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Abstract. One of the most preferred range-free indoor localization methods is the 

location fingerprinting. In the fingerprinting localization phase machine learning 

algorithms have widespread usage in estimating positions of the target node. The real 

challenge in indoor localization systems is to find out the proper machine learning 

algorithm. In this paper, three different machine learning algorithms for training the 

fingerprint database were used. We analysed the localization accuracy depending on a 

fingerprint density and number of line-of-sight (LOS) anchors. Experiments confirmed 

that Gaussian processes algorithm is superior to all other machine learning algorithms. 

The results prove that the localization accuracy can be achieved with a sub-decimetre 

resolution under typical real-world conditions.  

Key words: Fingerprinting, machine learning, indoor localization 

1. INTRODUCTION 

We live in a world of increasing business interest in location-based applications and 

services, where indoor or outdoor localization or real-time tracking are common application 

requirements. Localization in outdoor domain is entrusted to global navigation satellite 

systems (GNSS) such as The Global Positioning System (GPS), and it is almost impossible to 

imagine any transport navigation or networks synchronization applications without GPS 

today, [1]. However, close to buildings, trees or indoors GPS does not perform well because 
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of the weak signal and other interferences present in indoor environments such as walls and 

other interior components. Thus, GPS is not generally applicable for indoor localization. 

Since people spend most of their time in closed environments, the indoor localization 

demand is increasing and becomes key prerequisite in some markets. The difficulty of 

modelling an indoor localization system lies in that indoor maps pay more attention to 

small areas, large-scale and high precision, [2]. Correlated with outdoor localization, sensing 

location information in indoor environments is a challenging research problem. The most 

important indoor localization applications are customer navigation in a mall, citizen 

navigation inside a public building, product localization in a supermarket and many 

applications in military areas, [3]. 

Indoor localization system is typically composed of a set of anchor nodes, placed at fixed 

locations in the region of interest, and a target node attached to the object or carried by the 

person that needs to be localized. One of the most preferred range-free methods is the location 

fingerprinting. The essence of the location fingerprinting is primary to set up a database of 

wireless signals measurements at some referent points, in the training phase. In the 

localization phase, the location of the target node can be determined by comparing its 

database wireless signals measurements. The major advantage of the location fingerprinting 

is providing accurate location estimations in the multipath environments, [4]. 

In comparison with conventional, narrowband and carrier wave radio technologies 

(e.g., WiFi, Bluetooth, Sub-1 GHz RF), the ultra-wide band (UWB) localization stands 

out as the most promising radio-based technology for indoor localization available today, 

[5]. The main characteristic of UWB is large bandwidth used for transmission of ultra-

short pulses. The short duration of pulses ensures a good resolution in the measurement 

of signal time-of-flight (ToF), so the distance between two UWB transceivers can be 

measured with a high precision. With accurate distance data to at least three anchor nodes, the 

location of the target node can be calculated with a centimetre level accuracy by applying a 

basic range-based technique (e.g., trilateration), [6]. The accurate distance measurement can 

only be achieved under the line-of-sight (LOS) scenarios. In the NLOS (non line-of-sight) 

scenarios, the transmitted signal could only reach the receiver through penetrated or reflected 

paths. The problem is especially present in indoor environments of complex geometry, where 

mixed LOS/NLOS signals created by a number of anchor nodes exist [7]. 

In the localization phase, aiming to improve the localization accuracy a variety of Machine 

Learning (ML) algorithms are used [8]. ML algorithms are seen as a part of artificial 

intelligence and they are based on experiential learning. The basis of the ML algorithms is to 

create a model set up on sample data, in their training phase. As a result of training, they can 

predict or make various decisions without being explicitly programmed to do so. ML 

algorithms can decide on systems even with a lot of parameters, complexity or huge number 

of data, that is why they are powerful methods for indoor localization process, [9]. One of the 

main challenges in indoor localization is to find the best machine learning algorithm according 

to accuracy and computation time requirements, [10]. In this paper, we compare three 

different machine learning algorithms: k-nearest neighbours (kNN), Gaussian processes (GP) 

and decision tree (DT) [11]. The ML algorithms were applied on the dataset obtained from the 

real-world data collected in a measurement process that was carried out in a multi-room area. 

