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Abstract

Nowadays the growth of Internet usage is quite visible. Everyday the number of devices connected
to the Internet increases, everything may be a smart device capable of interacting with the Internet,
from smartphones, smartwatches, refrigerators and much more. All of these devices are called things
in the Internet of Things. Many of them are usually constrained devices due to it’s size, usually
very small with low capacities such as memory and/or processing power. These kind of devices need
to be very efficient in all of their actives. For example, the battery lifetime should be maximized
as possible so that the necessity to change each device’s battery could be minimized. There are
many technologies that allow communication between devices. Besides the technologies, protocols
may be involved in the communication between each device in an IoT system. Communication
Protocols define the behaviour that is followed by things when communicating with each other. For
example, in some protocols acknowledgments must be used to ensure data arrival, while in others
this feature is not enforced. There are many communication Protocols available in the literature.

The use of communication protocols and communication models bring many benefits to IoT
systems, but they may also benefit from using the cloud. One of the biggest struggles in IoT is
the fact that things are very constrained devices in terms of resources (CPU and RAM). With the
cloud this would no longer be an issue. Plus, the cloud is able of providing device management,
scalability, storage and real time transmission.

The characteristics of the communication protocols were studied and an innovative system ar-
chitecture based on micro-services, Kubernetes and Kafka is proposed in this thesis. This proposal
tries to address issues such as scalability, interoperability, fault tolerance, resiliency, availability and
simple management of large IoT systems. Supported by Kubernetes, which is an open-source tech-
nology that allows micro-services to be extensible, configurable and automatically managed with
fault tolerance and Kafka, which is a distributed event log that uses the publish-subscribe pattern,
the proposed architecture is able to deal with high number of devices producing and consuming
data at the same time.

The proposed Fault-Tolerant and Interoperable IoT Architecture is a cluster composed of many
components (micro-services) that were implemented using docker containers. The current imple-
mentation of the system supports the MQTT, CoAP and REST protocols for data incoming and
the same plus websockets for data output.

Since the system is based on micro-services, more protocols may be added in a simple way
(just a new micro-service must be added). The system is able to convert any protocol into another
protocol, e.g., if a message arrives at the system through MQTT protocol, it can be consumed
using the CoAP or REST protocol. When messages are sent to the system the payload is stored in
Kafka independently of the protocol, and when clients request it, it is consumed from Kafka and
encapsulated by the client protocol to be sent to the client.

In order to evaluate and demonstrate the capabilities of our proposal a set of experiments were
made, which allows to collect information about the performance of the Communication Protocols,
the system as a whole, Kubernetes and Kafka. From the experiments we were able to conclude
that the message size is not so much important, since the system is able to deal with messages
from 39 bytes to 2000 bytes. Since we are designing the system for IoT applications, we considered
that messages with 2000 Bytes are big messages.

Also, it was recognized that the system is able to recover from crashed nodes and to respond
well in terms of average delay and packet loss when low and high throughput are compared. In
this situation, there is a significant impact of the RAM usage, but the system still works without
problems.

In terms of scalability, the evaluation of the system through its cluster under-layer platform
(Kubernetes) allowed us to understand that there is no direct relation between the time spent to
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add a node and the number of nodes in the cluster. So the time to add a single node is reduced and
constant. However, the same conclusion is not true for the number of instances that are needed at
high layer (application layer). Here, time spent to increase the number of instances of a specific
application is directly proportional to the number of instances that are already running.

In respect to data redundancy and persistence, the experiments showed that the average delay
and packet loss of a message sent from a Producer to a Receiver is approximately the same regard-
less of the number of Kafka instances being used. Additionally, using a high number of partitions
has a negative impact on the system’s behaviour.

Keywords: IoT, MQTT, CoAP, REST, Kubernetes, Kafka, Cloud, Scalability, Interoper-
ability, Fault Tolerance, Resiliency, Availability, Simple Management, Publish-Subscribe, Micro-
Services, Docker containers.





Resumo alargado em Português

Hoje em dia o crescimento da utilização da internet está a aumentar devido à vasta possibilidade
de dispositivos capazes de se conectarem a ela, desde telefones, relógios, frigoŕıficos ou lâmpadas
inteligentes, entre muitos outros dispositivos. Todos estes dispositivos são denominados de ”coisas”
na Internet das Coisas (”Internet of Things - IoT” em inglês). Muitos deles apresentam pouco
poder de processamento e/ou memória, devido ao fato da grande maioria ser de pequenas di-
mensões. Normalmente estes dispositivos são usados para capturar determinados dados, tipica-
mente com tamanhos reduzidos, e transmiti-los para outras entidades, como é o caso de sensores
de temperatura e/ou humidade que transmitem a sua informação para uma central onde são ap-
resentados.

Para que os sistemas IoT tenham um bom desempenho estes devem ser o mais eficientes posśıvel,
por exemplo, o tempo de vida da bateria dos dispositivos usados deve ser maximizada de forma a
que estas tenham que ser substitúıdas o menor número de vezes posśıvel (por exemplo, uma vez
por ano).

Existem vários aspetos que devem ser tidos em consideração na maximização da eficiência
dos sistemas IoT, como é o caso do tipo de tecnologia usada, o modelo ou o protocolo de
comunicação. Muitos dos sistemas IoT são suportados por modelos de computação na nuvem.
Neste caso a comunicação com a nuvem também deve ser tida em consideração.

Nesta tese, numa primeira fase, estes aspetos foram estudados de forma a poder ter uma boa
base de conhecimento sobre como maximizar a eficiência deste tipo de sistemas.

As tecnologias estudas foram as seguintes: LoRa, Sigfox, NB-IoT, Bluetooth, ZigBee, Wi-Fi,
LTE, GSM.

Em termos de modelos de comunicação, nesta tese foram abordados os modelos publish-subscribe
e request-response. O modelo publish-subscribe é um modelo onde dispositivos publicam dados
(Publishers) para um componente central chamado Broker, cuja responsabilidade é receber os
dados e reencaminhá-los para o destinatário correto (Subscribers). Os dados que fluem nesta co-
municação são identificados por meio de Tópicos. Por exemplo, os dados relativos a temperatura e
humidade podem ser divididos em dois tópicos chamados ”temperatura” e ”humidade”. Os Publish-
ers publicam dados num tópico (no Broker) e o Broker trata de reencaminhar esses dados a todos
os Subscribers que tenham, previamente, subscrito esse tópico. No caso do modelo request-response
não existem tópicos, nem Publishers, Subscribers ou Brokers. Em vez disso existem Clientes, Servi-
dores e Recursos. Os dados transmitidos são separados em recursos que representam a informação
enviada, por exemplo ”temperatura” ou ”humidade”. Os Recursos são pré-programados nos servi-
dores de modo a que estes saibam como proceder para responder aos clientes. A interação com os
servidores deste tipo baseia-se no conjunto de primitivas CRUD do HTML (PUT, POST, GET ou
DELETE). Este conjunto de primitivas permite enviar dados a um determinado Recurso criando-o
caso não exista, atualizar um Recurso existente, pedir ao servidor para receber os dados de um
Recurso ou apagar dados de um Recurso.

Em termos de protocolos de comunicação, nesta tese são abordados os protocolos MQTT, CoAP,
LoRaWAN, AMQP, REST e OPC-UA. Dada a amplitude do trabalho, a parte experimental teve
de ser limitada, concentrando a sua avaliação nos protocolos MQTT, CoAP e REST.

O protocolo MQTT é um dos protocolos de acesso público mais usados em IoT. Este protocolo
usa o modelo publish-subscribe para estabelecer comunicação o que significa que os dispositivos não
precisam de saber os endereços uns dos outros porque os dados são enviados para o broker, sendo
o único endereço necessário para estabelecer a comunicação.

Em relação à comunicação, este protocolo oferece garantias de entrega da informação, uma vez
que usa o protocolo TCP na camada de transporte. Quanto à qualidade de serviço, o protocolo
oferece três ńıveis: ”No máximo uma vez”, ”Pelo menos uma vez” e ”Exatamente uma vez”. No
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primeiro ńıvel (”No máximo uma vez”) as mensagens não chegam ao destino mais que uma vez e
caso alguma se perca nada é feito. No segundo ńıvel as mensagens que não cheguem ao destino
são reenviadas, podendo haver mensagens duplicadas. Para isto o protocolo MQTT faz uso de
”acknowledgments” que são mensagens cujo único propósito é confirmar a receção de chegada de
uma mensagem à entidade que a enviou. No último ńıvel, as mensagens são entregues uma única
vez, sem perdas e sem duplicados, para isso o protocolo usa quatro etapas de confirmação.

No que diz respeito ao protocolo CoAP, este foi desenhado especificamente para ser usado
em ambientes onde os dispositivos têm poucos recursos, o que o torna também muito útil em
sistemas IoT, porém, ao contrário de MQTT, este segue o modelo resquest-response. É também
um protocolo de acesso público, mas neste caso pode usar UDP ou TCP na camada de transporte.
Este protocolo define quatro tipos de mensagens: ”Confirmable”, ”Non-Confirmable”, ”Reset” ou
”Acknowledgment”. O primeiro tipo indica que as mensagens exigem confirmação, ou seja, espera-
se que uma mensagem do tipo ”Acknowledgement” seja devolvida após a sua chegada ao destino.
As mensagens do tipo ”Non-Confirmable” não têm essa necessidade de confirmação. Contudo, se
forem usados juntamente com o protocolo UDP, não existe garantia de entrega das mesmas. As
mensagens do tipo ”Reset” são usadas pelo servidor e reservadas para casos espećıficos como por
exemplo mensagens que se perderam e é necessário repor os contadores de mensagens.

REST é um estilo de arquitetura que, de forma semelhante ao CoAP, segue o modelo request-
response. Porém o REST não foi desenhado para ser usado especificamente em sistemas onde existe
acesso a poucos recursos. É um estilo comum em aplicações de rede. Sendo assim, existe também
neste caso um servidor para o qual clientes enviam pedidos. Esses pedidos podem ser qualquer um
dos anteriormente mencionados ”PUT”, ”POST”, ”GET” e ”Delete” que pedem ao servidor para
enviar, alterar/atualizar, receber ou apagar recursos.

Além das tecnologias, modelos e protocolos falados, também a nuvem é capaz de oferecer muitos
benef́ıcios a sistemas IoT. Um dos maiores problemas em IoT é a falta de recursos (processamento
e memória) que surge do fato dos dispositivos, tipicamente, oferecerem poucos recursos. Neste
aspeto, o uso da nuvem ajuda através da possibilidade de se usarem instâncias com recursos
fornecidos pelo provedor de nuvem (como por exemplo a Google Cloud ou Microsoft Azure). Estes
recursos têm por norma um custo consideravelmente barato, dependendo da quantidade e tempo
que esses recursos são usados. Atualmente, os fornecedores de serviços na nuvem fornecem também
recursos para a gestão de dispositivos, escalabilidade, armazenamento e transmissão de dados em
tempo real.

Após o estudo destas metodologias e ferramentas dispońıveis, foi desenvolvida uma nova ar-
quitetura para sistemas IoT. Esta arquitetura é constitúıda por um cluster composto por vários
micro-serviços implementados com o uso de contentores docker por forma a facilitar a adição,
remoção ou atualização de micro-serviços.

A Arquitetura de IoT interoperável e tolerante a faltas (Fault-Tolerant and Interoperable IoT
Architecture) por nós proposta tenta obter escalabilidade, interoperabilidade, tolerância a
faltas, resiliência, disponibilidade e facilidade de gestão de sistemas IoT de grande dimensão
através do uso de duas principais ferramentas de livre acesso: Kubernetes e Kafka.

O Kubernetes é um cluster que permite gerir, configurar ou escalar micro-serviços de forma
automática e tolerante a faltas. Neste tipo de clusters, existem um ou mais nós master e nós
escravos. Os nós master são os nós que gerem e controlam os nós escravos. Os nós escravos
são os que executam os micro-serviços. No Kubernetes os micro-serviços são implementados em
contentores docker que são colocados no componente mais básico do Kubernetes chamado ”Pod”.
Os Pods são criados em nós escravos existentes no cluster.

Em conjunto com o Kubernetes está também em funcionamento o Kafka que serve como um
registo de eventos distribúıdo. O Kafka é um sistema que segue o modelo publish-subscribe onde
”Producers” usam tópicos para enviar mensagens para o Kafka e ”Receivers” consomem dados
desses tópicos. Estes tópicos têm ainda dois novos conceitos adicionados pelo Kafka: fator de
replicação e número de partições. O fator de replicação indica o número de réplicas (de Kafka)
pelos quais se pretende persistir os dados recebidos num tópico. O número de partições serve para
indicar em quantas partições deve o tópico estar repartido. Estas partições servem para permitir
processamento paralelo.

A implementação desta arquitetura permite o envio de dados usando os protocolos MQTT,
CoAP e REST e a receção desses dados através de qualquer um destes protocolos e ainda Web-
Sockets. O sistema é capaz de traduzir estes protocolos, por exemplo, dados enviados usando
MQTT podem ser recebidos através de CoAP. Quando os dados são enviados para o sistema, a
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mensagem enviada é guardada no Kafka independentemente do protocolo usado, e quando alguém
quer receber dados do sistema, este devolve os dados guardados no Kafka.

Caso seja necessário, a arquitetura foi desenhada para que a adição de novos protocolos seja
simples, bastando para isso adicionar novos micro-serviços ao sistema.

De forma a demonstrar as capacidades da arquitetura proposta e desenvolvida nesta tese, foi
realizado um conjunto de experiências que avaliam a performance do sistema.

A primeira experiência realizada verifica qual a latência de uma mensagem, de tamanho pe-
queno, desde o momento em que é enviada para o sistema até ao momento que chega ao seu destino.
Esta experiência foi repetida para todos os protocolos com diferentes taxas de envio (1, 10 e 100
mensagens por segundo).

Dos resultados obtidos concluiu-se que a latência de envio de pacotes MQTT é de, aproximada-
mente, 1.1s, 1.8s e 5.3s para as taxas de envio testadas. Em relação ao CoAP, a latência é de,
aproximadamente, 2.8s, 3.3s e 2.8s, enquanto no REST obtiveram-se valores 3.2s, 3.1s e 2.97s.

Em termos de perda de informação (pacotes perdidos), o teste realizado com MQTT foi o único
que não apresentou perdas para qualquer uma das taxas de envio usadas. No CoAP, para ritmos
de entrada de 1, 10 e 100 mensagens por segundo houve uma perda de 0,92%, 18,52% e 17,58%,
respetivamente. No Caso de REST, obtiveram-se valores de 0,52%, 32,48% e 28,33% de perdas
para os mesmos ritmos de entrada de dados.

Com base nos valores apresentados, é posśıvel concluir que, em relação à perda de pacotes,
quando a taxa de envio é alta, todos os protocolos têm dificuldades em responder. Em relação à
latência de envio dos dados, parece existir uma tendência para ser tanto maior quanto a taxa de
envio, excepto no caso de REST que não foi identificada uma relação directa.

De forma a avaliar qual o impacto do tamanho de uma mensagem no desempenho do sistema,
realizou-se um conjunto de experiencias onde se enviaram mensagens com tamanho grande e com
tamanho variável usando MQTT. Os resultados destes testes foram comparados com os resultados
obtidos na experiência anterior.

Tendo em consideração que a arquitetura do sistema foi concebida para utilizações em contexto
de IoT, mensagens com 39 Bytes são consideradas mensagens pequenas ou regulares e mensagens
com 2000 Bytes são consideradas mensagens grandes. Nos testes onde mensagens de tamanho
variável foram consideradas, estas tiveram um tamanho compreendido entre 100 e 1000 Bytes.

Com estes testes pôde-se verificar que não existe um impacto muito significativo provocado
pelo tamanho das mensagens em termos de latência. Contudo, deparamo-nos com um impacto
expressivo, em termos de pacotes perdidos, quando se usam tamanhos variáveis das mensagens.

Em termos de capacidade de recuperação a falhas de nós, foram realizadas experiências onde
os nós foram forçados a falhar e verificou-se a capacidade de recuperação do cluster. Neste caso
verificou-se que o sistema foi capaz de se adaptar, removendo os pods do nó que falhou, distribuindo-
os por outros nós, e retomar o funcionamento normal do sistema.

De seguida, e de forma a avaliar a influência da quantidade de dados em processamento no
sistema, foram realizados dois testes de carga, onde os ńıveis de uso do CPU e memória RAM
foram monitorizados. No primeiro teste usou-se um único produtor MQTT para enviar dados,
enquanto que no segundo usaram-se 10 produtores. A quantidade de dados recebidos e em pro-
cessamento aumenta em dez vezes de um caso para outro. Como resultado, concluiu-se que o
ńıvel de CPU utilizado não varia muito entre cada teste, mas os ńıveis de uso de RAM aumentam
significativamente.

Sendo a arquitetura proposta escalável em termos de instâncias dos micro-serviços ou em termos
do número de nós de hardware que dispõe, realizaram-se também experiências onde se verificou
qual o tempo necessário para que o sistema adicione um novo nó (hardware) ao cluster consoante
o número de nós existentes. Foram realizados testes com diferentes dimensões do cluster (1, 3, 5,
8 e 10 nós) onde se acrescentava um nó adicional. Deste teste concluiu-se que, independentemente
da dimensão do cluster, a adição de um novo nó demora entre 30 e 40 segundos.

Por outro lado, a arquitetura proposta também permite a escalabilidade horizontal, permitindo
aumentar o número de instâncias de um micro-serviço. Para avaliar esta componente, configurou-
se o sistema de forma a ter um master e quatro nós escravos. Com base nesta configuração,
fizeram-se testes com 10, 20, 30, 40, 50 e 60 instâncias de um micro-serviço, e de cada vez que se
escalava o micro-serviço verificou-se o tempo que este demorou a passar de estado ”Não Pronto”
para ”Pronto”. Desta experiência concluiu-se que o tempo necessário para escalar o micro-serviço
aumenta de forma diretamente proporcional ao número de instâncias a escalar. Quantas mais
instâncias são precisas escalar maior o tempo necessário para o fazer.
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Tendo em consideração a performance, eficiência e o processamento em paralelo que a arquite-
tura dispõe, realizou-se também um conjunto de testes com diferentes fatores de replicação (1, 3,
7, 10 e 15) que permitiram demonstrar a vantagem da replicação da informação neste tipo de sis-
temas. Nestes testes verificou-se que para o fator de replicação 1 existe uma latência ligeiramente
superior aos restantes. Esta diferença deve-se ao fato de não ser posśıvel existir processamento
paralelo visto que os dados não são replicados para outros Kafkas dentro do sistema. Já nos testes
com fatores de replicação maior, a diferença em termos de tempo de processamento é notória.

