 1
E

Q
 2

SC
A

F
 1

SC
A

F
 2

F
ig

u
re

7.
6:

R
es

u
lt

s
on

an
U

lt
ra

S
p
ar

c
T

2
w

it
h

64
h
ar

d
w

ar
e

co
n
te

x
ts

103

ep.C+is.T
lu.B+is.T
bt.B+is.T

mg.C+is.T
ft.C+is.T

ua.B+is.T
sp.B+is.T
cg.C+is.T
lu.B+ep.C
bt.B+ep.C

mg.C+ep.C
ft.C+ep.C

ua.B+ep.C
sp.B+ep.C
cg.C+ep.C
bt.B+lu.B

mg.C+lu.B
ft.C+lu.B

ua.B+lu.B
sp.B+lu.B
cg.C+lu.B

mg.C+bt.B
ft.C+bt.B

ua.B+bt.B
sp.B+bt.B
cg.C+bt.B
ft.C+mg.C

ua.B+mg.C
sp.B+mg.C
cg.C+mg.C
ua.B+ft.C
sp.B+ft.C
cg.C+ft.C

sp.B+ua.B
cg.C+ua.B
cg.C+sp.B

Speedup

051015

D
ua

l O
pt

er
on

 6
21

2
M

ul
ti

pr
og

ra
m

m
in

g

U
nm

od
 1

U
nm

od
 2

E
Q

 1
E

Q
 2

SC
A

F
 1

SC
A

F
 2

F
ig

u
re

7.
7:

R
es

u
lt

s
on

a
d
u
al

O
p
te

ro
n

62
12

w
it

h
16

h
ar

d
w

ar
e

co
n
te

x
ts

104

M
ac

h
in

e
W

in
s

v
.

E
Q

W
in

s
v
.

U
n
m

o
d

E
ve

n
v
.

E
Q

E
ve

n
v
.

U
n
m

o
d

L
os

s
v
.

E
Q

L
os

s
v
.

U
n
m

o
d

ti
le

gx
1.

18
X

,
64

%
1.

72
X

,
97

%
1.

01
X

,
25

%
1.

00
X

,
3%

0.
91

X
,

11
%

N
/A

,
0%

op
en

la
b
08

1.
18

X
,

47
%

1.
39

X
,

94
%

1.
00

X
,

36
%

0.
96

X
,

3%
0.

92
X

,
17

%
0.

92
X

,
3%

te
m

p
o-

m
ic

0
1.

11
X

,
14

%
1.

57
X

,
97

%
1.

00
X

,
40

%
1.

00
X

,
3%

0.
87

X
,

46
%

N
/A

,
0%

tr
ia

d
1.

22
X

,
56

%
1.

27
X

,
39

%
0.

98
X

,
25

%
0.

99
X

,
33

%
0.

87
X

,
19

%
0.

91
X

,
28

%

b
h
in

d
i

1.
11

X
,

39
%

1.
56

X
,

81
%

1.
01

X
,

47
%

1.
01

X
,

17
%

0.
87

X
,

14
%

0.
79

X
,

3%

T
ab

le
7.

1:
S
u
m

m
ar

y
of

m
ea

n
p
ai

rw
is

e
re

su
lt

s.
O

n
ly

“t
em

p
o-

m
ic

0”
d
o
es

n
ot

p
er

fo
rm

w
el

l.

105

7.2 Detailed 3-Way Multiprogramming Scenario

The previous section (7.1) focuses on 2-way multiprogramming, but SCAF

can handle greater numbers of clients. The severity of oversubscription seen in

the unmodified configuration only increases with increased multiprogramming. In

this section, we focus on a particular 3-way multiprogramming experiment on the

UltraSparc T2. Running all 3-way scenarios would result in too many combinations,

so we provide a detailed look at only one in order to provide insight into the mechanics

of SCAF. When run by itself, the first benchmark, cg.C, scales extremely well on a T2,

with a maximum speedup near 50X on 64 threads. The other two benchmarks, sp.B

and lu.B, scale more modestly, with maximum speedups of 25-30X on 64 threads.

In this experiment, cg.C begins at time 0, then sp.B 10 seconds later, and

lu.B after an additional 10 seconds. We executed this workload for each of the

three configurations: an unmodified system, equipartitioning, and SCAF. Table 7.2

summarizes the results, while Figure 7.8 plots log output of the SCAF daemon

(scafd) after running this scenario.

In Table 7.2, we see that the unmodified configuration manages a mediocre

sum speedup of 31.5X due to severe oversubscription. Each benchmark uses 64

threads. As the third benchmark begins, the SunOS scheduler is left to timeshare

192 CPU-bound threads to 64 hardware contexts. This severe oversubscription results

in lackluster performance from all three benchmarks due to context switching and

hardware contention.

The equipartitioning configuration manages to avoid oversubscription and as

106

Configuration Process Runtime Speedup
∑

Speedup

Unmodified CG 435.9s 13.1X


31.5XSP 474.6s 9.6X

LU 507.3s 8.8X

Equi- CG 374.0s 15.5X


40.7Xpartitioning SP 380.8s 12.2X

LU 349.8s 13.0X

SCAF CG 172.2s 35.7X


59.3XSP 374.0s 12.5X

LU 424.0s 11.1X

Table 7.2: Summary of the 3-way multiprogramming scenario

107

T
im

e
(s

ec
on

ds
)

Threads

0
10

0
20

0
30

0
40

0

0102030405060

0102030405060

 c
g.

C
.x

 s
p.

B
.x

 lu
.B

.x

F
ig

u
re

7.
8:

S
C

A
F

b
eh

av
io

r
d
u
ri

n
g

a
3-

w
ay

m
u
lt

ip
ro

gr
am

m
in

g
ex

am
p
le

108

a result completes all three benchmarks faster. At first, cg.C runs on all 64 threads.

After 10 seconds, sp.B begins and is given 32 of cg.C’s threads. Finally, after lu.B

begins, sp.B and lu.B are allocated 21 threads while cg.C is allocated 22 threads. lu.B

finishes first, leaving cg.C and sp.B each 32 threads. Finally, cg.C finishes, leaving

sp.B to complete with all 64 threads. Here, the sum speedup increases to 40.7X due

to a lack of oversubscription.

With SCAF, we see improved overall performance. Figure 7.8 shows SCAF’s

allocations throughout the experiment. Initially, cg.C runs on all 64 threads. After

10 seconds, sp.B begins and is briefly allocated approximately 29 of the threads. At

20 seconds, sp.B begins as well. Very quickly, SCAF’s begins to observe that cg.C

is scaling particularly well, resulting in a significant allocation of 52 threads. Due

to this large allocation, cg.C finishes after only 172.2 seconds, after which sp.B and

lu.B are allowed to expand to use the full 64 contexts. At this point, sp.B and lu.B

are observed to have similar performance, with sp.B having shown better results

while cg.C was running. As a result, SCAF allocates about 44 threads to sp.B and

the remaining 20 go to lu.B. Finally, at 384 seconds sp.B finishes and lu.B is left to

complete on all 64 threads. The achieved sum speedup is 59.3X, an improvement by

factors of 1.88X and 1.45X over the unmodified and equipartitioning configurations,

respectively.

109

7.3 Oracle Comparison

In this section, we present experimental results designed to compare SCAF’s

partitioning decisions with true optimal partitionings. In other words, if we had an

“oracle” which could advise scafd on the current optimal allocation, how does SCAF’s

behavior differ? Four multiprogramming pair cases are presented, illustrating that

SCAF makes reasonable decisions.

In general, even given the advantage of offline analysis and limiting ourselves

to 2-way multiprogramming, determining a true oracle’s response is difficult. This is

because the search space is quite large: for every point in multiprogrammed time, all

possible allocations must be considered. For example, on a 36-core machine and a

200-second multiprogrammed region with our default 4Hz resolution, the number of

possible dynamic allocation plans is about (36− 1)200·4. Thus, naively testing even

just one benchmark pair on one test platform would require infeasibly many trials.

