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Abstract
Evidence suggests that morphological changes of neuroanatomical structures may reflect
abnormalities in neurodevelopment, or relate to a variety of disorders, such as schizophrenia and
Alzheimer's disease (AD). Advances in high-resolution Magnetic Resonance Imaging (MRI)
techniques allow us to study these alterations of brain structures in vivo. Previous work in studying
the shape variations of brain structures has provided additional localized information compared
with traditional volume-based study. However, challenges remain in finding an accurate shape
presentation and conducting shape analysis with sound statistical principles. In this work, we
develop methods for automatically extracting localized and multi-scale shape features and
conducting statistical shape analysis of neuroanatomical structures obtained from MR images.

We first develop a procedure to extract multi-scale shape features of brain structures using bi-
orthogonal spherical wavelets. Using this wavelet-based shape representation, we build multi-scale
shape models and study the localized cortical folding variations in a normal population using
Principal Component Analysis (PCA). We then build a shape-based classification framework for
detecting pathological changes of cortical surfaces using advanced classification methods, such as
predictive Automatic Relevance Determination (pred-ARD), and demonstrate promising results in
patient/control group comparison studies. Thirdly, we develop a nonlinear temporal model for
studying the temporal order and regional difference of cortical folding development based on this
shape representation. Furthermore, we develop a shape-guided segmentation method to improve
the segmentation of sub-cortical structures, such as hippocampus, by using shape constraints
obtained in the wavelet domain. Finally, we improve upon the proposed wavelet-based shape
representation by adopting a newly developed over-complete spherical wavelet transformation and
demonstrate its utility in improving the accuracy and stability of shape representations.

By using these shape representations and statistical analysis methods, we have demonstrated
promising results in localizing shape changes of neuroanatomical structures related to aging,
neurological diseases, and neurodevelopment at multiple spatial scales. Identification of these
shape changes could potentially lead to more accurate diagnoses and improved understanding of
neurodevelopment and neurological diseases.
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Chapter 1

Introduction

In vivo quantification of neuroanatomical shape variations is possible due to recent advances in
medical imaging technology, and has proven useful in the study of neuropathology and
neurodevelopment. In this chapter, we first introduce the previous work conducted in shape-based
analysis of neuroanatomical structures. We state then our objectives and the major contributions of
this dissertation, and give an overview of the structure of this thesis.

1.1 Motivation

Evidence suggests that morphological changes in neuroanatomical structures may reflect
abnormalities in neurodevelopment, or relate to a variety of disorders, such as schizophrenia and
Alzheimer's disease (AD). These morphological variations can be characterized by changes of
volume, thickness, surface area and shape. With the advent and rapid development of Magnetic
Resonance Imaging (MRI) techniques, it is now possible to conduct the in vivo analysis of
neuroanatomical structures of the human being with controlled experimental designs. Therefore, it is
highly desirable to develop automated tools to facilitate the morphological studies of brain structures
on a large-scale with reliability and repeatability.

Efforts were originally made to characterize the volumetric and global-scale shape changes of
various neuroanatomical structures, such as the cerebral cortex, hippocampus and corpus callosum.
Recently, considerable effort has been focused on quantifying the localized changes in the
2-dimensional (2D) or 3-dimensional (3D) shape of brain structures. This effort is motivated by the
fact that some neurological abnormalities affect only certain types of brain functions, and might
cause only regional changes of neuroanatomical structures. Detecting the localized shape changes
could provide new knowledge about structure-function relationships, discover the underlying
biological processes related to various neurological diseases, and potentially lead to more accurate
diagnoses, better treatments, and an improved understanding of neurodevelopment.

However, the difficulties in both finding an accurate shape presentation and conducting reliable
statistical analysis present a challenge for the study of neuroanatomical structures. Furthermore, how
to accurately and comprehensively represent the complex shape of the cerebral cortex in human
beings remains one of the most interesting open questions in the field of computational anatomy, due



to the fact that the cortex is highly convoluted and greatly affected by neurodevelopment and
neuropathy.

1.2 Previous Work

To accurately study shape variations of brain structures across different subjects, one would like to
find not only an effective shape representation but also a registration method to preserve individual
variation while aligning anatomically important structures. Different techniques employed in
extracting shape features contribute to the merits and disadvantages of various shape analysis
methods. In this section, we present an overview of the previous work studying the shape of
neuroanatomical structures, including the cerebral cortex and subcortical brain structures such as
hippocampus and ventricles. We discuss the shape representation and statistical methods, and
summarize the types of statistical studies and results.

1.2.1 Shape Representation Methods

A - Understanding the complexity of cerebral cortex

The human cerebral cortex is highly convoluted, which is probably due in part to the need to
increase its surface without increasing intracranial size. Quantitative measurements have been
developed to characterize the geometry and folding patterns of the cortical surface.

One of the earliest and most popular measurements developed was to quantify cortical gyrification
by calculating the Gyrification Index (GI), which measures the ratio of inner and outer cortical
surface contours delineated on 2D coronal sections [1]. GI has been used extensively to quantify
neurodevelopment and different neurological disorders such as autism, schizophrenia, and
William's syndrome [2-8]. Subsequently, GI was extended to 3D by measuring a global GI across
the whole cortical surface, or in a region of interest. Sulcal morphometry was also studied by
assessing sulcal depth, length, width, or asymmetry index [9-11] based on the hypothesis that sulcal
configuration can convey information about the early development of the cortex [12]. These
methods have been used successfully to quantify the complex shape of the cortical surface, but they
could not provide localized geometric information across the whole brain since they are calculated
either in specifically delineated sulcal regions or on a globally scale.

Fractal Dimension (FD) was proposed by Cook et al. [13]and Thompson et al. [14] to estimate the
complexity of the cortex. FD is an extremely compact measurement of shape complexity,
condensing all geometrical information into a single numeric value. It has been used widely to assess
normal and abnormal brain development, or quantify neurological disorders over the whole
hemisphere or in lobar regions [13, 15-20] .However, it is also a global shape feature and can not be
used to extract localized shape features. Furthermore, it remains a challenge to interpret the
extracted geometrical information with FD measurement [21].

Recently, methods for extracting localized shape features of the cortical surface have been
developed. For example, Luders et al. proposed an approach for estimating local gyrification index
at thousands of points across the entire cortical surface by using smoothed absolute mean curvature
[22]. Subsequently, Schaer et al. proposed to calculated the localized 3D GI in a circular region at
each point on the cortical surface, which resembles the Gaussian curvature [23]. Furthermore, the
automated Freesurfer tools [24] are used to calculate localized shape features of the cortical surface,
which essentially measures the metric distortion at each point when the cortical surface is registered
to a template using a surface-based registration method [25]. These methods can be used to quantify



localized cortical folding patterns across the whole cortical surface in an automated way. However,
smoothing filters are often needed to determine the spatial extent of the shape variation when using
these shape features. To achieve the best discriminative result in the subsequent statistical study, the
width of filter kernel needs to be estimated empirically for each dataset under study.

B - Shape representation of subcortical structures

One of the earliest techniques developed in this field represents shapes implicitly by points
sampled on the boundary of the object being studied, and the coordinates of the corresponding points
on different subjects are directly used as shape features [26, 27]. Cootes et al. extended this method
by building the point distribution model, which allows for global scale analysis of shape variation by
applying Principal Component Analysis (PCA) to the positions of the boundary points [28]. This
method, however, depends heavily on the accuracy of the inter-subject registration for group
comparison.

Subsequently, parametric models were developed to decompose the boundary or surface using
Fourier or spherical harmonic descriptors (SPHARM), and to use the decomposition coefficients as
a shape descriptor [29-32]. A drawback of these models is the lack of ability to concisely represent
local shape variation because of the global support of the basis functions. Recently, a weighted
spherical harmonic representation has been developed and can potentially be used to conduct local
analysis by differential weighting of the SPHARM coefficients [33].

Another popular method warps a template to individual subjects and studies the deformation field
for shape variations [34-37]. Although this method is sensitive to the template selection and presents
challenges in interpreting and comparing shape differences using the high-dimensional deformation
field, a number of promising shape analysis results have been obtained and more advanced
techniques based on this method have been developed.

Medial axis techniques, originally proposed by H. Blum [38] and used by Pizer et al. [39] and
Golland et al. [40] in 3D and 2D, respectively, is a powerful tool for the shape analysis of a variety of
subcortical structures. This technique allows for a separate study of the local position and thickness
of the object at both coarse and fine levels. Another advantage of medial descriptions is due to an
intrinsic coordinate system of the object, which facilitates the construction of correspondences
between subjects and the subsequent statistical analysis. However, this method is sensitive to small
perturbations of the boundary, which presents a challenge to the further development and application
of medial representation in shape analysis.

In summary, we find that most of shape representation methods developed in the previous study
can either extract global shape features at multiple spatial scales, such as methods based on
SPHARM, or local shape features at a single spatial resolution, such as the measurement of local GI.
However, since it is of great medical importance to study both the location and spatial extent of
shape changes, it's highly desirable to extract local and multi-scale features, especially for the
convoluted cortical surfaces.

1.2.2 Statistical Analysis and Applications

Using various shape representation models, shape features are extracted from the surfaces to study
the relationships of these shape features with a set of explanatory variables, or examine the
differences of these shape features between groups. Linear models, such as Analysis of Variance
(ANOVA), multiple linear regression and General Linear Model (GLM), have been used to study



the effects of aging, gender, genetics, or drug treatments on the shape of neuroanatomical structures
[21, 41, 42].

A variety of discriminative modeling techniques have been employed to select shape features that
best separate the brain structures of two groups. Some use typical group mean statistics, such as t
statistics, to study the shape differences between patients and normal controls by directly comparing
the group averages [41, 43-47], while others employ more advanced feature selection tools based on
vector feature input [48]. Non-parametric methods, such as permutation testing, have been proposed
to correct for multiple comparisons in shape feature selection, which has been a great concern in
shape analysis, as the large number of features, and therefore the large number of statistical tests
involved, increases the chance of false detection [43]. Furthermore, classification methods such as
the Linear Discriminate Analysis (LDA) and the Support Vector Machines (SVMs) have been used
to detect the differences between classes, and construct classifiers from the training set to
automatically assign new subjects to discriminative groups [49-51].

Recruiting more powerful statistical analysis techniques is crucial for the discrimination and
understanding of differences between normal controls and diseased patients, as well as the
correlation of shape features with various other potentially influential factors.

1.2.3 Shape Analysis Results

Statistical analysis methods have been applied to study aging [11, 41, 52], gender [22], and disease
[23, 25, 53, 54] related shape changes of the cerebral cortex, as well as a number of subcortical brain
structures. Various studies have demonstrated that shape measures reveal new information beyond
what is obtained through volume measurements, which has improved our understanding of structural
variances in normal populations and differences between healthy controls and patients. In this
subsection, we introduce and compare results obtained from two of the most common types of
shape-based studies of sub-cortical structures: the study of hippocampus shape changes related to
schizophrenia and the study of lateral ventricle in twins.

A - Shape changes of the hippocampus related to schizophrenia

The goal of this type of study is to assess shape asymmetry between the left and right hippocampi,
and also to analyze shape deformation in schizophrenic patients. Most groups found that the analysis
of hippocampal shape can discriminate between schizophrenic and control subjects with greater
power than volumetry [31, 47, 55]. Styner et al. and Shenton et al. found that the differences
between patients and controls are located mostly in the tail [46, 56, 57]. However, Csernanasky et al.
reported hippocampal abnormalities in schizophrenia located mainly in the head region [45, 47, 55].
The discrepancy may be due to the different methodologies or groups of subjects, but there is no
clear explanation to date.

B - Lateral ventricle twin study

This type of study investigates the group differences of the lateral ventricles between
Monozygotic (MZ) twins, Dizygotic (DZ) twins and Unrelated (NR) subjects. The goal of this study
is to determine whether MZ twins have more similarly shaped lateral ventricles than DZ twins or NR
subject pairs.



Without exceptions, twin studies have demonstrated that significant differences between MZ and
DZ pairs could not be found by volume measurements but were revealed by shape analysis [39, 43,
58]. However, Styner et al. [31] found there was a significant group difference between MZ and DZ
twin pairs for the right but not for the left ventricles.

In summary, a variety of shape analysis has been conducted in the previous work to quantify the
shape changes of the cortex and sub-cortical structures. However, there is a lack of shape analysis on
cortical surfaces using more advanced statistical analysis methods, such as classification, compared
with the sub-cortical shape analysis.

1.3 Objective and Contributions

In order to accurately and efficiently extract multi-scale and localized shape features, we propose to
represent the shape using a spherical wavelet transformation. Using the resulting wavelet
coefficients as shape features, we develop a set of statistical analysis frameworks to study the
localization and spatial extent of shape changes of neuroanatomical structures associated with
idiosyncratic difference, neurological diseases and neurodevelopment. We also develop a method to
improve the segmentation accuracy of sub-cortical structures by incorporating multi-scale shape
information extracted using this wavelet-based shape representation. Our contributions can be
broadly divided into three categories.

A - Multi-scale and localized shape representation of neuroanatomical structures

In this dissertation, we propose to decompose the surface of neuroanatomical structures using a
spherical wavelet transformation, and to use the wavelet coefficients as shape features. These shape
features represent the surface at multiple spatial scales and locations, as the underlying wavelet basis
functions have local support in both space and frequency. This multi-scale and localized shape
representation allows us to study the surface at different spatial resolutions, in contrast to the
curvature-based shape features, and in a localized fashion, in contrast to global shape representations.
We first develop a method to extract normalized shape features for a set of registered subjects based
on a bi-orthogonal spherical wavelet transformation [59], which is easy to compute and has good
compression properties. We then improve upon this proposed shape representation by adopting a
newly developed over-complete wavelet transformation [60] and demonstrate its use in improving
the accuracy and stability of shape representations. Our approach provides a novel way to study the
shape of neuroanatomical structures, particularly the convoluted cortical surfaces, in a
multi-resolution and localized fashion. Furthermore, we can easily visualize and interpret the shape
information represented by each spherical wavelet coefficient by using the inverse wavelet
transformation. The visualization property is of great use in the medical image analysis.

B - Statistical Shape analysis

We develop a set of statistical analysis frameworks based on our new shape representation, and
apply them to study the convoluted folding of cortical surfaces. First, we develop a method to
visualize the most distinct patterns of cortical folding variations in a population at multiple
resolutions by using principal component analysis (PCA) in the wavelet domain. We apply this
method to study cortical folding variations in an elderly normal population and visualize the shape
variations in this dataset. These results can be used as a baseline for discriminative studies of



neurological diseases. Furthermore, we investigate the correlation of these cortical folding
variations with age, gender and a set of neuropsychological scores and find that large-scale cortical
folding variations are significantly related with age in the female group.

We then develop a new classification framework to detect the discriminative cortical folding
differences in two groups using the wavelet-based shape representation. We employ a Bayesian
classification method, predictive automatic relevance determination (pred-ARD), for feature
selection and classification, and demonstrate that it outperforms the classical method such as SVMs
in our cortical shape-based group comparison study. We also demonstrate promising classification
results in the study of mild dementia. The developed framework provides a power tool for detecting
shape changes related to neurological disease, and can be used for computer-aided diagnosis in the
future.

Thirdly, we develop a nonlinear temporal model for studying the cortical folding development at
coarse and progressively finer spatial resolutions in neurodevelopment based on the wavelet
transformation. We develop a regularization framework to improve prediction performance on new
MRI scans given the limited amount of training data and employ an efficient model estimation
method. Using a dataset of newborn, we develop multi-scale folding models in late gestation and
provide novel findings of the temporal order and regional differences in cortical folding
development. These normal development models can be potentially used for the early detection of
neurological defects.

C - Shape-guided segmentation

Finally, we develop a method to improve the segmentation of sub-cortical structures, such as the
hippocampus, by incorporating multi-scale shape information in the wavelet domain obtained from a
training set. By using image models that incorporate probabilistic information about label and
intensity, we deform the surface to the boundary of the object guided by, but not limited to the shape
priors obtained from the training set. We demonstrate that the proposed method improves the
segmentation accuracy of the hippocampus in spite of the imperfections of MR images.

The methods developed in this dissertation, including spherical wavelet transformation, a set of
statistical analysis procedures, and the shape-guided sub-cortical segmentation, are implemented as
part of the Freesurfer [24], which is a publicly available software package for conducting a variety of
MR image analyses. Together with the MR image preprocessing tools in the Freesurfer, this entire
procedure can be used to conduct automated shape analysis on neuroanatomical structures of large
sets of MR images.

1.4 Thesis Overview

This thesis is organized in three parts. The first part, corresponding to Chapter 2, presents our
approach of using spherical wavelet transformation to extract shape features of neuroanatomical
structures. We describe the developed procedures for obtaining normalized bi-orthogonal spherical
wavelet coefficients for a set of registered subjects and demonstrate the superior ability of the
wavelet-based shape representation in characterizing localized shape variation compared with
SPHARM.

The second part, consisting of Chapters 3, 4, 5 and 6, presents our contributions to conducting
statistical analysis based on the wavelet representation, and to using the shape information to



improve the accuracy of sub-cortical structure segmentation.
In Chapter 3, we build shape models at multiple resolutions by applying PCA in the spherical

wavelet domain and demonstrate the use of this method in characterizing the most distinct patterns
of cortical folding variations in a nondemented elderly population. Furthermore, we investigate the
correlations of these observed cortical folding variations with age, gender and a set of
neuropsychological measurements. In addition, we show the use of the proposed method in studying
the cortical folding development in a small dataset of newborn.

In Chapter 4, we develop a classification framework to study cortical folding differences between
two groups of subjects using the shape features extracted from spherical wavelet transformation. We
employ a Bayesian classification method to train a classifier and select features by minimizing an
estimate of prediction error. We introduce the entire framework including preprocessing, feature
selection, classification and visualization of the cortical shape differences, which correspond to
these selected features at multiple spatial scales and different locations. We demonstrate that the
Bayesian classification method achieves better classification accuracy compared with a classical
method in our shape-based patient/control study, and present potentially interesting biological
results on real datasets.

In Chapter 5, we develop a nonlinear temporal model of cortical folding development at multiple
spatial scales using the wavelet-based shape representation. We introduce in detail the model
estimation method. We show the new findings regarding the temporal order of cortical folds of large
and progressively smaller spatial scales and the regional differentiation in folding development by
estimating these models on a MRI dataset of newborn.

Finally, in Chapter 6, we develop a method to improve the segmentation accuracy of sub-cortical
structures by incorporating statistical shape information extracted from a training dataset with the
spherical wavelet transformation. We introduce in detail the developed surface deformation method
using image-based models with multi-scale shape constraints, and demonstrate the use of the
proposed method in improving the segmentation of the hippocampus in a manually segmented MRI
dataset.

In the third part of this thesis, which consists of Chapter 7, we develop a method to extract shape
features using a newly developed over-complete spherical wavelet transformation. We demonstrate
the theoretical advantage of over-complete wavelets over bi-orthogonal wavelets in terms of
providing more accurate localization of shape changes. Lastly, we illustrate the power of
over-complete wavelets in building more stable cortical folding development models, and detecting
a wider array of regions of folding development in the dataset of newborn compared to the results in
Chapter 5.

We conclude the thesis in Chapter 8. At the end of each chapter, we review the main contributions
and indicate the associated publications. The bibliography and appendix are made for each chapter
separately. The appendix at the end of this thesis lists all of our publications related to this work.
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Chapter 2

Shape Representation Based on
Bi-orthogonal Spherical Wavelets

In this chapter, we propose the use of a spherical wavelet transformation to extract shape features of
neuroanatomical structures, such as cortical surfaces reconstructed from magnetic resonance (MR)
images. The shape representation based on the spherical wavelet transformation can characterize
the underlying surface locally in both space and frequency, in contrast to spherical harmonics
(SPHARM) that have a global basis set. In this chapter, we develop a set of procedures for exacting
the normalized bi-orthogonal spherical wavelet coefficients for a set of registered surfaces
reconstructed. We introduce the preprocessing procedure employed to obtain and register cortical
surfaces based on MR images, and our pipeline for conducting statistical analysis using this
wavelet-based shape representation. We also demonstrate the ability of spherical wavelet-based
shape representation to better capture localized shape variation compared with SPHARM

2.1 Motivation

For the purpose of quantitatively studying the shape of neuroanatomical structures, such as the
cerebral cortex and the hippocampus, a variety of shape descriptors has been developed to extract
shape features of the underlying object, as introduced in Chapter 1. Among them, parametric model
was first developed to decompose the boundary, represented with a set of boundary points, using
Fourier descriptors [1, 2]. Later on, this work was extended to extract multi-scale shape features of
an object with spherical topology, usually represented by a surface mesh, using Spherical Harmonic
descriptors (SPHARM) [3]. These methods essentially transform the underlying surface function
into multiple spatial frequency bands. Therefore, by using the decomposition coefficients as shape
features, we can hierarchically describe large-scale and progressively smaller scale shape properties.
However, a drawback of these models is the lack of ability to concisely represent local shape
variation because of the global support of the basis functions.



