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ABSTRACT
HEALTH CONDITION MONITORING AND FAULT-TOLERANT
OPERATION OF ADJUSTABLE SPEED DRIVES

Jiangbiao He, B.S., M.S.
Marquette University, 2015

Adjustable speed drives (ASDs) have been extensively used in industrial
applications over the past few decades because of their benefits of energy saving
and control flexibilities. However, the wider penetration of ASD systems into
industrial applications is hindered by the lack of health monitoring and fault-
tolerant operation techniques, especially in safety-critical applications. In this
dissertation, a comprehensive portfolio of health condition monitoring and fault-
tolerant operation strategies is developed and implemented for multilevel neutral-
point-clamped (NPC) power converters in ASDs. Simulations and experiments
show that these techniques can improve power cycling lifetime of power
transistors, on-line diagnosis of switch faults, and fault-tolerant capabilities.

The first contribution of this dissertation is the development of a lifetime
improvement Pulse Width Modulation (PWM) method which can significantly
extend the power cycling lifetime of Insulated Gate Bipolar Transistors (IGBTs)
in NPC inverters operating at low frequencies. This PWM method is achieved by
injecting a zero-sequence signal with a frequency higher than that of the IGBT
junction-to-case thermal time constants. This, in turn, lowers IGBT junction
temperatures at low output frequencies. Thermal models, simulation and
experimental verifications are carried out to confirm the effectiveness of this PWM
method.

As a second contribution of this dissertation, a novel on-line diagnostic
method 1s developed for electronic switch faults in power converters. Targeted at
three-level NPC converters, this diagnostic method can diagnose any IGBT faults
by utilizing the information on the dc-bus neutral-point current and switching
states. This diagnostic method only requires one additional current sensor for
sensing the neutral-point current. Simulation and experimental results verified the
efficacy of this diagnostic method.

The third contribution consists of the development and implementation of a
fault-tolerant topology for T-Type NPC power converters. In this fault-tolerant
topology, one additional phase leg is added to the original T-Type NPC converter.
In addition to providing a fault-tolerant solution to certain switch faults in the
converter, this fault-tolerant topology can share the overload current with the
original phase legs, thus increasing the overload capabilities of the power
converters. A lab-scale 30-kVA ASD based on this proposed topology is
implemented and the experimental results verified its benefits.
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CHAPTER 1

INTRODUCTION

1.1 Background

Electric adjustable speed drives (ASDs) have been increasingly utilized in
various industrial applications due to the benefits stemming from their use in
energy savings and control flexibilities. Emerging applications, such as
electric/hybrid vehicles (EVs/HEVs), renewable energy direct-drive wind turbine
generators, high-efficiency heating and air-conditioning equipment, as well as
other industrial applications, have made ample use of ASDs for their powertrain
systems. However, the wide penetration of such drive systems into numerous
industrial applications is partially hindered by the lack of health condition
monitoring techniques and fault-tolerant operation solutions. Especially, when
ASDs are used in safety-critical applications, for instance, EVs/HEVs, electric
aircraft systems, medical devices and instruments, and renewable energy
generation systems, integrating health condition monitoring and fault-tolerant
techniques would be of paramount importance to help avoid catastrophic failures
or even disastrous consequences.

A standard industrial ASD system is composed of several major functional
units, which include input/output filters, power converters, dc bus, control unit,
and human-machine interface (HMI), as shown in Fig. 1.1. Among these functional
units, the power converter unit is at the heart of such a system. However, this unit

constitutes a vulnerable part in such an ASD system. One of the main reasons
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Figure 1.1: Basic functional structure of a standard industrial ASD system.

accounting for such power converter vulnerability is that it contains many power
electronic devices, which may experience open-circuit or short-circuit device
faults during switching operations. An industry-based survey on the reliability of
power electronic converters shows that semiconductor power devices are regarded
as the most fragile components by power electronic industrial respondents, as
shown in Fig. 1.2 [1]. This is particularly the case, when some types of power
converters containing a great many switching devices are utilized to meet the
increasing power capacity requirements arising from market, such as multilevel
power converters. Multilevel converters are well-known to be very suitable for
medium-voltage high-power applications, in addition to other performance
benefits such as their low harmonic distortion in outputs, low change rate of the
voltages (dv/dt), and low switching frequencies [2]. Such power converters
generally employ a large number of switching devices, which are either connected

in series to withstand high voltage, or connected in parallel to meet high current
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Figure 1.2: An industry-based survey on reliability of power electronics
converters: the most fragile components in power converters.

demand. However, one major drawback with multilevel power converters is the
degraded system reliability caused by the utilization of a large number of switching
devices and their associated gate drivers in the converter topologies. The
complexity of the hardware circuit increases the device failure probability. As a
matter of fact, the system reliability of a multilevel converter is generally
determined by the most vulnerable device in its circuit topology. In other words, if
one critical switching device in a multilevel converter has a fault, the function of
the whole converter may collapse.

Faults in switching devices of power converters can be classified into two
categories. One category refers to acute failures, which are typically caused by
sudden overvoltage, overcurrent, or overheating in the power circuit, and such

faults are very difficult to predict. Another category represents drift failures, which



are caused by an accumulating effect of decreasing life cycles. Drift failures
materialize through a slow process of deterioration in the devices. This category
of drift failures is predictable. In this dissertation, it is assumed that a device failure
in the multilevel power converter starts with a power cycling lifetime degradation,
in which the device would deteriorate into an open-circuit or short-circuit fault if
there is no remedial action available. Such a single device fault generally facilitates
the drift failures of other adjacent devices in the circuits, and eventually may bring,
in a cascading manner, the crumbling of the whole power converter. However, if
a hierarchical and progressive fault-diagnostic and fault-tolerant strategy can be
developed for multilevel inverters, the reliability of these associated multilevel-
inverter-based ASDs would be significantly improved. For instance, one
promising three-stage health monitoring and fault-tolerant solution having been
conceived may relieve such concerns and will be described next. At the first stage,
the power cycling lifetime of switching devices in multilevel inverters will be
predicted. Furthermore, the power cycling lifetime of the most vulnerable device
in the inverters will be improved through control strategies. Through this approach,
drift-type device failures in the power inverters can be predicted and avoided. At
the second stage, on-line diagnosis of switch faults in such inverters can be
conducted, with the knowledge that some of the faults cannot be accurately
predicted and can still occur in power converters, such as the aforementioned acute
device failures. At the final stage, once a device fault is diagnosed in the converter,
a corresponding fault-tolerant operation strategy will be triggered during a post-
fault stage, which aims to output satisfactory voltages and currents for the related

load. This comprehensive portfolio of health monitoring and fault-tolerant
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Figure 1.3: Hierarchical functional diagram of the proposed fault-tolerant
adjustable speed drives.

solutions is shown in Fig. 1.3. It can be seen in this figure that these hierarchical
and progressive solutions actually cover fault prognosis, diagnosis, and fault-
tolerant operation of the power converters used in an ASD system. Therefore, the
reliability of the associated ASDs should be dramatically enhanced, if all these
hierarchical health monitoring and fault-tolerant solutions can be developed and
implemented. These motivations will constitute the research objectives of this

dissertation, which will be elaborated in the next section.

1.2 Research Objectives

In this dissertation, health condition monitoring techniques and fault-
tolerant operation solutions for multilevel inverters will be thoroughly
investigated. Among various types of multilevel inverter topologies, three-level
neutral-point-clamped (NPC) inverters possess a few advantages over other types
of topologies and have been widely used in medium-voltage high-power industrial
ASDs [3]. Therefore, they are chosen as the subject inverter topologies under

investigation in this work. Regarding the switching devices used in NPC inverters,
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Figure 1.4: An industry-based survey on the percentage of semiconductor power
devices used in power electronic industries.

they can be either Insulated Gate Bipolar Transistors (IGBTs) or Integrated Gate
Commutated Thyristors (IGCTs) [4]. According to an industry-based survey on
the utilization percentage distribution of semiconductor power devices, IGBTs are
the most common devices used in power electronic industries [1], as depicted in
Fig. 1.4. Therefore, IGBT switches are selected as the subject devices here for the
investigations in this dissertation.

The first objective of this dissertation is to extend the power cycling lifetime
of three-level NPC inverters in ASDs through innovative PWM methods. Given
the fact that power inverters in ASDs may suffer severe lifetime degradation at
low-frequency operations [5-7], especially in multilevel NPC inverters where the
thermal distribution among the devices is significantly uneven at low frequencies
[8-10], a novel pulse width modulation (PWM) method will be developed to
improve the power cycling lifetime of the most thermally stressed power devices
of the NPC inverters in the associated ASDs.

The second objective is to develop an on-line fault diagnostic method for



common device faults in ASDs. Common device faults include open-circuit and
short-circuit faults. Detection of short-circuit switch faults have received much
attention in the past decades and several solutions have become technically mature
and have been integrated into most commercial IGBT gate drivers [11-14].
Therefore, only the diagnosis of open-circuit switch faults will be investigated
under this research objective. A novel on-line diagnostic method with low
computational effort and low increase of system cost will be developed, which is
supposed to accurately and promptly detect any open-switch faults in an NPC
inverter.

The third objective is to develop a novel fault-tolerant topology as well as
the corresponding fault-tolerant control strategy for three-level NPC inverters. In
other words, with this innovative fault-tolerant inverter topology used in ASDs, a
“limp-home™ post-fault operation can be achieved through adjustment of the
microcontroller output, and consequently its impact on the switching sequence in
the drives. Unlike the conventional fault-tolerant power converter topologies
which use a redundant phase leg or more back-up devices [15-18], the innovative
fault-tolerant topology to be developed in this dissertation is expected to possess
five critical functional features which are listed as follows:

e The fault-tolerant inverter topology should be able to mitigate most
of the potential device faults, including both open-circuit and short-
circuit device faults.

e The fault-tolerant inverter topology should have very low number of
redundant power devices. Otherwise, too many additional devices

will boost the cost of the inverter, which may prevent its



commercialization or market acceptance.

The fault-tolerant inverter topology should possess a modular circuit
structure, which is for the convenience of manufacturing and
commercialization of this new fault-tolerant topology.

The fault-tolerant inverter topology is expected to improve the
performance of the original NPC inverter under healthy conditions.
It is well known that a fault-tolerant power converter topology
generally requires the addition of redundant/back-up phase legs or
switching devices to the original NPC inverter topology. Mostly,
these redundant devices idle in the circuit under healthy conditions
and degrade the inverter efficiency as well as bring about a cost
increase. However, for the novel fault-tolerant inverter topology to
be developed in this dissertation, it is expected that these redundant
phase legs or devices can contribute to the performance improvement
of the original NPC converters under healthy conditions. For
instance, it is expected that such a redundant phase leg would lead to
increasing the overload capability, reducing the fluctuation of the dc-
bus neutral-point potential or common-mode voltage, or even
improving the inverter efficiency.

The fault-tolerant inverter topology should be able to output rated
voltages and currents during post-fault operation. In other words, no
derating in voltages and currents is required during a post-fault stage.
This functional feature is very critical for certain applications, for

instance, uninterruptible power supplies (UPS), EVs/HEVs, and



renewable energy generations, where rated voltages and currents
have to be guaranteed all the time to provide the required

performance.

1.3 Dissertation Organization

The remainder content of this dissertation is organized as follows:

In Chapter 2, existing health condition monitoring techniques and fault-
tolerant operation solutions to power converters in ASDs documented in the
literature are thoroughly reviewed. This literature review includes methods for
extending the power cycling lifetime of IGBT power converters, diagnosis of
open-circuit and short-circuit IGBT switch faults, as well as several existing fault-
tolerant topologies for NPC power converters.

In Chapter 3, an improved discontinuous pulse width modulation (DPWM)
method is developed to improve the power cycling lifetime of NPC inverters,
especially for such inverters operating at low-frequency conditions. In addition to
extending the lifetime of power inverters, this newly conceived DPWM method is
also optimized to reduce the fluctuation of dc-bus neutral-point voltages in NPC
inverters. Both simulation and experimental results are presented to confirm the
efficacy of this improved DPWM method.

In Chapter 4, negative impacts of switch faults in multilevel power
converters are discussed. A novel on-line diagnostic method for diagnosing open-
circuit switch faults in NPC converters is presented. The principle and
characteristics of this novel diagnostic method are explained in detail. The

effectiveness of such a diagnostic method is validated by both simulation and
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experimental results.

In Chapter 5, an innovative fault-tolerant circuit topology for three-level T-
Type NPC power converters is introduced. This new fault-tolerant topology not
only can provide a satisfactory fault mitigation solution to most device faults that
could occur in T-Type converters, but also can increase such converters’ overload
capabilities. Moreover, a zero-voltage switching (ZVS) control strategy is
introduced to improve the efficiency of this fault-tolerant four-leg T-Type NPC
inverter. Simulation and experimental results are presented to confirm the
advantages of this proposed fault-tolerant converter topology.

In Chapter 6, a few conclusions and contributions of this dissertation are
summarized. Future research opportunities related to the work presented in this

dissertation are recommended.
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CHAPTER 2

REVIEW OF LITERATURE

2.1 Lifetime Improvement of Power Converters

2.1.1 Introduction

IGBT modules, which typically integrate IGBT chips and free-wheeling
diode chips, are used in most power electronic ASD systems. However, such IGBT
modules are one of the most unreliable devices after capacitors causing failures in
power converters, according to an industry-based survey presented in [1]. A cross
section schematic of the internal structure of a wire bonding IGBT module with a
baseplate is shown in Fig. 2.1 [19]. As can be seen in this schematic figure, the
IGBT module is composed of bond wires, IGBT and diode chips, soldering,
substrate, and baseplate, each of which is usually made of different materials, as
listed in Table 2.1. During the switching operations of IGBT modules, the
IGBT/diode chips will experience cyclic temperature profiles due to the
conduction and switching losses in the chips. Accordingly, these various materials
in IGBT modules expand with a rising temperature and contract with a decreasing
temperature. Such a property can be described by coefficients of thermal expansion
(CTE), which is a material-dependent parameter. The comparison between the
CTEs of various materials in an IGBT module is depicted in Fig. 2.2, which
demonstrates a variety of magnitude mismatching among the CTEs of the different
materials in such IGBT modules. For instance, the CTE of aluminum bond wires

is almost one order of magnitude higher than that of IGBT/diode chips. During
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Figure 2.1: Cross section schematic of the internal structure of a wire bonding
IGBT module (interfaces that are releveant to module lifetime are marked in red).

Table 2.1: CTEs of the materials in different parts of IGBT modules [20, 21]

Name of the Part Material CTE (ppm/K)
: Aluminum (Al) 23
Bond wires Copper (Cu) 16
. Stannum Lead (Sne3Pb37) 25
Soldering layer -
Stannum Silver (96.5%Sn/3.5%Ag) 30
. . Silicon (Si) 2.5
IGBT/Diode chips Silicon Carbide (SiC) 4
Ceramic substrate Aluminum Oxide (Al2O3) 6
Aluminum Nitride (AIN) 4.5
Aluminum Silicon Carbide 79
Baseplate (Al37SiCs3) )
Copper Carbon (CusoCao) 8.5
ppm/K
35
Sng;Ags

SngzPhs;
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20 o Cu
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Figure 2.2: Comparison of CTE values of different materials in IGBT modules.
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switching operations of IGBT modules, the junction temperatures of each chip may
increase or decrease quickly, which results in a differential elongation of the bond
wires with respect to the substrate. This will cause a plastic flow of the wire
material, especially at the periphery of the bonding interface where the shear stress
reaches its maximum limit [22]. Eventually, a bond wire lift-off will occur if such
thermal-mechanical stress is larger than the maximum bond strength. Fig. 2.3
shows the bond wire lift-off in an IGBT module [23]. Once one of the bond wires
lifts off, the current sharing in the remaining of the parallel bond wires will become
larger than the normal current rating, which will facilitate more bond wires to
experience lift-off until an IGBT open-circuit fault happens. According to [22],
bond wire lift-off has been regarded as one of the leading reliability concerns in
IGBT modules. To predict such failures, active power cycling tests are generally

conducted to estimate the remaining lifetime of IGBT modules [24].

aluminum wire
silicon chip

Insulation substrate e -
- ]

T

Copper base plate

Figure 2.3: Aluminum bond wire lift-off in an IGBT module.

On the other hand, it can be seen in Fig. 2.2 that there is also dramatic
mismatch in the CTE values between the substrate and the baseplate, which
produces thermal stress and subsequent mechanical strain on the soldering layer.

Consequently, soldering fatigue appears and accumulates between the ceramic
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substrate and the baseplate in the form of creep [25], voids [26], cracks or
delamination [27]. These increase the heat flux density in the remaining soldering
layer and retard the heat dissipation. If left untreated, such soldering fatigue can
rapidly accelerate and eventually result in a soldering cracking failure in the IGBT
module, as shown in Fig. 2.4 [29]. During this process, the thermal impedance
through the heat transfer path in the IGBT module will increase. The increased
thermal impedance will cause higher temperature rise in the IGBT/diode chips,
which will further accelerate the cracking of the soldering. Such soldering fatigue
is mainly caused by slow thermal cycles [28]. The lifetime of the solder between
the substrate and baseplate can be predicted by conducting passive thermal cycling
tests, which have been reported in [28] and this aspect is beyond the scope of this
dissertation.

aluminum wire
silicon chip

Insulation substrate

e

Copper base plate

Figure 2.4: Substrate soldering cracking failure in an IGBT module.

To extend the lifetime of IGBT modules, generally there are two categories
of methods to be adopted. One is to select the materials with better thermal and
mechanical matching/compatibility during the packaging and manufacturing
process of the IGBTs. For instance, replacing the copper baseplate of IGBTs with
AISiC alloy material to reduce the differences between the CTEs. In particular, the

difference in CTEs between a ceramic substrate and a baseplate. As given in Table
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2.1, a copper (Cu) baseplate has a CTE value of 16 ppm/K, which exhibits large
mismatch with the CTE of a ceramic substrate that typically ranges around 4.5-6
ppn/K. If an IGBT baseplate can be packaged based on Al37SiCe3 material, the
CTE value of such a baseplate will be reduced to 7.9 ppm/K, closer to the CTE
value of the ceramic substrate. As a result, the lifetime of the soldering layer
between the IGBT baseplate and substrate could be significantly extended. Similar
lifetime extension effects can be achieved upon replacing the silicon (Si) chips
with silicon carbide (SiC) material [30], replacing aluminum (Al) bond wire with
copper (Cu) material [31], or replacing the “Al+AIN” substrate material with
“Cu+Si3Nys” [32], and so forth. However, the adoption of these proposed material
substitutes such as SiC, Cu and “Cu+ Si3zN4” in the IGBT packaging generally
involves a few factors to be concurrently considered, such as thermal conductivity,
convenience of processing, and material cost, which is quite challenging to make
a compromise in practice.

