9 research outputs found

    A Dual Key-Based Activation Scheme for Secure LoRaWAN

    Get PDF

    Insights into the Issue of Deploying a Private LoRaWAN

    Get PDF
    The last decade has transformed wireless access technologies and crystallized a new direction for the internet of things (IoT). The modern low-power wide-area network (LPWAN) technologies have been introduced to deliver connectivity for billions of devices while keeping the costs and consumption low, and the range of communication high. While the 5G (fifth generation mobile network) LPWAN-like radio technologies, namely NB-IoT (narrowband internet of things) and LTE-M (long-term evolution machine type communication) are emerging, the long-range wide-area network (LoRaWAN) remains extremely popular. One unique feature of this technology, which distinguishes it from the competitors, is the possibility of supporting both public and private network deployments. In this paper we focus on this aspect and deliver original results comparing the performance of the private and public LoRAWAN deployment options; these results should help understand the LoRaWAN technology and give a clear overview of the advantages and disadvantages of the private versus public approaches. Notably, we carry the comparison along the three dimensions: the communication performance, the security, and the cost analysis. The presented results illustratively demonstrate the differences of the two deployment approaches, and thus can support selection of the most efficient deployment option for a target application

    Energy efficiency in short and wide-area IoT technologies—A survey

    Get PDF
    In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions

    Design, analysis and remote monitoring of a solar powered orphan oil well pumping system in Nigeria

    Get PDF
    This thesis explores the issue of orphaned wells, which are abandoned oil and gas wells left uncapped, leading to the release of greenhouse gases, including methane and hydrogen sulphide gas H₂S, which is lethal to humans into the atmosphere. These wells contribute significantly to global warming, as methane is a potent greenhouse gas with a high heat-trapping capability, unfortunately due to it cost an average of 100,000CAD per well for oil well plugging, most oil industry abandon these wells. The research identifies cost-effective strategies to mitigate the impact of abandoned wells using renewable technology, specifically focusing on a comprehensive system sizing approach for Olobiri oil well 17. To address the problem, the study recommends the use of solar-powered pumps to remove the remnants of oil from the wells. PVsyst software is employed to determine the appropriate pump size if the system ran continuously or solar peak hours of the location. The results demonstrate that a 5-hour running time yields higher system efficiency compared to continuous running time. Based on HOMERpro optimization result, a 50kW PV unit and 54.9kW batteries are recommended for the system setup, resulting in improved efficiency and cost-effective option during the 5-hour operation with an overall efficiency of 11.4% and pump efficiency was 37.9% compared to a continuous flow system efficiency of 5%, and the pump efficiency of 11%. For monitoring and data logging purposes, the addition of PLX DAQ aids in real-time monitoring system for the design characteristics such as PV voltage and current, inverter AC output, oil level and temperature. This low-cost data logging system allows for easy maintenance and provides valuable data for further analysis since the PLX DAQ is a Microsoft Excel’s add-on. Also, due to the site location and the specification describing the location, Lora Technology is implemented for real time monitoring, which is independent on the internet network. In conclusion, this research highlights the importance of addressing orphaned wells' environmental impact and proposes a viable solution for capping using renewable technology, particularly solar-powered pumps, to mitigate greenhouse gas emissions and the potential hazards posed by abandoned wells

    Fault-Tolerant, Scalable and Interoperable IoT Platform

    Get PDF
    Tese de mestrado, Engenharia Informática (Engenharia de Software) Universidade de Lisboa, Faculdade de Ciências, 2020Nowadays the growth of Internet usage is quite visible. Everyday the number of devices connected to the Internet increases, everything may be a smart device capable of interacting with the Internet, from smartphones, smartwatches, refrigerators and much more. All of these devices are called things in the Internet of Things. Many of them are usually constrained devices due to it’s size, usually very small with low capacities such as memory and/or processing power. These kind of devices need to be very efficient in all of their actives. For example, the battery lifetime should be maximized as possible so that the necessity to change each device’s battery could be minimized. There are many technologies that allow communication between devices. Besides the technologies, protocols may be involved in the communication between each device in an IoT system. Communication Protocols define the behaviour that is followed by things when communicating with each other. For example, in some protocols acknowledgments must be used to ensure data arrival, while in others this feature is not enforced. There are many communication Protocols available in the literature. The use of communication protocols and communication models bring many benefits to IoT systems, but they may also benefit from using the cloud. One of the biggest struggles in IoT is the fact that things are very constrained devices in terms of resources (CPU and RAM). With the cloud this would no longer be an issue. Plus, the cloud is able of providing device management, scalability, storage and real time transmission. The characteristics of the communication protocols were studied and an innovative system architecture based on micro-services, Kubernetes and Kafka is proposed in this thesis. This proposal tries to address issues such as scalability, interoperability, fault tolerance, resiliency, availability and simple management of large IoT systems. Supported by Kubernetes, which is an open-source technology that allows micro-services to be extensible, configurable and automatically managed with fault tolerance and Kafka, which is a distributed event log that uses the publish-subscribe pattern, the proposed architecture is able to deal with high number of devices producing and consuming data at the same time. The proposed Fault-Tolerant and Interoperable IoT Architecture is a cluster composed of many components (micro-services) that were implemented using docker containers. The current implementation of the system supports the MQTT, CoAP and REST protocols for data incoming and the same plus websockets for data output. Since the system is based on micro-services, more protocols may be added in a simple way (just a new micro-service must be added). The system is able to convert any protocol into another protocol, e.g., if a message arrives at the system through MQTT protocol, it can be consumed using the CoAP or REST protocol. When messages are sent to the system the payload is stored in Kafka independently of the protocol, and when clients request it, it is consumed from Kafka and encapsulated by the client protocol to be sent to the client. In order to evaluate and demonstrate the capabilities of our proposal a set of experiments were made, which allows to collect information about the performance of the Communication Protocols, the system as a whole, Kubernetes and Kafka. From the experiments we were able to conclude that the message size is not so much important, since the system is able to deal with messages from 39 bytes to 2000 bytes. Since we are designing the system for IoT applications, we considered that messages with 2000 Bytes are big messages. Also, it was recognized that the system is able to recover from crashed nodes and to respond well in terms of average delay and packet loss when low and high throughput are compared. In this situation, there is a significant impact of the RAM usage, but the system still works without problems. In terms of scalability, the evaluation of the system through its cluster under-layer platform (Kubernetes) allowed us to understand that there is no direct relation between the time spent toconstant. However, the same conclusion is not true for the number of instances that are needed at high layer (application layer). Here, time spent to increase the number of instances of a specific application is directly proportional to the number of instances that are already running. In respect to data redundancy and persistence, the experiments showed that the average delay and packet loss of a message sent from a Producer to a Receiver is approximately the same regardless of the number of Kafka instances being used. Additionally, using a high number of partitions has a negative impact on the system’s behaviour

