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EX ECU T I V E SUMMARY

Chip-Multiprocessors (CMP) are nowadays commonplace from em-
bedded to supercomputer markets. Due to the existing gap, between
cpu and main memory speeds, a hierarchy of cache memories is in-
cluded in the chip with the aim of reducing the average memory ac-
cess latency.

Commercial CMPs include a hierarchy with two or three levels of
cache memories, where the Last-level cache (LLC) is usually shared
among all the cores in the system and comprises several megabytes
of storage that Vll up to a half of the total chip die area. Moreover,
the LLC hit ratio critically aUects performance since being the last
storage inside the chip, any miss at the LLC provokes an expensive
oU-chip access to the main memory, penalizing the average memory
access latency.

The whole CMP eXciency passes through the SLLC eXciency. This
thesis makes contributions comprising the SLLC eXciency on two
diUerent directions: 1) its performance and 2) its hardware storage.

1) In order to improve SLLC performance, two aspects are tackled
during this thesis: hardware prefetching eUectivity and replacement
policy. The contribution to optimize hardware prefetching is a low-
cost controller, called ABS, that relies on a hill-climbing approach to
infer the optimal combination of prefetching aggressiveness associ-
ated to the diUerent cores of the CMP. This controller achieves better
results than state of the art with a lower cost. Regarding to the re-
placement policy, this thesis proposes to base the SLLC replacement
algorithm on a property called reuse locality that will be stated dur-
ing this dissertation. Two new replacement policies are proposed. As
it will be shown during the evaluation, our algorithms achieve better
performance than the state of the art with a lower hardware complex-
ity.

2) In order to reduce SLLC hardware storage, this thesis proposes a
SLLC design called reuse cache. This design relies on the reuse local-
ity property to only store data that has shown reuse. The tag array is
used to detect reuse and maintain coherence. The experimental eval-
uation will show that this contribution allows drastic reductions of
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the SLLC hardware storage cost while maintaining the overall sys-
tem performance.
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RE SUMEN E J ECU T I VO

Los chips multiprocesador (CMP) están presentes en la actualidad en
todos los segmentos de mercado, desde los teléfonos móviles hasta
los superordenadores. Debido a la gran diferencia que existe entre la
velocidad del procesador y la de la memoria principal, los CMPs en
la actualidad están provistos de una jerarquía de memorias cache que
tiene dos o tres niveles.

Cada fallo en el último nivel de esa jerarquía (SLLC) provoca un ac-
ceso a la memoria principal que se encuentra fuera del chip. Además
la memoria principal está hecha de chips de DRAM. Ambos factores
incrementan su latencia de acceso, latencia que se suma a cada uno
de los accesos que falla en la SLLC, penalizando a la vez la latencia
media de acceso a memoria. Por lo tanto, la tasa de aciertos de la
SLLC es un factor crítico para lograr una latencia media de acceso a
memoria óptima. Esta tesis Vja su atención en la eVciencia de la SLLC
y concretamente, en la eVciencia de la prebúsqueda y la explotación
de la localidad de reúso.

Para mejorar la eVciencia de la prebúsqueda se propone un contro-
lador de bajo coste llamado ABS capaz de ajustar la agresividad de
la prebúsqueda asociada a cada uno de los núcleos de un CMP pero
con el ánimo de mejorar el rendimiento general del sistema. El con-
trolador funciona de manera aislada en cada uno de los bancos de la
SLLC y recoge métricas locales. Para optimizar el rendimiento global
del sistema busca la combinación óptima de valores de la agresividad
de prebúsqueda. Para inferir cuál es esa combinación óptima usa una
estrategia de búsqueda hill-climbing.

En esta tesis se caracteriza la propiedad de localidad de reúso y se
realizan contribuciones que tienen por Vnalidad última una mayor
explotación de dicha propiedad. En concreto, se proponen dos algo-
ritmos de reemplazo capaces de explotar la localidad de reúso, Least-
recently reused (LRR) y Not-recently reused (NRR). Estos algoritmos
son modiVcaciones de otros dos muy bien conocidos: Least- recently
used (LRU) y Not-recently used (NRU). Diseñados para explotar la lo-
calidad temporal, mientras que los propuestos en esta tesis explotan
la localidad de reúso. Las modiVcaciones propuestas no suponen ninguna
sobrecarga hardware respecto a los algoritmos base y al mismo tiempo
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muestran ser capaces de incrementar el rendimiento de la SLLC de
manera consistente.

Además se propone un diseño para la SLLC llamado Reuse Cache.
En este diseño solamente se almacenan en el array de datos aquel-
los bloques que hayan mostrado reúso. El array de etiquetas se usa
para detectar reúso y mantener la coherencia. Esta estructura per-
mite reducir el tamaño del array de datos de manera drástica. Como
ejemplo, una Reuse Cache con un array de etiquetas equivalente al de
una cache convencional de 4MB y un array de datos de 1MB, tiene el
mismo rendimiento medio que una cache convencional de 8MB, pero
con un ahorro de almacenamiento de en torno al 84%.
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Part I

P R E L IM I NAR I E S

In this Vrst part of the thesis, material is provided which
will be useful in next parts. Here we justify the pres-
ence of the memory hierarchy and present some orga-
nizational aspects and properties of the Shared last-level
cache. We show previous works that are related with the
work exposed on this dissertation, and describe the ex-
perimental methodology that has been followed in order
to evaluate the contributions of this thesis.





1
I N T RODUCT ION

1.1 context and background

Chip-Multiprocessors (CMP) are nowadays commonplace from em-
bedded to supercomputer markets. The cores of a CMP have to be
constantly fed with data stored in the main memory, but processor
memory requests frequency is much higher than memory access la-
tency. This speed gap, calledmemory wall, has been increasing during
the last thirty years (Figure 1.1). With the aim of downing the mem-
ory wall and getting closer to present the programmer unlimited and
fast memory they would want, a hierarchy of cache memories brings
proVtable data closer to the cores. A cache memory bases its eUec-
tiveness on two behaviors that programs show when run in the com-
puter; programs tend to use information (either data or instructions)
that was recently used (temporal locality) and is close to other re-
cently used data (spatial locality).

Given each core has to access to the cache nearly every cycle, each
core has a Vrst level of cache memories (L1) for data and instructions

Figure 1.1: The memory wall. This graph shows the evolution of processor
and memory performance from 1990 to 2010. The diUerence be-
tween both has always continuously increased. (Note the loga-
rithmic scale)
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4 introduction

that are designed small and fast. It is infrequent that more than one
core shares the same L1. Misses in the Vrst level will provoke requests
to the following level in the hierarchy. Provided that there still exists
a big diUerence between access latencies to L1 and main memory, ad-
ditional intermediate levels of cache memories are usually installed
to mitigate that latency gap. Cache memories are bigger and slower
as we move away from the core. Nowadays, commercial processors
usually have two or three levels of cache [20]. The aim is to minimize
the average access latency with the smallest possible cost. The Last-
level cache (LLC) represents a critical component of this hierarchy of
caches. Since it is the last storage inside the chip, an LLC miss would
provoke an access to the next component, main memory. To access to
main memory supposes to exit from the chip, to pass trough the mem-
ory controller and to access to the DRAM chips; and all these steps
are expensive in latency. Therefore, small improvements in the LLC
hit ratio will lead to big improvements in the system performance.

Next, we discuss some aspects about the LLC.

1.1.1 Last-level cache organization

The Last-level cache (LLC) can be designed as a collection of private
caches (Figure 1.2a) or as a space which is shared among all the cores
(Figure 1.2b). Following we will brieWy show the pros and cons of
both designs.

private In a private organization of the Last-level cache, each core
has a storage for its own use (Figure 1.2a). The total size of the
LLC is equally divided among all the cores in the system. As the
size of each LLC is smaller than in a shared design, their aver-
age access latency is also shorter. Given only one core accesses
each LLC, interference eUects between cores are not found.

On the other hand, shared data is replicated in the LLC of each
sharer of that cache line, reducing the total eUective available
space. Moreover, applications running in the CMP may require
very diUerent cache sizes; as in this design each core has as-
sociated a Vxed LLC size, the LLC can not be adapted to the
requirements of each application. In addition, a mechanism to
maintain coherence in this organization will suUer higher la-
tencies than the same mechanism in a shared design.
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Figure 1.2: Last-level cache organizations

shared In a shared organization of the Last-level cache (SLLC), all
the cores share the complete LLC available storage (Figure 1.2b).
The size of the SLLC is bigger than in the private design, so the
access latency is also larger. Given the LLC storage is shared
among all the cores, the activity of the applications running in
the system may harm each other.

On the other hand, only one copy of the data used by more
than one core is stored in the SLLC, maximizing the eUective
SLLC available storage. In addition, a SLLC can suXce at the
same time the requirements of two very diUerent applications.

SLLC are internally split in banks which are accessed through
one port. This organization provides at the same time layout
Wexibility and increased access bandwidth.

This thesis follows the general trend in both industry and academy,
choosing a shared design (SLLC) as the LLC organization where
contributions are proposed and evaluated.

1.1.2 Inclusivity

A hierarchy of cache memories (L1-L2) is said to be inclusive when
the L2 stores the contents of all the L1s. In other words, the L2 con-
tents are always a superset of the L1 caches contents [3]. In order
to maintain this property, two actions have to be consistently per-
formed:

1. When a cache line is inserted in some L1, it must be also in-
serted in the L2 if it is not present.

2. When a L2 line is evicted, invalidation messages are sent to all
the L1 copies, if any.
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An inclusive hierarchy simpliVes coherence maintenance [42]. As
the SLLC knows about the contents of the cache levels closer to the
processor, a mechanism to maintain the coherence installed at this
level is able to take decisions without sending look-up messages to
the local caches. Many commercial CMPs present an inclusive hierar-
chy [20].

A hierarchy of cache memories (L1-L2) is said to be exclusivewhen
the contents of the L2 and the L1s are always disjoint sets. Mean-
ing that when a cache line is inserted in some L1, it must be re-
moved from the L2 if it is present. In this type of hierarchy, two basic
schemes can be considered to maintain the system coherent. This in-
formation can be present at the SLLC as an updated copy of the L1s
tags, or be obtained by sending look-up messages to the L1s every
time some situation requires it.

When neither inclusion nor exclusion are enforced, the hierarchy
is said to be non-inclusive/non-exclusive. There exist a broad range
of options to deVne this intermediate scheme [69, 53].

This thesis considers an inclusive SLLC organization as the base-
line design where contributions are proposed and evaluated.

1.1.3 Hardware Data Prefetching

Hardware prefetching is a technique that tries to load into the cache,
contents the processor will use in the future. The decision on what
to prefetch has relayed on plenty of prediction schemes, from sim-
ple to very sophisticated ones. All of those schemes revolve around
a property programs show, called spatial locality. This property says
that a program will reference in the future, memory addresses that
are close to memory addresses it referenced recently in the past. In
other words, programs are kind of predictable in their stream of ref-
erences accessing to memory. The hardware prefetcher installed at
some cache level observes the stream of references arriving to that
cache with the intention of generating prefetches that bring data into
the cache which will be referenced in the near future.

A basic type of prefetcher trying to exploit spatial locality is the
stride prefetcher. This prefetcher calculates the diUerence between
the addresses of the cache lines referenced by two consecutive misses
and it generates a prefetch request based on such diUerence, e. g.
misses are observed over the cache lines corresponding to the ad-
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dresses A and A+m, thus the stride prefetcher will generate a re-
quest for the address A+2m. The basic case of stride is when m is
equal to 1, a prefetcher considering always this kind of pattern is
called sequential prefetcher. A parameter associated to the prefetcher
is its aggressiveness. The aggressiveness of a prefetcher deVnes how
much (degree), and also, depending on the type of prefetcher, how far
(distance) the prefetcher will follow its prediction in order to bring
data to the cache. E.g. on the stride prefetcher, the degree deVnes
how many cache lines will be brought into the cache per triggering
event, for the example before, if we deVne degree as equal 3, consec-
utive misses to A and A+m will generate prefetches of A+2m, A+3m,
and A+4m.

Aggressiveness of a prefetcher should adapt to application and
memory system characteristics. Adaptive mechanisms to dynamically
adjust the prefetching aggressiveness has been previously proposed
and are presented in Section 2.2. If a CMP system with a SLLC is
considered new tradeoUs, which are presented in the next Section,
appear.

1.1.4 Replacement Policy

When a miss is observed by the cache and there is no free cache en-
tries, one cache line has to be selected as victim. The replacement
policy decides which is the cache line that will be evicted to make
place for another incoming. Three basic schemes of replacement tra-
ditionally considered are: 1) Random. 2) FIFO. 3) LRU.

random The random replacement policy, as its name indicates, ran-
domly chooses a victim among the elements present in the set.
Its implementations normally uses a pseudo-random periodical
function. It does not need any additional storage.

first-in-first-out The First-In-First-Out (FIFO) replacement pol-
icy orders the elements of a set following their arrival order.
Only a pointer is needed to implement this policy, the pointer
has to indicate the element entered the furthest in the past. The
storage needed to implement this policy is log2(associativity)
bits per set. The lifespan of a line in a N-way associative cache
is exactly the time for the set to observe Nmisses. A spread vari-
ant of the FIFO policy is the CLOCK algorithm. It was originally
proposed for the management of pages in a virtual memory
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management system [12]. It has been used in caches or buUers
with a high associativity. It uses one bit per cache line to record
if the element has been referenced during its stay in the struc-
ture or not. When an element has to be evicted, the element
entered the Vrst one is selected as victim, if its bit is set, the bit
will be reset and the next element will be considered as possible
victim.

least-recently used The least-recently used (LRU) replacement
algorithm is oriented to exploit a property called temporal lo-
cality that programs show when running. Temporal locality as-
sumes that a recently used cache line will be used again in the
near future. All the elements in a cache set conform a chain
and are ordered following the use order; the most recently ref-
erenced elements are at the beginning of the chain, while the
end of the chain is occupied by the least recently referenced
element. On a miss, a cache line has to be chosen as victim, the
last one is selected. Every cache line increases its position by
one and the new line is inserted at the beginning of the chain.
On a hit, the hit line is situated at the beginning of the chain
while all the lines that were occupying positions over the hit
line see decremented their position by one.

There is a plenty of options to implement the LRU policy, each
one representing diUerent tradeoUs in terms of storage cost and
logic complexity. Sudarshan et al. made a review of diUerent
implementations in [60].

True LRU can be implemented with low cost when small as-
sociativities are considered, e.g. to implement LRU in a 4-way
associative cache is 8 bits per set. But when higher associativ-
ities are considered (16- 32-, or 48-way associative caches), as
the ones we can Vnd in a SLLC, true LRU gives way to alterna-
tive policies that try to mimic LRU performance with a lower
hardware cost. These policies are called pseudo-LRU policies.
There is a broad variety of this kind of policies and what they
have in common is the use of partial information to maintain an
approximation to the LRU order inside the set. Normally, all of
them try to avoid to evict the most-recently used element while
they keep some kind of order among the rest of the elements
of a set. An example of pseudo-LRU policy is Not-recently used
(NRU) [43]. As Figure 1.3 shows, this policy employs one bit for
each cache line (NRU-bit), the bit is zero when the line is in-
serted into the set. All the NRU-bits but the one corresponding
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Figure 1.3: Example of LRU and NRU replacement policies

to the just inserted line will be reset in case of all the NRU-bits
are equal to zero. When a victim has to be selected, the Vrst
cache line with the NRU-bit equal to one is evicted. The search
of the line with NRU-bit equal to one can be started from the
position indicated by a global pointer (Sun T2) or from the way
0 (intel i7).

In Figure 1.3, we can observe an example of the behavior of LRU
and NRU replacement policies. Each line represents the state
of the set before the reference that appears on the left column
accesses the cache. For LRU, elements are ordered forming a
chain, while for NRU each element is at its corresponding way
and the NRU bit appears along the address. Next to state, for
both algorithms, we can observe if a determined reference is a
hit or a miss. Consecutive lines of the Vgure show consecutive
states of the set; the second line of any pair shows the state of
the set after the reference ("ref" on the Vgure) of the Vrst line
makes its access eUective.

Section 2.3 presents recent research on replacement algorithms for
the SLLC. These works have shown replacement policies for the SLLC
should not be based on temporal locality and the next section will
expose the problem.
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1.2 problem

Every SLLC miss provokes an access to the main memory. The main
memory is out of the chip and made of DRAM memory chips, adding
a long latency to every access that misses in the SLLC and penaliz-
ing the average memory access time. Thus, the SLLC hit ratio is a
critical factor to achieve an optimal average memory hierarchy ac-
cess latency. Technological innovations aside, two aspects that can
be tackled to improve the SLLC hit ratio are the eXciency of both
prefetching and replacement policy.

1.2.1 Hardware Data Prefetching

Hardware prefetching tries to load data into the cache time ahead of
the processor references it. This technique has been broadly shown as
good to reduce the average access memory latency. Prefetching per-
forms specially well in mono-processor memory hierarchies where
only one stream of data Wows frommain memory to the caches closer
to the core. However, when prefetching is used in the SLLC of a multi-
core system where diUerent applications are running at the same
time, prefetches associated to one core may interfere with the data
placed into the cache by other core, evicting contents of other appli-
cation and harming its performance. A control mechanism to regu-
late the prefetching aggressiveness associated to each core is desired.
This mechanism should target the overall system performance. In
section 2.2, we feature previous work on hardware data prefetching
aggressiveness adjustment for mono- and multi-processor systems,
and in Section 4.2 we explain in detail the aforementioned inter-core
prefetching interference problem.

1.2.2 Replacement policy

The replacement policy critically inWuences the cache memory hit ra-
tio. In a CMP Vtted with a hierarchy of cache memories, temporal
locality is squeezed by the cache levels closer to the core. Thus, many
of the lines inserted in the SLLC are single use, meaning that they
will not experiment any hit during their lifespan at the SLLC. How-
ever, cache lines that experiment one hit in the SLLC are normally
experimenting many hits. Therefore, to assume that the replacement
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algorithm has to base its decisions on the temporal locality exploita-
tion is no longer valid at the SLLC. On the contrary, this behavior
indicates the SLLC replacement policy should be based on reuse in-
stead of temporal locality. Section 5.2 goes over SLLC replacement
problematics with more detail.

1.3 contributions

These are the main contributions of this thesis:

1.3.1 The ABS controller

A low-cost controller able to adjust the prefetching aggressiveness as-
sociated to each core in the CMP with the aim of improving the over-
all system performance. The controller runs stand-alone at each SLLC
bank and gathers local metrics. Using a hill-climbing approach whose
target function is the overall system performance, the ABS controller
tries to infer the optimal combination of prefetching aggressiveness
values for the applications that are running in the system.

1.3.2 Reuse locality

Observing the stream of references accessing to the SLLC, we state a
property called Reuse locality that says that i) Cache lines used more
than one time will be highly likely used many times in the future. ii)
Cache lines recently reused are more useful than lines reused before.
We claim that SLLC access pattern shows reuse locality.

1.3.3 Replacement algorithms to exploit the reuse locality

Two replacement algorithms able to exploit the reuse locality are
proposed, Least-recently reused (LRR) and Not-recently reused (NRR).
These algorithms are modiVcations of two very well known algo-
rithms based on the use, to be based on the reuse. The base algo-
rithms are Least-recently used (LRU) and Not-recently used (NRU), our
transformations do not add any hardware to them. We will show that
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these two new algorithms consistently improve the performance of
their predecessors.

1.3.4 Reuse cache

A novel design for the SLLC of a CMP is proposed. On this design
tag and data arrays are decoupled. Only those cache lines that have
shown reuse are stored in the data array. The tag array is used to de-
tect reuse and maintain coherence. This scheme allows to drastically
reduce the size of the data array. As an example, a reuse cache with
a tag array equivalent to a conventional 4MB cache and a data array
of 1MB achieves the same average performance that a conventional
8MB cache

1.4 thesis organization

This dissertation is organized in four parts. The Vrst part contains
Chapters 1, 2, and 3. These chapters introduce the topics of the dis-
sertation, present background and previous works, and discuss the
experimental framework followed during this thesis. Second part in-
cludes only Chapter 4 that explains our contribution to adjust prefetch-
ing aggressiveness. Third part comprises Chapters 5 and 6, which ex-
plains our contributions to improve the SLLC eXciency by the better
exploitation of reuse locality. Finally, fourth part concludes this dis-
sertation.

chapter 2 presents previous works related with the contributions
presented on this thesis. Related work includes research regard-
ing the exploitation of reuse locality, works where decoupled
structures are proposed or used, prefetch engines with the aim
of improving CMP performance, and in mechanisms to adjust
the prefetching aggressiveness in mono- and multi-processors.

chapter 3 explains the experimental setup that has been used to
evaluate our proposals. Including the simulator characteristics,
the baseline system we consider, and the workloads whose be-
havior have been analyzed during this thesis.
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chapter 4 presents the ABS controller and its evaluation. The eval-
uation includes the use of particular metrics that will be justi-
Ved. A comparison with the state of the art is also presented.

chapter 5 states the reuse locality and presents two replacement
policies that exploit such property. This chapter also shows the
evaluation of our policies and their comparison with both base
algorithms and state of art.

chapter 6 presents the reuse cache and its rationale and design
are explained. That chapter also shows a broad evaluation from
diUerent design points and a comparison with the state of the
art. The chapter Vnishes suggesting further improvements or
future lines for the reuse cache.

chapter 7 concludes the dissertation summarizing the work done
and discusses about possible future research lines.





2
RELAT ED WORK

summary

This chapter about the related work comprises four diUerent sections. First
two sections of this chapter are related with our contribution to control the
prefetching aggressiveness in a CMP. Concretely, Section 2.1 summarizes
previous works about prefetch engines, focusing only on research which
targets multiprocessor systems. And Section 2.2 revises the previous work
on adjustment of the prefetching aggressiveness in mono and multiproces-
sor systems. Section 2.3 is about the reuse locality and also about how dif-
ferent insertion and replacement schemes for the SLLC have tried to exploit
such property, the material exposed on this section is related with three of
the contributions of this thesis, namely, the reuse locality, the policies to
exploit it and the reuse cache. Finally, Section 2.4 shows a variety of works
that proposed alternative organizations for the cache memory related with
our reuse cache.

15
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2.1 prefetch engines for multiprocessor systems

The development of prefetching engines able to interpret memory
access patterns has been a broadly studied Veld of research. In this
section, we only focus on those proposals with the aim of improving
the behavior of the memory hierarchy of multiprocessor systems.

Cantin et al. [6] and Wallin and Hagersten [63] aim to identify pri-
vate memory regions not shared by the other processors, starting to
prefetch only in these memory regions in order to avoid that shared
data prefetching may hurt performance. Koppelman [29] uses the
instruction history to compute an area around the demanded data,
which can be prefetched. Somogyi et al. [56] predicts memory ac-
cesses that exhibit a repetitive layout (spatial streaming); it proposes
a predictor that correlates the memory access patterns with instruc-
tions addresses. Wenisch et al. [64] proposes temporal streaming,
which is based on the observation that recent sequences of shared
data accesses often recur in the same precise order; therefore it pro-
poses to move data to a sharer in advance of its demand. Somogyi
et al. [57] leverages the ideas of the two previous works and proposes
a predictor that exploits both temporal and spatial correlations. How
to store meta-data oU chip for an address-correlating prefetcher has
been also evaluated [65]. The concern of that work is how to store
the large amount of information that requires their prefetcher to get
good results in commercial applications. In contrast, the ABS con-
troller that is proposed in this dissertation is not proposing a new
prefetch engine but a control system to set the aggressiveness of a
prefetcher installed in the banked SLLC of a Chip Multiprocessor.