Another category of methods for improving IGBT lifetime is to modify the
PWM and control strategies that are used to regulate the switching of IGBT
modules. Basically, the purpose of such methods is to reduce the switching and
conduction losses generated in the IGBT/diode chips, and/or attenuate the swing
magnitude of the chip junction temperatures. As a result, the lifetime of the IGBTs
and the related PWM inverters can be improved. These methods do not require the
changes of IGBT internal structure or materials, thus are more practical and more
convenient to be adopted by industries. One of the objectives of this dissertation is
to develop a novel PWM strategy to reduce the IGBT junction temperatures and

temperature swings. Therefore, existing methods in the literature that aim at
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reducing the IGBT/diode thermal losses or mitigating junction temperature swings
through PWM control strategies will be reviewed first, which will be given in the

following section.

2.1.2 Existing Solutions to Improve IGBT Lifetime

Lifetime of IGBT power converters has been investigated and extended by
a few PWM or control methods presented in the literature [33-39]. Among these
existing methods, either the switching frequencies, or load currents of the power
inverters are regulated to reduce the dissipated device losses and subsequently
obtain longer lifetime of such IGBT power converters. Each of these methods will
be reviewed in detail in the following.

In [33], a PWM frequency hysteresis control approach was proposed, in
which the PWM switching frequency was reduced to its lowest level when the
swing magnitudes of the IGBT junction temperatures are higher than their preset
upper limit. In other words, under normal operation, if the swing magnitudes of
the IGBT junction temperatures are lower than the preset upper limit, all the
control and PWM strategies will remain in the normal mode, which is unchanged.
As a result, the overall lifetime of the IGBT inverter was significantly improved.
The functional block diagram of this method is given in Fig. 2.5 [33], and the
improvement of the inverter lifetime, namely, mean-time-to-failure (MTTF),
based on this method is shown in Fig. 2.6 [33]. As can be seen in Fig. 2.6, the
MTTF of the IGBT inverter is effectively improved after halving the switching
frequency. However, one drawback of this method is the dramatic increase of the

harmonic distortion in the output when the PWM switching frequency is reduced.
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Figure 2.6: MTTF of the IGBT inverter under various output frequencies.

Such deterioration in harmonic distortions may not be acceptable in certain
applications requiring high-precision motion control and low acoustic noise, unless
the output filter of the inverter is overdesigned.

Similarly, another method based on the manipulation of switching

frequencies and load currents to adjust the IGBT losses was introduced in [34].
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Two proportional-integral (PI) regulators were utilized to reduce the switching
frequencies and load currents, respectively, when the IGBT junction temperature
was approaching its upper limit of 110°C [34]. The inputs for these PI regulators
are the actual switching frequencies or load currents, and the output is the
estimated IGBT junction temperatures, which serve as the feedback variables for
the PI regulators. The block diagram of this control method is shown in Fig. 2.7

[34].
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Figure 2.7: Block diagram of the PI regulators for improving IGBT power cycling
lifetime.

In addition, novel PWM methods were investigated in the literature to
reduce the conduction or switching losses in the IGBT modules. Once the device
losses are reduced, this results in lower IGBT junction temperatures, and
subsequently the IGBT lifetime would be extended. In [35], a DPWM method and

a space vector PWM (SVPWM) method were selectively utilized during the
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converter modulation, namely, the so-called “hybrid modulation method”. Such a
modulation method was developed for improving the lifetime of the generator-side
converter in a wind turbine generation system [35]. Specifically, when the wind
speed is below certain threshold value, the conventional SVPWM method will be
employed. Once the wind speed is higher than the threshold reference value, the
DPWM method will be utilized to mitigate the thermal stress on the associated
IGBTs. This DPWM method has been well-known for the reduction of IGBT
switching losses, although the harmonic distortions generated under certain
modulation indices are generally much higher than those yielded under the
SVPWM method. More details on the DPWM method were reported in [36]. The
IGBT lifetime improvement through using this hybrid modulation method in [35]
is demonstrated in Fig. 2.8, and the harmonic distortions generated from the
generator-side converter by using such a method is shown in Fig. 2.9. It can be
seen from these figures, by selectively using the DPWM and SVPWM methods, a
longer IGBT lifetime can be achieved, although the harmonic distortion in the

converter outputs will be inevitably increased.
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Figure 2.8: Reduction of the consumed IGBT lifetime by using a hybrid
modulation method for the generator side converter in a wind turbine generation
system.
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modulation method at a constant switching frequency.

Another DPWM method was proposed to improve the IGBT lifetime in a
two-level voltage source inverter under low output frequency conditions [37]. In

this new DPWM method, a zero-sequence signal with frequency much higher than
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the time constants of IGBT junction-to-case thermal impedance was injected into
the voltage reference signals. As a result, lower IGBT junction temperatures were
achieved and correspondingly and the lifetime of the IGBT inverter was extended.
According to the simulation and experimental results given in [37], a reduction of
15% of the IGBT junction temperatures were achieved for a 480V/65A ASD
system, while the harmonic distortions in the output voltages and currents almost
stay the same, compared to the results obtained under the conventional SVPWM
modulation.

As for multilevel NPC inverters which are being investigated in this
dissertation, existing solutions in the literature to improve their IGBT lifetime
mainly focused on the utilization of redundant voltage space vectors to actively
redistribute the losses from the overloaded devices to other cooler devices [38, 39].
In [38, 39], redistribution of the semiconductor losses in a three-level NPC inverter
by taking advantage of the redundant zero voltage vectors and small voltage
vectors were carried out for both low and high modulation indices, respectively. A
trade-off between the loss redistribution and the neutral-point voltage control
freedom was considered in these investigations for purposes of ensuring the proper
operation of the control system for such NPC inverters.

In summary, the fundamental motivation of improving the lifetime of IGBT
inverters through PWM or control strategies is to reduce the losses in the related
IGBT devices. Such an objective can be achieved by two approaches, namely,
directly reducing the PWM switching frequencies or load currents under thermal
overload conditions, or improving the PWM strategies to alleviate the thermal

stress on the related IGBTs.
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2.2  On-line Diagnosis of Switch Faults in Power Converters

2.2.1 Introduction

As discussed in Section 2.1.1, the mismatch of the thermal expansion
coefficients among different materials in IGBT modules, in conjunction with the
large swings in IGBT junction temperatures, can lead to IGBT failures such as
bond wire lift-off or soldering cracking, which generally exhibits itself as an IGBT
open-circuit failure mode. Actually, there are a few other causes that may lead to
IGBT open-circuit faults as well, namely, gate driver malfunctions, insufficient
cooling for the IGBT modules, large gate resistors, very high switching
frequencies, and overload/overcurrent operations. All these causes will be briefly
explained here. First, malfunction in the gate driver may cause a constant turn-off
gate signal in the output for IGBTs, which makes the IGBT behave as if
encountering an open-circuit fault. Second, insufficient cooling, large gate
resistors, too high switching frequencies, and overload/overcurrent operations,
causing IGBT open-circuit faults, essentially occur because of the excessive
thermal losses in such semiconductor devices under these operating conditions.
This may eventually result in the lift-off of bond wires, or cracking of the soldering
layers in the IGBTs. All these failure mechanisms are listed in the block diagram
of Fig. 2.10. Once an open-circuit fault occurs in a power inverter, dc components
will be present in the profiles of load currents and voltages. If the load is an electric
motor, such dc components will bring about magnetic saturation and induce an
oscillating/pulsating airgap torque at the fundamental frequency [40].

As a matter of fact, in addition to the open-circuit failure mode, there is
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another common failure mode for IGBT devices, namely, short-circuit fault.
During a short-circuit fault, the IGBT will be in a constant-on mode, like a
conductor with very small resistance. More severely, dc-bus shoot-through may
occur when the complimentary IGBT on the same phase bridge is turned on. The
large dc-bus shoot-through current will damage the related power devices and dc-
bus capacitors. Causes for IGBT short-circuit faults mainly include static/dynamic
latch-up, gate driver malfunction, and high-voltage breakdown, as again shown in
Fig. 2.10. Each of these failure mechanisms will be briefly analyzed in the

following discussion:

Fault Causes: Low output | | High switching Largt.e gate Gate drnfer Latch-up High voltage
frequency frequency resistor malfunction breakdown
Failure Mode: IGBT open-circuit fault IGBT short-circuit fault

Figure 2.10: Main failure mechanisms in an IGBT module.

An IGBT device generally has a parasitic P-N-P-N sandwich structure
between the collector and emitter terminals, as depicted in Fig. 2.11. The presence
of this parasitic four-layer thyristor structure in the IGBT creates the possibility of
the device latching up by regenerative actions. This mode of operation is highly
undesirable because it leads to loss of control of the collector current by the applied
gate voltage. Once the device has latched up, it can only be turned off by either
externally interrupting the collector voltage or reversing its polarity [41]. Latch-up

usually produces catastrophic failures in the devices as a results of excessive heat
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dissipation in the dc circuits. The latch-up modes of IGBT can be generally
classified as static and dynamic modes. In a static mode, the collector voltage is
low and the latch-up occurs when the steady-state current densities exceed a
critical value. The dynamic mode of latch-up mainly occurs during turn-off
switching operations. This mode involves both high collector current and voltage.
The current densities at which latch-up occurs in the dynamic mode is lower than
that for the static mode. It should be mentioned that the later-generation IGBTSs
with trench-gate structure and heavily doped P-base region under N-emitter, have
been proved to have good latch-up immunity, which may render the occurrence of

latch-up rare failure event for IGBT devices [42, 43].
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Figure 2.11: Equivalent circuit schematic of an IGBT device.

Gate driver malfunction can also cause short-circuit faults in IGBTs. Any
damage of the IC components in power stages of gate drivers may disable their
output of turn-off gate signals, which will make the IGBT stay in a constant-on
mode, until the resulting large short-circuit current damages the device if no

protection solutions are available.
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High voltage breakdown: high voltage spikes induced by high change rate
of collector current (di/dt) and stray inductance can damage IGBTs during their
turn-off, especially under repetitive voltage spikes [44]. Due to the high turn-off
voltage spikes, electric field may reach the critical field which can break down one
or more the IGBT cells. Such phenomenon can lead to high leakage current as well
as high local temperature.

In summary, a short-circuit IGBT fault can be caused by several factors,
including gate driver malfunction, high voltage break down, and static/dynamic
latch-up. Large short-circuit current will be caused during such failure mode in an
IGBT power converter, which may damage the dc bus, power devices, or bring
about other catastrophic failures. The diagnosis of such short-circuit faults requires
fast detection speed to ensure that the protection actions can be applied in time
before an irremediable failure occurs. Specifically, the standard short-circuit
withstanding time (SCWT) for modern silicon IGBTs is mostly less than 10ps
[45]. A few well-established detection/protection solutions for IGBT short-circuit

faults will be reviewed next in Section 2.2.2.

2.2.2 Existing Diagnostic Methods for IGBT Faults

In this section, diagnostic methods presented in the literature for IGBT
short-circuit and open-circuit faults in multilevel NPC converters will be reviewed
and critically examined.

Regarding the diagnosis of IGBT short-circuit faults, the most well-
established method is the well-known desaturation detection technique, as reported

in [46]. In this technique, a high-voltage fast recovering diode (D1) is usually
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connected to the IGBT’s collector terminal to monitor the IGBT collector-emitter
on-state voltage, as shown in Fig. 2.12. Once there is a short-circuit fault occurring
in an IGBT, the IGBT on-state voltage will increase dramatically. If this on-state
voltage is larger than a predetermined threshold value for a certain duration of time
(i.e., tyrip shown in Fig. 2.12), a short-circuit fault will be identified. Such a
desaturation detection technique has been commercialized and integrated into most
of the off-the-shelf gate drivers in the market. It should be noted that, the
requirement of this time delay (generally around 1us to 5us) is for avoiding any
false diagnosis/protection. However, the fault current could surge to a very high
value during the blanking time, thus resulting in damage of the IGBT due to
excessive local heating. Thus, new generations of the commercial gate drivers
employ a two-stage soft turn-off technique for solving the overcurrent issue during

the time delay associated with the desaturation detection method [47, 48].
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Figure 2.12: Schematic of IGBT desaturation detection circuit.
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In addition, variations in the gate voltage and current rate (di/dt) have been
analyzed to identify a fault condition in IGBT devices [49, 50]. Recently, a new
promising short-circuit detection method was introduced in [51] for IGBT devices
based on the evaluation of fault current level by measuring the induced voltage
across the stray inductance between the Kelvin emitter and power emitter of the
IGBT modules. Compared with the commonly used desaturation detection
method, this new method provides a fast and reliable detection of short-circuit
faults.

It can be seen from the above that mature diagnostic methods for IGBT
short-circuit faults have been well established and some of them have been widely
commercialized and applied in industry. Accordingly, the remaining content of this
section will focus on the review and analysis of existing methods proposed in the
literature for the diagnosis of IGBT open-circuit faults.

First of all, an open-switch fault diagnostic method was developed in [52]
based on detecting the dimensions and orientation angle of the so-called
“Concordia current patterns”. Such current pattern is determined by plotting the
instantaneous ac current components in the two-axis orthogonal reference frame,

iq versus ig, which are defined as follows:
. 2, 1, :
lg =3la— 3l — 3l (2.1)
. 1, .
ip = 7= (ip — ic) 2.2)

where, i, i, and i, are the three-phase instantaneous currents in the stationary

reference frame. i, and iz are the ac current components in the two-axis
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orthogonal stationary reference frame.

Under any healthy condition, the Concordia current pattern should be a
circle ideally, which is distorted into a semicircle or other geometrical patterns
once there is an open-circuit switch fault in the inverter. In this method, it was
assumed that the distortion of the current pattern for each IGBT open-circuit fault
is unique, and therefore can be detected by pattern recognition techniques. This
method could be effective under most of the normal conditions. However, the
drawback with this method is that, such “Concordia current patterns” change with
the value of the amplitude modulation indices of the PWM strategy, which may
cause misdiagnosis of such open-circuit switch faults.

Similarly, one more diagnostic method, the so-called “the average current
park’s vector approach”, was introduced in [53], for detecting open-circuit switch
faults in a three-level NPC inverter. The fault detection in this method relies on the
analysis of the Park’s vectors [54] of the mean value of each inverter output ac
current over one fundamental period. Specifically, there are two steps for the
implementation of this method, which are detailed as follows:

First, the average value of each inverter output current (iyy, ipy, Lcp) 1S
calculated from current samplings by the following equation:

1 . .
= Ilg=1 lj,k> J=a, ba Y (23)

Jav T N
where, N is the amount of samples, k is the current sample number and a, b and
c are the indices of each phase, and [; is the resulting average current.
Second, the Park’s vector transformation [54] is applied to these average

values, in order to obtain the magnitude (I, sqp) and phase angle (6, ) of a vector in

the complex plane, which is calculated as follows:
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Under normal operation, the magnitude of the average current Park’s vector,
namely, |I_ Sap | , 1s zero in theory (in practice, there would be some variations around
zero due to the inherent PWM switching characteristics). However, if an open-
circuit fault occurs in the NPC inverter, this magnitude will increase to a value
higher than the predetermined threshold value. By using this approach, the faulty
switch can be identified.

The effectiveness of this method is based on one assumption that the sum
of the average values of the instantaneous three-phase currents is zero under any
healthy condition, which holds true for the NPC converter fed by three-phase ac
source with a floating neutral point. However, such an assumption may be
incorrect for the power source with the neutral point solidly grounded or high-
resistance-grounded (HRG), where the sum of the three-phase currents may not be
zero, especially when there is a line-to-ground fault occurring in the system. In
other words, this diagnostic method would not work properly for NPC converters
fed by three-phase sources with a solidly grounded or HRG neutral point.

Recently, an open-switch fault detection method for a back-to-back NPC
converter used in wind turbine systems was introduced in [55]. The circuit
schematic of this converter is shown in Fig. 2.13. In this method, variations of the
phase current directions and the time duration during which the phase current

remains in the zero range are used as the indicators for open-circuit faults in the
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back-to-back NPC converters. This method only requires the information on input
and output phase currents, which are generally available in the associated
microcontroller. Therefore, no external components or devices are demanded for
the implementation of this method. However, as clarified in this reference [55], for
any open-circuit switch faults in an NPC inverter, this diagnostic method can only
distinguish the faults between the upper branch and lower branch in one phase leg,
but incapable of identifying a specific faulty switch. Obviously, such ambiguous
diagnostic effect will pose challenges in the post-fault maintenance or fault-
tolerant operations. Another potential drawback is that, the required ac current
information on the input of the NPC rectifier typically contains rich
harmonics/ripples due to the high-frequency switching of the rectifier. Such

harmonics/ripples may mask the fault signatures for diagnosing any open-switch

faults in the NPC rectifier.
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Figure 2.13: A back-to-back NPC converter for the wind turbine system.

All these three diagnostic methods discussed above are based on monitoring
the fault signatures from the phase currents of the NPC inverter. There are several
other diagnostic methods [56-58] proposed in the literature using the pole voltage

information for detecting open-circuit switch faults in NPC inverters, which will
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be reviewed next.

In [56], an on-line diagnostic method for IGBT open-circuit faults in a three-
phase three-level active NPC (ANPC) inverter was developed. In this method,
three types of real-time information are needed, namely, instantaneous three-phase
pole voltages, the predetermined inverter PWM switching strategies, and the
polarities of the three-phase currents. All these three types of information are
utilized together to form a look-up table. During each specific switching state, the
pole voltage of each phase is measured and compared to the supposed value under
a healthy condition. The outcome of the comparison will be the indicator for
identifying the faulty switch. It should be pointed out that the information on the
switching states and three-phase currents is typically available in an industrial ASD
system. Hence, only three voltage sensors are demanded for the implementation of
this method. In addition, it is well known that the dc-bus neutral point is always
accessible for measuring the pole voltages in multilevel NPC inverters due to the
necessity of controlling the dc-bus neutral point voltage. Such a characteristic is
different from that in two-level power converters, where the dc-bus neutral point
may not be accessible in practical ASD systems. Another benefit of this diagnostic
method is the fast detection speed. According to the analysis in [56], an open-
circuit fault can be diagnosed within one fundamental period of the load currents.

Another diagnostic method based on the analysis of inverter pole voltages
was proposed in [57]. This method is based on the well-known fact that the
magnitude of the pole voltages of the NPC inverter is distorted or disappears
whenever there is an open-circuit switch fault, in comparison to these under normal

conditions. Therefore, in this diagnostic method, a direct comparison between the
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measured pole voltages to the fault reference signals was conducted, the functional

block diagram of which is shown in Fig. 2.14 [57].
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Figure 2.14: Equivalent circuit of a fault detection system.