Figure 2-1: Reconstructed cortical surfaces using SPHARM coefficients truncated at degree 1, 2,
5, 10, 20, 40 and the original surface (from left to right). This figure demonstrates SPHARM's
effectiveness for multi-resoluational representation of cortical surfaces. Note that by using a
higher degree, one can always represent the surface more accurately. However, since SPHARM
bases are global, SPHARM coefficients cannot represent local shape features concisely.

2.1.1 Limitation of Spherical Harmonic Descriptors in Shape Representation

Since the boundaries of many neuroanatomical structures have spherical topology, various methods
have been developed to map their surfaces to a sphere while preserving the metric properties of the
original surface. These surface mapping procedures make SPHARM, a natural extension of Fourier
transformation on the sphere, a very popular tool for extracting multi-scale shape features.

The spherical harmonic basis functions Y,'" of degree I and order m, -1 < m5 <1 are defined on

Oe [0;x],OcE [0;2zf) as:

yl (O,9) =_21 +1(1 - m)!p (cO )ei
Y, 4 (+m os)! )e"', (2.1)

y,- (o,) = (-1)r nYn* (o,),
where Ym*(9,O) denotes the complex conjugate of Ym"(0,) and Pm" denotes the associated

Legendre polynomials
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BrechbUihler et al. fist introuduced the use of spherical harmonics to the analysis of

neuroanatomical structures [3]. They proposed the idea that any surface mapped onto a sphere
v(9, (p) = {x(O, g), y(O, V), z(8, p)}T can be expressed as the weighted summation of a set of spherical
harmonics basis function:

v(O,o)= c"Y'"(O,() , (2.3)
1-0 m=-1

where the coefficient c' = "' ,cM Y,c' t is a three-dimensional vector corresponding to the three
spatial coordinates. We can obtain object shape representations at different levels of detail by
truncating the spherical harmonic series at different degrees, as shown in Figure 2-1.

The coefficients c'" can be calculated by solving a least-squares problem [4]. For example, we

gather the values of the basis functions in the matrix z = (z,J,(I,m~) with Zn,j(l,m) = Y1m(O,,p,,), where

j(l, m) is a function assigning an index to every pair (1, m) and n denotes the indices of the N surface

points. And we denote v= [v,v,2,.*,VN, as the Nx3 position matrix of all the N points on the
surface. Then the coefficient matrix c = (c, cT', c, . . .)T that best approximate the points in a

least-squares sense could be obtained by
c= (zTz)-lzv . (2.4)



By selecting an appropriate degree for the surface under study, the calculated coefficients can be
used to represent the surface at different spatial resolution with sufficiently small approximation
error. This shape representation has been used to conduct statistical analysis of the shape changes of
brain structures such as the hippocampus and the lateral ventricles [5-7]. However, SPHARM
coefficients cannot concisely indicate the location of shape differences because of the global support
of the basis functions. Most recently, a weighted SPHARM technique has been developed and
applied to cortical thickness analysis and voxel-based morphometry. This technique provides a new
framework for weighting the SPHARM coefficients differently and can be potentially used to
improve the localization property of SPHARM representation [8].

2.1.2 Our Methods

In order to represent the surface locally in both space and frequency, we develop a procedure to
characterize the surface of neuroanatomical structures using spherical wavelets. The computed
wavelet coefficients are used as shape features to study the folding pattern of cortical surfaces at
different spatial scales and locations, as the underlying wavelet basis functions have local support in
both space and frequency.

In this work, we first employ bi-orthogonal spherical wavelets developed by Schri5der and
Swelden [9] and conduct a variety of statistical analyses to study the shape of cortical surfaces, and
build shape models to guide the segmentation of sub-cortical structures, such as the hippocampus,
based on this wavelets transformation [10]. We then improve upon this wavelet-based shape
representation by employing a newly developed over-complete wavelets [11], which will be
introduced in Chapter 7.

To obtain the surface mesh of neuroanatomical structures based on MR images and register the
surfaces across different subjects, we need to go through a set of preprocessing steps. In the
following section, we first introduce the processing steps, and the automated pipeline we build to
conduct the automated wavelet-based shape analysis of brain structures using MR images. We then
introduce in detail the procedure of extracting shape features using bi-orthogonal spherical wavelet
transformation. Lastly, we demonstrate the use of this wavelet-based shape representation in
detecting shape variation, and compare it with SPHARM.

2.2 Preprocessing

In this section, we introduce the procedure used to reconstruct and refine the surface of
neuroanatomical structures and conduct surface-based registration. Given a raw 3D MR image, we
first segment out the structure of interest and reconstruct its surface. We then map the surface onto a
parameterized sphere in order to transform this surface using basis functions defined in a spherical
coordinate system, such as SPHARM and spherical wavelets. Then, we use a surface-based
registration procedure to establish correspondence across subjects in order to carry out the statistical
analysis based on the spherical transformation of the surfaces.

In this work, we use a set of automated tools distributed as part of the Freesurfer package [12] to
preprocess the MR images, which includes surface reconstruction, spherical transformation, and
registration in the spherical coordinate system, as shown in Figure 2-2. Together with the MR image
preprocessing tools in the Freesurfer, this entire procedure can be used to conduct automated shape
analysis on neuroanatomical structures of large sets of MR images. In this thesis, we present the
application results of developed shape analysis tools on the cortex and the hippocampus. As an
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Figure 2-2: The automated procedure for conducting the shape analysis of neuroanatomical
structures based on MRI.

example, we describe in this chapter the pipeline used to preprocess cortical surfaces based on MR
images. In Chapter 6, we introduce the preprocessing procedure for subcortical structures, which
uses the same pipeline with a slight change of processing parameters.

To reconstruct the cortical surfaces, which include the gray/white matter boundaries (hereafter
referred to as white matter surfaces) and gray-matter/cerebrospinal fluid boundaries (CSF)
boundaries (hereafter referred to as pial surfaces) of the left and right hemispheres, the MR images
are first registered to a pre-built template in the Talairach space. The image intensity is normalized to
remove spatial variations induced by inhomogeneities in the RF field, and used to guide skull
stripping and white matter labeling. This white matter segmentation is further refined and cut to
generate a single connected mass of each hemisphere. A surface tessellation is then constructed for
each white matter volume by representing each square face separating the white matter voxels from
other classes with two triangles as detailed in [13]. Topological defects are automatically detected
and corrected for this tessellation to guarantee spherical topology. After that, we deform the surface
in the normalized image volume under smoothness and boundary intensity constraints to generate a
more accurate and smoother hemisphere. Finally, the resulting white matter surface is deformed
outwards to the location in the volume that has the largest intensity contrast between the gray matter
and CSF, and refined to generate the pial surface.

Next, the reconstructed white matter surface is mapped onto a sphere in two steps. First, the white
matter surface is inflated and projected radially to a sphere. Then, the large folds and metric
distortion introduced by the projection process are removed by the minimization of folded area and
the preservation of the local and long range distances between vertices [14]. Surfaces of different
subjects are then registered in the spherical coordinate system by minimizing an energy functional
that is a combination of a topology preserving term, a folding alignment term and a metric
preservation term. The alignment of gyral and sucal patterns enables us to find anatomically
corresponding points on the reconstructed cortical surfaces across subjects, and the metric
preservation term (including area and distance) allows us to preserve individual variations. The
effectiveness of this spherical registration technique in finding correspondence across subjects is
proven in [15].

Although the entire procedure can be used to analyze both the gray/white matter boundary and
gray-matter/CSF, only the gray/white surface, which is a direct reflection of the gyral folding, is used
in this work to exemplify the developed methods.

1



2.3 Shape Representation Based on Spherical Wavelets

The Euclidean wavelet transform is a powerful tool in image processing that represents a signal with
component signals of different scales and spatial locations. It has been widely applied to
compression, de-noising, and medical image analysis [16-18]. In the past decade, there has been
extensive research focused on extending the general paradigm of linear filtering to the spherical
domain. These newly developed spherical wavelets have been used for shape representation with a
wide range of applications to computer graphics [19-25]. However, the use of this technique in
multiresolution shape analysis of medical images, including CT and Magnetic Resonance Imaging
(MRI), was not explored until recently. Greenshields et al. [26] was one of the first to use spherical
wavelets decomposition to analyze the shape of pelvis based on computational tomography (CT)
images in 2001. More recently, we develop a procedure for conducting wavelet-based shape analysis
of neuroanatomical structures based on MRI [27]. A parallel study was conducted by Nain et. al. to
learn a shape prior of anatomical structures (such as prostate and caudate nucleus) by using
bi-orthogonal spherical wavelet transformation [28], and to use this prior for image segmentation
based on the wavelets presentation [29].

2.3.1 Bi-orthogonal Spherical Wavelets

Broadly speaking, a wavelet representation of a function consists of a coarse overall approximation
together with detail coefficients that influence the function at various spatial scales and locations.
The classical form of wavelet analysis transforms signals by projecting them onto a set of basis
functions, called wavelets, in which every wavelet is a scaled and translated copy of a single unique
function, called the mother wavelet. The bi-orthogonal spherical wavelets employed in this chapter
belong to the second generation wavelets, which maintain the notion that a basis function can be
expressed as a linear combination of basis functions at a finer, more subdivided level.

A - Wavelet function construction

The construction of these bi-orthogonal spherical wavelets relies on a recursive subdivision of an
icosahedron (subdivision level 0) (cf. [9]). Denoting the set of all vertices on the mesh before the j h

subdivision as K(j), a set of new vertices M(j) can be obtained by adding vertices at the midpoint of
edges and connecting them with geodesics. Therefore, the complete set of vertices at the (j+ 1)th level
is given by K(j + 1) = K(j) U M(j) . As a result, the number of vertices at levelj islO x 4' + 2, e.g.,
12 vertices at level 0, 42 at level 1, 162 at level 2, and etc.

Next, an interpolating subdivision scheme is used to construct the scaling functions Pik defined at

levelj and node k e K(j) such that a scaling function at levelj is a linear combination of the scaling

functions at a finer level j+1. Using these scaling functions, the wavelet V.,m at level j and node

m E M (j) can be first initialized, and then improved by the lifting scheme, the basic idea of which is

to start with a simple construction of wavelet, and then update it to a new, more complete one.
As detailed in Appendix 2-A, the bi-orthogonal spherical wavelet basis functions used in this work

is constructed based on the Butterfly subdivision scheme so that the wavelet basis functions are
smooth in the space domain, and therefore vanishing towards high frequency in the frequency
domain. Also we initialize the wavelet function as the scaling function at a higher level, and choose
a lifting scheme so that the constructed wavelet basis function has a vanishing integral (the



constructed wavelet functions vanish towards low frequency in the frequency domain) [30].
Spherical wavelets constructed in this way have local support in both space and frequency. Using

the scaling function at level 0 and wavelets at level 0 and higher, a basis for the function
space L, = L, (S2 , dco), where do is the usual area measure, is then constructed so that any functions
with finite energy can be represented as a linear combination of these basis functions. As detailed in
Appendix 1-A, the transformation is easy to carry out without explicitly constructing these wavelet
and scaling functions, and fast to compute with a computation time linear in the number of vertices
[9].

B - Bi-orthogonality

The spherical wavelets constructed this way are bi-orthogonal [31] (wavelets at the same level and
between different levels are not orthogonal to each other such that they are correlated) because
currently there are no wavelet bases on the sphere that consist of functions that are orthogonal,
compactly supported, symmetric, and smooth [31].

To assess the correlation between a pair of wavelet basis functions, we calculate their correlation
coefficients as:

S;J Y •rj~ jm'd( )(2.5)

f VYj,mr2dajrm , 2d<o
where j= j',m Neighbor(m') for a pair of wavelet functions at the same level, and
j= j'+1, me M(j), m'G M(j'), m'e Neighbor(m) for a pair of wavelet functions across the
consecutive levels.

As a result, we calculate that the averaged correlation coefficient over all the pairs is 0.0225 at the
same level, and 0.106 across the adjacent levels. These results indicate fairly weak correlations
between wavelet basis functions. Therefore, an approximately orthogonal decomposition can be
expected using these spherical wavelet bases. Note that it is possible to apply PCA to completely
orthogonalize the wavelet functions. However, the orthogonal PCA bases do not enjoy the locality
property of bi-orthogonal wavelets in the spatial-frequency domain and this locality property is key
to our subsequent analyses.

2.3.2 Spherical Wavelet Transformation of Cortical Surfaces

In this section, we present the details of using the bi-orthogonal spherical wavelets to transform
cortical surfaces preprocessed using the procedure described above.

A - Surface interpolation

As described in Section 2.2, the reconstructed cortical surfaces are mapped onto a sphere and
registered in a spherical coordinate system. Therefore, the original spatial coordinates of points on
the cortical surface can be considered as functions defined on the sphere. To transform them into the
wavelet domain, the spatial coordinates of each subject's cortical surface are first interpolated onto
the mesh of an icosahedron mesh subdivided to level = 7 based on their corresponding spherical
coordinates established by the spherical registration.

We choose an icosahedron at subdivision level 7 to represent a parameterized sphere because it
has a total number of 163,842 vertices and is thus sufficient to represent the spherical map of a
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Figure 2-3: Spherical wavelet decomposition of cortical surface from level 7 (the leftmost
image). At each level, the surface is further decomposed into lower resolution approximation
and wavelet coefficients. Wavelet coefficients at level -1 characterize the overall shape of the
cortical surface. Wavelet coefficients at subsequent levels encode the surface spatial variations
at finer resolutions.

cortical surface reconstructed from -1 mm isotropic MRI, which typically has about 120,000
vertices. An icosahedron subdivided 6 levels has only 40,962 vertices and may lead to loss of useful
surface details if it is used to represent the finest level sphere parameterization. Conversely, further
increasing the resolution of the spherical parameterization will unnecessarily and significantly
increase the computation time (an icosahedron at subdivision level 8 has 655,362 vertices).

B - Coordinates normalization

Unlike intrinsic shape features such as curvatures, spatial coordinates of a surface depend on a
rather arbitrary coordinate system that each individual subject is originally represented in, and
reflects the position of the subject in the scanner at the time of acquisition. In order to use their
wavelet coefficients in the following statistical analysis, we need to make these coordinate functions
consistent in a dataset, in terms of the rotation, translation and scaling. For this purpose, they need to
be normalized with respect to a common reference coordinate frame.

This normalization is initialized by first transforming each spatial coordinate function using the
Talairach transformation matrix calculated previously for volume registration during surface
reconstruction. Then the roughly normalized coordinate functions of all the surfaces are averaged to
create a new template surface in the spatial domain for the second round normalization. Finally, each
coordinate function is normalized by finding an optimal affine transformation that minimizes the
mean square error between the transformed individual surface and the template.

The normalization process simply aims to bring each subject into the same coordinate system and
remove the arbitrary affine components in their coordinate functions; inter-subject shape variations
are still preserved after the normalization. In addition, since the surface correspondence is already
found by the spherical registration, the affine normalization is robust to compute.

C - Spherical wavelet transformation

The normalized coordinate vector v = (x, y, z)' is then expanded by the scaling function at the
ground level and a set of spherical wavelet functions as

V = +10,k0,k + Ji,mIVj,m (2.6)
k=K(O) j=O,...6, meM (j)

where Yi,m = ,mY, ,rn,,m]T is the wavelet coefficient vector corresponding to the x, y and z

r u u



coordinates at level j, j = 0,...6 and location m, me M(j). To simplify notation we define for the
coarsest level M (-1) = K(0), y-1,k = 0P,k and 7-1,. = 'O,k SO that the wavelet coefficients at level -1

is actually the scaling coefficients at the ground level.
Figure 2-2 illustrates the decomposition of a cortical surface starting from the finest level. At each

level, the cortical surface is split into a low resolution part and a detail part (wavelet coefficients). As
shown in the rightmost figure in Figure 2-2, there are 12 wavelet coefficients at level -1, each of
which represents the overall shape of the cortical surface in the region around a vertex on the
icosahedron in the underlying spherical coordinate system. At subsequent levels, wavelet
coefficients provide descriptions of the spatial variations of the surface at increasingly finer
resolutions.

D - Computational time

In this study, both SPHARM and wavelets methods are implemented to compare their ability to
capture local shape variations as shown in the next subsection. SPHARM coefficients are estimated
by solving for the least square solution of the linear equation (2-4), which has approximately a
computational complexity of the cube of the number of the SPHARM coefficients. Therefore, the
SPHARM coefficients estimation (highest order = 40) of a typical cortical surface (120,000 vertices)
constructed using methods detailed above requires about one hour of computation time on a standard
PC architecture.

The spherical wavelet transformation is more efficient (about one minute for typical cortical
surface) because it has a computational time linear to the number of vertices. However, the
computational cost of SPHARM can be greatly minimized with advanced numerical implementation,
such as the iterative residual fitting (IRF) method proposed in [32].

2.3.3 Comparison of SPHARM and Wavelets in Shape Representation

To compare the abilities of SPHARM and spherical wavelets to detect local shape variations, both
methods were applied to represent an inflated cortical surface model with a synthesized shape
deformation.

A - Experimental setup

A cortical surface model was synthesized by interpolating an inflated cortical surface onto an
icosahedron at subdivision level 4 (2562 vertices). The deformation is simulated by moving the 1st
and 2nd order neighbors of a vertex, denoted as v, outwards in their normal direction for 4 mm.

After spherical wavelet transformation, the total number of wavelet coefficients is
2562 x 3 = 7686 , because each of the x, y, and z components in the coefficients vector Yj,m , as

shown in equation 2-6, is evaluated individually in this comparison. The highest order of SPHARM
decomposition is chosen to be 60 to achieve a comparable accuracy in shape representation, which
therefore results in a total number of 61 x 61 x 3 = 11163 SPHARM coefficients.

With two sets of coefficients computed for both the original and deformed surfaces, a new set of
coefficients is made by replacing a certain number of the original surface's coefficients with
deformed surface's coefficients that are affected the most by this deformation, using both SPHARM
and spherical wavelets methods. The change of coefficient is calculated byc I l-lc ol, where Cd and



Figure 2-4: The comparison of SPHARM and sphencal wavelets in representing local shape
variation a). Original inflated cortical surface. b). The deformed surface with red dots
indicating the location of the wavelet coefficients that are most affected by the simulated
deformation. c). Surface reconstructed with a new set of SPHARM coefficients made by
replacing 100 of the original surface's coefficients with deformed surface's coefficients that
are most affected by the deformation. d). Surface reconstructed with 100 most varied
spherical wavelet coefficients.

co denote the corresponding coefficients calculated from the deformed and original surfaces

Table 2.1
Comparison of the number of most varied coefficients used to achieve the same
reconstruction error (mm) using SPHARM and spherical wavelets methods. Surface is
reconstructed with a new set of coefficients made by replacing a certain number of the
original surface's coefficients with deformed surface's coefficients that are most affected by
the synthetic deformation. Reconstruction error is measured as the root mean square
difference between the reconstructed surface and deformed surface in the deformed region.

Reconstruction Error (mm) 1 1.5 2.5
SPHARM 500 300 100
Wavelets 50 27 7

respectively.
We then reconstruct the deformed surface using this new coefficients set and measure the

reconstruction error by- v , where v, and v' are the coordinates of the i'h vertex on
V iE {N 1(v),N 2(V)

the reconstructed and deformed surfaces respectively, Nl(v) and N2(v) denote the 1 st and 2 nd

neighbors of the vertex v, and V is the total number of vertices in the deformed region.

B - Results

Figure 2-4 a) is the original surface and Figure 2-4 b) shows the set of wavelet coefficients with
absolute changes larger than 0.1, with red dots indicating the centers of their support regions. Figure
2-4 b) illustrates the compactness of the wavelet representation as only the coefficients of wavelet
functions in the neighborhood of the deformation region are affected. In contrast, the majority of the
SPHARM coefficients have changed more than 0.1 compared with the original SPHARM
coefficients.

A quantitative comparison of the number of most varied coefficients used to have the same



reconstruction error is given in Table 2.1. With the top 100 most varied SPHARM coefficients, the
reconstruction error is 2.5 mm (shown in Table 2.1) and the synthetic bump is not well reconstructed,
as shown in Figure 2-4 c). On the contrary, the deformation is well recovered using 100 most varied
spherical wavelet coefficients as shown in Figure 2-4 d). With the use of all the 11163 SPHARM
coefficients, the reconstruction error decreases to 0.0013 mm.

