105 research outputs found

    Function-based Intersubject Alignment of Human Cortical Anatomy

    Get PDF
    Making conclusions about the functional neuroanatomical organization of the human brain requires methods for relating the functional anatomy of an individual's brain to population variability. We have developed a method for aligning the functional neuroanatomy of individual brains based on the patterns of neural activity that are elicited by viewing a movie. Instead of basing alignment on functionally defined areas, whose location is defined as the center of mass or the local maximum response, the alignment is based on patterns of response as they are distributed spatially both within and across cortical areas. The method is implemented in the two-dimensional manifold of an inflated, spherical cortical surface. The method, although developed using movie data, generalizes successfully to data obtained with another cognitive activation paradigm—viewing static images of objects and faces—and improves group statistics in that experiment as measured by a standard general linear model (GLM) analysis

    Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training

    Get PDF
    The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper, we present an automated framework for regional labeling of both primary/secondary and tertiary sulci of the dorsal portion of lateral prefrontal cortex (LPFC) using spherical convolutional neural networks. We propose two core components that enhance the inference of sulcal labels to overcome such large neuroanatomical variability: (1) surface data augmentation and (2) context-aware training. (1) To take into account neuroanatomical variability, we synthesize training data from the proposed feature space that embeds intermediate deformation trajectories of spherical data in a rigid to non-rigid fashion, which bridges an augmentation gap in conventional rotation data augmentation. (2) Moreover, we design a two-stage training process to improve labeling accuracy of tertiary sulci by informing the biological associations in neuroanatomy: inference of primary/secondary sulci and then their spatial likelihood to guide the definition of tertiary sulci. In the experiments, we evaluate our method on 13 deep and shallow sulci of human LPFC in two independent data sets with different age ranges: pediatric (N=60) and adult (N=36) cohorts. We compare the proposed method with a conventional multi-atlas approach and spherical convolutional neural networks without/with rotation data augmentation. In both cohorts, the proposed data augmentation improves labeling accuracy of deep and shallow sulci over the baselines, and the proposed context-aware training offers further improvement in the labeling of shallow sulci over the proposed data augmentation. We share our tools with the field and discuss applications of our results for understanding neuroanatomical-functional organization of LPFC and the rest of cortex (https://github.com/ilwoolyu/SphericalLabeling). ?? 2021 The Author(s

    Statistical shape analysis of neuroanatomical structures based on spherical wavelet transformation

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2008.Includes bibliographical references.Evidence suggests that morphological changes of neuroanatomical structures may reflect abnormalities in neurodevelopment, or relate to a variety of disorders, such as schizophrenia and Alzheimer's disease (AD). Advances in high-resolution Magnetic Resonance Imaging (MRI) techniques allow us to study these alterations of brain structures in vivo. Previous work in studying the shape variations of brain structures has provided additional localized information compared with traditional volume-based study. However, challenges remain in finding an accurate shape presentation and conducting shape analysis with sound statistical principles. In this work, we develop methods for automatically extracting localized and multi-scale shape features and conducting statistical shape analysis of neuroanatomical structures obtained from MR images. We first develop a procedure to extract multi-scale shape features of brain structures using biorthogonal spherical wavelets. Using this wavelet-based shape representation, we build multi-scale shape models and study the localized cortical folding variations in a normal population using Principal Component Analysis (PCA). We then build a shape-based classification framework for detecting pathological changes of cortical surfaces using advanced classification methods, such as predictive Automatic Relevance Determination (pred-ARD), and demonstrate promising results in patient/control group comparison studies. Thirdly, we develop a nonlinear temporal model for studying the temporal order and regional difference of cortical folding development based on this shape representation. Furthermore, we develop a shape-guided segmentation method to improve the segmentation of sub-cortical structures, such as hippocampus, by using shape constraints obtained in the wavelet domain.(cont.) Finally, we improve upon the proposed wavelet-based shape representation by adopting a newly developed over-complete spherical wavelet transformation and demonstrate its utility in improving the accuracy and stability of shape representations. By using these shape representations and statistical analysis methods, we have demonstrated promising results in localizing shape changes of neuroanatomical structures related to aging, neurological diseases, and neurodevelopment at multiple spatial scales. Identification of these shape changes could potentially lead to more accurate diagnoses and improved understanding of neurodevelopment and neurological diseases.by Peng Yu.Ph.D