Different from these methods discussed above utilizing the information of
phase currents or pole voltages for the diagnosis, a new method based on
monitoring the clamp branch currents was introduced in [58] for detecting IGBT
faults in a three-phase three-level ANPC inverter. The main principle of this
method lies in the fact that the clamp branch current under healthy condition of the
converter is completely different from that under faulty conditions for a given
switching state. The implementation of this diagnostic method requires two
Rogowski coils [59] to be installed on the upper and lower locations of each clamp
branch, respectively, see “®” in Fig. 2.15, which implies that there will be six
Rogowski coils needed for the implementation of this method in a three-phase
ANPC converter, as shown in Fig. 2.13. According to the analysis in [58], this
diagnostic method can effectively detect both IGBT open and short-circuit faults

in ANPC inverters. However, such a benefit is achieved at the price of the
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increased system cost, hardware complexity and physical volume, which
significantly increase due to the requirement of the six Rogowski coils and six

channels of related current sensing circuits.
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Figure 2.15: Using Rogowski coils (marked in red) for the diagnosis of IGBT
faults in a three-level ANPC inverter.

A comprehensive comparison between all these existing diagnostic
methods for detecting IGBT faults in multilevel NPC inverters is shown in Table
2.2. In this table, four critical criteria, namely, diagnostic capabilities, cost
increase, computational burden imposed on the microcontroller, and fault
detection speed (assessed by the period, T, of the fundamental frequency of the
load current), are utilized for the evaluation and comparison of these existing
diagnostic methods. According to this comparison, it can be observed that, among
these diagnostic methods, some of them have a high cost for implementation, some
have a lower fault detection speed, and some of them have ambiguities in the
diagnostic outcome. Such drawbacks stimulate the motivation to develop a more

efficient and cost-effective diagnostic method for the NPC-inverter-based ASD
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systems, which will be elaborated in detail in Chapter 4.

Table 2.2: Comparison of various diagnostic methods in the literature for
multilevel NPC inverter.

Diagnostic Diagnostic Cost Computation | Detection
method capabilities increase complexity speed
Concordia current Open-circuit _
pattern method P No Medium =< 2Ty
switch faults
[52]
Average current Open-circuit _
park’s vector P No Medium =< 2Ty
Switch faults
approach [53]
Current distortion Par.t of ‘the open- No Medium <T,
method [55] circuit faults
Inverter pole All the IGBT
voltage method open-circuit faults High Low <T,
[56, 57] P
Neutral-point
branch current shlgftttéi(r)gjiri ?:1?1 ts High Low <T,
method [58]

2.3 Fault-Tolerant Power Converter Topologies

2.3.1 Introduction

Fault-tolerant operation plays a crucial role for the reliability of power
converters during the post-fault stage, especially when a switch fault has been
detected. A fault-tolerant power converter should be able to tolerate any device
faults, including both open-circuit and short-circuit faults. Such fault-tolerant
capability could be achieved by either software-based fault-tolerant control
strategies, or hardware-based redundant design concepts, or can be a solution

combining both software and hardware modifications. Software-based fault-
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tolerant operation of power converters is generally only suitable for certain types
of multilevel converters, in which there are more redundant switching states to be
utilized during post-fault stage to synthesize satisfied output voltages. Hardware-
based redundant design is a universal solution for almost all the power converters.
A simple fault-tolerant power converter can be designed merely based on adding
one or more redundant inverter legs, or even parallel connecting one additional
converter, to provide back-up solutions to any faulty switches or inverter legs.
However, the acceptance of such redundant design methodologies by industries is
mostly constrained by the dramatic cost increase, expansion of physical volume,
and the increased complexity of hardware circuits. Hence, regarding the multilevel
NPC converters being investigated in this dissertation, a more attractive solution
to achieve fault-tolerant operation is to fully utilize the redundant switching states
while adding a minimum number of redundant power devices.

In addition to these concerns on cost and physical volume increase for fault-
tolerant power converters, another concern is the output performance degradation
during post-fault operation, such as deratings in output voltages and currents,
harmonic distortions, decreased efficiency, and the like. Ideally, these output
performance of the power converters should be at kept the same as these during
normal operation. However, it is very challenging to meet this objective in practice,
due to the absence of certain switching states related with the faulty switch and the
switching/conduction of redundant devices/phase legs. Almost all of the existing
fault-tolerant solutions in the literature either require derated operation, or have
degraded converter efficiency or harmonic distortion during post-fault operations.

The literature review below will further illustrate such perspectives.
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2.3.2 Existing Fault-Tolerant Topologies for NPC Converters

In this section, all the existing fault-tolerant topologies in the literature for
NPC converters will be reviewed. It should be clarified that the NPC inverters
being examined here include both I-Type and T-Type NPC inverters, and both of
them have been widely used in industries. The operating principle and
characteristic comparisons between these two types of NPC inverters were
analyzed in [60] and thus will not be repeated here. The following literature review
will be first focused on the fault-tolerant operations of I-type NPC inverters, and
then followed by the related literature review of the T-Type NPC inverters.
Fault-tolerant capability of the [-Type NPC inverter was early investigated
in [61]. In this work, the fault-tolerant strategies of a three-phase three-level NPC
inverter under singular short-circuit faulty condition of IGBTs and clamping
diodes were discussed. Considering the circuit symmetry of NPC inverters, three
cases of short-circuit conditions were analyzed. Taking the Phase-A leg of the NPC
inverter topology shown in Fig. 2.16 as an example, these three short-circuit fault
cases are as follows:
e C(Case I: Short-circuit fault in an outer switch Sa1 or Sas.
e C(Case II: Short-circuit fault in an inner switch Sa2 or Sas.
e (ase III: Short-circuit fault in an antiparallel diode Dai or Dao.
Once there is a short-circuit switch fault in the inverter, the switching states
that require the turn-off of this associated switch will be lost. Therefore, the

switching strategies for the whole inverter will have to be modified, otherwise dc-
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Figure 2.16: Circuit topology of a three-phase three-level I-Type NPC inverter.

bus shoot-through or capacitor short-circuit failures may occur. The unavailable
switching states due to the short-circuit faults in Sai, Sa2 and Da1 are shown in the
red shadowed parts in the voltage space vector diagram in Figs. 2.17 through 2.19,
respectively. As can be seen that a few large voltage space vectors are lost for each
of the fault cases, which indicates the necessity of derated operation of the NPC
inverter during the post-fault stage. Specifically, the NPC inverter cannot operate
at a modulation index higher than 0.577 (i.e., 1/+/3) [61].

This reference [61] also discussed the fault-tolerant operation of NPC
inverters in presence of any open-circuit switch faults. The proposed fault-tolerant
control strategy is to connect the output terminal of the Phase-A to the dc-bus
neutral point and accordingly modify the PWM strategy to output a derated three-
phase balanced currents, if there is an open-circuit fault occurring in Phase-A leg.
No further details were given in [61] regarding the implementation of such a fault-
tolerant strategy. However, it is obvious that additional switches are needed to
connect the phase-A leg to the dc-bus middle point if any of the inner switches

(i.e., Sx2 or Sx3, x=a, b, or c, see Fig. 2.16) encounters an open-circuit failure.



38

Im
715 I Sector 2 I714
(NPN) I [{OPN)I (PP N)
A
’ 7,
(N PO) / (PON)
Sector 3 é Sectorl
‘—715 _]_:

(NPP . A (PNN)

i Vs

7, (PNP)

Sector 5

Figure 2.17: Unavailable (filled in red color) and available voltage space vectors

due to the short-circuit fault in the switch Sai.
Im

Vs | Sector 2 T714
7 1(OPN)

[NPN)I
A

7 ! (oNP)
|

Sector 5

Figure 2.18: Unavailable (filled in red color) and available voltage space vectors

due to the short-circuit fault in the switch Sa.
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Figure 2.19: Unavailable (filled in red color) and available voltage space vectors
due to the short-circuit fault in the switch Daj.

Another fault-tolerant solution to NPC inverters was introduced in [62]. In
this solution, three pairs of thyristors and fuses have been added to the NPC
inverter circuit topology to improve its fault-tolerant capability, as shown in Fig.
2.20. The purpose of adding these thyristors is to avoid the short circuit of dc-bus
capacitors when one of the switches has a short-circuit fault. For instance, when
the switch Sai (see Fig. 2.21) has a short-circuit fault, the upper dc-bus capacitor
will be short circuited when the Phase-A leg of this NPC inverter is outputting a
zero voltage state by turning on the inner switches Sa» and Sa3, as depicted in Fig.
2.21. Thanks to the addition of the thyristor Tai, the upper clamp branch can be
interrupted by turning on the thyristor Ta1 and subsequently the blowing out of the
fuse Fai1. The similar fault protection mechanism can be applied to the switch faults

in other mechanisms, such as Sx> and Sx3 (where x=a, b and c).
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One advantage of this fault-tolerant solution is that no derating is required
during fault-tolerant operation. However, there are three issues/drawbacks with
this method. The first issue is that the fuses used in the fault-tolerant circuit
topology typically have lower i?t characteristic than that of the IGBTs, which
indicates that the related IGBT may fail prior to the blow-out of the fuse. The
second issue is that some of the IGBTs will encounter large voltage stress if there
is a short-circuit fault in the series-connected adjacent switch on the same inverter
leg. For instance, if the switch Sai has a short-circuit fault, the switch Sa> has to
withstand half of the dc-bus voltage, which may impose excessive thermal stress
or cause a high-voltage breakdown on S,>. The third issue or drawback of this fault-
tolerant solution in [62] is the more complicated hardware circuits caused by these
thyristors and the related gate driving circuits. Also, the addition of these six fuses

may result in higher ohmic losses in the inverter, which will decrease the inverter

efficiency.
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Figure 2.20: Modified NPC inverter topology for fault-tolerant operation (the
redundant power devices are marked in red color).
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Figure 2.21: Current flow direction when the upper dc-bus capacitor is short-
circuited by the short-circuit fault in the switch Sai of the NPC inverter.

One attractive solution for the fault-tolerant operation of NPC inverters was
introduced in [63]. Basically, an active switch, for instance, an IGBT device, is
added to each of the clamping diode in the NPC inverter. As a result, the NPC
inverter is upgraded to be an ANPC inverter, as shown in Fig. 2.22. The active
switches added to the NPC inverter are shown in red color in Fig. 2.22. The fault-
tolerant operation of this ANPC inverter is summarized as follows:

e Case I: open-circuit fault in Sa1/Dai.

When there is an open-circuit fault occurring in the IGBT module Sa1/Dai

(see Fig. 2.22), the output terminal of the Phase-A leg will be connected to

the dc-bus neutral point by turning on switches Sa> and Sas, or Sa3 and Sas.

In other words, the voltage output of the Phase-A leg in the ANPC inverter

will be zero. Accordingly, in order to output three-phase balanced currents,
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Figure 2.22: Circuit topology of a three-phase three-level ANPC inverter.

the PWM switching strategy needs to be changed from Equation (2.5) to Equation
(2.6), which are shown as follows [63]:
V, = msin(2nrft)

Vp = msinuft — =) (2.5)

V. = msin(2rft — 4?”)

V=0
V) = V3msin (2nft +m +%) (2.6)
k V) =+/3msin (ant + %n + g)

where, V,, V},, and V. are the PWM reference signals under normal operation. 1/,
V,, and V. are the PWM reference signals under faulty conditions. m is amplitude
the modulation index under normal operations. f is the fundamental output
frequency of the NPC inverter.

It can be seen from Equations (2.5) and (2.6) that the PWM amplitude
modulation index is derated by 1/+/3 during post-fault operations, which indicates

that the output voltages of the ANPC inverter during a post-fault stage cannot meet
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the rated voltage requirements in certain applications (e.g., UPS, EVs/HEVs, etc).

For instance, the EVs/HEVs require rated or higher ac voltages from the inverters

for the field weakening operation of the permanent magnet synchronous machines

(PMSMs), which is generally evaluated by an important operating characteristic,

namely, constant power speed ratio (CPSR). Assuming that such NPC/ANPC

inverters in [63] are utilized in the powertrain systems of the EVs/HEVs, the

derated operations during the post-fault stage will prevent the vehicles from

operating at high-power high-speed region, which is not allowed for such practical

applications. For more details about the field weakening operations of EVs/HEVs,

please see the references [64, 65].

Case I1: open-circuit fault in Sa2/Daz.

If there is an open-circuit fault in S.2/Da2, the associated fault-tolerant
operation can be achieved by connecting the output terminal of the Phase-
A leg to the dc-bus neutral point through the turn-on of the switches Sa3 and
Sas for commutating bi-directional current. As a result, the voltage output
of the Phase-A leg will be zero, and the PWM strategy of the three-phase
ANPC inverter will be modified accordingly to output derated three-phase
voltages, which is the same as the fault-tolerant operating principle
discussed for Case I.

Case I11: short-circuit fault in Sai/Dai.

Regarding the short-circuit faults in Sai/Da1, the fault-tolerant solution is the
same as the one presented in [61]. Thus, it will not be repeated here.

Case IV: short-circuit fault in Sa2/Da2.

As for any short-circuit faults in Sa2/Da2, the related fault-tolerant operation
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can be realized by turning on the switch Sis to connect the output terminal

of the Phase-A leg to the dc-bus neutral point. The subsequent fault-tolerant

operation is the same as these presented in Case I and Case II.

According to the review and discussion above, it can be seen that the ANPC
inverter provides a very promising fault-tolerant solution for the NPC inverter,
although the output voltages during some of the post-fault operation have to be
derated. Also, it should be mentioned that the ANPC inverter can distribute the
device losses more evenly among the switching devices, compared to that in NPC
inverter, as reported in [10][66-68]. Therefore, the maximum allowable switching
frequency and output power in the ANPC inverters will be higher than these for
the conventional NPC inverters.

A four-leg fault-tolerant solution for NPC inverters was introduced in [17],
and the circuit topology was given in Fig. 2.23. The purpose of adding this fourth
phase leg is to provide a back-up to the NPC inverter in case of any switch faults
occurring in one of the three main legs, while this fourth leg can also be used to
provide a stiff neutral-point voltage under healthy conditions. Consequently, the
low-frequency voltage oscillation that usually appears at the dc-bus neutral point
is eliminated, and the PWM voltage space vectors can be more intensively utilized
to optimize the inverter efficiency and harmonic distortions, instead of being
considered for controlling the dc-bus neutral point voltage. However, all these
benefits are achieved at the cost of many more redundant hardware devices used
in this fault-tolerant inverter topology, which specifically include one capacitor,

four fast-acting fuses, six IGBT modules, three TRIACs (triode for alternating
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Figure 2.23: A four-leg fault-tolerant topology for three-level NPC inverters (the
redundant power devices for fault-tolerant operations are circled/marked in red
color).

current), as well as their associated gate driving circuits, as shown in Fig. 2.23.
Based on the review and discussion of these existing fault-tolerant solutions
for multilevel NPC inverters in the literature, a comprehensive comparison

between these fault-tolerant solutions is shown in Table 2.3.
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Table 2.3: Comparison of existing fault-tolerant operation solutions for
multilevel NPC inverters.

Fault-Tolerant Fault-Tolerant Cost Derating | Efficiency
Solution Capability Increase
Inherent fault-tolerant | | ©crate short-
characteristic of NPC circuit and part .Of No Yes Unchanged
inverters [61] the open-circuit
switch faults
Tolerate both
Thyristor-assisted short-circuit and )
method [62] open-circuit High Yes Decrease
switch faults*
Tolerate short-
ANPC converter circuit and open- .
method [63] circuit switch Medium Yes Decrease
faults
Tolerate both
Four-leg NPC short-circuit and Very No Decrease
inverter method [17] open-circuit High
switch faults

* This is based on the assumption that the fuses have a lower i?t than the
related IGBTs.

In addition to investigating the fault-tolerant solutions for the I-Type NPC
inverters as discussed above, there also have been investigations on the fault-
tolerant operations of three-level T-Type NPC inverters. As a matter of fact, T-
Type inverters possess certain inherent fault-tolerant capabilities. Taking the
Phase-A leg of the T-Type inverter shown in Fig. 2. 24 as an example, when the
switch Sa1 has an open-circuit fault, the output terminal of the Phase-A leg can be
connected to the dc-bus neutral point through the conduction of Sa3 and Sas4 for
commutating the bidirectional current, while the switch Saz is kept in an OFF state.
As a result, the output voltage of the Phase-A will be zero. Accordingly, the PWM
switching pattern needs to be modified as given in Equations (2.5) and (2.6), so

that the T-Type inverter can still output three-phase balanced but derated currents.
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On the other hand, if the switch Sxz or Sx3 (x=a, b, or ¢) has an open-circuit
fault, this associated inverter leg will lose the access to the dc-bus neutral point.
Under such scenario, this faulty leg have to be operated as a conventional two-
level converter. No deratings are required for the output voltages and currents, but
the harmonic distortions in these outputs will be somewhat higher compared to that
under three-level operation. Moreover, the T-Type inverter shown in Fig. 2.24 can
also tolerate short-circuit faults in its switch Sx2 or Sx3, due to the available access
to the dc-bus neutral point for Phase-A leg. More details on such inherent fault-
tolerant capability of the T-Type inverter was reported in [69, 70].

It should be noticed that the original T-Type inverter does not have fault-
tolerant capability for short-circuit faults in Sxi1 or Sx4 (x=a, b, or ¢). Once such
faults are diagnosed to be present in the inverter, the whole T-Type inverter has to

be shut down before any more severe damages occur.
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Figure 2.24: Circuit topology of a three-phase three-level T-Type NPC inverter.
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In [15], a fault-tolerant topology was introduced for three-phase three-level
T-Type inverters. The circuit topology of this fault-tolerant T-Type inverter is
shown in Fig. 2.25. Unlike the fault-tolerant solution introduced in [69, 70], the
fault-tolerant topology shown in Fig. 2.25 can tolerate both open-circuit and short-
circuit switch faults, as well as guarantee the output of rated voltages during fault-
tolerant operation. For instance, when the switch Sai in the Phase-A leg of the T-
Type inverter encounters an open-circuit fault, the fault-tolerant operation will be
realized by the following two steps:

e Turning off the redundant switches Ta1 and Taz to disconnect the output
terminal of Phase-A leg to the load, and disable all the PWM signals for the
switches on Phase-A leg, including Sai, Sa2, Sa3, and Sas.

e Turning on the switch Tas, so that the faulty Phase-A leg can be replaced by
the redundant phase leg constituted by the switches Sq1 and Sqo.

e Modulate the fourth leg with two-level PWM modulation, and modulate the
Phase-B and Phase-C legs by three-level or two-level PWM strategies.

The fault-tolerant operations for any other fault cases were reported in [15].
It can be seen that such desired fault-tolerant capability with this proposed fault-
tolerant topology for T-Type inverters is attributed to the addition of a complete
redundant inverter leg to the original T-Type inverter topology, as circled in red
dashed lines in Fig. 2.25. The penalty of this fault-tolerant solution is that too many
redundant switching devices are employed, and some of these redundant devices,
namely, Tx1 and Tx> (x=a, b, or ¢), have to be kept in ON state during normal
operations, which will cause much device losses and dramatically decrease the

inverter efficiency.
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Figure 2.25: A fault-tolerant T-Type NPC inverter based on a redundant phase
leg (the redundant leg is circled in red dashed lines).

2.4 Summary

This chapter reviewed the existing health monitoring and fault-tolerant
operation solutions for multilevel NPC converters. Specifically, this literature
review includes three following topics:

e Power cycling lifetime improvement methods for IGBTs in the NPC
inverters.

e On-line diagnostic methods for switch faults in NPC inverters.

e Fault-tolerant operation solutions for I-Type and T-Type NPC inverters.