This result verifies that SPHARM can be used to accurately represent cortical surface, but not as
compactly because local shape variation can cause changes of a large number of coefficients. The
compactness and the data compression nature of the wavelet transformation are particularly
important to reduce multiple comparison problems that often plague the statistical analysis of
neuroimaging data.

2.3.4 Applications

As shown above, the developed shape representation based on a spherical wavelet transformation
can be used to accurately and efficiently extract shape information in a local fashion in both space
and frequency. In this work, we use the wavelet coefficients of the coordinate functions of cortical
surfaces registered in the spherical coordinate system as shape features to build multi-scale cortical
folding models, and to identify the cortical folding changes related to neuropathology and
neurodevelopment.

We first study the patterns of cortical shape variation at different spatial-frequency levels by
applying principal component analysis in the wavelet domain. Secondly, by using these wavelet
coefficients of cortical surfaces as shape features, we employ statistical learning methods to select
shape features that are related to a particular neurological disease, and train a classifier for
discriminating patients from normal controls. Furthermore, we develop a nonlinear cortical folding
development model based on the wavelet representation to study the change of cortical folds of large
and progressively smaller scales in gestation. At last, we use shape models built at multiple spatial
resolutions in the wavelet domain to guide the segmentation of the hippocampus based on
image-driven models.

Although most of the shape analyses conducted in this thesis are based on transforming
coordinates functions of cortical surfaces using spherical wavelets, we can apply the developed
wavelet transformation procedure to other features measured for each point on the surface, such as
curvature and thickness, and obtain their multi-scale representations. Also, we can use these
statistical shape analysis frameworks to study the shape of other neuroanatomical structures that
have spherical topology, such as the hippocampus and the caudate nucleus.

2.4 Contributions

In this chapter, we presented a new method to extract shape features at different locations and spatial
scales of the surface of neuroanatomical structures, such as the cerebral cortex, by using a
bi-orthogonal spherical wavelet transformation. The contributions of our work presented in this
chapter are the following:

1) To our knowledge, this approach is the first one that has been proposed to extract multi-scale
and localized shape features of neuroanatomical structure, particularly cortical surfaces, in parallel
to the wavelet-based shape representation developed for sub-cortical structures by Nain et. al [28].

2) We develop a procedure to extract comparable shape features of a set of registered surfaces,
which can be used in statistical analysis.



3) Our shape representation allows for easy visualization and interpretation of the shape
information characterized by each shape feature, which is of great use in the medical context.

The entire procedure is implemented and integrated into a publicly available software package
Freesurfer [12], which is downloaded and used by thousands of scholars worldwide.

A preliminary version of this work was presented at the IEEE Computer Society Workshop on
Mathematical Methods in Biomedical Image Analysis in conjunction with IEEE Computer Society
Conference on Computer Vision and Pattern Recognition [33]. A journal version of this work was
published in IEEE Transactions on Medical Imaging [34].



APPENDIX 2-A. FAST SPHERICAL WAVELETS TRANSFORMATION

In this work, we used the interpolation c B C
scaling function defined as:

j,k (Vj,k')= k-k' for k,k'C K(j)

where vj,, denotes the kth vertex at

subdivision level j ( kE K(j) ). The
same notation is used here as in the
main text so that K(j) and M(j) denote c B C
all vertices on the mesh before and Fig. 2A-1. Local neighborhoods for the Butterfly scheme,
after the jth subdivision. As a result, where vertex sets A, B and C are used in determining the
the scaling coefficients at level j of a new value at the center edge midpoint.
function f interpolated on the jth order
icosahedron are the values of this function at each vertex, i.e.

ji,k = f(vj,k ),k k K(j) (2A.1)
A butterfly subdivision scheme is used such that the value of a scaling coefficient at levelj +1 can

be found as:

/j+,,m = 1/2 kCA(j,m) j l  + 1/8 keB(j,m) jk -1/16 keC(j,,n) Aj,k (2A.2)
where A(j,m), B(j,m) and C(j,m) are local neighbors of vertex vj+l,m as shown in Figure 2A-1.

The butterfly procedure is used to generate smooth wavelet functions.
Next, a lifting algorithm is used to construct wavelet function as:

•.,m = (Pj+l, - ZkEA(j,m) Sj,k,mPj,k (2A.3)

where sj,k,m = lj+l,m/2Ijk withlj,k = qV,kdac). This ensures that the constructed wavelet function has

a vanishing integral, i.e. one vanishing moment. The wavelet function constructed in this way has a
local support in frequency because its value is vanishing in both the high frequency due to the
smoothness and low frequency due to the vanishing integral.

In this work, the coordinate function is interpolated onto the 7th order icosahedron. The resulting
scaling coefficients at the highest level are therefore the values of the interpolated coordinate
function at each vertex on the icosahedron at subdivision level=7. The wavelet coefficients can be
calculated in two steps (Analysis step I and II) recursively as shown below:

Analysis Step I: Calculate the ,j,,~ as follows

VInE M(j):,m : 2I,m -1/2 keA(j,m) j,k -(2A.4)

1/8Zk-B(j,m) 2j,k +1/16XkeC(jm,) j,k.
Analysis Step II: Calculate the Aj,k using the j,, from step I

Vk e K(j): Aj k = 2 j+lk (2A.5)
Vm e M(j):Vke A(j,m) : Aj,k + = Sjk,mmYj,m'

The inverse transformation can be implemented in two steps (Synthesis step I and II) as well:
Synthesis Step I: Calculate the Ai+2 ,k:

Vke K(j):Aj+,k = ,k (2A.6)
VmE M(j):Vk E A(j,m) : 2 j+l,k - = Sj,k,m j,m"



Synthesis Step II: Calculate ;j+,,m using the Aj+1,k from step I:

Vm -M (j):2j+1,m := r,, + 1/2 keA(j.m)2j+Lk + (2A.7)
1/8Zk (j,m) 2 j+f -- 1/16 Zkec( j+,l,k
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Chapter 3

Multi-scale Shape Models Based on
Principal Component Analysis

In this chapter, we propose to build shape models at multiple resolutions by applying principal
component analysis in the spherical wavelet domain. We demonstrate the use of this method in
detecting corticalfolding variations ofprogressively smaller spatial scales for cortical surfaces in a
synthetic dataset. We then apply this method to study and visualize the localized cortical folding
variations in a nondemented elderly population. Furthermore, we investigate the correlations of
these observed corticalfolding variations with age, gender and a set ofpsychological measurements.
Finally, we show the use of the proposed method in studying the cortical folding development in a
small dataset of newborn.

3.1 Introduction

Although the human brain has consistent anatomical structures across individuals, striking
morphological variations, including differences in the volume and shape of cortical and subcortical
structures, are observed in the normal population [1-5]. Such normal variations have complicated the
goals of understanding the morphological abnormalities of neuroanatomical structures associated
with neurological diseases. Therefore, it is of great importance to distinguish idiosyncratic shape
variations from disease-related shape changes in brain structures.

Principal Component Analysis (PCA) is a useful tool for finding patterns in data of high
dimension. It has been extensively used in the fields of computer vision and image recognition.
Based on this technique, Cootes et al. [6] built 2D generative models of shape variation within a
single population based on a point boundary model, which consists of a list of coordinates of points
on the object boundary. For example, if x"(n = 1,--. N) denotes a vector containing the coordinates
of the points on the boundary calculated for the nth subject in a group of N subjects, then any
individual shape can be decomposed as:



x" = x+Iee1 (x"-n ), (3.1)
1-1

where X is the mean of x" (n = 1, . .. N), e', ... ,ek are the eigenvectors corresponding to eigenvalues

21, 2,... , X of the covariance matrix of x, in decreasing order.
This is essentially equivalent to linearly transforming a dataset into a new coordinate system such

that the variance of the projection of the dataset on the first axis (first principal component) is the
greatest, and the variance of projection on the second axis is the second greatest, and so on. The fact
that the variance explained by each eigenvector is equal to the corresponding eigenvalue enables us
to study the most significant modes of variation in the dataset.

Usually, most of the variations can be sufficiently represented by a small number of modes, k, so
that the sum of the first k variances represents a sufficiently large proportion of total variance of all
the variables used to derive the covariance matrix. Thus by limiting the number of terms in equation
3.1, the statistical analysis can be greatly simplified. This method has been further extended to build
shape models and successfully used to segment 2D and 3D medical images [7-9].

However, it has been argued that omitting the eigenvectors corresponding to relatively small shape
variations leads to the failure of characterizing subtle, yet important shape features because
coordinates of all the points on the surface are used as the shape feature inputs [10]. For the same
reason, the application of PCA in the shape study of neuroanatomical structures (i.e. the cortical
surface) has also been largely limited. To address this problem, Shen et al. [11] first proposed to
build hierarchical active shape models of 2D objects (such as the corpus callosum) using ID
wavelets, which were then used for shape based image segmentation.

In this work, we apply PCA to build shape models in the spherical wavelet domain for studying
regional cortical folding variations within a group of normal subjects at multiple spatial resolutions
[12]. A similar method was proposed to learn a shape prior of 3D objects (such as prostate and
caudate nucleus) by applying PCA to the clusters of correlated spherical wavelet coefficients [13],
and to use this prior for image segmentation based on the spherical wavelets presentation [14]. In our
work, we focus on the use of PCA to study and visualize the major patterns of shape variation of
cortical surfaces and the correlation of these folding variations with age and neuropsychological
functions at different spatial scales based on spherical wavelet transformation.

3.2 Methods

In this section, we introduce the proposed shape modeling of neuroanatomical structures based on
PCA in the wavelet domain, and demonstrate the results on the cortical folding study in synthetic and
real dataset. This method can be also used to study the shape of other brain structures that have
spherical topology, such as hippocampus, which will be demonstrated in Chapter 6.

3.2.1 Shape Models Based on PCA in the Wavelet Domain

In this work, we propose to conduct PCA on spherical wavelet coefficients of coordinate function at
different frequency levels separately. Using principal components calculated at separate frequency
levels, we build shape models at different spatial resolutions since the wavelet coefficients in the
lowest level provide an overall approximation and localized morphological variations are captured
hierarchically by the higher-level coefficients.



We first preprocess the cortical surfaces and calculate the normalized wavelet coefficients

{yJ }j=-L_..6 mEM(j) for a set of N registered surfaces, as described in Chapter 2, where Yj', is the

3-dimensional wavelet coefficient vector corresponding to the x, y and z coordinates at level
j, j =-1,...6 and location m, me M(j). Each time we take only y_ =1 m.L j' ,the subset of

the wavelet coefficients at the th frequency level of a set of subject, and calculate the mean wavelets
1 N

at this level as = N- > ý. For each shape in the dataset, we calculate its deviation from the mean
N =1

N

as dy= -= and the covariance matrix as C= - dy (dy)T . We denote the number of

spherical coefficients at level j as Mj, and the size of the covariance matrix is therefore 3M x 3M, .

A set of orthonormal eigenvectors e, ,.• ,eI is then calculated so that

2C= Ce , l=1,...k, (3.2)
Where the eigenvalues 2, 2,..-, XI are the variances explained by corresponding eigenvectors.

To visualize the shape variations corresponding to the principal components el ( = 1,- k < N -1)

at the j'" frequency level, we calculate the projections of spherical wavelets of each surface onto the

first k eigenvectors pn = eTdy by using the matrix ej =e...,e ]. Then for each subject, we can

generate a new set of new wavelet coefficients y" = •- .... j +e jp,.. ,-y6 by adding the averaged

wavelets coefficients over all the surfaces. The new surface S = Wy", where W is the inverse

wavelet transformation matrix, generated by inversely transforming the new wavelet coefficients,
carries only the shape information explained by the first k eigenvectors at level j.

3.2.2 Shape Pattern Recognition in Synthetic Data

To validate the usage of the proposed method in distinguishing and characterizing regional shape
variations among a dataset at multiple spatial resolutions, we construct a synthetic dataset and
conduct the PCA at separate frequency levels. MR brain images of five healthy female subjects, all
approximately 71 years old, were selected, and the average of their cortical surfaces was used as the
template for generating the synthetic dataset.

The top row in Figure 3-1 shows the five synthetic cortical surfaces, each with a bump located in
the same region around the anterior tip of the temporal lobe. The deformation was created by moving
each vertex in the deformation region outward along its normal direction by a specified distance,
which increases from 0 mm for the first surface to 2 mm for the last surface. These five synthetic
surfaces were registered and transformed into the wavelet domain using the procedures described in
Chapter 2.

The PCA study of the wavelets coefficients shows that about 98% of the shape variation was
accounted for by the first principal component at all the frequency levels. As described in the
previous section, we construct a set of projected wavelet coefficients for each surface to visualize the
shape changes captured by the first principal component at different frequency level:

n = ele' (Y -j), (3.3)

where ( is the subset of wavelet coefficients of the nth surface at jth level, j is the averaged

wavelet coefficients of all the surfaces at thejth level, and e' is the first eigenvector calculated at the



Figure 3-1: Shape variations detected with PCA in synthetic data: The original surfaces with
synthetic bump on the temporal lobe are shown in first row; The second to the fourth rows
are the reconstructed surfaces using projected wavelet coefficients at levels 1, 4 and 6.
(Colormap indicating the magnitude and spatial scale of shape variation detected by PCA)

j'h level. Then the whole set of projected wavelet coefficients "=(y _,...,y ,... ,6} is
constructed by adding the first surface's wavelet coefficients.

Figure 3-1 illustrates the surfaces generated by taking inverse wavelet transformation of these
projected wavelet coefficients from low to high levels, with color indicating the magnitude and
spatial coverage of each wavelet coefficient in (. It shows that the overall synthetic shape change

of the temporal lobe is captured exclusively at the low frequency level (in the 2 nd row of Figure 3-1).
And the sharp shape change on the boundary of the bump is identified at the high frequency level
(bottom row in Figure 3-1) in the highlighted region. However, we find no significant changes at the
middle frequency level, indicated in the 3rd row in Figure 3-1. This observation is consistent with the
fact that the synthetic deformation does not feature changes of secondary folds on the temporal lobe.

These results demonstrate that we can discover major modes of shape variation not only at
different spatial resolutions, but also in different spatial regions by applying PCA in the spherical
wavelet domain.

3.3 Experimental Results and Discussions



Using this method, we analyze two sets of high-resolution structural MR scans in this chapter. The
first dataset is mainly used to study the major modes of cortical folding variation and aging-related
folding changes of gray/white matter boundaries in a healthy older population. In the second dataset,
we use the proposed method to visualize the folding development of 5 neonates at multiple spatial
resolutions.

3.3.1 Shape Variation in Aged Normal Population

The first dataset was obtained from a total of 84 nondemented older participants (42 women: 67 - 95,
mean age = 80, standard derivation = 7.25; 42 men: 71-94, mean age = 79, standard derivation =
7.17). These data have been reported previously in several publications associated with the
Washington University Alzheimer' s Disease Research Center (ADRC). None of the participants had
any history of neurologic, psychiatric, or medical illness that could contribute to dementia or a
serious medical condition. Two to four high-resolution MP-RAGE scans were motion corrected and
averaged per participant (four volumes were averaged for all except five participants; Siemens 1.5T
Vision System, resolution 1 X 1 X 1.25 mm, TR = 9.7 ms, TE = 4 ms, FA = 100 , TI = 20 ms, TD
= 200 ms) to create a single high contrast-to-noise image volume. These acquisition parameters were
empirically optimized to increase gray/white and gray/cerebrospinal fluid contrast. Cortical surfaces
were reconstructed and registered as described in Chapter 2.

A - Visualization of surface variations

The PCA study of the wavelet coefficients in this dataset demonstrates a wide range of differences
of cortical surface geometry, in both the overall shape of the cortex and the hierarchically finer local
details. Most of the shape variance (98%) is represented by the first 10 to 20 eigenvectors and the
variance explained by the first principal component ranges from 8% to 13% of the total variance at
the lower spatial-frequency levels. Shape variances of higher spatial scales are spread out more
evenly over 50 to 80 eigen-components.

The shape variation represented by the 1th principal component at the jth frequency level is
illustrated by generating two sets of new wavelet coefficients:

S= +3o-ie = +3 ,e, (3.4)

where 2 is the l" eigenvalue of the covariance matrix of the wavelet coefficients at levelj. Then we

generate two new coefficient sets consisting of wavelet coefficients at all levels by adding the
average wavelet coefficients of the entire dataset. At last, two synthetic surfaces S~' are generated

by inversely transforming these two sets of wavelet coefficients. By comparing these two synthetic
surfaces, we can visualize the shape variations characterized by the corresponding principal
components at separate frequency level.

As an example, we shows in Figure 3-2 the synthetic surfaces generated for the left hemisphere at
levels -1 to 1, with the colormap indicating the 12 norm, location and support region of each
coefficient in the first eigenvector e'. Note that one cannot directly compare the color scales at
different levels, since the wavelet functions are not normalized across levels in these results. This is
because the normalization would lead to large differences between the wavelet coefficients across
levels, masking the fine details in visualization. Because the support regions of neighbor wavelet
basis functions overlap with each other, the color of each point on the cortical surface is assigned by
the 12 norm of the coefficient whose center of support is the closest. A set of arrows is used to point



Figure 3-2: Principal surfaces at level -1 to I and real cortical surfaces. Top 2 rows: The synthetic surfaces representing
the T 3cr variations (ordered in top-down direction) of the first principal component at levels -1, 0 and 1; Colormap
shows the spatial coverage and 12 norm of each wavelet coefficients in the first principal component; The color of each
point on the cortical surface is assigned by the 12 norm of the coefficient whose center of support is the closest; At the
same level, the higher the intensity is, the larger the shape variation is across the entire dataset. Note that one cannot
directly compare the colors at different levels, since the wavelet functions are not normalized across levels. (This
normalization would lead to a wild difference between the wavelet coefficients across levels, masking the fine details in
visualization.) Bottom 2 rows: corresponding real surfaces that have the largest positive and negative projections on the
first eigenvector (real T 3cr surfaces). A set of arrows is used to point to the regions that vary the most across subjects at
each level.
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out the regions that vary the most across subjects at each level. For example, at the lowest frequency
level, we observe a significant change of the overall shape of prefrontal cortex. At level 1, there is a
wide range of folding variations including the bulginess of the medial frontal gyrus and the
protrusion of temporal lobe. At level 2, we also observe cortical shape variations in different brain
regions including the occipital lobe corresponding to Brodmann area 17.

Two real left hemisphere surfaces (hereafter referred to as real ± 3c" surfaces) that have the
largest positive and negative projections on the first principal component are also shown in Figure
3-2 for comparison. The cortical folding differences between the So synthetic surfaces (first row

and second row) are clearly visible in the real ± 3or surfaces as well (third and four rows), which
verifies the cortical folding variations detected by the PCA methods.

B - Aging-related cortical shape variations

The results of the PCA study above demonstrate a large amount of cortical folding variation in the
healthy elderly population. To further our understandings, we investigate the relationship between
the observed shape variations and a set of input variables including subjects' age, gender and five
neuropsychological test scores that were used to assess if the subject has dementia. These scores are
Mini Mental State Examination (MMSE), Wechsler Memory Scale (WMS) Long Memory, WMS
Digit Span, WMS Associates Recall Easy, and WMS Associates Recall Hard.

The relationship between shape variations (response variable) at the jth level and these input
variables are assessed in the female and male groups using multiple linear regression:

y = Xp+E,

Y = ' p... ,p./'P... PJ

X= 1 , Xf 0 (3.5)

where p" =e dy n=1,...,N are projections of the female subjects on the kth principal

component e, andp"=ej dyJ,n=l ...N,, are the projections of the male subjects, input

variables X' is the matrix containing the set of 6 features for Nf subjects in female group, and X'

is for N,, subjects in the male group. The parameters pj = , ,...1 ]', corresponding to the

intercept and 6 input variables, are estimated for female and male groups separately to allow
different slopes and intercept. These parameters are estimated as the least square solutions of the
equation (3.5). We use F-statistic to test the significance of each parameter, and the differences
between female and male groups of corresponding parameters [15].