This paper is organized as follows. In Section 2, we summarize related studies on 

fingerprinting and UWB based indoor localization. The system model and some preliminaries 

are introduced in Section 3. The experimental results are presented in Section 4, while the 

concluding remarks are given in the last Section 5. 
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2. RELATED WORKS 

Many studies have been performed with the use of the UWB based indoor localization 

systems. UWB is very suitable for accuracy-critical applications, [12, 13]. In [14, 15] it is 

shown that the distance between two UWB devices can be measured with centimetre-

level accuracy, even in complex indoor environments. Problems occur due to mixed 

LOS/NLOS propagation conditions which is the topic of many researches [16-18]. In 

[19] the LOS/NLOS problems are solved by discarding the NLOS measurements and 

using only LOS measurements localization estimation. 

Fingerprinting is widely adopted technique for UWB localization [20, 21]. It is specially 

used for complex indoor environments with mostly NLOS propagation conditions, where the 

goal is to achieve high localization accuracy, [22-24]. Fingerprinting can be implemented 

using a variety of machine learning algorithms. User location and tracking system using k-

nearest neighbours ML algorithm is presented in [25]. The time-efficient support vector 

machine algorithm for indoor positioning system has developed in [26]. In [27] the effect of 

machine learning techniques on accuracy of locating and tracking users in indoor environment 

is investigated. In [28] an indoor localization algorithm based on Naive Bayes fingerprinting 

is presented. An indoor localization algorithm based on the neural networks and extreme 

learning machine is introduced in [29]. Enhancing the performance of the indoor positioning 

system via the integration of different features and classification algorithms is the main goal 

presented in [30], where decision tree, multi-layer perceptron, and Bayesian network to 

improve system performances are used. 

The strategy proposed in this work relies on fingerprinting and UWB localization 

under mixed LOS/NLOS conditions. Since the variety of ML algorithms can be used in 

fingerprinting process, in this paper we investigate the influence of three different ML 

algorithms on the localization accuracy. The experiments were performed to explore the 

performance of an ML algorithm under different fingerprint densities and the number of 

available LOS measurements.  

3. SYSTEM MODEL 

The proposed strategy addresses the mobile target localization problem in a complex 

multi-room indoor environment. We assume single target localization scheme within the 

context of a system for real-time 2D localization. The system is composed of: a) a set of 

N static anchor nodes, b) single target node, and c) a location server. The target node is 

mobile while the anchor nodes are placed at fixed and known positions in the localization 

environment. Distances between the target and anchor nodes are evaluated through UWB 

ToF ranging, [31]. The anchor nodes would be set so that at least three of them cover each 

point in the localization space. That means existence of at least three LOS or NLOS ToF 

ranging between the anchor nodes and target node. The target node collects the measured 

distances and then sent them to the location server, which carries out ML-based localization 

algorithm to estimate the current position of the target node.  

The location fingerprinting method could be observed as a regression model that 

maps input vector to an output vector based on a training set. During the offline training 

phase, UWB measurement campaign is performed for building fingerprint databases. 
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The fingerprint database, F, is formulated as: 

1 1 2 2( , ),( , ),...( , )n nF d l d l d l=  

where di is the distance vector obtained during UWB measurement campaign at the ith  

reference point with ground truth coordinates li = [xi,yi]. 

Distance vector 

1 2[ , ,... ]i i i ijd m m m=  

is composed of j distances, mi, measured between the target and each of j anchor nodes. li  

is the location of the target node, expressed by li = [xi,yi], the ground truth coordinates. 

The size of the fingerprint database is given by n, while the total number of anchor nodes 

is j.  

We apply three different machine learning algorithms to train the fingerprint database 

and then use the learned model to estimate the target node location. The used set of ML 

algorithms includes: k nearest neighbours, Gaussian processes and decision trees. The 

input of the ML algorithms is target distance vector measured by the target node at an 

unknown location, and the output is estimated coordinates of the location. 

The ML algorithm k nearest neighbours determines the position of the target node by 

majority voting and it is implemented in two steps, [32]. In the first step, a subset of k 

distance vectors in the fingerprint database that are most similar to the target distance 

vector is extracted. In the second step, the location of the target node is estimated by 

averaging the ground truth coordinates of the selected fingerprints. The Euclidean 

distance between distance vectors is used as a measure of similarity. 