Among these methods for IGBT lifetime improvement in the literature [33-
39], they either focus on upgrading the materials for bond wires, soldering, or

baseplate in the IGBT internal structure to reduce the mismatch of CTEs, or



50

concentrate on reducing the switching frequencies and load currents in the
converter control strategies with the ultimate objective to attenuate the thermal
losses and junction temperatures in the devices. As discussed in Section 2.1, the
former methods are typically at a higher cost, while the latter methods sometimes
will cause more harmonic distortions in the output voltages and currents, which is
not desirable in certain applications where there are stringent requirements on the
power qualities. However, such drawbacks provide the stimulations and
possibilities to develop a more promising method in this dissertation, to flexibly
adjust the IGBT junction temperature and extend the IGBT lifetime under thermal
overload conditions, while maintaining satisfactory power inverter performance.
Regarding the on-line diagnostic methods for open-circuit and short-circuit
switch faults in multilevel NPC converters, all of these methods are capable to
diagnose some of the IGBT faults in NPC converters. However, some of them [56-
58] can accurately and promptly diagnose the switch faults, but the implementation
of these methods requires higher system cost. Other methods [52, 53] do not
demand any additional sensors or hardware devices, but the detection speed is
slower than expected. Nevertheless, it should be noticed that some critical
information on NPC inverters that are typically available in the related
microcontrollers have not been fully utilized in any of these existing diagnostic
methods [52, 53], [55-58]. Such information includes the instantaneous switching
states and dc-bus voltages. If they can be utilized in combination with the phase
current information, another more promising diagnostic method can be probably
developed with a lower cost and faster detection speed. This will motivate the

investigations to be presented in Chapter 4 of this dissertation.
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As for the existing methods for the fault-tolerant operations of NPC
converters, [-Type NPC inverters have received extensive attention and interest in
the past years, and some of these fault-tolerant operation techniques [54, 59] have
been well established and accepted. However, the present fault-tolerant solutions
to T-Type NPC inverters still leave much to be desired, due to either the high cost
in implementation or the derated output during post-fault stages. Hence, in Chapter
5 of this dissertation, the author will focus on the development of a novel fault-
tolerant solution for T-Type NPC inverters, to meet the objectives of lower cost
increase, performance improvement during healthy conditions, and rated voltage

output during fault-tolerant operations.
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CHAPTER 3

LIFETIME EXTENSION OF NPC INVERTERS WITH AN IMPROVED
PWM METHOD

3.1 Introduction

As discussed in Chapter 2, the lifetime of IGBT modules degrades
dramatically when there is large swing in the chip junction temperatures. For an
IGBT-based power converter in an ASD, large swings of IGBT junction
temperatures typically happen when the ASD is operated at low output
frequencies, as reported in [5-7]. This is because the thermal time constant of a
power converter under low-frequency operation would be higher than the time
constant of the IGBT thermal impedance, thus a much more considerable
temperature variation/swing will occur in the IGBT modules. Obviously, such
phenomenon mainly occurs in dc-ac PWM inverters in ASDs rather than ac-dc
PWM rectifiers, since ac-dc PWM rectifiers in ASDs generally interface with grid
frequencies (e.g., SO0Hz/60Hz).

In this Chapter, the lifetime of a three-level NPC inverter at low output
frequencies will be investigated. First, analytical models for lifetime prediction of
IGBT modules will be reviewed. Second, procedures for lifetime prediction of
such IGBTs will be introduced, which include the conduction and switching losses
calculation in such an NPC inverter as well as its thermal modelling. Third, a
DPWM method will be introduced to extend the lifetime of an NPC inverter at low
output frequencies. Finally, simulation and experimental results will be given to

verify the effectiveness of this proposed PWM method.
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3.2 Analytical Models for IGBT Lifetime Estimation

It is well known that wear-out of IGBT modules by the thermal-mechanical
stress in internal bond wires and soldering joints cannot be promptly detected by
conventional thermal sensors or current sensors due to the slow response of these
sensors [71]. The most common way to predict the lifetime of IGBT modules is
through using the analytical lifetime models due to their fast on-line calculation
and simplicity. Therefore, selecting a proper analytical model is a fundamental step
in lifetime prediction of IGBT power converters.

Over the past few years, extensive research in this area has led to various
lifetime prediction models [24][72-74]. In [72-73], a Coffin-Manson law was used
to model the power cycling capability of power devices. In this law, the number of
cycles to failure is assumed to be inversely proportional to the swing of device
junction temperatures per power cycle. The mathematical model of this Coffin-

Manson law is expressed as follows:
Nf=A-AT;™¢ 3.1

where, Nf is the number of cycles to failure. A and @ are module-dependent
positive constants. ATj is the swing magnitude of device junction temperatures in
one power cycle.

A more detailed analytical model was introduced in [74], namely, Bayerer’s
model, which considered multiple variables, including junction temperature
swings (AT;j), absolute junction temperatures (7;), power-on-time (t,y,), chip

thickness, bonding technology, diameter of bonding wires (D), applied dc current
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per wire bond (I), and blocking voltage (V). The mathematical equation of this

Bayerer’s model is given here:

Ny =K ATJ—Bl -e% “tonP? - [Pa - VPs . DBe (3.2)
where, K, (1, B2, B3, P, Bs, and S are all module-based constants.

It can be seen that this Bayerer’s model requires more variables to calculate
the remaining device lifetime. Some of the constants and variables have to be
obtained through experimental testing, and therefore not convenient to be used in
IGBT lifetime evaluation. As pointed out in [74], the Bayerer’s model is not a
universal or generalized model, and the consultation with the device manufacturer
is recommended before the utilization of this model for device lifetime
investigation.

Another well-known lifetime prediction empirical model was proposed in
[24], in which the mean value of device junction temperatures were considered by
adding an Arrhenius factor to the Coffin-Manson law. Such a model is called
“Coffin-Manson-Arrhenius” model, and its mathematical expression is given as

follows [24]:

Ny = A+ AT;* - exp[Q/R - Tpy] (3.3)

where, Q and R are also module-dependent constants; Ty, is the mean value of
device junction temperatures in one power cycle. Most semiconductor device
manufactures follow the Coffin-Manson-Arrhenius model for predicting the
remaining lifetime of power converters and hence the corresponding constants are

readily available. In this dissertation, the Coffin-Manson-Arrhenius model is used
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for predicting the remaining lifetime of power converters.

As can be seen from (3.3), the lifetime of an IGBT module can be
predicted as long as the junction temperature data is available. Also, the value of
AT; of semiconductor devices is the most important factor influencing the lifetime
of IGBT modules, which indicates that the lifetime of an IGBT module could be
extended if the swing magnitude of the IGBT junction temperatures, ATj, can be

attenuated by improving the PWM strategies.

3.3 Lifetime Prediction Process of Power Converters

As introduced in Session 3.2, evaluation of the number of cycles to failure,
N¢, of an IGBT module, requires the junction temperature data to be obtained
through the dissipated power losses of the IGBT and the corresponding thermal
network. A basic flowchart of lifetime prediction of IGBT power converters is
shown in Fig. 3.1. It should be noted that the lifetime of the whole power converter
is determined by the shortest lifetime among its power devices. The details of
calculating device power losses and modelling the related thermal RC network are

explained in the following sub-sessions.
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Figure 3.1: Lifetime prediction process of PWM power inverters.

3.3.1 Calculation of Device Conduction Losses

It is well known that conduction losses of semiconductor devices depend on
the instantaneous on-state voltage and conducting current. Here, in this work, the
instantaneous value of the IGBT conduction losses is calculated based on the

following equations [75]:

Uce(£) = Uceo + Ton - ic(t) (3.4

Peon(t) = Uce(t) “ ic(t) = Ugeo " ic(t) + Ton - ig ®) (3.5)

where, U, 1s the voltage drop of the IGBT chip at near-zero forward current; 7,
is the on-state resistance; i.(t) is the instantaneous IGBT collector current;
Pcon (t) 1s the instantaneous conduction losses of the IGBT.

If the average IGBT current value is I, and the RMS value of the IGBT

current is 1,5, then the average IGBT conduction losses can be expresses as:

1 TSW 1 Tsw . .
Pav_con = Efo pcon(t)dt =Ef0 (uceo ’ lc(t) + Ton " lc% (t))dt (3-6)
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Pav_con = Uceo " lgv + Ton Ir%ms (3-7)

where, Py, con 1s the average IGBT conduction losses, and T, represents the
switching period.
Similarly, the conduction losses of the antiparallel diodes are calculated

based on the following equations:

Uq(t) = uge + 14 iq(t) (3.3)
Pa con(t) = ug(®) " ig(t) = ugp - ig(t) + 14 i5(t) (3.9
1 Tsw 1 (Tew ) .2
Pd_av_con = afo Pd_con(t)dt = afo (udo “lg (t) +7Tq g (t))dt (3.10)
Pd_av_con = Ugo " Id_av(t) +71g- Iczl_rms (3.11)

where, u, is the voltage drop across the diode at certain dc current, and u, refers
to the approximated voltage drop of the diode at near-zero forwarding current. 1,4
is the slop resistance of the diode chip, and i, is the current flowing through the
diode. Also, pg con and Py g4 con Tepresents the instantaneous and average
conduction losses in the diode, respectively. I; 44, and I s refer to the average
diode current and RMS value of the diode current, respectively.

It can be seen that the calculation of IGBT and diode conduction losses
depends on the current-voltage (I-V) curves of the devices under various junction
temperatures. The device loss calculation in this work is conducted in PLECS
simulation software, where an integrated visual editor provides the access to input
the I-V curve of each device to model the conduction loss of IGBTs and diodes
based on a manufacturer’s datasheet. For operating points beyond the given data

from the datasheet, PLECS will conduct an estimation based on linear interpolation
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[76]. For the IGBT module (Infineon F3L200R07PE4) adopted in this work, the I-
V data of IGBTs and their free-wheeling diodes (FWDs) was input into the model
via thermal editors in PLECS software, as shown in Figs. 3.2-3.3.

It should be noted that, the clamping diodes in the NPC inverters have the
same ratings and characteristics as the IGBT free-wheeling diodes (FWD),
according to the manufacture datasheet [ 77]. Thus, the modeling of conduction and
switching losses of clamping diodes will not be repeated, since it is the same as the

modeling for the IGBT free-wheeling diodes in an NPC inverter.

Legend:
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Figure 3.2: Modeling of the conduction losses (I-V curves) of the IGBTs in the
three-level NPC inverter.
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Figure 3.3: Modeling of the conduction losses (I-V curves) of the free-wheeling
diodes used in the three-level NPC inverter.

3.3.2 Calculation of Device Switching Losses

Switching loss of semiconductor devices depends on the turn-on and turn-off
energy at specific operating points (current, blocking voltage, and junction
temperature). The mathematical model for calculating IGBT instantaneous

switching loss, P, (t), is given as follows [75]:
Po, (1) = (Eon(ic: Vce, T]) + Eoff(ic: Vces T])) * fsw (3.12)

where, Eon(ic, Vees T]) and E, ff(ic, Vce, TJ) refer to the switching-on energy and
switching-off energy at the specific levels of the currents, voltages and junction
temperatures, respectively, while f;,, is the switching frequency.

The calculation of diode reverse recovery losses is carried out in a similar

manner to that for IGBTSs as given in (3.12), and therefore will not be elaborated
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further here. In order to model the switching losses of IGBTs and diodes in PLECS
software, the turn-on and turn-off energy curves of each device are input into
component thermal descriptions of the NPC inverters, as depicted in Figs. 3.4

through 3.6.

Legend:
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Figure 3.4: Modeling of the switching-on losses (Eon) of the IGBTs used in the
three-level NPC inverter.
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Figure 3.5: Modeling of the switching-off losses (Eoff) of the IGBTSs used in the

three-level NPC inverter.
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Figure 3.6: Modeling of the reverse recovery losses of the free-wheeling diodes

used in the three-level NPC inverter.



3.3.3 Thermal Modeling of NPC Inverters

To analyze the thermal performance of the NPC inverter, thermal equivalent
RC network from device junction to module case, from case to heatsink, and from
heatsink to the ambient needs to be modelled. A fourth-order Foster model [78]
describing the junction to case of IGBT modules is adopted in this work, which is
shown in Fig. 3.7. The thermal impedance from device case to heatsink as well as
from heatsink to ambient are also considered here, as illustrated in Fig. 3.8. It
should be mentioned that the parameters of the fourth-order Foster model
describing the junction to case thermal conduction of IGBTs and diodes are

extracted from their transient thermal impedance curves given by the manufacture

datasheet [77].

T — — —1___—
R1 Rz R3 R4
Ti
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cl 2 3 C4
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Figure 3.7: Junction-to-case fourth-order Foster thermal network for each power

device (IGBTs/diodes).
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Figure 3.8: Thermal RC network of the whole three-level NPC inverter.

With the modeling of device conduction losses, switching losses, and the
thermal modeling introduced above, the dissipated power of each device in the
NPC inverter will be absorbed by the heatsink in the PLECS simulation software,
which will in turn provide a dynamic isotherm environment to the components it
enclosed. Through this way, the thermal modeling of the NPC inverter is
developed, and furthermore the variation of IGBT and diode junction temperatures

and the related lifetime of the NPC inverter can be predicted.

3.4 The Proposed Novel DPWM Method

One important factor contributing to the short lifetime of power inverters at
low output frequency lies in the fact that the time constant of semiconductor device

thermal systems is much lower than the fundamental period of the inverter output.
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Thus, the lifetime of NPC inverters could be improved upon by injecting a zero
sequence signal with higher frequency than the thermal time constant of the
semiconductor devices. Based on an exhaustive investigation of various PWM
methods on the influence of the IGBT thermal performance, a novel discontinuous
PWM (NDPWM) method will be introduced to extend the lifetime of IGBT-based
NPC inverters, especially for low-frequency operations. Details of this novel PWM
scheme and its relationship to the conventional SVPWM are given next.
Assuming that the duty ratio for each phase of an NPC inverter under carrier-
based SPWM can be written as follows:
d, = mycos(0)

d, = mgcos(0 — 2m/3) (3.13)

d,, = mycos(0 —4m/3)
where, m,, is the amplitude modulation index, and 8 is the initial phase angle, it

follows that the instantaneous maximum and minimum duty ratio will be:

Amax = max(dy, dy, dy), dpin = min(dy, d,, d,) (3.14)

In conventional SVPWM, the injected zero-sequence signal was defined as:

do = —(dmax + dmin) /2 (3.15)
With the injection of such a zero-sequence signal, the duty ratio for each phase of
an NPC inverter under SVPWM can be written as:
dysy = mgcos(0) +d,

dysy = mgcos(0 —2m/3) +d, (3.16)
dy,sy = mgcos(6 —4m/3) +d,

However, to reduce the time constant of the IGBT thermal systems, a zero-
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sequence signal with a fundamental frequency higher than that of the IGBT

junction-to-case time constants is defined as follows:

1 —dmax, SinQurfont) >0
dyss = {_1

— domin, SINQRTTfnt) <0 (3.17)

where, f.,, 1s the fundamental frequency of the injected zero-sequence signal.
Therefore, the duty ratio for each phase under this novel discontinuous PWM
method, namely, NDPWM, will be:
dynppwm = Mg c0S(0) + dys
dynppwm = Macos(0 — 21 /3) + d g5 (3.18)
dw.nppwm = MaCOS(0 — 41/3) + dyss
A graphical illustration of the SVPWM method and the proposed NDPWM

method is shown in Figs. 3.9 (a) and (b), respectively, in which the red and green
triangular signals are the upper and lower carrier signals, respectively. The purple
sinusoidal signal is the reference signal used in conventional SPWM, and the blue
signals in both figures are the duty ratios for one of the three phase legs in the NPC

inverter.

SVFPWM Novel DPWM (NDPWM)
1.0 — Neg_Car

T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (Sec) Time (Sec)

(@) (b)

Figure 3.9: Illustration of the PWM methods for the three-level NPC inverter (a)
SVPWM (b) NDPWM.
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3.5 Simulation Results

In the PLECS simulation software, both the SVPWM and NDPWM methods
for a 50 kVA NPC-inverter-based ASD are implemented. In all the simulations,
the input power supply is a three-phase 480V/60Hz source. The switching
frequency in both the SVPWM and NDPWM methods is set at 4 kHz. The initial
ambient temperature for all device thermal models is assumed to be 40°C. The
output frequency of the ASD is regulated ranging from 2 Hz to 60 Hz under open-
loop constant volts/Hertz (V/Hz) scalar control. All the parameters for the subject
ASD investigated in the simulation are given in Table 3.1.

Table 3.1: Specifications of the ASD based on an NPC inverter.

Control mode Open-loop scalar control (V/Hz)
Input Line-to-line voltage 480 Vruwms, three phase
Frequency 60 Hz
Switching frequency 4 kHz
DC bus voltage 650 Ve, max
Initial ambient temp. 40 °C
Output Rated power 20 kVA
Overload Current 180 ARrms, max
Line-to-line Voltage 480 VRwms, three phase

For every output frequency, the device losses and the related swing
magnitudes of the junction temperatures of each device are correspondingly
obtained from the simulation. The junction temperature profiles of each device in
the NPC inverter under the NDPWM method are compared to these under the
SVPWM method at low frequencies. These profiles are given in Figs. 3.10 through

3.12. It should be noted that, considering the symmetries of the NPC inverter
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topology, only half of the semiconductor devices in one phase leg are investigated
(Sx1, Sx2, Dx1, Dx2, and Dys, x=a, b, or ¢, as shown in Fig. 2.16), and the other half
of the complimentary devices have the identical thermal performance.

Since the lifetime of the NPC inverter is mainly determined by the most
thermally-stressed component, which in this case happens to be the clamping
diodes at low output frequency operation. Accordingly, the number of cycles to
failure, N¢, can be computed based on substituting the AT; and ’I_"] of the clamping
diodes into the Coffin-Manson-Arrhenius model given in (3.1). According to the
power cycling data provided by the manufacturer, the IGBT module constants in
(3.3) are obtained through curve fitting techniques. In this work, the values of these
constants used in this model are listed as follows: A=3.3125%10°, « = —5.039,
Q=9.89*1072%, and R=1.38066*10723. Thus, the values of Ny for the NPC
inverter can be calculated at various frequencies, which are depicted in Fig. 3.13.
As can be seen in Fig. 3.13, the number of cycles to failure, Ny, decreases
dramatically at low output frequencies under the SVPWM method. For instance,
the value of Ny is reduced to 200,000 cycles at 2 Hz, which may result in a
remaining useful lifetime (RUL) of just a few days if one is to keep operating the
NPC inverter at such a lower frequency or near dc condition. However, with the
implementation of the NDPWM method, the number of cycles to failure, Ng, is
significantly improved at both the low and the high output frequency operations,
as again demonstrated in Fig. 3.13. Once more, as can be seen, the value of Ny is
improved to up to 1,130,200 cycles by using NDPWM at the 2 Hz of low-
frequency operation of this NPC inverter. This is almost 5.7 times higher than the

value of N of the NPC inverter modulated by the 3-level SVPWM method.