2.2 mechanisms to adjust prefetch aggressiveness

In mono-processors, Adaptive Data Cache Prefetcher (AC/DC) divides
the memory address space into zones of the same size called Czones,
and it uses global history buUer to track and detect patterns in consec-
utive miss addresses within each Czone. It is also able to dynamically
adjust the size of the Czones and the prefetcher degree. Ramos et al.
introduce an adaptive policy that selects the best prefetching degree
within a Vxed set of values, by tracking the performance gradient and
following a hill-climbing approach are able to approximate to the
prefetcher conVguration optimal value [49]. Srinath et al. proposed
Feedback directed prefetching (FDP) [58]; a mechanism that incorpo-
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rates dynamic feedback to increase the performance improvement
provided by prefetching. The mechanism estimates prefetching accu-
racy, timeliness, and cache pollution and, depending on a predeVned
set of thresholds, it adjusts the aggressiveness of the data prefetcher
dynamically. FDP also incorporates a mechanism to decide in which
position of the LRU stack it inserts depending on the pollution the
prefetcher is provoking.

Several works address the problem of adjusting prefetch aggres-
siveness in CC-NUMA multiprocessos having only private cache
memories. Dahlgren et al. suggest to determine the prefetch aggres-
siveness at each private cache by counting the number of useful
prefetches every given number of issued prefetches (an epoch) [14];
the prefetch aggressiveness is increased or decreased taking into ac-
count two usefulness thresholds. Tcheun et al. add a degree selector
to a sequential prefetch scheme [61]; when the selector detects use-
ful prefetches along a sequential sub-stream it increases the prefetch
aggressiveness of the next sub-stream belonging to the same stream.
As these works are not using a shared cache, the interference prob-
lems among cores that they found are only related with the available
bandwidth when accessing to memory.

To our knowledge, only Hierarchical Prefetcher Aggressiveness Con-
trol (HPAC) Ebrahimi et al. [15] faced for the Vrst time the problem of
reducing the prefetch inter-core interference in a chip multiprocessor
with a shared LLC. HPAC monitors several global indexes (prefetch
accuracy, inter-core pollution, and memory controller activities) and
compares them to a predeVned set of thresholds. That comparisons
are contrasted against a set of rules to Vnally adjust the prefetch ag-
gressiveness of each core. In Chapter 4, we have included a deep dis-
cussion about HPAC characteristics, and also a comparison in terms
of performance and resource consumption with respect to a system
using ABS controllers.

2.3 reuse locality

Reuse locality says that i) Cache lines used more than one time will be
highly likely used many times in the future. ii) Cache lines recently
reused are more useful than lines reused before. This property was
Vrst observed and exploited in cache memories for disks. Segmented
LRU [24] tries to protect useful lines against harmful behaviors (i.e., a
burst of single-use accesses) by dividing the classical LRU stack into
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two diUerent logical lists, the referenced and the non-referenced list.
The boundary between the lists is Vxed and victims are selected in
order to preserve that limit.

Recent proposals have applied this idea to the replacement policy
of non-inclusive SLLCs. Both dynamic segmentation [26] and dueling
segmented LRU [17] consider these two logical LRU divisions and try
to dynamically Vnd an optimal conVguration by using set dueling.
The former uses a set dueling predictor and a decision tree to dynam-
ically move the border between the reused and non-reused segments.
Another level of set dueling chooses between dynamic segmentation
and plain LRU. Whenever the size of the reused segment becomes the
smallest (one line), bypass is switched on. In spite of the cache being
bypassed, one of every thirty-two lines is stored in cache in order to
prevent the working set from becoming stale.

Dueling segmented LRU adds random promotion and aging to the
basic segmentation. Random promotion acts by randomly tagging
some non-reused lines as being reused, while aging acts in the op-
posite way. The mechanism uses set dueling in order to dynamically
choose between segmented and plain LRU. In addition, they suggest
using adaptive bypass. Some shadow tags are required to evaluate the
bypass beneVt and switch it on or oU accordingly.

Recently, MRU-Tour based algorithms also propose using reuse to
divide the elements of a set into diUerent groups and randomly evict
elements with a number of MRU-Tours lower than a given value [62].

2.3.1 Insertion policy

Several studies propose to change the insertion point in the recency
stack of lines that reach the cache. Their goal is to avoid that thrash
or scan workloads evict the useful cache lines.

The dynamic insertion policy (DIP) involves a hybrid cache re-
placement [47]. Under this scheme, LRU and Bimodal insertion Policy
(BIP) are dynamically selected by using set-dueling. LRU always in-
serts the incoming lines in the MRU position of the recency stack. BIP
inserts the majority of incoming lines in the LRU position and with a
low probability in the MRU position.

Promotion/Insertion Pseudo-Partitioning (PIPP) allows each
thread to insert their lines at a diUerent point in the recency stack
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Figure 2.1: Static re-reference interval prediction (SRRIP) replacement algo-
rithm

[68]. It provides the beneVts of cache partitioning, adaptive insertion
and capacity stealing among threads. However, it requires a utility
monitor with shadow tags to detect thread’s behavior.

Although industry has widely adopted inclusive SLLC schemes in
commercial processors, speciVc content management for this kind of
cache organization has not received much attention from academia.
An exception is Re-Reference Interval Prediction (RRIP), that has
been proposed for an inclusive hierarchy [23].

RRIP involves a modiVed LRU that considers a chain of segments
where all the cache lines in a segment are supposed to have the same
re-reference interval value (RRPV) [23] (Figure 2.1). The mechanism
is able to insert new lines into the segments corresponding to re-
reference intervals either intermediate (segment with a RRPV equal
to 2N-2) or long (segment with a RRPV equal to 2N-1), becoming in
this way scan-resistant and Thrash-resistant. A more detailed expla-
nation of this algorithm can be found in Section 5.3.

Recently, a plethora of proposals try to infer reuse properties of
cache contents (present and incoming) by using predictors. Later on,
these predictions are used to modify the insertion policy.

Signature-based hit predictor (SHip) improves RRIP with re-
reference interval prediction [67]. SHiP correlates re-reference behav-
ior with memory region, program counter, and instruction sequence
history. SHiP and other work, like ones proposed by Chaudhuri et al.
[7], Li et al. [34], Seshadri et al. [51] are complementary to the reuse
cache design. For instance, the predictors proposed in [51, 67] could
be used to increase the performance of the reuse cache by predicting
the reuse behavior of a cache line on a tag miss. The OBM mecha-
nism proposed in [34] signals the Vrst line to be reused between the
incoming-victim line pair involved on a miss. Again this detection
scheme could be used to improve the reuse cache, for instance on a
tag array hit missing in the data array.
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Chaudhuri et al. [7] propose to track the reuse behavior within the
private caches and utilize it to estimate reuse in the SLLC when the
lines are evicted from private caches . Such a predictor could be used
to change the Vxed reuse prediction performed in the reuse cache
whenever a line is evicted from private caches.

2.3.2 Frequency-based replacement

Frequency-based replacement algorithms classify according to the
number of times cache lines have been accessed, giving more pri-
ority to the more accessed ones. The least frequently used (LFU) ap-
proach relies on the access frequency of cache lines to attempt to
avoid harmful patterns that may evict useful lines [33]. Although
frequency-based replacement improves the performance of applica-
tions with frequent scans, it is not good if the workload exhibits tem-
poral locality.

In a way, our SLLC replacement proposals are a very simple form
of a frequency-based replacement since lines get classiVed in only
two counts: either those accessed one time or more than one time
during their stay in the SLLC. However, LRR and NRR also work cor-
rectly if the workload exhibits temporal locality because they use re-
cency within each segment.

2.3.3 Dead-block prediction

Dead-block prediction tries to identify dead lines by means of hard-
ware predictors [27, 31, 36]. For instance, prediction relies on record-
ing the instruction sequences performing the last touch of a given
line, or counting the number of accesses performed on a line before
it gets replaced. When a line experiences again some of those past
behaviors, it is tagged as dead and becomes a replacement candi-
date. Dead-block prediction requires expensive hardware to predict
and store metainformation. Khan et al. [27] introduce sampling dead
block prediction, a technique aimed to reduce the storage of metain-
formation of the predictor. This mechanism samples program coun-
ters (PCs) to determine when a cache block is likely to be dead. Rather
than learning from accesses and evictions from every set in the cache,
a sampling predictor tracks a small number of sets using partial tags.
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Lai et al. [31] proposed Block Predictors, predictors that accurately
identify if a cache line is dead. The mechanism evicts those cache
lines detected as dead and prefetchs data into them. Instead of using
PCs to predict wether a cache line is dead, Liu et al. [36] predict dead
blocks based on bursts of accesses to a cache block. A cache burst
begins when a block becomes MRU and ends when it becomes non-
MRU. The authors claim that cache bursts are more predictable than
individual references because they hide the irregularity of individual
references.

The underlying behavior of lines assumed in dead-block prediction
and reuse-based replacement is the same: a big fraction of cache lines
is dead at any moment. However, the opportunity that shows up is
exploited in diUerent ways.

Our mechanisms classify a priori all lines entering the SLLC as
dead (since we realize most of them are indeed touched once). A line
becomes alive once it is referenced a second time during its stay in
the SLLC.

2.3.4 Replacement on inclusive hierarchies

In inclusive hierarchies, the core caches absorb most of the tempo-
ral locality and the hot lines may lose positions in the LRU stack of
the SLLC, up to the point of being evicted. A recent paper shows
ways to solve this problem by identifying lines in the core caches
and preventing their replacement in the SLLC [22]. Three ways are
proposed: sending hints to the SLLC about the core accesses (TLH),
identifying temporal locality by early invalidation of lines in the core
caches (ECI), or querying the core caches about the presence of the
victim lines (QBS).

We also address this problem by using the information present in
the coherence directory, assuming non-silent eviction of clean blocks
in the private caches. However, our main contribution is the design of
two replacement algorithms that exploit reuse locality with the same
hardware cost than those used in commercial processors.
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2.4 how to decouple the sllc tag and data arrays?

In recent years, there have been many innovations for improving the
performance of the SLLC. In spite of this huge quantity of research,
most of innovations only achieve to improve system performance
within 5%. One of the contributions of this thesis, the reuse cache,
targets the SLLC eXciency in a diUerent way, proposing to downsize
the SLLC data array while maintaining the average performance. In
order to achieve that objective, our proposal relays on a decoupled
tag and data arrays. Next we show works used similar types of de-
coupled designs.

Using pointer indirection appears as a natural solution when tag/-
data decoupling is required. Several authors have used this idea for
diUerent purposes. Regarding sectored caches, a common idea is to
share a number of data subsectors among a set of tag sectors, instead
of the conventional 1:1 mapping between a tag sector and its data
subsectors. Seznec suggests decoupling to conciliate a low tag im-
plementation cost with a low miss ratio [52], while the decoupling
proposed by Rothman et al. aims to reduce cache space requirements
[50].

Chishti et al. propose the NuRAPID cache, that decouples tag
lookup and data placement in order to reduce the average access la-
tency in dynamic non-uniform cache architectures [9].

Tag/data decoupling has also been proposed in the V-way cache by
Qureshi et al. to achieve a high associativity and reduce the number
of conWict misses in the non-inclusive last level cache of a single-
processor system [48]. The V-way cache stores the same number of
items in tag and data arrays and inserts into the cache all the data
requested by the lower level caches. However, V-way relies on addi-
tional tag space to reduce conWicts in the set associative tag array. In
the data array, V-way requires a global replacement policy based on
use frequency. In contrast, the reuse cache objective is to reduce the
cache size while keeping performance and inclusion beneVts. It stores
more tags than data lines and tries to only retain lines showing reuse.
The additional tag space in the reuse cache allows to maintain inclu-
sion and track reuse. Furthermore, its data array does not require a
global replacement algorithm.

Two recent works are directly related with our reuse cache contri-
bution [37, 69]. The cache organization relies in tag/data decoupling
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to retain tags inclusion property and to use a selective allocation pol-
icy of lines in a cache miss.

NCID uses additional tags in order to maintain tag inclusion of the
private caches, though the data lines of those private caches are not
necessarily present in the data array. So, NCID allows SLLC data to
be non-inclusive or exclusive while retaining the inclusion property
on tags. Moreover, many NCID architectural options are presented
and evaluated. One of them uses NCID to support a selective alloca-
tion policy to address transient data. Selective allocation allocates tag
and data for a randomly chosen 5% of the lines and only tag for the
remaining 95%. Set dueling is proposed to select between normal Vll
or selective Vll policies.

Instead of random selection, the reuse cache data array selects lines
with potential for reuse. In the reuse cache, tags without allocated
data are indeed used to maintain inclusion, but also to detect reuse.
Once a line experiences such a reuse it is written in the data array.
Both, the replacement algorithms of tag and data arrays are designed
with the objective of identifying and prioritizing reused lines. Set du-
eling is not needed.

Lodde et al. [37] use cache line state and coherence messages to
classify lines as private or shared. Such information is used to selec-
tively allocate only shared lines in the data array in order to reduce
data array size. This organization requires to move tags within the
tag array when the classiVcation of a line changes. The information
used by the selective allocation policy does not take reuse into ac-
count. Thus, transient private cache lines are put into the shared data
array, increasing required data array size. Our proposal relies in reuse
locality detection, independently of which private cache requests the
line. Thus shared lines are implicitly allocated in the data array and
private lines are only allocated if reuse locality is detected.





3
EX P ER IMEN TAL F RAMEWORK

summary

In order to evaluate each of the contributions of this thesis, the as-
sociated mechanisms were faithfully modeled and these models in-
corporated to a simulator. The simulator was then used to run a set
of benchmarks and the results of that simulations were employed to
infer the validity of the hypotheses. The experimental framework is
explained on this chapter: baseline system, simulator, workloads, and
metrics.

25
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3.1 introduction

This chapter explains the experimental framework used during this
thesis. Here it is shown the common part of this experimental frame-
work, meaning that in the evaluation of some of our contributions the
conVguration of the considered system varied, workloads were built
in an alternative way, or the metrics used to evaluate our proposals
were diUerent or enlarged. In such points, this document explains the
corresponding changes.

The remaining of this chapter is organized as follows. Section 3.2
shows the baseline CMP system has been considered along this the-
sis. Section 3.3 presents the Simics full-system simulator and ruby, a
plugin for Simics by the University of Wisconsin Madison which al-
lowed us to model the memory hierarchy of our system. And Vnally
Section 3.4 discusses about the types of workloads used in this thesis
and the diUerent metrics used to evaluate them.

3.2 baseline system

Figure 3.1 shows the CMP system we have used during this thesis. It
comprises eight in-order SPARC V9 cores and a hierarchy of memory
composed by three levels of cache. The Vrst level is private to each
core and it is composed by split instruction and data cache memories.
The second level is private and uniVed (data and instructions). And
last, the third level is shared among all the cores in the system. All
the three cache levels are write-back write-allocate. Table 3.1 shows
remarkable parameters of the considered hierarchy.

core 0

Local
caches

crossbar

core 7

Local
caches

bank 0 bank 3

SLLC

MC
to memory

Figure 3.1: Baseline system overview
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The third is the last level of our hierarchy of cache memories. We
consider an 8 MB LLC, split in four banks which are shared among
all the cores in the CMP. The banks are cache line interleaved to
facilitate a homogeneous share of accesses, excepting on the ABS
prefetching proposal, where they were interleaved using operating
system page size to avoid inter-bank interference. The SLLC is acces-
sible through a crossbar that connects the eight L2s to the four SLLC
banks. Inclusion is enforced at the SLLC, meaning that a cache line is
inserted at the SLLC when it is inserted into some L1 or L2, and when
a cache line is evicted from the SLLC, it is also removed from any L1
or L2 that could have a copy.

An invalidation directory-based MOSI coherence protocol is im-
plemented to maintain the private caches coherent. The directory is
distributed among the SLLC banks, containing its information along
with the tag of each cache line.

The memory system comprises 4GB of DDR3 DRAM per core
which are accessed trough one memory channel. The memory runs
at one quarter of the frequency of the processor.

3.3 simulator

In order to perform experimental evaluations of our proposals, we
used the Simics simulation platform [40]. Simics provides functional
models of all the devices included in a system (i/o, network, hard
disks, etc...), allowing full-system simulation of multi-processor sys-
tems. At the same time it is able to simulate a wide range of cpus

Private L1 I/D 32 KB, 4-way LRU replacement, 64 B line size,
1-cycle access latency

Private uniVed L2 256 KB, 8-way LRU replacement, 64 B line size,
7-cycle access latency

Shared L3
8 MB inclusive (4 banks of 2 MB each), 64 B interleaving,
64 B line size. Each bank: 16-way, LRU replacement,
10-cycle access latency. 16 demand MSHR

DRAM
1 rank, 16 banks, 4 KB page size,
Double Data Rate (DDR3 1333Mhz).
92-cycle raw access latency

DRAM bus 667Mhz, 8 B wide bus, 4 DRAM cycles/line,
16 processor cycles/line

Table 3.1: Baseline system conVguration
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at the instruction set level, e.g. ARM, SPARC, x86, MIPS, and Alpha.
Simics run with hypervisor privileges, allowing to execute unmodi-
Ved real operating systems; during this thesis, the evaluated systems
were managed by the Solaris 10.0 operating system.

To accurately simulate the memory hierarchy of a CMP model we
used the ruby plugin from the GEMS Multifacet toolset [41], publicly
available thanks to the University of Wisconsin. This plugin is loaded
into the Simics simulator to capture all the memory access operations,
modeling their latency with cycle accuracy. Ruby provides faithful
models of all the memory hierarchy components from the cache con-
trollers to the switches of the Network-on-chip interconnect. BuUer-
ing and blocking of components due to lack of resources are always
considered.

During this thesis many of the components of ruby have been mod-
iVed or enlarged to faithfully model each one of our proposals; includ-
ing a model of the memory controller that implements the DRAM
DDR3 protocol. During the implementation of our ABS controller
this model was fundamental in order to accurately model the over-
head that prefetching provoked on the memory hierarchy. The model
reWected the status of every page of memory, queues, bus occupancy,
and the scheduling policy, to observe how they were aUecting each
memory operation. Other modiVcations we included in GEMS are
clariVed and explained at the methodological part of each chapter of
this dissertation.

3.4 workloads and performance evaluation

In order to evaluate how our proposals aUect the behavior of a wide
range of CMP systems, two diUerent types of workloads have been
set up. A Vrst group of workloads is composed by multiprogrammed
workloads made of sequential applications from the SPEC CPU 2006
suite of benchmarks. A second group of workloads is composed by
parallel applications from the suites PARSEC [5] and SPLASH-2 [66].

3.4.1 Multiprogrammed

In a multiprogrammed workload, as many sequential applications as
cores the system has, are running at same time. This kind of work-
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loads represents scenarios we can Vnd from our desktop, where a
web browser is running at the same time that a video player, to a
server, where applications of very diUerent nature run at the same
time.

The employed multiprogrammed workloads are composed by ap-
plications from among all the 29 included in the SPEC CPU 2006
benchmark suite. Applications were Vrstly run until completion in a
native machine. Their initialization phases where identiVed by using
hardware counters. Groups of eight applications were randomly cho-
sen to form workload mixes. Once in simics, the applications forming
a workload mix were executed together, binding each application to
a core in order to avoid migration eUects. A number of instructions
as long as the longest initialization phase of the applications compos-
ing the workload mix was fast-forwarded. At that point a checkpoint
was taken. The average number of MPKI each application shows at
the moment of taking the checkpoint at each cache level of the hier-
archy is shown in Table 3.2, it is the average for all the mixes where
each application appears.

In order to evaluate a microarchitectural proposal in a given work-
load mix, its corresponding checkpoint is read from Simics. Then, the
ruby module is loaded with the conVguration which mimics the pro-

Application L1 L2 LLC Application L1 L2 LLC

perlbench 3.7 0.8 0.6 povray 11.0 0.3 0.3

bzip2 8.2 4.3 2.1 calculix 13.8 3.7 1.5

gcc 21.8 7.1 6.2 hmmer 2.9 2.2 1.7

bwaves 20.3 19.6 19.6 sjeng 4.2 0.5 0.5

gamess 75.3 46.2 28.6 GemsFDTD 25.8 25.7 21.6

mcf 22.9 22.2 18.1 libquantum 36.6 36.6 36.6

milc 21.6 21.6 21.5 h264ref 3.5 0.7 0.6

zeusmp 12.3 6.4 6.3 tonto 4.88 0.86 0.52

gromacs 8.71 5.91 5.91 lbm 68.1 39.2 39.2

cactusADM 13.9 1.4 0.7 omnetpp 7.3 4.4 1.2

leslie3d 29.5 18.1 17.7 astar 6.9 0.9 0.7

namd 1.4 0.2 0.1 wrf 4.1 1.6 0.5

gobmk 9.5 0.5 0.4 sphinx3 13.8 8.0 6.3

dealII 2.3 0.3 0.3 xalancbmk 8.2 7.0 6.4

soplex 6.7 5.8 4.8

Table 3.2: Average MPKI at each cache level
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posal to study. The whole hierarchy is then warmed, normally dur-
ing 300M cycles, after that, statistics are cleaned and performance
accounting starts. The duration of the simulation is given in system
cycles, during this thesis we have normally used 700M cycles long
simulations.

The metric considered to evaluate the behavior of the diUerent pro-
posals when multiprogrammed workloads are employed is the ge-
ometric mean of the speedup of each application appearing in the
workload mix. Given that duration of simulations is Vxed and equal
for all the proposals, what is employed in order to calculate speedups
are the number of executed instructions. Equation 3.1 formally shows
this metric.

Speedup = n

√√√√ n∏
i=1

IAi
Ibasei

(3.1)

IPCA
i : Number of executed instructions of program i when run in system A

IPCbase
i : Number of executed instructions of program i when run in baseline sys-

tem

3.4.2 Parallel

The parallel applications evaluated in this thesis are Vve applications
of SPLASH-2 [66] and PARSEC [5] suites. The Vrst one is a very
well known benchmark suite of scientiVc parallel programs, while
the second focuses on emerging workloads and was designed to be
representative of next-generation shared-memory programs for chip-
multiprocessors.

Table 3.3 gathers the applications we selected for our evaluation.
They are those applications from both suites having more than
1 MPKI in a 8-MB SLLC. Each application spawns in its parallel
phase as many threads as processors are in the system. We utilize
simmedium input set for PARSEC applications and a 1026x1026 grid
for Ocean. Performance statistics are only taken in the parallel phases.

Parallel applications should be run until completion when mean-
ingful results are desired, or at least some work-oriented metric
should be considered [1]. In our simulations we have observed that no
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canneal facesim ferret vips ocean

MPKI 4.48 3.45 1.27 1.74 13.35

Table 3.3: MPKI of the selected parallel applications in the LLC of the base-
line system

OS activity appeared when parallel applications were run and more-
over the ratio of load of work among the diUerent threads was prac-
tically constant between simulations, thus sampling seems to be a
reasonable option to evaluate this type of applications. Thus, as only
one application has been run until completion (OCEAN) and because
of the huge simulation time would be needed to simulate them com-
pletely, the rest of the applications were evaluated using a technique
similar to the one used for multiprogrammed workloads.