However, many of the NAS benchmarks we have chosen for evaluation exhibit

a steady state of speedup behavior, allowing us to reasonably compare SCAF against

a simplified oracle which chooses only a single optimal partitioning for the entire

multiprogrammed period. In other words, the oracle simply chooses the best static

partitioning. To discover the best partitionings, we performed extensive offline anal-

ysis of two benchmark pairs on two different machines: the TileGX and the dual

Opteron 6212. The TileGX was chosen as an example of a platform where SCAF

performs well, and the Opteron machine was chosen as an example of a platform

where SCAF provides less improvement. Speedups presented in this section (7.3)

110

are based on more precise partial benchmark runtimes in order to isolate behavior

within the multiprogrammed region, as opposed to the speedups presented in section

7.1, which are based on whole-program runtimes.

7.3.1 TileGX

We have chosen two benchmark pairs to evaluate on TileGX: SP+LU and

CG+FT. These two pairs were chosen as examples of pairs with small and large

differences in scalability, respectively. Figure 7.9 shows the information the oracle

would have at its disposal when multiprogramming CG and FT. This figure represents

the individual and sum speedups obtained during the multiprogrammed time period

when varying the static partitioning from 1 vs 35 threads to 35 vs 1 threads. Here,

we see that CG and FT have comparable overall scalability, although individual

speedups have interesting plateaus and then steps at 21 and 31 threads. As a result,

an oracle would choose an extreme allocation such as 5 cores for SP and 31 for LU.

However, because SCAF does not implement a search of all possible allocations, it

tends to settle on a more moderate split around 18 cores for each of SP and LU. In

this case, the sum speedup for SCAF is 25X, which is only 6% worse than the oracle’s

26.7X speedup. The reason for this is clear: scafd begins with equipartitioning, and

since the speedups are flat in this area, scafd sees no benefit in moving the split

in either direction. The result is that SCAF’s partitioning is also more fair than

the Oracle’s in this case. The oracle makes no attempt at fairness, whereas SCAF

attempts to prevent starvation of any thread; however that is not the reason for the

111

more equitable allocation of SCAF in this case.

In contrast, consider Figure 7.10, which shows the information that an oracle

would have while multiprogramming SP and LU. In this case, CG scales far better

than FT, and the oracle would choose the partitioning that gives CG 35 cores and

FT only 1. SCAF jumps from equipartitioning to a similar partitioning of about 30

vs 6. The speedup for SCAF in this case is about 25.6X, about 9% worse than the

oracle’s 28X speedup at an extreme partitioning. The uneven partitioning is driven

by the observed speedup advantage of CG, but it is not as extreme as the oracle’s

partitioning due to the logarithmic speedup model which SCAF uses to reason about

speedups. In general, the use of a logarithmic family of speedup models strongly

discourages extreme partitionings; this is effectively a heuristic in SCAF working

toward fairness.

7.3.2 Dual Opteron 6212

On the dual Opteron 6212 machine, we chose benchmark pairs LU+BT and

FT+LU. These two pairs were again selected as examples of pairs with small and large

relative differences in scalability, respectively. Figure 7.11 depicts the information

an oracle would have at its disposal when multiprogramming LU and BT. Here, LU

and BT have similar speedup behavior, with the maximum sum of speedups found

at a split of 10 vs 6 cores. In practice, this is also the allocation which SCAF chooses

most often. In other words, both the oracle and SCAF acheive a sum speedup of

10.1X in this scenario. SCAF arrives at this allocation based on the slight advantage

112

05

1015202530

0
5

10
15

20
2
5

30
35

Speedup

St
at

ic
pa

rt
it

io
ni

ng
sp

lit
po

in
t

(n
um

be
r

of
co

re
s

fo
r

SP
)

sp
.A

.x
lu

.A
.x

SU
M

F
ig

u
re

7.
9:

E
x
p
lo

ra
ti

on
of

al
l

st
at

ic
p
ar

ti
ti

on
in

gs
of

S
P

+
L

U
on

T
il
e-

G
X

.
T

h
e

tw
o

in
te

rs
ec

ti
n
g

li
n
es

re
p
re

se
n
t

S
P

an
d

L
U

’s

in
d
iv

id
u
al

sp
ee

d
u
p
s,

w
h
il
e

th
e

u
p
p

er
li
n
e

re
p
re

se
n
ts

th
ei

r
su

m
of

sp
ee

d
u
p
s.

113

05

1015202530

0
5

10
15

20
2
5

30
35

Speedup

St
at

ic
pa

rt
it

io
ni

ng
sp

lit
po

in
t

(n
um

be
r

of
co

re
s

fo
r

C
G

)

cg
.B

.x
ft

.B
.x

SU
M

F
ig

u
re

7.
10

:
E

x
p
lo

ra
ti

on
of

al
l

st
at

ic
p
ar

ti
ti

on
in

gs
of

C
G

+
F

T
on

T
il
e-

G
X

.
T

h
e

tw
o

in
te

rs
ec

ti
n
g

li
n
es

re
p
re

se
n
t

C
G

an
d

F
T

’s

in
d
iv

id
u
al

sp
ee

d
u
p
s,

w
h
il
e

th
e

u
p
p

er
li
n
e

re
p
re

se
n
ts

th
ei

r
su

m
of

sp
ee

d
u
p
s.

114

of LU’s efficiency. Note that SCAF will actually never choose the worse-performing

splits of 9 vs 7 nor 11 vs 5 due to the “chunk” size of 2 used on machines with

2-way simultaneous multithreading, so the 10 vs 6 split is essentially adjacent to

equipartitioning.

In contrast, Figure 7.12 shows the information available to an oracle when

multiprogramming FT and LU. Here, FT exhibits poor scaling when compared to

LU. Additionally, we see that speedup behavior for LU is complex for high (9-15) core

counts while FT is also running. As a result, an oracle can see that a partitioning of 3

threads for FT and 13 for LU is actually optimal. However, since SCAF reasons using

simple logarithmic speedup functions and only explores allocations that are multiples

of two, it most often chooses an allocation of 6 threads for FT. However, sometimes

it chooses 4 or 8 due to the inconsistent results from LU. In other words, SCAF

correctly chooses in favor of the better-performing benchmark, but complicated

speedup behaviors due to SMT can prevent it from arriving at the true optimal

partitioning. In the common case where SCAF chooses 6 threads for FT, it achieves

a sum speedup of 10.3X, only 3% lower than the oracle’s 10.6X sum speedup.

115

02468

10121416

0
2

4
6

8
1
0

12
1
4

16

Speedup

St
at

ic
pa

rt
it

io
ni

ng
sp

lit
po

in
t

(n
um

be
r

of
co

re
s

fo
r

LU
)

lu
.B

.x
bt

.B
.x

SU
M

F
ig

u
re

7.
11

:
E

x
p
lo

ra
ti

on
of

al
l

st
at

ic
p
ar

ti
ti

on
in

gs
of

L
U

+
B

T
on

a
d
u
al

O
p
te

ro
n

62
12

m
ac

h
in

e.
T

h
e

tw
o

in
te

rs
ec

ti
n
g

li
n
es

re
p
re

se
n
t

L
U

’s
an

d
B

T
’s

in
d
iv

id
u
al

sp
ee

d
u
p
s,

w
h
il
e

th
e

u
p
p

er
li
n
e

re
p
re

se
n
ts

th
ei

r
su

m
of

sp
ee

d
u
p
s.