Por fim, foi explorada a possibilidade da segmentação dos dados em partições. Neste caso
foram realizados testes com número de partições 1, 50 e 100. Do teste conclúıu-se que para 1 e 50
partições a latência foi de, aproximadamente, 1.5s enquanto que o teste com 100 partições mostrou
ter, aproximadamente, 27.2s. Esta questão não foi completamente explorada, sendo apontada
como trabalho futuro.

Em suma, nesta tese propõe-se uma arquitetura de IoT eficiente, interoperável e tolerante a
faltas. A avaliação feita permite concluir que a arquitetura traz vantagens em situações de neces-
sidade de integração de diferentes sistemas IoT num único sistema, onde milhares de dispositivos
podem ser conectados para enviar ou receber dados de forma eficiente.

Palavras-chave: IoT, LoRa, Sigfox, NB-IoT, Bluetooth, ZigBee, Wi-Fi, LTE, GSM, MQTT,
CoAP, LoRaWAN, AMQP, REST, OPC-UA, Kubernetes, Kafka, Computação em Nuvem, Escala-
bilidade, Interoperabilidade, Tolerância a faltas, Resiliência, Disponibilidade, facilidade de gestão,
Publish-Subscribe, Request-Response, Micro-serviços, Contentores Docker.
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13 José Soares



1: Introduction

Nowadays the growth of the Internet usage is quite visible. The number of connected devices is
increasing every day. Everything can be a device connected to the network, from smartphones,
smartwatches, refrigerators or even televisions. Therefore, there is a net full of things connected
to it, building the Internet of Things (IoT).

Most of these ”things” are constrained devices because they were developed without high pro-
cessing, memory or energy capacity. A good example of devices that have these characteristics are
smart sensors, such as small temperature or humidity smart sensors. In this context, everything
that can be done to decrease the cost of devices or provide better efficiency is very valued.

A good way to improve the efficiency of these devices is by using an appropriate communication
protocol that takes into account the features present in those devices. There are already many
protocols proposed in the literature, such as Message Queuing Telemetry Transport (MQTT), Con-
strained Application Protocol (CoAP), Long Range Wide Area Network (LoRaWAN), Advanced
Message Queuing Protocol (AMQP), Representational State Transfer (REST), OPC - Unified
Architecture (OPC-UA) or Zonal Intercommunication Global-standard (ZigBee), which are appro-
priated for different application contexts.

Besides the communication protocol, also the communication technology used can improve the
capability of sensor networks (things network), which is used for specific application scenarios.
There are many communication technologies that allow devices to communicate with each other,
such as cellular technologies like Long Term Evolution (LTE) or 5G, satellite or others like Narrow
Band IoT (NBIoT). Even with a good protocol and using the best technology available, the IoT
system may still fail, and if so, data may be lost forever. To prevent such cases, it would be great
if these kind of systems were fault tolerant and able to scale in order to address high number of
devices. There are frameworks that allow for an automatic management of system failures already
in the literature such as Kubernetes and Kafka. A full architecture that comprises things, network
and those frameworks will impose a new generation of IoT systems where scale and failure handling
improves the IoT system.

1.1 Objectives
Depending on the goals of each application, protocols might not satisfy all the needed requirements.
For example, the MQTT protocol is a publish-subscribe protocol, a pattern that is dominant in
IoT, allowing the communication to have better performance when there are a lot of consumers
wanting for the same information. On the other hand, there’s, for example, the LoRaWAN protocol
that was designed for long-range communications, taking into account the energy spent in the
communication. Hence, each protocol might be better suited for different kinds of situations.

Typically, the IoT protocols are proposed individually, taking into consideration their own
requirements. As a result, each was implemented separately, having created several brokers and
servers that work independently. This hinders the creation of a full interoperable system because
for each protocol there is a need for understanding the broker and/or server implementations to
deal with information coming from devices.

Moreover, there is a big heterogeneity in the IoT devices [92], and each of these devices may
work with a specific communication protocol, making deployments complex when different types
of devices are included in the same setup.

Hence, we propose the implementation of a scalable, fault-tolerance architecture that is able to
deal with different IoT protocols. It can be used, for instance, to evaluate the protocols behaviour
in individual or mixed way, where a device can send, for example, a CoAP or MQTT packet to the
system and the consumer can receive it through other protocols like REST or Websocket. This
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architecture brings the possibility to have a set of protocols working on a single IoT network or
system.

Besides the implementation of the solution, we also intended to perform the tests on the field
and use different hardware such as Raspberry Pi’s and Arduinos, which allows to obtain real
measurements and test, for instance, LoRaWAN in a real environment.

Unfortunately, due to the new Corona Virus, which forced us to stay at home for a large amount
of time, the real environmental testing was not done. In order to perform tests of our system we
decided to change the initial plan and considered an approach to use the cloud to deploy the system
and use our own machines to send data to the system. After some considerations it was evident that
the use of the Kubernetes with the cloud (in our case the Google Cloud Platform was considered)
would be expensive and these tests would be easier to make on a bare metal environment using a
local machine, the LASIGE Navigators cluster (called LASIGE Quinta) or simple virtual instances
on Google Cloud Platform.

1.2 Structure
The rest of the document is organized as follow: Chapter 2 presents some background of the
area and the State of the Art related with high availability and scalable solutions that can be
used in the IoT context. The most commonly used Communication Technologies are presented
along with their main features and characteristics. Wireless sensor networks and IoT architectures
may follow different models, which are also reviewed in this chapter. After that, a review of some
communication protocols used in this kind of communications are presented, such as MQTT, CoAP
or LoRaWAN, presenting their main features and patterns that are followed. After this, we discuss
how IoT may benefit with the use of the Cloud infrastructure and some technologies that allow
our system to be scalable, elastic and fault tolerant such as Kubernetes and Kafka. The main
characteristics of these technologies are also presented.

In Chapter 3 a requirement analysis is presented. Some use cases and requirements are shown
allowing the understanding of what are the main points that an IoT system should be focused on.

In chapter 4, the definition of the system and its architecture is described, explaining the main
features and how it can be used in order to have data flowing from device to device without ever
being lost or having the network overloaded.

In chapter 5 we define a set of experiments that allow better understanding the behaviour and
performance of the proposed architecture, for example if nodes are restored after a fail or how
much time does it take to add a new node to the system. The results of these experiments are
presented in Chapter 6.

Finally, Chapter 7 concluded the thesis with a reflection of the entire work explaining its
achievements, limitations and improvements that can be done in the future.
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2: State of the Art

The deployment of sensors for IoT applications is a challenging task because many issues must be
handled. For example, data is flowing at high rates and many times this data is quantitatively big.
Also, there is a possibility to store the data and only process it later, but this way the opportunity
to have a quick reaction to more urgent scenarios is lost. Typically, IoT applications require
reliable and low power wireless communication links between nodes and gateways. Examples of
such applications are smart homes and health care systems.

A sensor, or ”Things” in these kind of environment represents a physical object that can be
uniquely identified, capable of communicating with other sensors and/or other entities (with the
use of an address). It may have the ability to measure specific conditions such as temperature
level or proximity to other objects [85]. In order to understand the magnitude of the task that is
building an IoT system, in the next sections we reviewed the existing communication technologies,
patterns and protocols that are known in the literature and may be used to construct such systems.

Additionally, we know that these kind of systems must be scalable, resilient and fault tolerant.
In this context we also revised the benefits of using the cloud and other frameworks that allow
systems to fulfill all these requirements. Kubernetes and Kafka frameworks were revised and
presented in section 2.4.

2.1 Communication Technologies
The number of IoT devices is growing day by day in different contexts, such as smart cities,
smart homes, healthcare among other applications. These devices must communicate wirelessly
with each other very often with some requirements, such as long range, low data rate, low energy
consumption and low cost [94].

There are several technologies that allow wireless communication between devices, but some
are most suited for long range communications and others are more suited for short range com-
munications. There are also some technologies who take into consideration the need for low power
consumption, while others don’t take this into account. Examples of technologies that were built
to provide communication in close range are Bluetooth and ZigBee. Using one of these technologies
for long range communication wouldn’t be feasible unless a mesh network was used to extend the
reach of the communication, but in that case there would be a need to have intermediary devices
(hops), meaning that more money would be spent in infrastructure. An example of a long range
communication technology is the Global System for Mobile Communications (GSM). This type of
technology is not the best suited for sensor networks because it doesn’t have into consideration the
power consumption of the devices. An example of a technology that allows long range communica-
tion and concerns about the devices power consumption is LoRaWAN. Because of this, LoRaWAN
may be the best one out of these technologies to use in IoT systems [5, 106].

In the rest of this section the most used communication technologies in the context of IoT
applications are introduced. The following wireless communication technologies are revised: LoRa
[13], Sigfox [39], NB-IoT [94], Bluetooth [125], ZigBee [83], Wi-Fi [82], LTE [68], GSM [107].
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LPWAN Technologies

This technology is being used as a complement, and even replacement, of the traditional com-
munication technologies, such as the Bluetooth or Wi-Fi technologies, allowing the nodes to com-
municate with low cost, having a radio chipset that costs at maximum 2€, operating cost of 1€
for each device a year [94]. Low Power Wide Area Networks (LPWAN) ensures low power con-
sumption with nodes working with a battery with lifetime over 10 years. Besides all of this,
LPWAN enables communication over long distances, from 10km to 40km and 1km to 5km dis-
tance range, in rural and urban areas, respectively. There are many LPWAN technologies, such as
the LoRaWAN , Sigfox, LTE-M and NB-IoT .

According to Ikpehai et al. [71] and Mekki et al. [94], the most used LPWAN technologies are
the LoRa, Sigfox and NB-IoT. LoRaWAN (with LoRA in the Physical layer) is the most deployed
LPWAN technology in IoT use cases due to its signal propagation method (Chirp Spread Spectrum
[108]) and provides a better coverage, reliability and data rate [94].

• LoRa
LoRa is an LPWAN technology that uses Chirp Spread Spectrum (CSS) modulation [45].
It was designed to have low power characteristics and increased communication range when
compared with, for example, the Frequency Shifting Keying (FSK), which is a often used mod-
ulation technique for achieving low power communication [5]. LoRa implements a Medium
Access Control (MAC) layer protocol where protocols like LoRaWAN can be integrated giving
them access to the LoRa architecture [44].
With LoRa technology the range utterly depends on the environment and obstructions on
it, i.e. for an urban environment the range may be between 2 km to 5 km and for a rural
environment this range may go up to around 45 km [5, 44]. Despite this, when combined
with LoRaWAN it offers a better link budget then most of the standardized communication
technologies [5].
LoRa operates in specific frequency bands that are relative to the region of usage, for example,
in Europe it operates in frequency band 867-869MHZ but in North America the frequency
band is 902-928MHz [5, 13].

• Sigfox
Sigfox is also an LPWAN technology, similar to LoRa, working as a network operator but also
being a company (while LoRa belongs to Semtech Corporation) [71]. It allows communication
over long distances with an approximated speed of 100-600 bps (bits per second) [39]. This
technology was created in France (Toulouse) and it has been commercialized worldwide due
to its partnerships with other network operators [94].
To make this possible, Sigfox uses a technology called Ultra-Narrow Band (UNB) [7] which
allows for a bidirectional connection between nodes and a base-station. This base-station is
responsible to send data received from the nodes to the Sigfox cloud, which forwards the
information to the client cloud where the data is visualized and manipulated as the client
wishes. The Sigfox system architecture is represented in figure 2.1.
Based on UNB technology, due to its high wave-length and low bandwidth, Sigfox is able to
send messages in a reduced bandwidth (less then 200Hz), with the ability to reach more than
30 km distance in rural areas. UNB also provides noise-cancelling features, which improves
the communication [39].
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Figure 2.1: Sigfox Network [39]

• NB-IoT
Another LPWAN technology is the Narrowband Internet of Things [94]. It was standardized
by Third Generation Partnership Project (3GPP), and publicly released in June 2016. In
December 2016, both Vodafone and Huawei integrated the technology on a Spanish Vodafone
network and sent the first message following the standard to a device placed on a water me-
ter [94]. Since this technology rises from another one named LTE it inherited some features
and sets of specifications that are very well suited for smart metering use cases. In terms of
energy this technology is comparable to LoRa, and even sometimes outperforms it. Battery
lifetime may reach more than 10 years [11]. One of the differences between NB-IoT and LTE
is that NB-IoT is more stationary, data is transmitted on small chunks and applications are
prepared for that. Another difference is that NB-IoT responds well when having a big num-
ber of devices, and those devices may even be installed on troublesome places like basements
or high points (top of buildings) [93].

Short Range Technologies

• Bluetooth
Bluetooth technology was created by a group of the biggest companies in 1998 (Ericsson,
Nokia, IBM, Toshiba and Intel) as a solution for wireless data communication interface that
allowed exchange data in a seamless way [41, 55, 125]. Devices with Bluetooth capabilities
can be used as bridges between networks, or nodes of an ad-hoc network, transporting small
amounts of data and over a short range. These devices are able to detect each other and
connect to one another using radio waves with frequency 2.4 GHz. This kind of applications
are known as Wireless Personal Area Networks (WPAN) [55].
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Bluetooth devices may work in two different modes, the Slave mode and Master mode.
The Slave nodes may be active or asleep and are connected by one or more Master nodes.
Nodes may act as both the Slave or the Master at the same time in order to connect multiple
Piconets, creating the Scatternet. Piconets are groups of up to eight active nodes working
together, with one Master node, seven Slave active nodes and zero or more sleeping slave
nodes. When Piconets are connected together they form a larger Bluetooth Network called
the Scatternet as visible in figure 2.2. Masters on the network send inquiries to know which
nodes are available on the area. If there is a recently awaken Slave node in the area, it will
respond to the Master providing its address. After this, the Master may send a request to
establish a connection, which must be accepted by the Slave. Both devices then start syn-
chronizing in a specific frequency defined by the Master, which is different for every Piconet,
allowing data to be exchanged. When the connected devices are not needed in the network,
they have the option to enter power or bandwidth saving modes [55].

Figure 2.2: Overview of the Piconet and Scatternet [55]

• ZigBee
ZigBee is a Wireless Personal Area Networking (WPAN) open standard created by the ZigBee
Alliance. it was designed specifically to meet sensors and control devices needs, such as low
latency, cost, energy consumption and low bandwidth [83].
It is based on the IEEE 802.15.4 Medium Access Control (MAC) and Physical Layers pro-
viding technologies that enable networks to be scalable, self-organizing and self-healing while
trading data. It is characterized for having a very low rate, which consequently consumes
less power and increases the battery lifetime. Although its range is not very wide, it can be
used with a mesh network, which provides high reliability and larger range [3].
ZigBee has two major low power consumption modes, the TX/RX and Sleep mode. On the
TX/RX mode, sensors send (TX - transmit) and receive (RX - receive) the data that is
collected, while on the Sleep mode devices are placed in stand by. There are two different
ways to transmit data called Traffic Types. They are:

– Periodic: The application must provide the value of the data rate. Devices will activate
on the given time/rate, check for data, send it and then deactivate again [3].

– Intermittent: Traffic may be stimulated by an application or an external stimulator
defines the data rate. For example, a light switch or smoke detectors. This way, data
is not send periodically, instead, different amount of time may pass between each send
(intermittent sending) [83].
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• Wi-Fi
The Wi-Fi, Wireless-Fidelity, protocol (also referred to as Wireless Local Area Network
(WLAN) or IEEE 802.11) allows us to have a Local Area Network (LAN) on which devices
are connected and are capable of communicating with each other wirelessly. Devices such
as laptops or smartphones connect to a router or access points (hotspots) which generates
Wi-Fi signals [122]. IEEE approved the 802.11 standard (Wi-Fi) in 1997 specifying the MAC
and Physical layers for transmission with 2.4 GHz band and signal rate up to 2 Mbps [55,
82]. Many amendments were made from then on, and in 2009 an amendment called the
IEEE 802.11ad started with the goal of addressing the 60GHz band technology with higher
bandwidth of 2160 MHz [82, 102] and data rate of 6.7Gbps with a cost of distance (this data
rate is only possible at 3.3m of the access point) [112]. IEEE 802.11 is based in a cellular
architecture where devices, also called Stations (STA), are connected with a base station
called Access Points (AP) (also called medium) which is connected to a LAN, when there
is one. STA’s may be mobile, portable or stationary and must support STA services. STA
Services are the authentication, deauthentication, privacy and data delivery. AP’s provide
distribution services which may be the association, reassociation, disassociation, distribution
and integration. Since the architecture is not centralized, it is very flexible and helps pre-
venting bottlenecks, allowing for small networks with few devices and large networks with
several access points and servers. Also allowing for these networks to be permanent or semi-
permanent, lasting for several years or for a short duration time [100].

Cellular Technologies

• LTE
The LTE standard was first released in 2009 by the 3GPP. LTE is an IP-based network that
brought higher data rates and lower latency than those of the 3G. This technology allowed
cellular operators to use a wider spectrum. To achieve this goals the air interface and the
network architecture evolved to the Evolved UMTS Terrestrial Radio Access Network (E-
UTRAN) [50] and Evolved Packet Core (EPC) [62], respectively. To test LTE technology,
the first deployment was made in a limited scale, in Scandinavia. Nowadays deployments
are being done all around the world in a large scale [42, 86]. Along the years many releases
have been published by 3GPP with improved performances of the LTE. In the 10th and 13th
Release the Long Term Evolution Advanced (LTE-A) and Long Term Evolution Category
M1 (LTE Cat-M1) (LTE-M) were announced, respectively. The former uses a high-reorder
Multiple-Input Multiple-Output (MIMO), carrier aggregation and deployment strategies that
are based on Heterogeneous Network (HetNet), which is an heterogeneous network topology
that uses macrocells, picocells, metrocells, relays and femtocells. The latter was specially
designed for an IoT environment, being an LPWA technology that supports lower device
complexity, extended coverage, bigger battery lifetime at lower costs [42, 86].