As an example, we study the linear relationship between the shape variation characterized by the
first eigenvector and the 6 input variables for both left and right hemispheres. Using multiple linear
regression, we find the cortical folding variation in female group is not related with the
neuropsychological scores. The shape variance in male group, on the contrary, is significantly
correlated with several neuropsychological scores, mainly on the right side and at the high frequency
levels (levels 4-6). Specifically, only WMS Digit Span is found be significant for the left hemisphere
in the male group. On the other hand, four scores including WMS Long Memory, WMS Digit Span,
WMS Associates Recall Easy, and WMS Associates Recall Hard are found to be significant for the
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Figure 3-3: The aging effect on the cortical shape variation in the male and female groups.
a) The estimated regression line of the projections of wavelet coefficients on the 1 st

principal component with age in male (green) and female (red) groups in the left
hemisphere. b) The regression line in the right hemisphere. c) F value of the significance
test for age and gender effect in the left hemisphere (red star indicates a corresponding p
value smaller than 0.05). d) F value of the significance test for age and gender effect in the
right hemisphere (red star indicates a corresponding p value smaller than significance =
0.05).

right hemisphere in the male group. Visual inspection in the real dataset shows that the related shape
variations are of small spatial scales. These results provide interesting research directions for further
understanding the structure-function relationships and the gender difference of the human cortex.

Interestingly, the effect of age on the cortical folding variations is found in female group at the low
frequency levels, and significantly stronger on the left side. These results are opposite to the
observed effect of neuropsychological scores in terms of gender, hemisphere, and frequency levels.
To demonstrate these results, we plot the estimated regression lines of shape variation with age for
male and female group in Figure 3-3 a) and b). We also show the significance test results for both left
and right hemispheres in Figure 3-3 c) and d), where the red star indicates that the corresponding p
value is smaller than a pre-selected significance threshold = 0.05.

From these results, we observe that the cortical folding variations (gray/white matter boundary)
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Figure 3-4: Reconstructed surfaces for female (top row) and male (bottom row) subjects of
different ages using projected wavelet coefficients on the set of principal components that
represent 98% of the total variance at level 1. Colormap encodes the 12 norm, location and
support region of the projected coefficients of each subject. An arrow is pointed to a region of
decreasing intensities with age on the precentral sulcus in the female group; another arrow is
pointed to a region of increasing intensities with age on the occipital lobe in the female group;
Visual inspection identifies the narrowing of central sulcus and elongation of occipital lobe;
Neither these intensity changes nor shape changes are salient in the male group.

on the left hemisphere are strongly dominated by healthy aging in the female group. We can visually
inspect the changes of cortical surface with age in the space spanned by the first a few principal
components ej = [e' ... ,e at each frequency level j. For example, we reconstruct the projected

surface of the nth subject at the jh level by inversely transforming a new set of wavelet coefficients
containing the projected wavelet coefficients on the set of eigen-components that represent 98% of
the total variation at the jh level, and the mean wavelet coefficients at other levels.

As an example, Figure 3-4 shows the projected cortical surfaces in three age ranges of female and
male subjects at level 1. The colormap encodes the 12 norm, location and support region of the
projected coefficients of each subject on the set of eigenvectors representing 98% of the total
variance. An arrow is pointed to a region of decreasing intensities with age on the precentral sulcus,
indicating a decreased folding of this area. Another arrow is pointed to a region of increasing
intensities with age on the occipital lobe, indicating an increased folding in this area. Visual
inspection of the whole population confirms the corresponding shape variations in the left
hemisphere are the narrowing of the central sulcus and the elongation of the occipital lobe, which
may characterize and correlate with white matter atrophy. As indicated by multiple regression study,
these changes are not salient in male groups as the color intensities in these two regions do not vary
much as shown in the second row of Figure 3-4.



Figure 3-5: Reconstructed gray/white matter surfaces of neonates ordered with cGA using
projected wavelet coefficients on the first principal component of wavelet coefficients at level 4.

3.3.2 Shape Variation in Neonates

The second dataset was from five normal neonates with corrected gestational ages (cGA) of 31.1, 34,
38.1, 38.4, and 39.72 weeks. Tl weighted 3D SPGR images were collected on a 1.5T scanner, with
TR/TE = 30/8, flip angle = 25 to 30 degrees, matrix = 256x 192, FOV = 220x 165 mm or 200x 150
mm and slice thickness 1.2 to 1.4 mm. Resultant DICOMS were manually segmented into white
matter and cortical regions. Wavelet transformation and PCA are then applied to the reconstructed
gray/white matter boundary to visualize the shape changes of cortical surface in neurodevelopment.

Using the wavelet transformation technique, the major cortical surface variations related to
neurodevelopment in a small population of nenoates are identified to be in the middle
spatial-frequency domain. PCA is used to study the specific modes of shape variations correlated
with corrected gestational age.

PCA Results show that more than 98% of the shape variations are represented by the first three
principal components at every frequency level. Projected surfaces are reconstructed to study the
shape variations represented by each of the first three principal components at each frequency level
separately, using equation 3.3. This time, the set of coefficients of the youngest subject (31.1 weeks
gestational age) is used to fill in the other levels to build the whole set of projected coefficients

= j,.. .,J +e x ,...,1} at each level. As shown in Figure 3-5, the reconstructed surfaces

(using wavelet coefficients projected on the first principal component) with age demonstrate the
increasing folding of the gray/white matter boundary of the left hemisphere at level 4.

In this section, we presented the results of the proposed PCA based shape analysis in an aged normal
population and a smaller newborn dataset. Although only results at a few lower frequency levels in
the left hemisphere are shown in this section, the visualization method can be used to examine the
most distinguished pattern of shape variations of both white/gray and gray/CSF surfaces for both
hemisphere at all levels. However, caution should be used in interpreting these results because the
shape changes are not entirely uncorrelated within neighbor regions, as discussed in Chapter 2.

3.4 Contributions

In this chapter, we introduced a new method to study shape variations of neuroanatomical structures
using PCA and spherical wavelet transformation. Spherical wavelet transformations are
demonstrated to accurately and efficiently detect the locations and spatial scales of shape variations.
The use of principal component analysis on wavelet coefficients provides a novel way to detect and



visualize regional and multi-scale shape variation in a set of subjects.
In summary, the contributions of our work presented in this chapter are the following:
1) To our knowledge, this approach is the first one that has been proposed to study the major

patterns of cortical folding variations at multiple spatial scales in localized cortical regions.
2) We developed tools for visualizing regional shape variations in a dataset at different spatial

scales by reconstructing surfaces using wavelet coefficients projected onto a set of major principal
components.

3) We also investigated the relationship of cortical folding variations with other variables such as
age, gender and a set of neuropsychological test scores using multiple linear regression.

Application of this method in the cortical shape study shows promising results regarding the
specific locations and spatial scales of cortical folding changes related to nondemented aging and
neurodevelopment. This proposed method has also been successfully used to build shape models for
guiding the segmentation of subcortical structures, such as the hippocampus, as described in Chapter
6.

A preliminary version of this work was presented at the IEEE Computer Society Workshop on
Mathematical Methods in Biomedical Image Analysis in conjunction with IEEE Computer Society
Conference on Computer Vision and Pattern Recognition[ 16]. A journal version of this work was
published in IEEE Transactions on Medical Imaging [ 12].
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Chapter 4

Shape-based Classification

In this chapter, we study cortical folding differences between two groups of subjects based on the
shape features extracted with spherical wavelet transformation in a classification framework. We
employ a Bayesian classification method to train a classifier and select features by minimizing an
estimate of prediction error. We develop tools to visualize the cortical folding differences
corresponding to these selected features at multiple spatial scales and different locations.
Applications of this shape-based classification approach to patient/control comparison studies
bring out interesting results and achieve promising classification accuracy. This shape-based
classification framework can be used to deepen our understanding of neurological diseases, and be
used for early diagnosis and treatment assessment.

4.1 Motivation

There are two important and challenging problems in medical image analysis: 1) Extracting
information about the morphological characteristics of neuroanatomical structures; 2) Detecting the
group differences between normal people and diseased patients. Volume-based and image-based
analyses have been widely used to conduct statistical study of the morphological changes of a variety
of neuroanatomical structures, such as the cortex, the hippocampus, and the caudate. The study of
differences between controls and patients with Schizophrenia, Alzheimer's disease, and epilepsy,
has brought out novel neurological findings, and achieved promising group classification
results[I-4]. With the recent advances in computer vision and medical imaging techniques, it is
greatly desired to automatically and accurately localize the shape abnormalities of a brain structure
of interest associated with a particular pathological condition. This type of shape analysis can not
only provide new knowledge of the underlying biological mechanism associated with neurological
diseases, but also be used for computer-aided diagnosis.

Shape-based classification consists of two major components: shape representation for extracting
comparable shape features and pattern classification for learning a classifier based on those features.
Different frameworks have been developed to extract shape features, detect the between-group



differences, and conduct classification for studying sub-cortical structures such as the hippocampus
and the corpus callosum. One of the earliest shape studies of the hippocampus, by Csernanasky et al.,
was based on shape features extracted from the volume deformation field [5]. By using Principle
Component Analysis (PCA) and Linear Discriminant Analysis (LDA), they achieved 80%
classification accuracy in discerning schizophrenic patients. Golland et al. and Timoner et al.
conducted amygdala-hippocampus complex studies using distance transformation maps and
displacement fields as shape descriptors [6-8]. By using Support Vector Machines (SVMs), a
powerful and widely used classification method, they achieved 77% and 87% accuracies
respectively in discriminating schizophrenic patients. Shen et al. classified the hippocampus in
schizophrenia based on a boundary representation normalized across the subjects by using spherical
harmonics transformation (SPHARM), and achieved approximately 70% accuracy using Fisher
discriminant classifier [9]. This accuracy is further improved to 90% using SVMs [10]. Most
recently, Li et al. used a surface mesh to represent the shape of the hippocampus, and studied the
classification performance by subsampling the surface mesh at different resolutions [11]. On
average, they achieved an above 80% classification accuracy using SVMs in classifying patients
with Mild Cognition Impairment (MCI).

Due to the highly convoluted surface of the human cortex, statistical shape studies of the cortical
surfaces have remained at the stage of detecting the localized cortical folding differences with group
average comparison. It remains a challenge to develop an automated procedure for conducting
discriminative analysis of the localized cortical folding abnormalities associated with pathological
conditions in a classification framework. To tackle this problem, we develop a framework to use the
shape features extracted by bi-orthogonal spherical wavelet transformation for conducting
classification and detecting the shape differences of cortical surfaces between two groups of subjects
[12]. In the following, we introduce the entire framework including preprocessing, feature selection,
classification and a method for visualizing the localized and multi-scale shape differences
corresponding to the selected shape features. We also demonstrate the application of this framework
on both synthetic and real data.

4.2 Methods

In this shape-based classification framework, we use the normalized wavelet coefficients of
coordinates of registered cortical surfaces as input shape features x" = y for each

subject n, n = 1,...N in our training dataset. We use group labels t = (t"n , t = +1 to indicate
which class each subject belongs to. We conduct feature selection and classification based on the
training data to obtain a classifier C , which can be used to classify new subjects following a decision
rule such as

t", = sign( Cvx"") ,X (4.1)
where sign(y) = 1 if y >= 0 and sign(y) = -1 if y < 0.

It is statistically challenging to classify cortical surfaces based on shape differences because of the
large amount of shape features vs. the small amount of training data. As introduced in Chapter 2, we
use about 491,526 wavelet coefficients to represent the convoluted cortical surfaces. However, the
typical size of MRI datasets available in our group comparison study is less than 100. Given the large
amount of input shape features and much smaller amount of training data, it is crucial to select shape
features that best separate the groups and avoid overfitting to noise.



To solve these problems, we first utilize the compression property of wavelet representation to
effectively reduce the dimension of input shape feature set. Secondly, we adopt a new Bayesian
approach, predictive Automatic Relevance Determination (pred-ARD) [13], to jointly select shape
features that are relevant to the discrimination and to train classifiers. For comparison, we also use
one of the most powerful classification methods, support vector machines (SVMs), to classify the
cortical surfaces, coupled with feature selection methods such as Hotelling's T2 test [14].

In the following, we first introduce shape dimension reduction in the wavelet domain. We then
describe the classification of cortical surfaces using pred-ARD and SVMs based on the
bi-orthogonal wavelet transformation.

4.2.1 Feature Dimension Reduction in the Wavelet Domain

A - Spherical wavelet coefficients truncation

As described in Chapter 2, we use 163,842 wavelet coefficient vectors (with x, y and z components in
each vector) to represent the cortical surface, where there are 12 vertices at level 0, 42 at level 1, 162
at level 2, and etc. As shown in Chapter 3, most of the pronounced cortical surface variations are
represented at the lower frequency levels, while the highest frequency level (level 6) mostly consists
of high-frequency noise. Therefore, we discard the wavelet coefficients at the highest two frequency
levels in this classification framework.

To further reduce the dimension of the wavelet coefficients, we eliminate the coefficients that
contribute the least to the wavelet power at each frequency level separately based on the training set.
We first calculate the deviation dy,, =n Yjm -y 11j,m = 1,.. .M(j) of each individual from the mean

1 Njy ' l
wavelet coefficient across all subjects in the training set j= Y.. = ,m, , .n. ,

m = 1,... M (j) at the f h level. We then calculate the contribution of each coefficient m at levelj to the

1variation across population as dyj,m =, dy , m= ... M(j). To remove the wavelet

coefficients that are least varied in the population, we rank the contribution of each coefficient
m = 1,...M (j) at level j from the highest to the lowest and eliminate the coefficients whose

1 M
cumulative contribution to the total variation dyj = - • 'ddyj,, is less then 5%. As a result, we

remove on average 15% of the total wavelet coefficients at frequency levels -1 to 5 for our datasets.

B - Feature selection by Hotelling's T2 test

After eliminating the shape feature as introduced above, we still have about 40,000 wavelet
coefficient vectors as input to the classification. In the group comparison study, we employ
Hotelling' s T2 test to further reduce the dimension of shape features. The purpose is to pick out the
spherical wavelet coefficient vectors that best separate the groups.

Hotelling' s T2 test is a multivariate analog to student's t test and can be used to test the equivalence
of the means of two independent groups. The null hypothesis is that the mean column vector

N1 ,

-m = N 17,y of a coefficient calculated for group 1 with N, samples is equal to the mean vector
•jm -"N-- ,,=•



2m Ym of the same coefficients calculated for group 2 with a sample size N2. Before we
N 2 n=1

calduate the T2 statistic, we first use Box-M test to compare the covariance matrices of these two
groups. If the variability is similar, then we compute the T2 statistic as

T 2  N ' 2 _-'L -2 T ( -1 - _-2 (4.2)SN -N2  ,m) (W)j,m ,m)' (4.2)

where w = W, + w2 , and W1 and W2 are deviation SSCP (sums of squares and cross products) for
Ni + N 2 - I

two groups. If the variability is significantly different, then T2 statistic is calculated as

T2 =((YImj,m m(1 +2 ,m ) (4.3)
NN 2

where S1 and S2 are covariance matrices of the two groups. Then we compute an F-statistic as
N + N2 - (D+ 1)T2 (4.4)

FDN+N2-D- (NI + N2 -1). D

where the lesser degree of freedom df1 = D =3 is the length of the coefficient vector and the greater
degree of freedom is df2 = N1 + N2 -D - 1. If the value of this statistic is greater than the tabulated
F-distribution for a chosen significance level a, then we reject the hypothesis that the mean vectors
of this coefficient in two populations are equal. In this work, we calculate the T2 statistic for each
wavelet coefficient vector based on the training set, and eliminate the coefficient vector with p value
larger than the chosen significance level.

4.2.2 Classification Based on Predictive Automatic Relevance Determination

Pred-AKD is a hierarcnical Bayesian approach that determines tne
relevance of input features based on their prediction performance. It
extends the classical Bayesian feature selection method, Automatic
Relevance Determination (ARD) [15, 16]. Both ARD and predictive
ARD model the prior distribution of the parameters in the classifier
w to explicitly represent the relevance of different input features. It
is usually accomplished by assigning hyperparameters a to
determine the range of variation for the parameters relating to a
particular input, as shown in Figure 4-1. Particularly, ARD method
models the width of a zero-mean Gaussian prior on those parameters
such as: Figure 4-1: Hiearchical

p(w I a) = N(wi I 0, a•-) (4.5) graphical model with
hyperparameters

In ARD, the hyperparameters are estimated to maximize the model
evidence (marginal likelihood):

p(tI X, a)= Jp(tl X,w)p(w I a)dw, (4.6)

where X = {x}•, and t = It" ,, t =l.

Pred-ARD method, proposed by Qi et al. [13] , assigns hyperparameters a in the same fashion,
but estimates them to optimize the predictive performance

p(te I xnew,a) = I p(tew I xn, w )p(w I a)dw. (4.7)



As a result, many elements of a go to infinity, which naturally prunes irrelevant features in the data.
Furthermore, Qi et al. [13] use Expectation Propagation (EP), a more accurate approximation
method, for pred-ARD model estimation, and use the leave-one-out generalization error obtained
directly from EP as estimates of predictive performance.

Using pred-ARD, we can not only select relevant features, but also learn the posterior distribution
of classifier p(w I D,a) from training set D = {(x',tl),...,(xN,tN)}. The posterior covariance matrix

reveals correlations between selected features. Using these results, we can estimate the posterior

predictive distribution of tne for a new data point xne" as:

p(tnew I xnew, t) = f p(tne I x" , w), p(w I t)dw . (4.8)

In two-class classification problem, the decision rule is:
tnew = arg max p(t"" I x"ew, t). (4.9)

Furthermore, we can use the estimated predictive distribution to calculate probabilistic score of
prediction confidence.

By using the pred-ARD method, we can effectively avoid the overfitting problem widely
encountered in high-dimensional biological data classification problem. Pred-ARD avoids
overfitting by modeling the uncertainty in the classifier by a probabilistic distribution, instead of
using a point estimate. It further improves the generalization ability by maximizing the predictive
performance, instead of the marginal likelihood used in ARD method. In addition, pred-ARD uses a
sequential update for the hyperparameters, and therefore greatly speeds up the feature selection and
the learning process.

In our work, we compare the performance of pred-ARD with SVMs on classifying cortical
surfaces using on shape features extracted with bi-orthogonal spherical wavelet transformation.

4.2.3 Classification Based on Support Vector Machines

Support Vector Machines (SVMs) method was originally introduced by Vapnik in 1979, and has
received extensive attention for its application in pattern recognition [17]. It can be applied to
classification problems with high-dimensional data and small sample size.

Classification based on training SVMs involves finding a separating hyperplane that forms the
largest margin between two classes of data while minimizing the classification error. Similar to

pred-ARD, we denote the input feature of a set of N training data as X = {x" I,= and class label as

t = (t" , t = +1. We define a hyperplane in the feature space using weight parameter vector w, and

offset parameter b. If the data is separable, the separating hyperplane ensures [18]
t"(wYx" +b) > 1, n = ,...,N . (4.10)

Thus the goal is to find the weight vector that maximizes margin d with the constraint HwjI -d = 1

t"(w'x" +b)b)d, n= 1,...,N. (4.11)

The weight vector w and offset d can be estimated by using Lagrange multipliers. The solution

w = Yn fl"t "xn (f8n > 0) is a linear combination of the input data points for which equation 4.11

represents an equality. These data points are the closest to the separating plane and the most difficult
patterns to classify. They are called support vectors since they define the boundary plane between
classes. Thus the classifier is:
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Figure 4-2: The automated procedure for conducting shape-based classification.

t"ew =sign(~ 'iti(xixne"w)+b), (4.12)
i=1

where N, is the number of support vectors. This fundamental method has been extended to allow for
different kernels and used for non-separable dataset by allowing misclassifications. We refer the
reader to [17] for more details.

4.3 Experimental Setup and Dataset

In this work, we developed a framework to discriminate between two groups, usually one patient
group and one control group, by using shape features of the cortical surfaces reconstructed from their
MR images. Combined with the preprocessing tools available in the Fressurfer software package
[19], the entire procedure, as shown in Figure 4-2, can be used to automatically process and conduct
classification on large-scale MRI dataset, and visualize the shape differences of cortical surface
between two groups of subjects.

A - Preprocessing

The cortical surfaces, including gray/white matter surfaces (hereinafter referred as white matter
surfaces) and CSF/gray matter surfaces (hereinafter referred as pial surfaces) of these two groups are
registered and normalized as described in Chapter 2, and spherical wavelet transformation is applied
to the normalized coordinate functions (ref. Chapter 2). As a result, we acquire four sets of wavelet
coefficients for each subject, including the wavelet coefficients for the white surfaces and pial
surfaces of right and left hemispheres. We reduce the dimension of each set of wavelet coefficients
based on training set using the criterion introduced in section 4.2.1. We then calculate the F-statistic
for each wavelet coefficient vector in each of the reduced set based on Hotelling's T2 test. We select
a set of coefficient vectors from each surface feature set by thresholding the corresponding p value of
the F-statistic, and conduct classification using both pred-ARD and SVMs.