116

02468

10121416

0
2

4
6

8
1
0

12
1
4

16

Speedup

St
at

ic
pa

rt
it

io
ni

ng
sp

lit
po

in
t

(n
um

be
r

of
co

re
s

fo
r

F
T

)

ft
.C

.x
lu

.B
.x

SU
M

F
ig

u
re

7.
12

:
E

x
p
lo

ra
ti

on
of

al
l

st
at

ic
p
ar

ti
ti

on
in

gs
of

F
T

+
L

U
on

a
d
u
al

O
p
te

ro
n

62
12

m
ac

h
in

e.
T

h
e

tw
o

in
te

rs
ec

ti
n
g

li
n
es

re
p
re

se
n
t

F
T

’s
an

d
L

U
’s

in
d
iv

id
u
al

sp
ee

d
u
p
s,

w
h
il
e

th
e

u
p
p

er
li
n
e

re
p
re

se
n
ts

th
ei

r
su

m
of

sp
ee

d
u
p
s.

117

Chapter 8

Future Extensions to SCAF

Future directions for the practical development of SCAF that the community

could investigate included the following. With this work and the planned open-

source release of SCAF, with hope to catalyze such future work in the open-source

community.

8.1 Porting additional runtime systems

SCAF may be useful in combination with additional runtime systems beyond

GNU OpenMP, such as Open64’s OpenMP runtimes and Intel’s TBB library. Al-

though most of the runtime changes will be very similar, some differences will arise

for TBB. TBB makes use of a dynamic work-stealing model, which may result in

design changes when modifying TBB to support changing the number of threads

used at runtime and require additional methods for estimating parallel efficiency.

However, OpenMP is the de-facto standard for shared memory programs today, and

is far more prevalent.

8.2 Expanding results to additional hardware platforms

SCAF has been primarily tested on Linux with Intel x86 64 SMPs. SCAF may

prove useful if ported to more platforms, such as SGI UV 2000 NUMA systems with

118

512-1024 cores, IBM Power systems, or virtual machines with virtualized hardware

counters. SCAF and its techniques are intended to become more useful and effective

on more parallel systems such as these.

8.3 Periodic lightweight experiments

One advantage of having a method for collecting serial IPC at runtime is that

it allows the measurement to be repeated periodically or on certain triggers. Some

long-running processes may have serial IPC which is very dependent upon input.

In these cases where inputs can vary greatly, it may not even be possible to gather

comprehensive information on serial performance even we are able to run tests ahead

of time. A SCAF system which can re-run serial experiments could overcome these

difficulties.

8.4 Supporting applications at the thread level

Currently, SCAF’s mechanisms for controlling parallelism (changing the num-

ber of threads at the start of parallel sections and setting process affinities) are simple

and not the focus of the work. These mechanisms also restrict supported programs

to those based on supported parallel runtime libraries. It may be worthwhile to

investigate if it is possible to extend SCAF to support controlling parallelism in a

POSIX threads library. We expect such an effort would be highly nontrivial without

requiring recompilation, akin to implementing a new user-space threading library

which is backwards-compatible with current kernel-managed libraries. However, if

119

such a mechanism could be devised without requiring recompilation, SCAF could

transparently support a wider array of programs.

8.5 Resource allocation toward power efficiency

Our current work always seeks to maximize efficiency with respect to system

performance. However, the resulting decisions may be power inefficient. With new

techniques, it may be possible to allocate such that hardware threads are intelli-

gently left unused in order to target power optimization as an additional goal. These

techniques may also be applicable to non-multiprogrammed scenarios.

As a motivating example, consider a system running only a single badly-scaling

multithreaded processes on an 8-core machine. Say running this process on 2 threads

achieves a 2x speedup, but only consumes energy at a rate of 20 watts. Running it

on 8 threads may improve speedup to 2.1x, but at a cost of 80 watts. In this scenario,

a very reasonable policy might be to optimize for power consumption rather than

performance, and decide to run only 2 threads.

8.6 Linux scheduler improvements for groups of tasks

The Linux scheduler schedules only individual software threads, and discards

any notion of processes or groups of threads. Although this information (e.g., “threads

4-8 constitute process 200”) is available to the kernel, it is not used when scheduling

threads to cores in order to minimize the computational requirements of the thread

scheduler.

120

As a result, in practice high-performance applications are often run by users

with explicit directions to the thread scheduler about how to distribute the threads of

a its process. The threads’ processor affinities are manually specified, based on the as-

sumption that the Linux scheduler cannot be expected to come up with an equivalent

plan. Ideally, users should not have to do such things for optimal performance.

We may investigate opportunities for improving the Linux scheduler by taking

into account special knowledge of groups of threads, such as processes, without

imposing excessive overhead.

8.7 Resource allocation across virtual machines

We may investigate efficient resource allocation of virtual machines, possibly

within or across VM hosts. Virtual machines can themselves been seen as multi-

threaded processes, similar to OpenMP programs. However, virtual machines are

currently generally allocated in fairly static manners, and there may be room for

improvement by way of a more dynamic solution.

8.8 Automatic software-based heartbeats

SCAF uses hardware counters in order to reason about performance efficiency,

but this is only because it is the most generic metric available. Unfortunately, for

various reasons, hardware counters are not always available. (For example, within

most virtual machines.) Additionally, depending on the workload, hardware-counter-

based metrics such as IPC can be highly misleading. We may investigate a technique

121

for injecting software-based heartbeats into as a generic alternative to hardware

counters, useful for reasoning about effective runtime performance of applications.

122

Chapter 9

Conclusion

This work has shown that for multiprogrammed workloads neither a priori

testing, nor simple equipartitioning is generally satisfactory. We argue that none of

the related work has caught on in practice, due to the significant inconvenience to the

user of performing profiling or testing ahead of time, or because they require changes

to the program or re-compilation. We have presented a drop-in system, SCAF, which

includes a technique for collecting equivalent information at runtime, paying only a

modest performance fee and enabling sophisticated resource management without

recompilation, modification, or profiling of programs. We believe that such resource

management will be important as hardware becomes increasingly parallel, and as

more parallel applications become available.

123

Appendix: Appendix

A.1 Detailed Hardware Topologies

Figures A.1-A.5 show detailed topologies for each of the tested platforms. All

figures were generated by “hwloc” [70].

124

M
a
ch

in
e
 (

8
0

3
8

M
B

 t
o
ta

l)

S
o
ck

e
t

P
#

0

N
U

M
A

N
o
d

e
 P

#
0

 (
3

9
4

7
M

B
)

C
o
re

 P
#

0

P
U

 P
#

0

C
o
re

 P
#

1

P
U

 P
#

1

C
o
re

 P
#

2

P
U

 P
#

2

C
o
re

 P
#

6

P
U

 P
#

6

C
o
re

 P
#

7

P
U

 P
#

7

C
o
re

 P
#

8

P
U

 P
#

8

C
o
re

 P
#

1
2

P
U

 P
#

1
2

C
o
re

 P
#

1
3

P
U

 P
#

1
3

C
o
re

 P
#

1
4

P
U

 P
#

1
4

C
o
re

 P
#

1
8

P
U

 P
#

1
8

C
o
re

 P
#

1
9

P
U

 P
#

1
9

C
o
re

 P
#

2
0

P
U

 P
#

2
0

C
o
re

 P
#

2
4

P
U

 P
#

2
4

C
o
re

 P
#

2
5

P
U

 P
#

2
5

C
o
re

 P
#

2
6

P
U

 P
#

2
6

C
o
re

 P
#

3
0

P
U

 P
#

3
0

C
o
re

 P
#

3
1

P
U

 P
#

3
1

C
o
re

 P
#

3
2

P
U

 P
#

3
2

N
U

M
A

N
o
d

e
 P

#
1

 (
4

0
9

1
M

B
)