• Global System for Mobile Communications
GSM technology is related to mobile communication specifically, being the most used stan-
dard in cell/mobile phones. With this technology people from all around the world are able
to make wireless calls. It was created by the European Conference of Postal and Telecom-
munications (CEPT) in 1982, being only commercially from 1991 on, providing standard
features such as phone call encryption, data networking or Short Message Service (SMS) [52].
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2.2 Communication Models
The Publish-Subscribe and Request-Response models are commonly used communication approaches
in IoT architectures [92, 104]. The following subsection presents a description and discussion about
each pattern in order to have a better understanding about how they work.

2.2.1 Publish-Subscribe Pattern
The Publish-Subscribe Pattern has three main components, the Publisher(s), the Broker(s) and
the Subscriber(s) that work together to establish communication (figure 2.3). This communication
works around Topics that describe data is going to be exchanged using a string format. This
string may contain multiple levels, divide by slashes, for example: topic 1: ”room41/device10”,
topic 2: ”room41/device10/temperature” [104]. Every time data is published or subscribed, it
must be done on a given Topic, which is registered by the Broker on the moment of the publishing
or subscribing if it doesn’t exist already.

Figure 2.3: Pub-Sub Pattern [104]

The Publisher is responsible for the publishing of data (information for example, a temperature
value) to the Broker (on a specific topic). In turn, the Broker is responsible to forward the
data received from that publisher and topic to all Subscribers that had subscribed the topic.
These exchanged data is the information included in packets with a specific format defined by
communication protocols. They are called messages.

Subscribers are responsible for subscribing to a specific topic, receiving messages from the
Broker every time that a publisher sends messages to the topic. Both Publisher and Subscriber act
as Clients and neither of them needs to know about each other’s existence. The communication is
decoupled which means they also don’t need to run synchronously [92]. For example, considering
a temperature sensor that has a new value to output, it will be published to a Broker on a specific
topic (e.g. topic ”temperature”). If a client wants to receive data from the topic, it needs to known
the name of the topic and subscribe it by sending a subscribe message to the Broker. Upon new
data is received at Broker, it will be forwarded to all registered clients.

The Publish-Subscribe pattern is a widely used model in IoT architectures because it is very
light weight and efficient in terms of resources and scalability [104].

2.2.2 Request-Response Pattern
On the other hand, the Request-Response pattern doesn’t include a Broker. Instead of a Broker,
there is a component called Server, which sends data to Clients as visible in figure 2.4. The
data exchanged is identified by resources and those resources are made available for clients. For
example, if a temperature sensor sends a PUT request with payload ”23ºC” to a resource called
”Temperature”, this payload will be saved by the Server and everytime another client performs
a GET command requesting for that resource, the server provides that temperature value to the
client. The commands available to request the server are the PUT, GET, POST and DELETE.
These commands allow managing the content and the resource itself on the server. A good example
of this pattern is a RESTful API, which is widely used and it is supported by the HTTP protocol
where Web Browsers act as client in order to put and ask for resources [92].

Unlike to the Publish-Subscribe pattern, this pattern requires a synchronous communication
schema, so a direct coupling between the communicating clients is needed [92].
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Figure 2.4: Request Response Pattern

2.3 Communication Protocols
There’s a lot of research being done around communication protocols for IoT. These protocols
were defined to fit embedded devices and try to improve the communication between those devices.
Some good examples of these protocols are MQTT, CoAP, LoRaWan, AMQP, REST, OPC-UA and
Zigbee.In this chapter we will review and discuss the main aspects of these protocols. Although,
there are many other protocols such as Loosely-coupled Component Infrastructure (LooCI) [70],
Network Embedded Systems C (NesC) [65] used in the Tiny Operating System (TinyOS) operating
system [88], or Reconfigurable Ubiquitous Networked Embedded Systems (RUNES) [47]. These
protocols follow the publish-subscribe pattern but are less used in the literature. They were
developed for specific contexts and are not generic protocols.

In IoT architectures there are two main communication styles (publish-subscribe and request-
reply patterns [104]) used to exchange data between the devices. Both are widely used, but ac-
cording to Gowri S. R. et al. [104], the request-reply pattern isn’t appropriated to be used in
constrained devices because it is not designed to be scaled and its portability is weak.

In these subsections we will discuss the communication protocols that are being researched
and used by the community (meaning scientists, researchers, students and even companies). We
concentrate our discussion around the MQTT, CoAP, LoRaWAN, AMQP, REST and OPC-UA
protocols. The majority of these protocols fit in the Application layer of the TCP/IP model as
shown in Figure 2.5.

Figure 2.5: Communication Protocols on the network layers - TCP/IP model [84]
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2.3.1 MQTT
MQTT is a communication protocol standardized by OASIS [38] that uses the publish-subscribe
pattern to establish communication. It provides one-to-many communication (one sending, multi-
ple receiving or vice-versa), being one of the most used protocols in IoT applications. MQTT is
open-source, lightweight, data-centric and designed to be used in constrained environments like in
IoT [92, 104]. Devices involved in the communication do not need to know the address of other
nodes (consumers) because data is forwarded by a Broker and everyone just needs to know the
Broker address [92].

MQTT runs over TCP/IP or over any other network protocol that provides ordered, lossless,
bidirectional connections. The protocol’s first version was MQTT v3.1.1 being also standardized
as ISO/IEC 20922:2016. Nowadays MQTT v5.0 is available bringing better scalability, improved
error reporting, Session Expiry or Message Expiry [38, 101].

Functionality

MQTT follows the Publish-Subscribe communication model and describes how the communi-
cation should occur between end-devices. It is supported by a Broker, which its responsibility is
to forward the published messages, on a specific topic, to the subscribers. These end-devices are
any device that intends to send or receive messages (Publisher or Subscriber).

There are many types of messages available to be sent, such as the Connect, Publish or Sub-
scribe Messages, for creating a connection to the broker, publish data to the broker or subscribe
data from the broker. The MQTT protocol defines three QoS levels. These levels are used to
assure that the communication is being done under certain level of assurance.

MQTT Message Format

This protocol works by exchanging messages between nodes, these messages are series of MQTT
Control Packets that are divided in three parts, the Fixed Header with 2bytes of size, the Vari-
able Header and the Payload as shown in Figure 2.6 [38].

Figure 2.6: MQTT Control Packet Format [38]

The Fixed header is present in all MQTT Control Packets. It has 1 byte (8 bits) reserved for
the type of message and for flags (4 bits each), which represents the MQTT Control Packet Type.
The final byte represents the Remaining Length containing the number of bytes remaining within
the current packet, which includes the Variable Header and the Payload.
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Variable header is only present in some MQTT Control Packets, they are: ”CONNECT”,
”CONNACK”, ”PUBLISH”, ”PUBACK”, ”PUBREC”, ”PUBREL”, ”PUBCOMP”, ”SUBSCRIBE”,
”UNSUBSCRIBE”, ”SUBACK”, ”UNSUBACK”, ”PINGREQ”. This header’s content depend on
the packet type [38]. For most of the packet types, the Variable Header contains a two Byte Integer
packet identifier field that once set for an MQTT Control Packet, it only becomes available again
for reuse when the sender has processed its acknowledgement. This header finishes its fields with a
set of Properties which are composed by a field with Property Length corresponding to the length
of the properties and the actual Properties, which includes an Identifier that defines the message’s
usage, data type and value.

The Payload field is where the actual content of the message is. It is not included in all MQTT
Control Packets.

QoS

In this protocol the concern is only with the delivery of an application message from a single
sender to a single receiver, this way when a server is sending messages to many clients, each of
them are dealt with independently [38]. The MQTT protocol offers three different levels of QoS:

• QoS 0 - “At most once”
Best effort, sends only once. Some messages may never reach the destination. The receiver
sends no response and the sender doesn’t resend messages, so the message either gets there
at the first try or it doesn’t reach the destination at all [38].

• QoS 1 - “At least once”
The sender re-sends messages if they don’t get to the destination, some messages may be
duplicated but there is assurance that the message is received at least once. The sender waits
for a PUBACK, from the receiver, after sending the PUBLISH packet “publish1”. If it is
receiving other PUBACKS the sender compares each message Packet Identifier to know if
any of them are from the message “publish1”. If the sender waits a reasonable amount of
time without getting the PUBACK, it re-sends the “publish1” message [38].

• QoS 2 - “Exactly once”
Messages are assured to arrive exactly once at the cost of some performance by the usage of
a four-part handshake. The sender assigns an unused Packet Identifier to a PUBLISH packet
before sending it, and then waits for a PUBREC, meanwhile re-sends the PUBLISH packet
in a reasonable amount of time. After receiving the PUBREC packet, sends a PUBREL
packet and waits for a PUBCOMP packet (with Duplicated (DUP) flag). After receiving the
PUBCOMP the Packet Identifier becomes available again. An illustration of the protocol
using this QoS level is shown in figure 2.7 [38].

Figure 2.7: MQTT QoS level 2 [119]
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Security

MQTT protocol specification lets to developers the choice to have privacy, authentication
and/or authorization implemented. Although there is a strong recommendation to use the Trans-
mission Control Protocol (TCP) port 8883 (Internet Assigned Numbers Authority (IANA) [48] with
service name: ”secure-mqtt”) [38].

To understand how to better security and how to protect the communication with MQTT,
there are some threats that were identified and are very important to fight [38]:

• Devices can be compromised: Developers must be aware that the devices in the communica-
tion might be hacked, therefore being compromised and possibly work in malicious ways, for
example sending packets with malicious content.

• Possible access of the data in the Clients and Servers: The same way that devices may be
compromised, so their data may also be compromised, meaning that even if a device is not
compromised, it can still work with maliciously manipulated data that had previously been
deformed by an attack.

• Protocol behaviors could have side effects: This protocol has specified QoS levels which send
additional packets in the communication to guarantee its level of assurance that the message
was received, an example of this is the Acknowledgment message. This kind of behaviour is
specific for each protocol, so attackers can possibly use timing attacks [111] to find vulnera-
bilities on the communication.

• Denial of Service (DOS): One of the most common attacks on the web are the DOS attacks,
which stands for Denial of Service, in this kind of attacks, attackers use malicious software
to request operations on the system, in this case, the Broker, in the order of millions or more
requests, which will consume a lot of effort from the system to respond to them, and actually
resulting on some failures and real requests to not be dealt with, denying the services that
the system provides.

• The communication can be intercepted, modified, re-routed or deleted: Even if the devices
and their data are protected, between the time that the data leaves the device to get to
the Broker, and from the Broker to the devices the communication might be intercepted,
meaning that a sent message might be caught by a malicious program and be changed, so
the communication channels also must be secured.

• Malicious MQTT Control Packet may be sent to the net: Attackers may also inject spoofed
MQTT Control Packets into the network, meaning that this messages have false IP addresses
that are read by the system as true IP addresses misleading the Brokers to accept the
malicious messages when they shouldn’t.

A good way to protect the communication could be to use an implementation that follows the
specific industry security standards such as NIST Cyber Security Framework or PCI-DSS [38].

In terms of cryptography, the most used algorithm is the Advanced Encryption Standard (AES),
but in the case where the systems are embedded many of the devices may not support this kind
of algorithm (concerning the Hardware), a better solution could be the ChaCha20 [99], which en-
crypts and decrypts the messages much faster, but it not as widely available as the AES algorithm
[38].
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Implementation of MQTT

A very widely used implementation of this protocol is the Mosquitto, through its Broker, Pub-
lisher and Consumer developed in C programming language with its open source available on
git hub1 [89, 57] . The state-of-the-art also comprises other Brokers that provide MQTT based
communication, such as Kafka [54] or RabbitMQ [115].

Kafka was developed to be used in data centers, being relatively heavier than Mosquitto, but
bringing some other features such as ordering guarantees and configurable persistence of messages
[54].

RabbitMQ is an open source message Broker that was developed with Erlang [8] by the Open
Telecom Platform framework [54].It allows communicating through MQTT and other protocols
such as AMQP [123].

2.3.2 CoAP

A group of the Internet Engineering Task Force (IETF) named Constrained Restful Environments
(CoRE) built an application layer protocol called CoAP [63]. It is based on the REST protocol
(using HTTP functionalities). This protocol is very suited for the IoT environment since by default
it uses User Datagram Protocol (UDP) instead of TCP. UDP has some known issues, being one of
them the reduced reliability when comparing with TCP, because of this, IETF has started a new
document for the standard to open the possibility for CoAP to run over TCP, being this only in
the beginning [51].

This protocol follows the request-response model. It supports the GET, POST, PUT and
DELETE methods. Even though CoAP modifies some of these functionalities to guarantee better
efficiency when the devices are constrained, having low processing capacity or bad links on the
communication [63]. To improve the communication, CoAP responses are not sent over a previously
established connection, instead they are exchanged asynchronously over CoAP messages which are
packets that have a specific format defined by CoAP protocol. This improves the performance but
may decrease the reliability [51].

Figure 2.8 represents how CoAP works. Since REST architecture is already very widely used
with HTTP, by having a Proxy in between to translate this two Protocols, we can have a network
of things communicating through the internet using CoAP. Things communicate through CoAP
using a CoAP Server, that communicates to the rest of the Internet using the REST-CoAP Proxy
to make a straightforward conversion between the two protocols [63].

CoAP is very lightweight being ideal for IoT environment with constrained devices. However,
it still offer low portability for a wide range of platforms and shows poor scalability [104].

Figure 2.8: CoAP Functionality [63]

1https://github.com/eclipse/mosquitto
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Functionality

CoAP is divided into two different logic layers, the first layer is the Request/Response layer,
which deals with the implementation of the REST paradigm, similar to HTTP. What differen-
tiates CoAP from HTTP is the second layer, called Message layer. This layer deals with the
re-transmissions when packets have been lost, since UDP has no reliable connections as explained
in 2.3.2 [51].

Since CoAP is based on HTTP commands, when an end-device wants to send data to a server
it uses the Put or Post command, and when a device wants to get some information from the server
it uses the GET command. To ensure that a messages arrives at destination, CoAP defines four
types of messages (described below), which are used to perform handshakes assuring the message
has arrived or not.

CoAP also has an option to improve the request-response approach by allowing clients to con-
tinuing receiving messages from a resource that was requested on the Server (observable option).
This is done by adding an observe option to the GET request, which is added to the Server ob-
server’s list. When the resource state changes, clients in the list are notified. Through this option,
CoAP offers a closer behaviour to the publish-subscribe pattern with the clients being notified of
changes in the resources they ask for.

CoAP Message’s Format

A CoAP message is divided in four fields, as shown in the figure 2.9. The first field is fixed
and corresponds to the Header . It occupies four bytes. The Header is composed by the CoAP
Version, the Type of transaction, the Option Count (OC), the request method/respond code
(Code) and a message identifier (Message ID). The second field is an optional Token value that
is used for correlating requests and responses, this value can occupy up to eight bytes. The next
two fields are optional and they are reserved to add Options and the Payload [63]. A typical
CoAP messages occupy from ten to twenty bytes in total [63].

Figure 2.9: CoAP Message Format [63]

Type of messages

At the message layer level four different types of messages [51]: CONFIRMABLE, NON-
CONFIRMABLE, RESET and ACKNOWLEDGMENT are defined.

When a CONFIRMABLE message is sent by a client, it waits for an ACKNOWLEDGMENT
from the CoAP Server, re-sending the original message with a certain interval until it gets the
ACKNOWLEDGMENT.

When using the NON-CONFIRMABLE type, the client won’t be waiting to receive an AC-
KNOWLEDGMENT message from the Server, it just sends the message and hopes it gets there.
There is no guarantee that the CoAP Server actually got the message. The RESET messages
are used by the Server when it notices that messages were missed or other issues occurred [63].
ACKNOWLEDGMENT messages are used to acknowledge that some message has arrived (CON-
FIRMABLE Messages). This doesn’t mean that it indicates success or failure of the request made,
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but it may contain a response for that request, in this cases the response is called a Piggybacked
Response (Acknowledgment with reply) [113].

Security

In terms of security, CoAP makes use of Datagram Transport Layer Security (DTLS) which is
based on a slightly changed TLS protocol to achieve better compatibility with constrained devices.
The DTLS runs on top of UDP transport layer [105, 51]. Some of the modifications include stopping
the termination of the connection when packets are lost or out of order. Another example is the
handshake process, where the possibility to add a verification query by the Server. This feature
allows making sure that the Client is sending the packets from the authentic source address, which
prevents DOS attacks [51].

By using DTLS, every time a message is sent or arrives at a device, the protocol dictates the
decryption and decompressing that must be preformed [105]. However, DTLS protocol wasn’t
built for the IoT environment. Based on DTLS, the literature comprises the IPv6 over Low-
power Wireless Personal Area Network (6LowPAN). This new versions tried to optimize it for the
constraint devices situation [51, 105].

CoAP defines four security modes [105, 114]:

• NoSec: The NoSec mode means ”No Security” which dictates that there is no security
provided in the CoAP transmitted messages, hence packets are sent over UDP and IP.

• PreSharedKey: In the PreSharedKey mode, there is a list of pre-shared keys where each key
have a list of nodes and may be used to validate the communication. In this mode there is the
possibility to have a key for each device or for a group of devices. The mandatory cipher suite
that must be implemented on this mode is the TLS PSK WITH AES 128 CCM 8 specified
in [49].

• RawPublicKey: This is a mode where a device may have one or more asymmetric pairs of
keys without certificates (Raw Public Keys). For this mode the mandatory cipher suite to
be implemented is the TLS ECDHE ECDSA WITH AES 128 CCM 8 specified in [118].

• Certificates: This mode works around a certification chain, where authentication is based
on public key. Each time a new connection is established, certificates from external de-
vices must be validated. Sometimes, nodes may need more than one certificate as they
may have more than one Authority. This mode must include an implementation of the
TLS ECDHE ECDSA WITH AES 128 CCM 8 cipher suite, specified in [49]

In Raw Public Key and Certificate modes, connections that are established are set up with au-
thentication in both ends of the communication which allows to maintain the connection in order
to reuse it in future data exchanges.