In order to evaluate a microarchitectural proposal in an application
can not be run until completion, the corresponding checkpoint and
ruby conVgurations are loaded and the whole hierarchy is warmed
during 300M cycles. After that, statistics are reset and performance
accounting is performed during 700M cycles.

Processor throughput is used as performance metric, meaning that
given that duration is Vxed and the same for all of our simulations,
in order to compare diUerent proposals, the total number of executed
instructions is compared. Equation 3.2 formally shows this metric.

Speedup =

∑n
i=1 I

A
i∑n

i=1 I
base
i

(3.2)

IPCA
i : Number of executed instructions of core i in system A

IPCbase
i : Number of executed instructions of core i in baseline system





Part II

AD JU ST I NG P RE F ETCH I NG
AGGRES S I V EN ES S

This second part of the thesis comprises only one chapter.
Chapter 4 contains our contribution Low-Cost Adaptive
Controller for Prefetching in a Banked SLLC (ABS). The
aim of this proposal is to increase the SLLC eXciency
by adjusting the prefetching aggressiveness associated to
each core of a CMP.





4
ABS P RE F ETCH I NG

summary

On a multicore system Vtted with a shared Last-Level Cache, prefetch
induced by a core consumes common resources like shared cache space
and main memory bandwidth. The uncontrolled use of the SLLC space by
prefetching could lead to a paradoxical situation where this technique be-
comes harmful for the system performance. In order to avoid such situation
prefetching aggressiveness should be controlled from an overall system per-
formance standpoint. Given it is usual to Vnd a broad spectrum of applica-
tions running at the same time in modern CMPs, it seems natural to adjust
the prefetching aggressiveness associated to each core independently.

This chapter presents ABS, a low-cost controller that runs stand-alone
at each LLC bank without requiring inter-bank communication. Following
a hill-climbing approach, the mechanism is able to adapt the prefetching
aggressiveness associated to each core in the system gathering only bank-
local metrics.

Using multiprogrammed SPEC2K6 workloads, our analysis shows that
the mechanism improves both user-oriented metrics (Harmonic Mean
of Speedups by 27% and Fairness by 11%) and system-oriented metrics
(Weighted Speedup increases 22% and Memory Bandwidth Consumption
decreases 14%) over an eight-core baseline system that uses aggressive se-
quential prefetch with a Vxed degree. Similar conclusions can be drawn by
varying the number of cores or the LLC size, when running parallel appli-
cations, or when other prefetch engines are controlled.

35
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4.1 introduction

Hardware data prefetch is a very well known technique for hiding the
long latencies involved in oU-chip accesses. It tries to predict memory
addresses in advance, requesting them to the next level, and loading
the lines into the cache before the actual demands take place. Several
commercial multicore processors implement some form of hardware
data prefetch [11, 32].

Prefetches may be initiated in the Vrst-level caches or directly from
events occurring in the SLLC, but in the end the prefetches reach the
SLLC and interfere with each other. That is, prefetches issued on be-
half of one core may evict LLC lines previously allocated by other
cores, either by a memory instruction or a prefetch request. In addi-
tion, the prefetch activity originated from a single core can reduce the
overall available bandwidth, potentially increasing the latency seen
by the demands or prefetches coming from the rest of cores.

Most prefetch proposals in multiprocessors deal with systems hav-
ing only private caches [6, 14, 29, 57, 61], while prefetch for shared
caches has received little attention [15].

Ebrahimi et al. [15] tackle for the Vrst time the problem of reduc-
ing the prefetch inter-core interference in a chip multiprocessor with
a shared LLC. They propose the Hierarchical Prefetcher Aggressive-
ness Control (HPAC)mechanism, that monitors several global indexes
(prefetch accuracy, inter-core pollution, and memory controller ac-
tivities) to adjust the prefetch aggressiveness of each core. This as-
sumes a centralized implementation of the LLC, internally organized
in banks but with a single access port (see Figure 4.1a). Thus, the
global aggressiveness control and associated hardware structures are
also centralized.

(a) Monolothic (b) Banked

Figure 4.1: Last Level Cache organizations
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To the best of our knowledge, our contribution is the Vrst work
where prefetch is studied in a multicore system Vtted with a banked
shared LLC, see Figure 4.1b. We assume an LLC organized in inde-
pendent cache banks with an access port each, and an interconnec-
tion network attaching cores to cache banks (a crossbar is assumed,
but other topologies can be considered) [28, 30]. Each bank is inter-
nally sub-banked in order to provide a higher throughput. This kind
of SLLC is already mainstream because independent banks add lay-
out Wexibility and increase access bandwidth. Commercial processors
from AMD, Sun, Intel, or IBM are using this design [11, 28, 30, 32].

In this scenario, we introduce the ABS controller, an Adaptive con-
troller for prefetch in a Banked Shared LLC. ABS controllers are in-
stalled in all the LLC banks which are already Vtted with a prefetch
engine. Each ABS controller runs autonomously and gather local
statistics to set the prefetch aggressiveness for each core in the bank
it controls in order to maximize the overall system performance us-
ing a hill-climbing approach. Therefore, a given core is allowed to
prefetch with diUerent aggressiveness on diUerent banks of the LLC.

Isolation between banks is a key factor of our proposal, meaning
that both the ABS controller and the prefetcher in a bank are not in-
Wuenced by their peers at other banks. Bank isolation achieves two es-
sential beneVts, namely i) the prefetches generated from a given bank
target itself, and it will always be possible to Vlter useless prefetches
by looking up in the bank, thus saving memory bandwidth, and ii)
communicating prefetchers or ABS controllers among banks is not
required, removing the need for a dedicated interconnection network
or extra traXc in the existing one. As discussed in Section 4.5.2, bank
isolation can be achieved by selecting a proper address interleaving
among banks or by adjusting the prefetch distance.

Our results show that an eight-core system with ABS controllers
running multiprogrammed SPEC2K6 workloads improves in both
user-oriented metrics and system-oriented metrics over a baseline
system with a Vxed degree sequential prefetch. The results are consis-
tent when varying the number of cores or LLC sizes. ABS control can
be applied to other prefetch engines as long as they are able to oper-
ate at diUerent aggressiveness levels. SpeciVcally, we introduce ABS-
controlled sequential streams. A comparison with HPAC-controlled
sequential streams, such as that proposed by Ebrahimi et al. [15],
shows higher performance at a very small fraction of the cost. Fur-
thermore, when running multithreaded workloads from SPLASH-2
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[66] and PARSEC [5], the ABS controllers also reduce the execution
time and the consumed bandwidth over the baseline system.

The remaining of the chapter is structured as follows. Section 4.2
describes the motivation behind the work. Section 4.3 gives some
background and reviews related work. Section 4.4 introduces the ABS
controller. Section 4.5 presents the prefetch framework. Section 4.6
shows the methodological diUerences respect to what was presented
in Chapter 3. Section 4.7 shows the results when ABS controllers are
evaluated in a variety of situations, and Section 4.8 discusses and sum-
marizes the contribution.

4.2 motivation

Figure 4.2 shows instructions per cycle (IPC) for eight SPEC2K6 appli-
cations running on a system with eight cores and a 4MB shared LLC.
The simulation details are shown in Section 4.6. The Vgure shows
four bars for each application. The Vrst two bars represent programs
running alone in the system, either without prefetch or with an ag-
gressive (degree 16) sequential tagged prefetch (see Section 4.3). The
last two bars represent the eight applications running together, ei-
ther all without prefetch or all with the former aggressive prefetch
turned on. When comparing the systems with prefetch (second and
fourth bars), signiVcant performance losses appear when resources
are shared among cores. Note that prefetch involves virtually no per-
formance loss in any application when running alone (Vrst and sec-
ond bars), while it causes losses in 5 out of 8 applications when run-
ning all together (third and fourth bars). Therefore, in order to boost
the shared LLC performance by means of prefetch, a mechanism to
control aggressiveness is called for. Such a mechanism should con-
sider global metrics to realize when the prefetch activity of a core
harms the overall system performance and it should be decreased in
spite of the improvement achieved by that core.

As Vgure 4.2 highlights, the beneVt obtained by an application due
to prefetch can decrease or even turn into losses if prefetch is simul-
taneously active in all cores. Therefore, our goal is to design a mech-
anism that dynamically controls the prefetch aggressiveness of each
core in order to maximize system performance.

The impact on system performance can be assessed using global
indexes such as aggregated IPC or shared LLC miss ratio. Both are
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Figure 4.2: IPC for eight SPEC2K6 applications (mix2) running on an 8-core
system with a shared LLC

obtained by adding quantities that are distributed in the cores or the
cache banks, respectively. So, a centralized design of the prefetch ag-
gressiveness control requires sending information from the places
where events are counted to the centralized control point. Alterna-
tively, we propose to place an ABS controller in each LLC bank. The
controller uses bank-local information (i.e. bank miss ratio) to im-
prove bank performance. Improving the performance of every bank
will thus improve the system performance.

4.3 background and related work

This section provides with material will be useful in next sections.
First, Section 4.3.1 explains the concept prefetching aggressiveness that
will be used in next sections. And second, Section 4.3.2 presents the
Hierarchical Prefetcher Aggressiveness Control (HPAC), to the best of
our knowledge, the only proposal in the literature with the aim of
controlling the prefetching aggressiveness associated to each core in
a CMP.

4.3.1 Prefetch aggressiveness

Prefetch aggressiveness is often deVned in terms of degree and/or dis-
tance. Let us consider a stream of references a processor is going to
demand (ai,ai+1,ai+2, ...), where address ai has just been issued. A
prefetcher can be designed to produce the next k addresses following
ai (ai+1, ...ai+k), calling k the prefetch degree. Alternatively, or in
addition, it can also be designed to produce a single address of a far
reference (ai+d), calling d the prefetch distance. As an example, we
recall the sequential tagged prefetcher with degree k [14]. If reference
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ai having the line address V is going to trigger a burst of prefetches
(ai misses or is the Vrst use of a prefetched line), then the prefetcher
will issue the following request burst (V + 1,V + 2, ...,V + k). An-
other example of a prefetch engine using aggressiveness is the se-
quential streams as presented in [58]. In that work, aggressiveness
was deVned as a combination of distance and degree.

4.3.2 Hierarchical Prefetcher Aggressiveness Control (HPAC)

To our knowledge, only the Hierarchical Prefetcher Aggressiveness
Control (HPAC) presented by Ebrahimi et al. [15] has faced the prob-
lem of adjusting prefetch aggressiveness on a shared LLC.

We notice four main diUerences between that work and the present
one:

1. While HPAC resorts on computing the prefetching aggressive-
ness by means of a set of rules applied to several system vari-
ables (a kind of fuzzy controller), while ABS relies on a local
search method (a variant of hill-climbing) to minimize a single
system variable, the bank miss ratio.

2. HPAC was proposed for a centralized LLC with a single access
port (see Figure 4.1a). We propose ABS for a cache organized in
banks, each one with an access port (see Figure 4.1b).

3. HPAC throttles auto-regulated prefetch engines attached to
each core. In the original paper, HPAC is evaluated using Feed-
back Directed Prefetching as the auto-regulated prefetch en-
gine [58]. However, ABS controllers set directly the aggressive-
ness level of the local prefetchers.

4. HPAC uses four global metrics and FDP (as part of HPAC) uses
three more local metrics. All these metrics are monitored and
compared to ten thresholds (4 for HPAC + 6 for FDP). In con-
trast, ABS only samples two system variables and only consid-
ers one threshold.

A performance and complexity comparison between HPAC and ABS
is presented in Section 4.7.4.
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4.4 the abs controller

An ABS controller is an adaptive mechanism that sets dynamically the
aggressiveness associated to each core on the prefetcher installed in a
bank of a banked shared LLC. Every LLC bank has an ABS controller
commanding the prefetcher of that bank. Thus the ABS controller of
an LLC bank is able to associate diUerent levels of prefetch aggressive-
ness to each core, and conversely ABS controllers in diUerent banks
can associate to the same core diUerent levels of prefetch aggressive-
ness.

ABS control relies on a hill-climbing approach for Vnding the mini-
mum of a function (the miss ratio of a bank1) that we assume to be de-
pendent on a set of variables namely, the prefetching aggressiveness
of each core in the bank. Time is divided into regular intervals called
epochs. In each epoch, in order to establish a cause-eUect relationship
between change in aggressiveness and change in performance, the
aggressiveness of only one core (the probed core) is varied. The point
is that at each epoch, the observed change in the bank miss ratio is
only due to a single aggressiveness change. At the end of the epoch
an aggressiveness value is established for the currently probed core
and this value remains unchanged until it is probed again. Further-
more, ABS controllers force the prefetch aggressiveness associated to
a core to be decreased if its accuracy falls under a given threshold.
The operation of ABS controllers involves two aspects: i) selection of
the core to probe and temporal sampling, and ii) adaptive per-core
aggressiveness control.

core selection and temporal sampling At the beginning
of each epoch a core is chosen in a round-robin fashion2 and its
current prefetch aggressiveness is changed. Then, at the end of the
epoch, the eUect of the change is evaluated by comparing the bank
miss ratios observed during the current epoch and a reference epoch
(Figure 4.3a). The change is undone if the current bank miss ratio is
greater than the reference one. Otherwise, the change is conVrmed
and the current epoch is set as the new reference. So, the core se-

1 Ratio of bank demand misses to demand requests coming from all cores. Other
performance indexes were also tested as the target function, such as global miss
ratio, MPKI, or IPC. Although results were similar, these other indexes were dis-
carded because they are more expensive to compute in terms of communication
and hardware cost.

2 A random order was also tested achieving slightly worse results.
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lection and temporal sampling guarantee that there is always only
one prefetch aggressiveness change between reference and current
epochs. That change corresponds to the probed core at each epoch.

At the end of an epoch, an aggressiveness value is established
for the currently probed core and this remains unchanged until the
core is probed again. Note that if an application remains in a stable
phase the ABS controller reaches a steady state only broken by the
glitches involved in testing sub-optimal conVgurations. Hill-climbing
processes usually deals with functions that are not time-dependent.
Thus, the process stops when no change can be found to improve
the value reached. However, we know miss ratio is time-dependent
because applications change their behavior over time. This has two
important implications for the design of ABS.

1. Our algorithm never stops. The combination of aggressiveness
able to minimize the miss ratio changes over time and ABS con-
tinually seeks that combination.

2. When the miss ratio reaches the global minimum in the cor-
responding program phase, ABS will set the current epoch as
the reference epoch and the current miss ratio as the rate to
beat. So, as a lower miss ratio will no longer appear, ABS will
never change the control actions, and worse, a similar behav-
ior may occur during long program phases after reaching a
local minimum. In order to remedy this situation, the num-
ber of epochs elapsed without updating the reference epoch
is counted. When this count is equal to the number of cores,
the mechanism sets the last epoch as the new reference. Updat-
ing the reference epoch in this way ensures that a new value is
taken after probing all cores without experiencing a miss ratio
decrease.

We use epochs of 32K cycles. Other durations were tested without
signiVcant variation. Epochs based on counting a given number of
events, like cache misses, were also tested without signiVcant varia-
tions.

adaptive per-core miss-gradient aggressiveness con-
trol In an ABS controller, every core has a state which consists of
a prefetch aggressiveness degree and a prefetch aggressiveness trend
(downward or upward). At the beginning of the epoch in which a core
is being probed, the state changes to eval-downward or eval-upward
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(a) Core selection and temporal sampling

(b) Finite state machine controlling the per-core prefetch
aggressiveness

Figure 4.3: ABS controller operations

(Figure 4.3b). Note that to probe a core, ABS only changes the ag-
gressiveness following the trend associated with the core, instead of
testing both possibilities (downward and upward) as they would do
other implementations of hill-climbing.

Four events are locally counted in each LLC bank during each
epoch, namely: 1) bank accesses from all cores, 2) misses from all
cores, 3) prefetches issued by the core being probed, and 4) hits from
the core being probed on prefetched lines. Sequential tagged prefetch
uses a bit per cache line to tag the prefetched lines. This bit is set
when a line is loaded in the LLC by a prefetch, and it is reset when
the line is used for the Vrst time. We use this bit to count the hits
of the probed core on prefetched lines. At the end of an epoch two
ratios are computed: bank miss ratio (bank misses / bank accesses)
and prefetch accuracy for the core being probed (hits from the core
in prefetched lines / prefetches from the core). Then the computed
bank miss ratio is compared with the bank miss ratio of the refer-
ence epoch. If it has increased, the state changes to the reverse trend
(from eval-downward to upward or from eval-upward to downward).
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Otherwise, the state changes to the initial trend and the reference
bank miss ratio is updated. Accuracy is involved in the transitions
that leave the eval-x states. It is required that the probed core has
an accuracy higher than a threshold to go to the upward state. The
rationale of this requirement is to avoid the increase in the aggres-
siveness of one core whose prefetches are almost useless. We have
observed that the optimal threshold depends on the intrinsic accu-
racy of the prefetch engine. Aggressive prefetch engines such as se-
quential tagged need a higher threshold (more restrictive) than other
more conservative prefetch engines like sequential streams. We use
an accuracy threshold of 0.6 when controlling sequential tagged with
variable degree and of 0.3 when controlling sequential streams.

4.4.1 Example

Figure 4.4 shows an example of how an ABS controller works in an
LLC bank of a system with four cores. The degree scale (0, 1, 4, 8, 16)
represents the prefetch aggressiveness. Time moves from left to right
and is divided into Vxed length intervals as shown in the Epoch row.
The four rows designated as degree & trend (P0, P1, P2 and P3) show
the level of prefetch degree and trend associated with each core at
each epoch. For instance, 4↑ means prefetch degree of 4 and upward
trend. The core identiVer and its trend over the dashed arrows indi-
cate the change applied between two consecutive epochs. For exam-
ple, from E0 to E1 the degree of P1 is changed from 4 to 1. The bank
miss ratio accounting row shows the miss ratio at each epoch. The
last row shows the comparison result between the reference and the
current bank miss ratios. Next we show the positive and the negative
cases.

positive aggressiveness change At the beginning of E1, ag-
gressiveness of the P1 core is changed from degree 4 to 1 following
its downward trend. The question mark next to the degree of P1 at
E1 epoch (1?) means that the change is being evaluated. At the end of
E1 we observe a decrease in the bank miss ratio (a>b) with respect to
the reference epoch (a). Therefore, the change in degree and the cur-
rent trend of P1 are conVrmed. E1 becomes the new reference epoch.
The same happens at the epochs E2 and E5.
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Figure 4.4: Example of ABS controller working in an LLC bank of a 4-core
system

negative aggressiveness change White circles surround
negative evaluations. At the beginning of E3, the P3 degree is changed
from 4 to 8 following its upward trend. At the end of E3, an increase
in the bank miss ratio (c<d) is observed, therefore the change in the
P3 degree is undone, becoming 4, and its trend is reversed to down-
ward. The reference epoch is not changed. At the beginning of E4, the
P0 degree is changed from 1 to 4. Note that E2 is the reference epoch
in E4. They only diUer in the degree of P0, which is the one under
evaluation in E4. At the end of E4 the bank miss ratio is also higher
than it was at E2. Therefore, the change in the P0 degree is undone,
the trend is reversed, and E2 remains as the reference in E5.

4.4.2 Miss ratio as a good metric to guide aggressiveness

Prefetch related metrics such as coverage, accuracy, timeliness, pol-
lution or consumed bandwidth have often been proposed to evaluate
the quality of a prefetch engine because an aggregate Vgure such as
the miss ratio does not allow the net eUect of individual prefetches to
be distinguished [46, 63].

These same metrics were subsequently used in other works to
guide prefetch aggressiveness [14, 15, 58]. However, these metrics are
not directly related with system performance. Moreover, in the con-
text of a banked LLC they pose two important problems: i) some of
them are hard to compute online, and ii) they are diXcult to aggre-
gate in a single number in order to take a decision.

In this contribution we use the LLC bank miss ratio as the main
metric to guide prefetch aggressiveness. The penalty of the oU-chip
misses is large in processor cycles and so a miss ratio decrease has
a great potential to reduce Cycles per Instruction (CPI) and improve
performance. Therefore, we expect the LLC miss ratio to be a good
measure of performance. Moreover, the ABS controller associated
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with each LLC bank can locally count the number of misses in the
bank. In consequence, our proposal establishes the feedback loop
without requiring communication among LLC banks.

From a performance standpoint, the prefetch related metrics are
highly correlated with the miss ratio. In fact, some of these metrics
are only valuable when they really correlate with the miss ratio. For
instance, a prefetched line is considered useful if it is used along its
lifetime in a cache, and useless otherwise (accuracy metric). How-
ever, a useful prefetch does not always have a positive impact on
performance. Indeed, it will only increase performance if it gets a
reduction in the miss ratio. In particular, if the line evicted by the
prefetch is referenced before the prefetched line itself, despite having
a useful prefetch, the miss ratio does not change and therefore no
performance increase will be seen.

4.4.3 ABS controller hardware cost

The hardware cost of our proposal is low. In each bank, an ABS con-
troller needs 4 bits per core in order to keep its prefetch state (1 bit
for trend + 3 bits for aggressiveness level). It also needs four 16-bit
counters (bank misses, bank accesses, prefetch requests, and hits on
prefetched blocks). Additionally, it needs a 3-bit counter (4 bits in a 16-
core system) to maintain the reference epoch age (number of epochs
without changing the reference). The reference and the current miss
ratios are stored in 16-bit registers. Finally, a 15-bit counter is needed
to divide time into 32K-cycle epochs. For instance, in an 8-core mul-
tiprocessor each ABS controller needs 146 bits. Thus, in our baseline
system Vtted with 4 LLC banks, 584 bits are needed. If we consider a
16-core system with the same memory hierarchy, 716 bits are needed
by the four ABS controllers.

Most prefetchers add to every cache line a tag bit in order to detect
Vrst use after prefetch and then react based on the prefetchless miss
stream3 [45, 54]. For instance, sequential tagged prefetch uses the tag
bit to trigger new prefetches on the Vrst use of a prefetched line. The
ABS controller uses the same tag bit to count hits on prefetched lines,
and so we ignore that bit in the ABS costs.

3 Given two equal caches, with and without prefetch, note that the miss stream out-
going from the prefetch cache diUers from that of the prefetchless cache. However,
it is possible to rebuild the prefetchless miss stream in a prefetch cache by joining
the actual miss stream with the Vrst-use stream of prefetched blocks.
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4.5 prefetching framework

In this section we present the entire prefetch environment. Section
4.5.1 establishes the minimum requirements of a prefetch engine in
order to operate under ABS control. Section 4.5.2 discusses how to
isolate prefetch in LLC banks, and Section 4.5.3 details the prefetch
implementation in each LLC bank.

4.5.1 Prefetch engine

The operation of the ABS controller is orthogonal to the prefetch
engine used to generate prefetch requests. The only necessary char-
acteristic in this prefetch engine is that it has to be able to operate
at diUerent aggressiveness levels. In this work, the base system uses
a sequential tagged prefetcher with variable degree (degree varying
along the following scale 0, 1, 4, 8, 16). Given an initial address and
a degree k, it is asked to generate k sequential references in the next
k cycles. In Section 4.7.4 we also evaluate ABS controlling sequential
streams as the prefetch engine, using the same model of sequential
streams as Ebrahimi et al. [15]. ABS can control prefetch engines gen-
erating non-consecutive references, either belonging to a Vxed-stride
stream, or a stream generated by a context predictor like GHB or
PDFCM [45, 49]. Considering such prefetch engines under ABS con-
trol is still an open research avenue.