We adopt k=3 and Euclidean distance function: 

2 2( , ) ( ) ( )ZI t f t f t fl l x x y y = − + −  

where lt = (xt,yt) , and lf = (xf,yf) are locations of the target node and the fingerprints in the 

fingerprint database, respectively. 

The Gaussian process assumes an unknown nonlinear random function. This method 

is nonparametric technique for regression, where it is capable of providing probabilities 

for the output. Gaussian processes are a stochastic process, such that every finite collection 

of random variables has a multivariate normal distribution, [33]. The distribution of a 

Gaussian process is the joint distribution of all those random variables, and as such, it is a 

distribution over functions with a continuous domain, e.g., time or space. Gaussian process 

models are routinely used to solve hard machine learning problems. They are attractive 

because of their flexible non-parametric nature and computational simplicity. 

Decision Trees is a well-known and commonly used machine learning algorithm. It 

works with simple if-then-else decision rules and is used for both classification and 

regression problems. It creates a tree structure based on the data set. The tree structure consists 

of decision nodes, branches and leaves that represent attributes (features), conditions and 

classes, respectively. The decision tree is created by asking questions with true or false 

answers and based on their answers, the trees narrow down until the model is confident to 

give a prediction. The orders and content of these questions are specified by the model, [34]. 
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4. EXPERIMENTAL RESULTS 

The experiment was performed in the 80m2 indoor area with nine UWB nodes: one 

target and eight anchor nodes. In the experiment the UWB wireless transceiver DW1000 

are used as the UWB nodes, [35]. The anchor nodes are set up on the walls 2m above the 

floor, while the target node is affixed to the top of a movable tripod 1m in height. Fig. 1 

shows the layout of the experimental area with marked anchor positions. The fingerprint 

measurement campaign was done in the part of Room A, shown as a dotted area in Fig. 1. 

The coordinates of each dot in this area are measured manually with 10 cm space between 

dots. Maximum number of used LOS anchor in Room A was three, but in accordance 

with experiment that number was changed to two, one, or zero anchor. Outside of the 

Room A five more NLOS anchors were placed. At each reference dot in Room A, ten 

ranging rounds were performed and all the measured target-to-anchor distances are 

recorded as a location fingerprint along with the corresponding ground truth coordinates. 
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Fig. 1 The map of the experimental environment with the red boxes denote anchor nodes 

We analysed the localization accuracy depending on a fingerprint density and number 

of LOS anchors in Room A. Five fingerprint databases of different densities are used. 

The maximum density of the fingerprint database was 50 f/m2 (fingerprints per square 

meter). We also created and used in the experiment four additional fingerprint databases 

with densities of: 25, 12.5, 6.25, and 3.125 f/m2. We also changed the number of LOS 

anchors in Room A discarding the measured distances to one or more anchors. 

The experimental results are presented in the terms of the localization error, which is 

defined as the Euclidean distance between the actual and the estimated location. The 

magnitude and uncertainty of localization errors are quantified by Mean Distance Error 

(MDE) and Cumulative Distribution Function (CDF) the localization error. We compare 

localization performance of ML algorithms: kNN, GP and DT. 

The first experiment was done with three LOS anchors in Room A and the experimental 

results are presented in Table 1 and Fig. 2. As we can observe, the performances of all ML 

algorithms highly depend on fingerprint density. The ML algorithm’s accuracy decreases 

with increasing fingerprint density. To achieve a sub-decimetre accuracy in the 3-LOS case, 

kNN algorithm needs a fingerprint database of density greater than 25 f/m2, while the 

accuracy is slightly better for the GP algorithm and 12.5 f/m2 fingerprint density. The DT 
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algorithm has the worst localization error, from 11.86 cm for a high-density fingerprint 

database, up to more than 36 cm, when a low-density fingerprint database is used.  