Implementation

This protocol only defines how the communication should be done, allowing anyone to im-
plement its features. Many implementations of CoAP were proposed throughout the years, as
suggested in [43]. Some examples are the Libcoap [40] which is a C library and CoAPthon [64]
a Python library. With each of this libraries it’s possible to build our own server, clients and
resources without much complexity. However, these implementations are not suitable for small
embedded devices, such as Arduino. To be able to transmit information with CoAP protocol in
this kind of devices specific Arduino libraries must be used, for example CoAP simple library is
one of them.
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2.3.3 LoRaWAN
LoRaWAN is a media access control (MAC) protocol for wide area networks. It is designed to
allow low-powered devices to communicate with Internet-connected applications over long range
wireless connections. Typically, a star architecture is used and three kind of possible devices are
defined [5, 13]:

• End devices: nodes who send the data to the LoRa gateway

• Gateway: forward packets sent by those nodes to the Network Server

• Network Server : manages information that was exchanged. servers that route messages from
End Devices to the right Application, and back.

This kind of architecture preserves the battery lifetime plus through the use of LoRa on the
physical layer, long range is achieved [5]. Figure 2.10 shows a typically architecture for LoRaWAN
protocol. Through this architecture all application complexity is implemented in the server [5, 13].

Figure 2.10: Lora’s Star Architecture [13]

Functionality

LoRaWAN supports many gateways receiving data from nodes. Each gateway forwards the data
received to the destination using the cloud-based network with, for example, WiFi or Ethernet con-
nection. The complexity may be pushed to the cloud side of the network [5]. The communication
occurs in an asynchronous way, and only when data is ready to be sent, which can be done via
event-driven or scheduled way [5].

Message Format

LoRaWAN architecture is divided in two layers, the Application layer and the MAC layer, both
on top of Lora’s Physical Layer, as shown in figure 2.11 [81].

Figure 2.11: LoRaWAN Architecture Layers [81]
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Figure 2.12 represents the MAC layer message format that is used by LoRaWAN. This format
includes: a MAC header with one byte, a MAC Payload with variable size and the Message
Integrity Code (MIC) (similar to a checksum) with four bytes that is build based on the previous
MAC Header and MAC Payload fields with use of a Network Session Key [81, 98]. The Network
Session Key is an application session key that is generated when a device joins to a network, being
shared with the network, and is used for validate the exchanged messages between the nodes and
the Network Server using the MIC [98].

Wrapped inside the MAC Payload is the Application message, which has the following format
(also visible on the 2.12 figure): the first field is the Frame (FRM) Header with seven to twenty
two bytes. It is followed by a multiplexing port called FPort with one byte and the FRM payload
with variable size, which is encrypted with an Application Session Key. An Application Session
Key is also generated when a device joins a network just like the Network Session Key, but this
key is kept private, being used for encryption and decryption of the payload based on the AES 128
algorithm [81, 98].

Figure 2.12: LoRaWAN Packet Format [81]

Security

LoRaWAN specifies a number of security keys [5]: NwkSKey, AppSKey and AppKey. All keys
have a length of 128 bits. The algorithm used for this is AES-128, similar to the algorithms used
in other low power standards (e.g. 802.15.4).

• The Network Session Key (NwkSKey) is used for interaction between the Node and the
Network Server. This key is used to validate the integrity of each message by its Message
Integrity Code (MIC check). This MIC is similar to a checksum, except that it prevents
intentional tampering with a message.

• The Application Session Key (AppSKey) is used for encryption and decryption of the payload.
The payload is fully encrypted between the Node and the Application Server component.
This means that nobody except the user is able to read the contents of messages you send
or receive.

• The application key (AppKey) is only known by the device and by the application and is
used to derive the previously mentioned NwkSKey and AppSKey.

The session keys (NwkSKey and AppSKey) are unique per device and session. When a device
joins to the network (this is called a join or activation), an application session key AppSKey and
a network session key NwkSKey are generated using the AppKey. The NwkSKey is shared with
the network, while the AppSKey is kept private. These session keys will be used for the duration
of the session.
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2.3.4 AMQP
In what concerns asynchronous messaging, one of the most recognized standards is the Java Mes-
sage Service (JMS), but it is an Application Programming Interface (API) standard, not a speci-
fication of protocol [123].

In order to change this situation and have an open asynchronous messaging standard protocol
that provides interoperability and is extendable at business scale, in 2006 the AMQP protocol was
proposed by the working group JPMorgan Chase (JPMC), composed by companies such as Cisco
Systems, Envoy Technologies, iMatix Corporation, IONA Technologies, Red Hat, TWIST Process
Innovations and 29West [123].

AMQP is a publish-subscribe protocol that allows applications to send and receive messages
defining the specification of what messages and from where they can be received. It also provides
functionalities to configure security, reliability and performance [54, 126]. The protocol runs over
TCP [126]. AMQP protocol was designed and built based on the finance requirements, which are
very challenging because they require extremely high performance, throughput, scalability, relia-
bility and manageability. In this kind of business area, few microseconds might be a real problem,
making them loose or win against competition on a trade. Also losing messages is not an option,
messages arrival must be assured as they might mean costs to the enterprise [123]. Figure 2.13
shows the AMQP architecture.

Figure 2.13: AMQP Architecture

Functionality

In AMQP architecture, client applications are known as producers (”publishers”) while AMQP
server is known as broker. Client apps create messages which are given to the broker. In the
broker, messages are routed and are queued using a First In First Out (FIFO) order. They are
being read by consumers from the queues where they are processed. These client applications are
known as consumers (”subscribers”). AMQP divides messaging Broker tasks in two modules:

• Exchanges: is the component responsible for accepting messages. This messages are after-
wards forwarded to specific queues based on a set of rules and criteria, never storing them
[123, 126]. The messages contain routing keys which are used by ”exchange” module in order
to route them. There are three different types of exchange methods

– direct exchange: A routing key is used to bind the exchange to a message queue. From
then on, messages from publishers will only be routed to that queue if the routing key
from the publisher matches the routing key used to bind the exchange and message
queue [9].

– fanout exchange: Message queue binds without routing key, meaning that it receives all
messages published, there is no condition associated [9].
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– topic exchange: When a message queue binds to an exchange, a routing pattern P is
associated with the binding and that queue will only receive messages that are published
with a routing key P that matches the routing pattern, otherwise messages aren’t not
forwarded to that queue.

• Message Queues: is the component that stores messages and send them to the respective
consumers. Usually messages are stored just until they are sent to the consumer [123, 126].

Therefore, there is a responsibility chain, where each processor acts on the received message,
rejecting it, adding/modifying it or just forwarding it to the destination. This architecture im-
proves flexibility because it allows developers to add more components or modify the ones that
already exist [123].

Message Format

The AMQP message format is composed by five fields, as illustrated in figure 2.14. it is com-
posed by an Header , a Delivery-Annotations, a Message Annotations, a Bare Message
and a Footer fields.

The Header field is divided in five sections [117]:

• Durable: A durable message means that even if an intermediary node in the communication
unexpectedly terminates, the message is still preserved. This section is of type Boolean (1
byte) with False value by default.

• Priority: Responsible for carrying the level of priority of the message represented by a ubyte
(1 byte) value, the higher number represents the higher priority.

• Time To Live (TTL): Defines the time that a message is considered to be ”alive” in
milliseconds, being discarded when this time has passed. This helps preventing delivery
loops.

• First-Acquirer: If this field has a true value, it means that the message has not been
acquired before, but if the value is false, then it is not guaranteed that the message has been
acquired before, it only may have been. Represented by a Boolean value (1 byte)

• Delivery-Count: Number of unsuccessful delivery attempts represented by a uint (1 byte)
value. Non zero values may mean a duplicate message.

Delivery-Annotations field is used to carry properties that aren’t specific from the standard,
such as information from the sending node to the receiving node. These annotations must be
known by both ends for the properties to be transmitted.

Message Annotations is a field that carries properties of the message that are propagated
in every hop of the communication. These annotations carry information about the message. In
the communication process, some intermediaries may not understand the annotations’s purpose,
they may only be used as attributes which are filtered.

Each Bare Message is composed by:

• Properties: Standard properties of the message are saved here, such as the Message-Id -
unique identifier of the message, User-Id - unique identifier of the user that produced the
message or ”to” - property which identifies the message destination address.

• Application-Properties: This field is reserved for structured application data, which may
be used or filtered by intermediary nodes.

• Application-Data: Contains binary data corresponding to the payload.

Footer field is used to store details about the message delivery, only being calculated after
the bare message has been totally finished, or being evaluated before seeing the message content.
Examples of this details are hashes, signatures or encryption details [117].
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Figure 2.14: AMQP Message Format [117]

QoS

AMQP uses three different message delivery guarantees [126]:

• ”At most once”: messages don’t arrive more than once, so there can’t be duplicates but
on the other hand messages might be lost

• ”At least once”: uses acknowledgements to guarantee that messages arrive at least once
but adding the possibility to have duplicates

• ”Exactly once”: messages are assured to be received once, and not more than once

The definition of these message delivery guarantees is very similar to the QoS level of MQTT
protocol. The basic process of communication over AMQP using the RabbitMQ implementation
can be seen in the following figure 2.15 [54].

Figure 2.15: AMQP with RabbitMQ [54]

Implementations

A good and quite used implementation of this protocol is the RabbitMQ Broker that allows
the communication over AMQP to be used. Since there are many libraries for developing clients
(publishers and subscribers), it is easy to establish the communication between clients and the
AMQP Broker. One good example is a Python library called Pika [90]. This Python library has
appropriate functions for publishing messages to a specific Broker or subscribing to a topic on a
specific Broker. This way, each end device may have its own Pika based implementation allowing
them to connect to one or more Brokers, publishing and receiving messages on subscribed topics.
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2.3.5 REST
The REST architectural style is used to build network applications. It follows the client-server
style where the idea is the server is responsible to provide resources to clients that request for
them. Resources may be anything in REST, as long as they can be named and identified. REST
identifies resources through Uniform Resource Identifiers (URI’s).

With this request-response approach, clients and servers must know each others addresses to
communicate. This might be a problem sometimes, for example if Network Address Translation
(NAT) is used. NAT is a technique that uses a hash to hide the IP addresses. In this case clients
and servers may not know each-others addresses, making the communication impossible.

The URI’s, or namespace, are defined as, for example, ”http://127.0.0.1/nodes”, where
”http://” defines the protocol to be used, ”127.0.0.1” is the address (localhost in this particular
case) and ”nodes” is the actual resource that we are trying to reach. A call for each URI can return
a single value or a collection of values, in this example a possible return could be a list of nodes [92].

Functionality

REST uses the very well known Hypertext Transfer Protocol (HTTP) (GET, POST, PUT and
DELETE) methods. It follows the Create, Read, Update and Delete (CRUD) model, having a
method to create, read, update and delete a resource on the Server side.

POST and PUT methods are very similar, bringing some confusion to its difference, because
they don’t exactly match the create and update methods of the CRUD model. POST means that
the server will decide how to deal with the information given by the client when receiving the
method, in order to update its resource, while PUT means that the Server will replace the content
received on the PUT request with the resource’s content, creating the resource if it doesn’t already
exist.

GET method is used to fetch the resource information, but while doing it, the resource remains
unchanged. All other methods change the resource, since POST and PUT may create or update
the resource value both may change the resource. The DELETE method deletes the resource from
the server, making it unavailable by other clients to perform actions on it [1, 92].

REST is stateless, which means that neither the server nor the client keeps track of each
other’s state, both keep only their own state. This way, servers don’t keep information about
previous requests done by clients, it just saves the current state of the resources. The same way,
the clients keep their own state, not knowing the state of the server, having to ask for it with a
GET request to know any of the resource values [92].

QoS

Nowadays most RESTfull Web services ignore QoS parameters, as their only concern is to
provide the method’s functionality. However this QoS parameters may be very useful in the case
where there are multiple providers for the same kind of request. This way, the client could take
advantage of this QoS parameters to choose the most suitable provider. These QoS parameters
can be described in the HTTP payload [1].

Security and Privacy

To assure security in RESTfull Web services there’s the need to secure not only the data that
is being exchanged, but also the hole communication.

To secure data, its integrity must be assured as well as its confidentiality, which means that no
one should be able to modify the data nor have access to it (actually knowing the content of the
data).

To secure the communication, there should be an authentication process that ensures access
control over it, allowing it to be private so that no one could intercept the communication and
listen to what both ends are trying to exchange.

For this, there are some protocols that work on top of HTTP, as the Hyper Text Transfer
Protocol Secure (HTTPS), which uses an additional security layer with Transport Layer Security
(TLS) protocol. There are also other technologies being built to support authentication for
HTTP-based services, such as OpenId, XAuth or OAuth [1].
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2.3.6 OPC-UA
Another protocol being explored to be used within the IoT environment is the OPC-UA protocol.
Open Platform Communications (OPC) is an open standard created by the OPC Foundation in
1996. It was designed to provide reliable and secure communication in many industries, such
as automation or renewable energy industries. OPC is a standard that allows information to be
exchanged between several devices from different vendors, increasing interoperability which is a
big deal in IoT. Following the Client-Server pattern, its design is based on specifications made by
industry vendors, end-users and software developers that define several features such as access to
data in real-time, monitoring of alarms or events (with OPC Alarms and Events (OPC AE)) and
access to historical and current data (with OPC Historical Data Access (OPC HDA) and OPC
Data Access (OPC DA) respectively) [60, 87].

The OPC Foundation was motivated to create the OPC-UA standard because although all the
other mentioned extensions of the OPC standard (OPC AE, OPC HDA and OPC DA) fulfill their
purpose, there was no link between them, a value read with DA and HAD have no connection, but
with OPC-UA all of them are related to each other [87].

Figure 2.16 represents the OPC UA Architecture.

Figure 2.16: OPC UA Architecture [91]

This layered architecture’s specification have five goals [59]:

• Function Equivalence goal where all COM OPC classic specifications are mapped to UA

• Platform Independence that allows communication on different platforms, for example,
an embedded device and cloud infrastructure

• Secure goal, because security must be assured, using authentication or encryption

• Extensible goal, which defines the new features that must be handled without compromising
older features, and finally

• Comprehensive information modeling goal where complex information is defined

The main components of OPC UA architecture are the transport mechanisms and data
modeling as shown in figure 2.16. The transport mechanisms defined are the UA TCP, which
is a simple protocol on top of TCP that provides some necessary mechanisms for OPC UA (ex-
ample: special error recovery that allows OPC UA to survive from network interruptions) and
SOAP/HTTP that provide a firewall mechanism for OPC UA applications to communicate on
the internet via Web Sockets. Developing this layers requires a lot of time and effort, so OPC
Foundation provides a set of OPC UA standards that have all the mappings implemented, which
are available on the OPC UA Software Development Kit (SDK) [91].

In what concerns data modeling, in the classic OPC standard the data exchange was
”raw”/”pure” as it works with items containing data, for example, the temperature obtained on
a sensor, but OPC UA uses a Meta Model, that is also known as Address Space, where data is
represented trough objects, and where can be applied object-oriented techniques, such as hierar-
chies and inheritance, having the possibility to have an hierarchy where, for example, the previous
temperature value is know to be from a specific sensor device in a specific house [87, 91].
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In this Meta Model, there is the concept of a meta node, which is the base of it, and as so,
there is also several node classes that can be defined to specialize different classes of nodes. On
each node, there is a set of attributes, some mandatory, some optional. An example of mandatory
attribute is the identification (id) that identifies the node uniquely and an example of an optional
attribute is the description [87].

Functionality

As a follower of the Client-Server pattern, the OPC standard specifies the away of communicate
between Clients and Servers, where Servers provide services do clients request them. These services
are saved on an address space that is used by the clients when having the need for a service. This
way, an OPC client connects to an OPC server being able to ask the server for services, such as
access to real time or historical data and events. For example, an application that has the OPC
DA feature will request for services on an OPC DA Server [91].

Most OPC interfaces are based on Microsoft’s Component Object Model (COM) [96] and
Distributed Component Object Model (DCOM) [95] technologies which brought an advantage to
the development of OPC because a lot of computers are based on the Windows operating system
that already has these technologies available, although this brings a dependency on the windows
platform [91].

Message Format

A message exchanged between a client and server in OPC UA is separated in chunks, which
are blocks that divide the message in different parts. Each chunk contains specified information
about the message and the actuators. Sometimes messages are longer than the maximum network
packet size, when this happens these messages are divided and reassembled in a process called
”Chunking”.

A typical UA TCP message chunk format is composed by [91, 35]: .

• A Message Header which identifies the type of the message and message size. The type of
the message is defined with the use of a three byte ASCII code. The possible message
types are the HEL (Hello) message, ACK (Acknowledgment) message, the ERR (Error)
message or RHE (Reverse Hello) message and they are all specific to the UA TCP protocol
[91, 58, 35].
The message size contains the length of the message in bytes and is defined using an UInt32
value, which is an unsigned integer number with 32 bit capacity (8 bytes) meaning that 8
bytes are reserved to specify the length of the message [91, 58, 35].
This means that every message will always contain at least 11 bytes 3 bytes for the message
type plus 8 bytes for the size of the message. However, each message type adds some more
fields, such as, for example, the ReceiveBufferSize and SendBufferSize that represents the
largest message chunk that the sender can receive or send, respectively [58].

• A Message Body which contain the actual message (payload) encoded or one of the men-
tioned UA TCP-specific messages types that define the socket connection and possible errors.

Beginning with the HEL message type, there are six new fields added, where five of them
use UInt32 (8 bytes each, resulting in a total of 40 bytes) plus one field that uses the data
type String which can’t be more than 4096 bytes. Resulting on a total of 4136 maximum bytes
for this kind of message. The following type of message is the ACK message, which has five
more fields, all of them defined using an UInt32 value, which means that this type of message
has at most, 40 bytes. Next, the ERR message type only have two fields represented with
UInt32 and a data type String, which means a total of 4104 maximum additional bytes for this
kind of message. Finally, the RHE type of message also contains two fields, both represented
with String data type, which means a total of 8192 maximum additional bytes for this message [58].

The message structure is presented in figure 2.17 [58, 91].
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Figure 2.17: OPC UA Message Format [91]

Security

The first thing to be taken in consideration, in what concerns security in communication with
OPC UA, is the range of scenarios where it is applied. To assure that the communication is
secure, there were taken into consideration the need to have six security goals: Authentication,
Authorization, Confidentiality, Integrity, Auditability and Availability [91].

