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The power electronics market is valued at $23.25 billion in 2019 and is projected to reach 

$ 36.64 billion by 2027. Power electronic systems (PES) have been extensively used in a wide 

range of critical applications, including automotive, renewable energy, industrial variable-

frequency drive, etc. Thus, the PESs’ reliability and robustness are immensely important for the 

smooth operation of mission-critical applications. Power semiconductor switches are one of the 

most vulnerable components in the PES. The vulnerability of these switches impacts the reliability 

and robustness of the PES. Thus, switch-health monitoring and prognosis are critical for avoiding 

unexpected shutdowns and preventing catastrophic failures. The importance of the prognosis study 

increases dramatically with the growing popularity of the next-generation power semiconductor 

switches, wide bandgap switches. These switches show immense promise in the high-power high-

frequency operations due to their higher breakdown voltage and lower switch loss. But their wide 

adaptation is limited by the inadequate reliability study. A thorough prognosis study comprising 

switch degradation modeling, remaining useful life (RUL) estimation, and degradation-aware 

controller development, is important to enhance the PESs’ robustness, especially with wide 

bandgap switches. In this dissertation, three studies are conducted to achieve these objectives- 1) 



 

 

Insulated Gate Bipolar Transistor (IGBT) degradation modeling and RUL estimation, 2) cascode 

Gallium Nitride (GaN) Field-Effect Transistor (FET) degradation modeling and RUL estimation, 

and 3) Degradation-aware controller design for a PES, solid-state transformer (SST). The first two 

studies have addressed the significant variation in RUL estimation and proposed degradation 

identification methods for IGBT and cascode GaN FET. In the third study, a system-level 

integration of the switch degradation model is implemented in the SST. The insight into the 

switch’s degradation pattern from the first two studies is integrated into developing a degradation-

aware controller for the SST. State-of-the-art controllers do not consider the switch degradation 

that results in premature system failure. The proposed low-complexity degradation-aware and 

adaptive SST controller ensures optimal degradation-aware power transfer and robust operation 

over the lifetime.  
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CHAPTER I 

INTRODUCTION 

1.1 Research motivation 

The power electronic systems (PES) play a pivotal role in the automotive, aircraft, and 

ship-based traction applications [1]. Also, they are widely used in variable-frequency high-power 

industrial applications, medium-power medium-frequency applications, low-power, low-voltage 

consumer devices, accessories, and control applications [2]. In the 21st century, electric vehicles 

(EVs) and hybrid electric vehicles (HEV) have re-emerged and redefine the range of PES-based 

applications [3]-[4]. The PES has been an integral part of the motor drive and charging stations 

of the EV and HEV ecosystem for a higher degree of controllability, reliable service, and 

compact installation [5]. Electric ship (ES), more electric aircraft (MEA), smart grid, solid-state 

transformer (SST), and many other applications are integrating PES to increase efficiency, 

achieve compactness and reduce carbon emissions. Advanced communication technology and 

the PES are combined for efficient power transfer and resilient systems in the smart-grid 

application. Currently, the PES market is estimated at $23.35 billion in 2019 and estimated to 

have a $36.64 billion market size in 2027 [5]. Thus, the PES is evolving with the technology, 

redefining the traditional applications, and continuously being adopted in the new applications. 

Power semiconductor switches are the core of the PES. The failure of these switches 

compromises the reliability of the PES. According to the industry survey, semiconductor failure 

accounts for 21% of the total PES failures [6]. Thus, the reliability of the power semiconductor 



 

2 

switches is essential for the overall robustness and resilience of the PES. Almost 42% of the 

medium- and high voltage PES use Insulated Gate Bipolar Transistor (IGBT) [8]. They experience 

fatal short-circuit failure (SCF) and aging-related open-circuit failure (OCF). SCF in the IGBTs 

are sudden, event-oriented, fatal to the PES, and provide little reaction-time [9]. Thus, the PES 

utilizes hardware-level protections such as circuit-breaker, fuse, etc., to isolate the SCF. Unlike 

SCF, the extremely slow accumulated degradation over time causes OCF in the PES. It is possible 

to monitor the degradation in real-time, predict their remaining useful lifetime (RUL), and avoid 

catastrophic failure using model-based data-driven prognosis methods [11]. However, the PES 

design and control do not include switch-health information to prevent the OCF. Thus, IGBT’s 

degradation modeling and accurate RUL estimation are essential to extend the operating lifetime, 

ensure robustness, and avoid catastrophic PES failure. 

The cascode GaN FET is a wide-bandgap power semiconductor switch that shows 

immense promise in high-power high-frequency applications. This switch has a higher 

breakdown voltage, low on-state resistance, high switching frequency [13]. It is estimated to 

have a $0.5 million market in 2018 and is projected to have a $300 million market in almost 

2027 [14]. The primary failure mechanisms, such as piezo-electric failure, contact degradation, 

charge-trapping, and wire-bond degradation failure, are slow, accumulated over time, and cause 

OCF. Thus, the OCF in the cascode GaN FET is avoidable by accurate degradation modeling 

and lifetime estimation. Although the cascode GaN FETs show great promises, the PES industry 

is not confident about their production level reliability and robustness. Thus, the robust reliability 

study will increase its credibility in mission-critical applications. 

System-level reliability and robustness are also essential for the PES. Although design-

redundancy increases the PES robustness, it is not desirable considering cost- and space 
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constraints. Switch degradation mapping provides useful insight into switch life under degraded 

conditions. Intelligently integrating this switch-health information into the controller provides a 

low-cost and advanced option to ensure PESs’ reliability and robustness. This degradation-aware 

controller will continuously monitor the switch-health, intelligently derate the PES to extend 

their lifetime, and shut down the PES smoothly when a fault occurs. 

1.2 Research objective 

Based on the research motivation, the objectives of this Ph.D. study are as follows: 

Objective 1: Degradation modeling and RUL estimation of IGBT by addressing the following 

problems: 

a. Fault-precursor-based degradation stage identification, and 

b. Significant RUL estimation variance under harsh noise. 

Objective 2: Degradation modeling and RUL estimation of cascode GaN FET by addressing the 

following problems: 

a. Significant RUL estimation variance under severe noise, 

b. Sample degeneracy and sample impoverishment, and  

c. Low capability to trace the dynamic change in the fault-precursor. 

Objective 3: Real-time degradation-aware controller design for the SST by: 

a. Development of  a behavioral switch-loss model for the cascode GaN FET, and 

b. Degradation-aware optimal performance of the SST over its operating life. 
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CHAPTER II 

MODERN APPLICATIONS AND STATUS OF RESEARCH IN RELIABILITY OF POWER 

ELECTRONIC SYSTEMS  

2.1 Power electronic systems in everyday life 

1.1.1 Types of power electronic systems 

The PES enable highly efficient energy conversion in a wide range of applications such 

as automotive, renewable energy, adjustable-speed drives, high-voltage direct-current (HVDC), 

and aero-space [1]-[2]. The PESs are broadly categorized as follows: 

1) DC-DC converters are used for DC voltage conversion and isolation. 

2) Inverters are used for DC to AC voltage conversion and frequency conversion. 

3) Rectifiers are used for AC to DC conversion. 

4) Cyclo-converters are used for voltage and frequency conversion in AC-AC 

applications. 

These converters are used standalone or in cascade, depending on the applications.   

1.1.2 General architecture of power electronic systems 

The general architecture of a PES is shown in Figure 2.1. The typical PES has - 1) the 

power-conversion stage and 2) the control stage. The power-conversion stage has an electrical 

power input, a power-conversion block, and an electrical power output. The power-conversion 

block generally comprises the power semiconductor switches and passive components such as 

resistors, capacitors, and inductors. These switches operate at frequencies ranging from a few hertz 
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(Hz) to hundreds of kilohertz, depending on the applications. The passive components are used as 

energy storage and filter for energy conversion. High-frequency (HF) transformers are also used 

in the power stage for galvanic isolation. These switches are controlled to store and extract energy 

from these passive components and HF transformers. 

The control stage senses and processes the signals such as voltage, current, and temperature 

from the power stage and generates gate-driving signals for the switches to achieve desired 

performance. Moreover, this stage provides over-voltage, over-current, and over-temperature 

protection for the PES. The PES use micro-controllers, digital signal processors, or field-

programmable gate arrays in the control stage.  

 

Figure 2.1 Typical power electronic systems architecture. 
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Figure 2.2 Switching frequency and power range of IGBT, Si MOSFET, GaN FET, and SiC 

MOSFET. 

1.1.3 Types of power semiconductor switches  

Power semiconductor switches are categorized as- 1) Silicon (Si) based traditional power 

semiconductor switches such as IGBT, MOSFET, Thyristor, TRIAC, Diode, and 2) wide bandgap 

(WBG) based Silicon Carbide (SiC) MOSFET and GaN FET. The power handling capability and 

operating frequency of these switches are shown in Figure 2.2. Thyristor and TRIAC are used in 

highly high-power, low-frequency (<1 kHz) applications. IGBT and Si MOSFET are the most 

popular switches in the medium frequency ranges. IGBT is used in high-power applications when 

the operating frequency is less than 10 kHz. Although Si-MOSFETs can operate around 100 kHz, 

their power handling capability reduces extremely (<1 kVA) at these frequencies [3]-[4]. The 

material properties of Si limit these switches’ power handling capability and operating frequency. 

Thus, it is not possible to achieve high power at high frequency using these switches. Modern 

power electronic applications demand high power at high frequency to have a compact size that 

Si-based switches cannot meet. The WBG semiconductor switches are suitable for these high-
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power high-frequency applications for their higher bandgap, high-temperature capability, and 

breakdown electric fields compared to Si, as shown in Table 2.1. The sizes of the passive 

components in the WBG based PES are reduced as these switches operate at a higher frequency. 

Moreover, they have lower switching and conduction losses compared to the Si-based 

switches. Thus, the WBG-based PESs are compact and need a simpler thermal management 

system. Although these switches show immense potential, they are not widely accepted in the 

industry for their lack of operational history and product-life reliability.  

 

Table 2.1 Comparison of physical properties of Si, SiC, and GaN [5] 

Property Si SiC GaN 

Bandgap, Eg(eV) 1.12 3.3 3.4 

Dielectric Constant, εr 11.80 9.7 9.5 

Saturation drift velocity, (107 V/cm) 1.00 2.2 2.5 

Thermal Conductivity, k(W/cmK) 1.50 5.00 1.3 

Melting Point (oC) 1420 2830 2500 

Breakdown Electric Field, EC (MV/cm) 0.25 3.00 3.5 

 

1.1.4 Modern applications of power electronic systems 

Traditionally, PESs are mainly used in high-power industrial applications and medium 

power medium frequency applications. Moreover, they are also used in low-power consumer 

devices and low voltage applications in the automotive, aircraft, and ships. In the 21st century, 

EVs and HEVS have redefined the range of PES-based applications [6]-[8]. The PES have been 

an integral part of the motor drive that provides traction power to the EV and HEV. EV charging 
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stations also replace traditional transformers with the PES for reliable service and compact 

installation [9]. The PES in a typical EV eco-system is shown in Figure 2.3. Electric ships (ES), 

more electric aircraft (MEA), smart grid, solid-state transformers, and many other applications 

incorporate the PES to have better efficiency, achieve compactness and reduce carbon emissions. 

Advanced communication technology and the PES are combined for efficient power transfer and 

improved system resilience in the smart-grid application. The PES is evolving along with the 

advancing technology, redefining the traditional applications, and continuously being adopted in 

new applications. However, the product-life reliability of the PES in these modern applications is 

the concern as a failure in the PES may cause catastrophic failure and result in loss of human life.     

 

 

Figure 2.3 The power electronic systems in an electric vehicle. 

 



 

9 

1.1.5 Importance of operating time reliability of power electronic systems 

The PESs’ acceptability in an application depends on cost, efficiency, power density, 

reliability, and manufacturability [10]. Maximum efficiency and power density are desired as they 

ensure compact size, simpler thermal management, and reduced operating cost. Component cost 

is the most critical factor in consumer and industrial applications. However, safety is a higher 

priority than the cost in mission-critical applications such as automotive, aircraft, and ships where 

PES malfunction and failure may cause loss of life. Integrated reliability in manufacturing, design, 

and operation levels is essential for the safe operation of the PES. Reliability in the manufacturing 

process focuses on the operating time stress withstand capability of the components [11], and 

design-phase reliability emphasizes keeping the component stress within the rated condition. The 

PES has varying expected lifetime based on the application, as shown in Table 2.2. Thus, it is 

crucial to design the PES using components manufactured for the intended application and product 

life cycle. However, there are manufacturing-related defects present in the switches, and the PES 

experience over-rated conditions. Moreover, the cyclic thermal stresses during operation cause 

component-aging, lead to component and system failure. Although sincere care has been taken in 

manufacturing- and design-level reliability, sudden PES failure results in catastrophic 

consequences.   

Table 2.2 The expected lifetime of power electronic systems in different applications [12]. 

Application  Expected lifetime 

Automotive 15 years 

Aircraft 24 years 

Renewable energy  20-30 years 

Industrial motor drive 5-20 years 
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The industry-wide survey found that power semiconductor switches are the most vulnerable 

component in a PES after the DC-link capacitors, as shown in Figure 2.4. Thus, reliability during 

the operating time has become an important research area in the modern PES. 

 

Figure 2.4 Component failure percentage in a power electronic system [13]. 

 

1.1.6 Recent trend in reliability study of power semiconductor switches 

Power semiconductor switches experience stressors such as steady-state mean 

temperature, temperature cycling, humidity, dust, vibration, electromagnetic interference (EMI), 

etc. Among these stressors, high junction temperature and its variation cause 65% of the power 

semiconductor switches’ failures, as shown in Figure 2.5. This temperature stress initiates 

degradation mechanisms such as wire-bond lift-off, solder fatigue, cracks in the solder joint, etc., 

and results in a switch failure. A significant number of researches have been conducted on the 

condition monitoring techniques for the power semiconductor switches to identify degradation 

and prevent catastrophic system failure.  
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Figure 2.5 Stress sources for power semiconductor switch failures [14]. 

 

The condition monitoring techniques are broadly categorized in three categories: 1) direct 

method, 2) physics-of-failure (PoF) method, and 3) data-driven method. As the direct methods are 

offline, costly, and invasive, it is impossible to use these methods for real-time degradation 

monitoring. These methods use X-ray, scanning acoustic microscopy analysis, and scanning 

electronic microscopy (SEM) analysis to identify the switches’ cracks and degradation [15]. PoF 

methods analytically model the switches’ degradation under the presence of different stressors 

[16]-[18]. The degradation process is uncertain and random. These PoF methods cannot address 

the dynamic condition changes in the system. 

Moreover, these methods do not consider manufacturing imperfections and also require 

precise switch structure and manufacturing information that is not publicly available in general. 

Although these methods provide insight into the switches’ general degradation mechanism, they 

have limited degradation detection and RUL estimation capabilities during the operation. The 

switch-health experiences accelerated degradation at the end of its life. Thus, it is more practical 
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to estimate the switch’s accurate RUL based on online health status for unexpected switch-failure 

prevention. 

