782 research outputs found

    Enhanced fault diagnosis of DFIG converter systems

    Get PDF

    Catastrophic Failure and Fault-Tolerant Design of IGBT Power Electronic Converters - An Overview

    Get PDF

    Ensuring a Reliable Operation of Two-Level IGBT-Based Power Converters:A Review of Monitoring and Fault-Tolerant Approaches

    Get PDF

    Health Condition Monitoring and Fault-Tolerant Operation of Adjustable Speed Drives

    Get PDF
    Adjustable speed drives (ASDs) have been extensively used in industrial applications over the past few decades because of their benefits of energy saving and control flexibilities. However, the wider penetration of ASD systems into industrial applications is hindered by the lack of health monitoring and fault-tolerant operation techniques, especially in safety-critical applications. In this dissertation, a comprehensive portfolio of health condition monitoring and fault-tolerant operation strategies is developed and implemented for multilevel neutral-point-clamped (NPC) power converters in ASDs. Simulations and experiments show that these techniques can improve power cycling lifetime of power transistors, on-line diagnosis of switch faults, and fault-tolerant capabilities.The first contribution of this dissertation is the development of a lifetime improvement Pulse Width Modulation (PWM) method which can significantly extend the power cycling lifetime of Insulated Gate Bipolar Transistors (IGBTs) in NPC inverters operating at low frequencies. This PWM method is achieved by injecting a zero-sequence signal with a frequency higher than that of the IGBT junction-to-case thermal time constants. This, in turn, lowers IGBT junction temperatures at low output frequencies. Thermal models, simulation and experimental verifications are carried out to confirm the effectiveness of this PWM method. As a second contribution of this dissertation, a novel on-line diagnostic method is developed for electronic switch faults in power converters. Targeted at three-level NPC converters, this diagnostic method can diagnose any IGBT faults by utilizing the information on the dc-bus neutral-point current and switching states. This diagnostic method only requires one additional current sensor for sensing the neutral-point current. Simulation and experimental results verified the efficacy of this diagnostic method.The third contribution consists of the development and implementation of a fault-tolerant topology for T-Type NPC power converters. In this fault-tolerant topology, one additional phase leg is added to the original T-Type NPC converter. In addition to providing a fault-tolerant solution to certain switch faults in the converter, this fault-tolerant topology can share the overload current with the original phase legs, thus increasing the overload capabilities of the power converters. A lab-scale 30-kVA ASD based on this proposed topology is implemented and the experimental results verified its benefits

    PWM Inverter-Fed Induction Motor-Based Electrical Vehicles Fault-Tolerant Control

    No full text
    International audienceThis paper proposes a fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. In a vehicle context, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed. Two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to assess the FTC scheme performance and effectiveness

    An Improved Fault-Tolerant Control Scheme for PWM Inverter-Fed Induction Motor-Based EVs

    No full text
    International audienceThis paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses

    Thermal Stress Based Model Predictive Control of Power Electronic Converters in Electric Drives Applications

    Get PDF
    Power electronics is used increasingly in a wide range of application fields such as variable speed drives, electric vehicles and renewable energy systems. It has become a crucial component for the further development of emerging application fields such as lighting, more-electric aircrafts and medical systems. The reliable operation over the designed lifetime is essential for any power electronic system, particularly because the reliability of power electronics is becoming a prerequisite for the system safety in several key areas like energy, medicine and transportation. The thermal stress of power electronic components is one of the most important causes of their failure. Proper thermal management plays an important role for more reliable and cost effective energy conversion. As one of the most vulnerable and expensive components, power semiconductors, are the focus of this thesis. Active thermal control is a possibility to control the junction temperatures of power semiconductors in order to reduce the thermal stress. For this purpose the finite control-set model predictive control (FCS-MPC) is chosen. In FCS-MPC the switching vector is selected using a multi-parameter optimization that can include non-linear electric and thermal stress related models. This switching vector is directly applied to the physical system. This allows the direct control of the switching-state and the current through each semiconductor at each time instant. For cost-effective control of the thermal stress a measure for the degradation of the semiconductor's lifetime is necessary. Existing lifetime models in literature are based on the thermal cycling amplitudes and maximum values of recorded junction temperature profiles. For online estimation of the degradation, a method to detect the junction temperatures of the semiconductors during operation is designed and validated. An existing and proven lifetime model is adapted for online estimation of the thermal stress. An algorithm for the FCS-MPC is written that utilizes this model to drive the inverter with reduced stress and equalize the degradation of the semiconductors in a power module. The algorithm is demonstrated in simulation and validated in experiment. A technique to find the optimal trade-off between reduction of the thermal stress and allowing additional losses in the system is given. The effect of rotor flux variation of the machine on the junction temperatures of the driving inverter is investigated. It can be used as another parameter to control the junction temperature. This allows increasing the maximal thermal cycling amplitude that can be compensated by an active thermal controller. A suitable controller is proposed and validated in experiment. The integration of this technique into the FCS-MPC is presented