68

Moreover, at low frequencies, the thermal stress is most severe in the clamping
diodes of the NPC inverter modulated by the 3-level SVPWM method. Such
thermal stress is significantly mitigated through the use of this proposed NDPWM
method, as can be seen from Figs. 3.10-3.12. Taking the comparison between the
two modulation methods at 2 Hz as an example, the average junction temperatures
of IGBTs Sa1 and Sa> are 40.4°C and 64.3°C, respectively, under the use of the
SVPWM method, which become 55.4°C and 55.5°C, respectively, under the use of
the proposed DPWM method.

Based on all the analysis and simulation results above, a conclusion can be
drawn that the NDPWM method can effectively increase the number of cycles to
failure for the most stressed power devices of this NPC inverter, and the thermal
distribution balancing among their power devices is further improved, which will

in turn extend the reliability of the whole ASD systems.
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Figure 3.10: Comparison of the device junction temperature profiles between the
conventional SVPWM method and the proposed NDPWM method at the output
frequency of 2 Hz (a) Tj of IGBTs under SVPWM (b) T; of IGBTs under the
NDPWM (c) T; of the free-wheeling diodes under the SVPWM (d) T; of the free-
wheeling diodes under the NDPWM.
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3.2

conventional SVPWM method and the proposed NDPWM method at the output
frequency of 5 Hz (a) Tj of IGBTs under SVPWM (b) T; of IGBTs under the

NDPWM (c) T; of the free-wheeling diodes under the SVPWM (d) T; of the free-

wheeling diodes under the NDPWM.
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Figure 3.12: Comparison of the device junction temperature profiles between the
conventional SVPWM method and the proposed NDPWM method at the output
frequency of 10 Hz (a) Tj of IGBTs under SVPWM (b) T of IGBTs under the

NDPWM (c¢) Tj of the free-wheeling diodes under the SVPWM (d) Tj of the free-

wheeling diodes under the NDPWM.
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3.6 Experimental Results

Experimental verifications have been carried out to evaluate the
performance of this proposed PWM method, mainly including the harmonic
distortion in the output voltages and currents, as well as the influence on the
balancing of the dc-bus capacitor voltages of the NPC inverter. The necessity to
investigate the balancing of dc-bus capacitor voltages is due to the fact that any
unbalance between the upper dc-bus capacitor voltage and the lower dc-bus
capacitor voltages in the NPC inverters will directly degrade the output
current/voltage waveform quality and the lifetime of dc-bus capacitors. The
mitigation of the IGBT junction temperatures cannot be directly measured, thus
cannot be demonstrated here through experimental results. A 50-kVA NPC-

inverter-based ASD prototype and a dynamometer setup are shown in the
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photographs of Figs. 3.14 and 3.15, respectively. As is shown in Fig. 3.14, two
three-phase 5-hp induction machines are utilized as the motor and generator, and
an ABB adjustable speed drive, namely, ACS800, is used to apply torque to the
inductor machine. Other parameters and circuit schematics of the NPC-inverter-
based ASD prototype are given in the Appendices A.l1 through A.3 of this
dissertation.

Oscillograms of three-phase currents and voltages under normal operation
with the SVPWM method are shown in Fig. 3.16, in which the satisfactory quality
of the three-phase current and the staircase waveforms of the line-to-neutral
voltages are demonstrated. By embedding the NDPWM method into the DSP
microcontroller, three-phase currents and dc-bus capacitor voltages were captured
at very low output frequencies of 2 Hz and 5 Hz and are shown in Fig. 3.17 and
Fig. 3.18, respectively. To make a comparison with the conventional SVPWM
method, three-phase load currents and dc-bus capacitor voltages were also
captured under the SVPWM method at the same load conditions, which are shown
in Fig. 3.19 and Fig. 3.20. It should be mentioned that all these experimental
waveforms were captured without any LC filter connected at the output of the ASD
system. It can be seen that the harmonic distortions in the output currents between
using the NDPWM method and the SVPWM method are close to each other. At 2
Hz of output frequencies, the dc-bus balancing under the NDPWM method is
slightly better than that under the SVPWM method. The maximum unbalance
voltage between the upper and the lower dc-bus capacitors is around 50 V, which
accounts for 7.7% of the rated dc-bus voltage of 650V. Such unbalance extent is

negaligble in general industrial drive systems.
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inverter used for the evaluation of this novel DPWM method.
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Figure 3.16: Measured phase currents and voltages from the custom-designed
50kVA ASD under healthy condition with the SVPWM method when driving a
three-phase induction motor (a) measured three-phase currents (b) measured
three-phase line-to-neutral voltages.
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the S0kVA ASD under the NDPWM method at 5 Hz of output frequencies (a)
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the 50kVA ASD under the SVPWM method at 2 Hz of output frequencies (a)
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3.7 Summary

In this chapter, prediction of the remaining power cycling lifetime to failure
of a power converter was reviewed. A novel DPWM method was introduced to
extend the lifetime of a three-level NPC inverter during low-frequency operations.
This proposed DPWM method indirectly reduces the time constant of the IGBTS’
thermal impedance based on injecting a zero-sequence signal with higher
fundamental frequency into the reference signals of the DPWM. In addition, the
thermal distribution (i.e., junction temperatures) among all the power devices in
the NPC inverter was found to be better balanced, and correspondingly the lifetime
of the NPC inverter would be accordingly extended. Simulation results obtained
from thermal modeling in the PLECS simulation software have verified the
effectiveness of this DPWM method. Experimental results demonstrate that the
harmonic distortions in the output voltages and currents as well as the balance of
the dc-bus capacitor voltages meet the requirements if using this NDPWM

modulation method.
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CHAPTER 4

ON-LINE DIAGNOSIS OF IGBT FAULTS IN NPC INVERTERS

4.1 Introduction

Safety and reliability have been two important factors in evaluating the
competiveness of ASDs in the market place, especially regarding their use in
safety-critical applications such as machine tools, vehicular power train systems,
medical instruments, and so forth. With the increase of power capacities and the
decrease of price of semiconductor devices, multilevel converters have been
increasingly applied in ASDs, especially for high-power (above 0.75 MVA) or
medium-voltage (2.3-13.8kV) applications [79]. One concern raised by the
utilization of multilevel converters is the potentially degraded reliability due to the
use of large number of switching devices and the associated gate driver circuits in
such ASDs. Thus, there is a need to more frequently detect and diagnose common
electrical faults, such as device short-circuit faults and open-circuit faults, in
multilevel-converter-based ASDs. Solutions to detect short-circuit faults in the
switching devices in power electronic systems have received much attention over
the past decades [46-51]. However, open-circuit fault detection in switching
devices has not received adequate attention. As a matter of fact, open-circuit faults
in power converters can be encountered more often in some applications where the
ASDs are operating for prolonged periods at low output frequencies and heavy
loads, such as in elevators, EVs or HEVs, and the like. In such low-frequency and

heavy-load operating modes, generally there will be high fluctuations of junction
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temperatures in switching devices, as was discussed in Section 3.2 of Chapter 3.
Such phenomena will cause open-circuit faults due to “bond wire lift-off” or
“solder joint cracking” in such switching devices, as reported in [5-7]. Therefore,
the need for an efficient, low-cost diagnostic method for detecting open-circuit
faults in power converters is of high necessity and significance.

In this Chapter, a novel diagnostic method will be introduced for detecting
IGBT open-circuit faults in an NPC inverter. This method is based on monitoring
the variations of dc-bus neutral point current in combination with the switching
patterns and phase current information that are generally available in ASDs. Before
introducing this novel diagnostic method, open-circuit IGBT faults in an NPC
inverter and their corresponding negative impacts on the output currents and
voltage balancing of the dc-link capacitors are analyzed, which is followed by the
introduction of the principle of the proposed diagnostic method for detecting IGBT
open-circuit faults in NPC inverters. Finally, simulation and experimental results
based on a lab-scale 50-kVA NPC inverter-based ASD experimental setup will be

given to verify the validity of this proposed diagnostic method.

4.2 Negative Impacts of Switch Faults

The topology of the NPC inverter is given in Fig. 2.16 in Chapter 2. The
working principle of the NPC inverter is detailed in [80], and therefore will not be
repeated in this dissertation. The switching state vectors of the NPC inverter are
given in Fig. 4.1, in which the output voltage of each phase leg is designated as
“P”, “O”, and “N,” to represent positive (V4c/2), zero, or negative (-Vac/2) output

pole voltages. For example, the switching state, (P, O, N), in Section 1 of Fig. 1(b),
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implies that the output pole voltages of Phase-A, Phase-B, and Phase-C are
(+Vac/2), 0, and (-V4c/2), respectively. The definitions of such designations for
each switching state of the NPC inverter will be very convenient for the analysis

of the negative effects of IGBT open-circuit faults.

Im
I_'l_; B | Sector 2 I_'H
(NPN) 7, 1(0 P N) (PPN)

7
(PON)

Sector 1

(NPO)
Sectar 3

Sector g

Vs
T?u:(onpj (PNP)

Sector 5

Figure 4.1: Switching state vectors of NPC inverters (small voltage vectors in
green, medium voltage vectors in blue, and large voltage vectors in red).

Considering the symmetrical topology of the NPC inverter, only the open-
circuit faults in IGBTs Sai and Sa2 in Phase-A are analyzed here. As shown in Fig.
4.2 (a), when IGBT Sa1 encounters an open-circuit fault, the output terminal cannot
be connected to the positive dc-bus during the “P”’ state, when the Phase-A current,

iq4, 18 positive (current flowing from the dc source to the load), as shown in the
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green current path in Fig. 4.2(a). Instead, the output terminal of Phase-A leg will
be connected to the dc-bus neutral point through the clamping diode Da> and inner
switch IGBT Sa2, as shown in the red current path of Fig. 4.2(a). As a result, there
will be a large negative dc component in the Phase-A current, i,, as shown in

Fig. 4.2 (b). Additionally, it can be seen that the upper dc-link capacitor will be
more charged than the lower capacitor due to the open-circuit fault in IGBT Sa,
which will results in a much larger voltage in the upper capacitor C; than that in
the lower capacitor C», as shown in Fig. 4.2(c). Similarly, when the IGBT Sa; in
Phase-A leg has an open-circuit fault, the output terminal will not be connected to
the dc-link neutral point during the “N” state if the phase-A current is positive, as
depicted in the green path shown in Fig. 4.3 (a). Instead, the output terminal will
be connected to the negative dc-link through the freewheeling diodes Da3 and Dag,
as shown in the red current path in Fig. 4.3 (a). Since the open-circuit fault in Sa>
interrupts all the current paths in Phase-A flowing from source to the load, the
Phase-A current will consist of negative half cycles, as shown in Fig. 4.3 (b).
Moreover, the lower dc-link capacitor C> will be more charged than the upper
capacitor C1, which results in a higher capacitor voltage in C; than that in C;. If no
measures are taken to balance the dc-link voltages, then C> may fail because of the
potential overheating caused by the large voltage. In summary, IGBT open-circuit
faults in NPC inverters can severely degrade the performance of the related ASDs
and may cause cascaded failures in the dc-link capacitors. Therefore, an effective
on-line diagnostic method is of great necessity for enhancing the system reliability

in such ASDs.
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4.3 The Proposed On-Line Diagnostic Method

An 1deal fault diagnostic method should be accurate, robust, and low-cost.
To be specific, for the diagnosis of switch faults in multilevel converters, an

optimal fault diagnostic method is supposed to have accurate detection, short
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microcontroller execution time, easy implementation, as well as the need for
minimum number of additional sensors to limit the cost increase. The diagnostic
method to be introduced in this Chapter is based on monitoring the dc-bus neutral-
point current, iy, of the NPC inverter. This is because such information on this
current, in combination with the switching states, and phase currents, can indicate
the health condition all the IGBTs. In other words, if the information on the
instantaneous switching states and phase currents is known to the system
microcontroller, a faulty IGBT in an NPC inverter can be identified by comparing
the actual value of the neutral-point current under a faulty condition to the
supposed value at otherwise healthy condition. For instance, when the IGBT S, in
Phase-A, see Fig. 4.3 (a), experiences an open-circuit fault, it follows that such a
fault can be identified at the switching state of (P, O, O) by comparing the average
value of i,,,, with zero, as depicted in Figs. 4.4 (a) and (b). If the average value of
inp during the state (P, O, O) is zero, as shown in Fig. 4.4 (b), it follows that an
open-circuit fault in S, can be diagnosed and logically assumed to have occurred,
because the open-circuit fault in Sa; will cause the switching state (P, O, O) to
operate as (O, O, O), see the current path which is shown in Fig. 4.2 (a), in which
the neutral-point current, i,,, will be ideally zero. However, in practice, a proper
hysteresis band around zero should be considered in the diagnostic algorithm due
to the undesired resulting common-mode voltages occurring during the switching.
Similarly, faults in other IGBTs of the NPC inverter can also be detected and
identified by using the same logic methodology. The diagnostic strategies for
diagnosing all the other IGBT faults in an NPC inverter are listed in Table 4.1. A

functional flow chart of this proposed diagnostic method is given in Fig. 4.5, in
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Figure 4.4: Neutral-point current and three-phase currents of the NPC inverter
under healthy and faulty conditions (a) healthy condition (b) faulty condition.

which it can be seen that the information on the neutral-point current, i, ,
instantaneous switching states, as well as the polarities of the three phase currents,

ig, ip, and i., are the inputs to the diagnostic algorithm, and the output will be the
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flag signal on the identified faulty switch. Simulation and experimental results
which will be given in the following sections can further illustrate the operating
principle of this novel diagnostic method.

Here, it should be mentioned that this proposed diagnostic method only
requires one addition current sensor to measure the dc-link neutral-point current,
inp- Thus, this implies very slight cost increase is necessary, if one is to implement
this method in commercial multilevel ASDs or power electronic systems. In this
diagnostic method, the required information on the switching states and polarities
of the load currents of such an NPC inverter is generally available in the system
microcontroller of these inverters. Therefore, no additional hardware components

are required.

Table 4.1: Diagnostic look-up table for IGBT faults in the NPC inverters.

IGBT Switching States Diagnostic Index

Sai (P, 0O, O) If iy, = 0, then S, is “Open”
S Eg, II\)I’ 1\NI))’ ((% 1;, g; If iy, = 0, then S, is “Open”
P, N N, P . L »

Sa3 Eg’ N, N))’ ((%’ P, P; If iy, = 0, then S5 is “Open
Sa4 (N, O, O) If iy, = 0, then S, is “Open”
NI (0, P,0) If iy, = 0, then S,; is “Open”
P N N P - : (13 29

Sb2 EN’ % N))’ ((P’ 8’ P; If iy, = 0, then S}, is “Open
P N), (N P . o ’

Sb3 EN’ % N))’ ((P’ 8’ P; If iy, = 0, then S5 is “Open
Sha (O, N, O) If iy, = 0, then S}, is “Open”
Sci (0, 0, P) If iy, = 0, then S; is “Open”
(P, N’ O)’ (N’ P’ O) - — b (19 2

Se2 (N, N, O), (P, O, P) If i, = 0, then S, is “Open
(P, N’ O)’ (N’ P’ O) - — b (19 2

Se3 (N, N, O), (P, O, P) If i, = 0, then S5 is “Open
Sca (0,0, N) If i,,, = 0, then S, is “Open”
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Figure 4.5: Flow chart of the proposed diagnostic method for IGBT faults in the
NPC inverters.

4.4 Simulation Results

To verify the efficacy of the proposed diagnostic method, simulations of an
ASD based on a three-level NPC inverter have been carried out in ANSYS
Simplorer simulation software environment. The parameters of the ASD used in
the simulation are listed in Table 4.2. As introduced in Section 4.3 of this chapter,
the fault signatures under investigation here are the variations of the dc-bus
neutral-point current under certain switching states of the NPC inverter. To
graphically illustrate the fault signatures under various switching states, carrier-
based Phase Disposition PWM (PD-PWM) method was adopted to modulate the
three-level NPC inverter. As is well known, the definition of various switching

states for a three-level NPC inverter is based on the caparison of the amplitudes of



90

the triangular carrier signals and the sinusoidal reference signals, which is detailed

in Table 4.3.

Table 4.2: Main parameters of an NPC-inverter-based ASD used in the
simulation analysis.

Control mode Scalar control (V/Hz)
PWM method PD-PWM
Input Line-to-line voltage 480 Vruwms, three phase
Frequency 60 Hz
Switching frequency 1 kHz
DC bus voltage 650 Ve, max
Load Resistor 0.8 Q
Inductor 6 mH
Output frequency 60 Hz

Table 4.3: Definition of switching states for a three-level NPC inverter
modulated by the PD-PWM method.

Switching State of One

Inverter Phase Definition

When the magnitude of the positive portion of the
Positive voltage “P” sinusoidal reference signal is larger than the
magnitude of the upper carrier triangular signal.

When the magnitude of the negative portion of the
Negative voltage “N” | sinusoidal reference signal is larger than the
magnitude of the lower carrier triangular signal.

Zero voltage “O” For all the other cases.

First, an open-circuit fault in IGBT, Sai, was simulated and investigated. As
is shown in Fig. 4.6, during the switching state (P, O, O), the dc-bus neutral-point

current, ip,, represented by the black rectangular trace, increases in magnitude
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from —7A to —20A, which drops to zero when the IGBT, Sa1, has an open-circuit
fault, as shown in Fig. 4.7. As explained earlier in this Chapter, such a variation
results from the fact that the switching state (P, O, O) is forced to become (O, O,
O) under the open-circuit faulty condition of IGBT Sai, and the value of i,,, at the
switching state of (O, O, O) is zero due to the zero voltage potential for each phase
output of the NPC inverter. Through monitoring the value of i,,,, the open-circuit
fault in the IGBT Sa1 can be promptly and accurately diagnosed.

Similarly, another type of fault in the NPC inverter, namely, an open-circuit
fault in the IGBT, Sa2, was simulated and examined. At the switching state of (O,
N, N), the dc-bus neutral-point current, i,,, again represented by the black
rectangular trace, is a positive current under healthy condition as shown in Fig.
3.8, which decreases to zero under the condition of an open-circuit fault in this
IGBT, as shown in Fig. 4.9. Such dramatic change in the dc-bus neutral-point
current derives from the fact that the switching state (O, N, N) becomes (N, N, N)
under the open-circuit faulty condition of this IGBT, Sa>. It should be noted that,
the variations of the neutral-point current under three other switching states,
namely, (O, P, P), (O, N, P), and (O, P, N), can also be used to identify the open-
circuit fault in Sa>. The nature of these fault signatures is very similar to the fault
signature discussed above, and thus will not be repeated here.

From all these simulation results, it can be concluded that the open-circuit
switch faults in a three-level NPC inverter can be effectively diagnosed by
monitoring the dc-bus neutral-point current under certain switching states. The
experimental results given in the following section will further confirm such

efficacy of this diagnostic method.