C
o
re

 P
#

3

P
U

 P
#

3

C
o
re

 P
#

4

P
U

 P
#

4

C
o
re

 P
#

5

P
U

 P
#

5

C
o
re

 P
#

9

P
U

 P
#

9

C
o
re

 P
#

1
0

P
U

 P
#

1
0

C
o
re

 P
#

1
1

P
U

 P
#

1
1

C
o
re

 P
#

1
5

P
U

 P
#

1
5

C
o
re

 P
#

1
6

P
U

 P
#

1
6

C
o
re

 P
#

1
7

P
U

 P
#

1
7

C
o
re

 P
#

2
1

P
U

 P
#

2
1

C
o
re

 P
#

2
2

P
U

 P
#

2
2

C
o
re

 P
#

2
3

P
U

 P
#

2
3

C
o
re

 P
#

2
7

P
U

 P
#

2
7

C
o
re

 P
#

2
8

P
U

 P
#

2
8

C
o
re

 P
#

2
9

P
U

 P
#

2
9

C
o
re

 P
#

3
3

P
U

 P
#

3
3

C
o
re

 P
#

3
4

P
U

 P
#

3
4

C
o
re

 P
#

3
5

P
U

 P
#

3
5

In
d

e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
T
h
u
 2

5
 J
u
n
 2

0
1

5
 0

7
:0

2
:3

3
 P

M
 E

D
T

F
ig

u
re

A
.1

:
H

ar
d
w

ar
e

T
op

ol
og

y
of

a
36

-c
or

e
T

il
eG

X

125

M
a
ch

in
e
 (

1
2

8
G

B
 t

o
ta

l)

N
U

M
A

N
o
d

e
 P

#
0

 (
6

4
G

B
)

S
o
ck

e
t

P
#

0

L3
 (

2
0

M
B

)

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

0

P
U

 P
#

0

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1

P
U

 P
#

1

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2

P
U

 P
#

2

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3

P
U

 P
#

3

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4

P
U

 P
#

4

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5

P
U

 P
#

5

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

6

P
U

 P
#

6

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

7

P
U

 P
#

7

N
U

M
A

N
o
d

e
 P

#
1

 (
6

4
G

B
)

S
o
ck

e
t

P
#

1

L3
 (

2
0

M
B

)

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

0

P
U

 P
#

8

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1

P
U

 P
#

9

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2

P
U

 P
#

1
0

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3

P
U

 P
#

1
1

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4

P
U

 P
#

1
2

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5

P
U

 P
#

1
3

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

6

P
U

 P
#

1
4

L2
 (

2
5

6
K

B
)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

7

P
U

 P
#

1
5

In
d

e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
Fr

i
2

6
 J
u
n
 2

0
1

5
 1

0
:4

0
:3

2
 A

M
 E

D
T

F
ig

u
re

A
.2

:
H

ar
d
w

ar
e

T
op

ol
og

y
of

a
16

-c
or

e
X

eo
n

E
5-

26
90

126

M
a
ch

in
e
 (

7
6

9
8

M
B

)