    Reliability-Oriented Strategies for Multichip Module Based Mission Critical Industry Applications

    Get PDF
    The availability is defined as the portion of time the system remains operational to serve its purpose. In mission critical applications (MCA), the availability of power converters are determinant to ensure continue productivity and avoid financial losses. Multichip Modules (MCM) are widely adopted in such applications due to the high power density and reduced price; however, the high number of dies inside a compact package results in critical thermal deviations among them. Moreover, uneven power flow, inhomogeneous cooling and accumulated degradation, potentially result in thermal deviation among modules, thereby increasing the temperature differences and resulting in extra temperature in specific subset of devices. High temperatures influences multiple failure mechanisms in power modules, especially in highly dynamic load profiles. Therefore, the higher failure probability of the hottest dies drastically reduces the reliability of mission critical power converters. Therefore, this work investigate reliability-oriented solutions for the design and thermal management of MCM-based power converters applied in mission critical applications. The first contribution, is the integration of a die-level thermal and probabilistic analysis on the design for reliability (DFR) procedure, whereby the temperature and failure probability of each die are taken into account during the reliability modeling. It is demonstrated that the dielevel analysis can obtain more realistic system-level reliability of MCM-based power converters. Thereafter, three novel die-level thermal balancing strategies, based on a modified MCM - with more gate-emitter connections - are proposed and investigated. It is proven that the temperatures inside the MCM can be overcame, and the maximum temperate reduced in up to 8 %

    Degradation modeling and degradation-aware control of power electronic systems

    Get PDF
    The power electronics market is valued at 23.25billionin2019andisprojectedtoreach23.25 billion in 2019 and is projected to reach 36.64 billion by 2027. Power electronic systems (PES) have been extensively used in a wide range of critical applications, including automotive, renewable energy, industrial variable-frequency drive, etc. Thus, the PESs\u27 reliability and robustness are immensely important for the smooth operation of mission-critical applications. Power semiconductor switches are one of the most vulnerable components in the PES. The vulnerability of these switches impacts the reliability and robustness of the PES. Thus, switch-health monitoring and prognosis are critical for avoiding unexpected shutdowns and preventing catastrophic failures. The importance of the prognosis study increases dramatically with the growing popularity of the next-generation power semiconductor switches, wide bandgap switches. These switches show immense promise in the high-power high-frequency operations due to their higher breakdown voltage and lower switch loss. But their wide adaptation is limited by the inadequate reliability study. A thorough prognosis study comprising switch degradation modeling, remaining useful life (RUL) estimation, and degradation-aware controller development, is important to enhance the PESs\u27 robustness, especially with wide bandgap switches. In this dissertation, three studies are conducted to achieve these objectives- 1) Insulated Gate Bipolar Transistor (IGBT) degradation modeling and RUL estimation, 2) cascode Gallium Nitride (GaN) Field-Effect Transistor (FET) degradation modeling and RUL estimation, and 3) Degradation-aware controller design for a PES, solid-state transformer (SST). The first two studies have addressed the significant variation in RUL estimation and proposed degradation identification methods for IGBT and cascode GaN FET. In the third study, a system-level integration of the switch degradation model is implemented in the SST. The insight into the switch\u27s degradation pattern from the first two studies is integrated into developing a degradation-aware controller for the SST. State-of-the-art controllers do not consider the switch degradation that results in premature system failure. The proposed low-complexity degradation-aware and adaptive SST controller ensures optimal degradation-aware power transfer and robust operation over the lifetime

    In situ diagnostics and prognostics of wire bonding faults in IGBT modules for electric vehicle drives

    Get PDF
    This paper presents a diagnostic and prognostic condition monitoring method for insulated-gate bipolar transistor (IGBT) power modules for use primarily in electric vehicle applications. The wire-bond-related failure, one of the most commonly observed packaging failures, is investigated by analytical and experimental methods using the on-state voltage drop as a failure indicator. A sophisticated test bench is developed to generate and apply the required current/power pulses to the device under test. The proposed method is capable of detecting small changes in the failure indicators of the IGBTs and freewheeling diodes and its effectiveness is validated experimentally. The novelty of the work lies in the accurate online testing capacity for diagnostics and prognostics of the power module with a focus on the wire bonding faults, by injecting external currents into the power unit during the idle time. Test results show that the IGBT may sustain a loss of half the bond wires before the impending fault becomes catastrophic. The measurement circuitry can be embedded in the IGBT drive circuits and the measurements can be performed in situ when the electric vehicle stops in stop-and-go, red light traffic conditions, or during routine servicing
    • …
    corecore