    Efficient probabilistic and geometric anatomical mapping using particle mesh approximation on GPUs

    Get PDF
    pre-printDeformable image registration in the presence of considerable contrast differences and large size and shape changes presents significant research challenges. First, it requires a robust registration framework that does not depend on intensity measurements and can handle large nonlinear shape variations. Second, it involves the expensive computation of nonlinear deformations with high degrees of freedom. Often it takes a significant amount of computation time and thus becomes infeasible for practical purposes. In this paper, we present a solution based on two key ideas: a new registration method that generates a mapping between anatomies represented as a multicompartment model of class posterior images and geometries and an implementation of the algorithm using particle mesh approximation on Graphical Processing Units (GPUs) to fulfill the computational requirements. We show results on the registrations of neonatal to 2-year old infant MRIs. Quantitative validation demonstrates that our proposed method generates registrations that better maintain the consistency of anatomical structures over time and provides transformations that better preserve structures undergoing large deformations than transformations obtained by standard intensity-only registration. We also achieve the speedup of three orders of magnitudes compared to a CPU reference implementation, making it possible to use the technique in time-critical applications

    Shape analysis based on depth-ordering

    Get PDF
    In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to “normality”. Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls

    BrainPrint: A discriminative characterization of brain morphology

    Get PDF
    We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace–Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets.National Cancer Institute (U.S.) (1K25-CA181632-01)Athinoula A. Martinos Center for Biomedical Imaging (P41-RR014075)Athinoula A. Martinos Center for Biomedical Imaging (P41-EB015896)National Alliance for Medical Image Computing (U.S.) (U54-EB005149)Neuroimaging Analysis Center (U.S.) (P41-EB015902)National Center for Research Resources (U.S.) (U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (5P41EB015896-15)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006758)National Institute on Aging (AG022381)National Institute on Aging (5R01AG008122-22)National Institute on Aging (AG018344)National Institute on Aging (AG018386)National Center for Complementary and Alternative Medicine (U.S.) (RC1 AT005728-01)National Institute of Neurological Diseases and Stroke (U.S.) (R01 NS052585-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R21NS072652-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R01NS070963)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS083534)National Institutes of Health (U.S.) ((5U01-MH093765

    BrainPrint: A discriminative characterization of brain morphology

    Get PDF
    We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace–Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets.National Cancer Institute (U.S.) (1K25-CA181632-01)Athinoula A. Martinos Center for Biomedical Imaging (P41-RR014075)Athinoula A. Martinos Center for Biomedical Imaging (P41-EB015896)National Alliance for Medical Image Computing (U.S.) (U54-EB005149)Neuroimaging Analysis Center (U.S.) (P41-EB015902)National Center for Research Resources (U.S.) (U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (5P41EB015896-15)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006758)National Institute on Aging (AG022381)National Institute on Aging (5R01AG008122-22)National Institute on Aging (AG018344)National Institute on Aging (AG018386)National Center for Complementary and Alternative Medicine (U.S.) (RC1 AT005728-01)National Institute of Neurological Diseases and Stroke (U.S.) (R01 NS052585-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R21NS072652-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R01NS070963)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS083534)National Institutes of Health (U.S.) ((5U01-MH093765

    Learning task-optimal image registration with applications in localizing structure and function in the cerebral cortex

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 127-141).In medical image analysis, registration is necessary to establish spatial correspondences across two or more images. Registration is rarely the end-goal, but instead, the results of image registration are used in other tasks, such as voxel-based morphometry, functional group analysis, image segmentation and tracking. In this thesis, we argue that the quality of image registration should be evaluated in the context of the application. Consequently, we develop a framework for learning registration cost functions optimized for specific tasks. We demonstrate that by taking into account the application, we not only achieve better registration, but also potentially resolve certain ambiguities and ill-posed nature of image registration. We first develop a generative model for joint registration and segmentation of images. By jointly modeling registration and the application of image segmentation, we demonstrate improvements in parcellation of the cerebral cortex into different structural units. In this thesis, we work with spherical representations of the human cerebral cortex. Consequently, we develop a fast algorithm for registering spherical images. Application to the cortex shows that our algorithm achieves state-of-the-art accuracy, while being an order of magnitude faster than competing diffeomorphic, landmark-free algorithms. Finally, we consider the problem of automatically determining the "free" parameters of registration cost functions.(cont.) Registration is usually formulated as an optimization problem with multiple tunable parameters that are manually set. By introducing a second layer of optimization over and above the usual registration, this thesis provides the first effective approach to optimizing thousands of registration parameters to improve alignment of a new image as measured by an application-specific performance measure. Much previous work has been devoted to developing generic registration algorithms, which are then specialized to particular imaging modalities (e.g., MR), particular imaging targets (e.g., cardiac) and particular post- registration analyses (e.g., segmentation). Our framework provides a principled method for adapting generic algorithms to specific applications. For example, we estimate the optimal weights or cortical folding template of the generic weighted Sum of Squared Differences dissimilarity measure for localizing underlying cytoarchitecture and functional regions of the cerebral cortex. The generality of the framework suggests potential applications to other problems in science and engineering formulated as optimization problems.by B.T. Thomas Yeo.Ph.D