As we introduced before, pred-ARD trains a Bayesian classifier and selects features by
minimizing an estimate of prediction error. However, since we still have approximately 40,000
wavelet vectors (about 120,000 input features) left after reducing wavelet coefficients as introduced
in 4.2.1, it takes a few days to finish one training task on a dataset with dozens of subjects. To
shorten the computation time, we further reduce the input feature dimension by selecting coefficient
vectors whose p value is smaller than a pre-selected threshold as inputs into pred-ARD based
classification.



Similarly, we reduce the input feature dimension for classification based on SVMs by
thresholding the p value calculated from the Hotelling' s T2 test of each wavelet coefficient vector. In
this work, we allow soft margin separation and employ linear, Gaussian radial basis function and
polynomial kernels. By using linear kernel and setting the weighting parameter of the classification
error term to 1, we obtain the best cross validation results in our experiments.

B - Dataset

To test the shape-based classification procedure, we first generate a synthetic shape difference in
half of the 84 normal brain scans used for normal shape variation study in Chapter 3. We then apply
the classification procedure to three different real dataset to compare pred-ARD to SVMs coupled
with Hotelling T2 test.

The first dataset consists of 11 children (4 female, right-handed, average age 11.83) and 12 young
adults (7 female, right-handed, average age 22.17) recruited as normal controls for a functional MRI
study on dyslexia. All subjects were right-handed, with no history of speech, language, or reading
disorders. Each subject underwent a T1-weighted MRI (Siemens MP-RAGE) of the entire brain at
1.3 mm x 1.0 mm x 1.0 mm resolution with MRI parameters of TR = 6.6 ms, TE = 2.9 ms, TI = 300
ms, flip angle = 8 degrees, and two averages per scan.

The second data is acquired at the Washington University Alzheimer's Disease Research Center
for 23 normal male subjects with an average age of 78.5 + 5.7, and 37 male subjects with mild
dementia (CDR score =0.5), and an average age of 78.5 ± 5.8. Clinical Dementia Rating (CDR) is a
numeric scale used to quantify the severity of symptoms of dementia. Structural Magnetic
Resonance Imaging (MRI) was performed on a Siemens 1.5 T Vision System (Erlangen, Germany).
Between 2 and 4 high-resolution (lmmX lmmXl.25 mm) Tl-weighted MP-RAGE scans were
acquired per participant (TR = 9.7 ms, TE = 4 ms, flip angle = 10, TI = 20 ms, TD = 200 ms). Scans
were motion corrected and averaged, yielding a single image volume with high contrast-to-noise
ratio, enabling quantitative characterization. All MRI scans were conducted within 6 months of
neuropsychological testing and experiments.

The third dataset consists of 52 normal male subjects (ages 34.5 ± 11.6) and 72 chronic
schizophrenic male patients (ages 36.4 ± 10.5). The normal subjects were screened to exclude those
with a personal history of mental illness, neurological disorder and a family history of a psychotic
disorder. T1 weighted images of these subjects were acquired in a 3 Tesla Siemens System using a
spoiled grass sequence with the following parameters: 1.5 mm coronal slices, 20 degree flip angle,
12 msec TR, 5 ms TE, 3 NEX, 16x16 cm FOV and a 256x256 matrix. Phase and magnitude field
maps were acquired and used for image distortion correction.

C - Visualization and cross validation

By using Pred-ARD method, we select a set of features that are most relevant to the discrimination
of one group from another. To visualize these selected features, we gradually add the differences of
the mean values of selected coefficients between group 1 and group 2 to the mean wavelet
coefficients of Group 1, and inversely transform the resulting new sets of coefficients to generate
synthetic surfaces. By deforming the generated synthetic surfaces from group 1 to group 2, we can
visualize these localized shape differences at multiple spatial scales corresponding to the selected
features.

Lastly, we calculate the average leave-one-out classification accuracy to quantitatively compare
the generalization error based on pred-ARD and SVMs. Each time, we reduce the feature dimension



in the wavelet domain, and then conduct the Hotelling's T2 test using N-i subjects as training set.
Using the reduced wavelet coefficients of the training set, we estimate a classifier based on
pred-ARD or SVMs method, and classify the left-out subject using the resulting classifier. Finally,
the leave-one-out classification accuracy is calculated as the percentage of subjects correctly
classified by selecting features and training a classifier using the remaining subjects.

4.4 Results and Discussions

4.4.1 Shape Discrimination of Synthetic Data

The shape-based classification framework is tested on 84 normal brain
scans, with half of them having a synthetic 4mm by 2mm bump around a
point selected on the bank of central sulcus. Hotelling's TL test shows Figure 4-3:
that only coefficients located around the synthetic deformation have a Statistical map of
calculated p value lower than 0.0002 (Figure 4-3). Using these selected coefficients
coefficients, the synthetic deformation can be visualized with accurate shown on average
location and spatial extension. With the same threshold, the deformed surface
leave-one-out classification accuracy based on SVMs is 95.24%. This
accuracy decreases to 85.71% with a threshold of 0.01, which we believe is due to an increased false
detection rate caused by a lack of multiple comparisons correction (the large number of features, and
therefore the large number of statistical tests involved, increases the chance of incorrect detection).

4.4.2 Shape Discrimination of Patients with Mild Dementia

In this experiment, we conduct a study on the differentiation between normal male controls and male
patients with mild dementia (CDR=0.5) using pred-ARD classification method. Since the patients
are individuals with Dementia of the Alzheimer Type (DAT) at very mild-to-mild stages, detecting
cortical shape changes in these patients is challenging. However, once we are able to extract reliable
shape features for differentiating the patients, we might be able to detect the Alzheimer's disease at
an early stage when intervention may be most effective.

In this study, we first compare classification accuracy by using different combination of
hemispheres (left and right), surfaces (white and pial), and thresholds used for filtering the input
shape features based on Hotelling's T2 test. As a result, we find there are no significant shape
changes in the pial surfaces of the DAT patients compared with the controls. This is probably due to
the imperfections in the reconstructed pial surfaces. White surface of the right hemisphere has
stronger discriminative power than that of the left hemisphere. The combination of both left and
right hemispheres generates the best leave-one-out classification accuracy. We also find that
selecting wavelet coefficients with a p value less than 0.02 gives the best discriminative results. By
using this threshold, the input feature is sized down to around 1500 on each side. Among them, about
150 features (10%) are selected by pred-ARD to be the most relevant features to our discriminative
task.

To visualize the result, we can generate movie deforming the average surface of controls to the
average surface of DAT patients using differences found in these selected features, as detailed in
Section 4.3. We illustrate these results in this thesis by showing the synthetic surfaces generated for
DAT group at several frequency levels in Figure 4-4. Significant shape differences are observed at
both low and high spatial-frequency levels in this study. Specifically, on the left hemisphere, the
shape changes are most salient at the low frequency level in the frontal lobe. At higher frequency



Figure 4-4: The regions that are most discriminative between controls and patients with mild
Dementia highlighted on the average partient cortical surface. The regions correspond to the
spherical wavelet coefficients that are selected by pred-ARD method. The colormap encodes
the p value of these selected wavelet coefficients in the support region of the corresponding
bi-orthogonal spherical wavelet basis function.

levels, there are dispersed variations scattered across the brain on both hemispheres (Figure 4-4). To
validate that these detected regions are indeed affected by DAT, we compare these shape changes
with the normal shape variations we discovered in the elderly population in Chapter 3. As a result,
we find there are overlapped regions of changes at some frequency levels, as demonstrated in Figure
3-4 and 4-4 at level 0, for example. However, further visualization shows that the pattern of shape
variations detected are different in these two studies. This result verifies that the shape changes
detected in the DAT dataset is not due to idiosyncratic shape variations.

Lastly, we conduct leave-one-out cross validation using coefficients selected with threshold=0.02.
As a result, we obtain a classification accuracy of 75%, with a sensitivity of 83.78% and a specificity
of 60.87%. This result proves that our classification method has promising generalization ability,
and can be potentially used for early diagnosis of Alzheimer' s disease.

4.4.3 Comparison of Pred-ARD and SVMs

At last, we compared the performance of pred-ARD and SVMs in discriminating cortical surfaces
using spherical wavelets on several datasets. Since the SVMs-based classification method we used
in this work does not include feature selection, we filter the input wavelet coefficient vectors using
different threshold based on p value calculated for each coefficient vector using Hotelling's T2 test.

After comparing classification accuracies of SVMs with different combination of hemispheres,
surfaces, and thresholds, which are used for filtering the input shape features based on Hotelling's T2

test, we find consistent results that white matter surface generates better classification results than
the pial surface with other parameters being equivalent. In contrast to the stronger discriminative
power found for the right hemisphere in pred-ARD, we always achieve better classification results
using left hemisphere in these 3 datasets we studied based on SVMs method. Lastly, we find smaller
threshold in selecting the input features gives better leave-one-out classification accuracy.
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Figure 4-5: Comparison of leave-one-out classification accuracy by using pred-ARD and SVMs
in three different studies. Both left and right hemispheres are used for pre-ARD, and the input
shape features are pre-selected using Hotelling's T2 test. Only left hemisphere is used for SVMs,
and the input shape features are selected with Hotelling's T2 test using a smaller threshold.

Figure 4-5 demonstrates the best classification results generated with pred-ARD and SVMs for
these three studies. Both left and right hemisphere are used for pred-ARD based classification with
input features pruned in the wavelet domain and then pre-selected based on Hotelling's T2 test. The
thresholds are chosen for each dataset based on cross-validation results. Left hemisphere is used for
SVM based classification with a smaller threshold. In all three cases, pred-ARD out-performs SVMs
in leave-one-out classification accuracy. However, the cross-validation result in the schizophrenia
study showed that neither method can successfully separate the patients from normal controls.

These results demonstrate the advantages of pred-ARD method over the SVMs method coupled
with Hotelling's T2 test in shape feature selection. As a wrapper method, pred-ARD couples the task
of feature selection with classification. On the contrary, since SVMs-based classification method
does not include feature selection, features selected using Hotelling's T2 test (or any other filter
methods) are independent of the classification task. Secondly, pred-ARD provides a score, based on
the estimated leave-one-out prediction error, for the joint selection of feature subsets, while the
Hotelling's T2 test picks out each feature individually without considering the influence of other
features.

4.5 Contributions

In this chapter, we studied shape differences between two groups of subjects in a classification
framework based on the shape features extracted from bi-orthogonal spherical wavelet

Pred-ARD 
J

I.



transformation. In summary, the contributions of our work presented in this chapter are the
following:

1) To the best of our knowledge, this approach is the first one that has been proposed to detect
localized and multi-scale cortical shape differences between two groups in a classification
framework.

2) We employed a Bayesian classification method that is particularly suitable for large
dimensional biological dataset, as is the case for our data in which we have hundreds of thousands of
potential features, and only dozens of subjects.

3) We investigated the cortical shape differences at different spatial scales in several group
comparison studies, including mild dementia, schizophrenia and teenage/adult studies. We
developed tools to visualize the most discriminative shape differences between two groups at
multiple spatial resolutions.

Application of this shape-based classification approach to MD/control dataset has achieved
promising classification accuracy, and showed interesting results regarding the specific location and
spatial scales of cortical shape variations related to neurological diseases. The developed framework
can be used to detect shape variations of other brain structures as well. The detected shape
differences can potentially improve our understanding of neurological diseases, and be used for
early diagnosis and treatment assessment.

A preliminary version of part of this work was presented in the International Conference on Pattern
Recognition [12].
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Chapter 5

Cortical Folding Development Models

In this chapter, we develop a nonlinear temporal model of the cortical folding development in the
late gestation based on a MRI dataset of newborn. We employ a regularization framework to
improve the generalization performance due to the limited amount of training data available in this
study. We employ a quasi-Newton method based on BFGS approximation to estimate this
regularized folding development model. We estimate the nonlinear models in the spherical wavelet
domain to study the folding development of cortical folds of different spatial scales. These models
provide quantitative and innovative information regarding temporal order and regional
differentiation of cortical folding development. These normal development models can be used as
biomarkers for the early diagnosis of neurological deficits in newborns.

5.1 Motivation

The human cortex is highly convoluted, in contrast to the smooth cortex found in other animals such
as mice and rats. In human beings, cortical development begins prenatally, and the majority of
neurons are generated before birth. The development of cortical folding starts at about 9 weeks in
gestation, changes dramatically until birth, but continues into late adolescence [1, 2].

The mechanism involved in the regulated formation of folding pattern remains unclear. It is
hypothesized that folding pattern formation is caused by neuron differentiation, migration and the
growth of neutrite. Another theory suggests that differential growth of the outer layers relative to
inner layers of the cortex results in cortical buckling [3]. A third theory proposed that the mechanical
tension generated during the "long-distance" connections of different regions of the brain leads to
the formation of folding [4]. Regional and hemispheric differences of folding development have
been reported in the previous study. There is also the notion that large scale cortical folds develop
earlier, and the secondary and tertiary folds develop later [1]. However, because of the lack of in vivo
data, the cortical folding development process has not been quantitatively and thoroughly studied in
the previous work.

It is of great medical importance to study the folding formation process. This study can not only
provide knowledge about structure-function relationship, but only deepen our understanding of
neurological diseases originated from the abnormal structural and /or functional connectivity in
neurodevelopment, such as Schizophrenia and Autism. In this work, we have been able to study a



Magnetic Resonance Imaging (MRI) dataset of premature newborns that were scanned right after
they were born. Because these healthy newborns have different gestational ages, we can use this
dataset to study, for the first time, the normal cortical folding development process in vivo.

Like many growth phenomena in nature, the folding of the human cortex starts slowly, and
accelerates before slowing down to approach a limit. Therefore, we propose to model the folding
development of the gray/white boundary at different spatial scales using a growth model [5]. Unlike
Principal Component Analysis (PCA) introduced in Chapter 3, which is a linear data model, the
growth model is a nonlinear temporal one that captures both the fast growth and saturation phases of
cortical folding development in late gestation. Furthermore, we propose to build the folding
development models in the spherical wavelet domain in order to study the temporal orders and
regional differences in folding development.

In this chapter we introduce the details of this nonlinear cortical folding development model, the
regularization scheme employed to improve the predictive performance, and the model estimation
methods. We also present the use of this model in detecting the spatial scales and regional
differences of the cortical folding development of the gray/white matter boundary in this dataset of
newborn.

5.2 Dataset and Methods

5.2.1 Dataset and Preprocessing

In this study, we use a set of eleven MRI scans acquired on eight normal neonates with corrected
gestational ages (cGA) of 30.57, 31.1, 34, 37.71, 38.1, 38.4, 39.72, and 40.43 weeks, and 3 children
who were approximately 2, 3 and 7 years old at the time of scanning. T1 weighted 3D SPGR images
were collected on a 1.5T scanner, with TR/TE = 30/8, flip angle = 25-30', matrix = 256x 192, FOV
= 220x 165 mm or 200x 150 mm and slice thickness 1.2 to 1.4 mm.

The images of newborns were manually segmented into white matter and cortical regions due to
inverted gray/white contrast and low contrast of the gray/white matter boundary. Based on the
manual segmentation, the cortical surfaces are reconstructed using Freesurfer tools as described in
Chapter 2. The children dataset was preprocessed using the automated tools. The reconstructed
cortical surfaces of these 11 subjects were registered and normalized as described in Chapter 2.
Wavelet transformation and the developed nonlinear models are then applied to the normalized
white matter surfaces (gray/white matter boundary) to study the folding development of cortical
surface. To be compared with neonates, children's ages were converted to 167, 235, and 451 weeks
by assuming a 40 week gestation period.

5.2.2 Nonlinear Cortical Folding Development Model

To model the cortical folding development of cortical surfaces in this dataset from late gestation to
early infancy, we fit a growth model, more exactly, the Gompertz function [6], to the spherical
wavelet coefficients. Given a limited amount of training data currently available for this study,
which includes 8 newborns and 3 children, we employ a regularization framework to avoid
overfitting and improve prediction performance on new data points. We use an efficient method to
estimate this regularized Gompertz model based on BFGS approximation [7] and estimate the
confidence intervals of estimated parameters using Laplacian Approximation.



A - Regularized Gompertz model and estimation

Specifically, if w(t,) is one of the spherical wavelet features extracted from a subject at age t,, we
use the Gompertz curve [6] to model the change of this feature at different ages as follows:

w(t) = g, exp(-exp(-g 2(t - g3))) + (t),, (5.1)
where g, is the maximum value at mature, g2 is the growth rate that quantifies the speed of the
folding development, g, is at the inflexion point and indicates the age of the fastest folding

development, and e(t,) represents additive noise with mean zero.
Due to the limited number of subjects available in this study, we apply a regularization framework

for parameter estimation to avoid overfitting. In such a framework, we minimize a cost function over
variables gl, g2 and g3 :

N 3

Q(g1,g2,g3) = (g, exp(-exp(-g 2(tr - g3)))- w(t)) 2 +c g (5.2)
i=1 j=1

where the first term on the right hand side of equation 5.2 models the empirical error of model fitting,
and the second term is a scaled 12-norm regularizer with the scaling factor c controlling the trade-off
between the empirical error and the degree of regularization. Having the weighted sum of the
squared parameters in the cost function, in addition to the empirical mean square error, constrains
the model space and avoids overfitting to data noise. This method is a special form of regularization,
which is known as weight decay in statistical learning theory [8].

To minimize the cost function Q, we first compute its gradient, which has the closed form:
dQ "
dgQ = 2 (gI exp(-exp(-g 2 (t g3)))-w(t,))exp(-exp(-g 2 (t - g 3)))+ 2cg1  (5.3)

dQ 2X (g eexp(-exp(-g 2 (t - g3)))- w(ti))exp(-g 2 (ti - g3))g, exp(-exp(-g 2 (ti - g3))) - 3) + 2cg
dg2  i=1

d= 2 (g, exp(-exp(-g 2 (ti - g 3))) - w(ti))exp(-g 2 (ti - g3))g, exp(-exp(-g 2 (ti - g3 )))(g 2 ) +2cg 3

dg3  i=1

Since a simple gradient method suffers from slow convergence, we adopt a quasi-Newton method
based on the Broyden-Fletcher-Goldfarb-Shannon (BFGS) approximation [7] of the Hessian matrix.
The BFGS method enables us to efficiently minimize Q over the parameters {gi }i= 3. We tune the

regularization parameter c based on the leave-one-out cross-validation. Specifically, we compute the
mean square error of our predictions on the held-out data point using the model parameters
optimized from the rest of the training data. From a collection of pre-specified values, we select the
parameter c that minimizes the leave-one-out error.

B - Confidence interval

Furthermore, we estimate the Bayesian confidence intervals of our estimated
parameters g = {g19i }. Note that using the regularized cost function (equation 5.2) is equivalent to
using a Bayesian model; if we scale equation 5.2 by the observation noise variance (assuming it is
known), then the log likelihood functionlogp(wlg,t), w= {wi}=f,...Ng = {gili=g,... 3,t = {ti i=,...N in
the Bayesian model corresponds to the first term on the right hand side of equation 5.2 up to a
normalization constant, and the Gaussian prior distribution p(g) corresponds to the second term on



the right hand side of equation 5.2 up to a normalization constant. Therefore, minimizing equation
5.2 amounts to finding the maximal value of the posterior distribution p(g I w,t).

Although we can efficiently compute the parameters g that maximize the posterior distribution, it
is computationally intractable to calculate the exact distribution p(g I w, t) because the likelihood
function is non-Gaussian in g. Therefore, we use Laplace's approximation [9] to approximate the
exact posterior distribution as a Gaussian:

p(g I w,t) - p(g I w,t)exp( (g - g)7 H(g - j)) (5.4)

where H is the Hessian matrix:

d2log(p(gI w,t)) 1 d2Q(g))5)H - U (5.5)dgdg T  "= 2o dgdg 5
Once we have computed the Hessian matrix, the variance matrix of the posterior distribution
p(glw,t) can be approximated as -H - '. Thus the 90% Bayesian confidence intervals of the
estimated parameters are obtained by {(i ±1.64-o,= 1 , where {o}i=1...3 are the diagonal
components of the approximate variance matrix.