4.5.2 Bank-isolated prefetch

A common mapping of memory lines to LLC banks is line-address
interleaving. On a miss on line L mapped to bank B, a sequential
prefetcher located at bank B generates a prefetch of line L+1, which
maps to the next LLC bank. The address is looked up in the destina-
tion cache bank and, on a miss, it is forwarded to the main memory.
Thus, communication among LLC banks is required in order to send
every prefetch request from the bank that generates it to the desti-
nation bank. Alternatively, we could send the prefetch request to the
memory without a previous lookup. In this case, we can waste mem-
ory bandwidth on prefetching lines already existing in the LLC.
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In order to avoid expensive communication between LLC banks
or waste of memory bandwidth, LLC prefetch is arranged to achieve
isolation among banks, i.e. prefetches generated from a bank always
target itself. We analyze two bank-isolated prefetch methods: increas-
ing stride and changing the address interleaving among banks. The
Vrst consists on increasing the prefetch stride from one to a multi-
ple of the number of banks. As an example, in an LLC with 4 banks
and a sequential prefetcher at each bank, a miss on the line L issues
the prefetch of the line L+4. Achieving bank-isolation in this way has
the drawback that several prefetchers have to learn a fraction of the
same stream, and thus the number of prefetch addresses not issued
during the learning time is multiplied by the number of banks, this is
a serious drawback, especially for short streams.

The second method consists of increasing the address interleav-
ing granularity among banks. The LLC banks are interleaved us-
ing operating system pages, where consecutive physical pages map
into consecutive LLC banks (mapping logical to physical addresses
is performed in our experiments by the simulated operating system).
This way an address stream always maps to a single bank while the
page boundary is not crossed, and all addresses generated by a bank
prefetcher will target the same bank. This is not a problem because in
order to avoid translating prefetch addresses, prefetchers do not usu-
ally issue addresses beyond the page boundary of the address origi-
nating the prefetch [32, 18, 19].

We have evaluated the performance of both interleaving options
for the baseline system without prefetch, noting that performance
was slightly higher using page interleaving. Similar conclusion was
obtained in a previous work [10].

4.5.3 Prefetch details

Aggressive prefetchers such as a high-degree sequential tagged
prefetcher can generate a signiVcant number of prefetches. We as-
sume the hardware cost of the prefetcher is lowered by sharing the
same lookup port for demand and prefetch requests (demand requests
have higher priority). Furthermore, only one adder is provided to
each LLC bank in order to generate prefetches, and so prefetch ad-
dresses are computed at a rate of one per cycle. The generation of a
burst of prefetch requests after a cache miss or cache hit to a tagged
line is cut oU if another event initiates a new prefetch burst.
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Figure 4.5: Components of an LLC bank

After being generated, each prefetch is sent to a prefetch address
buUer (PAB) and waits in a queue until the LLC lookup port is avail-
able, see Figure 4.5. Because the PAB has a Vnite number of entries, it
is managed in FIFO order (both for servicing and dropping prefetch
requests the oldest one is processed Vrst). Before inserting a prefetch
address, the PAB is checked for an already allocated entry with the
same address in order to avoid having duplicated requests.

Prefetch and demand Miss Status Holding Registers (MSHRs) keep
the requests to the main memory until the arrival of the correspond-
ing cache lines. There are no duplicated entries between MSHRs.
When the LLC bank tag port is available, the request at the head
of the PAB looks up both the bank tags and the two MSHRs. Only if
they all miss, is the request sent to the memory and inserted in the
prefetch MSHRs.

Demands have higher priority than prefetch requests at every ar-
biter in the hierarchy. Moreover, a demand can arrive at an LLC bank
asking for a line that is being prefetched but whose data are not yet
loaded into the cache. In that case a prefetch upgrade command is
sent to the memory controller. If the request is queued at the con-
troller. That command will upgrade the prefetch request giving it
demand priority. The rationale of this mechanism is to prevent an
aggressive prefetch from damaging regular memory instructions.

4.6 methodology

This section explains the diUerences between the methodology fol-
lowed in order to evaluate the contribution that this chapter presents
and the methodology presented in Chapter 3. Mainly, what is diUer-
ent here is the concrete conVguration of the memory hierarchy, the
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number of evaluated workloads by simulation, and the metrics con-
sidered to evaluate the contribution.

4.6.1 Experimental setup

As the general experimental framework description explained, Simics,
a full-system execution-driven simulator, has been used to evaluate
our proposal [40]. The Ruby plugin from the Multifacet GEMS toolset
was used to model the memory hierarchy with a high degree of detail
[41], including coherence protocol, on-chip network, communication
buUering, contention, etc. The prefetch system has been integrated
into the coherence mechanism and a detailed DDR3 DRAM model
has been added.

Multiprogrammed SPECCPU 2K6 workloads running on a Solaris
10 Operating System have been used. In order to discard the less de-
manding memory applications and locate the end of the initializa-
tion phase, all the SPARC binaries were run on a real machine until
completion with the reference inputs and hardware counters were
used. Eight applications were subsequently discarded and 21 selected,
shown in the Vrst column of Table 4.1.

For an eight-core system, a set of 30 random mixes of 8 programs
each, were taken from the previously selected 21 SPECCPU 2K6 pro-
grams (no eUort has been made to distinguish between integer and
Woating point). In the next section, we usually show averages over
this set of 30 mixes, but in order to gain a deeper insight into indi-
vidual mix behaviors, sometimes a subset of 10 mixes is shown. This
randomly chosen subset of mixes appears in Table 4.1, along with the
misses per kilo-instruction (MPKI) of each application in each mix
when the application runs alone, that is, it runs using all the shared
memory resources and with the remaining seven cores stopped.4

4 Notice that in general the same application appearing in two diUerent mixes does
not have the same MPKI value. This is because the number of executed instructions
before creating a multiprogrammed checkpoint is given by the application with the
longest initialization phase in the mix. This means that the results for a particular
application, in general, can not be compared between mixes.
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m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

bzip2 1.8 1.7

bwaves 20.7 20.7 20.7 20.7 20.7 20.7

mcf 33.9 37.5 30.7 33.2 20.2

milc 16.4 16.2 34.2

zeusmp 16.7 8.1 9.1 7.3 13.8

gromacs 3.9 4.0

cactus. 4.2 4.1 4.2 4.2 4.4

leslie3d 28.3 32.5 36.4 14.4

gobmk 1.5 1.5 1.4 1.5

dealII 0.0 0.1 0.2 0.3

soplex 3.0 4.0 3.6

povray 0.3 0.3 0.3 0.3 0.3

calculix 0.5 5.9 0.5

gems. 32.5 26.9 32.5 26.8

libq. 28.8 85.5 65.6

tonto 3.4 1.5 1.6

lbm 36.1 47.6 36.1 36.1 36.1

omne. 0.7 5.4 0.7 0.7 0.6 0.7

wrf 3.0 0.5 0.5

sphinx3 12.5 12.9

xalan. 1.8 1.8 1.5

MPKI 16.9 4.62 5.05 7.67 10.8 10.37 9.06 3.22 8.03 4.04

Table 4.1: MPKI of the benchmarks in the selected mixes
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Private L1 I/D 16KB, 4-way pseudo LRU replacement, 64B line size,
1cycle

Shared L2 4MB inclusive

4 banks of 1MB each. Data array internally sub-banked),
4KB interleaving, 64B line size.
Each bank: 16-way pseudo LRU replacement,
2-cycle TAG access, 4-cycle data access.
16 demand + 16 prefetch MSHR

Prefetch engine Sequential tagged, degree 16

DRAM 1 rank, 16 banks, 4KB page size,
Double Data Rate (DDR3 1333Mhz)

DRAM bus 667Mhz, 8B wide bus, 4 DRAM cycles/line,
16 processor cycles/line

Table 4.2: Baseline system conVguration

4.6.2 Baseline system

The baseline system has eight in-order cores. The shared LLC has
four banks interleaved at page granularity (4KB in the simulated op-
erating system). AMOSI protocol keeps the memory system coherent
while allowing thread migration among cores5. A crossbar communi-
cates the Vrst level caches and the shared LLC banks. There is a single
DDR3 memory channel. The DRAM memory bus runs at a quarter of
the core frequency. Table 4.2 gives additional implementation details.

4.6.3 Performance indexes

As previous work has shown, sequential prefetch delivers good re-
sults when only one program is executed in the system [49, 54].
However, as pointed out in Section 4.2, this assumption is no longer
true for a multiprocessor system because resources are shared among
cores that interfere each other. Thus, the goal of the ABS controller
is to control the prefetch aggressiveness on a per-core basis in such
a way that programs running together in the multicore system at-
tain similar performance as when running alone with an aggressive
sequential prefetch. In consequence, our performance indexes use as
reference the IPC of the programs running alone on a system with a
sequential tagged prefetcher with a Vxed degree of 16.

5 Migration can mainly aUect to the operating system threads. Each application
thread is bound to a diUerent core for the multiprogrammed workloads.
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In order to evaluate the performance of the system when it
is controlled by our ABS controllers, we use two system-oriented
performance indexes, namely weighted speedup (eq. 4.1) [39], and
main memory bandwidth consumption, and two user-oriented per-
formance indexes, namely harmonic mean of speedups (eq. 4.2) [55],
and fairness (eq. 4.3) [44]. Next, these metrics are shown with more
detail.

First, we deVne

IPCSP
i : IPC of program i running alone in the system and with

Vxed degree-16 sequential tagged prefetch.
IPCMP

i : IPC of program i when other applications run in the rest of
the cores

weighted speedup (ws) It quantiVes the number of jobs com-
pleted per unit of time [16]. Here it represents the sum of slow-
downs that each of applications experiments because the com-
petition. It is expected that all the terms in the summation are
lower than 1, thus the value of the metric is between 0 and n,
and the higher the better.

WS =

n∑
i=1

IPCMP
i

IPCSP
i

(4.1)

harmonic mean of speedups (hs) It is the inverse of the aver-
age normalized turnaround time [16]. Apart from adding the
speedups that each of applications experiments, it captures the
eUects of competition, reWecting fairness more intensely than
WS. It is expected that all the terms in the summation are
higher than 1, thus the value of the metric is between 0 and
1, and the higher the better.

HS =
n∑n

i=1
IPCSP

i

IPCMP
i

(4.2)

memory bandwidth It is accounted in order to know how much
the diUerent prefetch control schemes stress the links with
main memory. We express it as a fraction between 0 and 1 re-
Wecting the average occupancy of the links between the SLLC
and the main memory.
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fairness (fa) To determine whether the co-execution in the multi-
core system beneVts or harms some programs more than others
we use the fairness index (FA) [44]. The value of the metric is
between 0 and 1, and the higher the better.

FA =
min(IS1, IS2, . . . , ISn)
max(IS1, IS2, . . . , ISn)

,where ISi =
IPCMP

i

IPCSP
i

(4.3)

4.6.4 Prefetch speciVc metrics

Next sections will also show how well prefetching is performing,
thus speciVc metrics will be used. Concretely, our interest will focus
on two diUerent metrics: coverage (eq. 4.4) and accuracy (eq. 4.5). As
these metrics are used in an example to gain insight on the prefetch
behavior, both will be only used in a per-application way within a
multiprogrammed context. Next, these metrics are shown with more
detail.

First, we deVne
Fi = First hit on lines prefetched by application i

coverage (cov) It represents the fraction of misses prefetch is able
to avoid. Equation 4.4 shows the deVnition of coverage for the
prefetch associated to application i. The value of the metric is
between 0 and 1, and the higher the better.

Covi =
Fi

Fi +Mi
, (4.4)

Where,Mi = Misses of application i

accuracy (acc) It expresses the fraction of prefetches that are ac-
tually used by the processor. Equation 4.5 shows the deVnition
of accuracy for the prefetch associated to application i. The
value of the metric is between 0 and 1, and the higher the better.

Acci =
Fi
Pi

(4.5)

Where, Pi = number of prefetches issued by application i
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4.7 results

In this Section we evaluate the ABS controllers. Section 4.7.1 analyzes
ABS controlling sequential tagged prefetch in the baseline system.
Section 4.7.2 shows results for 16-core systems. In Section 4.7.3 we
increase the LLC size. In Section 4.7.4 ABS controllers are compared
with a previous proposal, and in Section 4.7.5 they are evaluated using
parallel applications.

4.7.1 Results for the 8-core baseline system

Figure 4.6 shows the results of ABS controlling prefetch aggressive-
ness of the mix2 described in Section 4.2. The 8 programs run simul-
taneously and the bars corresponding to execution without prefetch
(8apps no pref) and with Vxed-degree (16) aggressive prefetch (8apps
pref) are kept. A new bar corresponding to ABS prefetch (ABS) is
added.

ABS controlled prefetch increases performance compared with the
aggressive Vxed degree prefetch in all programs. IPC improvement
ranges from 23% in sphinx3 to 40% in milc. With regard to the system
without prefetch, ABS control only slightly aUects the performance
of deall and povray, while the aggressive prefetch leads to signiVcant
losses in Vve of the eight programs. In contrast, in six of the eight pro-
grams ABS control outperforms the system without prefetch, achiev-
ing improvements between 3% in omnetpp and 225% in lbm.

Global measures such as IPC do not allow us to Vnd out how
prefetching is working. To give insight into prefetching behaviour,
Figure 4.7a and Figure 4.7b show prefetch coverage and accuracy, re-

Figure 4.6: IPC for eight SPEC2K6 applications (mix2) running on an 8-core
system with a shared LLC
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(a) Prefetch accuracy

(b) Prefetch coverage

Figure 4.7: Prefetch accuracy and coverage of sequential tagged prefetch-
ing with Vxed degree of 16, and variable ABS-controlled degree
(mix2).

spectively, comparing Vxed degree (8apps pref) with ABS-controlled
degree (ABS). Prefetch coverage is very uneven across applications,
ranging from about 0.1 in povray to more than 0.9 in cactus. ABS, de-
spite being less aggressive, gets coverage similar or even higher than
the Vxed 16-degree prefetcher. ABS coverage is clearly better in Vve
of the eight applications, and is clearly worse in two. As for accu-
racy, it is also uneven across applications, being very close to zero in
povray and very close to one in cactus. But here ABS is the clear win-
ner, achieving higher accuracy in all applications, highlighting the
cases of milc, povray, tonto, omnetpp and sphinx3. The combination
of both metrics, similar coverage and better accuracy, explains the
performance improvement obtained by ABS.

It is interesting to delve into how diUerent the aggressiveness com-
puted in each bank by the replicated ABS controllers can be. Figure
4.8 plots a temporal trace of the prefetch degree for application milc
in the mix2, in a prefetch system under ABS control in two of the four
LLC banks (bank 0 and bank 1). The failed tests (glitches), accounting
for 1/ 8 of the total time in the worst case, have been removed to
smooth the plot.
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Figure 4.8: Evolution of the prefetching aggressiveness level for the milc ap-
plication (mix2) in two of the four LLC banks during 160 tests

In the plotted sample, both ABS controllers usually take diUerent
control decisions; e.g. at time 1180, bank 0 prefetchs with degree 2,
while bank 1 uses degree 8. The plot shows the Wexibility of the dis-
tributed ABS control: a particular core may issue a miss stream with
a diUerent pattern into each LLC bank.

Figure 4.9 shows HS, WS, FA and consumed bandwidth for sys-
tems without prefetch (no pref), with Vxed-degree aggressive prefetch
(aggr pref), and under ABS control (ABS) for the ten mixes shown in
Table 4.1. In each plot the rightmost bar group is the average of the
30 mixes (AVG30).

The HS values show a nonuniform pattern across the diUerent
mixes (Figure 4.9a). Aggressive prefetch increases by 4% the aver-
age HS with respect to no prefetch, but causes losses in six of the
10 mixes. Under ABS control, prefetch improves in 9 of the 10 mixes
(up to 60% in mix6) and produces small losses in the other mix (0.5% in
mix9). Also, ABS control always increases performance compared to
no prefetch, between 20% and 50% in mix3 and mix6, respectively. On
average, prefetch under ABS control, improves the system without
prefetch by 35%.

In terms of WS (Figure 4.9b), aggressive prefetch causes losses in
seven of the 10 mixes and performs on average 3% worse than the
system without prefetch. ABS control improves aggressive prefetch
in 9 of the 10 mixes (up to 47% in mix4) and produces negligible losses
in the other mix (1% in mix9). On the other hand, prefetch under ABS
control improves the system without prefetch in 9 of the 10 mixes,
with improvements ranging from 14% in mix9 to 27% in mix3. In mix5,
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(a) Harmonic mean of speedups

(b) Weighted speedup

(c) Fairness

(d) Bandwidth consumed

Figure 4.9: Results for ten mixes of SPEC2K6 applications running on an 8-
core system with a shared LLC
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WS results in a reduction of 0.3%. On average, prefetch controlled by
ABS improves the system without prefetch by 18%.6

Figure 4.9c plots the FA values, showing that the system with ag-
gressive prefetch is signiVcantly more fair than the system without
prefetch. This is because the performance indexes use as reference
a system with prefetch as we have seen in Section 4.6.3. Therefore,
in the system without prefetch we see the unfairness introduced by
the lack of prefetch itself, plus the unfairness due to the interferences
among the eight cores. In Figure 4.9c, we observe the low fairness of
mix2 in the system without prefetch. As the HS index includes some
notion of fairness in its deVnition and WS is a pure throughput index,
the previous issue about mix2 becomes clear. On average, the system
using ABS controllers is more fair than the system with aggressive
prefetch (0.62 and 0.56, respectively). ABS controllers make the sys-
tem more fair in 6 of the 10 mixes (diUerences between 1% and 140%),
and less fair in the remaining 4 (diUerences between -3% and -30%).

Finally, in Figure 4.9d we see that the main memory bandwidth
consumption of the system without prefetch is very uneven among
the diUerent mixes, varying between 18% and 55% of the maximum
bandwidth. However, the common pattern is that aggressive prefetch
greatly increases bandwidth consumption with respect to the system
without prefetch (on average, from 40% to 85% of maximum band-
width), and ABS removes a signiVcant portion of that increase lower-
ing it to 70% of maximum bandwidth.

Summarizing, in an 8-core chip with a shared 4-MB LLC, the use
of ABS controllers improves the system that is using uncontrolled
aggressive prefetch. On average, throughput (WS), the inverse of the
turnaround time (HS), and fairness (FA) increase 27%, 23% and 11%, re-
spectively while memory bandwidth consumption decreases by 18%.

4.7.2 Results for a 16-core system

In this section we analyze the behaviour of prefetch in a 16-core sys-
tem. The LLC is not modiVed, so that the increase in the number of
cores results in an increased pressure on the LLC. However, commu-

6 Notice that the performance indexes HS and WS do not always correlate; in mix2,
for instance, the HS index indicates that aggressive prefetch is better than no
prefetch while the WS index indicates the contrary. The discussion on fairness
will give a deeper insight into what is happening.
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(a) System-oriented metrics (b) User-oriented metrics

Figure 4.10: ABS performance on a 16-core system

nication with the main memory is expanded from one to two DDR3
channels. We run 30 mixes of 16 applications randomly selected
among the 21 SPEC CPU 2006 shown in Table 4.1. We only present
the average of each index over the 30 mixes of 16 programs each. Fig-
ure 9.a combines in a single Y-X plot the system-oriented metrics, WS
and bandwidth, while Figure 9.b combines the user-oriented metrics,
HS and FA.

In a system with 16 processors, Vxed-degree (16) aggressive
prefetch (aggr pref) produces losses compared to no prefetch (no
pref) in terms of throughput (WS decreases 9%) and turnaround time
(HS decreases 4%). The memory bandwidth consumption greatly in-
creases from 36% to 85%. Only fairness improves from 0.28 without
prefetch to 0.36 with aggressive prefetch.

Controlling aggressiveness leads to improvements in all metrics.
Compared to aggressive prefetch, ABS control (ABS) increases the HS
index by 27% (22% compared to no prefetch), increases the FA index
to 0.48, and also improves the system throughput index with a WS
increase of 25% (14% compared to no prefetch). The bandwidth con-
sumption decreases signiVcantly compared to aggressive prefetch,
from 85% to 62% of the maximum, but it is still greater than without
prefetch which only requires 36% of the maximum.

Summarizing, in a 16-core chip with a shared 4-MB LLC, ABS im-
proves the system in all indexes. Comparing between 16 and 8 cores,
the increase in the WS index is similar but the improvement in the
rest of the indexes, HS, fairness and memory bandwidth, is much
higher. This result is consistent because the pressure on the memory
hierarchy in a 16-core chip is larger than in an 8-core, resources are
more scarce, and therefore controlling the prefetch aggressiveness
becomes more important.



4.7 results 61

(a) System-oriented metrics (b) User-oriented metrics

Figure 4.11: ABS performance on an 8-core system with an 8MB LLC

4.7.3 Doubling the LLC size

In this section we analyze the behaviour of prefetch in the 8-core
baseline system when doubling the LLC size to 8 MB. We only
show average indexes computed over the 30 mixes already used in
section 4.7.1. The system-oriented metrics WS and bandwidth, are
shown in Figure 10.a, while Figure 10.b shows the user-oriented met-
rics HS and Fairness.

In an 8-core chip with a shared 8-MB LLC, the use of ABS
controllers also improves the behavior of uncontrolled aggressive
prefetch. On average, throughput (WS), the inverse of the turnaround
time (HS), and fairness (FA) increase 18%, 24% and 38%, respectively
while memory bandwidth consumption decreases 14%.

When increasing the cache size, controlling the prefetch aggres-
siveness becomes less important for improving performance, but it
improves fairness and saves bandwidth. Thus, when increasing from
4 to 8 MB, ABS improvements over uncontrolled prefetch change
from 27% to 18% in WS, from 11% to 38% in FA, and from 18% to 14%
in BW. As for HS, the results are similar.

4.7.4 HPAC comparison

Next we compare the ABS control with the Hierarchical Prefetcher Ag-
gressive Control mechanism (HPAC) introduced in [15]. To the best of
our knowledge, this was the only work to date on adjusting prefetch
aggressiveness in a shared LLC.
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HPAC works in a centralized LLC with a single access port al-
though internally it is organized in banks to support several concur-
rent accesses. The proposal uses sequential streams as the prefetch
engine and a local control of aggressiveness for each core: Feedback-
Directed Prefetching (FDP) [58]. HPAC adds a global interference
feedback in order to coordinate the prefetchers of the diUerent cores
and throttle their aggressiveness.

Since we assume autonomous LLC banks, possibly placed at distant
die locations, distributing HPAC is not straightforward. We choose
a distributed implementation giving HPAC as much knowledge and
control as possible, namely each core has an FDP per LLC bank, and
each LLC bank has an HPAC controlling the corresponding FDP. So,
the distributed HPAC/FDP we test requires 32 FDPs (8 FDPs per bank
× 4 banks = 32 FDPs), and 4 HPACs (1 HPAC per bank × 4 banks = 4
HPACs).

Besides other local bank metrics, HPACs gather statistics from
one/two memory controllers (8/16 core systems), and the communi-
cation among HPACs and the memory controllers is modelled in an
ideal way (zero-delay/no BW limitations).