S
o
ck

e
t

P
#

0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
9

P
U

 P
#

0
P
U

 P
#

2
3

7

P
U

 P
#

2
3

8
P
U

 P
#

2
3

9

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

0

P
U

 P
#

1
P
U

 P
#

2

P
U

 P
#

3
P
U

 P
#

4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1

P
U

 P
#

5
P
U

 P
#

6

P
U

 P
#

7
P
U

 P
#

8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2

P
U

 P
#

9
P
U

 P
#

1
0

P
U

 P
#

1
1

P
U

 P
#

1
2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3

P
U

 P
#

1
3

P
U

 P
#

1
4

P
U

 P
#

1
5

P
U

 P
#

1
6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4

P
U

 P
#

1
7

P
U

 P
#

1
8

P
U

 P
#

1
9

P
U

 P
#

2
0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5

P
U

 P
#

2
1

P
U

 P
#

2
2

P
U

 P
#

2
3

P
U

 P
#

2
4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

6

P
U

 P
#

2
5

P
U

 P
#

2
6

P
U

 P
#

2
7

P
U

 P
#

2
8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

7

P
U

 P
#

2
9

P
U

 P
#

3
0

P
U

 P
#

3
1

P
U

 P
#

3
2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

8

P
U

 P
#

3
3

P
U

 P
#

3
4

P
U

 P
#

3
5

P
U

 P
#

3
6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

9

P
U

 P
#

3
7

P
U

 P
#

3
8

P
U

 P
#

3
9

P
U

 P
#

4
0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
0

P
U

 P
#

4
1

P
U

 P
#

4
2

P
U

 P
#

4
3

P
U

 P
#

4
4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
1

P
U

 P
#

4
5

P
U

 P
#

4
6

P
U

 P
#

4
7

P
U

 P
#

4
8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
2

P
U

 P
#

4
9

P
U

 P
#

5
0

P
U

 P
#

5
1

P
U

 P
#

5
2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
3

P
U

 P
#

5
3

P
U

 P
#

5
4

P
U

 P
#

5
5

P
U

 P
#

5
6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
4

P
U

 P
#

5
7

P
U

 P
#

5
8

P
U

 P
#

5
9

P
U

 P
#

6
0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
5

P
U

 P
#

6
1

P
U

 P
#

6
2

P
U

 P
#

6
3

P
U

 P
#

6
4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
6

P
U

 P
#

6
5

P
U

 P
#

6
6

P
U

 P
#

6
7

P
U

 P
#

6
8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
7

P
U

 P
#

6
9

P
U

 P
#

7
0

P
U

 P
#

7
1

P
U

 P
#

7
2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
8

P
U

 P
#

7
3

P
U

 P
#

7
4

P
U

 P
#

7
5

P
U

 P
#

7
6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
9

P
U

 P
#

7
7

P
U

 P
#

7
8

P
U

 P
#

7
9

P
U

 P
#

8
0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
0

P
U

 P
#

8
1

P
U

 P
#

8
2

P
U

 P
#

8
3

P
U

 P
#

8
4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
1

P
U

 P
#

8
5

P
U

 P
#

8
6

P
U

 P
#

8
7

P
U

 P
#

8
8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
2

P
U

 P
#

8
9

P
U

 P
#

9
0

P
U

 P
#

9
1

P
U

 P
#

9
2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
3

P
U

 P
#

9
3

P
U

 P
#

9
4

P
U

 P
#

9
5

P
U

 P
#

9
6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
4

P
U

 P
#

9
7

P
U

 P
#

9
8

P
U

 P
#

9
9

P
U

 P
#

1
0

0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
5

P
U

 P
#

1
0

1
P
U

 P
#

1
0

2

P
U

 P
#

1
0

3
P
U

 P
#

1
0

4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
6

P
U

 P
#

1
0

5
P
U

 P
#

1
0

6

P
U

 P
#

1
0

7
P
U

 P
#

1
0

8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
7

P
U

 P
#

1
0

9
P
U

 P
#

1
1

0

P
U

 P
#

1
1

1
P
U

 P
#

1
1

2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
8

P
U

 P
#

1
1

3
P
U

 P
#

1
1

4

P
U

 P
#

1
1

5
P
U

 P
#

1
1

6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2
9

P
U

 P
#

1
1

7
P
U

 P
#

1
1

8

P
U

 P
#

1
1

9
P
U

 P
#

1
2

0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
0

P
U

 P
#

1
2

1
P
U

 P
#

1
2

2

P
U

 P
#

1
2

3
P
U

 P
#

1
2

4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
1

P
U

 P
#

1
2

5
P
U

 P
#

1
2

6

P
U

 P
#

1
2

7
P
U

 P
#

1
2

8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
2

P
U

 P
#

1
2

9
P
U

 P
#

1
3

0

P
U

 P
#

1
3

1
P
U

 P
#

1
3

2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
3

P
U

 P
#

1
3

3
P
U

 P
#

1
3

4

P
U

 P
#

1
3

5
P
U

 P
#

1
3

6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
4

P
U

 P
#

1
3

7
P
U

 P
#

1
3

8

P
U

 P
#

1
3

9
P
U

 P
#

1
4

0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
5

P
U

 P
#

1
4

1
P
U

 P
#

1
4

2

P
U

 P
#

1
4

3
P
U

 P
#

1
4

4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
6

P
U

 P
#

1
4

5
P
U

 P
#

1
4

6

P
U

 P
#

1
4

7
P
U

 P
#

1
4

8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
7

P
U

 P
#

1
4

9
P
U

 P
#

1
5

0

P
U

 P
#

1
5

1
P
U

 P
#

1
5

2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
8

P
U

 P
#

1
5

3
P
U

 P
#

1
5

4

P
U

 P
#

1
5

5
P
U

 P
#

1
5

6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3
9

P
U

 P
#

1
5

7
P
U

 P
#

1
5

8

P
U

 P
#

1
5

9
P
U

 P
#

1
6

0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
0

P
U

 P
#

1
6

1
P
U

 P
#

1
6

2

P
U

 P
#

1
6

3
P
U

 P
#

1
6

4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
1

P
U

 P
#

1
6

5
P
U

 P
#

1
6

6

P
U

 P
#

1
6

7
P
U

 P
#

1
6

8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
2

P
U

 P
#

1
6

9
P
U

 P
#

1
7

0

P
U

 P
#

1
7

1
P
U

 P
#

1
7

2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
3

P
U

 P
#

1
7

3
P
U

 P
#

1
7

4

P
U

 P
#

1
7

5
P
U

 P
#

1
7

6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
4

P
U

 P
#

1
7

7
P
U

 P
#

1
7

8

P
U

 P
#

1
7

9
P
U

 P
#

1
8

0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
5

P
U

 P
#

1
8

1
P
U

 P
#

1
8

2

P
U

 P
#

1
8

3
P
U

 P
#

1
8

4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
6

P
U

 P
#

1
8

5
P
U

 P
#

1
8

6

P
U

 P
#

1
8

7
P
U

 P
#

1
8

8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
7

P
U

 P
#

1
8

9
P
U

 P
#

1
9

0

P
U

 P
#

1
9

1
P
U

 P
#

1
9

2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
8

P
U

 P
#

1
9

3
P
U

 P
#

1
9

4

P
U

 P
#

1
9

5
P
U

 P
#

1
9

6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4
9

P
U

 P
#

1
9

7
P
U

 P
#

1
9

8

P
U

 P
#

1
9

9
P
U

 P
#

2
0

0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
0

P
U

 P
#

2
0

1
P
U

 P
#

2
0

2

P
U

 P
#

2
0

3
P
U

 P
#

2
0

4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
1

P
U

 P
#

2
0

5
P
U

 P
#

2
0

6

P
U

 P
#

2
0

7
P
U

 P
#

2
0

8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
2

P
U

 P
#

2
0

9
P
U

 P
#

2
1

0

P
U

 P
#

2
1

1
P
U

 P
#

2
1

2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
3

P
U

 P
#

2
1

3
P
U

 P
#

2
1

4

P
U

 P
#

2
1

5
P
U

 P
#

2
1

6

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
4

P
U

 P
#

2
1

7
P
U

 P
#

2
1

8

P
U

 P
#

2
1

9
P
U

 P
#

2
2

0

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
5

P
U

 P
#

2
2

1
P
U

 P
#

2
2

2

P
U

 P
#

2
2

3
P
U

 P
#

2
2

4

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
6

P
U

 P
#

2
2

5
P
U

 P
#

2
2

6

P
U

 P
#

2
2

7
P
U

 P
#

2
2

8

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
7

P
U

 P
#

2
2

9
P
U

 P
#

2
3

0

P
U

 P
#

2
3

1
P
U

 P
#

2
3

2

L2
d

 (
5

1
2

K
B

)

L1
d

 (
3

2
K

B
)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5
8

P
U

 P
#

2
3

3
P
U

 P
#

2
3

4

P
U

 P
#

2
3

5
P
U

 P
#

2
3

6

In
d

e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
T
h
u
 2

5
 J
u
n
 2

0
1

5
 0

7
:0

3
:2

5
 P

M
 E

D
T

F
ig

u
re

A
.3

:
H

ar
d
w

ar
e

T
op

ol
og

y
of

a
60

-c
or

e
X

eo
n

P
h
i

51
00

p

127

M
a
ch

in
e
 (

2
4

G
B

 t
o
ta

l)

N
U

M
A

N
o
d
e
 P

#
0

 (
2

4
G

B
)

S
o
ck

e
t

P
#

1
6

C
o
re

 P
#

2
0

1
5

8
8

7
3

7

P
U

 P
#

0
P
U

 P
#

1
P
U

 P
#

2
P
U

 P
#

3

P
U

 P
#

4
P
U

 P
#

5
P
U

 P
#

6
P
U

 P
#

7

C
o
re

 P
#

2
0

2
0

4
7

4
8

9

P
U

 P
#

8
P
U

 P
#

9
P
U

 P
#

1
0

P
U

 P
#

1
1

P
U

 P
#

1
2

P
U

 P
#

1
3

P
U

 P
#

1
4

P
U

 P
#

1
5

C
o
re

 P
#

2
0

2
5

0
6

2
4

1

P
U

 P
#

1
6

P
U

 P
#

1
7

P
U

 P
#

1
8

P
U

 P
#

1
9

P
U

 P
#

2
0

P
U

 P
#

2
1

P
U

 P
#

2
2

P
U

 P
#

2
3

C
o
re

 P
#

2
0

2
9

6
4

9
9

3

P
U

 P
#

2
4

P
U

 P
#

2
5

P
U

 P
#

2
6

P
U

 P
#

2
7

P
U

 P
#

2
8

P
U

 P
#

2
9

P
U

 P
#

3
0

P
U

 P
#

3
1

C
o
re

 P
#

2
0

3
4

2
3

7
4

5

P
U

 P
#

3
2

P
U

 P
#

3
3

P
U

 P
#

3
4

P
U

 P
#

3
5

P
U

 P
#

3
6

P
U

 P
#

3
7

P
U

 P
#

3
8

P
U

 P
#

3
9

C
o
re

 P
#

2
0

3
7

5
1

4
2

5

P
U

 P
#

4
0

P
U

 P
#

4
1

P
U

 P
#

4
2

P
U

 P
#

4
3

P
U

 P
#

4
4

P
U

 P
#

4
5

P
U

 P
#

4
6

P
U

 P
#

4
7

C
o
re

 P
#

2
0

4
0

7
9

1
0

5

P
U

 P
#

4
8

P
U

 P
#

4
9

P
U

 P
#

5
0

P
U

 P
#

5
1

P
U

 P
#

5
2

P
U

 P
#

5
3

P
U

 P
#

5
4

P
U

 P
#

5
5

C
o
re

 P
#

2
0

4
4

0
6

7
8

5

P
U

 P
#

5
6

P
U

 P
#

5
7

P
U

 P
#

5
8

P
U

 P
#

5
9

P
U

 P
#

6
0

P
U

 P
#

6
1

P
U

 P
#

6
2

P
U

 P
#

6
3

In
d
e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
T
h
u
 2

5
 J
u
n
 2

0
1

5
 0

8
:3

0
:3

7
 P

M
 E

D
T

F
ig

u
re

A
.4

:
H

ar
d
w

ar
e

T
op

ol
og

y
of

an
8-

co
re

U
lt

ra
S
p
ar

c
T

2

128

M
a
ch

in
e
 (

1
2

6
G

B
 t

o
ta

l)

S
o
ck

e
t

P
#

0

N
U

M
A

N
o
d

e
 P

#
0

 (
3

1
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
i
(6

4
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

0

P
U

 P
#

0

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

1

P
U

 P
#

1

L2
 (

2
0

4
8

K
B

)

L1
i
(6

4
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

2

P
U

 P
#

2

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

3

P
U

 P
#

3

N
U

M
A

N
o
d

e
 P

#
1

 (
3

1
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
i
(6

4
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

0

P
U

 P
#

4

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

1

P
U

 P
#

5

L2
 (

2
0

4
8

K
B

)