C - Goodness of fit

The regularized folding development model is applied to study the development of cortical folding
in newborns based on spherical wavelets. To measure the goodness-of-fit of the model, we calculate
the R2 statistic, the ratio of the sum of squares explained by the model and the total sum of squares
around the mean:

N

(w(t,)- ^(t,))2 (5.6)
R 2 =1 i=1

i=1 N i=1

D - Comparison with linear model

To validate that the proposed nonlinear model is suitable to characterizing the dynamic
development of folding, we compare it with the linear regression model:

w= xf+ e= at+b+ e,
x = [t,1]T ,e = N(0,2U ),

where N(0, (t 2 ) denotes a normal distribution with mean 0 and variance o2r. The parameter vector
can be estimated as:

= (xTx + vl)x r w, (5.8)
where w = {wi }, x = {xi },~, and parameter v is the weight of the regularization term, similar to the
constant used in equation 5.2. We assign a large value to v to avoid overfitting.

To compare our nonlinear folding development model (denoted as Mg) with the linear model (MI),
we compute the marginal data likelihood using both models, where D = {(w(ti),ti) }I,:
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Figure 5-1: a) The predicted curve at level 0 in the left hemispheres. b) The predicted curve at
level 0 in the right hemispheres (A logarithmic scale (base 10) is used for the horizontal axis
from 0 to 450 weeks to include all the 11 data points used in the model fitting; vertical axis is
the wavelet power normalized with regard to the wavelet basis function.)

Mg: P(D I M) = p(w,tl g)p(g)dg , (5.9)

M, : P(D I M,)= p(w, t I) p(p)dp , (5.10)

and select the model with larger marginal likelihood.
The marginal likelihood of nonlinear model is calculated with Laplace's approximation as [9]

P(D I Mg) = p(w,t I g)p(g)dg = p(w I , t)p(g)(2z)ro'ws(H)/2 1- H1 /, (5.11)

where the Hessian matrix is calculated with equation 5.5. For the linear model, we assume the
parameter p has a conjugate prior distribution as an inverse Wishart distribution W -1 (So, n), where

So is set to nI, and n = 2, as detailed in [10]. Then the marginal likelihood can be calculated by a
matrix-t distribution [10, 11]:

P(DIMI)- T(i^-,So,I-x'T Sx,N), (5.12)

where i^ = xP, S, = TXx, and N = 2 +11, the sum of the number of parameters and the number of

data points.

In the next section, we estimate the proposed folding development models using bi-orthogonal
spherical wavelet coefficients. We report the estimated parameters, 90% confidence interval, and R2

statistics of the proposed nonlinear folding development model at different frequency levels. We
also show the estimated folding development curves at different frequency levels overlaid on the
original data. These results demonstrate the effectiveness of the proposed model for describing
cortical folding development.

5.3 Results and Discussions

5.3.1 Global Folding Development of the Cortical Surface

In this section we describe the results of using the nonlinear cortical folding development model to

I' ' ' ' , . , , I I ' I' ' ' ' . ' ' ' I
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Figure 5-2: Estimated age of maximum folding development (on the left) increases with
frequency levels in both left and right hemispheres, maximum development speed increases as
well (shown on the right). Red line indicates 90% confidence interval.
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Specifically, we fit the proposed folding development models (see equation 5.1) to the mean
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/2-norm Yjrm of wavelet coefficient vectors, we model the change of wavelet power with age, and

quantitatively study the development of cortical folding at different spatial scales. In particular, the
estimated models using wavelet power at lower levels quantify the development of primary folds
since the lower level wavelet coefficients encode the shape variations of the low resolution
approximations of cortical surface, and the models at higher levels demonstrate the development of
secondary and tertiary folds as they quantify shape variations at smaller spatial scales.

For the purpose of comparing these models across levels, wavelet powers are normalized so that
the L2-norm of wavelet basis function is unity at all levels. As a result, the estimated parameters g,
(the amount of folding), g2 (maximum speed of folding development), and g3 (age of maximum
folding development) can be used to quantitatively compare the folding developments across levels.

The results of this study are shown in Figures 5-1 to 5-4 and Table 5.1. Table 5.1 shows that the R2

values are larger than 0.7 at most of the frequency levels in both hemispheres, indicating good model
fitting results. As an example, the estimated Gompertz curves overlaid on the original data at level 0
in both hemispheres are shown in Figure 5-1, with the vertical red line indicating the estimated age
of maximum folding development (a logarithmic scale (base 10) is used for the horizontal axis). We
summarize the findings with the estimated parameters in the following.

A - Comparison of the hemispheric differences of folding development

First of all, Table 5.1 shows the estimated parameter g1 , whose value at different level encodes the
amount of wavelet power at the corresponding spatial scale. A similar value of gl within the 90%
confidence interval in the left and right hemisphere shows that the amount of folds is equivalent on
both sides. Furthermore, the comparison of left and right hemispheres in Figure 5-2 shows that
although the age of fastest development is the same, the maximum speed of folding development is
higher in the right hemisphere at levels 0 to 4, suggesting that cortical folds develop simultaneously
but faster on the right side.

B - Comparison of the folding development age and speed

Furthermore, both Table 5.1 and Figure 5-2 show that the estimated speed of folding development
increases from low to high frequency levels (levels 0-3) on both left and right sides, and the
estimated age of maximum folding development increases monotonously with frequency level from
approximately 29 to 33 weeks. The calculated 90% confidence intervals show that the estimated
fastest development ages and speeds are significantly different across frequency levels. These
results indicate that the lower frequency folding such as the primary folds develop earlier and slower
than the higher frequency folding such as the secondary and tertiary folds.

To demonstrate these results, part of the estimated Gompertz curves including only the 8
newborns at different levels are plotted together in Figure 5-3 and 5-4, where the red vertical lines
indicate the maximum development ages estimated for folds of large and smaller scales. Although
the data of 3 older children were not shown in Figures 5-3 and 5-4, all 11 data points are used in the
actual model fitting. A logarithmic scale (base 10) is used for the vertical axis for better
visualization.

At last, we apply the linear models to the wavelet power as described in Section 5.2, which uses a
slope and intercept to model the folding development. We find that the proposed nonlinear model
has larger marginal likelihood than the linear model in both left and right hemispheres and all
frequency levels. This result suggests that the cortical folding development process is not linear and
the Gompertz curve is the proper model to use.
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Figure 5-3: The predictive curve at frequency levels 0 to 4 in the left hemisphere
(horizontal axis is the gestational age from 20 to 45 weeks; vertical axis is the wavelet
power with a logarithmic (base 10) scale).

5.3.2 Regional Folding Development of the Cortical Surface

The cortical folding development model was then estimated for each one of the wavelet coefficients
across 11 subjects. Unlike the study of wavelet power, this approach allows us to discover not only
when, but also where the folding of the cortical surface occurs at different spatial scales. Although
each of the x, y and z components of a wavelet coefficient was estimated with the model, only the
estimated parameters {g, }i-,.. of the component with the largest R2 value are used to demonstrate

the development of folding in the support region of this wavelet basis function.
In Figure 5-5, we plot the estimated maximum folding development speed and age of the set of

wavelet coefficients with R2 > 0.5 on the white matter surface of the youngest newborn. The
colormp encodes the estimated parameters, and the location and support regions of the
corresponding wavelet basis functions. From these figures, regional differences in folding
development are evident as different ages and speeds are estimated for different cortical regions.
Furthermore, the linear relationship between development age and speed is persevered for cortical
folds of the same spatial scales. The comparison of the age and speed colormaps of the same region
at the same level shows that the earlier a region develops (darker blue in the maximum development
age colormap), the slower the development speed is (more red and less yellow in the speed
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colormap).
Lastly, we can map out where and how fast the folding occurs on the white matter surface at

different gestational ages. For this purpose, we first cluster wavelet coefficients into three age
intervals, (0, 33), [33, 38) and [38, oo) weeks, by using the estimated maximum development ages.
Then the estimated maximum development speed of the wavelet coefficients in each age interval is
plotted as colormap in the support regions of the corresponding wavelet basis functions on a
representative brain (newborns with gestational age of 30, 34 and 40 weeks are used as
representatives for the three age intervals respectively), as shown in Figure 5-6. The colormap on
each surface encodes the estimated speed of the regions that develop the fastest within the specific
age interval. Visual inspection shows that most regions that develop at younger gestational ages are
of larger scales, and regions that develop at older gestational ages are of smaller scales. This
observation further demonstrates the earlier development of larger primary folds followed by the
development of secondary and tertiary folds at successively smaller scales.

5.3.3 Discussions

Modeling the cortical folding in the wavelet domain allows us to evaluate the primary folds and
smaller scale folds separately in the brain development. Study of the wavelet power shows that

100

10- 4

1 .... ----

_....------
,° i .... 111

*II

.- . --

10-8

I '' 2

Figure 5-4:
axis is the
logarithmic

0

· ____ ·

- --

no . .

2



Figure 5-5: The predicted folding development speed and maximum development ages in the left
and right hemispheres using individual wavelets at levels 0 to 4. Colormap encodes the
magnitude of the estimated maximum development speed (1/week) or age of maximum
development (weeks) of wavelet coefficients in the support regions of their corresponding
wavelet basis functions. For points in the overlapped regions of two or more wavelet basis
functions, the estimated age and speed of the closest wavelet function is assigned. Column 1:
Predicted folding development speed in the left hemisphere from levels 0 to 4 (top-down);
Column 2: Predicted age of maximum folding development in the left hemisphere from levels 0
to 4 (top-down); Column 3: Folding development speed in the right hemisphere from levels 0 to
4; Column 4: Age of maximum folding development in the right hemisphere from levels 0 to 4.
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Figure 5-6: Estimated folding development speed of the regions that develop the fastest during
gestational age from 0 to 33 weeks (first row), from 33 to 38 weeks (second row), and from 38
weeks to older (third row). Colormap encodes the magnitude of the estimated development speed
(1/week) in the support regions of their corresponding wavelet basis functions. For points in the
overlapped regions of two or more wavelet basis functions, the estimated speed of the highest level
or closest wavelet function is assigned.
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larger cortical folds develop at younger gestational ages with slower speeds. Moreover, the
individual wavelet coefficient study quantifies the regional differences in folding development, and
further demonstrates the positive correlation between estimated maximum development age and
speed at the same level.

However, since the wavelet basis functions used in this study is not orthogonal, the correlation
between wavelet coefficients at different levels should be taken into account. As shown in Figure 5-5
and Figure 5-6, most of the detected regions of cortical folding development do not overlap with
each other across levels. In the regions that are overlapped, the correlations between overlapping
wavelet bases are fairly small. For example, a smaller scale fold on the temporal lobe, corresponding
to a wavelet coefficient at level 2, is detected to be in the region of a larger scale fold, corresponding
to a wavelet coefficient at level 0, as seen in the upper left image in Figure 5-6. The correlation
coefficient of the two corresponding wavelet basis functions is 0.031, showing a weak correlation of
the folding development detected in these two regions. Therefore, the bi-orthogonality property of
the wavelet bases has minor effects on our study of cortical folding development by using wavelet
coefficients at different levels separately.

Another limitation is the observation that many regions on the white matter surface do not fit well
to the Gompertz model. To address this issue, we have explored several directions. First of all, we
have been trying to include more MR scans into this study, which is anticipated to increase the
statistical power of this study. Secondly, we have made tentative improvement on the current model
to account for the regions that are not identified to be actively developing in this study. Lastly, we
have extracted more stable shape features by employing a newly developed over-complete spherical
wavelet transformation, which will be demonstrated in Chapter 7.

5.4 Contributions

The study of cortical surface folding development in late gestation demonstrated the power of
wavelets in analyzing the underlying function locally in both the space and the frequency domain. In
summary, the contributions of our work presented in this chapter are the following:

1) To our knowledge, this temporal model is the first one that has been proposed to quantitatively
study the nonlinear folding development of cortical surfaces in the late gestation.

2) By applying this model in the wavelet domain, we discovered that the cortical folds of larger
scales develop early, but with a slower speed, while the smaller scale folds develop later and with a
faster speed.

3) Because of the localization property of wavelet-based shape representation, we revealed
regional differences in folding development by generating cortical maps of estimated development
age and speed.

The cortical folding development models built in the wavelet domain provide novel findings
regarding normal cortical development and may be potentially used as biomarkers for early
diagnosis of neurological deficits in newborns.

This work was published at the IEEE Transactions on Medical Imaging [3].
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Chapter 6

Shape-guided Subcortical Structure
Segmentation

In this chapter, we propose to improve the segmentation of subcortical structures, such as the
hippocampus, by incorporating prior shape information extracted with spherical wavelet
transformation. We develop a surface deformation method that includes a region-based image term
and a boundary-based image term with wavelet-based and generic shape constraints. We obtain the
wavelet-based shape constraints from a training set at different frequency levels in the wavelet
domain, and encourage the surface to deform inside of the space spanned by the training set. The
generic shape constraints allow the surface to deform outside of that space while maintaining the
smoothness of the surface. We apply the wavelet-based and generic shape constraints alternately to
minimize the image-based energy terms in a multi-scale fashion. The use of the proposed method has
demonstrated promising results in improving the segmentation accuracy of the hippocampus in a
magnetic resonance imaging dataset.

6.1 Motivation

The hippocampus is one of the most important subcortical neuroanatomical structures, critical to
understanding Alzheimer's Disease (AD) as well as the basic memory systems of the human brain.
Morphological changes of the hippocampus can be observed in various neurodegenerative disorders,
psychiatric disorders and healthy aging [1-7]. The study of these changes in vivo can improve our
understanding of neuropathology and facilitate early diagnosis when clinical intervention is more
likely to be effective.

An accurate segmentation of the hippocampus from Magnetic Resonance Imaging (MRI) data is
essential for characterizing the nature and exact location of shape changes. For this purpose, many
automated or semi-automated segmentation methods have been developed to replace the
time-consuming manual labeling and improve reproducibility. The whole-brain segmentation tool
implemented as part of Freesurfer [8, 9], the publicly available software package, is one of most
successful and widely used tools for automated labeling of neuroanatomical structures in the human



Figure 6-1: a) The manual segmentation (yellow line) and Freesurfer segmentation (red
line). b) 3D surface rendering of the Freesurfer segmentation of the hippocampus. c)
Manually segmented hippocampus.

brain. It automatically assigns one of 37 labels to each voxel of a volume, including left and right
hippocampus, based on probabilistic information obtained from a set of manually labeled training
brain volumes. A Bayesian approach, specifically, a maximum a posteriori (MAP) estimation, is
used for this segmentation, which considers not only the local intensity distribution of each class, but
also the effects of surrounding labels on the probability of having a label at a given location. This
technique has been widely used for volumetric study of sub-cortical structures, and has showed to be
comparable in accuracy to manual labeling.

Using this tool, we have been able to build reliable shape models of hippocampus. However, we
observe one-dimensional protrusions on the reconstructed hippocampus surfaces, particularly in
atrophic patients, as shown in Figure 6-1. These spurious protrusions occur in regions where partial
volume effects of white matter and the adjacent ventricle can result in a string of voxels with
intensities very similar to the hippocampal mean. Since the segmentation method developed in
Freesurfer does not incorporate prior knowledge about the smoothness of the boundaries of these
structures, these voxels are mistakenly classified as hippocampus purely based on location and
intensity information. Differential measures of the curvature in these areas only reveal outliers at the
extreme end of the strand, making them difficult to eliminate without sacrificing anatomical
accuracy in other regions that may truly have high curvature (e.g. the subiculum).

A natural solution for this problem is to guide the deformation of the segmented hippocampus
surface by using statistical shape priors obtained from a training set. This kind of shape model has
been extensively studied in medical imaging segmentation. One of the first statistical shape models
was proposed by Cootes et al. [10] in 1995, where a probability prior is learned from a training set of
shapes by estimating a joint probability distribution over a set of boundary points based on Principal
Component Analysis (PCA). This prior is then used in a parametric active contour segmentation
algorithm called Active Shape Models (ASM) by projecting the evolving shape onto the shape space
spanned by the training set and limiting the evolving shape to lie within variances observed in the
training set. This method has been extended and successfully used to segment 2D or 3D medical



images [11-15]. However, this type of method tends to neglect the local variation of shapes by using
a global shape representation.

To address this problem, Davatzikos et al. [16] have proposed a hierarchical active shape model
framework for 2D contours by using PCA in the ID wavelet domain. Nail et al. further extend this
method into 3D shape segmentation of brain structures, such as hippocampus and caudate nucleus in
MRI, by using spherical wavelet transformation [17, 18]. The purpose of building shape models in
the wavelet domain is to guide the surface deformation at the coarse and progressively finer spatial
resolutions in order to preserve delicate surface features. To further increase the dimension of
subspace that the shape can deform in, Davatzikos et al. [16] and Nain et al. [18] modeled
independent groups of the wavelet coefficients clustered with similarity measurements, and Li et al.
[19] modeled each single wavelet coefficient.

The statistical shape model provides an efficient and effective way to deform the shape using
shape information obtained from manually a segmented training set. This method prevents the
surface from converging to suboptimal solutions. However, it could restrict the surface in the
subspace spanned by the training set, which might be problematic when the training set is small.

In this work, we proposed a method to deform the hippocampus surface using wavelet-based and
generic shape constraints in order to improve the segmentation of the hippocampus resulting from
the automated Freesurfer tools [20]. We use shape constraints in the wavelet domain based on the
observation that most of the protrusions are on a smaller spatial scale. The addition of generic shape
constraints allows the shape to deform outside of the space spanned by the training set. In the
following sections, we introduce the proposed method in detail and validate its usage to improve the
accuracy of segmentation generated with automated Freesurfer tool in a MRI dataset.

6.2 Methods

In this section, we first introduce the preprocessing steps for reconstructing and registering
hippocampus surfaces in a spherical coordinate system using Freesurfer tools. The proposed shape
deformation framework is then discussed in detail.

6.2.1 Preprocessing

Given a set of MR images with the hippocampus labeled, we use Freesurfer tools to reconstruct the
hippocampus surface and register the surfaces in the spherical coordinate system. Although these
tools were developed primarily for processing cortical surfaces, as described in Chapter 2, they can
be used for subcortical structures of spherical topology, such as hippocampus, with minor parameter
changes.

Similar to the procedure introduced in Chapter 2, we first build a surface tessellation for each
labeled hippocampus volume after topological defect correction. We then refine the resulting
surface to produce a smoother representation due to the fact that the tessellation is jagged at the
single-voxel scale. Next, these refined surfaces are inflated and projected radially to a sphere. The
metric distortion introduced by the projection process is removed by the minimization of area and
local distance distortion [21]. Different from the spherical projection method used for cortical
surface, we use a non-linear area preservation term to penalize small triangles due to the fact that the
hippocampus is a banana-shape object [22]. With this spherical representation, the hippocampus
surfaces of different subjects are then registered in the spherical coordinate system by minimizing an



energy functional, which is a combination of a topology preserving term, a curvature alignment term
and a metric distortion minimization term.

The registered hippocampus surfaces are sampled onto an icosahedron at subdivision level 5,
which has 10242 points. The coordinates (x, y, z) are normalized to bring each subject into the
same coordinate system in the original surface space by using correspondence obtained in the
spherical coordinate system. At last, a set of spherical wavelet coefficients from levels -1 to 4 are
obtained for each training shape by transforming the normalized coordinate functions.

Given an segmented volume with the hippocampus labeled using Freesurfer tool, we build the
surface tessellation and map it onto the sphere using the above described methods, but without the
surface refinement process. The surface is then registered to the template built with the training set.
Lastly, the registered surface is sampled onto an icosahedron at subdivision level 5. The spherical
registration and sampling process give an index to index correspondence between the new surface
and the training set.

6.2.2 Segmentation Guided with Shape Models in the Wavelet Domain

The segmentation is accomplished by minimizing energy function so that the deformed surface finds
the boundaries of the object in the image and encloses all the voxels that belong to the object, with
shape constraints learned from the training set. There are two parts in the energy function: one is a
region-based image energy term to maximize the log ratio of the probability that all the voxels
enclosed belong to the object; the other one is a boundary-based image energy term to guide the
surface to find the edges. First, the surface is deformed to minimize the energy function with shape
constraints learned from the training set in the wavelet domain. To allow the surface deform outside
the space spanned by the training set, we then replace these model-based shape constraints with
generic shape constraints and deform the surface to minimize the energy function again.

A - Image energy term

We first define a region-based image energy term to drive the evolution of the parametric
deformable surface S [18]:

E,(S)= L(i)Ai= -log( P(C I,i) )AX, (6.1)
ie 1 - P(C I I, i)

where k is the region inside the evolving surface S, P(C I I,i) is the posterior probability that a
point at position i = (x, y, z) with intensity I belongs to the object to be segmented. The energy is
minimized when the surface evolves to enclose all the voxels that are interior to the object. This label
probability is estimated from a set of manually segmented MRI volumes and stored in a probability
atlas, which has been used for the automated segmentation and tested on thousands of MR images
[8].