Data-driven methods use historical and real-time data to estimate the switch-health [19]-

[21]. As these methods require little knowledge of the internal switch structure, it is possible to 

use these methods non-invasively and results in a lower variance in RUL estimation. These 

methods identify the fault precursors and trace these fault precursor trajectories to model the 

degradation progression. These models are adjusted in real-time to reflect the switch-health status.  

Although electrical parameters show significant sensitivity to the switch degradation [22]-[27], all 

these signals are not online measurable. Thus, identifying the appropriate parameters is extremely 

important for the precise and accurate health monitoring and prognosis study. However, several 

studies have been conducted on the fault precursor identification of IGBT and Si MOSFET. A few 

research have been conducted for the fault precursor identification of the cascode GaN FET. 

Moreover, this degradation information is not extensively used in the controller design of the 

switches. It will be critical for system-level reliability to integrate degradation information in the 

PES controller.
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CHAPTER III 

AUXILIARY PARTICLE FILTERING BASED ESTIMATION OF REMAINING USEFUL 

LIFE OF IGBT  

The content of this chapter is based on M. S. Haque, S. Choi, and J. Baek, “Auxiliary Particle 

Filtering-Based Estimation of Remaining Useful Life of IGBT,” in IEEE Transactions on 

Industrial Electronics, vol. 65, no. 3, pp. 2693-2703, March 2018. 

 

3.1 Introduction 

The prognosis study of IGBT has been drawing interest in recent years to improve power 

electronics systems’ reliability to prevent unexpected failure. 42% of the power electronics 

system switches are IGBTs [14], [17], the second most vulnerable component motor-drive 

systems. According to the industry survey [18], the ratio of failure cost to the system cost for 

IGBT is around 80%. As the health condition of IGBT might degrade to failure within a very 

short time (~10 μs), scheduling the maintenance after the fault is not a feasible solution. Accurate 

RUL prediction is necessary to prevent system shutdown due to IGBT failures [19]. Estimating 

accurate RUL helps to schedule optimized maintenance for repairing and timely replacing faulty 

or degraded switches. Several studies have been conducted to identify the degradation 

mechanism and perform an accurate RUL estimation. The major degradation mechanism of 

IGBT is the die attachment degradation that results in wire-bond lift-off (WBLO) [20]-[21] and 

solder-fatigue [22]. The degradation can be observed using direct methods such as X-ray, 

Scanning Acoustics Microscopy (SAM) analysis. But these methods are offline, costly, and 
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destructive [23], [24]. Analytical methods have been widely developed based on the physics of 

failure mechanisms [15], [16], [18], [20]. However, analytical methods cannot address dynamic 

condition changes in the system and random noise, which results in a large variation in RUL 

estimation. 

The data-driven method has been developed by analyzing trajectories of fault precursors. 

This method requires little knowledge of internal IGBT structure and can be applied online, cost-

effectively, and non-destructive [24]-[25]. Moreover, this method shows the ability to adjust the 

degradation model according to varying operating conditions. Electrical parameters have shown 

a significant change in characteristics resulting from WBLO and solder fatigue [29], [31],[32]. 

Collector-emitter on-voltage (VCE,ON), collector current (IC), gate-emitter voltage (VGE), gate-

emitter threshold voltage (VGE,TH), thermal resistance, electrical resistance, switch turn-on (Ton), 

and turn-off (Toff) time are identified as fault precursors for wire-bond related faults. These 

signals show sensitivity to the IGBT degradation [29]-[38]. In [39], the degradation monitoring 

method is proposed by monitoring case temperature (TC) of IGBT modules in power converters. 

This method requires two thermal sensors for each IGBT at the interface between the baseplate 

and cold plate. The trajectory estimation and projection of these fault precursors are susceptible 

to large estimation variance because of measurement noise [27], [34]. 

To improve the accuracy in predicting the trajectories from highly noisy data, advanced 

nonlinear filters, including Kalman Filter (KF), Extended Kalman Filter (EKF), and Particle 

Filters (PF), have been extensively studied [39]-[44]. In [39], KF is used for the RUL estimation 

of IGBT. KF method shows better performance with a linear system and Gaussian noise. KF 

method shows a large variation in RUL estimation attributable to the high non-linearity of the 

IGBT degradation process. EKF is used to address the nonlinear system in [40]. First, EKF 
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performs linear approximation of nonlinear systems using the first two terms of the Taylor series 

and then applies the KF method for estimation. This method provides acceptable performance 

under limited non-linearity. EKF method results in a large variation in estimation when the 

system is highly nonlinear, or noise is non-Gaussian. But the system noise is not always 

Gaussian. PF method provides better estimation accuracy when either system is nonlinear or 

noise is non-Gaussian. In [41], Sequential Importance Resampling (SIR) PF method has been 

utilized for simulating trajectories of VCE,ON. SIR PF can address the degeneracy problem in SIS 

PF [45]. However, SIR PF shows a 21% variance in RUL estimation. This variance is attributable 

to the loss of particle diversity, known as sample impoverishment. This problem arises because 

of resampling at each step, resulting in all particles originating from a common particle. This 

sample impoverishment results in a large variation in estimation. This variation is due to a 

reduction in diversity in particle sampling [46]-[47]. 

Auxiliary particle filtering (APF) introduces the particles’ index as an additional variable 

for resampling, reducing sample impoverishment while increasing the samples’ diversity [46]-

[47]. Regularized particle filtering (RPF) and Rao Blackwell particle filtering (RBPF) also show 

similar capabilities. However, RPF requires an additional process for regularized resampling. It 

shows a greater root mean squared error (RMSE) than APF. RBPF method is more effective 

when the system’s dimension is greater than 2. This method operates by segmenting the system 

into linear sub-systems [47]-[50]. Nature-inspired evolutionary optimization techniques such as 

Cuckoo Search (CS) techniques have been applied for reducing particle degeneracy and retaining 

diversity in samples [51]. In [52], CS PF has been used in bearing tracking problems where the 

number of particles is 500. In [53], the improved CS PF technique has been used for video 

tracking.  This method shows better performance than generic particle filter and Particle Swarm 
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Optimization PF with more computation time. APF method is used for tracing and predicting 

RUL of IGBT with satisfactory precision and computation time. 

 

 

Figure 3.1 Cross-section of IGBT. 

 

In this dissertation, Auxiliary Particle Filtering (APF) is proposed to further improve RUL 

estimation accuracy compared to the existing RUL estimation methods. This method will show 

better estimation capability than SIS PF and SIR PF due to its ability to diversity preservation in 

samples. This proposed method will also utilize the simple slope-based method to identify the 

region when degradation is evident and apply the APF method to reduce computation time. This 

chapter is logically organized as follows: Section 3.2 addresses the suitable fault precursors for 

WBLO and solder- fatigue. The fundamentals of the PF filter are discussed in Section 3.3.  The 

proposed APF-based RUL estimation is described in Section 1.2. Section 3.4 provides 

experimental test results, which are followed by the conclusion in Section 3.5. 
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3.2 IGBT fault precursors 

1.1.7 Stress on IGBT 

Due to its capability to operate in high power density regions with high efficiency, IGBT 

has been widely used in power electronics applications [17], [20]. A cross-section of an IGBT is 

shown in Figure 3.1. IGBT is built by stacking different layers of copper and ceramic on the silicon 

(Si) base plate. SiO2 soldering has been applied to hold stacks together. Silicon chips of different 

IGBT units are interconnected using Aluminum (Al) wire [17],[19]. WBLO, die-solder 

degradation, gate-oxide degradation, and package delamination mechanism cause open phase 

faults. The root cause of these fault mechanisms is thermal stresses during operation. Almost 65% 

of IGBT faults are caused by high steady-state temperature and temperature cycling [18]. 

 The IGBT module materials such as copper, ceramic, and silicon have different coefficients 

of thermal expansions (CTE). IGBT is exposed to temperature cycling during operation, which 

results in mechanical stresses at die-joint and interconnections. These mechanical stresses 

eventually result in WBLO and solder fatigue [29]. Interconnection failure between Si die of 

different IGBTs is mainly due to WBLO [20]-[25]. Solder fatigue results from CTE mismatch and 

related physical stresses between different materials where cracks and voids are formed in solder 

adhesive between different stacks. WBLO and solder fatigue become dominant when IGBT 

operates under high frequency where heat generated during on-state cannot be removed during 

off-state. As a result, the steady-state temperature of a module increases. The temperature near the 

nominal characteristic temperature is more destructive than a similar variation in lower 

temperature [34]. 
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1.1.8 Fault precursors of IGBT 

The VCE,ON, IC, VGE, VGE,TH, Ton, and Toff are identified as fault precursors of IGBT along 

with junction temperature (TJ) [10]-[14],[17]-[18]. Although TJ is the most influential parameter 

for degradation, direct TJ measurement is invasive and thus, impractical. Several studies have been 

conducted for the non-invasive estimation of TJ [1], [17]-[24]. TJ’s estimation using temperature-

sensitive electrical parameters (TSEP) has been preferred as it is non-invasive and requires no 

additional hardware. But TSEP performance deteriorates when the switching frequency of IGBT 

increases. Case temperature is also used as a fault precursor. This method requires two sensors per 

IGBT [25] which is costly in implementation. VCE,ON shows more sensitivity to degradation  

 

 

Figure 3.2 Performance comparisons of the fault precursors of IGBT. 

 

compared to IC, VGE, and VGE,TH. VCE,ON changes significantly with aging while VGE,TH, and IC 

change insignificantly [19]-[21]. Moreover, VCE,ON shows better online measurement capability 

and accuracy than other parameters. VCE,ON increases regularly after it reaches 3% of the initial 
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value. Before that, VCE,ON increases irregularly and slowly. IGBT is considered faulty when VCE,ON 

increases 20% of its initial value [1,15, 20]. VGE,TH is an effective fault precursor for gate oxide 

failure. The ton and toff are used as the fault precursor in the short circuit failure of IGBT [17-18]. 

However, these parameters show insignificant sensitivity to WBLO and solder fatigue. The 

performance of different precursors is shown in Figure 3.2. It is evident from Figure 3.2 that VCE,ON 

is the most appropriate fault precursor for investigating WBLO and solder fatigue due to its 

sensitivity, accuracy, and online measurement capability. However, VCE,ON is subject to harsh 

industrial noise, which results in a great amount of uncertainty in RUL estimation. This proposed 

method precisely addresses how to minimize the estimation variance. 

3.3 Particle filtering 

1.1.9 Fundamental of RUL estimation 

Fundamental of the RUL estimation process using particle filtering methods in this 

proposed method is briefly depicted in Figure 3.3 with example. In Figure 3.3, cyan color shows 

the actual degradation trajectory of IGBT. At time n-1, the band of trajectories can be simulated 

using previous data and data-driven models. The blue line shows the band of trajectories. At time 

n, the data-driven model is updated when new data is available. Then, trajectories can be simulated 

using this updated model. These updated trajectories shown in maroon color show lower variance 

than the previous band of trajectories. The Bayesian tracking continuously updates estimation 

when the measurement is available to reduce RUL estimation variance. To further improve 

Bayesian tracking accuracy, APF can be applied, explained in detail in the following sections.  



 

20 

 

Figure 3.3 Prediction trajectories of the VCE,ON. 

 

1.1.10 Fundamentals of bayesian tracking 

The trajectory of VCE,ON can be estimated using the Bayesian tracking system as follows: 

 

( )n 1 n 1CE,ON ,pre,n CE,ON ,pre,V f V v− −+=  (3.1) 

 

 

( ) nCE,ON ,act ,n CE,ON ,pre,nV h V m+=  (3.2) 

 

 

(3.1) and (3.2) are state transition model and measurement model, respectively, where 

VCE,ON,act,n is measured VCE,ON at time n, VCE,ON,pre,n is predicted VCE,ON at time n, v is process noise, 

m is measurement noise, and n is an integer. These models are formulated from time-series data 

using Auto-Regressive (AR) method [47]. These models are updated when a new measurement is 

available. 
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The estimation of VCE,ON,pre,n based on VCE,ON,pre,n-1 and  VCE,ON,act,n-1 is a stochastic 

estimation problem due to presence of noise and is expressed as p(VCE,ON,pre,n|VCE,ON,act,n). This 

distribution is known as the posterior distribution and can be defined by the measurement noise, 

mn, and measurement model in (3.2). At time n=0, this probability is expressed as follows: 

 

 

( ) ( )CE,ON ,pre,0 CE,ON ,act ,0 CE,ON ,pre,0Vpp V V =  (3.3) 

 

If there is no prior knowledge available in (3.3), it may be chosen as a constant probability 

distribution. Then, distribution in (3.3) can be updated whenever a new measurement is available. 

Over time, this distribution will closely approximate actual p(VCE,ON,pre,n|VCE,ON,act,n) as shown in 

Figure 3.4. This approximation is known as importance density function, q(VCE,ON,pre,n|VCE,ON,act,n). 

 In the prediction step, VCE,ON,pre,n is predicted based on the previous measurement using the 

Chapman-Kolmogorov equation as follows: 

 

( )

( ) ( )

CE,ON ,pre,n CE,ON ,act ,n 1

CE,ON ,pre,n CE,ON ,pre,n CE,ON ,pre,n CE,ON ,act ,n CE,ON ,pre,n 11 1 1

p V V

V V V Vp V

|

p d−

−

−− −

=


 (3.4) 

 

       where p(VCE,ON,pre,n|VCE,ON,pre,n-1) is the transition probability distribution function (PDF) and 

p(VCE,ON,pre,n-1|VCE,ON,act,n-1) is the posterior PDF at time n-1. Transition PDF is defined by (3.1). 

In update step, p(VCE,ON,pre,n|VCE,ON,act,n) can be written using Bayes rule as follows: 

 

( )
( ) ( )

( )

CE,ON ,pre,n CE,ON ,act ,n

CE,ON ,act ,n CE,ON ,pre,n CE,ON ,pre,n CE,ON ,act ,n 1

CE,ON ,act ,n CE,ON ,act ,n 1

p

V

|

|

V V

p V V p V

p V |V

| −

−

=

 
(3.5) 
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where p(VCE,ON,act,n|VCE,ON,pre,n) is likelihood function and p(VCE,ON,act,n|VCE,ON,act,n-1) is 

normalizing constant. The normalizing constant is defined as follows: 

 

 

( )

( ) ( )
CE,ON ,act ,n CE,ON ,act ,n 1

CE,ON ,act ,n CE,ON ,pre,n CE,ON ,pre,n CE,ON ,act ,n 1 CE,ON ,pre,n

p

|

V V

p V V p V V V

|

| d

−

−= 
 (3.6) 

 

 

The following is found by putting (3.4) into (3.5), 

 

( )

( )
( )

( ) ( )

CE,ON ,pre,n CE,ON ,act ,n

CE,ON ,act ,n CE,ON ,pre,n
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CE,ON ,act ,n CE,ON ,act ,n 1
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p V V
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|
−− − −

−

=

 

 
(3.7) 

 

If (3.1) and (3.2) are linear and associated noises are Gaussian, posterior PDF, state 

transition PDF, and likelihood PDF are Gaussian. In this case, the integral in (3.7) can be computed 

analytically. Then, KF can trace the fault precursor’s trajectory precisely [42], [48]-[50]. If the 

system is slightly nonlinear and underlying noises are Gaussian, the EKF method approximates 

the system as linear using the Taylor series expansion. Then, KF can be applied to trace the 

trajectory of the fault precursor. However, EKF results in a more significant RUL estimation 

variation due to approximation for highly nonlinear systems [47]-[48]. For a highly nonlinear 

system or non-Gaussian noise, the integral in (3.7) cannot be computed analytically. In this case, 

the PF method can be applied to compute analytically intractable integral using the numerical 

method. 
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1.1.11 The particle filtering 

In PF, the posterior PDF is represented by the random samples, and associated weights, 

known as the importance of weight, are calculated as follows: 

 

( ) ( )CE,ON ,pre,n CE,ON ,act ,n CE,ON ,pre,n C

N
i i
n E,ON ,pre,n

i 1

p wV V V V| 
=

 −  (3.8) 

 

where ( )  is Dirac-Delta function, wi
n is importance weight of ith sample at time n, and i is the 

index of ith sample drawn from posterior PDF. These random samples are known as particles. 