To achieve these goals OPC UA uses many security measures. One of this measures consists on
the specification of the SessionID, TimeStamp and SequenceNumber fields on the message that help
prevent replays, being verified in every message exchanged. Another measure is the possibility to
sign messages with, for , a Public and Private keys before sending them, This can be done by using
certificates, managed by Public Key Infrastructures (PKIs), to provide the private keys, having to
verify this signature for every message that is received. Through this way, we have assurance that
the message received was not altered, otherwise the signature verification would have failed.

OPC UA assigns security responsibilities in a Security Architecture composed of three layers:

• Application layer, which is responsible for the User and Product Authentication and Autho-
rization. It manages the session between the client and server

• Communication Layer secures the communication channel, being responsible for the Appli-
cation Authentication and Authorization as well as Confidentiality and Integrity of the data
exchanged by the use of encryption of the information and applying digital signatures

• Transport Layer layer, which is responsible for the Availability, dealing with the transmission
of data via socket connection. It uses mechanisms for error recovery which may be explored
with attacks like DOS

All layers and security responsibilities are shown on figure 2.18. With these architecture the
application can change or replace any of these modules easily without having to redesign the whole
system [87, 91].

Figure 2.18: OPC UA Security Architecture [91]
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Implementation

One important thing concerning OPC UA implementation resides on three tasks, the data
encoding, communication security and data transportation (figure 2.19) [91]. Concerning data
encoding, Extensible Markup Language (XML) or UA Binary may be used. The UA Binary is a
serialization of the data into a byte string which is faster to do than with XML encoding, because
the size of the message is smaller. However, if XML encoding was used, XML SOAP clients can
interpret the data. Typically, XML encoding is only used with UA Web Services. [87].

In the transport layer, UA TCP or SOAP/HTTP may be used, both deal with the establishment
of the connection between OPC UA client and server. UA TCP is a small protocol build on top of
TCP with the purpose of getting the possibility to negotiate buffer sizes, share IP-Addresses and
Ports, and create their own reacts to errors that occurred on transport level. The format of the UA
TCP Message is described in sub-subsection 2.3.6. The SOAP/HTTP means SOAP over HTTP,
meaning that SOAP, as a network protocol based on XML uses HTTP for data transportation,
being widely used to have secure communication between Web Services and Web browsers [91].

Figure 2.19: OPC UA Mapping [91]

2.4 IoT and Cloud Computing
In this section we revise the main technologies that allow to improve IoT systems in terms of scal-
ability, elasticity, availability and node computation management. The first technology presented
is the Cloud. We start by explaining how can IoT benefit with the use of the Cloud, what it can
bring to the IoT, how it works, what type of clouds exist, and at the end a small explanation on the
differences between Elasticity and Scalability. After this, a description of Monolithic and Micro-
Services approaches is shown, explaining both ways of building a system and why we may benefit
from using a Micro-Services approach when it comes to an IoT system. Afterwards Kubernetes is
presented, explaining advantages and disadvantages that it can bring into a system, such as node
recovery and update features. Finally we explain the Kafka distributing system platform, how it
can bring many benefits to an IoT system, such as replication of data or parallel computing [109].

2.4.1 Cloud and its Benefits for IoT solutions
Both IoT and Cloud were proposed independently but there are some benefits of putting them
together. From the IoT point of view, problems arise when a large number of constrained devices
are integrated, since many devices have low energy capacity and computing power and often
connections aren’t stable. The cloud is able to partially solve this problem by providing virtual
unlimited storage and computation power. These resources are considerable cheap since there is
no need to buy hardware, software or perform maintenance on machines, the service being used
is the only thing that has a price to be paid. Some IoT requirements that the Cloud is able to
provide are Device Management, Scalability, Storage and Real time Transmission.

The cloud is divided in three different types, the Private, Public and Hybrid Cloud [85].
Private Cloud: These type of cloud provides better privacy control since the used servers,

infrastructures and other resources are owned by an organization. They are physically located on
the corporation’s data-center. However, the whole infrastructure must be maintained, and since
this infrastructure may be complex, the task would be very difficult. These sort of service is usually
good when there is a need to have full control of the data, making it easier for the organization
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to configure its resources and meet its IoT needs. Generally these type of cloud is very expensive
and only owned by big corporations, government agencies, financial institutions or organizations
between mid and large size that have a critical business operations and need to have exceptional
control [37, 85].

Public Cloud: In this type of cloud, servers and the infrastructure are managed by cloud
service providers, and they are the ones that will deal with many tasks that are time consuming
and some of them very complex, such as ensuring limited access and employment of security
mechanisms. Because of this, this kind of cloud is the most commonly used, some examples of
these type of cloud are the Google Cloud Platform (GCP), Amazon Web Services (AWS) and
Microsoft Azure (Azure). It should be noted that resources are shared with other organizations
and clouds. It’s possible to access cloud services and manage the user account on a browser.
These type of clouds are very cheap and often used for online applications, storage and to perform
experiments of some new developed software or service [37, 85].

Hybrid Cloud: There is another approach combining both previous type of clouds, this
approach is called Hybrid Cloud. This type of cloud allows for separation of data to be used.
Hybrid Cloud is maybe the ”Best of both worlds” allowing for users to have the advantages of
both previous types of cloud. Data and applications may be moved between private and public
clouds as needed. When there is a need for High-volume and lower security a public cloud should
be used. When there is a need for sensitive data, business-critical operations the private cloud
should be used. An IoT system working within the cloud is shown below on fig 2.20 [37, 85].

Figure 2.20: Cloud and IoT Network [85]

Benefits of using cloud resources to build new IoT solutions:

With the use of the cloud we get access to many resources. It offers numerous storage capacities
to better suit users needs. The cloud allows us to gather and process the essential information
that is needed within the raw data which is being received by the nodes. To do this, it process the
data with advanced data mining tools, like Complex Event Processing (CEP) [85]. CEP [56] is a
framework that allows conversion of raw events in relevant data while it is still being transmitted.
The price charged for the storage is directly proportional to the amount of storage reserved and
used. The more storage reserved for a machine, the more that machine is going to be charged over
time. When it comes to Computational resources, since IoT devices are very constrained, having
the computation of the data on such nodes would sometimes be infeasible, some king of tasks would
be too complex for such nodes but not for the cloud. Plus, in the cloud there is also the possibility
to choose between processing the incoming data in real-time, store the data and process it later,
for example in a data base, or even have some kind of visualisation of the data, for instance with
a dashboard.

In IoT, Scalability is one of the fundamental requirements to fulfill and cloud computing can
help a lot in this factor. In most systems it’s very common to have pikes, sometimes there is a
need for more processing power due to more activity, like having a tremendous amount of requests
by users. Therefore it’s very important to have these kind of systems prepared to respond to such
events. Systems can be scaled up, meaning that it is able to get more resources when needed or
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scaled out, which means that the system is able to revert the resources obtained when they are
not needed anymore.

Therefore, Scalability refers to the ability of a system to respond to an increase of workload
without having the system’s performance changed. A system is scalable if it capable of increasing
the system resources such as CPU power, amount RAM or amount of nodes in the system when
the workload compels it to. It is possible to do this management automatically or manually (in a
periodic way). The main focus is that the system should always be able to deal with the increment
workload.

On the other hand, there is the concept of Elasticity. Elasticity is a system’s flexibility to
manage its resources according to the workload necessity (increasing or decreasing). Even though
very similar to scalability, it has a different meaning, in this case the concern is about the ability
to respond to an increased and/or decreased workload, meaning that the system must be flexible
and dynamic when provisioning resources, being able to get more resources and to withdraw them
as the result of a better performance by the system. To have an elastic system, first it must be
scalable [2, 85].

Both of these concepts are inherent to cloud platforms and help to create new efficient IoT
solutions

2.4.2 Monolithic vs Micro Services
When building a system two different approaches may be used. We can have a Monolithic system
or we can use Micro-services. Both have some benefits and drawbacks.

In a Monolithic approach all components of a system are packed together. A good example
that illustrates a Monolithic system is a web application. In a web application, the system is
composed by the Client-side, the Server-Side, database, and other layers may be used. All of them
are built in a unique logical place. This may cause some difficulties when there is a need to update
a certain part of the system, since the whole system must be updated. Moreover, scale a system
like these would have its adversity’s, because since the system is packed up together, everything
would need to be scaled together. Another thing that might cause problems is a situation where
a component fails, in this case the entire system would go down. In IoT, this issue remains, a
monolithic IoT system would have all the logic components in a single place. The processing of
data, the communication with the devices and database and the visualization, everything would
be in a single location [85, 109].

Micro-services approach may solve some of these problems. Micro-services allow developers
to build a system composed of many small independent services. In order to get the most of the
integration of IoT and cloud computing, the use of micro-services is advisable. By decomposing
the system in small independent components that implement their specific functionality within the
system it becomes possible to update, scale, and recover from failures without the entire system
being down, only the specific micro-services that are being modified (down, updated or scaled)
are unavailable. However, it must be taken into consideration that the communication between
Micro-Services is very expensive and it should be minimized. If changing a micro-service implies
many changes in other micro-services, the interest of using micro-services may be lost [85, 109].

In summary, Monolithic applications are composed of a single executable having all of its
features defined in one place. When the system needs an update, the entire system must be
updated and redeployed, and therefore the whole system must go down to make the necessary
changes and get back up after they have been applied. With Micro-services only the specific
component that needs to be updated is actually stopped, updated and redeployed while the rest of
the system keeps on running. Besides this, while the monolithic systems are updated they increase
their size over time until a moment where it starts to get very complex to manage, causing more
space for errors to appear, and as explained previously, failures in these type of system lead the
entire system to crash. With micro-services concepts may be separated, decreasing complexity, and
even if failure occurs, only the particular micro-service’s implemented functionality goes down, all
other features are up and running [85, 109].

2.4.3 Kubernetes
Micro-Services bring many advantages. However, having a system composed of a large number of
components may lead to high complexity when managing them.
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If many components go down, it would be very time consuming to configure all of them
back up one by one, so there should be some kind of mechanism that could do it automatically.
This is where kubernetes is able to help. Kubernetes is an open-source technology that allows
micro-services to be extensible, configurable and automatically managed with fault tolerance
[27]. It is an open source platform that manages container workloads and services. Containers
are used to aggregate all that is needed to run a specific program, from dependencies to executable.

Looking a little back in time, traditional deployments would have applications being executed
on servers. This worked fine, but resource allocation problems started to emerge since in a
single physical server there were difficulties defining boundaries for each running application. For
example, from all the applications running on a physical server one could request for most of the
resources causing the other applications to have a decreased performance. Hence, Virtualization
appeared as a solution [34].

Supported by the Virtualization concept it is possible to run numerous Virtual Machines
(VMs) in only one individual physical machine with the use of what is called the Hypervisor [74].
The Hypervisor is the firmware/software that creates and runs the VMs. The machine where
the VMs are created is called the Host and the VMs created are called Guests. Each machine
runs its own Operating System (OS). The host may, for example, be running on a Windows OS
and have VMs running Linux. With virtualization, applications become isolated between each
Virtual Machine (VM), providing better security, scalability and improving resource boundaries.
Plus, this method allowed costs to be reduced in terms of Hardware (HW). Only later containers
appeared [34].

A lightweight approach of virtualization to deploy applications is based on applications running
in containers. The objective of containers is to have all dependencies and all needed information
aggregated in one unit so that the whole system works as intended regardless of where it is exe-
cuted. This method avoids many problems when installing software in different platforms. With
containers, applications may be deployed quickly and independently of the environment or in-
frastructure they are being executed in. To use containers, there are some available tools called
Container Runtimes, namely the Docker, CoreOS rkt [78] or Containerd [78]. Docker is by far the
most used Container Runtime by the community and it is free to use (open source). To have an
owned application running on a docker container it’s necessary to have a Docker Image. Docker
images are very lightweight, they contain all information that the system needs to be able to run
such as the code, run-time, other applications, settings and even system libraries. These images
are executed in the Container Runtime by the Docker Engine, and it is at this moment that they
become Docker Containers. Figure 2.21 shows that inside of a machine with its own OS Docker
Engine runs Docker images in the Container Runtime and that the docker images may be of any
kind from a Mosquitto, to a WebServer. Unlike VMs, Containers virtualize the OS instead of the
hardware [74].

Figure 2.21: Container’s role [74]

41 José Soares



Kubernetes is the framework that will help us manage these containers by allowing
self-healing, managing storage, executing load balancing and allowing for secret and
configuration management [34, 77]. To do this, the desired state of the cluster must be declared
using the Kubernetes API objects, meaning that the applications to be executed must be specified,
for example, the container images to use must be described, the number of replicas needed for each
of them, how much disk resources should be used or which network configuration to use. There
are two different ways to use the kubernetes API objects, the first is the command-line interface
called Kubectl, the other is to use the kubernetes dashboard which is not installed with kubernetes
by default, but can be easily added (a step-by-step is provided in appendix A). After the desired
state has been declared, the Kubernetes Control Plane will make sure that the cluster’s state
corresponds to the described one. To maintain the desired state, kubernetes will either restart
containers if any of them fails or start them if more are needed and will also scale the replicas of
an application when the workload obliges it [14].

Kubernetes Components:

Having Kubernetes installed means having a cluster composed of numerous machines or nodes
(at least one), each running containerized applications. These nodes are where Pods are deployed
[25]. Pods are the smallest and simplest deployment units in Kubernetes. They run as processes in
the cluster and each of them may have one or many containers running applications inside them.
Pods specify storage resources, have their own IP address and information about the container
behaviour. If the system is supposed to be horizontally scalable, meaning that more machines are
started in opposition of getting more resources to the only machine available, then each Pod should
run a single instance of an application, meaning that it should have only one container, and many
Pods should be used to run all the instances needed [26].

Otherwise, replication can’t be achieved because if we put many containers in each pod, since
every pod will have its own IP address, all the containers will be scaled together [85], plus if a pod
with many containers fail, all the applications running in the containers will also fail.

To manage pods and the containers inside them the Kubernetes Control Plane is used [25].
Kubernetes Control Plane contains a collection of processes running on the cluster [14].

The whole Kubernetes system can be seen in figure 2.22 including the Kubernetes Control
Plane components and the Kubernetes Node components. The Kubernetes Control Plane deals
with global decisions and/or respond to events on the cluster. Although able to run in every node,
it is usually working on the master node. The Kubernetes Node runs the Kubelet and Kube-proxy
on every node of the cluster. Besides these components, there is also the concept of objects.
Kubernetes may have use of many different objects, such as Services, Pods, Ingresses, Daemon
Sets and many more. The ones that we considered to be the most important are described with
more detail in this section.

Kubernetes Control Plane Components:

• Kube-Controller Manager:
It is the unit responsible for running controller processes. This includes the Node Controller,
the Replications Controller, the Endpoints Controller, the Service Account Controller and
Token controller. The Node Controller is responsible for checking the node status and act
when needed, meaning that it should be able to, for example, identify when a node goes
down and respond by evicting the pods out of the crashed node. The Replication Controller
is the one responsible for maintaining the number of replicas defined for the pods. Endpoints
Controller is the controller that populates the objects of the cluster, such as pods or
services. Finally, the Service Account and the Token controllers are responsible for creat-
ing default Kubernetes user accounts and tokens that give API access to new Namespaces [21].

• Cloud-Controller Manager:
This component is the one that contains cloud control logic. It allows for Kubernetes to be
linked to a cloud provider API. It is possible to separate components from those that interact
with the cloud and those that interact only with the cluster.
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Figure 2.22: Kubernetes Components [25]

They are the Node Controller, Route Controller and Service Controller. The Node controller
has the same responsibilities as in the Kube-Controller Manager, but has dependencies when
dealing with the cloud provider, it needs to contact the cloud provider to determine if a node
is down. The other two controllers also must interact with the cloud to obtain information.
The Route controller is responsible for setting up routes in the cloud infrastructure. Service
Controller needs to be able to create, update and delete Load Balancers from the cloud
since it is the controller responsible for managing the Services of the cluster [25].

• Kube API Server:
This component is responsible for exposing the Kubernetes API. It is the front end of the
Kubernetes Control Plane and was designed to validate and configure data for the API
objects, such as replication controllers, pods and services [20].
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• Kube Scheduler:
This component is responsible for finding new pods that are not assigned to any node and
select an optimal node for them to run on. The selection of the node needs to take into
consideration many factors, such as the individual and collective resources requirements,
QoS, constraints related to the hardware, software or policy, where data is placed or even
deadlines. If the scheduler can’t find a node that satisfies the requirements for a Pod to be
run on, then it isn’t deployed, remaining unscheduled until the scheduler finds a node that
is suitable for deployment [23].

• etcd:
All the cluster data is stored in a key-value backup storage called etcd [25]. These data
includes the cluster status, its configuration and specifications [79].

Kubernetes Node Components:

• Kubelet:
Runs on each node of the cluster to make sure that each container is running in a Pod with
the specified PodSpecs. PodSpecs are described in YAML or JSON files with the container’s
configuration such as number of replicas or port numbers. The Kubelet agent ensures that
the specs defined are running and healthy. This management is only possible in containers
built by kubernetes [24].

• Kube-proxy:
Kube-proxy act as a network proxy on every node of the cluster. This is what controls the
network rules of the nodes allowing for network communication to the Pods from internal
and external devices. If the operating system has a packet filtering layer and it’s available,
then that will be used instead, otherwise kube-proxy will route the traffic on its own [22].

• Container Runtime:
To run containers on machines a software called container runtime is needed. There are
many open source container runtimes pre-built that are available to use with Kubernetes,
some of them are the Docker, CoreOS rkt or Containerd. It is also possible to implement
the Kubernetes CRI (Container Runtime Interface) and use it instead of the pre built ones
[15].

Kubernetes Objects:

• Namespace:

One physical cluster allows for multiple virtual clusters which are called Namespaces. When
the working environment involves many users in a cluster (several dozen and up), it is
advised to use different Namespaces, on the other hand, having a short number of users
there is no need to actually make use of them [28].

• Pod:

Pods are the smallest and simplest deployment units in Kubernetes. They run as processes
in the cluster and each of them may have one or many containers running applications inside
them. Pods specify storage resources, have their own IP address and information about the
container behaviour.
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• Service:

For Pods to be able to communicate with internal or external devices, they need to have an
IP address. Services are an abstracted way of providing this feature, allowing applications
on Pods to be exposed in a network. This way there is no need to use unfamiliar service
discovery mechanisms. Along with the IP addresses also a Domain Name Space (DNS)
name is given to a set of Pods. Services make use of the Selector to pick the set of pods to
which it’s needed to distribute the IPs and DNS [31]

• Ingresses:

Ingresses is another concept in the Kubernetes system that allows access to cluster services
by external devices, usually using HTTP. They are also able to provide load balancing, SSL
and name-based virtual hosting [18].