L1
i
(6

4
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

2

P
U

 P
#

6

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

3

P
U

 P
#

7

S
o
ck

e
t

P
#

1

N
U

M
A

N
o
d

e
 P

#
2

 (
3

1
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
i
(6

4
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

0

P
U

 P
#

8

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

1

P
U

 P
#

9

L2
 (

2
0

4
8

K
B

)

L1
i
(6

4
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

2

P
U

 P
#

1
0

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

3

P
U

 P
#

1
1

N
U

M
A

N
o
d

e
 P

#
3

 (
3

1
G

B
)

L3
 (

6
1

4
4

K
B

)

L2
 (

2
0

4
8

K
B

)

L1
i
(6

4
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

0

P
U

 P
#

1
2

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

1

P
U

 P
#

1
3

L2
 (

2
0

4
8

K
B

)

L1
i
(6

4
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

2

P
U

 P
#

1
4

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

3

P
U

 P
#

1
5

In
d

e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
T
h
u
 2

5
 J
u
n
 2

0
1

5
 0

7
:1

2
:3

9
 P

M
 E

D
T

F
ig

u
re

A
.5

:
H

ar
d
w

ar
e

T
op

ol
og

y
of

an
8-

co
re

O
p
te

ro
n

62
12

129

A.2 Using IPC ratios to estimate true speedup on TileGX

Figures A.6-A.14 support our claims that IPC ratios (rather than raw IPC)

can be used reasonably to estimate true speedups. In these figures, whole-program

speedup is plotted in a solid line, while raw IPC (total, for all cores) is plotted

using a dashed line. The points plot an IPC-based estimate of speedup, which is

simply the total IPC divided by the process’s known single-threaded IPC. IPC was

reported using the Linux perf stat tool, while speedups are as reported by the

NAS benchmarks.

To aid the reader in comparing speedups, all plots are shown on the same

vertical and horizontal axes. The important thing to note from these graphs is that

while raw IPC is a poor indicator of scalability, IPC can still be used to reasonably

estimate speedup if we compare it to a known serial speedup.

130

0
10

20
30

05101520253035
b

t

T
hr

ea
ds

Speedup vs. Serial

●

●

●

●

●
●

●

●

Se
ri

al
 I

P
C

: 0
.7

7

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.6

:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
B

T
b

en
ch

m
ar

k

131

0
10

20
30

05101520253035
ft

T
hr

ea
ds

Speedup vs. Serial

Se
ri

al
 I

P
C

: 0
.8

3

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.7

:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
F

T
b

en
ch

m
ar

k

132

0
10

20
30

05101520253035
m

g

T
hr

ea
ds

Speedup vs. Serial

Se
ri

al
 I

P
C

: 0
.6

3

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.8

:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
M

G
b

en
ch

m
ar

k

133

0
10

20
30

05101520253035
cg

T
hr

ea
ds

Speedup vs. Serial

Se
ri

al
 I

P
C

: 0
.3

3

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.9

:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
C

G
b

en
ch

m
ar

k

134

0
10

20
30

05101520253035
is

T
hr

ea
ds

Speedup vs. Serial

Se
ri

al
 I

P
C

: 0
.6

6

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.1

0:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
IS

b
en

ch
m

ar
k

135

0
10

20
30

05101520253035
sp

T
hr

ea
ds

Speedup vs. Serial

Se
ri

al
 I

P
C

: 0
.8

6

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.1

1:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
S
P

b
en

ch
m

ar
k

136

0
10

20
30

05101520253035
ep

T
hr

ea
ds

Speedup vs. Serial

Se
ri

al
 I

P
C

: 0
.8

4

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.1

2:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
E

P
b

en
ch

m
ar

k

137

0
10

20
30

05101520253035
lu

T
hr

ea
ds

Speedup vs. Serial

Se
ri

al
 I

P
C

: 0
.8

6

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.1

3:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
L

U
b

en
ch

m
ar

k

138

0
10

20
30

05101520253035
u

a

T
hr

ea
ds

Speedup vs. Serial

Se
ri

al
 I

P
C

: 0
.6

4

T
ru

e
Sp

ee
du

p
IP

C
−

es
ti

m
at

ed
 s

pe
ed

up
T

ot
al

 I
P

C

F
ig

u
re

A
.1

4:
C

om
p
ar

is
on

of
IP

C
ra

ti
o

(p
oi

n
ts

)
to

tr
u
e

sp
ee

d
u
p

(l
in

es
)

on
T

il
eG

X
fo

r
th

e
U

A
b

en
ch

m
ar

k

139

Bibliography

[1] Dror G Feitelson and Larry Rudolph. Toward convergence in job schedulers for
parallel supercomputers. In Job Scheduling Strategies for Parallel Processing,
pages 1–26. Springer, 1996.

[2] Mary W Hall and Margaret Martonosi. Adaptive parallelism in compiler-
parallelized code. Concurrency: Practice and Experience, 10(14):1235–1250,
December 1998.

[3] I. H Kazi and D. J Lilja. A comprehensive dynamic processor allocation scheme
for multiprogrammed multiprocessor systems. In 2000 International Conference
on Parallel Processing, 2000. Proceedings, pages 153–161. IEEE, 2000.

[4] Daniel James McFarland. Exploiting Malleable Parallelism on Multicore Sys-
tems. University Libraries, Virginia Polytechnic Institute and State University,
[Blacksburg, Va, 2011.

[5] Jan H. Schonherr, Jan Richling, and Hans-Ulrich Heiss. Dynamic teams in
OpenMP. In Dynamic Teams in OpenMP, pages 231–237. IEEE, October 2010.

[6] Jan Hungershöfer, Achim Streit, and Jens-michael Wierum. Efficient Resource
Management for Malleable Applications. Citeseer, 2001.

[7] A. Tucker and A. Gupta. Process control and scheduling issues for multipro-
grammed shared-memory multiprocessors. In Proceedings of the twelfth ACM
symposium on Operating systems principles, SOSP ’89, pages 159–166, New
York, NY, USA, 1989. ACM.

[8] Peter B Galvin, Greg Gagne, and Abraham Silberschatz. Operating system
concepts. John Wiley & Sons, Inc., 2013.

[9] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L
Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A
Lasinski, Rob S Schreiber, et al. The NAS parallel benchmarks. International
Journal of High Performance Computing Applications, 5(3):63–73, 1991.

[10] Paul Menage. CGROUPS. https://www.kernel.org/doc/Documentation/

cgroups/cgroups.txt.

140

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

[11] Dima Kogan. feedgnuplot: General purpose pipe-oriented plotting tool. https:
//github.com/dkogan/feedgnuplot.

[12] Thomas Williams, Colin Kelley, and many others. Gnuplot: an interactive
plotting program. http://gnuplot.sourceforge.net/.

[13] Robert D. Blumofe and Dionisios Papadopoulos. Hood: A user-level threads
library for multiprogrammed multiprocessors. Technical report, The University
of Texas at Austin, 1998.

[14] Heidi Pan, Benjamin Hindman, and Krste Asanović. Composing parallel soft-
ware efficiently with lithe. In Proceedings of the 2010 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’10, pages 376–387,
New York, NY, USA, 2010. ACM.

[15] Jeremy Buisson, Omer Ozan Sonmez, Hashim H. Mohamed, Wouter Lammers,
and Dick H. J. Epema. Scheduling malleable applications in multicluster systems.
In CLUSTER, pages 372–381. IEEE Computer Society, 2007.

[16] Sathish S. Vadhiyar and Jack Dongarra. SRS: A Framework for Developing
Malleable and Migratable Parallel Applications for Distributed Systems. Parallel
Processing Letters, 13(2):291–312, 2003.

[17] Liang Chen, Qian Zhu, and Gagan Agrawal. Supporting Dynamic Migration
in Tightly Coupled Grid Applications. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM.