We have used the thresholds indicated in the published propos-
als for both mechanisms. We simulate 32 streams per core and LLC
bank (32 streams × 8 cores × 4 banks = 1024 streams). Each stream
launches sequential prefetches with a degree and distance from a
starting address. We implement Vve levels of aggressiveness that cor-
respond to degrees 1, 1, 2, 4, and 4 and distances 1, 4, 16, 32, and 64,
respectively. The aggressiveness control mechanism (HPAC/FDP or
ABS) decides the aggressiveness level associated to each core.

Figure 4.12 plots the results for HPAC and ABS on an 8-core system.
Both mechanisms use sequential streams as the prefetch engine. Per-
formance indexes have been computed using as references the IPCs
of the programs running alone on a system with a sequential stream
prefetcher with a Vxed level of aggressiveness (distance 64 and de-
gree 4). We only show average indexes computed over the 30 mixes
already used in Section 4.7.1.

Figure 4.12a shows the system-oriented metrics,WS and BW, while
Figure 4.12b shows the user-oriented metrics, HS and Fairness. ABS
control obtains better results than HPAC in all metrics except in the
consumed bandwidth. ABS improves WS index by 8%, HS index by
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(a) System-oriented metrics (b) User-oriented metrics

Figure 4.12: HPAC and ABS performance on an 8-core system.

(a) Prefetch accuracy

(b) Prefetch coverage

Figure 4.13: Prefetch accuracy and coverage of sequential streams with vari-
able ABS-controlled and HPAC-controlled degrees (mix2).



64 abs prefetching

14% and fairness by 40%. Compared to no prefetch, bandwidth con-
sumption is higher in ABS (62%) than in HPAC (50%).

The results for a 16-core system are not shown but are similar.
ABS also produces better results than HPAC in all metrics except con-
sumed bandwidth. ABS improves the WS index by 7%, the HS index
by 11%, and fairness by 29%. Compared to no prefetch, bandwidth
consumption is higher in ABS (54%) than in HPAC (44%).

Figure 4.13a and Figure 4.13b show prefetch accuracy and cover-
age, respectively, of sequential streams prefetching, with ABS and
HPAC controlling the prefetch aggressiveness. Sequential streams, as
a prefetch engine, are less aggressive than sequential tagged, because
the former has a long learning period and the latter has not. This
explains the low coverage we see compared to that of Figure 4.13b.
On the other hand, ABS shows greater coverage than HPAC for most
applications in the mix. This may be so because HPAC can be more
restrictive than ABS. For instance, in a situation of low accuracy and
high pollution, HPAC throttles prefetch aggressiveness regardless of
its overall impact on the miss ratio. In contrast, ABS throttles prefetch
only if the miss ratio grows. As for accuracy, Figure 4.13a shows that,
despite being more aggressive, ABS gets accuracy similar to that of
HPAC.

From the referenced papers we can compute accurately the
HPAC/FDP hardware costs [15, 58]. In the 8-core system having 4
LLC banks of 1MB each, the total budget to implement HPAC/FDP is
466,624 bits (196,608 + 4 × (33,664+33,840))7. The implementation cost
of the 1024 sequential streams, and the prefetched bit in each cache
line have not been accounted for. In the 16-core system with the same
LLC the FDP/HPAC cost is 933,056 bits.

Summarizing, the ABS controller gives a better performance than
HPAC at the expense of some increase in consumed bandwidth. In
addition, it succeeds with a very low implementation cost.

7 FDP requires a core identiVer per LLC block (3 bits × 64K blocks = 196,608 bits). In
each bank, FDP also requires seven 16-bit counters per core, and a 1-Kentry Bloom
Vlter per core to detect intra-core prefetching interferences (1 bit and a core id per
entry, totaling 33,664 bits per bank). In turn, HPAC requires in each bank eight 16-
bit counters per core, three more 16-bits counters, and a 1-Kentry Bloom Vlter per
core (1 bit and a core id per entry) to detect inter-core prefetching interferences
(33,840 bits per bank).
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(a) Speedup over no prefetch

(b) Bandwidth consumed

Figure 4.14: Results for Vve parallel applications

4.7.5 Results with parallel applications

In this Section we analyze the behaviour of our proposal when run-
ning parallel applications in the baseline system presented in Sec-
tion 4.6.2. A priori, this behaviour should not depend on whether
the threads running on each processor are independent or not. ABS
varies the prefetch aggressiveness associated with each core seek-
ing to optimize the performance of each LLC bank in terms of bank
misses. The decrease in the number of misses in each bank should
result in improving system performance.

We have selected the Vve applications of the PARSEC [5] and
SPLASH-2 [66] suites which have more than 1 MPKI in a 4-MB LLC
(concretely canneal, facesim, ferret, vips and ocean applications. And
their MPKIs are respectively 4.48, 3.45, 1.27, 1.74, and 13.35). In or-
der to avoid migration, the threads are bound to cores using system
calls. Binding is not performed if an application spawns in its parallel
phase more threads than there are cores in the system. Performance
statistics (execution time, memory bandwidth) are only taken in the
parallel phases, which are run to completion in all the applications.
We utilize the simmedium input set for PARSEC applications and a
1026x1026 grid for Ocean.

Figure 4.14a shows speedups of a system with Vxed-degree
prefetch (aggr pref) and with prefetch under ABS control (ABS) com-
pared to a system without prefetch. The Vxed-degree prefetch im-
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proves performance with respect to no prefetch in four out of the
Vve applications. Only canneal suUers a 5% increase in execution time
when under prefetch with Vxed-degree. The ABS control achieves
higher speedups than Vxed-degree prefetch in all the applications ex-
cept vips (-1.8%). In canneal, the ABS controllers reduce prefetching
looses from 5% to 0.3%.

Figure 4.14b shows the memory bandwidth consumption of the
system without prefetch (no prefetch), with Vxed-degree prefetch
(aggr pref), and with prefetch under ABS control (ABS). Fixed-degree
prefetch signiVcantly increases the memory bandwith consumption
for all the applications (from 40% in facesim to 450% in ferret). The
ABS control reduces memory bandwidth consumption with respect
to Vxed-degree in canneal (-50%), ferret (-70%), and vips (-23%), and
slightly increases it in facesim (+5%). Summarizing, the ABS con-
trollers also improve performance over Vxed-degree prefetch when
running parallel applications, in spite of the low miss ratios of these
applications. Execution time is reduced in four out the Vve analyzed
parallel applications. Besides, signiVcant savings in memory band-
width arise in three applications.

4.8 concluding remarks

In this contribution we introduce the ABS controller (Adaptive
prefetch control for a Banked Shared LLC), an adaptive mechanism
to control the prefetch aggressiveness independently for each core
in each LLC bank. The ABS controller implements a hill-climbing al-
gorithm which runs stand-alone at each LLC bank, using only local
information. Bank miss ratio and prefetch accuracy are sampled at
Vxed-length epochs and used as performance index. For each bank
at each epoch the aggressiveness of only one core is varied in order
to establish a cause-eUect relationship between the change in aggres-
siveness and the change in the performance index.

The ABS controllers are evaluated to adjust the aggressiveness
level of variable-degree sequential tagged prefetchers. Our anal-
ysis using multiprogrammed SPEC2K6 workloads shows that the
mechanism improves both user-oriented metrics (Harmonic Mean of
Speedups by 27% and Fairness by 11%) and system-oriented metrics
(Weighted Speedup increases by 22% and Memory Bandwidth Con-
sumption decreases by 14%) over an eight-core baseline system that
uses aggressive sequential prefetch with a Vxed degree. Similar re-
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sults have been obtained on a sixteen-core system, when doubling
the LLC size or running parallel applications.

Besides, ABS is also compared to the mechanism for a central-
ized shared LLC proposed by Ebrahimi et al. [15] but adapted for a
banked LLC. For this comparison, variable-aggressiveness sequential
stream prefetchers are used as prefetch engines. ABS performs better
in all the performance indexes except in required bandwidth, which
is somewhat greater.

Summarizing, ABS controllers are able to control the aggressive-
ness of prefetch engines in a distributed fashion and with very low
implementation costs. Their distributed nature assures scalability in
the number of cores and cache banks for future multicore chips.





Part III

EX P LO I T I NG REUSE LOCAL I T Y

This third part of the dissertation treats the reuse locality
at the SLLC. It comprises two chapters: Chapter 5 states
the reuse locality property and presents two replacement
algorithms that exploit such property. Chapter 6 presents
the reuse cache, an innovative solution to improve the
SLLC eXciency. Employing the reuse locality, the reuse
cache is able to dramatically downsize the SLLC data ar-
ray, but maintaining at the same time CMP average per-
formance untouched.





5
REUSE LOCAL I T Y

summary

Optimization of the replacement policy used for shared last-level cache
(SLLC) management in a chip-multiprocessor (CMP) is critical for avoid-
ing oU-chip accesses. Temporal locality is exploited by Vrst levels of private
cache memories, thus it is slightly exhibited by the stream of references
arriving at the SLLC. Therefore, traditional replacement algorithms based
on recency are bad choices to govern SLLC replacement. Recent proposals
involve SLLC replacement policies that attempt to exploit reuse either by
segmenting the replacement list or improving the re-reference interval pre-
diction.

On the other hand, inclusive SLLCs are commonplace in the CMP mar-
ket, but the interaction between replacement policy and the enforcement
of inclusion has been barely discussed. After analyzing that interaction, this
chapter introduces two simple replacement policies exploiting reuse locality
and targeting inclusive SLLCs: Least Recently Reused (LRR) and Not Recently
Reused (NRR). NRR and LRR have the same implementation cost that NRU
and LRU, respectively.

Our proposals are evaluated by simulating multiprogrammed workloads
in an 8-core system with two private cache levels and a SLLC. LRR out-
performs LRU by 4.5% (performing better in 97 out of 100 mixes) and NRR
outperforms NRU by 4.2% (performing better in 99 out of 100 mixes). We
also show our mechanisms outperform re-reference interval prediction, a
recently proposed SLLC replacement policy and similar conclusions can be
drawn by varying the associativity or the SLLC size.

71
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5.1 introduction

In order to reduce the average latency of memory accesses, a hierar-
chy of cache levels is essential. In a multicore chip, the memory hier-
archy usually contains one or two levels of private cache and a shared
last-level cache (SLLC). A key task of the cache hierarchy is to exploit
the locality usually found during program execution. SpeciVcally, un-
der a demand-fetch policy, the exploitation of locality is directly re-
lated to the replacement algorithm at every level of the hierarchy.

Traditionally, each of all the memory hierarchy levels employs al-
gorithms that consider temporal locality in order to select the cache
line to replace. In particular, least-recently used (LRU) is a widespread
replacement algorithm. It predicts that a recently accessed line (either
hit or miss) will be used again soon. LRU gives good results on Vrst-
level caches because the complete stream of references from the pro-
cessor is observed but, as many previous authors have shown, it has
poor performance as a replacement policy for SLLCs [21, 35, 47, 59].

Private caches exploit short-distance reuses. Frequently, they even
satisfy all the accesses to a given line and, in this cases, the SLLC only
receives the initial miss request. From the SLLC standpoint these are
single-use lines. Therefore, using a recency-based replacement policy
such as LRU is not eXcient in the SLLC: in spite of retaining single-
use lines is useless, LRU will insert those lines in the most recently
used (MRU) stack position, maximizing their stay. Moreover, in the
case of a multicore chip running a multiprogrammed workload the
replacement ineXciency may be ampliVed by interference between
programs. A program with a harmful memory access pattern (i.e.,
a burst of single-use lines) may prevent other programs exploiting
reuse opportunities and there may be large accumulated losses in
performance.

Although the reference stream observed by the SLLC may exhibit
little temporal locality in the conventional sense, it does exhibit reuse
locality. The concept underlying this type of locality can be described
as follows: lines accessed at least twice tend to be reused many times
in the near future and, moreover, recently reused lines are more use-
ful than those reused earlier. That is, in reuse locality future refer-
ences are only expected after the Vrst hit to a line. In contrast, with
temporal locality there is an expectation of future references straight
after the Vrst reference to a line, a miss. However, only a few lines in
the SLLC have reuse locality. Indeed, most lines in the SLLC are dead,
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and they will not receive any further references during their lifetime
[25, 31, 47, 68].

Reuse locality has been identiVed and exploited in cache memories
for disks. A representative proposal modiVed the LRU algorithm in or-
der to protect reused pages against access patterns that result in poor
performance such as thrashing or scanning [24]. On the other hand,
recent research in SLLC replacement policies relies on predicting the
re-reference interval [17, 23, 26, 67]. According to the predicted re-
reference interval, the utility assigned to each line in these schemes
can take one of several values. In contrast, as the reuse locality is a
binary property, the derived replacement policies will only require
two utility1 values: to keep or not to keep.

In addition, most proposals consider non-inclusive SLLCs [17, 21, 26,
47, 67], meaning that the lines present in the private caches may or
may not reside in the SLLC [3]. Several commercial processors have
instead an inclusive SLLC that always keeps a superset of the contents
of private caches [20]. This choice greatly simpliVes the cache coher-
ence protocol, and is usually implemented by invalidation. When an
SLLC line is evicted, inclusion is enforced by sending invalidation
messages to all the copies present in the private caches, if any [3, 8].
However, another replacement ineXciency arises when the replace-
ment of an inclusive SLLC is managed by an LRU-based policy: a
heavily referenced line with a short reuse distance may remain in
private caches for a long time. During this time this hot line, despite
being actively accessed by the core, may move down in the LRU stack
of the SLLC, to the point of being evicted. This will force invalidation
of the line in the private cache, though the processor will request the
line again producing a new SLLC miss [22].

In this chapter, we show that recency-based replacement algo-
rithms such as LRU and NRU can be adapted with minor modiV-
cations to take advantage of reuse locality rather than temporal lo-
cality. Our work introduces two replacement policies for inclusive
SLLCs: least recently reused (LRR) and not recently reused (NRR). They
try to retain in the SLLC the lines present in the private caches and
the reused lines. Both policies are built upon two simple assumptions
about line behavior. First, lines present in the private caches are being
used by the running programs. Thus, these lines will be the last to be
evicted. Second, a small subset of lines have reuse locality. Therefore,

1 Utility in this context is associated with the probability of a line being used in the
future.
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these lines are valuable and, when it is necessary to select a victim
among them, the reuse order will provide a basis for the selection.

With the LRR and NRR policies, lines are replaced as follows: Vrst,
lines neither present in the private caches nor showing reuse (non-
reused lines) are evicted at random; if there are none of these, a line
not present in the private caches but reused (reused lines) is evicted;
and, Vnally, if there are none of these, a victim line is selected from
the private caches (being-used lines), this last case occurring rela-
tively rarely.

Under the LRR policy, the lines are ordered depending on their last
hit. That is, a least recently reused stack of lines is maintained in
each SLLC set. Thus, lines belonging to the reused group are totally
ordered (following the LRR order), while there is no relative order
among the elements of the non-reused group.

The LRR policy has the drawback of the implementation cost in-
creasing with the square of the set associativity. Also based on re-
cency, the not recently used (NRU) algorithm is an inexpensive alter-
native to LRU ordering [43]. Indeed, it is used in the SLLC of commer-
cial processors, such as the Intel Itanium or Sun SPARC T2, and by
using only one bit per line, the NRU cost increases linearly with the
set associativity. The NRR policy we propose adapts the NRU algo-
rithm for tracking reuse in SLLC sets. Under this NRR policy, every
line is provided with a NRR bit. In contrast with NRU, the reuse bit
will be unset only on hits, not on line reVlling. Accordingly, all the
not recently reused lines are victim candidates (NRR bit set) and the
remaining lines are not.

The proposals are evaluated in an eight-core system with two pri-
vate cache levels and an inclusive SLLC. By running a rich set of
multiprogrammed workloads, we show that LRR outperforms LRU
by 4.5%, and NRR outperforms NRU by 4.2% with exactly the same
cost. We also show that our mechanisms outperform re-reference in-
terval prediction (RRIP) [23], a recently proposed SLLC replacement
policy. Similar conclusions can be drawn for a range of associativity
values and SLLC sizes.

The chapter is structured as follows. Section 5.2 presents experi-
mental evidence of reuse locality and the usefulness of not evicting
the SLLC lines present in private caches. Section 5.3 presents a state
of art proposal that is evaluated along our contributions and com-
pared with them. Section 5.4 explains the LRR and NRR replacement
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milc wrf dealII hmm. dealII omn. libq. gob.

APKI - 1 app 27.41 0.98 0.15 2.09 0.14 4.26 30.77 0.36

MPKI - 1 app 27.37 0.03 0.01 0.02 0.01 1.90 30.77 0.08

APKI - 8 apps 27.64 1.16 0.33 2.15 0.31 4.31 30.77 0.65

MPKI - 8 apps 27.63 0.53 0.27 1.14 0.27 3.38 30.77 0.46

Table 5.1: Number of SLLC accesses and misses per kilo-instruction of each
application in the #91 mix, APKI and MPKI, respectively

policies, giving details of the implementation and associated costs.
Section 5.5 reports and discusses the evaluation of our contributions,
and Vnally, Section 5.6 discusses about the contributions exposed on
this chapter.

5.2 motivation

In this section, we analyze the behavior of an example application
from one of the evaluated workload mixes (mix #91) running in the
hierarchy of a multicore chip made up of an SLLC and private caches.
We highlight three eUects, namely, i) by sharing the SLLC space, the
working set of an application spreads towards distances greater than
the cache associativity; ii) the principle of inclusion may force hot
lines in the private levels to be invalidated, but private caches will
request the line again straight away; and iii) most SLLC hits come
from sustained reuse among a small subset of lines.

The selected mix is composed of eight applications of the SPEC
CPU 2006 benchmark suite and runs in an eight-core CMP system
with an inclusive SLLC. The Vrst two rows of the Table 5.1 show the
number of SLLC accesses and misses per thousand instructions, when
the programs run alone. We can observe very diUerent behaviors. For
instance, dealII seems to Vt well in the private caches and barely ac-
cess the SLLC (0.15 APKI) and hmmer almost always hits in the SLLC
(2.09 APKI and only 0.02 MPKI), while milc and libquantum access
the SLLC many times (27.41 and 30.77 APKI, respectively) and almost
always miss.

Figure 5.1 plots the number of wrf hits in a set-associative SLLC as
a function of the LRU stack distance under three diUerent boundary
conditions (gray or black bars). The horizontal axis represents 64 LRU
stack distances in the SLLC; the Vrst 16 distances belong to real cache
storage while the next 48 distances are tracked using shadow tags.
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the working set may spread beyond the available stor-
age In a CMP, diUerent applications share the SLLC and compete
for placing their working set into the cache. The lines of an applica-
tion are displaced in the LRU stack by the lines inserted into the same
set by other applications. Figure 5.1a shows the LRU stack when wrf
runs alone in the CMP (it has the whole SLLC to itself). It can be
observed that all the hits arise at a distance of 1 to 8 (0.95 HPKI over-
all), and there are no additional hits that a larger cache could cap-
ture. Now let us consider Figure 5.1b, which plots the hit distances
of wrf when it runs along with the other seven applications shown
in Table 5.1. We can see that the bars are smaller and spread over
much longer LRU distances than before (from distance 1 to 16, 0.63
HPKI overall). This is because other applications such as libquantum
or milc load a large number of lines which in turn displace the wrf
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Figure 5.1: Distribution of hits along the LRU stack (HPKI = hits per thou-
sand instructions) in three experiments; the vertical line signals
the associativity of the used SLLC cache: a) wrf running alone in
the CMP, b) wrf running with 7 other applications in an inclusive
(bars) and in a non-inclusive (solid line) SLLC, and c) wrf running
with 7 other applications in a non-inclusive SLLC (reuse stack)
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lines (see LLC MPKIs in Table 5.1). Consequently, the MPKI of wrf in
a 16-way associative SLLC increases from 0.03 when running alone
to 0.53 when running together with other applications.

cache inclusion plus high sllc miss ratios mean hot
line thrashing Hot lines, those lines with a sustained core
reuse remain silently in private caches for a long time and, therefore,
they may become stale in the LRU stack of the SLLC. Before replac-
ing a hot line in the SLLC, the copies present in the private caches are
invalidated, but as they are being used by the core, misses will occur
and the private caches will request these lines again straight after the
invalidation. In Figure 5.1b, we can see a peak at a distance of 17 fol-
lowed by signiVcant number of references at 17-20, meaning that the
core is requesting recently invalidated lines. The solid line crossing
the aforementioned peak is the distribution of LRU stack distances for
a non-inclusive SLLC (from distance 1 to 16, 0.71 HPKI overall). The
non-inclusive SLCC performs better because, even though it may be
evicting the same hot lines as the inclusive counterpart, they are not
invalidated in the private levels.

the reused lines fit within the associativity Fig-
ure 5.1c shows the distribution of the LRU stack distances for a non-
inclusive SLLC calculated in the following way. LRU stack entries
are tagged as reused lines when the Vrst hit occurs, and all the re-
maining lines (non-reused) are ignored when calculating the stack
distance. By doing this, we can see how the distance distribution of
the reused lines concentrates at the top positions, without exceeding
a distance of 10. This indicates that if the SLLC replacement policy
were focussed on keeping the cache lines that can be expected to be
reused, SLLC performance would be signiVcantly improved.

5.3 re-reference interval prediction (rrip)

Jaleel et al. [23] proposed Re-reference interval prediction (RRIP); a
state of art SLLC replacement policy. It involves a modiVed LRU that
considers a chain of segments where all the cache lines in a segment
are supposed to have the same re-reference interval value (RRPV) . This
RRPV is represented by an N-bit counter which is associated to each
cache line to classify it into one of 2N segments.
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Figure 5.2: Static re-reference interval prediction (SRRIP) replacement algo-
rithm

The authors of the mechanism proposed two versions of the algo-
rithm: Static-RRIP (SRRIP) and Dynamic-RRIP (DRRIP). In Static-RRIP
(Figure 5.2a), new lines are inserted into the segment corresponding
to intermediate re-reference interval (segment with a RRPV equal to
2N-2) making the algorithm scan-resistant. When a line has a to be se-
lected as victim, a line with RRPV equal to 2N-1 is randomly chosen,
if there is no any, the RRPVs of all the elements are increased by one
and the search is performed again.

Figure 5.2b shows the behavior of the SRRIP algorithm when an
example stream (a, b, c, a, c, e, and f) of references arrives to a deter-
mined set of the cache. Each row represents the state of the set before
the reference in column ref accesses the cache. We can observe the
content of each element of the set along with its RRPV value and if
the access was either a hit or a miss. As an example of the algorithm
behavior, we will examine the last line of the Vgure. Let’s have a look
Vrst at the previous line, the penultimate, f accesses to the cache, re-
sulting on a miss. Looking to the last line of the example again, we
can observe three diUerent things, i) the RRPV values of all the ele-
ments in the set have increased by one, ii) b was evicted and iii) f has
been inserted with a RRPV equal to 2.

Dynamic-RRIP uses set dueling to select between SRRIP and Bi-
modal. Bimodal is a Thrash-resistant policy that inserts lines with
long re-reference interval (segment with a RRPV equal to 2N-1) but
a small fraction of randomly chosen lines that are introduced with
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an intermediate re-reference interval. For a SLLC in a CMP, Thread-
Aware-DRRIP requires a set dueling monitor for each thread.

Sections 5.5.1 and 5.5.3 compare the performance of DRRIP to the
NRR and LRR performance. Section 5.5.4 discusses on the hardware
cost that DRRIP has. Finally, Sections 5.5.5 and 5.5.6 show how DRRIP
improves the system performance when the associativity and the size
of the cache, respectively, are varied.