We then define a boundary-based image term in order to drive the surface to deform towards the
edges of the object:

1v
Es = G(k,)2, (6.2)

2V=1
where V is the total number of vertices on the surface, G(i,) is the 12 norm of the image intensity

gradient (VI(Ri)) at the ith surface point.



B - Wavelet-based shape model

In this work, we build shape models using spherical wavelet coefficients of N training surfaces at
different frequency levels, separately. This shape model is built with Principal Component Analysis
(PCA), similar to the method described in Chapter 3.

At each frequency level, we take only a subset of the coefficients y¥ = {yf }M lj) from the whole

normalized wavelet coefficient set ly; M. .. of the training surfaces, and calculate the mean
nomlzdwvltcoefficientsetNpncipal j._4 mMj

coefficients y=- Zn , principal components ei(1=l,.,N-1), and the corresponding
N =l

eigenvalue Zp j,2 ,-..,2 - ' at the j'h frequency level.

We then represent an evolving surface S using its wavelet coefficients in a matrix form as

9= T-FWy§, where ys = ',...,y denotes the wavelet coefficients of the evolving surface,

W denotes the inverse wavelet transformation, F denotes the matrix used to transform vector

Wy, to a 4x 10242 coordinates matrix, and T-1 is the inverse of the affine transformation matrix T,
which best aligns the evolving surface with the training set. Before deforming the surface every time,
the affine transformation matrix T is updated to optimize the mean squared error between the
current evolving surface and the training set.

Using the eigenvector matrix e, = [e,...,e] and mean wavelet coefficients yj calculated from

the training set at thejfh level, we can approximate the evolving surface S as:

s = T1FW i{ .+ C' a (6.3)Sej
where the surface's wavelet coefficients at level j is the summation of the mean wavelet coefficients
calculated from the training set, and a linear combination of eigenvectors weighted by shape
parameters a=[a ... a,_,]N .Notice that the wavelet coefficients at other frequency levels are

maintained when we model the shapes at the j1 h frequency level.
By using this shape model, we constrain the surfaces by keeping only the first N-i eigenvectors,

which is equivalent to limiting the shape parameters corresponding to the rest of eigenvectors to 0.
We also limit the first N-1 shape parameters to be within + 3 standard deviations of the projections
of the training set.

C - Generic shape models

We replace the wavelet-based shape models with two spring-like smoothness terms to allow the
surface to deform outside of the space spanned by the training set, but still keeping its smoothness.
The normal spring term E,, (i) imposes a smoothness constraint on the surface and the tangential

term E, (i) acts to encourage a uniform spacing of vertices [23]:

l1
E,,(K) =•i•L ( L (_,(•.(-•,))), (6.4)

2V i~l W N, (i)



E, (i) = (  ((o (i). •i - n))2 1 +(i) . i))2)), (6.5)

i=1 neNl(i)

where I denotes the coordinates of surface point, N,(i) denotes the set of nearest neighbors of the i'
vertex, i, is the unit normal vector to the surface at the i'h vertex, and [e0(i), i (i)] is an orthonormal

basis for the tangent plane at the i'h vertex. The overall generic shape model is Es = A E,, + AE,,

where 2,, and A, specify the relative strength of the normal and tangential spring terms.

D - Surface deformation

Given a surface reconstructed based on Freesurfer segmentation, we deform it to minimize the
overall image energy terms E = RER,+ 2E, alternately with shape constraints from the

wavelet-based shape model and generic shape model. The weights AR and AB specify the relative
strength of the region-based and the boundary-based terms.

To use the wavelet-based shape model, we start with an initial surface, register it with the training
set, and transform it in the wavelet domain. At each frequency levelj, we model the surface using the
mean wavelet coefficients and a linear combination of the eigenvectors calculated from the training
data (equation 6.3). Then we deform the surface to minimize the overall image energy function by
gradient descent.

To minimize the region-based image energy term, we use the shape gradient and chain-rule to
express the summation in a region as a summation on the surface [24, 25], and derive the gradient of
the energy term with respect to each shape parameter ik e a as:

dE vJ(6.6)
-= I (T-'FW[O --- e. ... (6.6)

where V is the total number of vertices on the surface, ii, is the outward unit normal vector of the ith

surface point, and the subscript i in the matrix product T,,-F,W -.. et J ... 01 indicates that

only the component corresponding to the surface point i is considered. Here T, is a 3 x 3 matrix

generated by removing the last row and last column of T-'. Also, Fm transforms the wavelet

coefficient vector to a 3 x 10242 matrix with only coordinates x, y and z.
Similarly, we derive the gradient of the boundary-based image energy term with respect to each

shape parameter ak e a as:

dE (T,, FmW .. -- e ... 0 ),,-(VG(i,),i) , (6.7)
da,

where VG(i,) denotes the gradient of magnitude of intensity gradient at the ith surface point.

Using these gradients, we update shape parameters at frequency level j:

(tdE+)= a (t) _ R B -dEB (6.8)SdaR da-



t +1) = T-'W I + o a(t+1) (6.9)

where 42 and 42 are step sizes with respect to the region-based and boundary-based energy terms,

and t indicates each iteration. The shape parameters are initiated using the projections of the initial
surface onto the eigenvectors. To constrain the surface, the updated shape parameters are limited to
be within ± 3 standard deviation observed in the training set.

After the surface is updated according to the wavelet-based shape model, we then deform the
surface using the generic shape models. This time we minimize the image-based energy functional
by moving the vertex in the negative direction of the derivative of the energy terms with respect to
the vertex

A, =-( R  
+ ' aE, +, ,+ aE, (6.10)

ai ai aji aji
aER P(C I ) (6.11)= -L(i)i = log(P(C II ) ), (6.11)
ai, 1-P(C II, )

k= (VG(ii,),4)n, (6.12)

(6.14)
i  neNI(i)

where VG(i,) denotes the gradient of magnitude of intensity gradient at the i" surface point, Nk(i)

denotes the set of nearest neighbors of the ith vertex, ii, is the unit normal vector to the surface at the

ith vertex, and [o0(i),Wj(i)] is an orthonormal basis for the tangent plane at the ith vertex [23].
Moreover, the movement of each vertex is checked and cropped to prevent a large movement and
possible surface self-intersection before being applied.

We deform the surface in a multi-scale fashion at low and gradually higher frequency levels with
increasing step size (equation 6.8). We also gradually decrease the width of the Gaussian smoothing
kernel from low to high frequency levels. At each frequency level, the surface is first deformed using
wavelet-based shape constraints (equations 6.8 and 6.9), and then with the generic shape constraints
(equation 6.10). Before updating the surface based on shape models in the wavelet domain, we
renormalize the evolving surface to find the best alignment with the training set. At each frequency
level, this process is iterated until the overall image energy function E = 2 RER + A2E, converges.

6.3 Experimental Design and Results

We test the proposed shape-driven deformation method in a dataset of 41 MR images, segmented
with Freesurfer tool. Manual segmentation is also available for this dataset, which is used to validate
the ability of our method to improve the segmentation based purely on image information. We



Figure 6-2: a) A sagittal slice of structure MRI image with overlaied surfaces: Manually
segmented surface (yellow line), Freesurfer segmentation (red line), and new surface
generated with the shape-guided segmentation method (green line). An arrow points to a
region that is correctly segmented using shape-guided segmentation method. b) 3D
surface rendering of the Freesurfer segmentation of the hippocampus: Red circle
indicates artificial protrusion generated because of the imperfections in MR image. c)
New surface generated with the shape-guided segmentation method.

conduct a cross-validation to deform one subject based on our new method using the wavelet-based
shape model built with the other 40 subjects. We compare the new segmentation with the manual
segmentation for the left-out subject each time. The process is iterated through the whole dataset.
We visually inspect the surface generated from the new segmentation overlaid on the manually
segmented surface, and quantitatively compare the resulting new segmentation with the manual
segmentation. Although this experiment is only conducted for the hippocampus on the left side, our
method can be potentially applied to any subcortical structures with 2D closed surfaces on both
sizes.

A - Visual validation

Visual inspection shows that the resulting surface using our deformation method is not only
smoother, but also located closer to the edges of the hippocampus. As an example, Figure 6-2 b) and
c) compare the hippocampus surfaces before and after the surface deformation. The protrusions on
the surface generated from segmentation based purely on image information, highlighted by the red
circles in Figure 6-2 b), are eliminated after the surface deformation. In Figure 6-2 a) we show a
sagittal slice of the original structure MR image overlaid with the hippocampus surfaces enclosing
the manual segmentation (yellow contour), Freesurfer segmentation (red contour), and our new
segmentation (green contour). As pointed out by the white arrow, the new surface is deformed to the
boundary of the hippocampus and matches better with the surface generated using manual
segmentation.
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Figure 6-3: a) Histogram of the decrease in MSD measured for 41 surfaces using the
shape-guided segmentation method; The x axis is the difference between MSD of the
surface segmented with Freesurfer tool and MSD of new surface. A significant decrease
in MSD is observed for all the subjects. b) Comparison of the average Dice coefficients
measured for Freesurfer segmentation and the shape-guided segmentation method. Paired
t-test shows a significant increase in Dice coefficients.

B - Quantitative validation

We use the manual segmentation as standard to quantitatively compare the new segmentation,
which is obtained from the surface deformation, with the segmentation generated by Freesurfer. We
first calculate the mean square distance (MSD) of the new surface to the surface generated from the
manual segmentation. Since the new surface is registered to the manually labeled hippocampus
surface, we can calculate MSD as the mean square error of points on the new surface to the
corresponding points on the manually segmented surface. We then calculate the MSD between the
surface generated from Freesurfer segmentation and surface generated from manual segmentation.
Comparison shows that the new surface reduces the MSD by 7.79 ± 0.0891 %, averaged across the
41 surfaces. This decrease is significant with p < 0.0001 using the paired t-test. Figure 6-3 a) shows
the histogram of the decrease in MSD measurement of all the subjects by using the shape-guided
segmentation method.

We also calculate the Dice coefficient Dice = 2(A B)/(A + B) [26] to quantify the overlap
between two segmentations. As a result, we find the Dice coefficient between new segmentation and
manual segmentation is 83.19 + 0.018% across the entire dataset, as shown in Figure 6-3 b). Paired
t-test again shows this result is a significant increase from the Dice coefficient = 81.12 + 0.092%
between the Freesurfer and manual segmentations.
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6.4 Contributions

In this chapter, we introduce our first attempt to improve the segmentation of subcortical structures,
e.g. the hippocampus, based on image models guided with a combination of wavelet-based and
generic shape constraints. The proposed method has been demonstrated to improve the segmentation
using the automated Freesurfer tools in an MRI dataset.

In summary, the contributions of our work presented in this chapter are the following:
1) We proposed to use a combination of wavelet-based and generic shape constraints. The shape

constraints built with spherical wavelet transformation guide the surface to deform based on the
training shapes from a coarse to gradually finer resolutions. We then proposed to replace these
wavelet-based shape constraints with generic shape constraints to allow the surface to deform
outside of the space spanned by the training set.

2) We employed a region based image model to utilize the posterior probability of having a label
considering both the intensity and global spatial location, and a boundary based image model to
guide the surface to deform to the boundary of object. The label probability is extracted from a
probabilistic atlas generated from carefully segmented MR images and successfully used to segment
thousands of MR images.

Applications of this method to segmenting hippocampus show promising results with visual
inspection and quantitative comparison with manual segmentation. This method will be further
improved to fully utilize the localization property of the wavelet transformation and tested on a
larger dataset.
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Chapter 7

Cortical Shape Study Based on
Over-complete Spherical Wavelets

In this chapter, we adopt a newly developed over-complete spherical wavelet transformation for
representing the cortical surface. Bi-orthogonal spherical wavelets have been shown to be powerful
tools in the shape analysis and segmentation of the 2D closed surfaces of neuroanatomical
structures. Unfortunately, they suffer from aliasing problem and are therefore not invariant under
rotation of the underlying surface parameterization. In this chapter, we demonstrate the theoretical
advantage of over-complete wavelets over bi-orthogonal wavelets and illustrate their utility on both
synthetic and real data. In particular, we show that over-complete spherical wavelets allow us to
build more stable cortical folding development models, and detect a wider array of regions of
folding development in a dataset of newborn.

7.1 Motivation

In this thesis, we have developed a method to extract shape feature of 2D closed surfaces of
neuroanatomical structures using the bi-orthogonal spherical wavelet transformation. Using
wavelet-based shape representation, we have conducted multi-scale and localized shape study of the
cortical surfaces. In our and other's work, shape representation based on bi-orthogonal spherical
wavelets has also been successfully used to guide the segmentation of sub-cortical brain structures
based on Magnetic Resonance Imaging (MRI) [1, 2].

The bi-orthogonal spherical wavelets we used, as introduced in Chapter 2, adopts a
non-parametric approach to computing a wavelet decomposition of arbitrary meshes by the lifting
scheme. This wavelet construction method [3] generalizes the standard 2-scale relation of the
Euclidean wavelets, and enables multi-scale representation of the original mesh (image) with
excellent compression performance and efficiency.

7.1.1 Limitation of Shape Representation Based on Bi-orthogonal Spherical Wavelets



c) d)

Figure 7-1: The comparison of bi-orthogonal and over-complete spherical wavelets in
detecting local shape variation, a) Synthetic surface with a bump. b) The bi-orthogonal
wavelet coefficient that has the largest magnitude when the bump is centered at a point on
the low frequency surface mesh. c) The bi-orthogonal wavelet coefficients with large
magnitude when the surface parameterization is rotated. d) The over-complete wavelet
coefficients are not invariant to the rotation of underlying surface parameterization.

Unfortunately, the bi-orthogonal spherical wavelet transform is not rotational invariant under
rotations of the surface parameterization. Since we are considering 2D closed surfaces with
spherical topology, a natural parameterization is a 1-1 mapping to the sphere. The rotation of surface
parameterization refers to the rotation of the underlying spherical coordinate system.

Figure 7-1 shows a toy example that illustrates the sensitivity of bi-orthogonal wavelets to the
rotation of surface parameterization. We first generate a bump centered at the north pole on a sphere,
as shown in Figure 7-1 a). We then apply the bi-orthogonal wavelet transform to both the original
surface and the reparameterized surface where the spherical coordinate is rotated by an arbitrary
angle. Figure 7-1 b) and 7-1 c) show the bi-orthogonal wavelet coefficients at the lowest frequency
level (coarsest spatial scale) that have significant magnitude before and after the rotation of surface
parameterization. With the original parameterization, we can accurately detect the location of the
bump since only the wavelet coefficient at the center of the bump has large magnitude, illustrated by
a single bright spot in Figure 7-1 b). However, with the rotation of parameterization, two wavelet
coefficients have significant magnitude, as shown by the two bright spots in Figure 7-1 c).

The bi-orthogonal wavelet transform is not invariant under rotation of the underlying
parameterization because it sub-samples the signal progressively when decomposing it at the lower
frequency (coarser) levels, as introduced in Chapter 2. This sub-sampling causes aliasing at all the
single frequency levels although all the levels, when combined, add up to an invertible transform. As
demonstrated in the toy example (Figure 7-1 c) ), when the shape deformation is centered around a
point on the coarse scale surface mesh, then the location of the bump is perfectly detected. However,
when the underlying surface parameterization is rotated so that the bump does not align with the
points on the coarse scale mesh anymore, we lose the ability to accurate locate the surface
deformation, as shown in Figure 7-1 c). This is problematic since being able to analyze the wavelet
coefficients at each individual frequency level is one of the advantages of wavelet transform.
Consequently, shape analysis results can vary significantly with the rotation of surface
parameterization and one loses the ability to accurately localize geometric characteristics of interest.

7.1.2 Over-complete Spherical Wavelets

The aliasing of individual levels of orthogonal and bi-orthogonal wavelets is a well-known problem
in the Euclidean domain. Over-complete wavelets, such as the steerable pyramid proposed by

a) b)



Simoncelli et al. [4], are useful for solving the aliasing problem. Recently, the corresponding
steerable pyramid in the spherical domain was proposed by Antoine et al. [5] and discretized by
Bogdanova et al. [6] for axis-symmetric wavelets. Unlike the steerable pyramid, their method of
construction is grounded in group or representation theory.

In this chapter, we propose to use the over-complete wavelets introduced by Yeo et al. [7]. Their
over-complete wavelets are based on filter bank theory, directly extending the ideas of Simoncelli to
the sphere. In this work we only consider invertible axis-symmetric wavelets which are not
necessarily self-invertible. We note that axis-symmetric spherical wavelets are symmetrical about
the north pole.

With the over-complete wavelet transformation, we can always accurately detect the single bump,
as shown in Figure 7-1 d), regardless of the rotation of the underlying surface parameterization. The
over-complete wavelet transformation achieves such invariance by sufficiently sampling at each
level of the wavelet transform.

In this chapter, we introduce the construction of over-complete spherical wavelets, theoretically
prove the invariance property of the over-complete wavelet transform, and compare it with the
bi-orthogonal spherical wavelets. In section 7.3, we describe the use of both wavelets in building
cortical folding development models in the dataset of newborn analyzed in Chapter 5. We show the
advantage of the over-complete wavelets in providing more accurate and sensitive results for this
cortical folding development study.

7.2 Shape Representation Based on Over-complete Spherical Wavelets

For closed 2D surface that has a spherical topology, various methods have been developed to impose
a spherical coordinate system on the surface [8, 9]. In the underlying spherical coordinate system, we
can use {x(O,,0i),y(0,,0),z(,,i)}J to denote the set of mesh vertices indexed by i. Many

parametric mesh representations have been proposed, including spherical harmonics [8],
polynomials [10] and bi-orthogonal spherical wavelets [1, 2], to transform or decompose the
individual coordinate functions x(Oi,Oi), y(Oi,Of) and z(O,,O) separately.

In this chapter, we use the over-complete wavelet transform to decompose the coordinate function
defined on the surface and use the resulting wavelet coefficients for shape analysis. Without loss of
generality, we introduce the over-complete spherical wavelet transform for a generic scalar spherical
function f(9, 0) in the following subsection.

7.2.1 Over-complete Spherical Wavelets

The construction of the over-complete spherical wavelet function is based on the general continuous
filter bank theory [7]. Continuous spherical function f(9, 0) is projected onto the space of N

spherical analysis filters {h (0, ) by performing a spherical convolution between f(0, ) and

each analysis filter h, (0, ).
In the case of axis-symmetric spherical filters, the convolution outputs are also spherical

images {g, (0, ,)}_ . We can then perform an inverse spherical convolution between each

convolution output g,, (0, ) and corresponding spherical synthesis filter h, (0, ) , and obtain a



reconstructed image f(9, ) by summing the outputs of the inverse spherical convolution. The
system of forward and inverse spherical convolutions, using analysis and synthesis filters
respectively, is invertible if f is equal tof.

We define the system of spherical filters to be an over-complete forward and inverse wavelet
transform if it is invertible and the analysis filters .(9 ,p)} n, are dilated versions of a mother
wavelet.

For this work in particular, we choose the Laplacian-of-Gaussian on the plane as our mother
wavelet. We then perform the usual dilation on the plane to generate the differently dilated daughter
wavelets. At last, we stereographically project the set of wavelets onto the sphere to obtain the
corresponding wavelet analysis filters. This process of dilation via the plane is known as
stereographic dilation and is utilized because dilation on a sphere is necessarily non-linear [5-7].

Noting that the spherical harmonics are a set of orthonormal basis for functions on L2 (S ) and
denoting by h,,, the spherical harmonic coefficient of degree I and order m of a spherical function h,
we define the synthesis filters to be [7]:

hf or H(= H)>O (7.1)

0 othenvrwise

where

H 8 (1) =- - n .h (7.2)
Ii 21+1 n=1=,

Therefore, by using equations 7.1 and 7.2 to construct the synthesis filters, we ensure that our
over-complete wavelets are invertible, as proved by Yeo et al. in [7].

Since our wavelet analysis filters are axis-symmetric, the forward and inverse continuous wavelet
transform can be performed in the spherical harmonic domain as [7, 11]:

.m = 421•+1•,O*f L, (7.3)" =21+1"

where the original function f, the reconstructed function f and the wavelet coefficient g can be

represented by their spherical harmonic coefficients of degree I and order m as f'"', f ,'" and g'."
respectively.

Since the wavelet transform is conducted in the spherical harmonic domain, in practice, we first
re-interpolate the surface mesh onto a latitude-longitude grid, and then use the publicly available
program S2kit [12] to perform the fast discrete spherical harmonic transform [11]. Because the
latitude-longitude grid is denser near the poles than at the equator, we ensure sufficient samples at
the equator to avoid aliasing.