[18] Rohit Fernandes, Keshav Pingali, and Paul Stodghill. Mobile MPI Programs
in Computational Grids. In Proceedings of the Eleventh ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP ’06, pages
22–31, New York, NY, USA, 2006. ACM.

[19] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon,
Eric Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni, Lukasz
Wesolowski, and Laxmikant Kale. Parallel Programming with Migratable Ob-
jects: Charm++ in Practice. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’14, pages
647–658, Piscataway, NJ, USA, 2014. IEEE Press.

[20] Jeremy Buisson, Francoise Andre, and Jean-Louis Pazat. Supporting Adaptable
Applications in Grid Resource Management Systems. In Proceedings of the
8th IEEE/ACM International Conference on Grid Computing, GRID ’07, pages
58–65, Washington, DC, USA, 2007. IEEE Computer Society.

[21] Travis J. Desell, Kaoutar El Maghraoui, and Carlos A. Varela. Malleable appli-
cations for scalable high performance computing. Cluster Computing, 10(3):323–
337, 2007.

141

https://github.com/dkogan/feedgnuplot
https://github.com/dkogan/feedgnuplot
http://gnuplot.sourceforge.net/

[22] Walfredo Cirne and Francine Berman. A Model for Moldable Supercomputer
Jobs. In IPDPS, page 59. IEEE Computer Society, 2001.

[23] Cristian Klein and Christian Pérez. An RMS Architecture for Efficiently
Supporting Complex-Moldable Applications. In Parimala Thulasiraman, Lau-
rence Tianruo Yang, Qiwen Pan, Xingang Liu, Yaw-Chung Chen, Yo-Ping Huang,
Lin-Huang Chang, Che-Lun Hung, Che-Rung Lee, Justin Y. Shi, and Ying Zhang,
editors, HPCC, pages 211–220. IEEE, 2011.

[24] Kaoutar El Maghraoui, Travis J. Desell, Boleslaw K. Szymanski, and Carlos A.
Varela. Dynamic Malleability in Iterative MPI Applications. In CCGRID, pages
591–598. IEEE Computer Society, 2007.

[25] Gladys Utrera, Julita Corbalán, and Jesús Labarta. Implementing Malleability
on MPI Jobs. In IEEE PACT, pages 215–224. IEEE Computer Society, 2004.

[26] Matthias Hovestadt, Odej Kao, Axel Keller, and Achim Streit. Scheduling
in HPC Resource Management Systems: Queuing vs. Planning. In Dror G.
Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, editors, JSSPP, volume
2862 of Lecture Notes in Computer Science, pages 1–20. Springer, 2003.

[27] Andrew D. Ferguson, Peter Bod́ık, Srikanth Kandula, Eric Boutin, and Rodrigo
Fonseca. Jockey: guaranteed job latency in data parallel clusters. In Pascal
Felber, Frank Bellosa, and Herbert Bos, editors, EuroSys, pages 99–112. ACM,
2012.

[28] Gonzalo Pedro Rodrigo Álvarez, Per-Olov Östberg, Erik Elmroth, and Lavanya
Ramakrishnan. A2L2: An Application Aware Flexible HPC Scheduling Model
for Low-Latency Allocation. In Proceedings of the 8th International Workshop
on Virtualization Technologies in Distributed Computing, VTDC ’15, pages 11–
19, New York, NY, USA, 2015. ACM.

[29] Hesham El-Rewini and Ted G. Lewis. Scheduling parallel program tasks onto ar-
bitrary target machines. Journal of parallel and Distributed Computing, 9(2):138–
153, 1990.

[30] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. Parallel and Dis-
tributed Systems, IEEE Transactions on, 13(3):260–274, 2002.

[31] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Bölöni, Muthucumaru
Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin
Yao, Debra A. Hensgen, and Richard F. Freund. A Comparison of Eleven
Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems. J. Parallel Distrib. Comput., 61(6):810–837,
2001.

142

[32] Bobby Dalton Young, Sudeep Pasricha, Anthony A. Maciejewski, Howard Jay
Siegel, and James T. Smith. Heterogeneous Makespan and Energy-constrained
DAG Scheduling. In Proceedings of the 2013 Workshop on Energy Efficient
High Performance Parallel and Distributed Computing, EEHPDC ’13, pages
3–12, New York, NY, USA, 2013. ACM.

[33] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick H. J. Epema. Deadline-
constrained workflow scheduling algorithms for Infrastructure as a Service
Clouds. Future Generation Comp. Syst., 29(1):158–169, 2013.

[34] Young Choon Lee and Albert Y. Zomaya. Energy Conscious Scheduling for
Distributed Computing Systems under Different Operating Conditions. IEEE
Trans. Parallel Distrib. Syst., 22(8):1374–1381, 2011.

[35] Rajkumar Buyya. Economic-based Distributed Resource Management and
Scheduling for Grid Computing. CoRR, cs.DC/0204048, 2002.

[36] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille
Martin, GrÃ c©gory MouniÃ c©, Pierre Neyron, and Olivier Richard. A batch
scheduler with high level components. Cluster computing and Grid 2005 (CC-
Grid05), Royaume-Uni (2005), June 2005.

[37] Prakhar Gupta, Tarun Atrey, Manjari Garg, Verdi March, and Simon Chong Wee
See. Batch scheduler for personal multi-core systems. In Distributed Computing
and Applications to Business Engineering and Science (DCABES), 2010 Ninth
International Symposium on, pages 584–587. IEEE, 2010.

[38] L. V Kale, S. Kumar, and J. DeSouza. A Malleable-Job system for timeshared
parallel machines. In 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2002, pages 230– 230. IEEE, May 2002.

[39] R. Sudarsan and C.J. Ribbens. ReSHAPE: a framework for dynamic resizing and
scheduling of homogeneous applications in a parallel environment. In Parallel
Processing, 2007. ICPP 2007. International Conference on, page 44, September
2007.

[40] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling
for multiprogrammed multiprocessors. In Proceedings of the tenth annual ACM
symposium on Parallel algorithms and architectures, SPAA ’98, pages 119–129,
New York, NY, USA, 1998. ACM.

[41] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the cilk-5 multithreaded language. SIGPLAN Not., 33(5):212–223, May 1998.

[42] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt. Feedback-driven
threading: power-efficient and high-performance execution of multi-threaded
workloads on cmps. In Proceedings of the 13th international conference on Ar-
chitectural support for programming languages and operating systems, ASPLOS
XIII, pages 277–286, New York, NY, USA, 2008. ACM.

143

[43] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. Thread rein-
forcer: Dynamically determining number of threads via OS level monitoring. In
IISWC, pages 116–125. IEEE Computer Society, 2011.

[44] Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan Clark.
Thread tailor: dynamically weaving threads together for efficient, adaptive par-
allel applications. In André Seznec, Uri C. Weiser, and Ronny Ronen, editors,
ISCA, pages 270–279. ACM, 2010.

[45] Changhee Jung, Daeseob Lim, Jaejin Lee, and Sangyong Han. Adaptive ex-
ecution techniques for SMT multiprocessor architectures. In Keshav Pingali,
Katherine A. Yelick, and Andrew S. Grimshaw, editors, PPOPP, pages 236–246.
ACM, 2005.

[46] Yang Ding, Mahmut T. Kandemir, Padma Raghavan, and Mary Jane Irwin. A
helper thread based EDP reduction scheme for adapting application execution
in CMPs. In IPDPS, pages 1–14. IEEE, 2008.

[47] Jaejin Lee and H. D. K. Moonesinghe. Adaptively Increasing Performance
and Scalability of Automatically Parallelized Programs. In William Pugh and
Chau-Wen Tseng, editors, LCPC, volume 2481 of Lecture Notes in Computer
Science, pages 203–217. Springer, 2002.