5.4 reused-based replacement

The goal of reuse-based replacement is to identify reuse locality and
exploit it as eUectively as possible. In order to achieve this objective,
we are inspired by replacement algorithms that try to exploit tem-
poral locality. These algorithms are based just on line use, either a
hit or a miss. In contrast, since we aim to exploit reuse locality, our
algorithms will consider reuse to establish the replacement order.

Whenever a line is in the private caches, we assume its temporal
locality is being well exploited and so it should be among the last
ones to be evicted from the SLLC. Among the lines not present in
the private caches, replacement should be carried out following the
reuse order (total or partial). We consider an SLLC line to be reused
if there has been at least one hit on it since it was loaded into the
SLLC. The most recently reused lines are the last candidates to be
replaced. Conversely, the lines that have not yet been reused will be
the Vrst eviction candidates, but as there is no basis for a ordering
them, victims are selected randomly.

To record whether a line has been reused or not, we add a bit to
each SLLC line, the reused bit. The reused bit is unset when a line
is loaded into the SLLC (on a miss), and it is set when the line is
reused (on a hit). We use another bit to record whether an SLLC line
is present in any private cache, the being-used bit. When the line is
present in a private cache the being-used bit is set and it is unset
when the line only resides in the SLLC. Provided that the coherence
protocol we use has precise knowledge of the line presence in the
private caches2, the being-used bit is not needed.

2 Non-silent eviction of clean blocks is assumed in the private caches.



80 reuse locality
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Figure 5.3: The reused-based stack

Next, we modify two classic recency-based replacement policies,
LRU and NRU, to take better advantage of reuse locality. We call our
proposals LRR and NRR.

5.4.1 LRR: Least Recently Reused

Each cache set is organized as a single logical stack with being-used
lines on top, reused lines in the middle and non-reused lines at the
bottom (Figure 5.3). The replacement policy searches for a victim
starting from the bottom and Vnishing at the top of the stack. Neither
non-reused nor being-used lines are ordered. Thus, random replace-
ment is employed when a line from these groups has to be evicted.
Reused lines, on the other hand, are selected following the reuse or-
der. This behavior is shown in Algorithm 1.

The LRR policy does not establish size bounds for any of the three
groups. Accordingly, once a line has been classiVed as reused, it will
not be evicted while there are any non-reused lines. This implies that
the group of reused lines may grow to occupy all the available space,
while the non-reused group may decrease to the point of disappear-
ing. However, the number of non-reused lines increases each time a
line without any hits in the SLLC (reuse bit unset) is evicted from the
private caches, at which point the line joins the non-reused group. In
Section 5.5, we will show how the number of lines evolves in each
group over the course of the execution of a given mix of programs,
as an example.

5.4.2 NRR: Not Recently Reused

LRR and LRU share the same scalability problem: their implementa-
tion cost grows quadratically with cache associativity. An alternative
to LRU, also based on recency is the not recently used (NRU) replace-
ment algorithm [43]. The implementation cost of the NRU approach
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ALGORITHM 1: Least-Recently Reused (LRR) algorithm
Cache hit on line h:
i) Move ’h’ to the most-recently reused position
ii) Set the being-used bit of h to ’1’
iii) Set the reused bit of h to ’1’

Cache miss on line h:
i) Randomly select a line with being-used and reused bits to ’0’
ii) If found go to vi)
iii) Select the LRR line with being-used bit to ’0’
iv) If found go to vi)
v) Select the LRR line
vi) Replace the selected line
vii) Insert the line h
viii) Set the being-used bit of h to ’1’
ix) Set the reused bit of h to ’0’

grows linearly with cache associativity (1 bit per line). We propose
a reuse-based algorithm inspired by NRU that we call not recently
reused (NRR). NRR has the same implementation cost as NRU.

As with LRR, NRR organizes each cache set as a single logical stack
with being-used lines on top, reused lines in the middle, and non-
reused lines at the bottom of the stack (Figure 5.3). However, NRR
does not consider lines to have any order within each group.

NRR uses a bit per line, the NRR bit, in order to distinguish the
recently reused lines from the not recently reused ones. When a line
is loaded into the SLLC because of a miss, its NRR bit is set (Algo-
rithm 2). When there is a hit (a reuse), its NRR bit is unset. If the NRR
bits of all the lines in the not-being-used group become unset, no use-
ful information about the reuse order remains. Thus, emulating the
NRU behavior (but based on reuse), NRR sets the NRR bit of every
line in the not-being-used group, except for the line receiving the last
hit.

While a line is in some local cache, its NRR bit is not changed. The
algorithm replaces any line with the NRR bit set from the not-being-
used group.

In summary, the diUerences between NRR and NRU are: i) NRR
gives an additional level of protection to blocks present in the lo-
cal caches, and ii) NRR unsets the bit associated with a line only on
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hits, while NRU unsets the bit on hits and on misses. Therefore, the
hardware cost of NRU and NRR is the same if we consider that the
presence information in the local caches is provided by the coherence
protocol.

ALGORITHM 2: Not-Recently Reused (NRR) algorithm
Cache hit on line h:
i) Set the NRR bit of h to ’0’
ii) Set the being-used bit of h to ’1’
iii) If the NRR bit of all the remaining not being-use lines are
’0’, set them to ’1’

Cache miss on line h:
i) Search for the Vrst not being-used line with the NRR bit to ’1’
ii) If found go to iv)
iii) Search for the Vrst line with NRR bit to ’1’
iv) Replace the selected line
v) Insert the line h
vi) Set NRR bit of line h to ’1’
vii) Set being-used bit of line h to ’1’

5.4.3 Hardware complexity

Our algorithms have the same cost that two well known and already
implemented proposals: LRU and NRU.

The LRR algorithm, as it is required by LRU, has to keep an order
between all the lines present in a set. This objective can be achieved
by using diUerent approaches. Being n the associativity of the cache,
two common implementations are: i) a matrix of n by n bits per
cache set, ii) a counter of log2 n bits per line. The division between
reused and no-reused elements that LRR considers is achieved with-
out adding any hardware storage. All the no-reused elements can be
represented by one unique state. E.g. n zeroes on alternative i) or a
counter equal to zero on alternative ii).

The NRR algorithm requires one bit per cache line to track reuse
(the NRR bit), and another to record if the line is present in the pri-
vate caches. However, note that this last bit of presence is already
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implemented in the directory of an inclusive SLLC.3 Therefore, NRR
requires one bit per cache line, as NRU.

The logic to Vnd the replaced element in both algorithms, operates
with the result obtained by NORing the reuse bit vector and the pres-
ence bit vector. When all lines in a set are present in private caches,
the logic operates directly with the reuse bit vector. Thus, NRR and
LRR have similar replacement logics to LRU and NRU, respectively.

5.5 evaluation

This section shows the evaluation of the LRR and NRR replacement
policies which were explained during the previous sections of this
chapter. In order to perform the evaluation, we have employed the
methodology showed in Chapter 3. Concretely, next sections show
results for 100 multiprogrammed workload mixes and the parallel ap-
plications were shown in Section 3.4.2.

The remaining of the section is organized as follows. Section 5.5.1
and Section 5.5.2 analyze the performance achieved by the proposed
policies and compare them with LRU, NRU, and RRIP [23]. Section 5.3
gives insight into the behavior of LRR and NRR algorithms. Finally,
Sections 5.5.6 and 5.5.5 describe the sensitivity of LRR and NRR per-
formance to associativity and cache size, respectively.

5.5.1 Results for the baseline system

Besides LRR and NRR, we also consider the replacement algorithms
usually implemented in real processors (LRU and NRU), and a state of
the art alternative (RRIP, [23]). We select RRIP as a reference because
to the best of our knowledge it is the best proposal for inclusive SLLC
caches and one of the few that suggest a reuse-based algorithm for
this kind of SLLCs. SpeciVcally, we implement thread-aware dynamic
re-reference interval prediction (TA-DRRIP), the extension to shared
caches proposed by the authors [23]. We also compare our proposals
with an enhanced model of TA-DRRIP that protects SLLC lines while
they are in the private caches, which we call TA-DRRIP+.

3 Evictions of clean lines on the private caches are non-silent.
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Figure 5.4: Performance improvement and miss reduction in the multipro-
grammed workload #91 used as example in Section 5.2
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Figure 5.4a shows NRU, TA-DRRIP, TA-DRRIP+, NRR, and LRR per-
formance relative to LRU for the program mix used as an example in
Section 5.2. The rightmost group of bars is the geometric mean of
individual speedups. LRR improves LRU performance for all the ap-
plications in the mix, while NRR has the same eUect with respect to
NRU. TA-DRRIP is the only algorithm that causes losses in some ap-
plications (milc), while TA-DRRIP+ is better than TA-DRRIP in six of
the eight applications and eliminates losses. On average in this mix,
our proposals perform better than the other algorithms tested.

Figure 5.4b shows, for each application in the example mix, the per-
centage reduction in the number of misses achieved for each mech-
anism relative to LRU replacement. As it can be observed in the Vg-
ure, LRR achieves the greatest reduction in all applications. NRR is
the second best mechanism in six of the eight applications, and DR-
RIP in the other two (hmmer and omnetpp). Furthermore, DRRIP is
the most irregular mechanism. First, it gets a much smaller reduction
in the two instances of the application deall. Also, DRRIP does not
achieve any reduction in milc and libquantum. These two applica-
tions have high miss ratios, pointing to a possible thrashing behav-
ior. DRRIP correctly recognizes the lack of reuse and acts easing the
eviction of their cache lines. However, our mechanisms work with a
Vner grain, identifying the few lines showing reuse, and giving them
higher priority than the rest. As a result, NRR and LRR manage to
reduce misses even in these applications (LRR eliminates 1.8% and
2.7% of misses, while NRR eliminates 0.5% and 1.6% in libquantum
and milc, respectively).

Figure 5.5a plots all the 100 mixes on the horizontal axis. The diUer-
ent mixes are sorted by the LRR speedup over LRU. In the same way,
Figure 5.5b plots NRR performance relative to NRU. LRR outperforms
LRU in 97 mixes out of 100, while NRR is better than NRU in all but
one of the mixes.

Figure 5.6 shows the mean performance of NRU, TA-DRRIP, TA-
DRRIP+, NRR, and LRR relative to LRU for the one hundred workload
mixes. On average, LRR improves LRU performance by 4.5%, while
NRR outperforms NRU by 4.2%. On the other hand, TA-DRRIP and
TA-DRRIP+ increase LRU performance by 3% and 3.3%, respectively.



86 reuse locality

0 20 40 60 80 100
0.95

1.00

1.05

1.10

1.15

P
e
rf

o
rm

a
n
ce

 o
v
e
r 

LR
U

LRR performance for all the mixes

(a) LRR compared to LRU

0 20 40 60 80 100
0.95

1.00

1.05

1.10

1.15

P
e
rf

o
rm

a
n
ce

 o
v
e
r 

N
R

U

NRR performance for all the mixes

(b) NRR compared to NRU

Figure 5.5: Relative performance for all the mixes evaluated
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5.5.2 LRR/NRR behavior

LRR and NRR are intended to cause lines that will not be reused to
be removed from the cache. It is interesting to explore the degree
to which this expectation is met, and also to understand how the
dynamic evolution among line groups explains the observed behavior.
Therefore, we consider below the resulting stack proVle under LRR,
and the temporal evolution of the classiVcation of lines in a sample
set of the SLLC.

Figure 5.7 shows again the stack proVle of Section 5.2 for mix #91
under LRR. As can be seen, hits are concentrated towards the top
of the stack, almost always at a distance of less than 16. Thus, by
applying LRR, the SLLC is eUectively keeping the cache lines likely
to be reused, and this is why the SLLC performance improves. The
NRR policy, not illustrated in the Vgure produces a similar behavior.

Figures 5.8 and 5.9 plot the evolution of the number of lines clas-
siVed as being-used, non-reused, and reused (from bottom to top) in
a sample SLLC set, over a short period of execution of mix #91, with
LRR and NRR as replacement policies, respectively.

Under LRR, the boundary between reused and non-reused lines
moves down each time a line is reused for the Vrst time. As we
pointed out in Section 5.4.1, this single-direction movement is coun-
teracted every time a hit occurs on a reused block (the block moves
to the being-used group), and each time a new block is loaded into
the cache set (miss) and all the non-reused lines in that cache set are
also being-used.
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Under NRR, when all the not-being-used lines become reused, the
replacement algorithm itself converts all of them but one to non-
reused lines. That is to say, when all the not-being-used lines have
the reused bit set, then NRR unsets it for all of them except the line
receiving the last hit. This behavior can be clearly seen at times 201
and 601 in Figure 5.9.

5.5.3 Individual applications analysis

To obtain insight into how the replacement algorithms aUect indi-
vidual applications, Figure 5.10 shows the distribution of speedups
by application. The number of mixes in which each application ap-
pears is shown along the top of the graph. For each replacement pol-
icy (TA-DRRIP, LRR and NRR) Vve speedups are plotted, namely the
minimum, the Vrst quartile, the median, the third quartile, and the
maximum.

For the mix #91, we saw (in Figure 5.4) how TA-DRRIP improved
the performance of several applications, but also reduced it in one
case (milc). In Figure 5.10, we note that this behavior is quite com-
mon. In 24 out of the 29 applications, TA-DRRIP performs worse than
LRU in some multiprogrammed mixes, whereas LRR and NRR reduce
this number to 12. Therefore, it can be concluded that reuse-based
replacement is more fair than TA-DRRIP.

The imbalance introduced by TA-DRRIP may be due to the control
mechanism deciding which replacement algorithm is used for each
application. SpeciVcally, TA-DRRIP uses Set Dueling [47] to identify
the best suited replacement policy for each application, dynamically
choosing between scan-resistant SRRIP and thrash-resistant BRRIP
[23]. That is, if an application greatly reduces its miss rate with a
given conVguration, even at the cost of increasing the misses of other
applications, the conVguration that beneVts itself will prevail.

On the other hand, the average speedup we obtain with DRRIP
seems to be lower than that reported by the authors. We believe that
the explanation may lie in the diUerent methodological approaches
used. They model a four-core system with a 4 MB SLLC, execut-
ing a varied workload, among which there is only a subset of Vve
SPEC 2006 applications. Therefore, in the next experiment we simu-
late that system and run the Vve mixes of four applications resulting
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Figure 5.11: Performance comparison for Vve mixes of a SPEC2K6 subset in
a four-core system

from combining the applications of the same SPEC 2006 workload
(cactusADM, sphinx3, hmmer, mcf and bzip2).

Figure 5.11 shows the average speedup of NRU, TA-DRRIP, NRR
and LRR over LRU for the Vve aforementioned mixes. Notably, in
comparison to Figure 5.6, TA-DRRIP increases its speedup the most
(from 1.02 to 1.04).

5.5.4 Hardware complexity

The NRR algorithm requires one bit per cache line (as shown in Sub-
section 5.4.3), while DRRIP requires N bits per cache line, being N the
number of bits required to classify lines in segments. The aging logic
for NRR is simpler than that of DRRIP. DRRIP aging requires incre-
menting the counters of all the lines in a set, whereas NRR aging only
requires resetting the reuse bits to the lines not present in the private
caches (using the presence bit vector). Moreover, TA-DRRIP requires
a per-thread policy selection counter, and the logic for choosing a
set dueling monitor. This logic decides whether a miss occurs or not
in the (sampled) sets belonging to the monitor of the corresponding
thread.
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5.5.5 Sensitivity to the SLLC associativity

In this section, we explore the sensitivity of reuse-based replacement
to cache associativity, testing the values 8, 16 and 32. The cache size
is kept constant at 8 MB.

Figure 5.12a shows three groups of bars for the three cache associa-
tivities. Each group have Vve bars which represent NRU, TA-DRRIP,
TA-DRRIP+, NRR and LRR mean performance relative to LRU. The
speedup with respect to LRU decreases with increasing associativity.
LRR shows the best performance in all the associativities, while the
low-cost proposal, NRR, is the second best option for associativities
16 and 32.

5.5.6 Sensitivity to the cache size

In this section, we consider the sensitivity of reuse-based replace-
ment to cache size, testing the values 4, 8 and 16 MB. The cache asso-
ciativity is kept constant at 16.
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Figure 5.12b shows three groups of bars for the three cache sizes.
Each group have Vve bars which represent the mean performance
of NRU, TA-DRRIP, TA-DRRIP+, NRR and LRR relative to LRU. The
speedup with respect to LRU decreases for both 4 and 16 MB cache
sizes. Moreover, for a 4 MB cache, all replacement algorithms lead
to poorer performance than LRU except LRR. LRR gives the best per-
formance in all the cache sizes, while the low-cost proposal, NRR, is
better than TA-DRRIP for 4 MB and 8 MB caches.

5.6 concluding remarks

Private cache levels Vlter short-distance reuses, and thus the SLLC of
a CMP observes a stream of references that may have very little tem-
poral locality. On the other hand, these references may have reuse lo-
cality. The concept of reuse locality can be described as follows: lines
accessed at least twice tend to be reused many times in the near fu-
ture and, moreover, recently reused lines are more useful than those
reused earlier.

Further, a heavily referenced line with a short reuse distance may
remain in private caches for a long time, steadily losing position in
the LRU stack and eventually being evicted. Thus, if an SLLC follows
an inclusive scheme such hot lines will be invalidated and fetched
again and again. Consequently, traditional replacement algorithms
based on recency such as LRU and NRU are poor choices for inclusive
SLLCs.

In this chapter, we have shown how to adapt these algorithms to
take advantage of reuse locality rather than temporal locality. We
have proposed two simple replacement policies for inclusive SLLCs
that exploit reuse locality: least recently reused (LRR) and not recently
reused (NRR). Both policies are intended to retain in the SLCC the
lines present in the private caches as well as the reused lines.

In contrast with previous studies that select the application subset
sensitive to the replacement algorithm, our proposals have been eval-
uated by running a rich set of multiprogrammed workloads created
from all SPEC CPU 2006 applications.

For an eight-core system with two private cache levels and an in-
clusive SLLC, we have found that LRR outperforms LRU by 4.5% (97
out of 100 mixes) and NRR outperforms NRU by 4.2% (99 out of 100
mixes). A detailed comparison with RRIP [23], a recent SLLC replace-
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ment proposal, indicates that LRR and NRR give 1.5% and 0.89% better
performance, respectively. Additionally, we have shown that our al-
gorithms are more fair than TA-DRRIP and that similar conclusions
can be drawn considering a range of diUerent associativity values and
SLLC sizes.

Unlike previous proposals, which require prediction mechanisms
or use several algorithms and dynamically select the best one through
techniques such as set-dueling, LRR and NRR have costs similar to
replacement algorithms implemented in commercial processors. NRR
has the same implementation cost as NRU, and LRR only adds one bit
per line to the LRU cost.



6
REUSE CACHE

summary

Over recent years, a growing body of research has shown that a consid-
erable portion of the shared last-level cache (SLLC) is dead, meaning that,
the corresponding cache lines are stored but they will not receive any fur-
ther hits before being replaced. Conversely, most hits observed by the SLLC
come from a small subset of already reused lines.

In this contribution, we propose the reuse cache, a decoupled tag/data
SLLC which tries to only store the data of lines that have been reused. Thus,
the size of the data array can be dramatically reduced. SpeciVcally, we (i)
introduce a non-selective data allocation policy to exploit the reuse locality
and maintain reused data in the SLLC, (ii) tune the data allocation with a
suitable replacement policy and coherence protocol, and Vnally, (iii) explore
diUerent ways of organizing the data/tag arrays and study the performance
sensitivity to the size of the resulting structures.

The role of a reuse cache to maintain performance with decreasing sizes
is investigated in the experimental part of this work, by simulating multi-
programmed and multithreaded workloads in an eight-core chip multipro-
cessor. As an example, we will show that a reuse cache with the tag array
equivalent to a conventional 4 MB cache and only a 1 MB data array would
perform as well as a conventional cache of 8 MB, requiring only 16.7% of the
storage capacity.

95
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6.1 introduction

Shared-memory chip multiprocessors (CMPs) reached high-
performance and high-throughput computing markets past decade.
Nowadays they enjoy widespread acceptance through all the market
segments: cloud servers, desktop, embedded and mobile SoCs.
Industry converts the continuously increasing number of available
transistors into higher core counts and larger cache memories that
expand linearly with the number of cores. But this trend is unlikely
to continue in the future, obligating many-core systems to include
lower cache-to-core ratios. [38]

It is common that all the cores in the CMP share a last level of
cache memory (SLLC), this SLLC is called to perform two key tasks,
managing coherence and storing valuable data. Regarding the second
task, the SLLC pursues to feed with low latency the misses of the
private cache levels, getting the most of the scarce oU-chip bandwidth
with the external main memory.

Previous work point to conventional SLLCs as eUective but inef-
Vcient because their contents are mostly useless. In fact, a dominant
fraction of the SLLC lines is dead, meaning they will not be requested
again before being evicted, to the point that some lines are just used
once, being useless during their entire stay in the SLLC [27, 31, 47].
Managing SLLC contents eXciently is diXcult because the classic
properties of temporal and spatial locality that govern private cache
levels become dissolved in the reference stream observed by the SLLC
[23, 47]. A great deal of research has addressed the problem from sev-
eral angles, with the aim of improving the SLLC hit ratio. Many pro-
posals on decreasing the number of conWicts in the SLLC sets [48],
improving replacement decisions [21], and prefetching useful data
[6], among other techniques, have been proposed.

Despite the eUort, state of the art replacement policies only achieve
average improvements within 5% of a commercial algorithm such as
NRU, even using a set of benchmarks whose performance is sensi-
tive to replacement [23, 2]. Moreover the fraction of live blocks in
the SLLC does not increase much with all the previous techniques.
Such facts encouraged us to look for a diUerent objective: to draw
a solution where the SLLC area is drastically reduced without com-
promising performance. A solution in this direction would be very
interesting, since the saved area could contribute to cut manufactur-
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ing costs, reduce power consumption, or decrease the cache per core
ratio, allowing an increase on the core count with the same die area.

A conventional SLLC has a non-selective allocation policy, mean-
ing that any request coming from the lower levels always ends up
storing the corresponding line in the SLLC (either right after the miss
processing in an inclusive SLLC or in a deferred way in an exclusive
one). Non-selective allocation is a good choice if temporal locality
holds. We assume that recently referenced lines are likely to appear
in the near future, so we want them to be kept in cache. However, re-
cent proposals note that temporal locality is not always followed and
consequently the precise insertion point in the LRU stack replace-
ment is dynamically varied [21, 23].

Other recent works show that is not a good idea to base SLLC
replacement only on temporal locality exploitation, given that local
caches are already doing that job [22, 23, 7]. In fact, a recent study ex-
plicitly notes the reference stream entering the SLLC has reuse local-
ity instead of temporal locality. In short, reuse locality states the sec-
ond reference to a line is a good indicator of forthcoming reuse, and
the recently reused lines are more valuable than other lines reused a
long time ago [2].

In this paper we introduce the reuse cache, a structure and a set of
policies tuned to process request streams with reuse locality. A key
design decision is to provide a selective allocation policy leveraging
reuse locality. SpeciVcally, only data that has already shown reuse
will be kept in the SLLC data array, allowing drastic size reductions
without performance loss.

A reuse cache decouples tag and data arrays, breaking the conven-
tional 1:1 mapping. Besides its obvious functions, the tag array in a
reuse cache supports reuse detection and inclusion maintenance. The
data array may have far less entries than the tag array, because they
only contain reused data.