    Variational methods for shape and image registrations.

    Get PDF
    Estimating and analysis of deformation, either rigid or non-rigid, is an active area of research in various medical imaging and computer vision applications. Its importance stems from the inherent inter- and intra-variability in biological and biomedical object shapes and from the dynamic nature of the scenes usually dealt with in computer vision research. For instance, quantifying the growth of a tumor, recognizing a person\u27s face, tracking a facial expression, or retrieving an object inside a data base require the estimation of some sort of motion or deformation undergone by the object of interest. To solve these problems, and other similar problems, registration comes into play. This is the process of bringing into correspondences two or more data sets. Depending on the application at hand, these data sets can be for instance gray scale/color images or objects\u27 outlines. In the latter case, one talks about shape registration while in the former case, one talks about image/volume registration. In some situations, the combinations of different types of data can be used complementarily to establish point correspondences. One of most important image analysis tools that greatly benefits from the process of registration, and which will be addressed in this dissertation, is the image segmentation. This process consists of localizing objects in images. Several challenges are encountered in image segmentation, including noise, gray scale inhomogeneities, and occlusions. To cope with such issues, the shape information is often incorporated as a statistical model into the segmentation process. Building such statistical models requires a good and accurate shape alignment approach. In addition, segmenting anatomical structures can be accurately solved through the registration of the input data set with a predefined anatomical atlas. Variational approaches for shape/image registration and segmentation have received huge interest in the past few years. Unlike traditional discrete approaches, the variational methods are based on continuous modelling of the input data through the use of Partial Differential Equations (PDE). This brings into benefit the extensive literature on theory and numerical methods proposed to solve PDEs. This dissertation addresses the registration problem from a variational point of view, with more focus on shape registration. First, a novel variational framework for global-to-local shape registration is proposed. The input shapes are implicitly represented through their signed distance maps. A new Sumof- Squared-Differences (SSD) criterion which measures the disparity between the implicit representations of the input shapes, is introduced to recover the global alignment parameters. This new criteria has the advantages over some existing ones in accurately handling scale variations. In addition, the proposed alignment model is less expensive computationally. Complementary to the global registration field, the local deformation field is explicitly established between the two globally aligned shapes, by minimizing a new energy functional. This functional incrementally and simultaneously updates the displacement field while keeping the corresponding implicit representation of the globally warped source shape as close to a signed distance function as possible. This is done under some regularization constraints that enforce the smoothness of the recovered deformations. The overall process leads to a set of coupled set of equations that are simultaneously solved through a gradient descent scheme. Several applications, where the developed tools play a major role, are addressed throughout this dissertation. For instance, some insight is given as to how one can solve the challenging problem of three dimensional face recognition in the presence of facial expressions. Statistical modelling of shapes will be presented as a way of benefiting from the proposed shape registration framework. Second, this dissertation will visit th

    3D Generalization of brain model to visualize and analyze neuroanatomical data

    Get PDF
    Neuroscientists present data in a 3D form in order to convey a better real world visualization and understanding of the localization of data in relation to brain anatomy and structure. The problem with the visualization of cortical surface of the brain is that the brain has multiple, deep folds and the resulting structural overlap can hide data interweaved within the folds. On one hand, a 2D representation can result in a distorted view that may lead to incorrect localization and analysis of the data. On the other hand, a realistic 3D representation may interfere with our judgment or analysis by showing too many details. Alternatively, a 3D generalization can be used to simplify the model of the brain in order to visualize the hidden data and smooth some of the details. This dissertation addresses the following research question: Is 3D generalization of a brain model a viable approach for visualizing neuroanatomical data
    corecore