[48] M. Voss and R. Eigenmann. Reducing parallel overheads through dynamic seri-
alization. In Parallel and Distributed Processing, 1999. 13th International and
10th Symposium on Parallel and Distributed Processing, 1999. 1999 IPPS/SPDP.
Proceedings, pages 88–92. IEEE, April 1999.

[49] Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dim-
itrios S. Nikolopoulos. Online power-performance adaptation of multithreaded
programs using hardware event-based prediction. In Gregory K. Egan and
Yoichi Muraoka, editors, ICS, pages 157–166. ACM, 2006.

[50] Matthew Curtis-Maury, Karan Singh, Sally A. McKee, Filip Blagojevic, Dim-
itrios S. Nikolopoulos, Bronis R. de Supinski, and Martin Schulz. Identifying
energy-efficient concurrency levels using machine learning. In CLUSTER, pages
488–495. IEEE Computer Society, 2007.

[51] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bronis R.
de Supinski, and Martin Schulz. A regression-based approach to scalability
prediction. In Pin Zhou, editor, ICS, pages 368–377. ACM, 2008.

[52] Laxmikant V Kale, Josh Yelon, and Timothy Knauff. Threads for interoperable
parallel programming. In Languages and Compilers for Parallel Computing,
pages 534–552. Springer, 1997.

[53] Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tolmach.
Lightweight concurrency primitives for GHC. In Gabriele Keller, editor, Haskell,
pages 107–118. ACM, 2007.

144

[54] Matthew Fluet, Mike Rainey, and John H. Reppy. A scheduling framework
for general-purpose parallel languages. In James Hook and Peter Thiemann,
editors, ICFP, pages 241–252. ACM, 2008.

[55] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P.
Markatos. First-Class User-Level Threads. SIGOPS Oper. Syst. Rev., 25(5):110–
121, 1991.

[56] T.E. Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6
–16, January 1990.

[57] Alaa R Alameldeen and David A Wood. Ipc considered harmful for multipro-
cessor workloads. IEEE Micro, 26(4):8–17, 2006.

[58] ICL, University of Tennessee and contributors. Performance Application Pro-
gramming Interface (PAPI), 2012.

[59] A. B. Downey. A model for speedup of parallel programs. University of California,
Berkeley, Computer Science Division, 1997.

[60] Su-Hui Chiang, Rajesh K. Mansharamani, and Mary K. Vernon. Use of ap-
plication characteristics and limited preemption for run-to-completion parallel
processor scheduling policies. SIGMETRICS Perform. Eval. Rev., 22(1):33–44,
May 1994.

[61] GCC 4.6.4 GNU OpenMP Manual. https://gcc.gnu.org/onlinedocs/gcc-4.
6.4/libgomp/. Accessed: 2015-09-18.

[62] ARB OpenMP. OpenMP application program interface version 4.0, 2013.

[63] iMatix Corporation and contributors. ZeroMQ, 2012.

[64] Troy D Hanson. uthash User Guide. URL:
https://troydhanson.github.io/uthash/userguide.html, 2014.

[65] TILE-Gx36 Processor Product Brief. http://www.tilera.com/files/drim_

_TILE-Gx8036_PB033-03_WEB_7682.pdf. Accessed: 2015-09-18.

[66] Intel R© Xeon R© Processor E5-2690 (20M Cache, 2.90 GHz,
8.00 GT/s Intel R© QPI). http://ark.intel.com/products/

64596/Intel-Xeon-Processor-E5-2690-20M-Cache-2_90-GHz-8_

00-GTs-Intel-QPI. Accessed: 2015-09-18.

[67] Intel R© Xeon PhiTM Coprocessor 5110P (8GB, 1.053 GHz, 60 core). http://ark.
intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_

053-GHz-60-core. Accessed: 2015-09-18.

145

https://gcc.gnu.org/onlinedocs/gcc-4.6.4/libgomp/
https://gcc.gnu.org/onlinedocs/gcc-4.6.4/libgomp/
http://www.tilera.com/files/drim__TILE-Gx8036_PB033-03_WEB_7682.pdf
http://www.tilera.com/files/drim__TILE-Gx8036_PB033-03_WEB_7682.pdf
http://ark.intel.com/products/64596/Intel-Xeon-Processor-E5-2690-20M-Cache-2_90-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64596/Intel-Xeon-Processor-E5-2690-20M-Cache-2_90-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64596/Intel-Xeon-Processor-E5-2690-20M-Cache-2_90-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
http://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core

[68] Manish Shah, J Barren, Jeff Brooks, Robert Golla, Gregory Grohoski, Nils Gura,
Rick Hetherington, Paul Jordan, Mark Luttrell, Christopher Olson, et al. Ul-
traSPARC T2: A highly-treaded, power-efficient, SPARC SOC. In Solid-State
Circuits Conference, 2007. ASSCC’07. IEEE Asian, pages 22–25. IEEE, 2007.

[69] Opteron 6212. http://products.amd.com/en-us/search/CPU/

AMD-Opteron%E2%84%A2/AMD-Opteron%E2%84%A2-6200-Series-Processor/

6212/35. Accessed: 2015-09-18.

[70] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Fur-
mento, Brice Goglin, Guillaume Mercier, Samuel Thibault, and Raymond
Namyst. hwloc: A generic framework for managing hardware affinities in HPC
applications. In Parallel, Distributed and Network-Based Processing (PDP),
2010 18th Euromicro International Conference on, pages 180–186. IEEE, 2010.

146

http://products.amd.com/en-us/search/CPU/AMD-Opteron%E2%84%A2/AMD-Opteron%E2%84%A2-6200-Series-Processor/6212/35
http://products.amd.com/en-us/search/CPU/AMD-Opteron%E2%84%A2/AMD-Opteron%E2%84%A2-6200-Series-Processor/6212/35
http://products.amd.com/en-us/search/CPU/AMD-Opteron%E2%84%A2/AMD-Opteron%E2%84%A2-6200-Series-Processor/6212/35

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Description and Overview
	Contributions

	Background
	Multithreading on Unix-like Operating Systems
	Threads vs. Processes
	Evolution of Threads
	Malleable Processes

	Multiprogramming Strategies
	A Tool for Observing Multiprogramming: pidpcpu
	Exclusive scheduling
	Fine-grained multiprogramming
	Gang Scheduling
	Space Sharing
	Discussion

	Related Work
	Distributed Memory Systems
	Shared Memory Systems
	Related Implementations

	Design
	System Overview
	Conversion from Time-sharing to Space-sharing
	Sharing Policies
	Minimizing the ``Make Span''
	Equipartitioning
	Maximizing System IPC
	Maximizing the Sum Speedup
	Maximizing the Sum Speedup Based on Runtime Feedback

	Implementation
	The SCAF Daemon
	The libgomp SCAF Client Runtime
	Lightweight Serial Experiments
	Computing Efficiency

	Supporting Non-malleable Clients
	Supporting Long-running Parallel Sections
	The intpart library

	Adaptation to Various Platforms
	Hardware Characteristics
	Hardware Multithreading
	Non-Uniform Memory Access
	Out-of-order Execution

	Optimizations
	Avoiding Bad Allocations
	Rate-limiting to Reduce Overheads
	Virtual Memory Management
	``Lazy'' Experiments

	Evaluation
	Multiprogramming with NPB Benchmark Pairs
	Detailed 3-Way Multiprogramming Scenario
	Oracle Comparison
	TileGX
	Dual Opteron 6212

	Future Extensions to SCAF
	Porting additional runtime systems
	Expanding results to additional hardware platforms
	Periodic lightweight experiments
	Supporting applications at the thread level
	Resource allocation toward power efficiency
	Linux scheduler improvements for groups of tasks
	Resource allocation across virtual machines
	Automatic software-based heartbeats

	Conclusion
	Appendix
	Detailed Hardware Topologies
	Using IPC ratios to estimate true speedup on TileGX

	Bibliography