The importance weight of particles is computed using the importance sampling principle [48]. 

 

 

Figure 3.4 Evolution of p(VCE,ON,pre,n|VCE,ON,act,n) over time. 

 

1.1.11.1 Computation of importance weights 

The importance weight of the ith particle is defined as follows:  

 



 

24 

( )
( )

CE,ON ,pre,n CE,ON ,act ,n

CE,ON ,pre,n CE,ON ,act ,n

i

i
n i

p |
w

V V

Vq V|
  (3.9) 

 

 

where Σiwn
i=1. In Figure 3.5, importance weight is the ratio of posterior probability and 

importance probability at that point. The importance PDF is the Gaussian approximation of non-

Gaussian PDF. The importance PDF can be analyzed as follows: 

 

( )
( ) ( )

i
CE,ON ,pre,n CE,ON ,act ,n

i i
1

i
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The numerator in (3.9) can be analyzed as follows: 
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 Putting (3.10) and (3.11) into (3.9), the importance weight can be expressed as follows: 
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(3.12) 
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where 

 

( ) ( )
( )

CE,ON ,act ,n CE,ON ,pre,n CE,ON ,pre,n CE,ON ,pre,n 1

CE,ON ,pre,n CE,ON ,pre,n 1 CE,ON ,act ,n 1

n

| |p V V p V V

q V
w

V| ,V

−

− −

=  (3.13) 

 

where w is incremental importance weight. This incremental importance weight is computed at 

each step. In (3.12), importance weight is estimated using a recursive method. This PF method is 

known as SIS PF. SIS’s advantage is reducing the computational burden by evaluating incremental 

importance weight instead of evaluating the importance weight’s whole expression.  

 

 

Figure 3.5 Weight calculation from posterior PDF and the importance PDF. 

 

However, variance increases along with the number of iterations in this method because of weight 

degeneracy. This variance increase eventually results in the process of power wastage. 

 



 

26 

1.1.12 Resampling 

The resampling step is introduced in the SIS algorithm to overcome weight degeneracy. 

The resampling step’s basic principle is duplicating particles with higher weights and eliminating 

particles with lower weights so that every particle’s weight becomes the same, as shown in Figure 

3.6. Based on this principle, (3.8) can be written as follows: 

 

( ) ( )r

N
i

i 1
CE,ON ,pre,n CE,ON ,act ,n CE,ON ,pre,n CE,ON ,p e,np V V V

1
V|

N


=

 −  (3.14) 

 

This method is called Sampling Importance Resampling (SIR). As the resampling step is 

computationally costly, this step is conducted when the number of high-density region particles 

is less than the effective number of particles, Neff. In the resampling step, high-weighted particles 

are duplicated, and low-weighted particles are discarded. Most of the particles are originated 

from high weighted particles after some resampling steps. This phenomenon is known as sample 

impoverishment. The sample impoverishment is attributable to a lack of diversity in particles, 

resulting in a significant estimation variation. 

1.2 Proposed condition-based auxiliary particle filtering for precise RUL estimation 

Particle filter has been the emerging methodology to improve tracing and prediction of 

trajectory. PF method faces sample-degeneracy and sample-impoverishment results in a 

significant variation in RUL estimation. Those problems can be sufficiently mitigated by an 

auxiliary particle filter (APF). In this study, APF is proposed for the RUL estimation of IGBT. 
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1.2.1 Auxiliary particle filtering 

In APF, the index of the sampled particles has been introduced as an auxiliary variable. 

This auxiliary variable increases the dimensionality of the particle, which helps to reduce variation 

in estimation. APF method takes samples to show that particles that show better compatibility with 

the next measurement have a better chance of survival [47]. For this, APF takes the samples in 

pairs {VCE,ON,pre,n
i,ji} instead of VCE,ON,pre,n where, j is the ith particle’s index at n-1. 

 The joint probability of pair {VCE,ON,pre,n
i,ji} which is  proportional to the product of state 

transition PDF, p(VCE,ON,act,n|VCE,ON,pre,n) and importance weight of these particles. Such a 

relationship can be expressed as follows: 

 

( ) ( ) ( )CE,ON,pre,n CE,ON,act ,n CE,O
i

N ,act ,n CE,ON,pre,n CE,ON, E
i

n 1 n 1pre,n C ,ON,pre,p V , j V p V V| | p |V V w− −  (3.15) 

 

 In APF, first, the particles are drawn from this joint probability, and then, the index is 

discarded to sample from marginal PDF, p(VCE,ON,pre,n|VCE,ON,act,n). The particles are drawn from 

the importance PDF due to the non-Gaussian nature of this marginal PDF. The importance PDF, 

q(VCE,ON,pre,n,j
i|VCE,ON,act,n) can be expressed as follows: 

 

( ) ( ) ( )CE,ON ,pre,n CE,ON ,act ,n CE,ON,act ,
i

n CE,ON,pre E
i i

pn n 1 n,n C ,ON, , 1req V , j V V V| q | |Vq w − −  (3.16) 

 

 

            

where μn is mean of q(VCE,ON,pre,n|VCE,ON,act,n) which is defined as follows: 

 

( )n CE,ON ,pre,n CE,ON ,act ,nV|E q V =  
 

 (3.17) 
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Figure 3.6 Resampling step in the particle filter. 

 

Putting (3.15) and (3.16) in (3.9), the ith particle’s importance weight can be computed as follows: 

 

( )
( )

CE ,ON ,pre,n

n
n

i
CE,ON ,act ,n

CE,ON ,act ,n

p |

w
Vq

V V

|
  (3.18) 

 

1.2.2 Remaining useful life estimation  

 The algorithm of APF-based RUL estimation is shown in Figure 3.7. The models (3.1) and 

(3.2) are built from IGBT experimental data, and a suitable importance PDF is chosen. According 

to these models and importance PDF, VCE,ON is predicted. These predicted values are compared 

with VCE,ON,act, and models are adjusted according to such measurement. N number trajectories of 

VCE,ON are simulated according to these adjusted models. RUL is estimated by calculating the time 

taken to reach to critical value from these trajectories. RUL at time n is calculated as follows: 
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n fRUL n n= −  (3.19) 

 

where RULn is RUL estimated at time n, nf is the time to reach the critical VCE,ON of fault precursor 

from the present time n.  In Figure 3.8, RUL estimation is depicted at time n. For each particle, a 

trajectory of a fault precursor can be simulated. For 1st particle, RUL is RULn
1=n1-n; for Nth particle, 

RUL is RULn
N=nN-n; and for actual RUL is RULr=nr-n; where nr is the time when IGBT under 

test failed. 

The state transition model and the measurement model can be updated using the sampling 

instance’s AR method. The projection of the trajectory is modified according to these updated 

models. It is observed that when IGBT enters a new region, the resampling step takes place 

frequently. After that, APF continues tracking trajectory with almost all the particles in the high-

density region. During this period, particles have practically equal weight. Thus, the weights of 

particles are considered equal for simplification in (3.20). 
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Figure 3.7 The Auxiliary Particle Filtering based RUL estimation algorithm. 

 

 The error in RUL estimation is the yardstick for performance comparison. Usually, Mean 

Absolute Error (MAE) is used when the error is constantly distributed, where RMSE is used when 

the error distribution is not constant. Moreover, RMSE takes the effect of outliers into account 

where MAE nullifies the effect of outliers. Because of these advantages, RMSE is more applicable 

to this study. The error in RUL estimation is calculated as follows: 
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( )
N 2

i

r

N 1

1
Error RUL RUL

N =

= −  (3.20) 

 

where RULr is the actual RUL, RULi is the RUL estimated for ith particle drawn from the importance 

density function.  

 

 

Figure 3.8 RUL estimation at time n. 

 

1.2.3 Condition-based application of APF  

To further improve the accuracy in APF based RUL estimation, APF is applied based on the 

approximated condition of IGBT. The degradation and condition of IGBT and resultant change of 

VCE,ON is categorized into three regions- healthy region, constant increase region, and exponential 

increase region, described as follows: 
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1) Region 1 (Healthy region): When a new IGBT starts operation, change in VCE,ON is very 

insignificant. The slope of the trend line of VCE,ON in this region is almost zero. The state transition 

equation in this region can be expressed as follows: 

 

CE,ON,pre,n CE,ON,pre,n 1 n 1V V v− −= +  (3.21) 

 

The initial PDF of VCE,ON,pre,0 is p(VCE,ON,pre,0)~N(1.95,0.12) where the p(v0)~N(0,0.12). The mean 

value of p(VCE,ON,pre,0) is on-state voltage of IGBT from data sheet. 

 

2) Region 2 (Constant change region): VCE,ON increases linearly in this region. This region 

indicates degradation in IGBT. The slope of the trend line in this region is positive, but the slope 

change is zero or insignificant. The state transition equation in this region can be expressed as 

follows: 

 

CE,ON,pre,n CE,ON,pre,n 1 n 1V V a n v− −= + +  (3.22) 

 

where a is the slope of the trend line. The coefficients of the most appropriate trend-line are 

estimated using the previous 20 points. The initial PDF of process noise in region 2 is N(0,0.14). 

 

3) Region 3 (Exponential change region): VCE,ON increases exponentially in this region and reaches 

a critical value which indicates switch failure. The slope of the trend line is rapidly changing in 

this region. The state transition equation can be expressed as follows: 
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( )
p

p
CE,ON ,pre,n CE,ON ,pre,n l n 1

l 1

1
V V exp b c n v

l
− −

=

 = + +
    (3.23) 

 

where b and c are the coefficients of the AR model and l is the backward data. According to 

Markov’s assumption, l is set at 1. For l=1, p=1 and c=0. The value of b is estimated using the 

minimum Akaike Information Criterion (AIC). The initial PDF of process noise in region 3 is 

N(0,0.15). The measurement model for IGBT is as follows: 

 

( )l
CE,ON,act ,n CE,ON,pre,n nV l d V m= − +  (3.24) 

 

where d is the constant, which is dependent on the AR model. The one-step prediction model is 

used, which gives l=1 and d=0. The PDF of the initial measurement noise is N(0,0.34). IGBT 

remains in region1 until VCE,ON  increases 2% of the initial value. It shows a constant rise in VCE,ON 

up to 5% of the initial value, and then it enters region three, where VCE,ON increases exponentially. 

In this study, APF is applied based on this segmentation of VCE,ON trajectory. 

The noise distribution is assumed Gaussian under the central limit theorem. The central 

limit theorem suggests noise can be modeled as Gaussian noise when the number of particles is 

greater than 30. This assumption improves computation time and provides equivalent performance 

in RUL estimation. 
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Figure 3.9 Schematic diagram of the experimental setup. 

 

  

Figure 3.10 Temperature swing during the power cycling test. 
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3.4 Experimental test 

1.2.4 Experimental environment 

The experimental test is performed to verify the performance of the proposed APF-based 

RUL estimation. Power cycling tests are performed on IGBT to identify WBLO and solder fatigue 

mechanisms.  The block diagram of the test setup is shown in Figure 3.9. The testbed includes a 

DC power supply, driver circuit, and resistive load. The switching of IGBT is controlled by a gate 

driver circuit that utilizes TI-DSPF28335. TC is acquired using k type of thermocouple and VCE,ON 

is monitored using a differential voltage probe. IGBT is subject to temperature cycling during the 

power cycling test that emulates IGBT’s stress in industrial applications, as shown in Figure 3.10. 

When TC reaches 150oC, switching is stopped so that IGBT is cooled down to 25oC. This 

temperature-dependent process is automated using the TI DSP. VCE,ON  ̧ IC, and TC are acquired 

using NI DAQ USB 9001. These tests are carried out on IGBT (model number: FS30R06W1E3) 

from Infineon Technologies. The break-down voltage of these IGBTs is 600 V, and the maximum 

current is 20 A. The experiments are conducted at voltage level 60 V and current 30 A. 

 The test is conducted with seven sets of IGBTs under similar operating conditions. Each 

of these sets comprises 6 IGBTs. 35 IGBTs are used for formulating the empirical model and PDF. 

The remaining 7 IGBTs are used for validation of the proposed RUL method. 100 iteration of the 

Monte Carlo (MC) simulations are conducted. In this study, only the median trajectories are 

shown. The number of effective particles is set at 80% of the total number of particles so that 

acceptable performance in RUL estimation is achieved with reasonable computation time. 
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1.2.5 Experimental results 

1.2.5.1 Scanning electronic microscopic (SEM) imaging of the IGBT under 

degradation 

Figure 3.11 shows the SEM image of IGBT1 before and after the power cycling test under 

the conditions. The wire-bond status before and after the power cycling test is shown in Figure 

3.11 (a) and (b), respectively. Figure 3.11 (c) shows that the lift-off area’s zoomed picture in Figure 

3.11 (b). 

 Under the testing conditions, the estimated RUL using the SIR PF method is 73 hours for 

30 particles. IGBT failed after 60 hours of operation. This method shows a variation of up to 21.6 

% in RUL estimation. In the following sections, the proposed APF method is applied for the RUL 

estimation, which will clearly show the improvement in RUL estimation for IGBT. 

 

  

Figure 3.11 (a) Before the test, (b) After the test, and (c) Zoom of WBLO area. 

 

1.2.5.2 Change of VCE,ON under degradation 

VCE,ON trajectories for seven IGBTs is shown in Figure 3.12. The critical VCE,ON is 2.5 V 

which is a 20% increase from a mean of initial VCE,ON. The slope of the trend line for IGBT1 is 

calculated for every 20 data points and plotted as shown in Figure 3.13. It is observed that the 
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slope of the 20th trend line is near zero. A positive slope can be observed between the 21st to 40th 

trend lines with an insignificant slope change. From 41stto 60th trend line, the slope is positive and 

changes faster in region 3. The segmentation of the whole trajectory into three regions is shown in 

Figure 3.13. It is observed that region 1 extends up to VCE,ON increasing by 2.5-3%, IGBT remains 

in region two until  VCE,ON increases by 5-6% from the initial value, and then, it enters region 3. 

 

1.2.5.3 RUL estimation using APF method 

30-particle SIR PF and APF methods are applied to VCE,ON from IGBT1 shown in Figure 3.14. 

