3,178 research outputs found

    A Robust Indoor Positioning System Based on the Procrustes Analysis and Weighted Extreme Learning Machine

    Get PDF
    Indoor positioning system (IPS) has become one of the most attractive research fields due to the increasing demands on location-based services (LBSs) in indoor environments. Various IPSs have been developed under different circumstances, and most of them adopt the fingerprinting technique to mitigate pervasive indoor multipath effects. However, the performance of the fingerprinting technique severely suffers from device heterogeneity existing across commercial off-the-shelf mobile devices (e.g., smart phones, tablet computers, etc.) and indoor environmental changes (e.g., the number, distribution and activities of people, the placement of furniture, etc.). In this paper, we transform the received signal strength (RSS) to a standardized location fingerprint based on the Procrustes analysis, and introduce a similarity metric, termed signal tendency index (STI), for matching standardized fingerprints. An analysis of the capability of the proposed STI to handle device heterogeneity and environmental changes is presented. We further develop a robust and precise IPS by integrating the merits of both the STI and weighted extreme learning machine (WELM). Finally, extensive experiments are carried out and a performance comparison with existing solutions verifies the superiority of the proposed IPS in terms of robustness to device heterogeneity

    Moving Learning Machine Towards Fast Real-Time Applications: A High-Speed FPGA-based Implementation of the OS-ELM Training Algorithm

    Get PDF
    Currently, there are some emerging online learning applications handling data streams in real-time. The On-line Sequential Extreme Learning Machine (OS-ELM) has been successfully used in real-time condition prediction applications because of its good generalization performance at an extreme learning speed, but the number of trainings by a second (training frequency) achieved in these continuous learning applications has to be further reduced. This paper proposes a performance-optimized implementation of the OS-ELM training algorithm when it is applied to real-time applications. In this case, the natural way of feeding the training of the neural network is one-by-one, i.e., training the neural network for each new incoming training input vector. Applying this restriction, the computational needs are drastically reduced. An FPGA-based implementation of the tailored OS-ELMalgorithm is used to analyze, in a parameterized way, the level of optimization achieved. We observed that the tailored algorithm drastically reduces the number of clock cycles consumed for the training execution up to approximately the 1%. This performance enables high-speed sequential training ratios, such as 14 KHz of sequential training frequency for a 40 hidden neurons SLFN, or 180 Hz of sequential training frequency for a 500 hidden neurons SLFN. In practice, the proposed implementation computes the training almost 100 times faster, or more, than other applications in the bibliography. Besides, clock cycles follows a quadratic complexity O(N 2), with N the number of hidden neurons, and are poorly influenced by the number of input neurons. However, it shows a pronounced sensitivity to data type precision even facing small-size problems, which force to use double floating-point precision data types to avoid finite precision arithmetic effects. In addition, it has been found that distributed memory is the limiting resource and, thus, it can be stated that current FPGA devices can support OS-ELM-based on-chip learning of up to 500 hidden neurons. Concluding, the proposed hardware implementation of the OS-ELM offers great possibilities for on-chip learning in portable systems and real-time applications where frequent and fast training is required

    Improving the Accuracy of Fuzzy Decision Tree by Direct Back Propagation with Adaptive Learning Rate and Momentum Factor for User Localization

    Get PDF
    AbstractMost prevailing availability of wireless networks has elevated an interest in developing a smart indoor environment by utilizing the hand held devices of the users. The user localization helps in automating the activities like automating switch on/off of the room lights, air conditioning etc., which makes the environment smart. Here, we consider locating the users as a pattern classification problem and use Fuzzy decision tree (FDT) as a knowledge discovery method to locate the users based on the wireless signal strength observed by their handheld devices. To increase the FDT accuracy and to achieve faster convergence, we came up with a novel strategy named Improved Neuro Fuzzy Decision Tree with an adaptive learning rate and momentum factor to optimize the parameters of FDT. The proposed approach can be used for any classification problem. From the results obtained, we observe that our proposed algorithm achieves better convergence and accuracy

    EXPERIMENTAL EVALUATION OF MACHINE LEARNING ALGORITHMS FOR FINGERPRINTING INDOOR LOCALIZATION

    Get PDF
    One of the most preferred range-free indoor localization methods is the location fingerprinting. In the fingerprinting localization phase machine learning algorithms have widespread usage in estimating positions of the target node. The real challenge in indoor localization systems is to find out the proper machine learning algorithm. In this paper, three different machine learning algorithms for training the fingerprint database were used. We analysed the localization accuracy depending on a fingerprint density and number of line-of-sight (LOS) anchors. Experiments confirmed that Gaussian processes algorithm is superior to all other machine learning algorithms. The results prove that the localization accuracy can be achieved with a sub-decimetre resolution under typical real-world conditions

    Improving a wireless localization system via machine learning techniques and security protocols

    Get PDF
    The recent advancements made in Internet of Things (IoT) devices have brought forth new opportunities for technologies and systems to be integrated into our everyday life. In this work, we investigate how edge nodes can effectively utilize 802.11 wireless beacon frames being broadcast from pre-existing access points in a building to achieve room-level localization. We explain the needed hardware and software for this system and demonstrate a proof of concept with experimental data analysis. Improvements to localization accuracy are shown via machine learning by implementing the random forest algorithm. Using this algorithm, historical data can train the model and make more informed decisions while tracking other nodes in the future. We also include multiple security protocols that can be taken to reduce the threat of both physical and digital attacks on the system. These threats include access point spoofing, side channel analysis, and packet sniffing, all of which are often overlooked in IoT devices that are rushed to market. Our research demonstrates the comprehensive combination of affordability, accuracy, and security possible in an IoT beacon frame-based localization system that has not been fully explored by the localization research community

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    corecore