• ReplicaSet:

This component is responsible for maintaining the number of replicas defined for a Pod.
Replicas exist to guarantee that the applications inside Pods are not lost, ensuring avail-
ability. ReplicaSet creates or deletes Pods in order to get the specified number of replicas [30].

• Deployment:

Kubernetes Deployments are objects where the desired state of a Pod and/or Repli-
caSets is declared, describing its life cycle, namely how many replicas to run, which
image should be deployed or how the updates should be done. The main difference
between Deployments and ReplicaSets is the possibility of performing updates by the
Deployment. The Deployment can manage ReplicaSets and provide updates to Pods, while
ReplicaSets’s main goal is to have the specified number of pod replicas running at a time [17].

• StatefulSet:

StatefulSet is the object that deals with the management of stateful applications and the
deployments. It scales a set of Pods and deals with the ordering and uniqueness of those
Pods. They are very similar to deployments, but a StatefulSet maintains an identifier for
each of their Pods. All of the Pods are created from the same specification, but they are all
independent. It is advisable to use StatefulSets when using volumes because it facilitates
the match of existing volumes with new Pods that have replaced older ones (due to failure,
for example). However the downside is that individual Pods in a StatefulSet are known to
be more susceptible to fail [32].

• DaemonSet:

This object is responsible for making sure that a specified number of Nodes run a copy of a
Pod. When Nodes are added to the cluster, these specified Pods are created in those Nodes.
When the Nodes are removed from the cluster, the Pods are garbage collected. Pods created
by a DaemonSet will be attached to the DaemonSet, so destroying a DaemonSet will also
destroy all the Pods it has created. This is good, for example, when there is a need to have
log collection on all Nodes of the cluster [16].
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• Job:

This component provides a way of creating Pods. When Pods are created with Jobs, they
are expected to successfully terminate after its tasks are done. Every time a Pod completes
its task, the job keeps track of it, and when a certain number of them terminates the job
will be finished. If a Job gets deleted, all Pods created from that Job will also be deleted [19].

• Volume:

Saving files, logs or other types of data in a container is a problem, firstly because data saved
on containers disks are ephemeral and secondly because they may fail at any point in time
and if so, data will be lost (even after they are restarted). To solve this problem Volumes
may be used. Volumes let all containers in a pod access a common directory, allowing them
to have access to the saved data after being restarted. Plus, in a Pod, there is often a need
for data exchange between containers, this is also something that volumes can help with
[33].

• Persistent Volumes and Persistent Volume Claims:

Kubernetes also offers a Persistent Volume subsystem. This subsystem allows users and
administrators to use an API that abstracts how storage is provided and consumed. The
API resources are named PersistentVolume and PersistentVolumeClaim.
Persistent Volumes are pieces of storage similar to volumes, but the lifecycle is independent
of the Pods that uses them. They are resources of the cluster just as a node is.
Persistent Volume Claims are requests that are made from users in order to get access
to the Persistent Volumes storage. Pods in the cluster may request for different levels of
resources like CPU and/or Memory, Persistent Volume Claims work in a similar way, where
Persistent Volumes are requested in terms of size and mode (mode may be of type Read-
WriteOnce, ReadOnlyMany or ReadWriteMany) [29].

2.4.4 Kafka System
In systems where a high number of data flows from point to point continuously, reliability and
resilience are very important. Apache Kafka is a distributed event log that is able to help in such
situations. This framework follows the publish-subscribe pattern [109], having topics to reference
the data.

A typical Kafka system consists of a Kafka Cluster containing one or many servers called
Brokers. Brokers are responsible for receiving data from Producers and forward it to the
Consumers. Topics are used and may be divided in many partitions. In this case, messages are
assigned to topics without a specific order, the only way to maintain the messages order is to
have one partition. Usually messages are written to partitions in a Round-Robin way. Partitions
retain these messages for a retention period (seven days by default) or until the maximum amount
of messages for the topic is reached. Each partition may be replicated between several message
brokers, with a property named Replication Factor that gives us a considerable assurance that
messages will not be lost if a topic fails due to a broker failure. The only way for data to be lost
is having all brokers that contain a certain partition replica fail.

This means that all replicas are identical, therefore to enable all replicas to be synchronized,
a leader broker must exist for each partition. All partitions may be synchronized with the one
running on the leader broker [85]. On figure 2.23 a system with two Brokers is shown. The first
broker has two topics, ”Temp” referring to Temperature and ”Humidity” referring to Humidity
data. The former topic is divided in three partitions, each with a replication factor of 1, meaning
that these data is not considered crucial and therefore there is no need for replication.
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However, the Humidity topic is divided in 2 different partitions, each has a replication factor
of 2, meaning that partitions on that topic should be replicated to ensure fault tolerance. In this
case, partition 1 from topic Humidity in broker 1 was considered to be the partition leader and
a replica of it can be found in broker 2, while for partition 2 of the same topic the leader chosen
was on broker 2 and the replica on broker 1 instead.

Figure 2.23: Kafka Topics, Partitions and Replication factor [85]

Producers and Consumers:

In the publish-subscribe pattern the nodes/devices that send messages to the broker are called
publishers and the ones that receive the data are called subscribers. In Kafka these names are
slightly changed to producers and consumers respectively. Since Kafka ensures no application level
acknowledgment, Producers have no perception on whether the message arrives to the destination
or not. When Producers send messages, they send the data to a specific partition of a topic [109].
Consumers receive data only if they subscribe to the topic. Many consumers may subscribe to a
specific topic to get the same data and all will receive it.

Apache Zookeeper

When talking about Kafka it’s impossible not to mention Zookeeper. Although Zookeeper
and Kafka are independent frameworks, they usually run together. A catch phrase that helps
understanding Zookeeper’s role is ”Zookeeper: Because Coordinating Distributing Systems is a
zoo” [61], this phrase means that distributed systems are hard to coordinate, much like a zoo,
and zookeeper main function is to help managing these kind of systems. Zookeeper helps Kafka
managing all the nodes in the cluster. It is the one responsible for electing the partition leaders.
Messages sent to the topic go to the partition leaders first and only after that they are replicated
the partitions replicas in other kafka brokers [12]

Messages & Offsets

The data flowing in Kafka always contains a key, value and timestamp. Kafka client library
applies a hash function to the message’s key to understand to which partition the message is
supposed to go. This is the default procedure, but a partitioning function is also an option [12].
Messages usually follow some specific formats, the most common are JSON and XML. Each record
in a partition has a designated number of offsets. Offsets help consumers keep track of a certain
position in a partition, allowing them to come back and review older entries. In case of failure
during a read, both Zookeeper and Kafka may persist the consumer offsets in order to ensure that
after they come back to life, they are able to continue reading from the point left of (the last offset
read) before crashing. In Kafka, consumers offsets are saved in a topic named ” consumer offsets”
. Messages must be committed before consumers are able to read them. A message is considered
committed when it is written to the partition leader and all in-sync replicas.
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3: Requirements Analysis

An IoT system is composed by many small constrained devices, generally sensors, connected with
each other, and this number has been increasing along the years. According to Stefan Ferber
[53] since the beginning of the Internet’s existence there were three big waves, where the first
brought big changes to everything related to paper work, such as documents management and
their exchanging. The second wave brought online commerce allowing companies to profit from
online platforms. Finally the third wave is the IoT, which allows everyone to be connected to
everything all the time.

Optimizing data streams from sensor devices to quickly capture a warning sate will allow for
faster response to emergency situations. This means having to recognize warning signs and deliver
alerts as soon as possible.

With IoT these tasks are done in a dynamic, quick and automated way [120]. Therefore there
are many industries and applications already using IoT based systems. Nowadays IoT systems
generally follow a similar architecture to the one shown bellow in figure 3.1. Next we present some
of these applications, followed by main key requirements. Not every IoT system follows rigidly
all of the presented requirements, and some others might even implement all of them and even
some more, but we think that the pointed out requirements are the main ones that all IoT systems
should have implemented.

Figure 3.1: Typical IoT system in 2020 [69]
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3.1 Use Cases

Healthcare: Many benefits were brought to medicine due to IoT, its now possible to have medical
devices sending alerts to patients and help them (self-diagnose).

Nowadays there is even the concept of telemedicine, which means that clinical health care or
appointments are possible to be done at distance with the use of many developed technologies
such as wireless body area networks, which is composed of a single or multiple independent nodes
like sensors or actuators, that are placed in clothes, body or even under the skin allowing for a
better control of vital aspects of a patient. This network connects the nodes wirelessly with the
use of a star or multi-hop architecture [75, 124].

Smart Cities: According to Albishi et al. [4], by 2025 mega-cities will start to appear. There
is a fast growing number of population and infrastructures which will force city’s boundaries to
increase, crowding neighbouring cities and forming the mega cities. IoT can be used in such cities
in many different ways, it is possible to have applications controlling traffic lights or parking
lots [46] in order to accommodate user’s lifestyle and increase productivity. There is already an
European project being developed by Santander, the FP7 project, which aim is to deploy an IoT
infrastructure with thousands of devices [4].

Smart Houses: Houses are becoming more and more smart, smartphones are able to interact
with shutters, smart TVs or smart bulbs for example, allowing to pull the shutters down or up
automatically at a given time of the day, control the smart TVs remotely with the smartphone,
choose a desired color for a bulb, or even turn it on and off as pleased. All of this without the
need to get up and do it manually. There are many other smart houses application and in the
future, others may appear, such as refrigerators helping in stock managing, also, ovens may be
able to cook for us someday [66, 36].

Smart Vehicles: There are many brands developing smart cars capable of downloading new
features, help in driving and parking. Cars communicate with each other and with remote data
centers or the cloud to be able to perform such tasks. A brand that is currently producing these
kind of technology is the so famous Tesla company and also Audi [46].

Safety Of Users: Many devices such as temperature sensors, eventually wearable devices or
pacemakers, airplane sensors or any other small device capable of capturing some fundamental
characteristic must be extremely safe, any malfunction or technical error might happen that
would lead to severe consequences. Any exploited vulnerability may lead to danger to life, so
these devices should be developed taking into account the kind of dangers they may lead to and
prevent it [66].

Smart Agriculture: IoT is also helping farmers. One good example is the use of sensors for
irrigation of plants and trees when needed. The irrigation schedule is done automatically by those
applications, so when the time to water these plants, there’s no need to go one by one watering
them, everything is automatic. There are many more applications of IoT in agriculture, such as
applications to monitor soil and weather conditions. for example, soil moisture sensors send their
information to a gateway, wirelessly, which in turn forwards it to the cloud where farmers may
check on their terrain and monitor its conditions. [72]

Consumer IoT: Also there’s a distinction from IoT systems and technologies that are
developed for consumers and those that are developed for Industries, bringing the so called the
Consumer IoT and Industrial IoT. The Consumer IoT is related to applications where the main
focus is on the costumers, such as smart houses, tracking systems or smart watches and many
more. these kind of services are very well received by the users because they are very appealing
and smooth some small tasks.

Industrial IoT: In Industrial IoT, applications and systems are specifically developed for
Industrial environments. This means having heavy machinery involved with all these technologies.
these kind of systems will minimize physical work, making some jobs automated, therefore having
more productivity. A good example of a practical use of IoT in such environment is the management
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of storage systems, checking the stock with a device sending the data to an application that handles
how much stock should be available and when to get more of the specific product would help a lot
[121].

Another practical example are the use of devices capable of measuring energy, water or
natural gas consumption, so that service providers may be able to adjust prices according to the
consumption, time of day or season. these features allow users and consumers to automate tasks
and reduce costs [120].

3.2 Requirements
• Interoperability: The number of devices in an IoT system is very large, which means

many manufacturers and companies will be involved in the production of these devices.
For devices to be able to cooperate as a group or to be integrated in one, they must be
interoperable. For example, if a device is only able to send data through MQTT, it wont be
able to communicate with another one that only is able to receive, for example, from CoAP.
In this case our proposal should be able to greatly help;

• Reliability: An IoT system should always be reliable, because many data is flowing from
end to end, and if some of these data is sent to the wrong place, not sent at all or sent with
the wrong information, many costs may be applied, and this means not only monetarily. For
example, a device that tracks the heart beat of a patient that is in risk of a heart attack failing
to send an alert with the correct state of the patient condition could be very problematic;

• Scalability: In IoT systems, billions of devices may be running and sending data at the
same time. Since this number may increase or decrease the system should be able to acquire
or withdraw resources as needed. This allows for better use of resources, because if there is
a need for more processing power, for example, the system will respond well without having
its performance diminished, but if the number of devices sending data decreases and some
resources aren’t needed anymore, then they won’t be reserved anymore, being able to be used
in other tasks [66];

• Security: Since a huge number of data is flowing from hop to hop, personal information
might be at risk along the way and should be protected. This protection must ensure Confi-
dentiality, Integrity and Availability of the user personal data [66]. This is extremely crucial
when data contains personal information such as bank transactions or facial recognition [76].
There are already many technologies developed for security, but many of them don’t fit the
IoT requirements, such as entering a password everytime access to a device is needed. In
the case of IoT, many complex keys to authenticate devices isn’t viable, otherwise it would
be too complex. New security concepts are needed allowing ease of use at certain levels of
privacy and protection [53]. One way to do this is by securing all devices of the network
one by one before connecting them to the network. Another way is to make every device to
follow standards from regulatory bodies like GSMA [10] or any relevant industry standard;

• Resilience: The system may have numerous reasons to fail, from network failure to protocol
or implementation errors, anything might cause a failure as there are many devices involved in
the system. Therefore, responding to these failures in the best way possible is very important.
The system should recover from faults and try to avoid them. This is divided in two different
modes. In the first one, the reactive mode, the system detects and recovers from faults as
they happen. On the second mode, the proactive mode, systems save and monitor their own
state. Before an undesired state is detected the system adjusts to prevent it [110];

• Availability: These kind of system is always running all day, if any update or adjustment
is needed, stopping it is not a reliable option, the system must be running constantly. There
must be mechanisms that allow the system to be available no matter what. A good option
for this would be the use of micro-services and Kubernetes to manage them without the need
to stop the entire system;

• Device Management: Changes in the devices collecting the data should be available, for
example, if we have a device monitoring the temperature of a fridge, if it’s Summer time, we
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may want temperature alerts on a certain level of degree, but if it’s Winter time, this level
may change, we don’t want to have to go to all the devices and make the change one by one,
it is essential that devices can receive at least some orders or change some configurations;

• Real time Transmission: In some case, the data collected by sensors should be transmitted
in real-time. For example, a sensor capturing data of the water level on a dam at each second
might be too slow, maybe the need for the information is more urgent, perhaps if the rate
isn’t less or equal to 5ms the water would overflow [46, 36];

• Robust connectivity: One of the biggest problems or difficulties in IoT systems is that
devices used in such systems are often very small with very low computing power and
energy capacity, plus the network links are many times weak (the internet connection may
be unstable). To improve this situation, more efficient devices with more energy capacity
are needed. [53];

• Big Data/Analytics: Big data means big amount of data, with lots of variety and velocity.
Big data is directly related to storage struggles. Such amount of data is very hard to store
and to analyse because we don’t usually need all of the data. The biggest problem here
is to have good analytics and semantics to ensure that from all the data being received,
the relevant parts are identified and collected properly. For this, there are already some
mechanisms in place to filter irrelevant data [53].
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4: Fault-Tolerant and Interoperable IoT
architecture

In this chapter we present a fault tolerant and interoperable IoT architecture. The proposed
architecture is able to provide a resilient, ensuring availability, scalability, fault tolerance, inter-
operability and simple management system. It was designed to satisfy all requirements exposed in
section 3.2.

First of all, we describe the system architecture as a whole which can be seen in figure 4.1.
The proposed IoT solution consists on a framework capable of receiving and processing data that

is sent using one of the following protocols: MQTT, CoAP, REST and LoRaWAN. LoRaWAN was
a protocol that we implemented using LMIC library, unfortunately in order to perform tests on this
protocol, we would have to make the experiments on an urban or rural area, which was un-doable
due to Corona Virus pandemic. Additionally, LoRaWAN protocol was not implemented inside the
system because LoRa requires a special ship to receive LoRa packets. In our implementation a
gateway was used. This gateway is composed by a Draguino LoRa Shield on top of a Raspberry
Pi.

The system stores data in Kafka and uses kubernetes cluster. It is based on micro-services
implemented by docker containers that runs inside kubernetes pods. Each pod in the Kubernetes
cluster runs only one container because Kubernetes allows scaling of pods, not containers. In
order to scale every individual container, each pod must contain only one container, otherwise all
containers in a pod would be scaled.

The proposed architecture is based on the following containers: the MQTT Broker, CoAP
Server, REST Server, Kafka system with Zookeeper, Proxy and Controller. All of these container-
s/components are inside of the Kubernetes cluster and are described below.

Besides these components there are also two more participants in the system. From outside
of the cluster, we have Producers who are devices that generate/collect data and send it to the
system, and the Receivers that will subscribe data feeds and consume it.

In order to handle different protocols receiving and sending data on our system we created a
Kafka solution. Every time data is requested by any protocol, the data sent is the data that was
previously stored in Kafka, this way a protocol A requesting data that only was sent using protocol
B may be received, moreover these data is persisted and we may even request for older messages
or a bunch of them using a bulk command (explained later).

Internally, the Librdkafka library was used to establish the communication with Kafka. The
complexity of using this library within each broker and server was high due to the fact that it
would have to be compiled along with all of them (Mosquitto, CoaP Server and REST).

In order to solve this problem we created the Proxy component which is responsible to receive
data from the brokers/servers and send it to Kafka.
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Figure 4.1: System Architecture

4.1 Components of the architecture
MQTT Broker:

In order to handle the MQTT protocol, our proposal uses the Mosquitto 1 framework as MQTT
Broker. This broker was incorporated in the kubernetes cluster. There are two pods running
instances of the Mosquitto, one that deals with incoming data into the cluster Mosquitto In and
another one that deals with MQTT data going out of the cluster Mosquitto Out.