RMS error is 22% and 17.8% for 30- particle SIR PF and APF, respectively. Simulated trajectories 

for the different numbers of particles are shown for APF and SIR PF in Figure 3.15 (a) and (b), 

respectively. For a 100-particle APF, the simulated trajectory is sufficiently close to the actual 

trajectory with low variance. 

 

 

Figure 3.12 VCE,ON with time for seven IGBTs. 
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Figure 3.13 The slope of the trend line of the VCE,ON. 

 

 

Figure 3.14 APF filter and SIR PF trajectory of VCE,ON for IGBT1. 

 

RMS error decreases in line with the increase in the number of particles for both APF and SIR PF. 

However, APF shows a better performance than SIR PF. RMS error for APF and SIR PF is shown  
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Figure 3.15 APF Trajectory when VCE,ON is in region 3. 

 

 

Figure 3.16 Error in RUL estimation for (a) APF and (b) SIR PF when estimation process starts 

in region 3. 

 

Figure 3.17 Comparison of % error in RUL estimation. 
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in Figure 3.15 (a) and (b), respectively, when applied in region 1. The average RMS error drops 

from 29% to 7% for APF when the number of particles is increased from 10 to 100.  However, the 

variance is further reduced when APF is applied while VCE,ON reaches  5% of the initial value (in 

region3). 

 When the APF method is applied in region 3, the initial value p(v0) is N(0,0.15). RMS error 

in RUL estimation drops almost 80% for a 10-particle APF. In Figure 3.15, the median APF 

simulated trajectory of VCE,ON for IGBT1 is shown. RMS error for APF and SIR PF is shown in 

Figure 3.16 (a) and (b), respectively, when applied in region 3. In Figure 3.17, it is shown that the 

average RMS error is reduced significantly when APF is used in region three instead of region 1. 

 

1.2.5.4 Effect of noise on APF-based RUL estimation 

Particle filtering needs both process noise and measurement noise for its operation. Both 

the state transition equation and measurement equation lose their stochastic nature without 

process noise and measurement noise. For measurement noise, the percentage error in RUL 

estimation decreases with increasing process noise and increases as process noise increases. For 

process noise, the % error in RUL estimation always increases with the rise in measurement 

noise. The APF and SIR PF performance are shown in Figure 3.18 (a) and (b), respectively, 

under different process noise and measurement noise for 100 particles.  It is observed from 

Figure 3.18 (a) that at a very low level of process noise, RUL estimation error is high, 

irrespective of the level of measurement noise. The percentage error in RUL estimation is around 

8% when the standard deviation (SD) of measurement noise and process noise is less than 0.8 V 

and within 0.05 V to 0.25 V, respectively.  Figure 3.18 (b) shows that RUL estimation error can 

go as low as 13% for SIR PF. Thus, APF performs better than SIR PF under process and 
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measurement noise. Comparing performance in % error in RUL estimation and computation time 

for Gaussian and exponential PDF family modeling of existing measurement noise is shown in 

Figure 3.19 (a) and (b), respectively. It is observed from Figure 3.19 (a) and (b) that when the 

number of samples is greater than 30, the percentage error in RUL estimation is comparable. 

RMS error decreases in line with the increase in the number of particles for both APF and SIR 

PF. However, APF shows a better performance than SIR PF. RMS error for APF and SIR PF is 

shown in Figure 3.15 (a) and (b), respectively, when applied in region 1. Thus, the average RMS 

error for APF drops from 29% to 7% when the number of particles is increased from 10 to 100.  

However, the variance is further reduced when APF is applied while VCE,ON reaches  5% of the 

initial value (in region3). 

 

 

Figure 3.18 (a) Performance of the APF and (b) Performance of SIR under the different 

process and measurement noise for 100 particles. 
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Figure 3.19 Comparison of (a) % error in RUL estimation and (b) computation time for 

Gaussian and non-Gaussian noise in APF based RUL estimation. 

 

 

3.5 Conclusion 

This study introduces a high accuracy RUL estimation method of IGBT based on APF. It shows 

that the proposed APF method demonstrates superior performance compared to SIR PF in RUL 

estimation. It indicates that RMS error in RUL estimation decreases from 22% to 17.8% when 

APF is applied. Based on the application of APF, it shows that the trajectory of VCE,ON can be 

segmented into three regions. Region 1 shows a constant tendency, while region 2 shows a linear  

increasing tendency.  Region 3 depicts the exponential increase of VCE,ON. It indicates that RUL 

estimation using the APF method can be significantly improved by applying APF when VCE,ON 

enters region 3. It also shows that the APF method’s performance can be improved up to 80% in 

RUL estimation when applying to region three compared to region 1. With its capability to 

reduce particles and increase diversity in samples with low computation time, the proposed 

method can be applicable for accurate RUL estimation of other power switches in the industry.
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CHAPTER IV 

SPARSE KERNEL RIDGE REGRESSION ASSISTED PARTICLE FILTER BASED 

REMAINING USEFUL LIFE ESTIMATION OF CASCODE GAN FET 

The content of this chapter is based on M. Haque and S. Choi, “Sparse Kernel Ridge Regression 

Assisted Particle Filter based Remaining Useful Life Estimation of Cascode GaN FET,” in IEEE 

Transactions on Industrial Electronics, doi: 10.1109/TIE.2020.3000126. 

4.1 Introduction 

Wide bandgap devices such as cascode GaN FETs are a promising solution for high power, 

high frequency harsh industrial applications [51]-[53]. However, its reliability has not been 

thoroughly tested in a modern power electronics system. Power switches in emerging applications 

are increasingly subjected to dynamic and harsh operations, leading to fast changes in a device’s 

health condition [54]-[55]. The harsh noise environment in the emerging application makes it 

challenging to accurately identify the condition and make a precise RUL estimation. Existing 

studies on health monitoring and RUL estimation have addressed these issues in a limited scope. 

State-of-the-art requires an exhaustive number of samples and system memory to overcome these 

issues. They also suffer sample impoverishment and particle degeneracy [57]-[59].   

 Various recursive Bayesian filtering methods (e.g., Kalman Filter (KF), particle filtering 

(PF)) have been applied for the RUL estimation [59]-[62]. The performance of KF is dependent 

on the nature of the system and the noises. KF shows a significant variance when the trajectory is 

nonlinear or the noise is non-Gaussian [59]. Although generic PF offers better performance than 
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KF methods, it suffers large significant RUL estimation error due to particle-degeneracy and 

sample impoverishment. APF method introduces the particle index as a new variable to reduce the 

adversity of sample impoverishment. The APF based RUL estimation method experiences reduced 

efficiency when the sample size is small, and the process noise is large. The APF method is also 

highly computationally intensive [63]-[67]. Support vector regression (SVR) PF method utilizes 

SVR for the sample re-weighting to achieve high robustness against process noise [64]. The 

prediction speed of SVR is not significant during the updating stage of PF as many samples are 

required in the prediction step. Also, these PF methods model the trajectory and its change-point 

locations are based on historical life-testing data. The accuracy of these methods under harsh noise 

environments depends on the number of samples. Even though those conventional approaches 

significantly improved RUL estimation, it must be further investigated to be applied under a 

dynamic change in health conditions. Since a sudden shift in the health condition is critical in 

industrial applications, change-point location identification is essential for accurate trajectory 

tracing.    

When the operating condition of a system, including ambient temperature, frequency, 

voltage, current, cooling conditions, etc., changes abruptly, the junction temperature in the FET 

could experience a significant variation. This junction temperature variation will lead to a 

substantial change in the switch degradation rate and lifetime. These substantial changes in 

degradation rate result in new change-point locations different from the change-point location 

under steady operating conditions. Thus, current RUL estimation methods cannot trace the fault 

precursor’s changed trajectory and result in a significant RUL estimation variation. This sudden 

change in trajectory is common in industrial applications and results in substantial RUL estimation 

errors if not addressed. Sparse kernel ridge regression (SKRR) maps the particles into the higher 
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dimensional feature space to bring significant samples’ significant sparsity. The number of kernels 

in SKRR is not limited by Mercer’s condition [66]-[68]. This SKRR method is an effective tool to 

detect a shift in the change-point locations and trace the changed trajectory with a minimum time 

lag. As the degradation rate is higher at the end of the lifetime, a higher prediction speed is required 

to predict accurate RUL and generate the warning signal before the switch fails. The SKRR could 

increase the prediction speed and accuracy and address the sudden change in the RDS,ON trajectory.  

In this study, an improved PF, SKRR-PF, is proposed for the accurate hybrid trajectory 

tracing and RUL estimation of cascode GaN FET. The proposed method provides robustness to 

the process and measurement noise, even when the sample size is small under a steady-state or 

dynamic (abrupt) change in the health condition of the GaN FET. This chapter is logically 

organized as follows: Section 4.2 discusses the structure and failure mechanisms in cascode GaN 

FET. Section 1.3 discusses SKRR-PF based RUL estimation. Section 4.3 provides experimental 

verifications, followed by the conclusion. 

4.2 Structure and failure mechanisms of cascode GaN FET 

RDS,ON trajectory of cascode GaN FET changes with aging and harsh operation, leading to 

degradation. The change in the RDS,ON  trajectory, is due to unique degradation characteristics of 

cascode GaN FET which is different from other types of semiconductor power switches. RDS,ON 

measurement, is challenging due to these unique degradation characteristics of cascode Gan FET, 

harsh noise, and dynamic operation in real-world applications. A brief discussion on the cascode 

GaN FET structure is presented in this section to understand its unique degradation mechanisms 

and RUL estimation challenges. 
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1.2.6 Structure of cascode GaN FET 

Cascode GaN FET combines a simple fabrication process and a higher breakdown voltage 

of the D-GaN FET with the simple switching circuitry of low voltage Si MOSFET [57]-[58]. The 

cascaded structure of GaN FET is shown in Figure 4.1 (a) and (b). The internal structure of the 

GaN high electron mobility transistor (HEMT) is shown in Figure 4.1 (c). A GaN layer is 

fabricated on a Si substrate with a very thin AiN isolation layer in-between [69]-[71]. When the 

AlGaN layer is stacked on the GaN layer, the difference in their bandgap results in two infinitely 

charge-sheets due to spontaneous and piezoelectric polarization effects. These polarization charge 

sheets create an induced electric field that attracts the electron in the GaN layer and forms a two-

dimensional electron gas (2DEG). The velocity of the electrons is dependent on the operating 

condition of the system, especially voltage and temperature. The abrupt change in operating 

conditions results in a dynamic change in the velocity of these electrons. Under normal operating 

conditions, these high-velocity electrons in 2DEG collide with the atoms at the junction surface 

and create cracks at the junction. 2DEG electrons are trapped in these cracks, which causes the 

change in on-state resistance [72]-[75]. A sudden unexpected shift in operating conditions causes 

a change in these electrons’ velocity, resulting in an unexpected and abrupt change in the RDS,ON 

trajectory. If these tendencies are not addressed in the RUL estimation method, it will result in a 

significant RUL estimation error. 

RDS,ON measurement of the cascode GaN FET, is challenging due to the harsh noise and 

unique RDS,ON characteristics of GaN FET. As there are a few studies on the cascode GaN FET’s 

reliability, their challenges are not addressed from the RUL estimation point. RDS,ON of GaN HEMT 

is modeled as bias independent series contact resistance and channel resistance, as follows:  
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( ) /,R R L L L W RDS ON se SG G GD G ch= + + +     (4.1) 

 

where Rse is the series contact resistance, Rch is the contactless channel resistance, LSG, LG, LGD 

are the source-gate, gate, and gate-drain length, respectively, and WG is the gate width. The series 

contact resistance comprises source contact resistance (Rs) and drain-contact resistance (Rd). 

Contact resistance does not show significant sensitivity to material degradation. For this reason, 

(4.1) is written as follows: 

 

( ) /,R R L L L W RDS ON se SG G GD G ch= + + +     (4.2) 

 

Channel resistance is a function of the current through the channel and depth of the 

cracks. The electron trapping effect mainly dominates change in this resistance in cascode GaN 

FET. These trapped electrons result in dynamic RDS,ON during switching of  GaN HEMT, as 

shown in Figure 4.2. RDS,ON is also dependent on the number and depth of cracks formed at the 

boundary GaN and AlGaN. More electrons are trapped in these cracks at the beginning of on-

state, and RDS,ON increases. Then it decreases and converges to its static value. The convergence 

time depends on the electron de-trapping time constant. Si MOSFET’s RDS,ON does not show 

dynamic characteristics and converges to its static value immediately after switching on [64]. 

Therefore, dynamic RDS,ON of the cascode GaN FET is due to the structure of GaN HEMT. 
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Figure 4.1  (a) Cascode GaN FET, (b) the symbol of cascode GaN FET and (c) internal 

structure of GaN HEMT. 
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If the dynamic nature of the GaN HEMT’s dynamic RDS,ON is not addressed, it would result 

in erroneous RUL estimation. RDS,ON  of the cascode GaN FET is measured when dynamic RDS,ON  

sufficiently converges to its static value to address this challenge. 

 

 

Figure 4.2 On-state resistance of GaN FET. 

 

1.2.7 Failure mechanisms in cascode GaN FET 

This study focuses on precisely estimating the RUL of the cascode GaN FET based on the 

degradation of sensitive RDS,ON trajectory under dynamic system operation. RDS,ON  of cascode GaN 

FET primarily increases with the cracks at the junction of GaN and AlGaN layer, wire-bond 

connection degradation, and solder fatigue.  

During operations, cascode GaN FETs experience thermo-mechanical stresses due to 

crystal mismatch between Si and GaN FET [74]. This mechanical stress results in solder fatigue, 

crack propagation, wire-bond cracks, leading to the wire-bond lift-off. Each layer junction and the 

connection between wire-bond and soldering experience mechanical stress due to the mismatch of 
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the coefficient of thermal expansion (CTE) between layers. This stress results in cracks and 

breakdown of the junction and wire bonds. Hot electron and inverse piezoelectric effects are 

dominant mechanisms as these are highly dependent on the operating condition. When a system’s 

condition changes suddenly, these effects result in a higher rate of degradation, resulting in an 

abrupt change in the RDS,ON trajectory.  

When the operating condition is stable, the degradation path follows the modeled trajectory 

with a predictable change-point. However, if the operating condition changes unexpectedly, the 

trajectory of the RDS,ON experiences sudden change from its modeled trajectory. State-of-the-art 

RUL estimation methods for traditional semiconductor switches do not address this unique 

characteristic of the cascode GaN FET and sudden changes in the operating condition. Thus, they 

are not effective for the RUL estimation of the cascode GaN FET. The proposed SKRR-PF method 

utilizes the customized RDS,ON measurement technique and hybridizes SKRR and PF’s benefits to 

detect the unknown change-points when the operating condition changes fast for efficient RUL 

estimation. 