    An Optimized IoT Architecture based on Fog Computing with a new Method of Data Transfer Control

    Get PDF
    Over the years, distributed and grid computing paradigms have evolved to cloud computing, which has become a common approach applied in the Internet of Things (IoT). The growing popularity of the cloud computing paradigm lies mainly in the simple management of end devices, uniform access to many services, elasticity of available resources and cost savings. In addition to these advantages, the expansion of IoT devices and the demand for speed and data volume have provided an opportunity for the emergence of new computing paradigms. The fog computing paradigm brings data processing nearer to the end devices while preserving the cloud connection, leading to lower latency, higher efficiency and location awareness. The overall aim of the dissertation is the design and implementation of an optimised IoT network architecture which adopts the fog computing paradigm. To eliminate the need to build completely new infrastructure, the optimised network architecture is based on LoRaWAN, which has already been deployed at many locations and offers long-distance communication with low-power consumption. This raises several challenges which need to be overcome. For correct functioning of the fog computing paradigm, it was necessary to explore a new method of controlling the data transfer between IoT gateways and the cloud service. The methods explored in this dissertation are both static (based on predefined values) and dynamic (based on machine learning).V průběhu let se výpočetní modely vyvíjely od distribuovaných a gridových ke cloud computingu, který se stal nejčastěji používaným přístupem v oblasti Internetu věcí. Rostoucí popularita cloud computingu spočívá především v jednoduché správě koncových uzlů, jednotném přístupu k velkému počtu služeb, elasticitě dostupných zdrojů a šetření jednotlivých nákladů. Přes všechny své přínosy však narůstající počet připojených zařízení a nároků na rychlost dávají příležitost vzniku nových výpočetních modelů. Fog computing model přenáší výpočetní výkon blíže ke koncovým zařízením při zachování spojení s cloudem, což vede ke snížení latence, zvýšení efektivity a umožnění reagovat na základě aktuálních podmínek. Výsledným cílem této disertační práce je návrh a implementace optimalizované síťové IoT architektury s podporou pro fog computing. Pro eliminaci nutnosti budovat kompletně novou infrastrukturu počítá výsledné optimalizované řešení s integrací do LoRaWAN, která je již nasazena na mnoha místech a nabízí komunikaci na velké vzdálenosti při nízké spotřebě energie. Tato integrace však přináší několik úskalí, jež je potřeba překonat. K dosažení správné funkčnosti fog computingu bylo potřeba provést výzkum metody pro řízení přenosu dat mezi síťovou bránou a cloud službou. Zkoumané metody jsou jak statické (založené na předdefinovaných hodnotách), tak dynamické (využívající strojového učení).440 - Katedra telekomunikační technikyvyhově

    A Dual Key-Based Activation Scheme for Secure LoRaWAN

    No full text
    With the advent of the Internet of Things (IoT) era, we are experiencing rapid technological progress. Billions of devices are connected to each other, and our homes, cities, hospitals, and schools are getting smarter and smarter. However, to realize the IoT, several challenging issues such as connecting resource-constrained devices to the Internet must be resolved. Recently introduced Low Power Wide Area Network (LPWAN) technologies have been devised to resolve this issue. Among many LPWAN candidates, the Long Range (LoRa) is one of the most promising technologies. The Long Range Wide Area Network (LoRaWAN) is a communication protocol for LoRa that provides basic security mechanisms. However, some security loopholes exist in LoRaWAN’s key update and session key generation. In this paper, we propose a dual key-based activation scheme for LoRaWAN. It resolves the problem of key updates not being fully supported. In addition, our scheme facilitates each layer in generating its own session key directly, which ensures the independence of all layers. Real-world experimental results compared with the original scheme show that the proposed scheme is totally feasible in terms of delay and battery consumption
    corecore