We evaluate our proposal by simulating an eight-core CMP system
which runs a rich set of multiprogrammed and multithreaded work-
loads. The reuse cache succeeds in identifying the small fraction of
lines that receive most hits, and leveraging its decoupled tag/data
design, the size of the data array can be dramatically shrunk with-
out having a negative impact on system performance. SpeciVcally, a
reuse cache matches a 8 MB conventional cache in performance with
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tag and data arrays half and one-eighth the number of entries, respec-
tively (a saving of 83.1% in storage capacity).

The paper is structured as follows. Section 6.2 provides experimen-
tal evidence of the small fraction of live lines in the SLLC and the
concentration of hits in the reused lines. Section 6.3 explains the reuse
cache organization, replacement algorithms and coherence protocol
modiVcations, giving implementation details and costs. Section 6.4
presents the experiments, discusses results and compares with two
state of the art proposals such as DRRIP [23] and NCID [69]. Finally,
conclusions are drawn in Section 6.5.

6.2 motivation

In this section, we analyze the behavior of a representative multipro-
grammed SPEC CPU workload1 running in the hierarchy of an eight-
core chip made up of an SLLC and private caches; see the simulation
details in Section 4. We are going to highlight two eUects, namely, i)
most lines in the SLLC are dead, meaning they will not receive any
further hits; and ii) most SLLC hits come from a small subset of lines
(among all the lines the SLLC loads).

the fraction of live sllc lines is very small. Figure 6.1a
shows the fraction of the SLLC lines that are live over the course of
the execution of the example workload. We simulated 700 million cy-
cles and took a sample every 100K cycles. In each sample, we tracked
the future SLLC references for every line, computing the “instanta-
neous" fraction of live lines.

As we can see the fraction of live lines varies between 5.7% and
29.8% when LRU replacement is applied. On average, only 17.4% of the
SLLC lines are live. By using Dynamic Re-Reference Interval Predic-
tion (DRRIP)[23] and Not Recently Reused (NRR)[2], two state of the
art replacement policies, this average increases to 34.8% and 37.9% re-
spectively. The average for the 100 workloads used in the experiments
in Section 6.4 is 16.2%, 35.9% and 40.0% for LRU, DRRIP and NRR re-
spectively. In other words, 83.8% of the lines stored in the SLLC do not
provide any beneVt, and replacement algorithms proposed in the lit-
erature only are able to reduce this percentage to about 64.9%. Hence,

1 This example workload is composed of the following applications: gcc, mcf, povray,
leslie3d, h264ref, lbm, namd, and gcc
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Figure 6.1: Line usage patterns in a conventional 8 MB SLLC during a simulation
period of 700 Mcycles

it can reasonably be argued that the extra space, energy and time as-
sociated with those dead lines could be saved without compromising
performance.

hits come from a small subset of lines. Figure 6.1b shows
the contribution to the total number of hits of a given group of lines
during their stay in the SLLC. In order to obtain this distribution, we
run the simulation and, just after each line is evicted from the SLLC,
we insert in a sorted list the number of hits the line received while in
the cache (0 hits, 1 hit, 2 hits, etc.). If a line is loaded multiple times,
i.e., it has multiple generations [25], its hit count will be inserted mul-
tiple times in the sorted list.

Once the simulation ends, we break the sorted list into 200 groups
of equal size. Thus, each group represents 0.5% of the loaded lines.
The Vrst bar to the left in Figure 6.1b represents the percentage of
hits received by the group of line generations at the top of the list
(47% of hits in 0.5% of lines). Alternatively, we can read the average
number of hits per line generation from this group (11.5) from the
vertical axis on the right.
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As we can see, only 5% of all the loaded lines are useful, receiving
one or more hits. Beyond that, the remaining 95% loaded lines are
useless, because they will not receive any hits during their lifetime.
Moreover, hits are concentrated in a very small portion of the useful
lines. SpeciVcally, 0.5% of all the loaded lines account for 47% of the
SLLC hits.

In summary, the reference stream forwarded to the SLLC certainly
exhibits reuse locality: very few lines are useful (receiving some hits),
and once a line has received a hit, it has a high probability of receiving
additional hits. Consequently, we propose to store in the SLLC only
the lines showing reuse. Since these lines are a small portion of the
total lines and receive most of the hits, we should be able to greatly
reduce the cache size without impairing performance.

6.3 the reuse cache design

Starting from a conventional cache, we can try to design a reuse
cache by reducing the data array and storing only the lines showing
reuse. Regarding the tag array, it should reWect at least the lines re-
tained in the tiny data array. Besides, the tag array should also record
the lines present in the private levels (directory inclusion), so that co-
herence management is made simple [4, 22, 69]. Finally, in order to
detect reuse, the tag array should maintain some usage history of the
recently used lines, lines that may not be in the data array nor in the
private levels.

Having more entries in the tag array than in the tiny data array,
a natural solution is to decouple them. The coherence protocol of
the reuse cache has to be modiVed in order to reWect new coherence
states (a line tag is in the tag array, but the corresponding data line is
not in the data array).

On a miss in the tag array, the line is read from main memory and
loaded into the corresponding private cache. Only the tag is loaded
into the SLLC, with no data associated. A hit in the tag array with no
data associated detects a reuse. Thus, the line is read again from main
memory and loaded in the private cache and SLLC data array at the
same time. In order to take advantage of reuse locality, replacement in
the data array is based on recency. When a line is from the the data
array, its tag remains in the tag array. A further access to that line
hitting in the tag array will be taken as a reuse hint and then the line
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will be loaded in the data array. On the other hand, tag replacement
is designed to protect both private cache lines and recently reused
lines.

In the following sections, we discuss the reuse cache organization
and replacement policies, present an example coherence protocol,
and discuss the hardware costs of our proposal.

6.3.1 Organization

The reuse cache breaks the implicit one-to-one mapping between tag
and data found in conventional caches.

Previous work proposes to decouple tag and data arrays having the
same [9], or diUerent number of entries [48, 50, 52, 69]. Decoupling
with the same number of entries allows both arrays to be shaped dif-
ferently, for instance enabling the concept of distance associativity
[9]. In any case, all proposals rely on relating the entries of both ar-
rays by means of pointers. Some proposals need only forward pointers
from the tag array to the corresponding data lines, if any [9, 50, 69].
Other proposals need only a reverse pointerwhich links each data line
to the corresponding tag [52], while some others require both kind of
pointers [48].

An alternative organization, which allows to eliminate pointers,
uses the same number of sets in tag and data arrays and associates
data to only a few tags for each set. The association between tags
and data is Vxed (for instance, only the tag in way 0 has an associated
data). This organization involves moving tags between the ways with
and without data [37, 69].

In the reuse cache, a tag may have an associated data line or not.
A particular coherence state identiVes every possible situation, and
a forward pointer and a reverse pointer relate one other the entries of
both arrays. Figure 6.2 shows an overview of the reuse cache organi-
zation.

As the forward pointer indicates the exact position of a line in the
data array, no additional lookup in the data array is required. Thus,
the data array can be as associative as desired. The data array as-
sociativity is only related to the replacement in the data array. By in-
creasing associativity, the replacement algorithm has more options to
choose a victim. The data array associativity also has a small impact
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on hardware cost. By increasing associativity, the size of the pointers
stored in tag and data arrays also increases. Section 6.3.3 will detail
the data array organization and Section 6.3.5 and Section 6.4.1 ana-
lyzes the inWuence of the data array associativity in the reuse cache
size and performance, to conclude that the impact of data array asso-
ciativity is very limited both in cost and performance.

6.3.2 Tag Replacement Policy

A key beneVt of decoupling is to specialize replacement, that is, to
order and evict tags and data separately on the basis of their diUerent
roles. Any replacement policy may work in the reuse cache tag array
if it fosters the presence of reused lines and takes into account in-
clusion and the tradeoUs it brings [22]. In this contribution we adopt
not recently reused (NRR) (Section 5.4.2), a replacement policy based
on not recently used (NRU) [43]. Both have the same implementation
cost, one bit per line. In NRR, the Non-Recently Reused NRR bit, distin-
guishes recently reused lines from not recently reused ones. When a
line is loaded into the SLLC due to a miss, its NRR bit is set (it has
not been recently reused). When there is a hit (a reuse), the NRR bit
is unset. NRR uses the full-map directory bits to distinguish among
lines present or not in the private caches. Victim lines are randomly
selected among lines having the NRR-bit set and not included in the
private caches.
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Name Cache Memory Data

I Invalid or not present - No

S UnmodiVed up-to-date Yes

M ModiVed stale Yes

TO Only tag, no data up-to-date or stale No

(a) States of TO-MSI protocol

Event name Description

GETS Data read or fetch request

GETX Write request

UPG Upgrade request

PUTS Eviction notiVcation (clean)

PUTX Eviction notiVcation (dirty)

DataRepl Eviction in the Data array

(b) Events of TO-MSI protocol

Table 6.1: States and events of the TO-MSI example coherence protocol

6.3.3 Data array: organization and replacement policy

The data array associativity is only related to the replacement in the
data array. An associative search in the data array is never necessary
because the forward pointer in the tag array indicates the set and
way in the data array.

We assume a number of sets in the tag array greater or equal than
in the data array, using in both arrays the least signiVcant bits of the
line address as set index. Therefore, a forward pointer only has to
indicate the way of the data array where the line is, while a reverse
pointer has to show the way of the tag array as well as the bits of the
tag array index not included in the data array index (log2 the number
of tag array sets bits - log2 the number of data array sets bits). For
instance, a data array with only one set (fully associative) requires
for each forward pointer log2 the number of data array entries bits.
Reverse pointers require log2 the number of tag array entries bits.

Only reused lines are allocated in the data array. Thus, in order
to exploit reuse locality, replacement should rely on recency. Given
our low-cost design goal, we use NRU as the data array replacement
algorithm. However, the NRU performance decreases for high asso-
ciativities. Thus, for the fully associative case, a suitable alternative
we have tested is the low-cost Clock algorithm introduced by Cor-
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Transitions not affecting the data array
*A tag replacement always finishes at I state

Transitions removing a line from the data array

DataRepl
GETS
GETX

GETX
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PUTX
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Figure 6.3: Functional description of the TO-MSI example coherence protocol

bató [12]. The implementation cost of both NRU and Clock is one bit
per line.

Under Clock replacement the data array of the reuse cache works
as a circular queue2. Each line in the circular queue has an associated
bit called the used bit. This bit is unset when the line is inserted into
the data array and it is set when the line is read (the line receives
a hit). When a line is inserted into the data array, the replacement
algorithm selects the oldest line as the victim. If the circular queue
is full and the victim line is valid and has the used-bit set, this line
is promoted to the Vrst position and its used bit is unset. This oper-
ation only requires the queue pointer to be incremented and it can
be carried out in the background after an insertion. We observed that
normally there is a small number3 of victim lines to promote but the
victim search can be stopped if an insertion arrives before Vnding a
victim.

When evicting a data line, the corresponding forward pointer in
the tag array has to be invalidated. This corresponding tag array en-
try is located by following the reverse pointer of the just invalidated
line (Figure 6.2).

2 Given that tag array replacement may force the invalidation of data array entries,
"holes" may appear in our simple circular queue implementation. The eUect of these
has been measured and is minimal.

3 This number is, on average, lower than 2.
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6.3.4 TO-MSI: an example coherence protocol

Conventional coherence protocols assume that each line present in a
cache has an entry in both the tag and data arrays. However, a reuse
cache needs a coherence protocol able to deal with lines that have
entries in the tag array but not in the data array.

Figure 6.3 outlines an example coherence protocol based on the
MSI protocol4 [13], which is able to work with decoupled tag and
data arrays. Table 6.1 explains the states and events of the protocol.
In this description, neither replacement nor the external requests are
represented. In every state except I, private caches may have copies
of the line or not. This information is stored in a full-map directory
by using a presence bit vector.

Two diUerent groups of states can be considered: tag+data states
contain lines in the data array; and tag-only (a single state in this
simpliVed version of the protocol) contains lines that are not present
in the data array.

Transitions between both groups always imply lines getting in or
out of the data array.

1) From tag-only to tag+data. When the Vrst SLLC hit (reuse) is
observed the state changes from tag-only to a state of the tag+data
group. These transitions are represented by dash-dotted arrows in the
Vgure and are caused by GETS and GETX events when the state of
the line is TO.

2) From tag+data to tag-only. When a line is evicted from the data
array the state changes from the tag+data group to tag-only. Replac-
ing a line in the data array requires the protocol to record that the tag
no longer has associated data. The dashed arrows labelled with the
DataRepl event, coming out of M and S, represent these state transi-
tions.

4 For the sake of clarity, a simple protocol is shown here. In our evaluation, we rely on
a MSI-MOSI protocol with seven stable states. This protocol allows interconnection
between several CMPs. The reuse cache needs three additional stable states to track
the tag-only situations.
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Component Conv.
8MB

RC-4/1
Fully-
assoc.

RC-4/1
16-
assoc.

Tag 21 22 22

Coherence 4 5 5

Full-map vector 8 8 8

Replacement 1 1 1

Fwd. pointer - 14 4

Total tag entry (bits) 34 50 40

Data 512 512 512

Valid - 1 1

Replacement - 1 1

Reverse pointer - 16 6

Total data entry (bits) 512 530 520

Tag array (K entries) 128 64 64

Data array (K entries) 128 16 16

Total size (Kbits) 69888 11680 10880

Reduction 83.3% 84.4%

Table 6.2: Hardware cost

6.3.5 Hardware Cost

In this section, we compute the reduction in the total number of bits,
by taking into account both the tag/data array reduction and the in-
crease due to the forward and reverse decoupling pointers. As an ex-
ample, for an eight-core system we detail a 8 MB conventional cache
and a reuse cache with a 1:8 scaling in the data array and a 1:2 scal-
ing in the tag array. We consider a 16-way and a fully associative data
array organizations for the reuse cache.

The conventional cache is 16-way associative, and has 64-byte lines.
Further, the conventional cache requires 34 bits per line in the tag
array: 21-bit tags (assuming 40 bits of physical address space in a 64-
bit architecture), 12-bit coherent state (4-bit state and 8-bit presence
vector) and 1 bit for replacement (NRU algorithm5). The data array
requires 512 bits per line. Overall, the conventional cache needs 69888
Kb (see Table 6.2).

5 Although LRU has been used as the replacement policy of the conventional cache
in Section 6.4, NRU has been considered here to not bias the comparison.
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The reuse cache has a 1 MB data array and a tag array with the
same number of entries than a 4 MB conventional cache (RC-4/1 in
the Table 6.2 headings). A tag array entry requires the same Velds as
a conventional cache plus a forward pointer per line and one addi-
tional bit for the coherence state6. The forward pointer requires 14
bits for the fully associative (16K-line) data array but only 4 bits for
the 16-way data array. Each data array entry requires 512 bits of data,
a reverse pointer, one bit for the replacement policy (Clock/NRU),
and one valid bit per entry. The reverse pointer requires 16 bits for
the fully associative data array (4 and 12 bits to store way and set,
respectively) but only 6 bits for the 16-way data array (4 and 2 bits to
store way and set index, respectively).

Overall, the reuse cache (4 MB tag array / 1 MB data array) with
fully associative data array needs 11680 Kb while the reuse cache with
16-way data array needs 10880 Kb. Thus, the set-associative organiza-
tion of the data array requires a 6.8% less bits than the fully associa-
tive. Regarding the 8MB conventional cache, the example reuse cache
with fully associative data array would require only a 16.7% of its stor-
age capacity (15.6%, considering the set-associative data array).

6.4 evaluation

In order to perform the evaluation, we have employed the methodol-
ogy showed in Chapter 3. Concretely, next sections show results for
100 multiprogrammed workload mixes and the parallel applications
were shown in Section 3.4.2.

We Vrst compare the performance of the reuse cache varying the
data array size and associativity. We then study the optimal size ra-
tio between tag and data arrays. In Section 6.4.3 and Section 6.4.4 we
give insight into the reuse cache behavior by analyzing the percent-
age of lines not entering in the data array and the number of live lines
when reducing the reuse cache size. Next, in Section 6.4.5 we com-
pare the reuse cache with DRRIP [23], a state of the art replacement
algorithm, and NCID [69], a recent proposal of a decoupled tag-data
cache. Finally, in Section 6.4.6 we analyze the behavior of the reuse
cache when running parallel applications.

6 We consider the coherence protocol that supports our proposal roughly doubles
the original in number of states, and thus add on one additional bit.
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Throughout this section, results are expressed as speedups of the
diUerent reuse cache conVgurations relative to a baseline SLLC. The
baseline SLLC considered is an 8MB, 16-way conventional cache with
LRU replacement.

When describing the reuse cache tag array, we use MBeq as the
tag array equivalent to that of a 1 MB conventional cache. We always
maintain a tag array associativity of 16 and a line size of 64 bytes. For
instance, a 4 MBeq tag array has 64K tags (4 MB / 64) organized in 4K
sets (64K tags / 16). We use RC-x/y to refer to a reuse cache with a tag
array equal to that of a x MB conventional cache (x MBeq) and a data
array of y MB. As an example, RC-4/1 is the reuse cache outlined in
Table 3, having a tag array equivalent to a 4 MB conventional cache
with 1 MB data array.

With respect to a conventional cache with the same number of sets,
the access time of the tag array increases due to the added forward
pointer and the mux to select the pointer, see Figure 6.2. However,
when comparing reuse and conventional caches, both the tag and
data arrays of reuse caches are always smaller than those of conven-
tional caches7. Thus, we consider that the access time of the evalu-
ated reuse cache conVgurations does not increase with respect to the
conventional cache with which it is compared. Also, we assume the
same latency in all reuse cache conVgurations, although the access
time decreases signiVcantly as the sizes of the tag and data arrays
decrease.

6.4.1 Data array size and associativity

Figure 6.4 shows performance of a reuse cache with 8 MBeq tag array
and varying the data array size from 4 MB (RC-8/4) to 512 KB (RC-
8/.5) and the data array associativity among 16, 32, 64, 128 and fully
associative. Each bar represents average performance relative to the
baseline for the 100 workloads mixes.

In general, performance varies very slightly and unevenly for asso-
ciativities between 16 and 128. The reuse cache with fully associative
data array achieves better results for all sizes. However, the diUer-
ences are not signiVcant. For instance, the diUerence between a 16-

7 In the performance comparisons we vary the number of tag sets, and only one
of the cases shows a number of sets equal for the reuse and conventional caches.
However, this case has never been chosen as a suitable design point.
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Figure 6.4: Average speedup over the baseline for reuse caches of various data
array sizes and associativities. Tag array size and associativity are 8
MBeq and 16, respectively.

way associative and fully associative varies from -0.1% for RC-16/8
and +1% for RC-4/1. We can conclude that the fully associative and
the set-associative organizations are very similar both in cost and
performance. It is important to remember that the fully associative
organization is easy to implement because it never needs associative
lookups. Further, the clock replacement algorithm is really simple, be-
ing even cheaper than NRU in a set-associative organization with a
high associativity. Unless noted, the remaining experiments are car-
ried out with fully associative data arrays.

Regarding the size of the data array, a reuse cache with one quar-
ter the capacity of the baseline cache (RC-8/2) shows on average even
better performance than the baseline cache (+ 2.4%). A further reduc-
tion in the data array, RC-8/1, marks a turning point with the reuse
cache performing slightly worse than the baseline cache (-0.5%).

6.4.2 Tag array size

In this section we study the tag array size that achieves the best per-
formance for each size of the data array. Figure 6.5 shows the relative
performance of a reuse cache with respect to the baseline 8 MB cache.
For each size of the data array (X axis), we consider several diUerent
sizes of the tag array. In each conVguration, the tag array must have
more entries than the maximum of the data array and the sum of
entries in the private caches (8x256 KB). In order to extend the com-
parison to a 16 MB conventional cache, we will also include a reuse
cache with a 8 MB data array.
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Figure 6.6: Storage budget of the best reuse caches, relative to a conventional
8 MB cache.

For a given data array size, increasing the size of the tag array be-
yond a certain limit is not worthwhile, because it only leads to identi-
fying a larger reuse working set, whose size is beyond the capacity of
the data array. The optimum data-tag ratio is always 4 except for a 512
KB data array, where a ratio of 4 requires a 2 MBeq tag array, which
is the minimum for tracking the aggregated 2 MB of private caches.
Besides, the small performance advantage of RC-32/8 over RC-16/8
would not justify selecting the 32 MBeq tag array. The same holds
true between RC-16/4 and RC-8/4. Hence, for the remaining sections,
the reference sizes of the reuse cache replacing a conventional 8 MB
cache will be: RC-8/4, RC-8/2, RC-4/1 and RC-4/0.5.

Figure 6.6 shows the total number of bits of those reuse caches rel-
ative to a conventional 8 MB cache; RC-16/8 has been added for com-
pleteness. We can choose RC-4/1 as the smaller reuse cache perform-
ing better than a conventional 8 MB cache; indeed, RC-4/1 requires
half the tags, one-eighth the data, and only spends 16.7% storage of
the conventional 8 MB cache.
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Figure 6.7: Performance of the selected reuse cache conVgurations for all the 100
multiprogrammed workloads, relative to the 8 MB baseline. The data
array ranges from 4 MB (RC-8/4) to 512 KB (RC-4/0.5).

Figure 6.5 also shows relative performance of 16-way LRU in 4 MB
and 16 MB caches with respect to the 8 MB baseline (red and black
lines). We could replace both conventional caches with the smaller
reuse cache giving some performance advantage. So, a reuse cache
with the same tag array but half the data array (RC-16/8) outperforms
a 16 MB conventional cache. Likewise, for a 4 MB conventional cache
it suXces a reuse cache with the same tag array but one-eighth the
data array (RC-4/0.5).

In order to analyze the result variability, Figure 6.7 plots the reuse
cache speedups for every workload, varying the reuse cache size. We
only show the previously selected conVgurations having the best per-
formance/size trade-oU. In each plot, the diUerent workloads are or-
dered along the horizontal axis according to their speedup.

As can be seen, the speedup variability increases as the size of the
reuse cache decreases. RC-8/4 outperforms the baseline for almost all
the workloads (99 out of 100). RC-4/1 seems to be a good design point,
as it is better than the baseline in 64 out of 100 workloads, reaching
speedups from 0.82 to 1.14, only four and two workloads suUer losses
and improve their performance over a 10%, respectively.
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RC-8/4 RC-8/2 RC-4/1 RC-4/0.5 Conv.

Mean (%) 93 93 95 95 0

Minimum (%) 81 81 89 89 0

Table 6.3: Mean and minimum percentage of lines not entering in the data array
with respect to tags entering in the tag array for diUerent reuse cache
and conventional conVgurations.

6.4.3 Data lines entering in the data array

Table 6.3 shows, for the one hundred workloads, the mean and the
minimum percentage of lines not entering in the data array with re-
spect to tags entering in the tag array. Of course, in a conventional
cache this percentage is zero because tags and data are always allo-
cated together. However in a reuse cache the selective allocation pol-
icy discards most of data allocation. As we can see, the reuse cache
is very selective allocating data lines, and selectivity increases as the
tag array decreases. For instance, the RC-8/4 and the RC-4/1 conVgu-
rations discard in average 93% and 95.4%, respectively. Even the most
demanding workloads discard more than 80% of the data lines. So we
can conclude that the reuse cache is very eUective in protecting use-
ful data lines against pollution, because the discarded data lines are
not able to evict lines that have shown reuse. On the other hand, the
percentage of reused data lines loaded twice -the downside of reuse
caches-, is exactly 100% minus the percentages above. For instance,
the RC-4/1 reloads 4.6% of the data lines, paying twice the main mem-
ory accessing cost.