 

1.3 Sparse kernel ridge regression assisted particle filter based remaining useful life 

estimation 

State-of-the-art RUL estimation methods have statistically modeled the RDS,ON trajectories 

based on the historical accelerated life testing data of the cascode GaN FET. Although these 

methods can trace the nonlinear trajectory, their ability to trace a trajectory under the dynamic 

operating condition is limited. The proposed SKRR PF-based RUL method shows the ability to 

trace the nonlinear fault precursor trajectory under steady and dynamic conditions. RDS,ON trajectory 

of cascode GaN FET, shows a nonlinear trajectory over its life. The proposed RUL estimation 
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method introduces an improved variation of PF for trajectory tracking and projection. This PF 

method utilizes a fast and low computational SKRR based resampling method to overcome the 

sample impoverishment and particle-degeneracy problems of the generic PF method. In this 

section, SKRR-PF based RUL estimation of cascode GaN FET is described as follows:  

1.3.1 State-space model  

The degradation of cascode GaN FET increases RDS,ON. The evolution of RDS,ON to time is 

modeled as follows: 

 

2
, 0( ) exp( )ds onR t R bt ct d= + +  (4.3) 

 

The discrete form of (4.3) is as follows: 

 

2
, , 1( ) ( 1) [ ( )exp( ( ) ( ) )] ( )ds on ds onR k R k a k k b k kc k d k w k= − +  + +  +    (4.4)  

 

where 

 

2( ) [ ( ) ( )] ( 1) ( )a k b k k c k R k w k=  + − +  (4.5) 

 

 

3( ) ( 1) ( )b k b k w k= − +  (4.6) 
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4( ) ( 1) ( )c k c k w k= − +  (4.7) 

 

(4.4)-(4.7) are the state transition equations of the system. RDS,ON(k), a(k),b(k), and c(k) are 

the state variables, Δk is the acquisition time difference between two samples and w1(k), w2(k), 

w3(k) and w4(k) are the process noises of (4.4)-(4.7), respectively. w1(k), w2(k), w3(k) and w4(k) are 

defined as N(0,σ1
2), N(0,σ2

2), N(0,σ3
2), and N(0,σ4

2), respectively where σi is the standard deviation 

of the ith process noise. The measurement equation is as follows: 

 

,( ) ( ) ( )ds ony k R k m k= +  (4.8) 

 

where y(k) is the measured RDS,ON, and m(k) is the associated measurement noise. The state and 

measurement equations are stochastic processes due to the presence of noises. The recursive 

Bayesian estimation methods, such as Kalman filter, PF methods, are widely used to estimate 

stochastic systems. Kalman filter is suitable for the linear system and Gaussian noise. PF methods 

show better performance for non-linear systems and Gaussian/non-Gaussian noises. In the 

following section, the fundamental of Generic PF method is explained. 
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Figure 4.3 Fundamental of Monte Carlo Simulation in RUL estimation. 

 

1.3.2 Generic particle filtering method   

Generic PFs utilize the Bayesian recursive filtering (BRF) framework based on the Monte 

Carlo simulation. The principle of Monte Carlo Simulation is shown in Figure 4.3. PF RUL 

estimation works in two steps: prediction and update [62]-[63]. In the prediction step, RDS,ON(k) is 

estimated using state equations. In the update step, this RDS,ON(k) are corrected and updated based 

on measured y(k). The objective of the PF method is to find out the posterior PDF, 

p(RDS,ON(k)|y(1:k)) based on state transition PDF p(RDS,ON(k)| RDS,ON(k-1)) and prior PDF, 

p(RDS,ON(k)|y(1:k-1)). At k=0, the posterior distribution is as follows: 

 

( ) ( )( ), ,| ( (0))0 0DS ON DS ONp Rp R y =  (4.9) 

 

where p(RDS,ON(0)) is the RDS,ON PDF before accelerated testing.  RDS,ON(k) is predicted based on 

the previous measurement using the Chapman-Kolmogorov equation as follows: 
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According to Bayes rule, posterior PDF is updated as follows: 
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where p(y(k)|RDS,ON(k)) is the likelihood function and p(y(k)|y(k-1)) is the normalizing constant. 

For a linear system and Gaussian white noise, KF traces the system if it has an analytical form 

(4.11). KF shows large variance when the system is nonlinear with noise, as in this case, (4.11) 

does not have an analytical form. Particle filters utilize the Monte Carlo-based numerical 

integration method for the solution of (4.11) to trace non-linear trajectories with non-Gaussian 

noise.  In generic PF, posterior PDF is modeled as the product of random samples and associated 

weights as follows: 

 

( ) ( )( ) ( ) ( ) ( )( )
N

i i
DS ,ON DS ,ON DS ,ON

i 1

R k | y 1 : k w k R k R kp 
=

 −  (4.12) 

 

where δ(.) is the Dirac-Delta Function, wi(k) is the ith sample's weight. In generic PF, the weight 

of a particle is estimated using importance sampling as follows: 
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where q(RDS,ON
i(k)|y(k)) is the importance PDF. The importance sampling draws random samples 

from the high-density region of the PDF. These weights are estimated recursively as follows: 

 

, , ,
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( ( ) | ( )) ( ( ) | ( 1))
( ) [ ( 1) ]

( ( ) | ( 1))

DS ON DS ON DS ON

DS ON DS ON

p y k R k p R k R k
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−
 −

−
 (4.14) 

 

The generic PF method suffers from significant sample degeneracy due to a significant 

mismatch of the shape of p(.) and q(.) in (4.14). This mismatch results in low-weight samples and 

wasted computational power. Moreover, this generic PF method shows a significant variation in 

RUL estimation. Also, it shows a prolonged response to the abrupt change in operating conditions 

as generic PF cannot detect the change-point inherently when there is a sudden change in 

trajectory. The resampling is introduced in the PF method to overcome the sample degeneracy 

problem. The resampling step is conducted to reduce the computational burden when the number 

of particles reduces below the effective number of particles (Neff). The particles with higher weights 

are duplicated, and the particles with lower weights are discarded in this step. As a result, all the 

particles are originated from the high-density region and create a sample impoverishment problem. 

The particle’s index is used as an additional variable to address the drawbacks of PF. This 

additional variable increases the particles' dimensionality and avoids sample impoverishment [65]-

[68]. This additional information on the sample increases the tracing accuracy of the particle under 

stable operating conditions. However, their performance has not been validated under dynamic 

operating conditions. In this study, a PF method is proposed using SKRR based prior PDF 

construction for RUL estimation of cascode GaN FET. SKRR provides an analytical form of the 

posterior PDF and improves the speed and efficiency of the RUL estimation method compared to 

standard PF methods. Moreover, the inherent change-point detection property of SKRR enables 
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this system to address the abrupt change in operating conditions and the associated change in 

trajectory. 

1.3.3 Sparse kernel ridge regression-based resampling 

Multi-collinearity causes a significant variation in RUL estimation in the Generic PF. KRR 

method reduces the variance by trading off bias [76]-[29]. It also utilizes the geometric method for 

the modeling of the PDF. The posterior PDF is modeled as the linear mixture of the kernel 

functions as follows: 

 

( )( ) ( ) ( )( ) ( ) ( )( )
iN

i i
DS ,ON DS ,ON i DS ,ON

i 1

f R k p R k | y k k K y ,R k
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where K(.) is the kernel function, and α is the ith kernel’s weight. The estimation of weights is 

subject to the cost function, L as follows: 

 

L = T T T T
α (K K+λI)α-2α K y  (4.16) 

 

 

arg min L=α  (4.17) 

 

where α is the estimated weight and λ is the Lagrange multiplier, 
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Based on (4.16) and (4.17), weights are estimated as follows: 

 

T -1 T
α=[K K+ I] K y  (4.19) 

 

             In the KRR method, all the data points are used in the posterior PDF construction, 

requiring large storage and processing power [78]-[79]. The fitting speed is improved by 

introducing sparseness in KRR using the backward deletion method used in [76]-[80]. In the 

backward deletion (BD) SKRR method, sparseness in posterior PDF is created by considering only 

significant leave-one-out-scored measured RDS,ON. This algorithm reduces K, α, and I after each 

iteration meeting the required constraint. If the size of the data set is Px1 and mth sample is deleted 

at jth iteration, (4.15) is written as follows: 

 

,
1( )j mf −= − T T T T

j,{P}-m j,{P}-m j,{P}-m j,{P}-m j,{P}-m j,{P}-m j,{P}-m(K y ) K K +λI (K y )  (4.20) 

 

where fj,m is the value of (4.15) at jth iteration when mth sample is taken out. The leave-one-out 

(LOO) score of mth sample out, Δfj,m is estimated as follows: 

 

, ,j m j m jf f f = −  (4.21) 

 

 

where fj is evaluated with all the remaining RDS,ON points dataset after (j-1)th iteration. The lowest 

LOO-scored RDS,ON is removed from the dataset after the jth iteration. This BD process terminates 

when the following condition is met as follows: 
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min,| |j jf L   (4.22) 

 

 

 

Figure 4.4 The working principle of SKRR particle filter. 
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Figure 4.5 SKRR-PF based RUL estimation process. 

 

This process results in an optimum size of K, α, and I for posterior PDF construction. For 

these optimized K, α, and I, Equation (4.18) is written as follows: 

 

T -1 T
opt opt opt opt opt optα =[K K +λI ] K y  (4.23) 

 

where αopt, Kopt, Iopt are the optimized size of K, α and I subject the constraint (4.21). The posterior 

PDF is written as follows: 
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The working principle of SKRR is shown in Figure 4.4. 
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1.3.4 Abrupt change-point detection 

When the system’s operating condition abruptly changes, the change-point locations in 

RDS,ON trajectory shifted from their estimated positions. However, SKRR-PF has the inherent 

ability to identify this abrupt change in change-point location [72]. In SKRR, the kernel function 

maps time series RDS,ON to the Hilbert space as follows: 

 

( )( ) ( )( ) ( ) ( )( )ii i

DS ,ON DS ,ON DS ,ON DS ,ONR k , R k K R k ,R k  =  (4.25) 

 

where φ(.) is the canonical feature map defined as φ:RDS,ON →H where H is the Hilbert space. In 

the time series, the change-point detection requires the whole distribution statics, wherein Hilbert 

space, the change-point is detected only using the mean of the Hilbert elements. In Hilbert space, 

an element is defined as follows: 

 

( )( )i
DS,ON i tR k e = +  (4.26) 

 

where μi is the mean of the distribution in Hilbert space and e is the transformation noise. If there 

is a sudden change in trajectory, the Hilbert mean of RDS,ON changes as follows: 

 

i j   (4.27) 

 

This property is helpful for the detection of the known change-points and the identification 

of the unknown change-points. Thus, the proposed hybrid RUL estimation method detects any 

sudden change in the trajectory of RDS,ON, which is crucial for accurate RUL estimation under 

dynamic operating conditions. 
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1.3.5 Remaining useful life estimation 

SKRR-PF method traces the trajectory of RDS,ON-based on (4.8) and projected the trajectory 

as shown in Figure 4.5. The cascode GaN FET is assumed faulty when the RDS,ON trajectory reaches 

the threshold value. In this study, the threshold is chosen as the 10% increase of RDS,ON from its 

initial value. There is no guideline on the wideband gap device’s remaining useful life estimation. 

Thus, common semiconductor device RUL estimation guideline is followed for threshold based 

on IEC 60747-9-2007.  RUL is estimated as follows: 

 

n fRUL n n= −  (4.28) 

 

where RULn is the RUL estimated at time n, nf is the time to reach the critical value of the fault 

precursor from the present time n. RUL is estimated for each sample of state variable PDF, and 

the PDF of RUL is estimated. 

 

4.3 Experimental validation 

The objective of the experimental verification for this proposed RUL estimation method is 

to validate its robustness and accuracy under the steady operating condition and dynamic operating 

conditions. Aging and degradation mechanisms of cascode GaN FET are the result of junction 

temperature variation induced thermo-mechanical stress. Thus, constant current power cycling 

tests are implemented in this study for inducing accelerated aging in cascode GaN FET under 

steady and dynamic operating conditions. This accelerated test aims to emulate the thermal stress 
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experienced by the cascode GaN FET during its operation. A description of the experimental set-

up is provided in the following sections, followed by verifying the proposed algorithms based on 

the accelerated aging data from experimental results. 

1.3.6 Experimental set-up 

Constant current-temperature variation power-cycling testing set up is shown in Figure 4.6. 

The device under test (DUT) is an N-Channel 900V/9A TO-220-3 GaN FET. The tests are 

conducted at 50 V 5 A. The case temperature (TC) of the FET can vary from 25oC to 100oC for the 

steady operating condition. As the junction temperature variation remained constant under steady 

operating conditions, the RDS,ON trajectory follows the modeled trajectory. 

 TC is measured with a K-type thermocouple, and the output of the thermocouple is 

conditioned with MAX31855. TI DSP F28335 controls this power cycling test based on variation 

in TC. The temperature cycling is controlled using hysteresis control which controls the turn-on 

and turn-off of the cascode GaN FET between 25oC and 100oC. Thus, the switching frequency of 

the DUT is the same as the frequency of its temperature variation. Due to dynamic RDS,ON of 

cascode GaN FET, proper care should be taken during the data acquisition stage. Thus, RUL 

estimation's challenge using an accelerated life testing platform is high-precision fault precursor 

data acquisition. 
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Figure 4.6 Block diagram of power cycling test. 

 

O  

Figure 4.7 VDS,ON sensing circuit. 

 

4.3.1.2 RDS,ON measurement set-up 

A VDS,ON measurement, and conditioning setup is shown in Figure 4.7. This setup's 

objective is to acquire RDS,ON with proper resolution while ensuring safety. The TI DSP F28335 

has a 12-bit ADC, which has a resolution of 0.7mV/bit. When the GaN FET is turned off, the drain 

to source voltage (VDS,OFF) across DUT reaches 50 V, damaging the ADCs. During on-state, VDS,ON 

is in the millivolt range, which is very insignificant compared to VDS,OFF. For this reason, VDS,OFF 

should be scaled while amplifying VDS,ON at the same time. A signal-condition circuit is used to 
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address these issues, as shown in Figure 4.7, where R is the load resistance and R1 is the scaling 

resistance.  When the DUT is off, VDS,OFF is limited by the voltage drop across the diode (D1) and 

Zener diode (DZ1). When DUT is on, D1 and DZ1 will be open, and VDS, ON appears across these 

switches. These voltages are amplified and limited by two amplifier stages. The ADC's maximum 

voltage is limited to 3 V. Drain current is sensed by a shunt resistor and transmitted to the computer 

using the serial communication interface for data processing and storage.  

 If proper care is not taken, RDS,ON includes both dynamic RDS,ON, and the effect of aging. 

Data acquisition starts after 100μs after the DUT is turned on to allow the FET to converge to its 

static value. Moreover, RDS,ON is measured at the same temperature to nullify the effect of 

temperature on RDS,ON. 

1.3.7 Experimental results 

A power cycling test has been conducted on 30 GaN FETs until the switches failed. 