92

] ) n - =]
(4] o (4] (=] (4] [=]

n
o

Neutral-Pint Current (A) [A]

I
o

.

=]

o
|

MNeutral Point Current and Switching States IANFC_FD 4
Curvainfa A Y AXE [ 100
= ™ s |
— SNEI VAL Y2 _—D_?ﬁ
= SRuA va E =
o — ©
Neutral-Point Curren e Y2 0.50 °
T F025 5
- =
F000 3
£ =
0255
F 2
C =
—-0.50 &
F <L
—-0.75
J —-1.00
36 6 37 17 37 37 38 18 38
Time [ms]

Figure 4.6: Fault signature (i.e., variation of the neutral-point current at the
switching state (P, O, O), circled in yellow dashed line) under healthy condition

of the

three-level NPC inverter.

Neutral Point Current and Switching States ILNPC_PD &

100 — Curve Info Y Axis 1 00

7 - Inp.l . E

75 —: — shELvAL v2 [ 0.75
E . N - SINE2VAL va E ><
E 50 4 Neutra\l—Pomt Current T el S 0.50 %
= — nder Switch State(P, ™ F £
$ | ‘F TRANGIVAL va C c
E 25 = —— TRIANGZ VAL va - 025 g
o | " n o
= 7 < — =
3 0 —0.00 5
E ] E =
T = - 3
r -25 — —-0.255
T . F 2
3 . - 0 503
2 507 - 050E

.75 —-0.75

100 = —-1.00

36 36 37 37 37 a7 38 38 38
Time [ms]

Figure 4.7: Fault signature (i.e., the abnormal variation of the neutral-point
current at the switching state (P, O, O), circled in yellow dashed line) under
open-circuit faulty condition in switch Sa; of the NPC inverter.



Neutral Point Current and Switching States

93

ILNFC PD &

9 Neutral-Psint Curreént Under T ot

Curvainfo & AE

tate (O, N,

Neutral-Pint Current (A) [A]

1.00

= = =
na t -~
o =1 o

s o
o [x*]
(=] (4]

|IIII|IIII|I\\\‘\\\\|III|IIII|IIII|IIII
o
o
o
Amplitude M odulation Index

37.00 2725 3750

3775 3800 23825 28’50 3875 39
Time [ms]

f=mu
= 1

Figure 4.8: Fault signature (i.e., the variation of the neutral-point current at the
switching state (O, N, N), circled in yellow dashed line) under healthy condition
of the three-level NPC inverter.
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Figure 4.9: Fault signature (i.e., the abnormal variation of the neutral-point
current at the switching state (O, N, N), circled in yellow dashed line) under
open-circuit faulty condition in switch Sa> of the NPC inverter.
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4.5 Experimental Results

Regarding the experimental verifications of this proposed fault diagnostic
method discussed above, the same experimental setup, namely, the 50-kVA
customized ASD system, introduced in Section 3.6 of Chapter 3 will be used here.
The open-circuit faults in the IGBTs of the NPC inverter were emulated by
disabling the related PWM signals. For instance, when the PWM signal for IGBT,
Sa1, 1s disabled, as shown in the oscillogram of Fig. 4.10, this IGBT will be kept in
an open state, which exhibits the same phenomenon as an open-circuit fault
occurring in such a device. The fault signatures, namely, the variations of the dc-
bus neutral point current, i, at certain switching states, were investigated when
an open-circuit fault occurred in one of the IGBT devices in the NPC inverter.
Here, to be consistent with the simulation results shown in Section 4.4, only the
open-circuit faults in IGBTs, Sa1 and Sa2, were investigated, and the open-circuit
faults in other switching devices are very similar to these two types of faults due
to the symmetries of the inverter circuit topology. To provide baseline results for
the comparison of phase currents and dc-bus neutral-point currents, the measured
three-phase currents and the dc-bus neutral-point current under healthy conditions
are shown in Fig. 4.11 through Fig. 4.12, respectively. Meanwhile, these results
under faulty condition, i.e., an open-circuit switch fault occurring in the IGBT
Sai(see the circuit schematic in Fig. 2.16), are shown in Fig. 4.13 and Fig. 4.14. As
can be seen in Fig. 4.13, when an open-circuit fault occurred in the IGBT, Sai, of
the NPC inverter, there will be a loss of most of the positive current in Phase-A,

which is due to the lack of access to the positive dc-bus for positive load current.



95

Accordingly, the distorted dc-bus neutral-point current, under the condition of an
open-circuit fault occurring in the IGBT, Sai, is shown in Fig. 4.14. By comparing
Fig. 4.12 and Fig. 4.14, one can find that the neutral-point current in Fig. 4.14 has
an abnormal profile during the state of positive current output from the Phase-A

leg, which leads to the fault signatures examined next.
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Figure 4.10: Measured PWM signals for the Phase-A leg of the three-phase
three-level NPC inverter.
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Figure 4.11: Measured three-phase load currents under healthy condition of the
NPC inverter.
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Figure 4.12: Measured dc-bus neutral-point current under healthy condition of
the NPC inverter.
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Figure 4.13: Measured three-phase load currents when an open-circuit switch
fault occurred in the IGBT Sa1 of the NPC inverter.
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Figure 4.14: Measured dc-bus neutral-point current when an open-circuit switch
fault occurred in the IGBT Sa1 of the NPC inverter.

As is shown in Fig. 4.15, the measured dc-bus neutral-point current is
around -3A at the switching state of (P, O, O), which decreases to almost zero at
the same switching state when an open-circuit fault happens in the IGBT, S.i, as
shown in Fig. 4.16. As mentioned in the previous sections in this chapter, such

abnormal variation is due to the fact that the original positive switching state, “P”,
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of the Phase-A leg is forced to turn into a zero switching state, “O”, when an open-
circuit fault occurs in the IGBT, Sa2. Obviously, the dc-bus neutral-point current
becomes zero under the switching state of (O, O, O) of the NPC inverter. In other
words, once the measured neutral-point current in an NPC inverter is detected to
be zero under the predetermined switching state of (P, O, O), an open-circuit fault

can be diagnosed in the IGBT, Sai.
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Figure 4.15: Zoom-in view of the measured dc-bus neutral-point current at the
switching state of (P, O, O) under healthy condition of the NPC inverter.
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Figure 4.16: Zoom-in view of the measured dc-bus neutral-point current at the
switching state of (P, O, O) when an open-circuit switch fault occurred in the
IGBT Sai1 of the NPC inverter.
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In the same manner, an open-circuit fault in the IGBT, Sa2, was investigated
in the customized ASD experimental setup. The measured three-phase load
currents and the dc-bus neutral-point current are shown in Fig. 4.17 and Fig. 4.18,
respectively. The fault signatures associated with the open-circuit fault in IGBT
Sa2, namely, the changes in the profiles of the neutral-point current under the
switching state of (O, N, N), are demonstrated in Figs. 4.19 and 4.20. It can be
seen in these figures that the dc-bus neutral-point current at the switching state of
(O, N, N) is around 7A under healthy condition, which drops to zero for the same
switching state when Sa.> experiences an open-circuit fault. The time duration of
the zero value of this current representing this fault signature is 0.5 ms, as shown
in Fig. 4.20. Such duration can be easily detected by general hall-effect current

sensors or shunt resistive sensors in industrial ASD systems.
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Figure 4.17: Measured three-phase load currents when an open-circuit switch
fault occurred in the IGBT S.> of the NPC inverter.
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Figure 4.18: Measured dc-bus neutral-point current when an open-circuit switch
fault occurred in the IGBT S.2 of the NPC inverter.
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Figure 4.19: Zoom-in view of the measured dc-bus neutral-point current at the
switching state of (O, N, N) under healthy condition of the NPC inverter.
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Figure 4.20: Zoom-in view of the measured dc-bus neutral-point current at the

switching state of (O, N, N) when an open-circuit switch fault occurred in the
IGBT Saz of the NPC inverter.

In conclusion, the measured experimental results given in this section
verified the effectiveness of the proposed diagnostic method for IGBT open-circuit
faults in a three-level NPC inverter, which are also consistent with the simulation
results presented in Section 4.5 in this chapter. It should be mentioned that this
diagnostic method is mainly introduced for improving the reliability of medium-
voltage high-power ASDs, which are generally operated at low switching
frequencies (e.g., below 5 kHz) [81]. For the NPC inverters used in low-power
high-frequency industrial applications, such as solar power conversion, which
requires higher switching frequencies for the NPC inverters, such a novel
diagnostic method may not detect IGBT switch faults accurately due to the short
duration of the switching states for the inverter and the limited frequency
bandwidth of the general current sensors. Under such scenario, a high frequency
bandwidth dc current sensing solution is recommended to implement the proposed

diagnostic method for IGBT faults.
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4.6 Summary

In this Chapter, diagnosis of IGBT faults in NPC inverters was introduced.
Negative impacts of switch faults on the performance of such inverters were
analyzed, and both simulation and experimental results were given to confirm the
analysis. A novel on-line diagnostic method has been presented to diagnose IGBT
faults in an NPC-inverter-based ASD. The operating principle of this method is
based on monitoring the variations in the dc-link neutral-point current. Such
neutral-point current under faulty switch conditions is very different from that
under healthy conditions. By leveraging the information of the switching states and
load currents of the NPC inverter, a faulty switching device can be identified
through monitoring of the dc-link neutral-point current. The advantages of this
diagnostic method include the fast detection speeds (within one period of the
fundamental frequency) and a very slight increase in system cost (only one
additional current sensor needed to be added for sensing the dc-link neutral-point
current). This method is easy to implement, and no complex computational efforts
are required. Therefore, it is totally feasible to integrate such diagnostic method
into the microcontrollers of the related ASDs or power electronic systems for

enhancing such system reliability.
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CHAPTER 5

A FAULT-TOLERANT TOPOLOGY OF T-TYPE NPC INVERTERS

5.1 Introduction

T-Type NPC inverters have been regarded as constituting a very promising
topology of high-performance multilevel inverters in industrial applications. This
is because of the relatively lower number of switching devices utilized in this
topology, and its higher efficiency compared with the conventional I-Type NPC
inverters [60]. However, like other types of multilevel inverters, T-Type NPC
inverters are not immune to switching device faults. For instance, when such
inverters are applied in safety-critical applications, such as EVs/HEVs and UPSs,
any IGBT open-circuit or short-circuit faults in these inverters would cause
catastrophic system failures if no fault-tolerant solution is provided. Although T-
Type NPC inverters have certain inherent fault-tolerant capability due to their
unique topology, as reported in [69, 70], the output voltage and linear operating
range will be derated significantly during fault-tolerant operation. This derating is
not allowed in some applications such as these mentioned above, namely, UPSs,
EV/HEVs, etc., where rated output voltages are always a stringent requirement.
Therefore, it would be of great necessity to improve the inverter topologies with
satisfactory fault-tolerant characteristics, to guarantee rated output voltages not
only under healthy but also under faulty conditions.

However, the existing solutions for the fault-tolerant operation of T-Type

NPC inverters are mainly achieved by paralleling one or three redundant inverter
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legs, as discussed in Section 2.3 of Chapter 2. Some of the redundant design
solutions do ensure a rated voltage output under inverter faulty conditions, but at
a much higher system cost with decreased efficiency due to the considerable
additional semiconductor devices employed. As a matter of fact, most of the
redundant semiconductor devices in the existing fault-tolerant topologies just idle
most of the time in the circuits without any contributions to improving system
performance under healthy conditions, while degrading system efficiencies due to
the additional device switching and conduction losses.

5.2 The Proposed Fault-Tolerant Topology

In this chapter, a novel fault-tolerant solution is introduced for conventional
T-Type NPC inverters. The fault-tolerant topology proposed here is shown in Fig.
5.1. In this topology, a redundant inverter leg is added to help improve the inverter
thermal overload capability under healthy condition. This is by sharing part of the
load current. Meanwhile, this extra leg can also be used to mitigate other device
faults while maintaining rated output voltages under faulty conditions. The
following sections will elaborate on the operating principle and advantages of this
proposed fault-tolerant inverter topology including simulation and experimental

results.
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Figure 5.1: The proposed fault-tolerant topology for the T-Type NPC inverter.

5.3 Fault-Tolerant Operation of the Proposed Topology

Considering the circuit symmetries of this T-Type NPC inverter, only four
cases of switch faults are analyzed in the following sections to represent all the
possible switch fault scenarios that could happen in such an inverter. Here, it is
assumed that only single type of device fault happens in the inverter. It should be
noted that the fault scenario analysis and fault-tolerant solutions discussed below
only focus on IGBT devices in the T-Type inverters, although these concepts also
applicable to mitigating the faults in the related free-wheeling diodes.

Case I: Open-Circuit fault in IGBT Sa;

Once an open-circuit fault in IGBT Sai, see Fig. 5.2, is identified, the Phase-
A leg of the T-Type inverter will not be able to produce a positive voltage. Under
such a scenario, the IGBT S, will be replaced by the switch S; on the redundant
phase leg through the switching-on of the IGBT S.2, while all other IGBTSs on the

redundant leg are kept in the “off” state, as depicted in Fig. 5.2. As can be seen in
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this figure, during such fault-tolerant operation, the three-phase inverter can still
output the rated voltages. However, the inverter will have to be operated as a two-
level one. Similar fault-tolerant solutions can be applied for open-circuit faults in

other IGBTs Sxi1 (where x=b or c¢) and Sx4 (Where x=a, b, or c).

Redundant Phase Leg T-Type Inverter Package
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=< m, of |
- PI_{?_& ™ 511" A

Figure 5.2: Current flow illustration during fault-tolerant operation when the
IGBT Sai1 has an open-circuit fault.

Case II: Short-circuit fault in IGBT Sa1

Generally, a short-circuit failure mode in IGBT modules concludes with an
open-circuit mode due to the large short-circuit current and rapidly accumulated
heat dissipation in the IGBT bond wires or soldering joints if no fast protection
actions are available (typically, protection should be triggered for such faults
within 10 us [45]). When a short-circuit fault occurs in the IGBT S.1, assuming
that the large short-circuit current will change the short-circuit failure mode into
an open-circuit failure mode by melting the internal bond wires in the IGBT

package, it follows that the fault-tolerant solution to such a fault scenario will be
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the same as that for an open-circuit fault which was explained in Case I above.
Case III: Open-Circuit fault in IGBT Sa:

If an open-circuit fault happens in the IGBT S.2, the three-level T-Type NPC
inverter will have to be operated as a two-level one, only by using Sa1 and Sa4 (see
Fig. 5.3) for fault-tolerant operation (the same as the conventional two-level
inverter operation), which is due to the loss of the bi-directional switch (constituted
by the reverse series connection of Sa> and Sa3) accessing the dc-bus middle point
for the faulty phase. Under such a situation, all the switches on the redundant leg
and all the bi-directional switches (Sx2 and Sx3, x=a, b, or ¢) will be switched off,
as shown in Fig. 5.3. There is no derating for the rated and maximum voltage
outputs during the post-fault operation. However, the harmonic distortion will be
higher under two-level modulation compared with that under three-level
modulation. Similar fault-tolerant solutions can be applied to the open-circuit

faults in all other IGBTs Sx2/Sx3 (x=a, b, or c).
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Figure 5.3: Current flow illustration during fault-tolerant operation when IGBT
Sa3 has an open-circuit fault (grey color refers to the switching-off state).
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Case I'V: Short-circuit fault in IGBT Sa2

If a short-circuit fault in IGBT, Sa2, is identified, its complimentary switch,
Sa3, has to be switched off due to the loss of reverse blocking capability in the
Phase-A leg. Consequently, the three-level inverter will have to be operated as a
conventional two-level inverter by only using Sai1 and Sa4 for post-fault operation.
This procedure is similar to Case III, which was discussed above. A similar fault-
tolerant strategy can be applied for short-circuit faults in IGBTs Sk (x=b, or ¢) and
Sx3 (x=a, b, or ¢).

In summary, as can be seen here that when any of the IGBTSs in the T-Type
inverter has a fault, there is no derating required during the fault-tolerant operating
mode of the inverter. However, such an inverter has to be modulated as a two-level
type under these faulty conditions, which implies a slightly higher harmonic
distortion in the output currents and voltages compared to these under three-level
healthy operation. Meanwhile, it should be noted that reliability of these inverters
has a much higher priority than the slight increase of harmonic distortion,
particularly for these inverters used in safety-critical applications.

5.4 Thermal Overload Improvement

It is known that three-level NPC inverters exhibit output voltage waveforms
similar to two-level inverters at low amplitude modulation indices (i.e., Ma<0.5)
[82]. Under such condition, as depicted in Fig. 5.4, the bi-directional switches (Sx2
and Sx3 x=a, b, or ¢), instead of being used to output any zero voltage states, can
be used to interconnect/conduct the redundant phase leg to any of the original three

legs of the T-Type inverter for purposes of sharing any overload current.
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Figure 5.4: Current flow directions of a SiC redundant phase leg sharing the
overload current with the Phase-A leg of the original T-Type inverter.

To increase the load current sharing ratio and restrict additional device losses
in the redundant phase leg, SiC MOSFETs are used here for switches S and Sz in
the redundant leg, and a commercial modular three-level T-Type inverter package
is employed where the RB-IGBTs are utilized as the bi-directional switches in such
a package due to their low on-state voltage drops [83]. To illustrate the load current
sharing between the redundant leg and one of the original inverter legs in the T-
Type inverter, the I-V curve comparison between the IGBT Sai and the other
commutation path formed by switches Si and Sa> 1s shown in Fig. 5.5. As can be
seen in this figure, if the T-Type NPC inverter under normal operation is rated to
drive a continuous load current of 40A (RMS), it follows that the redundant leg
can share an additional load current of 10A (RMS) considering the same resultant
on-state voltage across the two parallel paths that are depicted in Fig. 5.4. This
indicates that the total load current can be increased from 40A to S0A (RMS) by
using this redundant leg, which is an improvement of 25% overload capability

compared to the original overload rating. Moreover, such load current sharing
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Figure 5.5: Comparison of output characteristics (I-V curves) between Sa1 and
the redundant half-bridge constituted by the series connection of switches S and
Saz.

achieved by the redundant leg in this proposed inverter topology yields lower
junction temperatures in the switching devices of the original T-Type inverter.
According to the simulations carried out in PLECS software, the junction
temperature profiles of the IGBT Sai with/without the current sharing from the
redundant phase leg under the same thermal overload conditions are shown in Figs.
5.6 (a) and (b). Examining this figure, a significant mitigation of the junction
temperatures in the switch Sai, see Fig. 5.4, can be realized through the use of the
redundant phase leg for load current sharing. Specifically, the average value of the
junction temperature in S 1s reduced from 95.5°C to 89.8°C by leveraging the load
current sharing capability of this redundant leg, as shown in Figs. 5.6 (a) and (b).
Furthermore, it can be observed that the swing magnitude of the junction
temperature in Sa1 is reduced from 7°C to 5°C by taking advantage of this redundant
leg, which will improve the power cycling lifetime of the related power device, as

previously presented in Chapter 3. In conclusion, such improvement in the thermal
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overload capability is of great significance for some industrial applications such as
EVs (e.g., hill climbing), servo motor drives, etc., where overload or high torque

is one of the most common functional requirements [84, 85].
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Figure 5.6: Comparison of the junction temperature profiles of IGBT Sa1 under
heavy load conditions with/without using the redundant phase leg for load
current sharing (a) without using the redundant leg (b) with using the redundant
leg.
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5.5 Efficiency Improvement with the Proposed Topology

Most of the fault-tolerant power converter topologies have a lower
efficiency than the original topologies for normal operations, which is due to the
addition of redundant power devices. A good case in point is the fault-tolerant
solution proposed in [15], see Fig. 2.25, which significantly reduces the converter
efficiency due to the constant conduction of six redundant IGBTs added to the
conventional T-Type three-level inverter topology. However, the fault-tolerant
power converter topology introduced in this Chapter has the potential of improving
converter efficiency, if one adopts a zero-voltage-switching (ZVS) pattern. The
following subsections will introduce this ZVS switching pattern for this proposed
fault-tolerant T-Type inverter topology introduced here in this dissertation.