Table 1 Statistics of localization error (in cm) of ML algorithms for 3-LOS case and five 

fingerprint densities 

3-LOS 

ML  algorithm 

MDE of fingerprint density (f / m2) 

50 25 12.5 6.25 3.125 

kNN 7.9 10.85 12.79 16.6 25.09 

GP 4.78 5.25 6.4 10.23 17.27 

DT 11.86 18.14 23.93 30.37 36.9 

 

Fig. 2 CDF of the localization errors of ML algorithms for 3-LOS case and fingerprint 

densities of 50 f / m2 and 3.125 f / m2 

Table 2 and Fig. 3 report the experimental results for the for the deployment scenario 

with two LOS anchors, while in Table 3 and Fig. 4 are presented results for one LOS case. 

In both cases, the results depend on fingerprint density. It can be seen that localization 

errors for 2-LOS case are slightly worse than in three LOS scenario. Similarly, estimating 

positions in 1-LOS case is not as good as in 2-LOS scenario. This is expected, given the 

smaller number of target-anchor distances measured under LOS conditions. The MDE 

difference between 2-LOS and 1-LOS cases ranges from 0.5 cm for kNN to 1.5 cm for GP 

and to 2.5 cm for the DT algorithm, for fingerprint density of 50 f/m2. For a density of 

3.125 f/m2 the MDE difference between 2-LOS and 1-LOS cases ranges are 0.1 cm, 2.6 cm 

and 0.25 cm for kNN, GP and DT, respectively. Nevertheless, even in the 1-LOS case, the 

MDE of the GP algorithm is consistently lower than the other two ML algorithms. 

Table 2 Statistics of localization error (in cm) of ML algorithms for 2-LOS case and five 

fingerprint densities 

2-LOS 

ML algorithm 

MDE of fingerprint density (f / m2) 

50 25 12.5 6.25 3.125 

kNN 8.83 12.03 14.29 18.67 26.32 

GP 5.98 7.44 9.14 11.94 18.73 

DT 13.67 19.5 25.23 31.31 37.18 
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Fig. 3 CDF of the localization errors of ML algorithms for 2-LOS case and fingerprint 

densities of 50 f / m2 and 3.125 f / m2 

Table 3 Statistics of localization error (in cm) of ML algorithms for 1-LOS case and five 

fingerprint densities 

1-LOS 

ML algorithm 

MDE of fingerprint density (f / m2) 

50 25 12.5 6.25 3.125 

kNN 9.39 12.68 14.95 19.73 26.2 

GP 7.58 9.57 11.31 13.77 21.36 

DT 16.08 20.71 25.93 30.89 37.27 

 

Fig. 4 CDF of the localization errors of ML algorithms for 1-LOS case and fingerprint 

densities of 50 f / m2 and 3.125 f / m2 

In the 0-LOS case, in which all distances are measured under NLOS conditions, the 

localization error ranges from 10.8 cm, for a high-density fingerprint database, up to more 

than 39 cm, when a low-density fingerprint database is used. The GP algorithm has the 

best results among other ML algorithms for all fingerprint density, MDE ranges from 10 

cm to 27 cm, for a high-density and a low-density fingerprint database, respectively. 
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Table 4 Statistics of localization error (in cm) of ML algorithms for 0-LOS case and five 

fingerprint densities 

0-LOS 

ML algorithm 

MDE of fingerprint density (f / m2) 

50 25 12.5 6.25 3.125 

kNN 12.23 16.19 19.05 23.54 30.57 

GP 10.88 14.44 16.65 19.5 27.03 

DT 17.78 22.99 27.84 32.16 39.68 

 

Fig. 5 CDF of the localization errors of ML algorithms for 0-LOS case and fingerprint 

densities of 50 f / m2 and 3.125 f / m2 

5. CONCLUSIONS 

In this paper, the fingerprinting method for indoor localization is evaluated in terms of 

selected machine learning algorithm under various environmental conditions. We applied 

three different machine learning algorithms to train the fingerprint database and then use 

the learned model to estimate the target node location. Our aim was to find the most 

appropriate ML algorithm for indoor positioning problem. Experiments confirm that GP 

algorithm is superior to all other ML algorithms to estimate position. Besides, kNN 

provides nearly the same performance when used under NLOS conditions when a high 

density fingerprint database is available. Since kNN is the least computationally demanding 

algorithm it should be considered as the first option in most real-world scenarios. In the 

future, the experimental results can be further improved by extending the evaluation with 

additional machine learning algorithms for the indoor positioning system. 
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