Twenty-four of the tested  GaN FETs have been used for training, and 6 GaN FETs have been 

used for the verification. VDS,ON, and ID are acquired in 10 minutes intervals, and RDS,ON is 

measured. These data acquisition points are called epoch (1 epoch= 10 min.). The GaN FET is 

considered faulty when RDS,ON-change reaches 10% of its initial value. To have consistency, 

datasheet value  
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Figure 4.8 Actual trajectory of RDS,ON (a) GaN FET1;(b) GaN FET2; (c) GaN FET3; (d) GaN 

FET4; (e) GaN FET5; (6) GaN FET6. 
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Figure 4.9 The actual trajectory of RDS,ON, and estimated trajectory using APF and SKRR-PF 

of (a) GaN FET1;(b) GaN FET2; (c) GaN FET3; (d) GaN FET4; (e) GaN FET5; 

(6) GaN FET6. 

Table 1.1 The RUL estimation performance comparison between SKRR-PF 

and APF 
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Figure 4.10 Original Trajectory, the estimated trajectory of APF and SKRR PF when (a)ΔTj is 

increased by 5oC; (b) ΔTj is increased by 10oC. 

 

of RDS,ON is considered as an initial value for all the DUTs. RDS,ON trajectories of six cascode GaN 

FETs are shown in Figure 4.8. under the afore-mentioned operating condition. These trajectories  

Cascode GaN FET # SKRR APF 

1 7.7% 8.9% 

2 6.3% 7.1% 

3 8.1% 15.7% 

4 6.3% 9.8% 

5 7.9% 13.6% 

6 5.8% 7.9% 
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show three stages of degradation during the life of cascode GaN FET. In the healthy state, RDS,ON  

remains almost constant (almost till 200 epochs). After that, GaN FET shows the first sign of 

degradation, and RDS,ON changes constantly. This tendency is observed around 200 to 300 epochs 

in general. This stage is called the continuous degradation stage. At the end of its lifetime, RDS,ON 

changes exponentially, and thus, this stage is called the exponential degradation stage. In the 

experiments, the exponential trajectory is observed after 300 epochs. 

The SKRR-PF estimated RDS,ON trajectories, APF estimated trajectories, and original 

trajectories are shown in Figure 4.9. In this case, the operating condition remained the same as 

the operating condition of the training set. A comparison of the estimation performance of the 

proposed SKRR-PF and APF methods is shown in Table 1. The SKRR-PF and APF trajectories 

are compared with the original trajectory of the DUTs. The estimation error is between 6% to 8% 

for SKRR-PF, and for APF, it is between 7%-15%. The incorporation of the SKRR in the PF 

framework improves the accuracy of the RUL estimation. 

A 5oC increases junction temperature variation to verify the proposed RUL estimation 

method's traceability under the unexpected change in operating conditions, as shown in Figure 

4.10 (a) at 200 epochs. As a result, the trajectory has experienced a sudden change-point. The 

proposed method shows the capability to trace the trajectory despite this sudden change. The 

estimation error is 6% for SKRR-PF and 15% for APF based RUL estimation method. A more 

harsh condition is applied where the junction temperature variation is increased by 10oC, as  
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Figure 4.11 SKRR PF estimated RUL PDFs when (a) DUT is in the second stage (b) DUT is in 

the third stage of its life 

 

 

Figure 4.12 Estimated RUL of GaN FET using SKRR-PF. 

 

shown in Figure 4.10 (b). In this case, the RUL estimation errors are 8% and 17% for SKRR-PF 

and APF based RUL estimation methods, respectively. The percentage error is reduced by more 

than 112.5% using SKRR-PF over APF in RUL estimation under dynamic operating conditions. 
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The SKRR-PF estimated RUL PDFs are shown in Figure 4.11. Figure 4.11 (a) shows that 

the RUL PDF is estimated when the DUT is in its life's continuous degradation stage. The 

estimated RUL PDF in Figure 4.11(b) is estimated when the DUT is in the exponential degradation 

stage. It is evident from Figure 4.11 is that the standard deviation of the RUL estimation is 

significantly reduced in the later stage of its life. The evaluation of the RUL estimation over time 

is shown in Figure 4.12.  In the healthy stage, the estimated RUL is high as RDS,ON changes very 

slowly. Thus, RUL is plotted after 200 epochs to emphasize the effect of the switch's lifetime 

degradation. 

4.4 Conclusion 

This study presented an SKRR-PF based RUL estimation method for cascode GaN FET. 

It has been shown that high accuracy can be achieved in the RUL estimation under dynamic and 

harsh operating conditions, even when the health status of the cascode GaN FET changes abruptly. 

It is also theoretically shown that the proposed method includes the unique characteristic of 

cascode GaN FET in measurement, improves speed and accuracy of the RUL estimation, and 

reduces the effect of harsh system noise by include in the SKRR PF framework. In the 

experimental result, the proposed SKRR-PF shows significantly reduced error down to 6%-8%. In 

contrast, APF shows a 7%-15% tracing error under steady operating conditions. SKRR-PF and 

APF show 6%-8% and 15%-17% error estimation, respectively, under the dynamic operating 

condition with high accuracy under dynamic and harsh industrial conditions. The proposed method 

could be a promising solution for the system-level RUL estimation for cascode GaN FET in the 

emerging power electronics system.
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CHAPTER V 

DATA-SHEET BASED LOSS MODELING AND REALTIME DEGRADATION-AWARE 

CONTROL OF SOLID-STATE TRANSFORMER 

The content of this chapter is based on the following articles: 

1. M. S. Haque and S. Choi, “Realtime Degradation-Aware Adaptive Control of Solid 

State Transformer,” 2020 IEEE Applied Power Electronics Conference and 

Exposition (APEC), New Orleans, LA, USA, 2020, pp. 2376-2383, doi: 

10.1109/APEC39645.2020.9124174. 

2. M. S. Haque and S. Choi, “Data-sheet based loss modeling and Realtime 

Degradation-Aware Control of Solid State Transformer,” Submitted in IEEE 

Transactions on Industrial Electronics. 

5.1 Introduction 

The solid-state transformer will replace the traditional passive transformers in the modern 

industry, including electric-vehicle charging and smart-grid applications with low cost, high 

efficiency (> 99%), and compact features. However, the power switches in the SST commonly 

experience high frequency (HF) electro-thermal stresses during dynamic operations. These 

semiconductor switches are among the most vulnerable components in a power electronic system 

(PES) 0. Thus, the SST’s reliability due to the aging and degradation of power switches and 

proactive degradation-aware control strategy must be further studied for real-world applications 

[82]-[83]. 
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The SST commonly consists of the cascaded elements, including low-frequency rectifier, 

HF dual active bridge (DAB), and non-isolated converters, as shown in Figure 5.1. The DAB 

switches especially experience HF electro-thermal stress and thus, become susceptible to 

degradation and failures. State-of-the-art performs a fault-tolerant operation after a switch has 

failed because of the switch degradation's limited understanding. Therefore, costly hardware 

redundancies are adopted with additional system complexity [84]-[87]. Such redundancies 

commonly increase the size and weight [86]-[87]. For example, redundancy-based network-level 

power-routing is not feasible in EV charging applications, where SST is used as a standalone 

system. In [88]-[92], topology transformation methods are adopted to mitigate the effect of a 

switch failure. These fault-tolerant methods double the current through the switch, resulting in 

higher switch stress and accelerated aging. Also, topology transformations need computationally 

exhaustive fault detection and isolation procedures. In [93]-[94], an adaptive but complicated, 

costly cooling method for junction temperature control to achieve life extension has been 

proposed.  

Recently, new control strategies such as (i) single-phase shift (SPS), (ii) double phase-shift 

(DPS), (iii) extended phase-shift (EPS), and (iv) triple phase-shift (TPS) have been suggested to 

minimize inductor current in the DAB to achieve zero voltage switching (ZVS) [90]-[93]. These 

methods are promising but have performed adaptive controls without evaluating a switch 

degradation [85]. Until now, the SST control strategy by understanding the switch degradation has 

been limitedly studied. If successful, it could offer a new and effective solution without costly 

redundancies [93]. A system could integrate the switch’s degradation status into a controller to 

intelligently identify its optimal operating point. 
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To achieve effective degradation-aware control, fast and accurate switch-loss estimation 

and health monitoring are essential. Traditional cascode GaN FET loss models are computationally 

intensive and challenging to implement in a real-time system [92],[94]. These models also require 

proprietary switch information, which is commonly unavailable in public.  

In this dissertation, a new degradation-aware controller is proposed for a cascode GaN FET 

SST. The proposed controller - 1) ensures the safe and robust operation over SST’s lifetime, and 

2) operates at optimal power, based on the switch-health status. The degraded switch consumes 

lifetime accelerated if the SST continues operating at the rated conditions. To address this issue, 

the proposed controller estimates the optimal derated operating point based on switch-health status. 

This intelligent derating allows the SST to reach its target lifetime and avoid an unexpected 

shutdown. Also, to ensure the system's stability and robustness to system disturbance, the proposed 

controller estimates an optimal phase shift. A data-sheet- and double pulse test-based behavioral 

switch-loss model is used to identify switch degradation instantaneously with low complexity, 

enabling real-time and adaptive operation. 

 

 

Figure 5.1  Solid-state transformer for EV charging application. 

 

The rest of the chapter is organized as follows: in section 5.2, the proposed controller’s 

fundamentals are explained. The online switch lifetime mapping is discussed in section 5.3, 



 

74 

followed by accelerated aging-based degradation mapping in section 5.4. The proposed 

controller's design is presented in section 5.5, with the design and performance of the LQR in 

section 5.6 and the experimental testing and validation in section 5.7. The contribution and future 

research direction are shown in the conclusion in section 5.8. 

5.2 Principle of the proposed controller 

Coffin-Manson-based lifetime estimation method estimates lifetime online based on the 

operating condition. But this model addresses the effect of only the instantaneous operating 

condition on the lifetime [95]-[96]. Developing a degradation-aware controller based on this 

model requires large memory and exhaustive processing. The accelerated life testing-based 

degradation mapping provides a switch degradation trajectory which allows off-line degradation-

aware-control planning. However, it does not have adaptive capabilities based on the dynamic 

operating condition [97]. Another essential feature of the degradation-aware controller is to 

identify sudden abrupt change. The proposed controller intelligently integrates online lifetime 

mapping features, accelerated life testing-based degradation mapping, and unexpected 

degradation identification. The principle of the proposed degradation-aware `controller is shown 

in Figure 5.2. 
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Figure 5.2 Proposed degradation-aware controller of SST. 

 

The proposed controllers operate based on the feedback from three blocks as follows:  

i. Online switch lifetime mapping, 

ii. Accelerated life testing (ALT)-based degradation mapping, and 

iii. Unexpected degradation identification. 

In block i, the number of cycles to failure (Nf) is estimated online based on the proposed 

behavioral switch-loss model. In block ii, switch degradation is mapped based on the switch's fault 

precursor trajectory under the ALT. In cascode GaN FET, on-state resistance (RDS,ON) shows 

highest sensitivity to switch degradation [11]-[12]. This RDS,ON trajectory from the accelerated test 

is statistically analyzed, and a degradation probability is mapped. In block iii, RDS,ON is measured 

online and regularly evaluated to identify any sudden drastic change in switch-health.  

Based on these three blocks’ inputs, the proposed controller intelligently derates the SST 

to achieve the target lifetime. The proposed controller has two functions- i) supervisory function 

and ii) operational function, as shown in Figure 5.2. In a supervisory function, dynamic 
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programming identifies the switch-health status and estimates degradation-aware optimal 

operating conditions. In the operational function, an LQR calculates the optimal phase-shift angle 

for the set degradation-aware operating point. 

5.3 Block i: Online switch lifetime mapping 

Block i estimates Nf based on the junction temperature, which is estimated using a 

switch-loss model. The procedure is shown in Figure 5.3. This block's three main components 

are- Switch loss model, R-C foster network-based junction temperature estimation, and lifetime 

estimation. The switching loss causes mean junction temperature (TJ,m) and Junction temperature 

variation (ΔTJ), which cause degradation and aging. Cascode GaN FETs experience HF thermo-

mechanical stress as different layers in the switch has a mismatched coefficient of thermal 

expansion (CTE) [90]. This stress causes solder fatigue at the junction of AlGaN and GaN, 

resulting in wire-bond cracks, solder degradation, or eventual lift-off, which are dominant open-

circuit failure mechanisms [98]. In the following subsections, these three components are 

discussed. 

 

Figure 5.3 Online switch lifetime mapping. 
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5.3.2 Switch-loss model of cascode GaN FET 

A fast and accurate behavioral loss model is proposed. In the cascode structure, a low 

voltage (LV) Si-MOSFET is cascoded with a normally-on GaN HEMT. Cascode GaN FET is 

different from IGBT and MOSFET. The turn-off loss is different, especially from IGBT, due to 

the absence of tailing current in cascode GaN FET. Thus, a switch-loss model for this cascode 

GaN FET is required. An analytical loss model for the cascode GaN FET is developed in [94], 

[97]. An equivalent circuit model of the switch-loss is developed based on the complex cascode 

structure-induced parasitic capacitances and inductances. Thus, this analytical model requires 

computationally exhaustive processes and proprietary information. 

Moreover, this model is developed for DC-DC buck converter and does not address its 

applicability in a half-bridge configuration [98]. Also, this model requires expensive testing for 

parameter extraction. Although Piece-wise linear models are fast but are less accurate in high-

frequency operations, parasitics' effect is not considered [98]-[99]. The proposed model is 

developed by analyzing the switching-transition behavior of drain-source voltage (VDS) and drain 

current (Id) in the half-bridge configuration to overcome these challenges. Thus, this model does 

not require solving equivalent circuit models and thus, fast. 

Moreover, this behavioral model uses parameters, easily extractable from datasheet and 

double pulse test (DPT). The effect of parasitic capacitances and commutation inductors will be 

addressed using the switching transition behavior. Thus, the proposed model is applicable for 

high-frequency applications. 

The switch-loss has two components: the switching loss (Psw) and conduction loss (Pcond) 

as follows: 
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Loss cond swP P P= +  (5.1) 

 

The conduction loss can be estimated as follows: 

 

2
,cond L DS ONP I R=  (5.2) 

 

where IL is the RMS load current or inductor current.  

This RDS,ON is the function of the temperature and switch-health status.  Psw is the 

summation of the turn-on and turn-off losses.  

5.3.2.1 Turn-on loss of cascode GaN FET 

Commonly, cascode GaN FET's turn-on is modeled by the LV Si MOSFET and 

normally-on GaN HEMT's complex physics-based interaction. In this proposed model, the 

computational complexity is minimized by data-based modeling. This model inherently 

addresses the effect caused by the parasitic capacitors and commutation inductors and, thus, 

accurate. As this model does not require solving complex high-degree polynomials and 

differential equations, this model is fast. The turn-on switching transition of VDS and Id during 

turn-on is shown in Figure 5.4(a) that are divided into four regions as follows: 

Region I: LV Si gate charging 

The cascode GaN FET is comprised of an LV Si MOSFET and a normally-on GaN 

HEMT. The LV Si-MOSFET controls the switching transitions of the cascode GaN FET. When 

the gate voltage (Vg) is applied to LV Si MOSFET, the LV Si MOSFET’s gate capacitances 
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Figure 5.4 VDS and Id of cascode GaN FET (a) during turn-on transition; (b) during turn-off 

transition. 