6.4.4 Fraction of live lines in the data array

It is worth considering how the average lifetime of the lines kept
in the reuse cache changes. Figure 6.8 shows the fraction of live lines
during the execution of the example workload in the best reuse cache
conVgurations. We also plot data for the 8 MB conventional cache
with LRU, DRRIP [23] and NRR replacement policies.

As we see, the fraction of live lines varies greatly as a function of
the size of the reuse cache. It is apparent that the reuse working set
varies over time, and each reuse cache conVguration is able to house
it to a greater or lesser extent, depending both on storage capacity
(data array size) and ability to capture reuse (tag array size).
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Figure 6.8: Instantaneous fraction of live lines during the execution of the
example workload, for 8 MB LRU, DRRIP, NRR, and for the se-
lected reuse cache conVgurations.

As we will show below in more detail, lines live longer in reuse
caches but the instantaneous fraction shows a more variable shape.
As we consider lower capacities, the fraction of live lines shows
higher-frequency variations. This is because smaller reuse caches be-
come more sensitive to the line bursts coming from individual cores,
simply because the relative impact of allocating a given number of
lines in a row may be higher as the storage capacity decreases.

Another eUect we notice concerns the limitations imposed by the
data array size for a given tag array. As an example we can con-
sider the Vrst sharp decline in RC-4/0.5 around 250 Mcycles; here a
burst of lines apparently showing reuse may have entered into the
reuse cache, probably overWowing the limited capacity of RC-4/0.5
and causing a net drop in the duration of lives. In contrast, when
increasing the data array (RC-4/1) this decline is not experienced.

Figure 6.9 shows the average fraction of the data lines that are alive
for all 100 workloads in the best reuse cache conVgurations. We also
plot data for the 8 MB conventional cache with LR, DRRIP [23] and
NRR replacement policies. The average percentage of live lines in the
baseline cache is only 16.1% with LRU replacement (LRU in Figure 6.9),
35.9% with DRRIP and 40.0% with NRR, consistent with the analysis
presented in Section 6.2 for the example workload. The reuse cache
RC-8/4 increases the percentage of live lines up to 55.1%. That is, with
half the lines of the baseline cache, RC-8/4 almost doubles the number
of live lines compared to the baseline cache (55.1% of 4 MB vs. 16.1% of
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Figure 6.9: Average fraction of live lines for 8 MB LRU, DRRIP, and NRR conven-
tional caches, and for the selected reuse cache conVgurations.

8 MB). This is because the combined tag/data replacement algorithm
is able to identify the lines being reused.

RC-8/2 and RC-4/1 also achieve high fractions of live lines. How-
ever, a similar fraction operating in a smaller data array implies a
very signiVcant reduction in the total number of live lines. In spite
of that, with a quarter the lines of the baseline cache, RC-8/2 ob-
tains a number of live lines only a 9% lower than the baseline cache.
RC-4/1, while keeping a signiVcantly lower number of live lines, still
improves the performance of the baseline cache because the replace-
ment algorithm of the data array prioritizes lines with the shortest
reuse distance, which are the lines that receive more hits.

For RC-4/0.5, the percentage of live lines drops to 41.5%. Here the
tag array is oversized regarding the data array. Many lines are tagged
for a potential reuse but they can not be stored in the data array, lead-
ing sometimes to line thrashing. As we saw in Section 6.4.2, 4 MBeq
is the minimum tag array size greater than the aggregated capacity
of the private levels. Certainly we could test a smaller size by decreas-
ing associativity, but this change would make the comparison harder
with the other reuse cache conVgurations.

6.4.5 Comparison with alternative state of the art proposals

Throughout previous sections, results have been reported as
speedups relative to a baseline cache with LRU replacement. Perfor-
mance achieved by LRU replacement may be considered an upper
bound for commercial processors as they usually use LRU approxi-
mations with slightly worse performance. However, in this section
we also compare the reuse cache with both a conventional cache Vt-
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Figure 6.10: Average speedups of DRRIP and reuse caches.

ted with state of the art replacement algorithms and an alternative
decoupled cache organization that also allows to reduce the data ar-
ray size.

comparison with rrip [23] and nrr [2]. Thread-aware-
DRRIP is a state of the art replacement algorithm for SLLCs (see
Section 5.3). While NRR was presented in Section 5.4.2 as one of the
contributions of this thesis. In this experiment we want to observe
how much beneVce the reuse case is still bringing compared to a
conventional cache, despite the conventional cache is using a state
of the art replacement algorithm. Figure 6.10 compares conventional
caches operated with TA-DRRIP and NRR (represented as horizontal
lines) with several reuse cache conVgurations (represented as bars).
The shown results are the average speedups over the 8 MB baseline
cache using LRU for all the 100 workloads mixes.

TA-DRRIP replacement improves the conventional 8 MB cache per-
formance in a 3.7% with respect to LRU replacement. Even so, a reuse
cache with half the data array (RC-8/4) is 2% better than the conven-
tional cache with TA-DRRIP. Similarly, RC-16/8 is 0.5% better than the
conventional 16 MB cache with TA-DRRIP. Finally, the conventional
4 MB cache with TA-DRRIP could be replaced with a reuse cache with
one-eight the data array (RC-4/0.5) with similar performance.

comparison with ncid [69]. NCID adds tags to each set of a
conventional SLLC in order to maintain tag inclusion of the private
caches while the data array can be non-inclusive or exclusive. Their
authors evaluate the NCID architecture supporting a selective alloca-
tion policy to address transient data, and compares it with a conven-
tional cache with bi-modal Vlls [47] in terms of miss rate reduction.
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Figure 6.11: Average speedups of NCID and reuse caches.

However, NCID with selective allocation could also be used to reduce
the data array size maintaining performance.

Following the NCID implementation, the selective mode allocates
5% of lines as most recently used (data and tag) and the remaining 95%
as least recently used (only tag). Set dueling selects between selective
and normal allocation for each thread.

When specializing NCID to achieve size reduction, we reduce the
data array with respect to the tag array. The NCID organization re-
quires an equal number of sets in the tag and data arrays. So, reducing
the data array size implies reducing the data array associativity. As
an example, a NCID cache with a 16-way, 8 MBeq tag array implies
a 1 MB data array with only 2 ways. So, in order to perform a fair
comparison we have to choose reuse caches having the same number
of sets and associativities in the data array.

Figure 6.11 compares reuse cache against NCID for an 8 MBeq tag
array and several data array sizes. Each bar represents average per-
formance relative to the baseline cache for the 100 workloads mixes.

By reducing the data array size, any NCID settings match the per-
formance achieved by the baseline 8MB cache. For all data array sizes,
the reuse cache get better performance than NCID with relative gains
7.0%, 6.4%, 5.2% and 5.3% for data array sizes 4 MB, 2 MB, 1 MB and
512 KB, respectively.

6.4.6 Parallel workloads

In this section, we analyze the behavior of our proposal when run-
ning parallel applications. As it was explained in Section We have
selected the Vve applications of the PARSEC [5] and SPLASH-2 [66]
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Figure 6.12: Speedup of reuse cache over the baseline for Vve parallel applications,
with data array sizes from 4 MBytes (RC-8/4) to 512 KBytes (RC-8/0.5)

suites which have more than 1 MPKI in the baseline SLLC. Specif-
ically, the selected applications are blackscholes, canneal, ferret, and
Wuidanimate from PARSEC and ocean from SPLASH-2; their MPKIs
are 4.5, 3.5, 1.3, 1.7, and 13.4, respectively. We utilize the simmedium
input set for PARSEC applications and a 1026x1026 grid for Ocean.
For PARSEC applications a checkpoint is created in the parallel phase.
The cycle-accurate simulation starts at those checkpoints, warming
the memory hierarchy for 300 million cycles, and then collecting
statistics for the next 700 million cycles. Ocean is run to completion
but performance statistics are only taken in the parallel phase.

Figure 6.12 shows, for the Vve parallel applications, the relative
performance of the reuse cache with data array sizes from 4 MBytes
(RC-8/4) to 512 KBytes (RC-8/0.5) with respect to the baseline SLLC.
Only ferret suUers a loss in performance when using a reuse cache
with respect to the baseline cache. This loss varies between 1% with
RC-8/4 and 11% with RC-8/0.5. However, in the other four applica-
tions even RC-8/0.5 achieves better performance than the baseline
cache (canneal and ocean show speedups of more than 10%).

6.5 concluding remarks

The reference stream observed by the SLLC of a CMP exhibits little
temporal locality but, instead, it exhibits reuse locality. As a conse-
quence, a dominant fraction of the SLLC lines is useless because the
lines will not be requested again before being evicted, and most hits
observed by the SLLC come from a small subset of already reused
lines.

In this paper we propose the reuse cache, a SLLC with a very se-
lective data allocation policy intended to track and keep that small
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subset of lines showing reuse. In a reuse cache, the tag and the data
arrays are decoupled. On the one hand, the size of data array can be
dramatically reduced without negatively aUecting performance. On
the other hand, the tag array tracks the reuse order of recently refer-
enced lines, and has the size required to store the tag of the lines in
the data array and private caches.

We have evaluated our proposal by simulating an eight-core
CMP system running multiprogrammed and multithreaded work-
loads. The results show that a reuse cache can achieve the same per-
formance as a conventional cache with a much lower hardware cost.
For instance, a reuse cache with the tag array equivalent to a conven-
tional 4 MB cache but with only 1 MB of data array, gives the same av-
erage performance as an 8 MB conventional cache. That reuse cache
would require only a 16.7% of the storage budget of the conventional
cache.

We have illustrated the usefulness of the reuse cache concept with
a case study: reducing space and maintaining performance. Evidently,
the reuse cache could also be used in other settings, or for other rea-
sons, seeking to meet other design goals in relation to some chip area,
performance or energy tradeoU.



Part IV

CONCLUS ION

This last part of the thesis only includes one chapter. This
chapter includes the general conclusions of this thesis, fu-
ture work continuing the contributions presented during
this dissertation and the publications where such contri-
butions appeared.





7
CONCLUS IONS

summary

This last chapter exposes general conclusions about the contributions
shown during the present dissertation. The chapter also shows the pub-
lications where the contributions of this thesis have been published and
highlights future directions to continue with work of this thesis.
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7.1 conclusions

The speed gap between cpu and main memory has been increasing
during the last forty years and nothing says this tendency is going
to change in the near future. In order to mitigate such speed gap a
hierarchy of cache memories has been traditionally included between
the main memory and the cpus. This hierarchy relies on temporal
and spatial locality to provide the cpus with data and instructions,
the goal is to oUer this information with a low average latency.

In the multi-/many- core scenario where we are now, hierarchies of
memory are more complex than ever, including some levels of cache
accessible only by each core and, as we have been seeing during this
dissertation, a last level that is shared among all the cores present in
the system. Moreover, Moore’s law is still strictly complied providing
the architects with a bunch of new transistors to spend on the next
processor generation. New silicon is precisely employed in many of
the new designs to amply each of all the levels of the memory hier-
archy. This hierarchy is already occupying an important part of the
chip die, e.g. the last-level cache of an intel i7 processor takes away
roughly the 50% of the total chip die area.

Until now, last-level caches were including a constant, or even in-
creasing, number of megabytes of shared last-level cache per core,
but such tendency is not likely to continue in designs with some
dozens of cores if the access latency to this last level wants to be
maintained reasonable. Thus the way to design the hierarchies of the
future devices has to pass through improving the eXciency of such
hierarchies. This thesis has focused on improving the eXciency of the
shared last-level cache, exploring the way on two diUerent directions:
1) improving performance and 2) reducing hardware storage.

1) Regarding performance, this dissertation makes contributions to
improve the performance of two mechanisms that critically aUect the
cache performance: hardware prefetching and replacement.

Hardware prefetching may harm the system performance when
it is used in an uncontrolled manner in the hierarchy of memory
of a CMP. Prefetches issued by one core can evict contents of other
cores aUecting their performance. Given the broad ecosystem of ap-
plications can be found running in a CMP, prefetching should be
controlled but controlled in a per-core fashion, always with maxi-
mum fairness and overall system performance as objectives. A low-
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cost controller has been proposed with such objectives. This con-
troller is able to improve system performance by 27% (harm. mean
of speedups) respect to a system with uncontrolled prefetching.

This dissertation has stated a property called reuse locality, which
is linked to the stream of references arriving to the SLLC and says
that i) if a line receive a hit on the SLLC is highly likely that line
will receive another hit in the future, and ii) recently reused lines are
more useful than lines reused before.

Reuse locality is used to propose two new replacement algorithms
for the SLLC, which are transformations of two standard ones. These
standard algorithms, LRU and NRU, were designed to exploit tempo-
ral locality while ours, LRR and NRR, are designed to exploit reuse
locality. This dissertation has shown during evaluation sections that
our contributions are consistently better than both base algorithms
and a proposal, DRRIP, from the state of the art.

2) Finally, this dissertation proposes a new SLLC organization that
relying on the reuse locality implements a very restrictive data array
insertion policy. This insertion policy only stores into the SLLC data
array, data that has shown reuse. Evaluation has shown this design is
able to oUer drastic reductions on the SLLC hardware storage require-
ments, achieving to reduce up to 84% of the SLLC hardware storage
while maintaing average performance untouched.

7.2 publications

This section shows the publications of this thesis, which have already
been referenced in the corresponding sections.

• J. Albericio, R. Gran, P. Ibáñez, V. Viñals, and J.M. Llabería.
"ABS: A low-cost adaptive controller for prefetching in a
banked shared LLC". ACM Transactions on Computer Archi-
tecture and Optimization (TACO): Special Issue on "High-
Performance and Embedded Architectures and Compilers". Vol-
umen: 8, Issue 4. Pp. 1-19. January, 2012.

• J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llabería. "Ex-
ploiting reuse locality on inclusive shared last-level caches".
ACM Transactions on Computer Architecture and Optimiza-
tion (TACO). Volumen: 9, Issue 4. Article 38. January, 2013.
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• J. Albericio, P. Ibáñez, V. Viñals, and J. M. Llabería. "The Reuse
Cache: downsizing the shared Last-level cache". University of
Zaragoza, technical report TR-12-02.

7.3 future work

7.3.1 Replacement

inclusiveness In spite of everything suggests reuse locality prop-
erty will be present in all kind of SLLC, the behavior of our
replacement policies, NRR and LRR, would have in a hierarchy
with diUerent inclusion properties is a evaluation still to per-
form.

partial information Our replacement policies have been only
evaluated in a hierarchy with a full-map directory. An inter-
esting study would be to observe if the performance of the re-
placement policies is aUected because of the use of a coherence
system that considers partial information, meaning that direc-
tory information is not necessarily updated. This interaction
arises due to our replacement schemes take information about
the presence of lines directly from the full-map directory.

prefetch and replacement Only a recent work [Martonosi +
Jean Wu] has studied the interaction between replacement and
prefetch. Moreover, this previous work only focuses on a mul-
tiprogrammed scenario, thus a scenario where parallel applica-
tions run is still something to study,

sharing and replacement The interaction between sharing
and replacement is still something to study. Most of research
about replacement policies has focused on multiprogrammed
scenarios where unbalance and competition between diUerent
applications are the problem to solve. In a diUerent scenario
where parallel applications run (alone or running along other),
proposed techniques may not be valid anymore or at least they
should be reviewed and evaluated.
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7.3.2 Reuse Cache

Regarding to future work relying on the reuse cache design:

dynamic data array size Dynamic total size To have a decou-
pled organization oUers an additional Wexibility that could be
employed to diUerent things. One of these things is that data ar-
ray becomes a candidate to switch some of its parts oU. Instead
of being the total SLLC storage the target, a reuse cache with-
out data array downsizing (or minimum) could be employed
as base design. Then, parts of the data array could be arbitrar-
ily switch on/oU depending on the system load. The level of
system load could be easily detected by using the SLLC tags.
Dimensions of the data array could be downsized by cutting
the set associativity or by reducing the total number of sets.

dynamic tag array size The evaluation of the reuse cache
showed that diUerent applications require a diUerent reuse
detection capacity. The optimal reuse detection capacity de-
pends not only on the application but also on the data array
size where the reused data are stored. This topic has still to
be studied but classical dynamic optimization approaches like
hill-climbing or/and set-dueling can be applied. These dynamic
schemes may be employed to vary the number of elements in
tag array sets.

two misses Given that in the reuse cache, if not predictor is used,
all the hits will pay two misses in advance, some kind of reuse
predictor could be used. Wu et al. [67] proposed some predic-
tors to improve the re-reference interval prediction of the RRIP
mechanism [23]. Taking into account those policies and ours
have the same last goal, it seems reasonable that such predic-
tors are highly likely to work well on the reuse cache scheme.

variable grain A recent work [Amoeba] proposes to implement
the cache as a contiguous vector of non-constant-size elements.
Each element has included along its tag, what is the size of the
data Veld. Taking this concept to the end, such elements could
include empty data Velds and only to include the data when the
element has shown reuse. At the same time, the reuse locality
property could be studied in a sub-block fashion.

The reuse cache as it is proposed on this dissertation considers
inclusion enforcement in both tags and data. Given that, the reuse
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cache is proposed for a low cache-per-core ratio, in order to maxi-
mize SLLC storage, it seems reasonable to think in an exclusive reuse
cache scheme. This inclusion enforcement could be relaxed in one or
both tags and data arrays. On the reuse cache proposed in previous
sections, once a data has been classiVed as reused, it will be inserted
at the same time into the SLLC reuse data and into the local caches.

exclusivity: data array If we considered to implement local
caches and SLLC to be disjoint sets, a cache line would be only
put into the SLLC data array once this data has shown reuse at
the SLLC and such cache line has been evicted from the local
caches. Considering this scheme, tags array would still main-
tain inclusion, simplifying coherence but maximizing at the
same time the SLLC data array storage. Besides, an exclusive
data array would require some mechanism to send information
from one local cache to another when a sharing behavior is
found.

exclusivity: tag and data arrays A further step would be to
implement exclusivity at the same time on both tags and data
arrays. This scheme would increase the reuse detection capac-
ity of the reuse cache. At the same time this scheme would
complicate coherence maintenance and its worthiness would
have to be carefully studied.

(dynamic) exclusivity As most of previously shown possible
future lines, exclusivity implementation may be considered in
a dynamic manner. Sim et al. [53] have recently shown how to
adapt this property and such kind of adaptation could be also
employed in any of the exclusive schemes here proposed.



CONCLUS ION ES

La diferencia de velocidad entre las CPUs y la memoria principal
ha venido aumentando durante los últimos cuarenta años y no hay
ningún signo aparente que indique que dicha tendencia va a remitir
en un futuro próximo. La jerarquía de memorias cache surgió con la
intención de maquillar la citada diferencia. Esta jerarquía se apoya en
las localidades temporal y espacial para proporcionar datos e instruc-
ciones a las cpus de manera eVcaz, teniendo como objetivo ofrecer
dicha información con una latencia media reducida.

En el escenariomulti-/many- core en el que nos hallamos ahora, las
jerarquías de memoria son más complejas que nunca. Incluyen uno
o varios niveles accesibles solo por uno (o un subconjunto reducido)
de los núcleos y, como hemos visto a lo largo de esta tesis, un último
nivel que es compartido por todos los núcleos del sistema. Además, la
ley de Moore se sigue cumpliendo a rajatabla, por lo que los arquitec-
tos cuentan con un número mucho mayor de transistores para cada
nueva generación de sus diseños. Precisamente, una gran parte de
esos nuevos transistores se emplean en muchos de los diseños para
ampliar cada uno de los niveles de la jerarquía de cache. La jerarquía
ocupa una parte importante del área total del chip, como ejemplo, el
último nivel de cache de un intel i7 representa aproximadamente el
50% del área total de dicho procesador.

Hasta ahora el número de megabytes por core que incluía el último
nivel de cache aumentaba en cada nueva generación de procesadores,
pero no es probable que esta tendencia continúe en el futuro si se pre-
tende que la latencia de acceso se mantenga dentro de lo razonable
en diseños con docenas de núcleos. Por lo tanto, el diseño de las jerar-
quías de los dispositivos del futuro ha de pasar por una mejora en la
eVciencia de dichas jerarquías. Esta tesis se ha centrado en mejorar la
eVciencia del último nivel de cache, prestando especial atención a dos
aspectos diferentes: 1) la mejora de su rendimiento y 2) la reducción
de la cantidad de hardware empleado en su diseño.

1) Esta tesis hace contribuciones en relación a dos mecanismos que
afectan al rendimiento del último nivel de cache de manera crítica: la
prebúsqueda hardware y el reemplazo.
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La prebúsqueda hardware no controlada puede llegar a dañar el
rendimiento del sistema cuando se usa en un multiprocesador donde
diferentes aplicaciones se están ejecutando al mismo tiempo. Las pre-
búsquedas asociadas a un núcleo podrían interferir con los datos car-
gados en la cache por otro núcleo, provocando la eliminación de los
contenidos de otra aplicación y dañando su rendimiento. Es nece-
sario por tanto un mecanismo para regular la prebúsqueda asociada
a cada uno de los núcleos. Este mecanismo debería tener por objetivo
el mejorar el rendimiento general del sistema. Esta tesis propone un
autómata de bajo coste que es capaz de lograr dicho objetivo, mejo-
rando un 27% el rendimiento de un sistema con prebúsqueda no con-
trolada.

Establecemos una propiedad llamada localidad de reúso que está
ligada a la secuencia de referencias que acceden al último nivel de
cache y que dice que (i) si un bloque de cache recibe un acierto es
altamente probable que reciba más aciertos en el futuro. Y (ii) los
bloques de cache recientemente reúsados son más útiles que otros
reúsados previamente. Se ha demostrado en esta tesis que el patrón
de acceso a la SLLC muestra localidad de reúso.

En esta tesis se proponen dos algoritmos de reemplazo capaces
de explotar la localidad de reúso, Least-recently reused (LRR) y Not-
recently reused (NRR). Estos dos nuevos algoritmos son modiVca-
ciones de otros dos muy bien conocidos: Least- recently used (LRU) y
Not-recently used (NRU). Dichos algoritmos fueron diseñados para ex-
plotar la localidad temporal, mientras que los nuestros explotan la lo-
calidad de reúso. Las modiVcaciones propuestas no suponen ninguna
sobrecarga hardware respecto a los algoritmos base. Durante esta
tesis se ha mostrado que nuestros algoritmos mejoran consistente-
mente el rendimiento de los originales así como el de DRRIP, algo-
ritmo perteneciente al estado del arte.

Finalmente, proponemos un novedoso diseño para la SLLC llamado
Reuse Cache. La reuse cache se apoya en la localidad de reúso para im-
plementar una política de selección de contenidos muy estricta. Dicha
política solo almacena en el array de datos de la cache de último nivel
aquellos bloques que han mostrado reúso, mientras que el array de
etiquetas se usa de una manera convencional. Este diseño permite
reducir el tamaño del array de datos de manera drástica. Como ejem-
plo, una Reuse Cache con un array de etiquetas equivalente al de
una cache convencional de 4MB y un array de datos de 1MB, tiene el
mismo rendimiento medio que una cache convencional de 8MB, pero
con un ahorro de almacenamiento de en torno al 84%.
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