Since our objective is to prevent data loss, all data is secured in Kafka, meaning that every
client that wants data, must get it from Kafka. To send data to Kafka our Proxy is used with
the Librdkafka library. Both pods running the Mosquitto In and the Mosquitto Out also have our
Proxy running inside of them running a socket server that listens to connections on port 5151.
When requests arrive to the socket server a new thread is created to handle the request. This
handler is the one that uses the Librdkafka to perform actions on Kafka.

When a Producer sends data, that data is received by the Mosquitto In instance that uses our
Proxy to send it to Kafka where data is stored.

Receivers that want data subscribe to the Mosquitto Out instance. In this case (MQTT proto-
col) our Proxy is responsible for continuously publish data stored on Kafka to the Mosquitto Out.
Mosquitto In listens to the port 1883 and Mosquitto out listens to the port 1884.

If only one instance of Mosquitto was used, that Mosquitto would be listening on a single port
for incoming and outgoing data, which means that a Producer would send data to the Mosquitto
on a chosen port, for example 1883, and that data would be sent to Kafka for storage, which in
turn would be published to the Mosquitto again in port 1883 creating a loop where mosquito sends
data to Kafka and vice versa. Having two instances allows data to flow from one end of the cluster
to the other with no loops involved.

The data flow of MQTT packets in the system can be seen in figure 4.2.

1https://github.com/eclipse/mosquitto
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Figure 4.2: MQTT data flow

CoAP Server:

This server deals with incoming and outgoing CoAP data. When a Producer needs to send
data to our system using CoAP protocol, that data is sent to this server, which then forwards it
to Kafka using our proxy, much like the Mosquitto broker.

Similarly to the Mosquitto Broker, Proxy is running alongside the CoAP server in the same
pod and it runs a socket server that listens to TCP requests on port 5151. When Producers send
data to the CoAP server, the server sends the received request to this socket server. For each
request received the socket server creates a new thread to handle the request. This handler calls
the Librdkafka library to perform actions on Kafka (in this case to store data). The same thing
happens when the request is sent by a Receiver to get data. The request is sent to the socket server
creating a new thread to request data from Kafka.

Since in this case the pattern used is request-response, there is no need to have Kafka con-
tinuously sending the data stored again to CoAP server, which means there is no possible loop.
Consequently, in this case only one instance of the server is needed.

POST requests are used to send data to CoAP and GET requests to ask the server for data.
When a Producer uses CoAP to send data to the cluster, the pod running CoAP server receives
that request and sends it to Kafka using the Proxy. When a Receiver wants data, a GET request
is sent to the CoAP server inside the cluster that uses the Proxy to get that data from Kafka.

The implemented server is based on libcoap 2 library. It includes resources to interact with the
Proxy that is responsible for getting data from Kafka. To send POST requests the client must use
the following command:

$ echo <mymessage> | coap-client -m put coap+tcp://[<address>]/<topic> -f -

There is a limitation concerning the transport layer protocol. According to the CoAP specifi-
cations, it is a protocol able of working with TCP and UDP protocols. However, in our system it
works only with TCP requests. This is a limitation that comes from the use of Bare Metal load
balancer [6] in kubernetes cluster.

In the future work this should be changed to allow UDP requests. A possible solution may be
the use of other load balancer to handle incoming traffic. The same thing happens with Receivers,
only TCP requests are handled.

In terms of protocol operation, there are two different options to perform GET requests, the
normal way which uses the command

$ ./coap-client -m get coap+tcp://[<address>]/<topic>

to request for the last message, and the bulk way that requests for the last given number of
messages from the system (counting from the last message received on Kafka), e.g.

$ ./coap-client -m get coap+tcp://[<address>]/iotbulk -e 3

which will return the last 3 messages that were received on Kafka.

2https://github.com/obgm/libcoap

54 José Soares

https://github.com/obgm/libcoap


REST Server:

Very similarly to the CoAP server, the REST server is the one responsible for receiving data
sent via REST protocol. The implemented REST server is based on ulfius library 3.

When a Producer sends data to the REST server, that is running on a specific pod along
side the Proxy, it forwards that data to the Proxy, which uses a socket server, listening for TCP
connections on port 5151, and threads to handle the requests. This handler uses Librdkafka to
perform the requested actions on Kafka (POST or GET).

In this case, the following command is used to send data to the system.

$ ./simple_client <address> <port> POST "/mibroker/iot/" "name=mymessage"
"Content-Type: application/x-www-form-urlencoded"

This command will post the message ”mymessage” on the resource named ”iot” to the REST
server using the given address and port. The resource ”iot” is used as topic when sending the data
to Kafka because Kafka doesn’t work with resources.

In order to retrieve data from the system, Receivers may use one of the following options: the
normal or bulk options.

The normal option or command requests for the last message introduced in Kafka, while the
bulk command requests for the last given number of messages introduced in Kafka.

Both commands are equivalent if a bulk size of one is considered. Otherwise, they will differ
from the quantity of data that will be returned.

The normal command is expressed as:

$ ./simple_client <address> <port> GET "/mibroker/iot"

The bulk option or command, that allows requesting the server for the last n messages (e.g., 3)
can be expressed as:

$ ./simple_client <address> <port> GET "/mibroker/iot:3"

Kafka Cluster:

As explained in section 2.4, Kafka is a system that follows the publish-subscribe pattern and
allows message delivery to be scalable, replicated between many Kafka brokers which contributes
to fault tolerance and parallel consumption using partitions, offsets and replication.

Being a publish-subscribe system, messages are distinguished with the use of topics. These
topics must be created taking into account the replication factor and the desired number of par-
titions, which will be used to provide fault-tolerance and high consuming performance over data
inside the system. Each topic is created by issuing the following command:

$ ./kafka-topics.sh --create --zookeeper <zook_addr> --replication-factor
<num_rep_factor> --partitions <num_part> --topic <topic>

These topics are divided in partitions and each partition has internal offsets. The partitioning
allows replication of each partition between the available Kafka brokers in a Kafka cluster, hence
allowing parallel processing. The offset is used as an identifier of each message in a partition. The
anatomy of a topic can be seen in figure 4.3 where three different partitions for a single topic with
multiple offsets are represented. When Producers send data to that topic the most recent data
is set with a higher offset value (identified), so older messages are the ones with the lowest value
[116].

3https://github.com/babelouest/ulfius
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Figure 4.3: Kafka topic anatomy

Our system was designed to be scalable and fault-tolerant. To achieve this, the number of
Kafka servers or brokers available, at an instant, must be controlled so that if one of them fail
the system would still deliver messages. Hence in our system we created a cluster with 3 Kafka
brokers. This number is scaled very easily, due to the Kubernetes capabilities.

Each Kafka broker is used to store the incoming data and keep that data available to be
used for a retention period. This retention period is controlled by the administrator, through the
configuration files, and it assumes, by default, a value of 7 days. It can be changed with the
command:

$ ./kafka_2.12-2.5.0/bin/kafka-topics.sh --zookeeper <address> --alter
--topic <topic> --config retention.ms=1000

This command will change the retention period to 1 second, meaning that messages will be
saved in Kafka in the given topic for 1 second and then they will be deleted.

When replication is used, Kafka nominates a leader for each partition. This leader will receive
all messages targeted to that partition and then replicates it to the other replicas. If the leader
partition fails for any reason, a new leader election begins and the elected partition takes over.
Besides allowing fault tolerance, the use of partitions also allows multiple consumers to read
from a topic in parallel [116] granting faster throughput processing. In figure 4.4 the concept of
partitions is illustrated.

Figure 4.4: Kafka Partitions

Regarding the consumers, they are able to read data starting from a chosen offset. Each
message in the Kafka system is identified by a tuple defined by the message topic, partition and
offset within the partition.
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Zookeeper Cluster:

Since Kafka works in cluster fashion, there is a need for server coordination. Zookeeper is
responsible for helping Kafka instances on its coordination. The zookeeper is the brain that does
the election of the Kafka leader. Without zookeeper, Kafka could not operate well.

If only one zookeeper instance is present in the cluster and it crashes for any reason, Kafka
instances would become not coordinated and they would crash leading to a failure of the whole
system.

To avoid possible crashes of single Zookeeper node, the same strategy that is used in Kafka
must be used here. If Zookeeper instances are replicated and if one instance crashes there are
still other instances to control Kafka cluster. Hence there is in fact a cluster of Zookeepers in the
system instead of a single instance.

Services & Exposed Services:

The proposed solution makes use of many components and those components receive data from
outside of the cluster and send it to other components, but this link is not so trivial.

In order to allow the communication between components, services must defined to expose the
functionalities of each pod to outside the cluster, using IP addresses or hostnames.

However, general Services aren’t visible from outside of the Kubernetes cluster. Exposed ser-
vices have external IP addresses assigned to them. The assignment of external IP addresses in the
cloud is made by LoadBalancers and/or Ingresses but since our environment is on bare metal, we
used a framework called metalLB [6] (an open-source LoadBalancer built to work on bare metal
kubernetes systems) to have external IP addresses on our external services.

Internal Services were created for each component. They are used to establish the connection
between all components inside the kubernetes cluster.

These services are specified in YAML files created by us. They are available in the GitHub
page 4 and are also described in section 4.2.

Besides Internal services, External services were also created. They were created by using a
specific command in the terminal:

$ kubectl expose deployment <deployment_name> --port=<port_number(s)>
--type=LoadBalancer --name=<service_name> -n <namespace>

This command was used to create external services for Mosquitto In, Mosquitto Out, CoAP
server and REST Server. It configures TCP connections on ports 1883 for Mosquitto In, 1884 for
Mosquitto Out, 5683 for CoAP, 8000 for REST and 7000 for WebSocket connections. All ports
and respective pods are visible in figure 4.1.

Clients trying to send or receive data from any of these components use the external IP address
provided by these external services. The presented command exposes the service on a deployment,
meaning that all instances of that deployment become endpoints of the external service created
(many instances may exist if the number of replicas is more then one). Data coming to the
external service is then redirected for one of these endpoints.

Pod Ports
Mosquitto In 1883

Mosquitto Out 1884
CoAP 5683
REST 8000

WebSocket 7000

Table 4.1: Summary of all ports used for each Pod

4https://github.com/jsoares11/MasterThesisExperiences/tree/main/YAML%20files
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Proxy:

The proposed architecture builds an intermediate computing layer which will serve as an ab-
straction hiding different protocol implementations which we called Proxy. Proxy is the one respon-
sible for the communication between every server or broker with the Kafka system. By allowing this
communication, it is possible to use Kafka to store the incoming data, and also to request for older
data when receivers ask for it. This communication was build using sockets and a library named
Librdkafka that can be found on the following url: https://github.com/edenhill/librdkafka.

When a pod with a server or broker runs in the kubernetes system, it also runs our proxy, so in
fact there are many proxy instances as servers or brokers in the system. Resuming, our Proxy is
a middleware that allows communication between any server/broker and Kafka. Hence, allowing
devices that use different protocols to interact with each other, all implemented protocols can be
translated between them (MQTT, CoAP, REST).

The Proxy is composed by four different threads started by proxy.c. The threads are: the
producer.c, kafka socket server.c, kafka publisher.c and mqtt publisher.c. Each of them have their
own responsibilities inside the proxy which are described next.

To make sure that data isn’t lost in case the proxy isn’t able to handle the throughput (data
being send faster than it is being forwarded) a linked list is used in order to form a queue of
messages that will be sent to Kafka. If a message can’t be sent because a previous message is
still being processed it will be waiting in the queue (linked list). Figure 4.5 represents the proxy
architecture.

• producer.c: When a Producer sends data to our system, it sends the data to an external
service that forwards it to the desired server or broker. For example, a Producer sending
data using MQTT protocol sends data to the ”mosquitto-service-in”, because this is the
external service that grants Mosquitto In external access. Inside of the pod Mosquitto In
there are three separated programs running, a Mosquitto broker accepting incoming data,
a Mosquitto client subscribing to that same Mosquitto broker and our Proxy. When data
arrives to Mosquitto IN, it arrives in the Mosquitto broker, that forwards it to anyone sub-
scribing, so the Mosquitto client receives the data and outputs it to the stdin. Our Proxy
uses the thread producer.c and the PIPE command in linux to keep listening to the output
of the Mosquitto client stdin and also receive the data. Data is then placed on the queue to
be saved in Kafka.

• kafka socket server.c: Starts a socket server listening and accepting connections from
the CoAP and REST servers on port 5151. When a server connection request is ac-
cepted, the kafka socket server calls a connection handler thread to deal with it, this way
kafka socket server doesn’t take much time to answer other requests because the previous
requests are being processed by the connection handler in other threads. Requests assumes
only two types, consumer or producer (mode ”C” or mode ”P” respectively). The handler
makes a call to kafka interface.c where the librdkafka library is used to send data to kafka
depending on the mode used. If the mode used was the consumer mode, kafka will return
the requested messages, otherwise the data sent to kafka will be stored.

• kafka publisher.c: This thread handles the queued data. Its responsibility is to check if
there is data in the queue, if so kafka interface.c is called and used to publish the data in
Kafka with the use of Librdkafka library.

• mqtt publisher.c: In this thread the ”Online” mode is handled (mode ”O”). It is responsible
for continuously consume data from Kafka and publishing it to Mosquitto Out, allowing
subscribers to receive data from the system.

58 José Soares

https://github.com/edenhill/librdkafka


Figure 4.5: Proxy Architecture

4.2 Kubernetes Environment

Previously, we have seen that having the cloud working along side with IoT systems helps them
satisfy many IoT requirements but even though this would be a good path to explore, it was decided
to use a bare metal Kubernetes system instead (instead of using a well known cloud infrastructure,
we decide do build our own cloud). This decision was due to the prices of the cloud.

In order to test the proposed system, we would need many instances, at least one to work as
the master node, and three other nodes to work as slaves. Besides this, we are going to need two
more nodes to make requests to the cluster, meaning that we would need a minimum of 6 machines
to be running while implementing our system and while running experiments on it.

There is another factor that had a big impact on this decision, since kubernetes requests
machines with at least two CPUs, the use of the simplest machines on cloud providers wouldn’t
be enough to run it, so the machines reserved to the system would be more expensive. This would
bring considerable high charges. With a bare metal system, we can have a kubernetes system
running on any desired set of machines for free, with the downside of not having access to all the
previously mentioned features that the cloud provides.

In this work, a Kubernetes Cluster composed by 5 nodes, one master node and four slave nodes
was created. To install the cluster we had to make some actions which are described in appendix
A. Here, steps we took in order to install the Kubernetes cluster on dual-core devices running on
Ubuntu 18.04 operating system are demonstrated. It’s important to notice that although these
steps allow kubernetes to be installed there are scripts available on our GitHub page 5 to facilitate
the installation.

After installing the kubernetes cluster, we need to specify some YAML files that are used to
create/running our components in the cluster.

These YAML files contain the desired configurations for each component. In order to build
our proposal, we created a set of YAML files, that is composed by: kafka.yaml, zookeeper.yaml,
mosquitto-in.yaml, mosquitto-out.yaml, coap.yaml, rest-api.yaml, controller.yaml and pv-rwo.yaml.

The container image used is the same for all components and is named ”josesoares/proxy”.

5https://github.com/jsoares11/MasterThesisExperiences
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This image is available on docker hub [73] 6.
Although having the same image, the behaviour is not the same for all components because

inside each of these files there is a specific command that executes the desired functionality of the
instance. The command calls one of four scripts: ”start-mqtt-rep3”, ”start-coap-rep3”, ”start-rest-
rep3”, ”controller”. These scripts are available in this Thesis GitHub page 7

Additionally, two types of components/services were defined: stateless and stateful services.
Zookeeper and Kafka were defined as StatefulSets (stateful components/services) because we
wanted Zookeeper and Kafka to be able to keep their state across different states of the clus-
ter. This is also the reason why they are both the only ones that claim Persistent Volumes. On the
other side we have Deployments (stateless components/services) that do not keep their state. In
our implementation, all protocol specific server uses Deployments to run inside the cluster. Since
data is kept by kafka, keeping specific protocol server state is not important for global achievements
of the system.

A brief description of each YAML file is presented below. All of these files can be found in the
repository of this thesis.

• kafka.yaml:
The purpose of this file is to define the configurations of Kafka cluster that will run inside
kubernetes cluster as part of our system architecture. This definition includes a specification
of services that are associated with it. A kafka-hs service is defined. The ”hs” stands for
Headless Service [31] which is the type of service used when there is no need for load-
balancing, these kind of services don’t have a cluster IP allocated, instead the name of the
StatefulSet is used to associate the Service with the StatefulSet. This is done by using a field
named ”selector” in the Service definition with the name of the StatefulSet to be associated
with, in this case ”kafka” which is visible in figure 4.6. DNS is then able to understand that
data coming to the headless service must be mapped to an available pod from the Kafka
StatefulSet. The kafka-hs service listens to TCP connections on port 9093.
The Kafka cluster is defined as a StatefulSet, as we can see in the field named ”kind”, shown
in 4.7. The field ”name” defines the name of the StatefulSet that is used by the Service
selector. Since we are interested in fault-tolerance, the number of Kafkas in the cluster
should be more than one, so the ”replicas” field is set to 3. To have access to Persistent
Volumes a volume claim is defined in the field ”volumeClaimTemplates” as visible in figure
4.7. Here, the access mode is defined as ReadWriteOnce, meaning that the volume can only
be mounted as read-write by a single node, and some resources are requested (100Mi - one
hundred MebiBytes).
In order to execute Kafka inside the container a specific command must be used. The
command used is the following:

$ kafka_2.12-2.5.0/bin/kafka-server-start.sh kafka_2.12-2.5.0/
config/server.properties

This command starts Kafka using the Kafka configurations inside of the file server.properties.
Kafka.yaml file uses this command on a field named ”command” that is visible in figure 4.7.