Since the purpose of wavelet decomposition is to analyze the underlying function locally in both
space and frequency, we use S2kit to transform the acquired wavelet coefficients g,'"' at each level n
back to the latitude-longitude grid {g,(0j, 0)}. We note that the inverse spherical harmonic

transform is invertible via the sampling theorem of Driscoll and Healy [11] and thus we do not lose
any information by working in the spatial domain. Therefore, we can equivalently think of
{g, (, (O , )} as over-complete discrete wavelet transform.

In some cases, it might be more efficient to analyze the wavelet coefficients on a more uniform
grid. In our work, we re-interpolate the wavelet coefficients samples on the latitude-longitude grid
onto a subdivided icosahedron grid of high enough resolution. In our experiments, the



re-interpolating process has little effects on the analysis as long as the samples are sufficiently dense
relative to the size of the geometric features of interest.

7.2.2 Rotation Invariance and Aliasing

A - Rotating the surface

For the purpose of shape analysis, we apply the wavelet transformation to the individual coordinate
functions x(Oi,,O), y(09,, ) and z(O,,O,) separately. Since both the bi-orthogonal and the

over-complete spherical wavelet transforms are linear, we can show that

=(R([x(O9,O,); y(Oi,O i ); z (O , )])) (7.4)
= R(O([x(Oi, O); y(Oi, i); z(Oi,O)]))

where D denotes the wavelet transform and R(.) denotes a rotation operator that rotates a point in

3D. Applying R(.) to {x, y, z therefore rotates the surface in 3D.

Equation 7.4 implies that rotating a surface before the wavelet transformation is the same as
applying a rotation after the wavelet transformation. Hence, both the bi-orthogonal and
over-complete wavelet transforms are invariant under the rotation of 2D closed surfaces.

B - Rotating the surface parameterization

In contrast, the bi-orthogonal wavelet transform is not invariant under rotations of the surface
parameterization, as demonstrated in the beginning of this chapter. This is because at each
subsequent lower frequency level (coarser resolution), the input to the bi-orthogonal wavelet
transform is implicitly a smooth sub-sampled version of the original function, as introduced in
Chapter 2. However, despite the smoothing, the number of samples is insufficient to prevent
aliasing. Therefore, when the surface parameterization is rotated, the sub-sampled spherical function
and thus the wavelet coefficients can change substantially. As a result, the bi-orthogonal wavelet
coefficients are not invariant under rotations of the surface parameterization, and the shape analysis
results based on the bi-orthogonal wavelet transform depend on the arbitrary choice of the
parameterization frame (origins and axes).

Because the bi-orthogonal spherical wavelet transform is computed implicitly rather than defined
via sampling of the continuous convolution between a spherical function and the wavelet kernels, it
is not trivial to artificially increase the number of samples at each level. Conversely, the
over-complete spherical wavelets are invariant under the surface parameterization since each level
of the wavelet transform is sufficiently sampled.

Specifically, for the over-complete wavelet transform, we compute the wavelet coefficients g, at
level n by convolving the spherical functionf with level n analysis filter h,. Since the analysis filter

is axis-symmetric, we can compute the convolution in the spherical harmonic domain as shown in
equation 7.3 [13]:

Let Dfbe the rotation of the parameterization of a spherical image fby D. It can be shown that
(Df )'"' = IDmM'f 'A" (7.5)

where D,'"' denotes the Wigner-D function associated with the rotation D [13]. Combining equations

7.3 and 7.5, we obtain:
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Figure 7-2: The wavelet basis functions of the a) bi-orthogonal and b)
over-complete spherical wavelets at frequency levels 0-4.
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Therefore, the over-complete wavelet transform is invariant under rotations of the underlying
coordinate system. Although we sample the resulting wavelet coefficients as described in Section
7.2.1, the sampling theorem of Driscoll and Healy [11] ensures the process is lossless. Therefore the
over-complete discrete wavelet transform is also rotationally invariant up to the spacing of the
sampling grid. In practice, we over-sample to locate regions of interest to within the accuracy of the
original surface parameterization.

7.2.3 Cortical Surface Shape Representation based on Over-complete Spherical
Wavelets

For the bi-orthogonal wavelets used in this work, we employ the butterfly subdivision scheme and a
lifting algorithm to ensure that the constructed wavelet function has one vanishing moment [3], as
described in Chapter 2. Before applying the forward wavelet transform, we first sample the
registered white matter surface to an icosahedron at subdivision level 7 because it has a total number
of 163,842 vertices and is thus sufficiently dense to represent the white matter surface reconstructed
from -1 mm isotropic MRI, which typically has about 120,000 vertices. Following the widely used
convention, we index the resulting wavelet basis functions from level -1 to 6, and plot part of them in
Figure 7-2 a).

For the over-complete wavelets, the smallest scale analysis filter is chosen to be the Laplacian of a
Gaussian function with width 0.002 radian on the latitude-longitude grid. The wavelets at coarser
levels are constructed by dilating the smallest scale wavelet subsequently by a factor of 2 each time.
We index our over-complete wavelets from level -2 to 5 in order to match the spatial scales of the



bi-orthogonal wavelets at the same levels, as shown in Figure 7-2 b). Before conducting the
over-complete wavelet transform in the spherical harmonic domain, we first sample the white matter
surfaces onto a latitude-longitude grid of 106 points and then transform them to the spherical
harmonic domain using S2kit [12].

To illustrate the advantage of over-complete wavelets over the bi-orthogonal wavelets in shape
analysis, we compare the results of cortical folding development study using both wavelets in the
following sections.

7.3 Folding Development Study Based on Over-complete Wavelets

7.3.1 Experimental Setup

The same dataset studied in Chapter 5 is used to build cortical folding development models based on
the over-complete wavelets. This dataset consists eight normal neonates with different corrected
gestational ages (cGA) from 30.57 to 40.43 weeks, and 3 children who were 2, 3 and 7 years old. The
white/gray matter surfaces (white matter surfaces) are reconstructed, mapped onto a sphere, and
registered in the spherical coordinate system as described in Chapter 5.

In order to compare the bi-orthogonal and the over-complete wavelets in the cortical shape
analysis, we generate a second set of white matter surfaces where the underlying spherical
coordinate system is rotated by 30 degree around the x- and y- axes respectively. Finally, we apply
these two wavelet transformations to the white matter surfaces with both the original and the rotated
parameterizations to study the influence of this rotation on the results of folding development study.

7.3.2 Cortical Folding Development Model

In this section, we briefly reintroduce the cortical folding development models we developed in the
wavelet domain [1]. As described in Chapter 5, if w(t,) is one of the spherical wavelet features

extracted from a subject of age ti , we use a Gompertz curve to model the evolution of this feature
with age as follows:

w(t i ) = gle  +e(ti),i= 1,...,11 (7.7)

where g, is the maximum value at maturation, g2 is the growth rate that quantifies the speed of
the folding development, g3 is the inflexion point that indicates the age of the fastest folding
development, and e(ti) represents additive zero-mean noise.

Due to the limited number of subjects available in this study, we apply a regularization framework
for estimating parameter g, g2 and g3 to avoid overfitting. We adopt a quasi-Newton method based
on the Broyden-Fletcher-Goldfarb-Shannon (BFGS) approximation to estimate parameters {gi },•...
We calculate the R2 statistic, the ratio of the sum of squares explained by the model and the total sum
of squares around the mean to measure the goodness-of-fit of this model. We apply this regularized
Gompertz model to study cortical folding development at different spatial resolutions in newborns
based on the two types of spherical wavelets.

7.3.3 Overall Folding Development Study
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Figure 7-3: Comparison of the predicted cortical folding development curves using surfaces with
rotated parameterizations based on bi-orthogonal spherical wavelets. The curves are estimated using
wavelet power at frequency levels 0 to 3 of the right hemisphere. Horizontal axis is the gestational
age up to 45 weeks and vertical axis is the wavelet power with a logarithmic (base 10) scale.

We first fit the folding development model to the wavelet power, which is the sum of squares of the
12-norm of each wavelet coefficient, i.e., the sum of squares of its x, y and z components, at each
frequency level. We study the wavelet power to quantify changes of the overall cortical folding with
time at different spatial scales.

As a result, we find that the wavelet power based on both bi-orthogonal and over-complete
wavelets fit very well with the regularized Gompertz model at all levels. For both the original and
rotated surface parameterizations, the estimated maximum folding development age increases
monotonically with frequency level, and the estimated development speed increases with frequency
at some of levels as well. These results indicated that the larger scale cortical folds develop earlier,
but with a slower speed, which is consistent with our previous observation in Chapter 5.
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Folding development curves of left and right hemisphere at
level 0 to 3 based on over-complete waevlets
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Figure 7-4: Predicted cortical folding development curves using wavelets power based on
over-complete spherical wavelets for the left and right hemispheres at frequency levels 0 to
3 (the horizontal axis is the gestational age up to 35 weeks; the vertical axis is the wavelet
power with a logarithmic (base 10) scale). The curves are invariant to the rotation of surface
parameterization.

A - Rotation changes model parameters estimated with bi-orthogonal wavelets

However, the estimated parameters based on the bi-orthogonal wavelets vary with the rotation of
the surface parameterization. As an example, Figure 7-3 shows that estimated Gompertz curves
change significantly with the rotation. We can also see that this effect is more pronounced at the
lower frequency levels since the surface is more severely sub-sampled at coarser resolutions. Here
we present the results for the right hemisphere. We also observe the same effect for the left
hemisphere.

Since the over-complete wavelet transform is invariant under rotations of the surface
parameterization, the resulting wavelet coefficients are only minimally altered by sampling on the
latitude-longitude grid. The estimated folding development curves using over-complete wavelets
remain unchanged under the rotation. Since the estimated development curves are virtually identical
for the rotated representation, we choose to omit them for presentation.

B - Over-complete wavelets reveals the hemispheric developmental asymmetry

Furthermore, when we apply the bi-orthogonal wavelets to the white matter surfaces with rotated
parameterization, we observe that the estimated maximum development age of the left hemisphere is
younger than the right hemisphere at some frequency levels. However, this phenomenon is not
preserved with the rotation of the surface parameterization using the bio-orthogonal wavelets.

On the other hand, using the over-complete wavelets, we can clearly appreciate at all frequency
levels that the left hemisphere leads the development of the right hemisphere, as shown in Figure
7-4. Although this finding has not been previously reported, it could potentially provide more
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insights into the study of cortical folding development.

These results show that the rotation-variant property of the bi-orthogonal wavelets presentation
can lead to unstable shape analysis results of the cortical surfaces, and conceal important
neurological findings.

7.3.4 Regional Difference of Folding Development

Next, we fit the sum of squares of the x, y and z components of every single wavelet coefficient
across 11 subjects to the cortical folding development model. With this approach, we can discover
not only when, but also where the folding of the white matter surface occurs at different spatial
scales. Note that in Chapter 5, we modeled each of the x, y and z components separately, and selected
the one with the largest R2 value to demonstrate the result. By using the sum of squares in this
chapter, we robustly detect developing regions by sacrificing the sensitivity.

Since the bi-orthogonal wavelets are directly constructed on the level 7 subdivided icosahedron
mesh, we can take the wavelet coefficient that has a good fit to the folding development model
(R 2 > 0.5) as the center of folding development region. However, since the over-complete wavelet
transform is on the latitude-longitude grid, their wavelet coefficients are re-interpolated to a level 7
subdivided icosahedron. At each frequency level, we segment connected regions of the coefficients
that have a R2 > 0.6, and then select the vertex corresponding to the maximal R2 in each smoothed
region as the center of an effect of folding development.

For each of the detected development centers, we determine the support region that represents
99% of the total energy of the associated wavelet basis function.

To visualize these results, we superimpose the support regions of these selected wavelet
coefficients on the youngest newborn white matter surface and color code them to reflect the
estimated development speed and age of the corresponding wavelet coefficients, as shown in Figure
7-5. For points in the overlapped support regions of two or more wavelet basis functions, color is
assigned based on the estimated age and speed of the nearest wavelet basis function.

As shown in the top two rows of Figure 7-5, using the bi-orthogonal wavelet, different cortical
growth regions are detected before and after the rotation of surface parameterization. In contrast,
using the over-complete wavelet, the detected regions of growth are slightly affected by the rotation
of the underlying spherical coordinate system, as shown in the bottom two rows of Figure 7-5.

Furthermore, comparison of the colormaps generated based on both wavelets shows that more
cortical regions are detected to fit well with the Gompertz curve by using the over-complete
wavelets. This result is consistent with our visual inspection and the wavelet power study results,
suggesting that over-complete wavelets are more sensitive for detecting regions of growth presented
in this dataset. However, we are still exploring other methods to account for the grey regions that do
not fit well with the current cortical folding development model.
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Figure 7-5: The estimated folding development speed and maximum development ages
for the left hemisphere using individual wavelets at different frequency levels.
Colormaps encode the estimated development speed (1/week) and age of maximum
development (weeks) of selected wavelet coefficients in the support regions of their
corresponding wavelet basis functions. For points in the overlapped regions of two or
more wavelet basis functions, the estimated age and speed of the closest wavelet function
is assigned. Rows 1-2: Estimated folding development speed and age at frequency levels
0 and 1 (top-down) of the original and reparameterized white matter surfaces (left-right)
based on bi-orthogonal wavelets; Rows 3-4: Estimated folding development speed and
age at frequency levels 0 and 1 (top-down) of the original and reparameterized white
matter surfaces (left-right) based on over-complete wavelets.
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7.4 Contributions

We demonstrate in this chapter that the over-complete spherical wavelets have significant
advantages over bi-orthogonal spherical wavelets in the analysis of the geometric properties of
cortical surfaces because of their invariance under rotations of the coordinate frame used to
parameterize the 2D closed surfaces.

In summary, the contributions of our work presented in this chapter are the following:
1) We proposed to improve on the wavelet-based shape representation by employing the

over-complete spherical wavelet transformation.
2) We built folding development models using over-complete wavelets in a dataset of newborn.

The models reveal the hemispheric developmental asymmetry in the folding development, in
addition to the speed, age and frequency correlation previously disclosed using the bi-orthogonal
wavelets. Furthermore, we detected a wider array of regions of folding development using the
over-complete spherical wavelet transform compared to the bi-orthogonal wavelets.

Preliminary results in this chapter demonstrated that the use the over-complete wavelet in shape
analysis of neuroanatomical structures can greatly benefit the study of localized shape changes
associated with age, gender, hemisphere and neurological diseases.

A preliminary version of this work was presented at the IEEE Computer Society Workshop on
Mathematical Methods in Biomedical Image Analysis in conjunction with IEEE International
Conference on Computer Vision (reference)[14].
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Chapter 8

Conclusion

This dissertation concerns the accurate and parsimonious shape representation of neuroanatomical
structures, such as the cerebral cortex and the hippocampus, as well as shape-based statistical
analysis in order to discover shape changes related to neurodevelopment, neurodegeneration, and
neurological disease. We have made a number of contributions to advance several aspects of the
field of computational anatomy and offer new research perspectives.

On the theoretical level, we introduced the concept of localized and multi-resolution shape
representation into the morphological analysis of neuroanatomical structures, and studied the
properties of this shape representation by using different kinds of spherical wavelets. On the
methodological level, we developed novel statistical analysis frameworks to study the patterns and
spatial scales of shape variations in normal populations, discriminate the shape changes associated
with neurological diseases in group comparison studies, and modeled the temporal development of
cortical folding in neurodevelopment. In addition, we developed a shape-guided segmentation
method by incorporating shape constraints derived from the multi-scale shape representation. On
the application level, we have applied the developed statistical analysis framework to the analysis
of the shape of cortical surfaces, and brought out interesting neurological findings. We also applied
a shape-guided surface deformation model to improve the segmentation accuracy of the
hippocampus, an important subcortical structure in the human brain. To the best of our knowledge,
no techniques have been previously introduced to extract multi-scale and localized shape features
of the cortex, and to investigate simultaneously the locations and spatial extents of cortical folding
variation with sound statistical principles.

The concept of localized and multi-resolution shape representation combines the advantages of
the previously developed shape representation methods that are either multi-resolution or localized.
By transforming the 2D closed surface of neuroanatomical structures using spherical wavelets, we
obtain new shape features that represent the surface at multiple spatial scales and locations, We
first developed a method to extract normalized shape features for a set of surfaces based on a bi-
orthogonal spherical wavelet transformation, and proved that it can characterize shape variations
more concisely compared with the global shape representation method based on spherical harmonic
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descriptors. We further investigated the use of over-complete wavelets in our multi-scale and
localized shape representation scheme, and demonstrated that this new wavelet transformation can
provide more accurate and stable shape features, with a minor increase to the computational
expense and complexity. In particular, our method offers a new way to analyze the convoluted
shape of the surface of the cerebral cortex in multiple local regions and at multiple spatial scales
across the whole surface.

Based on this shape representation, we developed a set of statistical analysis frameworks and
applied them to study the shape of cortical surfaces derived from Magnetic Resonance Imaging
(MRI) data. First, we developed multi-resolution shape models in the wavelet domain using
Principal Component Analysis (PCA) and studied cortical shape variations in an elderly normal
population. In this study we detected and visualized the most prominent patterns of shape
variations in a large sample of the population. By studying the correlation of these shape variations
with age, gender and a set of neuropsychological scores, we found that cortical shape variation is
significantly correlated with age in the female group. We then developed a method for detecting
the cortical folding differences between two groups of subjects in a classification framework. We
showed that a Bayesian classification method based on predicted Automatic Relevance
Determination (pred-ARD) outperforms one of the classical classification methods, Support Vector
Machines (SVMs), in our shape-based patient classification study. This framework has been
applied to several MRI datasets and demonstrated to generate promising classification accuracy.
Thirdly, we developed nonlinear temporal models for quantitatively studying the development of
cortical folding at coarse and progressively finer spatial resolutions in a dataset of newborn based
on the wavelet transformation. We employed a regularization framework to improve prediction
performance on novel MRI scans and developed an efficient method for model estimation. In
summary, these statistical analysis frameworks can be used to detect multi-resolution shape
variations in a population, localize shape changes caused by neurological disease, and predict
abnormal cortical surface folding development.

Finally, we developed a surface deformation procedure for improving the segmentation of
subcortical structures, such as the hippocampus, based on image models and multi-scale shape
constraints in the wavelet domain obtained from training set. Our method extends the previous
work in this direction by employing more comprehensive image models and allowing the shape to
deform outside the space spanned by the training set. We demonstrated an improvement of
segmentation accuracy using our method, in spite of imperfections in MR images.

The multi-scale and localized shape representation can benefit several research areas that rely on
shape information, such as shape analysis, image segmentation, and image registration. Here, we
highlight some potential directions for future research in these fields.

In our work, we use the wavelet transformation of coordinates to represent the shape, motivated
by the fact that the coordinates contain the fundamental shape information, and other geometric
features such as curvature can be derived from them. However, the developed procedure can also
be applied to other features that are measured for every point on the surface, such as curvature and
cortical thickness. By decomposing these measures using wavelets, we can obtain a multi-scale
representation of the feature, which can replace the prevailing smoothing procedures where the
width of the smoothing kernel needs to be optimized in order to achieve best discrimination.

Furthermore, the new shape representation based on an over-complete spherical wavelet
transformation could potentially improve the classification accuracy in the shape-based
classification framework introduced in Chapter 4, since it has been demonstrated to provide more
stable and sensitive shape features in the cortical folding development study.
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We have performed experimental study in shape-guided segmentation by developing a surface
deformation method combining shape and image information. Our results have shown that shape
information can preserve the object boundary that is absent from the image due to the
imperfections in MRI, and improve the segmentation accuracy. However, more work is needed in
this direction to develop an improved shape prior to enlarge the subspace that the surface is
allowed to deform in, and to better combine image information such as edge and intensity.

Finally, the multi-resolution shape representation can be used for object registration in a
hierarchical way. This type of procedure would start with an approximate registration of the
surfaces at a coarse resolution, and improve the registration accuracy progressively at smaller
resolutions. Combing the multi-scale shape representation into a registration scheme can be
particularly helpful for datasets with a large amount of inter-subject variability.

In conclusion, in this dissertation, we developed methods to represent the surface of
neuroanatomical structures, in particular the human cortex, at multiple spatial scales and locations.
Based on this shape representation, we developed a set of statistical analysis frameworks and
applied them to real data for studying normal cortical shape variations, disease-associated cortical
shape changes, and cortical folding development in late gestation. Additionally, we presented a
shape-guided surface deformation method and tested its use in improving segmentation accuracy of
the hippocampus in a MRI dataset. These developed methods are implemented and incorporated
into the Freesurfer software package. These tools can be used to conduct automated shape analysis
on a large-scale dataset.
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