 

 (CGS and CGD) are charged. Then, the turn-on process starts when the LV Si MOSFET’s gate 

voltage reaches the threshold, and a conducting channel is established in LV Si MOSFET. The 

gate-drive loss (Pdri) can be expressed as follows: 

 

( )dri G G sP t Q V F=  (5.3) 

 

where QG is the gate charge, VG is the gate voltage, and Fs is the switching frequency. Id starts 

rising when the gate-source voltage (VGS) of GaN HEMT reaches its threshold and causes turn-

on loss in cascode GaN FET due to V-I overlapping. This V-I overlapping starts at t1, as shown 

in Figure 5.4(a). 
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Region II: Increasing drain current 

In this region, the GaN HEMT is fully turned on. Thus, Id increases linearly and reaches 

load current (IL) at the end of this region. In the analytical model, Id is expressed as a complex 

relationship between internal parasitics. The interaction of the complicated relationship results in 

a rise in Id at a constant rate. Thus, Id can be modeled in the proposed model as follows: 

 

( )d rise
d

I t t I
dt

=  (5.4) 

                         
 

where 0 d LI I  , 1 2t t t  , and dIrise/dt is the rising rate of Id, which is a constant. This 

dIrise/dt is dependent on the commutation inductances. The value is estimated from the DPT. 

During this period, the VDS is assumed constant at VDS,OFF. The energy loss during this period is 

expressed as follows: 

 

( )1

0

2
1 ,

1
( ) ( )

2

t

turn on II DS d o DS OFF riset

d
E V t I t dt t t V I

dt
− −

 
= = −  

 
  (5.5) 

 

 

Region III: Decreasing drain-source voltage 

In the half-bridge, two switches in one leg are switching complimentarily. In region III, 

IL supplies Id to the top switch and reverse-conducting current (IRR) to the bottom switch. Id 

rises at dIrise/dt till it reaches IL+IRR. There are two sub-regions in region III. In the sub-region a, 

Id increases due to the commutation inductances and internal parasitics. Rather than solving 

complex differential equations to model this behavior of Id, it is modeled as follows: 
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( )d rise L
d

I t t I I
dt

= +  (5.6) 

 

where L d L RRI I I I  +  and 2 22t t t   . In this sub-region, dIrise/dt remains the same as region 

II. VDS linearly drops to off-state VDS (VDS1,Off )during this time. This drop is due to the increase 

of Id over IL. The behavioral model of VDS can be expressed as follows: 

 

, ,1( )ds ds off DS
d

V t V t V
dt

= +  (5.7) 

 

where dVDS,1/dt is the falling rate of VDS. This behavioral modeling makes this proposed loss 

model fast and accurate to use for online lifetime mapping. The energy loss in this sub-region is 

as follows: 

 

( )

( ) ( )

22

2

23
22 2 ,1 22 2 ,

2
22 2 ,1 22 2 ,

( ) ( )

1 1
( )

3 2
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d d
t t V I t t V

dt dt

d d
I t t I V t t V I

dt dt

− − =

  
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  

   
+ − + −   

   



 (5.8) 

 

In subregion b, the reverse recovery charge needs to be removed from the bottom switch. 

The rate of change of Id is defined by the reverse recovery current of the bottom switch. In this 

sub-region, Id falls from the IL+IRR to IL when VDS falls from VDS,OFF,1 to VDS,ON. The internal 

parasitics of the cascode structure cause these transitions. The analytical model requires internal 

parasitics information, which is not available. In the proposed model, these behaviors of Id and 

VDS can be modeled as follows: 
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( ) ( )d L RR fall
d

I t I I t I
dt

= + −  (5.9) 

 

, ,1 ,( )DS DS Off DS fall
d

V t V t V
dt

= −  (5.10) 

 

This model inherently addresses the effect of parasitics which affect the rate of change of 

VDS and Id. Thus, the modeling approach ensures speed and accuracy. 

The energy loss is as follows: 
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(5.11) 

 

 

Region IV: Ringing region 

In this region, Id and VDS behave like a damping system and reaches their steady states at IL and 

VDS,ON, respectively. These tendencies can be modeled as follows: 

 

1 1 01( ) exp( )sin( )d LI t A t t I  = − + +  (5.12) 

 

 

2 1 01 ,( ) exp( )sin( )DS DS ONV t A t t V  = − + +  (5.13) 

 

where A1 and A2 are the amplitude of Id and VDS, respectively, α1 is the decay rate of Id and VDS, 

and ω01 is the frequency of Id and VDS, respectively. At the start of this region, Id is IL, VDS is VDS,ON, 

and θ and ψ are zero. The loss in this region is as follows: 
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4

3

( ) ( )
t

turn on IV DS dt
E V t I t dt− − =   (5.14) 

 

This Eturn-on-IV is a function of ω01, α01, A1, and A2. These parameters are estimated from the double 

pulse test.  

     The total turn-on loss is the summation of the losses in the region I, II, and III: 

 

, , ,on Turn on II Turn on III Turn on IVE E E E− − −= + +  (5.15) 

 

1.3.7.2 Turn-off loss of cascode GaN FET 

Like turn-on loss, turn-off loss is modeled by analyzing the switching transition behavior. 

This model is fast and easily implementable without any proprietary information and costly testing. 

The turn-off transition of VDS and Id during the turn-off process is shown in Figure 5.4(b), where 

the turn-off region is divided into three regions. 

Region-I: Gate capacitor discharging 

The turn-off process starts when Vg is zero and initiates the discharging process of the gate-

source capacitor of the LV Si MOSFET. At the end of this stage, cascode GaN FET enters the 

saturation region. In this region, there are insignificant changes in VDS and Id. Thus, there is only 

an insignificant gate-drive loss like (5.3). 

Region II: Decreasing drain current 

During region II, GaN HEMT is shut down as the interaction of gate capacitance of the LV 

MOSFET and GaN HEMT. Thus, Id decreases from IL to zero. VDS increase from VDS,ON to Vds2,off 
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which is greater than the input voltage (Vin). These behaviors of Id and VDS can be modeled as 

follows: 

 

( )d L fall
d

I t I t I
dt

= +  (5.16) 

 

where at t=t1, Id(t1)=IL and t=t2, Id(t2)=0.  

 

, ,( )DS DS on DS rise
d

V t V t V
dt

= +  (5.17) 

 

here at t=t1, VDS(t1)=VDS,ON and t=t2,VDS(t2)=VDS,off.  These behavioral models address the effects of 

the parasitic components on the switching transition while avoiding complex modeling and 

exhaustive calculations. The energy loss in this region is as follows: 
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(5.18) 

 

Region III: Ringing region 

In region III, Id and VDS reach steady-state condition at zero and VDS,OFF, respectively. 

During this period, Id and VDS behave like an underdamped system. This behavior is modeled as 

follows: 

 

3 2 02( ) exp( )sin( )dI t A t t = −  (5.19) 

 

2 2( ) exp( )cos( )DS DS oV t V t t =  −  (5.20) 
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where at t=t3, Id=0 and VDS=VDS,OFF, A3 is the amplitude of the overdamped system, α2 is the 

decaying rate, ωo2 is the decaying frequency. The turn-off loss is as follows: 

 

3

2

( ) ( )
t

turn off III DS dt
E V t I t dt− − =   (5.21) 

 

This Eturn-on-III is a function of ω02, α02, A3, and ΔVDS. These parameters are estimated from 

the DPT. The total turn-off loss is the summation of the losses as follows: 

 

, ,off Turn off II Turn off IIIE E E− −= +  (5.22) 

 

This behavioral model is a fast and efficient alternative to the complex analytical loss models. 

Addressing the parasitic capacitances and commutation inductances using the time series 

behavioral-model, result in fast and accurate switch-loss estimation. 

1.3.8 R-C foster model-based junction temperature estimation 

TJ is dependent on the switching loss; Thus, this R-C Foster model is the second component 

in block i, as shown in Figure 5.3. Switch-loss is translated into TJ using the R-C Foster model as 

follows: 

 

     J loss th cT P Z T= +  (5.23) 
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where TJ is the switch’s junction temperature, Zth is the thermal impedance, and TC is the case 

temperature. Zth is estimated as follows:  

 

1

(1 )i

n
t

th i
i

Z r e
−

=

= −  (5.24) 

 

where ri is the thermal resistance of the switch, and τi is the thermal time constants. Thermal time 

constraints are expressed as τi=riCth,i, where Cth,i is the thermal capacitance. These thermal 

parameters are estimated from the switch’s transient thermal impedance curve provided in the 

datasheet.  

1.3.9 Lifetime estimation 

The Coffin-Manson life estimation model is used that relates Nf to TJ,m, and ΔTJ experienced 

by the cascode GaN FET. This model estimates the instantaneous variation in Nf due to change in 

operating conditions. This model can be expressed as follows: 
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 (5.25) 

 

where TJ,min is the minimum junction temperature, and A, b1, b2, b3 are the empirical coefficients. 

These empirical coefficients and estimated TJ include estimation error uncertainties. The switch 

life consumption accelerates due to change in ΔTJ and TJ,m  as follows: 
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where DAF is the degradation acceleration factor when the operation point changes to (ΔTJ2, TJ2,m) 

from (ΔTJ1, TJ1,m) due to degradations. The damage to the switch is estimated based on the Miner’s 

linear damage rule as follows: 

 

i

f

n
C

N
=  

(5.27) 

 

where C is the switch’s consumed lifetime, ni is the number of cycles consumed by the switch. 

This instantaneous Nf is used with the ALT-based switch degradation mapping in block ii to 

address deviation from the mapped degradation due to a change in operating condition. 

 

5.4 Block ii: Accelerated life testing-based degradation mapping 

The regular life of the power semiconductor switches is 10-12 years [2]. The accelerated 

life testing (ALT) maps the trajectory to a logical timeframe. The accelerated life testing of the 

cascode GaN FET provides essential insight into RDS,ON trajectory dynamics, and life consumption 

patterns. The probability density function (PDF) of the lifetime is estimated based on the statistical 

distribution of the RDS,ON trajectories. In this chapter, a power cycling ALT is used for mapping 

RDS,ON trajectory. The RDS,ON trajectories of the cascode GaN FET shows that there are three distinct 

regions over the lifetime of the cascode GaN FET- i) healthy region ii) slow degradation (SD) or 

constant degradation (CD) region, iii) exponential degradation (ED) region. These tendencies in 

RDS,ON trajectory, are shown in Figure 5.5(a). Also, there is RDS,ON trajectories which are outliers 

to the general RDS,ON trajectories as shown in Figure 5.5(b). These outlier trajectories biased the 

mean RDS,ON trajectory.  It is logical to model the degradation trajectory using the median RDS,ON 

trajectory, insignificantly affected by the outliers. This median trajectory is modeled as follows: 
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, , ,
1

( )
2

t DS ON DS ON medP R R =  (5.28) 

 

where RDS,ON,med is the median of the RDS,ON trajectories. This mapping of the degradation using 

(28) is shown in Figure 5.5 (b). 

5.5 Degradation-aware controller for SST 

The proposed controller operates using two functions- i) supervisory function and ii) 

operational function, as shown in Figure 5.2. If the SST operates at rated power when the switch 

is degraded, the switches’ lifetime is consumed at an accelerated rate and causes unexpected 

failure. Thus, the 

       

Figure 5.5 RDS,ON trajectory of the cascode GaN FET; (b)median RDS,ON trajectory of cascode 

GaN FET. 

 

 

dynamic programmed supervisory function determines the switch-health condition-aware 

operating point. Based on this operating point, the LQR process estimates the optimal phase shift 

in the proposed method.  
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1.3.10 Dynamically programmed supervisory function 

Dynamic programming uses the switch degradation mapping to estimate the operating 

condition to achieve a target lifetime of the SST. To achieve the target lifetime, in the proposed 

method, the SST operates for the optimal derating trajectory based on the cost function as follows: 

 

3

deg ,
1

min rated raded i
i

J C C

=

 
= − 

 
 

  (5.29) 

 

where Crated is the rated lifetime under constant junction temperature variation, and Cdegraded,i is the 

consumed lifetime. This cost function is minimal when the rated value becomes equal to a switch's 

lifetime. The dynamic programmed supervisory function's objective is to maximize J by adaptively 

selecting operating conditions based on its health status. This strategy is graphically shown in 

Figure 5.6. This strategy ensures a constant junction temperature variation and uniform lifetime 

consumption. The controller is designed as follows: 

 

Minimize: 
( )max deg 1 2 3radedArg C C C C= + +

 

 

 

Subject to: 

 

Constraint 1: 1 0C  , 2 0C  , 3 0C   

 

Constraint 2: r r0.8P Pated atedP   



 

90 

 

Constraint 3: 
degradate ratedC C  

 

Constraint 4: PII IIIP  

 

where C1, C2, and C3 are the consumed lifetime in a region I, II, and III. The derating algorithm is 

shown in Figure 5.6. As the switch will be more degraded in the exponentially degraded (ED)  

 

 

Figure 5.6 Optimal operating condition estimation algorithm. 
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Figure 5.7 Degradation-aware dynamic programmed operating conditions. 

 

region than in the slow degradation (SD) region, it is logical to impose higher derating in the ED 

region. Based on the constraints, the allowed operating conditions are shown in Figure 5.7. When 

the switch is healthy, the SST operates at rated condition. However, the SD and ED regions’ 

operating conditions are programmed based on constraints 1-4. If the SST operates at Pmin, it will 

have a maximum lifetime, but it will violate constraint 3. If the SST operates at Prated, J will be 

maximum, but the SST will fail before its target lifetime. Different combination of operating 

conditions in these two regions leads to different lifetime for the SST. To integrate the dynamic 

operating conditions, (26) is used to estimate lifetime consumption under different operating 

conditions. Eon and Eoff are integrated into the proposed controller as a look-up table to reduce 

the computational burden.  

1.3.11 LQR based operational function  

The operational function controls the DAB stage in SST to deliver the reference voltage. 

The disturbance causes system instability. In this sub-section, a linear quadratic regulator (LQR) 

is designed to operate the DAB stage in SST. LQR ensures optimal phase-shift angle for the 
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derated operating condition set by the supervisory function. The LQR shows robust performance 

to system disturbance and estimates optimal phase-angle, which ensures efficiency. This LQR 

design requires a state-space model of the DAB stage. The equivalent circuit of the DAB is shown 

in Figure 5.8, where L is the HF transformer’s leakage inductance, VAB is the inverter output, and 

VCD is the rectifier input voltage.  

 

 

Figure 5.8 Equivalent circuit of DAB stage of SST. 