Simulation results are given to confirm the efficacy of this concept.

5.5.1 A ZVS Switching Pattern for “SiC+Si” Hybrid Devices

It 1s well known that wide bandgap semiconductor devices (SiC, GaN,
diamond, etc.) have much lower switching losses than their Si counterparts due to
the material properties [86-87]. Also, one should be aware that whenever SiC/GaN
devices are parallel connected with the Si devices, as shown in Fig. 5.7, it is
feasible to reduce the total device losses by having the SiC/GaN devices undertake
the majority of the switching losses of the parallel devices through adopting a ZV'S
switching pattern. Such a ZVS switching pattern is depicted in Fig. 5.8. As shown
in this figure, the SiIC MOSFET is turned on prior to the switching-on of the Si

IGBT in the parallel-connected hybrid devices. After the turn-on of the SiC
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MOSFET, the voltage across the hybrid devices will be reduced from the high
blocking voltage to a very low on-state voltage, which provides a quasi ZVS for
the later switching-on of the Si IGBT. Similarly, for the switching-off of the hybrid
devices, the Si IGBT is switched off prior to the switching-off of the SiC
MOSFET, in order to achieve the quasi ZVS on the Si IGBT. Therefore, it can be
seen that the switching losses only come from SiC MOSFET. However, these
switching losses are very low due to the property of the wide bandgap material
constituting such devices. The turn-on delay and turn-off delay between the gate
signals for SiC MOSFET and Si IGBTs are generally several microseconds, which
can be easily achieved through programming in the microprocessor. More details

about this switching pattern are presented in references [88-90].

Gate Signal Turn-on
o

Delay I
Turn-off Il-b— A AK

Delay

SiC MOSFET l Si IGBT

Figure 5.7: ZVS switching strategy for “SiC+Si” hybrid devices.



114

IGBT

MOSFET

Ves

imos ’ 1 , >

\ |
iIGB'I' l \ | >
V \
IGBT
V |
MoS Time (us)

Figure 5.8: Switching sequence of the fault-tolerant T-Type inverter.

5.5.2 A Novel PWM Switching Pattern for the Proposed Fault-Tolerant

Inverter Topology

Meanwhile, the fault-tolerant T-Type power converter topology introduced
earlier in this Chapter provides a promising opportunity to implement such ZVS
switching pattern explained in the above section. As shown in Fig. 5.9, whenever
the redundant leg is used to share the positive overload current with the original
inverter phase legs, S1 and Sx2 (x=a, b, or ¢) can be switched on prior to the
switching-on of Sxi(x=a, b, or ¢), which indicates that the voltage across the switch
Sx1 will be very low when this device is switched on. A similar switching
mechanism can be applied whenever a negative overload current needs to be
shared between S4 and Sx3 (x=a, b, or ¢). Assuming that, these switches, namely,
S1, S4, Sx2 and Sx3 are SiC/GaN devices, and Sxi and Sx4 (x=a, b, or ¢) are

conventional Si devices such as IGBTs, it follows that the efficiency of the
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proposed fault-Tolerant T-Type inverter will be significantly improved if the ZVS
switching pattern is applied to the proposed fault-tolerant T-Type inverter.

With the application of this ZVS switching pattern, the switching sequence
for all the controllable power devices of the proposed fault-tolerant T-Type
inverter is shown in Fig. 5.9. By implementing such switching pattern in the
PLECS software, the load current sharing between the redundant SiC MOSFET,
namely, S1 and the Si IGBT, namely, Sa1 is shown in Fig. 5.10. This figure shows
the current sharing at the turn-on instant, turn-off instant, as well as the current
sharing under parallel conduction mode. It should be noted that not for all the
switching states can the redundant leg be utilized for the overload current sharing,
which is the reason accounting for the discontinuous current sharing between
switches S; and Sai, as depicted in Fig. 5.10. As mentioned in Section 5.4, the
utilization of the redundant leg only happens when the T-Type inverter is operated
at low modulation indices (Ma<0.5). Under such scenario, there is no degradation
of the harmonic distortions in the inverter output currents/voltages, compared to
these during normal operation. At high modulation indices (Ma = 0.5), the
utilization of the redundant leg will prevent the access to the dc-bus middle point
for obtaining zero voltages, which will render the three-level change into two-level
modulation. As a result, the harmonic distortions in the inverter output voltages or
currents will be slightly higher. The simulation results to be given in the following

section will further explain this perspective.
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5.6 Experimental Results

A lab-scale 30 kVA ASD prototype based on the proposed fault-tolerant T-
Type inverter topology has been designed. This ASD prototype is composed of
several important functional units, including a diode rectifier, dc-bus capacitors,
contactor-based precharge mechanism, three-phase four-leg T-Type inverter, DSP
controller, signal conditioning PCB, and switched mode power supplies (SMPS),
as shown in Fig. 5.11. The fourth redundant leg is constituted by four SiC
MOSFETs and external SiC Schottky diodes, and the related circuit schematics as
well as the basic parameters are given in the Attachment B of this dissertation.
Open-circuit faults in the IGBT Sa1 and Sa2 (as shown in Fig. 5.4) and the
corresponding fault-tolerant operation control strategies were examined, which
represents all fault scenarios for IGBT open-circuit switch faults considering the
circuit symmetry of the T-Type inverter. The three-phase line-to-neutral voltages
were measured under the fault-tolerant operation of the T-Type inverter with an
open-circuit switch fault in the switches Sa1 and Sa2, the oscillograms of which are
shown in Fig. 5.12 and Fig. 5.13, respectively. It can be seen from these figures
that the three-phase line-to-natural voltages are balanced during fault-tolerant
operations and there is no derating in the output voltages. Under these fault-tolerant
operations, the three-level output will become a two-level output—due to the
unavailability of using the RB-IGBTs (Sx2 and Sx3, where x=a, b, or c) to access
the dc-bus midpoint. This accounts for the slightly higher harmonic distortion in
the output voltages as shown in Fig. 12 and Fig. 13. However, as discussed in

Section 5.3, under such faulty conditions, fault-tolerant operation has a higher
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priority than the degradation of output waveform quality, especially in safety-

critical applications.

. Ci)rent Sensing andBignal}:
onditioning PCB

Figure 5.11: Customized 30-kV A fault-tolerant ASD based on the proposed fault-
tolerant three-level four-leg T-Type inverter topology.

500V/DIS#

S5ms/DIV
Figure 5.12: Measured three-phase line-to-neutral voltages during the fault-

tolerant operation of the proposed four-leg T-Type NPC inverter with an open-
circuit fault in the IGBT Sa.
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Figure 5.13: Measured three-phase line-to-neutral voltages during the fault-
tolerant operation of the proposed T-Type NPC inverter with an open-circuit fault
in the IGBT Saz.

5.7 Summary

This chapter introduced an improved fault-tolerant inverter topology based
on the conventional T-Type NPC inverter. According to the simulation and
experimental results presented above, a few conclusions can be drawn as follows:

1) The proposed fault-tolerant inverter topology provides desired fault-
tolerant solutions to device open-circuit and short-circuit faults in the T-Type
inverters. During post-fault operation of any of the device faults, the inverter is
still able to output the same maximum and rated voltage/power as that under
normal operation. In other words, no derating is required during fault-tolerant
operation, although the inverter has to be controlled as a two-level one.

2) Under normal healthy condition, the redundant inverter leg helps to share

the overload current with the inherent three inverter legs, and therefore can
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significantly improve the inverter thermal overload capability. Since a normal T-
Type inverter exhibits the waveforms of the output voltages as a conventional two-
level inverter under low modulation indices (Ma<0.5), there is no penalty in
harmonic distortion in the output voltages under such scenario. Moreover, the
redundant leg can also be utilized for load current sharing at high modulation
indices (Ma>0.5) to relieve large thermal stress on main switches (Sx1/Sx4), but the
harmonic distortion in the output voltages will be slightly higher compared to these

output voltages from a three-level modulation.
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CHAPTER 6

CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK

6.1 Conclusions

Power electronic converters play a critical role in industrial ASDs and other
power conversion systems. However, the reliability of power electronic converters
has aroused many concerns in recent years. Especially, such concerns are
becoming a more challenging technical bottleneck in the development and
application of medium-voltage high-power multilevel converters, corresponding
to the increasing market demands on the power converter capacities and ever-
increasing demand of higher operating frequencies. In this dissertation, the health
condition monitoring techniques and fault-tolerant operation strategies for NPC-
inverter-based ASD systems have been investigated. Throughout the content of
this dissertation, these investigations started from the estimation and active
extension of power cycling lifetime of NPC inverters, which were followed by the
explorations of on-line diagnostic methods for IGBT faults in such inverters, and
finally concluded with a novel fault-tolerant T-Type NPC inverter topology. All
these investigations aim at providing a more comprehensive portfolio of
progressive and hierarchical fault prognostics, diagnostics, and fault-tolerant
solutions for NPC-inverter-based ASDs.

First of all, the mechanism of lifetime degradation in bond wires and
soldering layers in IGBT modules were reviewed. It was concluded that the

mismatch of the thermal expansion coefficients of different materials in an IGBT
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module is the leading factor for the aging/degradation of the IGBT lifetime. Such
degradation is significantly accelerated when there are large junction temperature
swings occurring in the IGBT chips. This indicates that if the swings of the IGBT
junction temperatures can be mitigated through the modification of PWM
switching patterns, the IGBT on-line lifetime could be extended. Based on this
motivation, an improved DPWM modulation method was conceived to reduce the
junction temperature swings in the most vulnerable IGBT devices in a three-level
NPC inverter. In this DPWM method, a zero-sequence signal with a frequency
higher than the output frequency of the inverter is injected into the three-phase
voltage reference signals in the modulation. The injection of such zero-sequence
signals is to reduce the time duration for the rising of the IGBT junction
temperatures, and consequently lower swing magnitudes of the junction
temperatures can be achieved. According to the thermal modelling and simulation
results, the lifetime of an NPC inverter under low-frequency operating conditions
can be improved by as much as six times compared to that under the well-known
SVPWM modulation. Other performance characteristics of this new DPWM
method, including influences on inverter efficiency, harmonic distortions, and
oscillation of the dc-bus neutral-point voltage, were all evaluated through
simulation and experiments, all with beneficial positive outcomes.

Second, on-line diagnosis of IGBT faults in NPC inverters were
investigated in this dissertation. Considering the fact that IGBT short-circuit
detection/protection has received much more attention over the past years, and
there have been several solutions widely commercialized [46-51], this dissertation

is therefore focused on the development of a novel diagnostic method for IGBT
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open-circuit faults. Most existing diagnostic methods for IGBT open-circuit faults
either use several additional voltage/current sensors [56-58] or have a lower
diagnostic speed [52, 53] during the implementation and application. This will
boost the system cost and increase the execution burdens on the microprocessors,
respectively. However, the diagnostic method introduced in this dissertation only
requires the combined information on instantaneous dc-bus neutral-point current
and switching states as the fault indicator for IGBT open-circuit faults. The
implementation of this novel diagnostic method only demands one addition current
sensor for acquiring the variations of the dc-bus neutral-point current, and no
complex computations are involved.

Finally, fault-tolerant power inverter topologies were explored in this
dissertation. In this new inverter topology, one more addition phase leg is
introduced between the dc-bus and the original T-Type inverter. This redundant
inverter leg, not only provides a fault-tolerant back-up solution, but also can
increase the overload capability and the inverter efficiency if a special switching

and control strategy is utilized.

6.2 Contributions

In this dissertation, a thorough investigation on the health condition
monitoring techniques and fault-tolerant operation strategies of IGBT faults in
multilevel-inverter-based ASDs was conducted. The main contributions in this
dissertation are briefly summarized as follows:

1) A novel DPWM method was developed for three-level NPC inverters,

which can significantly improve the power cycling lifetime of IGBT
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devices during low-frequency operations of such inverters. The essence
of this DPWM method is the injection of a zero-sequence signal with
higher frequency than the inverter fundamental output frequencies into
the voltage reference signals. Through this approach, the swing value of
the IGBT junction temperatures can be reduced, which will result in a
longer power cycling lifetime. Moreover, the fluctuation of the dc-bus
middle point voltage is attenuated by flipping/inversing the zero-
sequence signal in every switching cycle. Both simulation and
experimental results confirmed the efficacy of this novel approach.

An innovative on-line fault diagnostic method was conceived for IGBT
open-circuit faults that could occur in three-level NPC inverters. The
diagnostic method can identify any faulty switches based on the
instantaneous switching states and dc-bus neutral-point current. Since
the information of switching states is always available in system
microcontrollers, only one additional current sensor is required during
the implementation of this diagnostic method, which brings about very
low cost increase and hence possible acceptance for commercialization.
A novel fault-tolerant topology was developed for three-level T-Type
inverters. In this novel fault-tolerant topology, one redundant inverter
leg is added to the conventional T-Type inverter. Under healthy
conditions, this redundant leg helps to share any overload current with
the original phase legs, therefore increasing the converter overload
capabilities. Under the condition of a device fault occurring in the T-

Type inverter, this redundant leg can be utilized to replace any faulty leg
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to output rated voltage and current. Other advantages of this fault-
tolerant topology includes the symmetrical circuit structure, very low
number of redundant devices, as well as improving the converter
efficiency by employing a ZVS switching pattern. Simulation and
experimental results have verified these functional advantages of this

fault-tolerant inverter.

6.3 Recommendations for Future Work

Several research ideas have materialized as a result of this work presented
in this dissertation, which are listed in the following.

First, regarding the novel DPWM method introduced in Chapter 3 for
improving the power cycling lifetime of three-level NPC inverters, it can be further
extended to five-level or higher voltage levels of NPC inverters. Also, this
modulation method can be further optimized to reduce the inverter common-mode
voltage by utilizing the redundant zero switching vectors. In other words, if
lifetime extension, mitigation of dc-bus neutral-point voltage oscillations, as well
as reducing common-mode voltages can all be well considered in this novel
DPWM method, the performance of NPC inverters will be significantly enhanced
and consequently the applications of such inverters will be made more desirable
and further expanded.

Second, the fault diagnostic method for detecting IGBT open-circuit faults,
as presented in Chapter 4, can be investigated for detecting IGBT short-circuit
faults and diode faults. It should be mentioned that the information on the dc-bus

neutral-point current of NPC inverters is like the hub linking the commutation of
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each component, which can directly/indirectly indicate the health condition of all
the devices in the NPC inverters. Moreover, as pointed out in Chapter 4, this
diagnostic method may not be suitable for NPC inverters operated with high
switching frequencies. However, if high-bandwidth current sensors and
microprocessors (such as FPGA, CPLD, etc.) can be used, this diagnostic method
may be also effective for diagnosing device faults in NPC inverters that are
operated at higher switching frequencies. All these potential performance benefits
accruing from this diagnostic method are worth further investigation through
simulations and experiments.

Third, regarding the fault-tolerant T-Type inverter introduced in Chapter 5,
the efficiency improvement of this inverter by adopting the ZVS switching strategy
needs to be experimentally verified. The implementation of the turn-on and turn-
off time delays required in this ZVS strategy should be investigated. In addition,
considering the emerging commercialization of SiC/GaN devices, it will be of
great significance to implement a purely SiC/GaN device-based fault-tolerant T-
Type inverter. The current sharing capabilities and efficiency improvement in such
SiC/GaN-type inverter would be quite different from the “Si+SiC” hybrid fault-
tolerant inverter described in Chapter 5. Last but not the least, the feasibility of
extending this three-level fault-tolerant T-Type inverter to higher voltage level
topologies is worth an investigation as well.