 

The average model of the output stage of the DAB is shown in Figure 5.8. Using Kirchoff’s current 

law: 

 

(1 )
0

2L s

dVo Vo ViD D
Co

dt R Lf

−
+ − =  (5.30) 

 

where Vi is the input voltage, Vo is the output voltage, RL is the load, Co is the output capacitor, 

and fs is the switching frequency. The small-signal model of this output average model for small 

variations in vo and d is as follows: 

 

(1 2 )

2

o i

L o o s

dv V Dvo
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dt R C LC f

+−
= +  (5.31) 
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The state-space model of the DAB is as follows: 

 

x Ax Bu= +  (5.32) 

 

where 

 

0 1

1
0

L o

A

R C

 
 =
 −
  

,       
0

(1 2 )

2

i

o s

B V D

LC f

 
 = +
 
  

              o

o

v dt
x

v

 
=  
  

            and u d=  

 

In this state-space model, a new variable, ʃvodt is introduced, which results in zero steady-state 

error. The quadratic cost function of the system is as follows: 

 

( )T T
LQRJ x Qx u Ru dt= +  (5.33) 

 

where JLQR is the quadratic cost function, Q is a 2-by-2 positive semi-definite matrix, R is a scalar 

that should be positive. The closed-loop poles’ location depends on the choice of Q and R. In this 

dissertation, R=1, and Q=[q1 0; 0  q2] is used. Thus, q1 and q2 will decide the speed and damping 

of the system. For the state feedback, it is assumed that 

 

u kx= −  (5.34) 

 

where 1 2[ ]k k k=  is the system’s feedback gain. 
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It is found by putting (5.34) into (5.35)as follows: 

 

1
[ ( ) ]

2

T T
LQRJ x Q k Rk x dt= +  (5.35) 

 

The optimal solution for k is found as follows: 

 

1 Tk R B P−=  (5.36) 

 

where P is the solution of the Algebraic Recatti Equation as follows:  

 

1 0T TPA A P PBR B Q−+ − + =  (5.37) 

 

5.6 LQR design and its performance analysis 

The LQR design requires the operating point information as shown in (5.30). The operating 

frequency of the SST is 50 kHz, the rated voltage and power are 400 V and 5kW, respectively, the 

leakage inductance is 53μH, and the output capacitance is 120 μF. Based on this operating 

condition and system information, The LQR is designed to have sufficient controller speed and 

zero steady-state error. The root locus of the system is shown in Figure 5.9 (a). The step response 

of the modeled LQR controller is shown in Figure 5.9(b) with R=1, Q=[50 0;0 10^(-5.5)] and K=[-

7.0711  0.0048]. The system's settling time is 0.043 sec. The overshoot is less than 5%. Thus, the 

LQR is operating with reasonable speed and accuracy.  
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Figure 5.9 (a) Root-locus and (b) the step response of the LQR controller. 

 

5.7  Experimental testing and validation 

1.3.12 Validation of behavioral switch loss model 

The commutation inductance due to PCB layout plays a vital role in the switching loss 

estimation. These inductances change with PCB layout, which is application-dependent. Thus, it 

is essential to conduct a DPT conducted on the same PCB layout as the SST to address these 

inductances' effect on the switching loss. It is essential to measure VDS and Id with precision and 

speed for accurate loss estimation. Thus, VDS and Id measurement requires high bandwidth probes. 

Differential voltage probe (TMDP0200) and Coaxial shunt 0.1 Ω SSDN-10 current sensor are used 

for high precision and fast measurement. The VDS and Id are shown in Figure 5.10 during turn-on 

and turn-off transitions. The turn-on and turn-off losses are estimated by calculating the energy 

loss due to VDS and Id's cross-over. Moreover, these signals are properly aligned to improve the 

integrity of the testing. In the datasheet, input transfer capacitance (Ciss), output transfer 

capacitance (Coss), and reverse transfer capacitance (Crss) are available. CGD, CGS, and CDS are 

extracted from these transfer capacitances as follows: 
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GS iss rssC C C= −  (5.38) 

 

 

DS oss rssC C C= −  (5.39) 

 

 

GD rssC C=  (5.40) 

 

Inductances in the power loop are estimated using the DPT testing and the deskewing 

method. The turn-on and turn-off ringing region parameters are also estimated from this DPT 

test. These parameters are used in (5.3)-(5.25) for the switching loss estimation and integrated 

into the controller as a look-up table.  

  

 

Figure 5.10 Drain-source voltage and drain current (a) during turn-on and (b) during turn-off. 
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Figure 5.11 Estimated and measured switching energy loss at the different operating 

conditions. 

 

This estimated switching loss is compared with the measured loss from the DPT at 

different operating conditions to validate the proposed switching-loss model, as shown in Figure 

5.10. 

This behavioral switching loss model closely follows the experimental switching loss 

tendency and has a 2.3% average mean squared error. This model is fast, the parameter 

extraction is easy, and it follows the experimental model's loss tendency closely. 

1.3.13 Validation of proposed degradation-aware controller  

An experimental setup for the degradation-aware controller is shown in Figure 5.12 and 

Figure 5.13. The operating frequency is 50 kHz,  the rated input and output voltage is 400 V, the 

rated power is 5kW, and the leakage inductance is 53μH. The RDS,ON trajectories of the cascode 

GaN FET under ALT is shown in Figure 5.14. In the power cycling ALT test, the switch’s case 

temperature is varied between 25oC to 100oC using active-switch heating. To monitor RDS,ON real-
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time, VDS,ON is measured by the signal conditioning circuit in [14] and Id is measured by the shunt 

resistor. This RDS,ON measurement is sampled at steady-state to avoid the effect of switching 

transients. To reduce the effect of the noise, 50 RDS,ON samples are averaged. 

 

 

Figure 5.12 Experimental setup of cascode GaN FET-based SST. 

 

These RDS,ON samples are also temperature-scaled.  It is observed that till 60% of life, the 

switches are in the healthy region, and Δ RDS,ON is between 0%-2%.  From 60% to 80%, the 

switch is in the SD region where Δ RDS,ON is between 2%-7%. When ΔRDS,ON is greater than 7%, 

the switch is in the ED region and about to fail. This tendency in RDS,ON trajectory over its 

lifetime is mapped using (28). If the ΔRDS,ON is <2%, the switch is healthy. If 2%<ΔRDS,ON is 

<7%, the switch is in the SD region, and otherwise, the switch is in the ED region. The 

statistically modeled median RDS,ON, and the dynamic programmed estimated optimal operating 

trajectory are shown in Figure 5.15. 
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Figure 5.13 (a) Control Board (b) GaN FET based Inverter/Rectifier. 
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Figure 5.14 Actual trajectory of RDS,ON (a) GaN FET1, (b) GaN FET2, (c) GaN FET3, (d) 

GaN FET4, (e) GaN FET5, and (6) GaN FET6. 

The system is operated with a new switch to validate the proposed control system’s 

applicability, 40% degraded switch, and 80% degraded switch. The system operates at a rated 



 

101 

inductor current at Vo=400V when the switch is healthy, as shown in Figure 5.16. As 40% 

degraded switch also in the healthy region, the system keeps operating underrated condition. The 

inductor current is decreased when the degradation-aware degradation controller identifies the 

switch in the ED region, as shown in Figure 5.16. The optimal operating condition is identified as 

Vo=360 V.  

This derated operating point reduces the junction temperature experienced by the switch. 

The lifetime profile for different TJ,m, and ΔTJ is shown in Figure 5.17. The PDF and cumulative 

density function (CDF) of Nf at (ΔTJ=10oC, TJ,m=50oC) and (ΔTJ=11oC, TJ,m=51oC) are shown in 

Figure 5.18. When 1oC reduces TJ,M, and ΔTJ, CDF becomes less steep and increases Nf by 4%. 

This intelligently derated operating condition ensures the switch will operate 4% more than if the 

operating condition remains the same. This extended life is crucial in scheduling maintenance 

before the switch fails. 

 

 

Figure 5.15 RDS,ON trajectory mapping, and dynamic-programmed operating point mapping. 
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Figure 5.16 Inductor current at the rated condition and degraded condition. 

 

 

 

Figure 5.17 Lifetime profile for different ΔTJ and TJ,m. 
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Figure 5.18 The effect of ΔTJ and TJ,m on lifetime for switch degradation. 

 

5.8 Conclusion 

In this chapter, a degradation-aware controller for SST is proposed to ensure the system’s 

integrity and reliability. The proposed controller intelligently derates the power considering 

switch-health and avoids system failure before the expected lifetime. This degradation-aware 

controller provides a 4% increase in life over the traditional controller by derating the SST up to 

80% of its rated power. This lifetime extension is achieved by considering TJ,m, and ΔTJ increase 

by 1oC due to switch degradation. Although the proposed controller derates the SST with switch 

degradation, this extended lifetime is significant for maintenance scheduling and avoid unexpected 

failure. The proposed data-sheet-based behavioral cascode GaN FET switch-loss model shows a 

2.3% average mean squared error. This model does not require proprietary information about the 

switch. 

Moreover, the parameters are easily extractable from the datasheet and DPT. This loss 

model does not require exhaustive computation.  Besides, it is easily integrated into the real-time 

controller as a look-up table due to its low computational complexity. The proposed controller's 
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complexity is lowered as it works on the current health status and life consumption and does not 

require storing data over the switch's life. Integrated into digital twin and cloud computing 

platforms, these health-monitoring systems and degradation-aware controllers will be useful for 

industrial and electric-transport maintenance and asset management. 



 

105 

CHAPTER VI 

CONCLUSION AND FUTURE SCOPE OF RESEARCH 

In this chapter, the Ph.D. research summary and the future research scopes are presented. 

The PESs’ market share is expanding at 5.8% per year [5], and they are increasingly used in 

innovative mission-critical applications. Wide bandgap switches show immense potential in 

high-frequency high-power applications, but lack of adequate reliability study delays their wide 

adaptability. Thus, the PESs’ reliability has been increasingly gaining importance for achieving 

wide acceptability, ensuring robustness, and avoiding unexpected failure. In this dissertation, the 

component- and system-level prognosis strategies have been analyzed to identify the 

degradation, estimate the RUL, enhance the system’s life, and avoid unexpected failure.     

6.1 Summary of research and conclusion 

In this research, degradation analysis and RUL estimation of IGBT and cascode GaN 

FET have been investigated with their system-wide integration. In chapter I, the motivation of 

the research and research goal is presented. The broader aspects of the reliability study are 

discussed in this chapter. Modern applications and the state-of-the-art PES reliability research 

are presented in chapter II. This chapter discusses the PES reliability research's broader scope for 

its robustness and wide acceptability in mission-critical applications. 

Chapter III presents a high accuracy APF-based RUL estimation method of IGBT. The 

performance of the proposed APF method is compared to state-of-the-art SIR PF 

in RUL estimation. The RMS error in RUL estimation decreases from 22% to 17.8% when APF 
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is applied. The trajectory of VCE,ON can be segmented into three regions: Region 1: constant 

tendency, region 2: linear increasing tendency, and region 3: exponential tendency. It shows that 

the region-aware application of the proposed method improves its RUL estimation performance. 

In chapter IV, an SKRR-PF based RUL estimation method for cascode GaN FET is 

presented. The proposed method includes the unique characteristic of cascode GaN FET in 

measurement, improves the RUL estimation’s speed and accuracy, and reduces harsh system 

noise effect by including SKRR in the PF framework. High accuracy can be achieved in the 

proposed RUL estimation under dynamic and extreme operating conditions, even when the 

health status of the cascode GaN FET changes abruptly. APF shows 7%-15% tracing error under 

steady-state operating conditions, while the proposed SKRR-PF shows significantly reduced 

error down to 6%-8%. SKRR-PF and APF show 6%-8% and 15%-17% error estimation, 

respectively, under the dynamic operating condition with high accuracy.  

In chapter V, a degradation-aware controller for SST is proposed to ensure its integrity 

and reliability. The proposed controller intelligently derates the power considering switch-health 

and avoids premature PES failure. This degradation-aware controller provides a 4% increase in 

life over the traditional controller by derating the SST up to 80% of its rated power. This lifetime 

extension is achieved by considering TJ,m, and ΔTJ increase by 1oC due to switch degradation. 

Although the proposed controller derates the SST with switch degradation, this extended lifetime 

is significant for maintenance scheduling and avoid unexpected failure. The proposed data-sheet-

based behavioral cascode GaN FET switch-loss model shows a 2.3% average mean squared 

error. This model does not require proprietary information about the switch. 

Moreover, the parameters are easily extractable from the datasheet and DPT. This loss 

model does not require exhaustive computation.  Besides, it is easily integrated into the real-time 
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controller as a look-up table due to its low computational complexity. The proposed controller's 

complexity is lowered as it works on the current health status and life consumption and does not 

require storing data over the switch's life.  

6.2 Future scope of research 

The high-power high-frequency PESs are focusing on the power-density and efficiency. 

Although they show promise in different emerging applications, PES's reliability and robustness 

are extremely important for their wide acceptability. The advancement of communication and 

computation technology widens the scope of reliability research in power electronics. The 

following areas are very promising in the power electronic reliability research: 

i) Artificial intelligence assisted PES reliability. 

ii) Reliability integrated switch model development for the simulation study. 

iii) Reliability-oriented intelligent power electronics switch fabrication.  

iv) System-wide comprehensive power electronics reliability. 

 

6.2.1 Artificial intelligence assisted reliability of the PES 

One of the prognosis study's critical aspects is degradation identification, degradation 

mapping, and degradation-aware control. Artificial intelligence techniques, especially deep 

learning techniques, show the capability to learn from data and evolve likewise. Although these 

methods show potential in prognosis, their real-time implementation is challenging. Degradation 

is a slow process, and historical online degradation analysis requires large memory storage. 

Moreover, specialized GPU/CPU are required to implement these A.I.-based techniques.  The 

recent development of low-cost computer processing power, IoT, and cloud computing 
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technologies will be instrumental in employing A.I.-based real-time PES degradation analysis. 

Degradation-sensitive signals can be acquired and stored in the cloud, which will address the 

challenge of large memory storage and processing. An outline of A.I.-based degradation 

identification, lifetime estimation, and PES control strategy is shown in Figure 6.1.  

    

 

Figure 6.1 A.I. based degradation identification, lifetime estimation, and PES control strategy. 

 

6.2.2 Reliability integrated switch model development for simulation study 

The circuit simulation provides insight into the behavior of the PES during operation. 

Although the non-linear switch behavior is integrated into the Spice model, switch-degradation is 

still not incorporated. The development of a degradation-aware spice model will help the system 

designer assess the system's reliability and robustness without expensive and time-consuming 

testing. A lifetime estimation strategy from the degradation-aware simulation is shown in Figure 

6.2. 
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Figure 6.2     Degradation-aware switch model simulation for lifetime simulation. 

 

 

Figure 6.3 Reliability-oriented intelligent power electronics switch fabrication. 

 

6.2.3 Reliability oriented intelligent power electronics switch fabrication 

The intelligent switch development is a prospective research area that will use the 

junction temperature estimated from the integrated temperature sensor for real-time degradation 

estimation. This intelligent switch will provide the system higher reliability and robustness. 
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Moreover, it will reduce the dependence on signal conditioning and noise on the degradation 

data. This switch can be directly interfaced with the controller for system control and lifetime 

estimation, as shown in Figure 6.3.  

6.2.4 System-wide comprehensive power electronics reliability 

This dissertation focuses on switch degradation mapping and switches degradation aware 

controller development for the SST. Other researches have been focused on capacitors, sensors, 

and batteries, which did not consider the simultaneous degradation of all the components. The 

degradation of these components affects the integrity of the PES. A comprehensive and real-time 

PES reliability is another potential research area. This reliability study will combine ALT-based 

degradation data and real-time component health information, as shown in Figure 6.4.      

 

 

Figure 6.4 System-wide comprehensive PES reliability. 
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