In conclusion, health condition monitoring and fault-tolerant operation of
power converters for ASDs should be investigated for specific applications, since
different applications have different fault-tolerant requirements. In some

applications, for example, in industry dealing with national defense, if cost
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constraint is not a priority, health condition monitoring and fault-tolerant operation
can be achieved by more sensors and redundant hardware devices. On the contrary,
in some highly competitive consumer industries, where cost constraints are of
paramount priority, then the health monitoring and fault-tolerant operation have to
be achieved by taking full advantage of the information that is already available in
related ASD systems. However, in general, the most essential purpose is to
guarantee the accuracy of the health monitoring and fault-tolerant operation of

ASD systems.
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APPENDIX

A. Specifications of the Customized Lab-Scale 50-kVA ASD based on an I-

Type NPC Inverter

A.1 Main Features of the ASD

e Texas Instruments Digital Signal Processor (TMS320F28335 DSP) technology
integrated with Spectrum Digital EZ-DSP F28335 evaluation board with USB
programming port.

e Infineon EconoPACK 4 technology integrated three-level IGBT power
modules with attached gate driver/adapter boards with SC and undervoltage
lockout protection and junction temperature measurements.

e Signal conditioning systems for IGBT gate driver circuits with isolated dc
power supplies current measurement sensors (LEM sensors), incremental
optical encoder position feedback, and IGBT junction temperature
measurement.

e On-board dc power supplies for EZ-DSP F28335 evaluation board and signal
conditioning system.

e Pre-charge circuitry to protect the dc bus from current transients at system turn-
on.

e Input reactor for power line quality and high frequency rejection and output LC
network for common- and differential-mode filtering.

e Rugged open frame hardware layout for ease of measurements, testing,
modifications, and enhancements in addition to a transparent safety enclosure.

e Robust aluminum enclosure to shield the DSP system with short but
manageable shielded cables to protect sensitive signals/circuits from EMI.

e Large heat sink and two ventilation fans for maximum heat transfer during
high-power drive operation.

e A power switch for the 120 V control circuits.

e Ability to increase drive rating up to 50 kVA through modification of the pre-
charge circuitry and bleed resistors.
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A.2  Specifications of the ASD System
Table A.2.1: Three-level NPC ASD specifications.
Drive Type  Three-Level IGBT-Based NPC Inverter
Input Drive line voltage 200-240 Vrums, Three phase
Current 18 Arwms, Max
Power 50 kVA @ 240Vrms
Frequency 50/60 Hz
Control voltage 120 Vrums, Single phase
Control current 5 Arwms, Max
Reactor 7.3 % Reactance, 60 Hz
Input fuse size 20 A
Fuse type Class CC (KTMR)
DC bus voltage 325 Ve, Max
Output Power 50 kVA
Current 160 Arwms, Max
Line Voltage 240 Vrwms, Three phase
Filter type LC
Filter inductance 2.5 mH
Filter capacitance 10 pF
DC Supplies Input voltage 120 VRrwms, Single phase
Supply #1 +5, +12 Ve
30 A\
Supply #2 +15 Ve
35 \\
EZ-DSP Input voltage 5 Ve
F28335 Input current 2 Adc, Max
Operating voltage 3.3 Vic
Signal Input voltage +5,+12, £15 Vg
Conditioning
Input current 2 Ade, @ +5Vc
1 Ade, @ +12V 4e
500 mAge, @ -15Vqc
500 mAdc, (@ +15Vc
PWM inputs (18) +33..5 Ve
PWM outputs (18) +3.3 Ve, 24 mAgc/ch.
Encoder QEP inputs (3) +33..5 Ve
Encoder QEP outputs (3) +3.3 Ve, 24 mAgc/ch.
Current sens. Inputs (3) 0..100 A, 1000:1 conv.ratio
Current sens. Outputs (3) 0..2.5 Ve, 25 mAgc/ch.
Temperature input range  -50 .. +150 °C
Temperature outputs (3) 0..2.5 Ve, 25 mAgc/ch.
Gate driver supplies (10) +15, -8 Ve, 7100/-80 mA g,
isolated
Cooling Ventilation fans (2) 120 VRrwms
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A.3 Control Hardware Architecture

A.3.1 Functional Features

e TMS320F28335 DSP programming with Texas Instruments Code Composer
Studio (CCStudio) version 3.3 or higher as part of TI’s eXpressDSP software
and development tools [91, 92].

e Texas Instruments Flash APIs for TMSF28335 support.

e Header files and example code for TMSF28335 DSP controller.

e The Spectrum Digital EZ-DSP F28335 Evaluation Board include the following
features:

O

O

150 MHz CPU with an integrated Floating Point Unit (FPU).
30 MHz crystal input clock.

512 kB of on-chip flash memory.

68 kB of on-chip single-access RAM (SARAM).

256 kB of off-chip static RAM (SRAM).

88 shared general purpose I/O pins (GPIO).

Up to 12 channels of PWM with a dedicated six channels of high-
resolution PWM (HRPWM).

An additional six auxiliary channels of PWM can be utilized with proper
configuration of the six 32-bit capture (¢CAP) inputs.

Two quadrature encoder position feedback channels (QEP), with each
channel consisting of four signals.

16 analog to digital converters (AD) with 12-bit resolution and 80 ns
conversion time.

Three 32-bit CPU timers

A broad range of communications interfaces are onboard: RS-232
connector with line driver, CAN 2.0 interface with line driver, embedded
USB JTAG controller, and an IEEE 1149.1 JTAG emulation connector.
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A.3.2 Hardware Description
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Table A.3.2.1: EZ-DSP F28335 component/device description and settings.

Identifier | Settings/Connections Description
DSI1 Green LED +5 V. active
DS2 Green LED GPIO32 status
DS201 Green LED Embedded emulation link status
J11 No connection CANB header connection (2 x 5)
J12 No connection SCIB header connection (2 x 5)
o1 | USB Programming Embedded USB JTAG interface
JP1 Shorted +2.048 V4. connected to ADCREFIN
JP7 Shorted CANA termination resistor installed
JP8 Shorted CANB termination resistor installed
JR2 +3.3 Ve +3.3/5 V4. supply selection to XTPD
JR4 +3.3 Ve +3.3/5 V4. supply selection to P4 & P8
JRS +3.3 Ve +3.3/5 V4. supply selection to P2 & P10
JR6 GPIO22 Selected MUX GPIO22/GPI1024 selection
P1 No connection JTAG interface header connection (2 x 7)
P2 No connection Expansion ipterface header
connection (2 x 30)
P4 No connection I/0 interface header (1 x 20)
) Analog inputs BO-B7, ADCREFM,
P5 No connection ADCREFP
P6 +5 Ve Power connector
P7 No connection I/0 interface header (1 x 20)
P8 PWM outputs (16) I/0 interface header (2 x 20)
P9 Analog inputs (6) Analog inputs A0-A7, ADCLO
Current/temperature
P10 QEP inputs (3) Expansion interface
PWM outputs (2) header connection (2 x 30)
P11 No connection CANA DB9 female connector
P12 No connection RS-232 DB9 female connector
_ Boot load option switch
SWI 112343=[0010] (set to SPI-A boot)
SwW2 112343110 1] Processor configuration

(56 7y=[111]
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A.4 Circuit Schematics

Current Signal Conditioning

Power management

Temp Signal Conditioning

L . |

2

2 &

S 5 23

EW g

£ 5

[-¥

=

(=4

Qutput Connectors to Driver Boards

PWM and QEP Signal Condition
PWM from DSP

Figure A.4.6.1: Three-level NPC ASD signal conditioning schematic diagram.
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146

B. Circuit Schematic of the Customized Lab-Scale 30-kVA ASD based on

the Fault-Tolerant T-Type NPC Inverter

DC/DC CONVERTER BOARD

GDU BOARD

IGBT Module

Assembling procedure

. Insert the IGBT module in GDU board.

. Solder the IGBT module’s terminal and GDU board.
. Mount the IGBT module on a heat sink.

. Insert DC/DC converter board in GDU board.

. The cable for control signal, the load, the external power

supply and main DC power supply are connected to the
GDU board and DC/DC converter board.

Power on procedure

Turn on the external power supply (15V).
Recommended external power supply output is
Vo=15V; lo>=2A.

. When the DC/DC converter output becomes stable,

turn on the main power supply.

. Finally apply the control signal.

Figure B.1: Power structure of the three-level fault-tolerant ASD.

GDU

TIDESAT

T1G
TI&T4E

P

Tl

- i

T4

T3

T3G

T2G

T2E

O OUTPUT

T2DESAT and T1&T4E is connected in GDU inside

Figure B.2: Power circuit schematic of the three-level T-Type inverter (one leg).
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signals for the gate driver board.

Figure B.3:
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Figure B.5: Circuit schematic of the fourth inverter leg based on SiC MOSFETSs

in the proposed fault-tolerant T-Type inverter topology.
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C. DSP C-Code Programming Used in the Experiments

ﬁ****************************************************************

// The following code is for the evaluation of the NDPWM method for the NPC
inverter operating at low output frequencies.
// Date: September 20, 2015
U****************************************************************
#include <math.h>
#include "PS bios.h"
typedef float DefaultType;
#define GetCurTime() PS_GetSysTimer()
interrupt void Task();
DefaultType fGblV_refl = 0;
DefaultType fGblV_ref2 = 0;
DefaultType fGblV_ref3 = 0;
DefaultType fGblCMSignal = 0;
DefaultType fGblSin =0;
interrupt void Task()
{
DefaultType fSUMP3, fSUMP1, fSUMP4, tIMUX21, f{COMPI1, fConstl,
fSin4, fSUMPS;
DefaultType fMAX MIN3, f1, fSUMP6, fMAX MIN4, fSin2, fSinl,

fConst, fSin3;
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PS_Enablelntr();

{
static DefaultType wt = 3.14159265 * ((240) / 180.);
const static DefaultType dwt = (3.14159265 * 2 * (2) / 2000);
fSin3 = sin(wt);
wt += dwt;
if (wt>=2 *3.14159265) wt -=2 * 3.14159265;
fSin3 *=0.2;
b
fConst=1;
{
static DefaultType wt =3.14159265 * ((0) / 180.);
const static DefaultType dwt = (3.14159265 * 2 * (2) / 2000);
fSinl = sin(wt);
wt += dwt;
if (wt>=2 *3.14159265) wt -=2 * 3.14159265;
fSinl *=0.2;
h
{

static DefaultType wt = 3.14159265 * ((120) / 180.);

const static DefaultType dwt = (3.14159265 * 2 * (2) / 2000);
fSin2 = sin(wt);

wt += dwt;

if (wt >=2 *3.14159265) wt -=2 * 3.14159265;



fSin2 *=0.2;
b
fMAX MIN4 = (fSinl > fSin2) ? fSin2 : fSinl;
fMAX MIN4 = (fMAX MIN4 > fSin3) ? fSin3 : IMAX MIN4;

fSUMP6 = fConst * (<(1.0)) + fMAX_MIN4 * (-(1.0));

fMAX_MIN3 = (fSinl < fSin2) ? fSin2 : fSinl;
fMAX_MIN3 = (fMAX_MIN3 < Sin3) ? fSin3 : fMAX_MIN3;

fSUMPS = f1 - fIMAX MIN3;

{
static DefaultType wt = 3.14159265 * ((0) / 180.);
const static DefaultType dwt = (3.14159265 * 2 * (30) / 2000)
fSin4 = sin(wt);
wt += dwt;
if (wt>=2 *3.14159265) wt -=2 * 3.14159265;
¥
fConstl = 0;

fCOMP1 = (fSin4 > fConstl) ? 1 : 0;

fMUX21 = (fCOMP1 > 0.5) ? fSUMPS : fSUMP6;
fSUMP4 = fSin3 + fMUX21;
PS_SetPwm5RateSL(fSUMP4);

fSUMP1 = fSinl + fMUX21;

PS SetPwmlRateSL(fSUMP1);

PS_ SetPwm?2RateSL(fSUMP1);

152



fSUMP3 = {Sin2 + fMUX21;
PS SetPwm3RateSL(fSUMP3);
PS_SetPwm4RateSL(fSUMP3);
PS SetPwmo6RateSL(fSUMP4);
#ifdef DEBUG
fGblV_refl = fSUMP1;
#endif
#ifdef DEBUG
fGblV_ref2 = {SUMP3;
#endif
#ifdef DEBUG
fGblV_ref3 = {SUMP4;
#endif
#ifdef DEBUG
fGbICMSignal = fMUX21;
#endif
#ifdef DEBUG
fGblSin = fCOMP1;
#endif
PS_ExitPwm5General();
}
void Initialize(void)

{

PS_SysInit(30, 10);
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PS_StartStopPwmClock(0);

PS_InitTimer(0, Oxfffffftr);

PS_ InitPwm(5, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 61197);//
pwnNo, waveType, frequency, deadtime, outtype

PS SetPwmPeakOffset(5, 1, 0, 1.0/1);

PS SetPwmlntrType(5, ePwmNoAdc, 1, 0);

PS_SetPwmVector(5, ePwmNoAdc, Task);

PS_ SetPwmTzAct(5, eTZHighImpedance);

PS_SetPwmS5RateSL(0);

PS_StartPwm(5);

PS_InitPwm(1, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 61197);//
pwnNo, waveType, frequency, deadtime, outtype

PS SetPwmPeakOffset(1, 1, 0, 1.0/1);

PS_SetPwmlntrType(1, ePwmNoAdc, 1, 0);

PS SetPwmTzAct(1, eTZHighlmpedance);

PS_SetPwmlRateSL(0);

PS_StartPwm(1);

PS_InitPwm(2, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 61197);//
pwnNo, waveType, frequency, deadtime, outtype

PS_SetPwmPeakOffset(2, 1, (-(1.0)), 1.0/1);

PS_SetPwmlntrType(2, ePwmNoAdc, 1, 0);

PS SetPwmTzAct(2, eTZHighlmpedance);

PS SetPwm?2RateSL((-(1.0)));

PS_StartPwm(2);
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PS_InitPwm(3, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 61197);//
pwnNo, waveType, frequency, deadtime, outtype

PS_SetPwmPeakOffset(3, 1, 0, 1.0/1);

PS SetPwmliIntrType(3, ePwmNoAdc, 1, 0);

PS SetPwmTzAct(3, eTZHighlmpedance);

PS_SetPwm3RateSL(0);

PS_StartPwm(3);

PS_InitPwm(4, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 61197);//
pwnNo, waveType, frequency, deadtime, outtype

PS_SetPwmPeakOffset(4, 1, (-(1.0)), 1.0/1);

PS_SetPwmlntrType(4, ePwmNoAdc, 1, 0);

PS_ SetPwmTzAct(4, eTZHighImpedance);

PS_SetPwm4RateSL((-(1.0)));

PS_StartPwm(4);

PS_InitPwm(6, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 61197);//
pwnNo, waveType, frequency, deadtime, outtype

PS_SetPwmPeakOffset(6, 1, (-(1.0)), 1.0/1);

PS_SetPwmlntrType(6, ePwmNoAdc, 1, 0);

PS SetPwmTzAct(6, eTZHighlmpedance);

PS SetPwmo6RateSL((-(1.0)));

PS StartPwm(6);

PS_StartStopPwmClock(1);
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void main()

{
Initialize();
PS Enablelntr(); // Enable Global interrupt INTM
PS EnableDbgm();
for (;:) {
}
}

//****************************************************************

// The following code is for the evaluation of the SVPWM method for the NPC
inverter operating at low output frequencies.

// Date: June 15, 2015

3 sk sk s ksl s sk sk sl s ol s s s s s s el s el sl sl s sk ks s s ksl sk o ok

#include <math.h>

#include "PS bios.h"

typedef float DefaultType;

#define GetCurTime() PS_GetSysTimer()

interrupt void Task();

DefaultType fGblV_refl = 0;

DefaultType fGblV _ref2 = 0;

DefaultType fGblV ref3 = 0;

DefaultType fGbICMSignal = 0;
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interrupt void Task()
{

DefaultType fSUMP3, fSUMP1, fSUMPA4, fP2, fSUMP7, fMAX MIN4,
fMAX MIN3, fSin2;

DefaultType fSinl, fSin3;

PS_Enablelntr();

{
static DefaultType wt = 3.14159265 * ((240) / 180.);
const static DefaultType dwt = (3.14159265 * 2 * (2) / 2000);
fSin3 = sin(wt);
wt += dwt;
if (wt>=2 *3.14159265) wt -=2 * 3.14159265;
fSin3 *=0.2;
h
{
static DefaultType wt = 3.14159265 * ((0) / 180.);
const static DefaultType dwt = (3.14159265 * 2 * (2) / 2000);
fSinl = sin(wt);
wt += dwt;
if (wt>=2 *3.14159265) wt -=2 * 3.14159265;
fSinl *=0.2;
b
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static DefaultType wt = 3.14159265 * ((120) / 180.);
const static DefaultType dwt = (3.14159265 * 2 * (2) / 2000);
fSin2 = sin(wt);
wt += dwt;
if (wt>=2 *3.14159265) wt -=2 * 3.14159265;
fSin2 *=0.2;
}
fMAX MIN3 = (fSinl < {Sin2) ? fSin2 : fSinl;
fMAX MIN3 = (fMAX MIN3 < fSin3) ? fSin3 : fIMAX MIN3;
fMAX MIN4 = (fSinl > fSin2) ? fSin2 : fSinl;
fMAX MIN4 = (fMAX MIN4 > fSin3) ? {Sin3 : IMAX MIN4;
fSUMP7 = fMAX MIN3 + fMAX MIN4;
fP2 = fSUMP7 * (-(0.5));
fSUMP4 = {Sin3 + {P2;
PS SetPwmS5RateSL(fSUMP4);
fSUMPI1 = fSinl + fP2;
PS_SetPwmlRateSL(fSUMP1);
PS SetPwm2RateSL(fSUMP1);
fSUMP3 = fSin2 + fP2;
PS SetPwm3RateSL(fSUMP3);
PS SetPwm4RateSL(fSUMP3);
PS_SetPwmo6RateSL(fSUMP4);
#ifdef DEBUG

fGblV_refl = {fSUMP1;
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#endif
#ifdef DEBUG
fGblV_ref2 = fSUMP3;
#endif
#ifdef DEBUG
fGblV_ref3 = {fSUMP4;
#endif
#ifdef DEBUG
fGblCMSignal = fP2;
#endif

PS_ExitPwmS5General();

void Initialize(void)
{

PS_SysInit(30, 10);

PS_StartStopPwmClock(0);

PS_InitTimer(0, OXfffffftY);

PS_InitPwm(5, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 60745);//
pwnNo, waveType, frequency, deadtime, outtype

PS_SetPwmPeakOffset(5, 1, 0, 1.0/1);

PS_SetPwmlIntrType(5, ePwmNoAdc, 1, 0);

PS SetPwmVector(5, ePwmNoAdc, Task);

PS SetPwmTzAct(5, eTZHighImpedance);
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PS_SetPwmS5RateSL(0);

PS StartPwm(5);

PS_InitPwm(1, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 60745);//
pwnNo, waveType, frequency, deadtime, outtype

PS_SetPwmPeakOffset(1, 1, 0, 1.0/1);

PS SetPwmliIntrType(1, ePwmNoAdc, 1, 0);

PS SetPwmTzAct(1, eTZHighImpedance);

PS_SetPwmIlRateSL(0);

PS_ StartPwm(1);

PS_InitPwm(2, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 60745);//
pwnNo, waveType, frequency, deadtime, outtype

PS_SetPwmPeakOffset(2, 1, (-(1.0)), 1.0/1);

PS SetPwmlIntrType(2, ePwmNoAdc, 1, 0);

PS_SetPwmTzAct(2, eTZHighlmpedance);

PS_SetPwm?2RateSL((-(1.0)));

PS_StartPwm(2);

PS_InitPwm(3, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 60745);//
pwnNo, waveType, frequency, deadtime, outtype

PS SetPwmPeakOffset(3, 1, 0, 1.0/1);

PS SetPwmlIntrType(3, ePwmNoAdc, 1, 0);

PS SetPwmTzAct(3, eTZHighImpedance);



161

PS_SetPwm3RateSL(0);

PS StartPwm(3);

PS_InitPwm(4, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 60745);//
pwnNo, waveType, frequency, deadtime, outtype

PS_ SetPwmPeakOffset(4, 1, (-(1.0)), 1.0/1);

PS SetPwmliIntrType(4, ePwmNoAdc, 1, 0);

PS SetPwmTzAct(4, eTZHighlmpedance);

PS SetPwm4RateSL((-(1.0)));

PS_StartPwm(4);

PS_InitPwm(6, 3, 2000*1, (6E-6)*1e6, PWM_TWO_OUT, 60745);//
pwnNo, waveType, frequency, deadtime, outtype

PS_SetPwmPeakOffset(6, 1, (-(1.0)), 1.0/1);

PS SetPwmlIntrType(6, ePwmNoAdc, 1, 0);

PS_SetPwmTzAct(6, eTZHighlmpedance);

PS_SetPwmo6RateSL((-(1.0)));

PS_StartPwm(6);

PS_StartStopPwmClock(1);

}

void main()

{

Initialize();
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PS _Enablelntr(); // Enable Global interrupt INTM
PS EnableDbgm();
for (;;) {

}
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