6https://hub.docker.com/repository/docker/josesoares/proxy
7https://github.com/jsoares11/MasterThesisExperiences/tree/main/YAML%20files/scripts.
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---
- apiVersion: v1

kind: Service
metadata:

labels:
app: kafka

name: kafka-hs
spec:

ports:
- name: kafkaport

port: 9093
protocol: TCP

selector:
app: kafka

Figure 4.6: Excerpt of kafka.yaml with the configurations of the Service

---
- apiVersion: apps/v1

kind: StatefulSet
metadata:

labels:
app: kafka

name: kafka
spec:

replicas: 3
(...)
containers:
- command:

- sh
- −c
- ”exec kafka\ 2.12−2.5.0/bin/kafka−server−start.sh

kafka\ 2.12−2.5.0/config/server.properties”
(...)

image: josesoares/proxy
(...)
volumeClaimTemplates:
- apiVersion: v1

kind: PersistentVolumeClaim
metadata:

creationTimestamp: null
datadir

spec:
accessModes:
- ReadWriteOnce
resources:

requests:
storage: 100Mi

Figure 4.7: Excerpt of Kafka.yaml with the configurations of the StatefulSet

• zookeeper.yaml
The zookeeper.yaml file is very similar to the kafka.yaml in the sense that it also defines a
headless service named ”zk-hs”, a StatefulSet named ”zk”, a Persistent Volume Claim and
three replicas. Besides that, it also defines a normal service named ”zk-cs”. The ”cs” stands
for client service which is a normal service meaning that it has an assigned IP address, but
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that address is internal (only valid inside the cluster).
The headless service accepts TCP data on ports 2888 and 3888 and the client service also
listens for TCP connections on port 2181. Port 2888 is used by zookeepers to exchange
information between them, while port 3888 is reserved for the process of leader election. The
port 2181 is used by Kafka instances to connect to a running Zookeeper, this is defined in
the server properties file, the Kafka configuration file. All these configurations are presented
in figures 4.8 and 4.9.
To run the zookeeper inside the cluster, the following command was used:

$ ./kafka_2.12-2.5.0/bin/zookeeper-server-start.sh kafka_2.12-2.5.0/
config/zookeeper.properties

It starts the zookeeper with the configuration file zookeeper.properties, where some parameters
such as client/connection timeout, maximum number of connections or maximum number of
clients at the same time are defined.

---
- apiVersion: v1

kind: Service
metadata:

labels:
app: zk

name: zk-hs
spec:

ports:
- name: server

port: 2888
protocol: TCP
targetPort: 2888

- name: leader−election
port: 3888
protocol: TCP
targetPort: 3888

selector:
app: zk

---
- apiVersion: v1

kind: Service
metadata:

labels:
app: zk

name: zk-cs
spec:

ports:
- name: client

port: 2181
protocol: TCP
targetPort: 2181

selector:
app: zk

Figure 4.8: Excerpt of zookeeper.yaml with the configurations of its Services
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---
- apiVersion: apps/v1

kind: StatefulSet
metadata:

labels:
app: zk

name: zk
spec:

replicas: 3
(...)
containers:
- command:

- sh
- −c
- ./kafka 2.12−2.5.0/bin/zookeeper−server−start.sh

./kafka 2.12−2.5.0/config/zookeeper.properties
(...)
image: josesoares/proxy
(...)
volumeClaimTemplates:
- apiVersion: v1

kind: PersistentVolumeClaim
metadata:

creationTimestamp: null
name: datadir

spec:
accessModes:
- ReadWriteOnce
resources:

requests:
storage: 100Mi

Figure 4.9: Excerpt of zookeeper.yaml with the configurations of the StatefulSet

• mosquitto-in.yaml
The Mosquitto In YAML file contains the configuration to run a Mosquitto Broker with a
set of configurations, like listening ports or connection timeout. Associated with Mosquitto
itself, there is a service named ”mosquitto-cs-in” that listens for TCP connections on port
1883 (default port for MQTT communication) as shown in figure 4.10.
The Mosquitto In YAML also defines its content as a deployment (figure 4.11). This deploy-
ment is named ”moquitto-deployment-in”.
Inside the image josesoares/proxy there is a script named ”start-mqtt-rep3”, which receives
five parameters, the mode (”in” or ”out”), the topic that is going to be used, the Kafka and
Zookeeper addresses, and the MQTT port that will be used. In this case the mode is ”in”,
telling our Proxy that the container will run a Mosquitto In. To use the script the following
command was used:

$ ./start-mqtt-rep3 in iot Kafka-hs.kafka.svc.cluster.local:9093
zk-cs.kafka.svc.cluster.local:2181 1883

This command will start a Mosquitto broker on the former container in the given MQTT
port and will also start the Proxy.
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---
- apiVersion: v1

kind: Service
metadata:

labels:
app: mosquitto−in

name: mosquitto-cs-in
spec:

ports:
- name: clientin

port: 1883
protocol: TCP
targetPort: 1883

selector:
app: mosquitto−in

Figure 4.10: Excerpt of mosquitto-in.yaml with the configurations of the Service

---
- apiVersion: apps/v1

kind: Deployment
metadata:

name: mosquitto-deployment-in
labels:

app: mosquitto−in
spec:

replicas: 1
(...)
containers:
- name: mosquitto−in

command:
- sh
- −c
- ./start−mqtt−rep3 in iot kafka−hs.kafka.svc.cluster.local:9093

zk−cs.kafka.svc.cluster.local:2181 1883
(...)
image: josesoares/proxy

Figure 4.11: Excerpt of mosquitto-in.yaml with the configurations of the Deployment

• mosquitto-out.yaml
This YAML file is very similar to the previous one (mosquitto-in.yaml). The main difference
is the mode and the port that is used. This instance is listening for TCP connections on
ports 1884 and a service named ”mosquitto-cs-out” was created 4.12.
This component is deployed as a Deployment with the name mosquitto-deployment-out 4.13.
To run the instance we used the command:

$ ./start-mqtt-rep3 out iot kafka-hs.kafka.svc.cluster.local:9093
zk-cs.kafka.svc.cluster.local:2181 1884

This command uses the same script used for mosquitto-in.yaml named ”start-mqtt-rep3” and
receives the same arguments, but the mode and port used was ”out” and 1884, respectively.
Since mosquitto allows to feed data in near real-time from our system, and to offer more
ways to retrieve data in real-time, a websocket service was also included in this component.
This websocket is listening for incoming connections in port 7000 and when new data arrives
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at mosquitto out, this websocket server also receives that data and forwards it to all clients
registered on it.

---
- apiVersion: v1

kind: Service
metadata:

labels:
app: mosquitto−out

name: mosquitto-cs-out
spec:

ports:
- name: clientout

port: 1884
protocol: TCP
targetPort: 1884

- name: gwsocket
port: 7000
protocol: TCP
targetPort: 7000

selector:
app: mosquitto−ou

Figure 4.12: Excerpt of mosquitto-out.yaml with the configurations of its Services

---
- apiVersion: apps/v1

kind: Deployment
metadata:
name: mosquitto-deployment-out
labels:

app: mosquitto−out
spec:

replicas: 1
(...)
containers:
- name: mosquitto−out

command:
- sh
- −c
- ./start−mqtt−rep3 out iot kafka−hs.kafka.svc.cluster.local:9093

zk−cs.kafka.svc.cluster.local:2181 1884
(...)
image: josesoares/proxy

Figure 4.13: Excerpt of mosquitto-out.yaml with the configurations of the Deployment

65 José Soares



• coap.yaml
The coap.yaml file contains the configurations to build a pod with a container running a
CoAP server and the Proxy. To do this, the following command was used:

$ ./start-coap-rep3 iot kafka-hs.kafka.svc.cluster.local:9093
zk-cs.kafka.svc.cluster.local:2181

This command uses a script named start-coap-rep3 that receives as arguments the CoAP
resource (that will be used as topic in Kafka), the Kafka and Zookeeper addresses. The use
of this script can be seen in figure 4.15. In the same figure is also visible that a Deployment
was used. To allow communication between this and other components a service was defined
with the name ”coap-cs”, which listens to TCP connections on port 5683. This component
was configured to also listen to UDP connections, but these packets would not arrive to the
pod. This is still a limitation of our system and should be fixed in a future work. These
configurations can be seen in 4.14.

---
- apiVersion: v1

kind: Service
metadata:

labels:
app: coap

name: coap-cs
spec:

ports:
- name: clientinudp

port: 5683
protocol: UDP
targetPort: 5683

- name: clientintcp
port: 5683
protocol: TCP
targetPort: 5683

selector:
app: coap

Figure 4.14: Excerpt of coap.yaml with the configurations of its Service
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---
- apiVersion: apps/v1

kind: Deployment
metadata:

name: coap-deployment
labels:

app: coap
spec:

replicas: 1
(...)
containers:
- name: coap

command:
- sh
- −c
- ./start−coap−rep3 iot kafka−hs.kafka.svc.cluster.local:9093

zk−cs.kafka.svc.cluster.local:2181
(...)
image: josesoares/proxy

Figure 4.15: Excerpt of coap.yaml with the configurations of the Deployment

• rest-api.yaml
The rest-api.yaml file contains the configurations needed to start a pod with a container
running a REST server and the Proxy. These configurations are described here and can
be seen in figures 4.16 and 4.17. The defined service listens TCP connections on port 8000
and is named ”rest-cs”. The defined Deployment is named ”rest-deployment”. The following
command was used to start both the REST server and Proxy:

$ ./start-rest-rep3 iot kafka-hs.kafka.svc.cluster.local:9093
zk-cs.kafka.svc.cluster.local:2181

This command uses a script named start-rest-rep3 that receives as arguments the resource
that should be used (which will be used as topic in Kafka), the Kafka and Zookeeper addresses
to be used, by order.

---
- apiVersion: v1

kind: Service
metadata:

labels:
app: rest

name: rest-cs
spec:

clusterIP: None
type: LoadBalancer
ports:
- name: clientin

port: 8000
protocol: TCP
targetPort: 8000

selector:
app: rest

Figure 4.16: Excerpt of rest.yaml with the configurations of its Service
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---
- apiVersion: apps/v1

kind: Deployment
metadata:

name: rest-deployment
labels:

app: rest
spec:

replicas: 1
(...)
containers:
- name: rest

command:
- sh
- −c
- ./start−rest−rep3 iot kafka−hs.kafka.svc.cluster.local:9093

zk−cs.kafka.svc.cluster.local:2181
(...)
image: josesoares/proxy

Figure 4.17: Excerpt of rest.yaml with the configurations of the Deployment

• controller.yaml
The controller.yaml file is used to define the configuration component. In our implementation,
this controller does not require a specific service. It is composed only by a Deployment and
is named ”controller-deployment”. The configurations of this Deployment may be seen in
figure 4.18.
The controller component was configured to have only one instance and to listening for
administrator commands. This means that the container is available to be used by advanced
users or admins. To access this container the following command may be used on the cluster:

$ kubectl exec -n kafka --stdin --tty podname -- /bin/bash

Once inside, it gives access to all micro-services defined by the proposed architecture and
running over the kubernetes cluster.
Inside this component, there is a script named ”controller”, which allows to list, delete or
create a topic from Kafka.
To use the script the following arguments must be given: method ( ”create”, ”list” or ”delete”),
the topic to be used, the replication factor, the number of partitions and the zookeeper’s
address to use.
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---
- apiVersion: apps/v1

kind: Deployment
metadata:

name: controller-deployment
labels:

app: controller
spec:

replicas: 1
(...)
containers:
- name: controller

command:
- sh
- −c
- tail −f /dev/null

(...)
image: josesoares/proxy

Figure 4.18: Excerpt of controller.yaml with its configurations

• pv-rwo.yaml
Lastly, the pv-rwo.yaml file is responsible for creating the Persistent Volumes that are used
by the Kafka and Zookeeper clusters. Sixteen Persistent Volumes were created to allow any
component of the system to claim them if needed. The name of the Persistent Volumes created
vary from ”pv001” to ”pv016”, and each of them is configured to provide 500Mi of storage,
have access mode ”ReadWriteOnce” and have the contents on the path ”share/pvXXX”
where ”XXX” represents the number of the persistent volume in question. After applying
this YAML file the Persistent Volumes are created and the components may use Persistent
Volume Claims to request their use. All of these configurations can be seen in 4.19.

---
apiVersion: v1
kind: PersistentVolume
metadata:

name: pv016
spec:

capacity:
storage: 500Mi

accessModes:
- ReadWriteOnce

hostPath:
path: ”/share/pv016”

Figure 4.19: Excerpt of pq-rwo.yaml with its configurations

All these YAML files are available at https://github.com/jsoares11/
MasterThesisExperiences/tree/main/YAML%20files. They allow anyone to replicate our
system and/or adjust some values to configure the cluster to have more containers (components)
or replicas of a specific component.

In terms of loading these configurations (YAML files), the command ”kubectl apply” is used.

$ kubectl apply -f <filename.yaml>

When this command is applied all configurations are loaded to a default namespace. In order
to change the namespace, the command must be change to include the ”-n” flag and the name of
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new namespace. Note that there is no default mechanisms to establish the communication between
different namespaces.

e.g., $ kubectl apply -f filename.yaml -n kafka

Since we have many YAML files to be loaded, we simplify the loading process by creating a
shell script (named create-kafka-env) that loads all YAML files at once. This script is also available
in the thesis repository 8.

This script contains the commands needed to create the namespace, to configure the load
balancer (metalLB), to load the system (all defined YAML files) and to define the external services
needed to expose our system.

Upon concluded the loading process, this script lists the created services, giving the external
IP addresses that are used to exchange data with the system. The script is described next:

kubectl create ns kafka
kubectl apply -f metalLB
kubectl apply -f pv-rwo.yaml -n kafka
kubectl apply -f zookeeper.yaml -n kafka
kubectl apply -f kafka.yaml -n kafka
kubectl apply -f mosquitto-in.yaml -n kafka
kubectl apply -f mosquitto-out.yaml -n kafka
kubectl expose mosquitto-service-in -n kafka
kubectl expose mosquitto-service-out -n kafka
kubectl apply -f rest-api.yaml -n kafka
kubectl expose rest-external-service -n kafka
kubectl apply -f coap.yaml -n kafka
kubectl expose coap-external-service -n kafka
kubectl apply -f controller.yaml -n kafka
kubectl get svc -n kafka | grep "mosquitto-service-in"
kubectl get svc -n kafka | grep "mosquitto-service-out"
kubectl get svc -n kafka | grep "rest-external-service"
kubectl get svc -n kafka | grep "coap-external-service"

8https://github.com/jsoares11/MasterThesisExperiences
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5: Experiments

As discussed before IoT applications are growing in number. We need new IoT solutions to
be resilient, able to respond as soon and efficiently as possible in case of failure of any service.
Furthermore, we don’t want the system to be dependent of every component, since there are many
components and one failure must not lead to the whole system failure, hence the use of micro
services is crucial.

We want to see if the system will still deliver messages even if a node dies, see if the number of
topics in the system have a significant influence on its performance. Also, we want to investigate
if the number of Kafka instances in the Kafka cluster or Zookeepers instances in the Zookeeper
cluster has a big impact on the system’s behaviour. These behaviours must be studied on our
system, therefore experiments were performed.

Since we have a big IoT system with many functionalities, as described in chapter 4, we divide
the experiments in 4 groups:

• the first group corresponds to testing communication protocols

• the second group corresponds to the test of the system as a whole

• the third group is the test of the Kafka system

• finally the test of Kubernetes cluster functionalities

These experiments should help us to evaluate if our IoT system is interoperable, resilient,
scalable, easy to manage and that ensures data availability. All of the experiments are
described in section 5.2. With these experiments we are be able to understand what greatly changes
our system’s behaviour, what are the key aspects that have the most impact on its performance.

This chapter first describes the setup used to make the experiments, then the testing scenarios
are presented where each test is described. After that, the implementation that allowed those
experiments to be made is presented. In the next chapter Results of these tests can be found along
with conclusions on the system’s behaviour.

5.1 Setup Configuration
A kubernetes cluster with five virtual nodes, one acting as the master node, and four acting as the
slave nodes was used to run the experiments. Two more virtual machines were used to act as the
Producer and Receiver. All virtual machines run the Ubuntu 18.04 operating system and have two
CPUs. The master, producer and receiver nodes were all given 3108 MB of RAM while the slaves
had only 2048MB of RAM.

Nodes/
Stats Master Slave1 Slave2 Slave3 Slave4 Producer Receiver

RAM (MB) 3108 2648 2648 2648 2648 3108 3108
Storage (GB) 40 40 40 40 40 40 40

#CPUs 2 2 2 2 2 2 2

OS Ubuntu
18.04

Ubuntu
18.04

Ubuntu
18.04

Ubuntu
18.04

Ubuntu
18.04

Ubuntu
18.04

Ubuntu
18.04

Table 5.1: Virtual Machine Node’s Configuration
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5.2 Testing Scenarios

5.2.1 Protocols
Scenario 1: Delay and Packet Loss

The objective of this experiment is to understand how the protocols behave when passing
through the whole system. We want to check the packets lost and delay from the Producer to a
Receiver (on the other side of the architecture).

At the end we should be able to compare the delay and packet loss of all protocols and compare
them in order to determine its main differences.

To calculate the delay and packet loss a timestamp is captured in the moment that each
message is being sent and a sequential number starting with the value 0 is added to the payload
of the message. This way the receiver will get the message with sequential number 0, 1, 2, 3 and
so on. Afterwards, we can check if any message got lost. The experiment was taken under three
different sending rates:

• one message for each second,

• one message for each 100 milliseconds and

• one message for each 10 milliseconds.

Each test ran during two hours (each protocol and rate).

5.2.2 System
Scenario 2: Messages with big size - delay vs msg size

The experiments done under scenario 1 were made with a fixed message size comprised of 39
Bytes. To understand the capacities of the system in terms of handling big sized messages this
test comprises sending messages with size of 2000Bytes. By checking the delay it’s possible to
compare the results with the results from scenario 1 and see if the delay increased, if so it’s fair
to infer that system performance is changed depending on the message size.

Scenario 3: Messages with variable size - delay vs msg size variation

In order to evaluate if the performance of the system is affected by the variation of messages’s
size being sent, in this test messages are sent following the same behaviour as in scenario 1, but the
payload of messages varies from 100Bytes to 1000Bytes (randomly). If any node crashes or the de-
lay is substantially increased it means the system wasn’t well prepared to handle such size variation.

Scenario 4: fail recovery (node suddenly unavailable)

The objective of this experiment is to understand how the system handles nodes that fail due
to lack of resources or eventual crashes caused by bugs. With the use of Kubernetes it is expected
that after approximately five minutes [103], kubernetes recognizes that the node is unavailable
and try to reallocate its pods on other available worker. By manually turning off a node while
a Producer sends data to a Receiver each second, we will be able to understand if the pods are
transferred to other available node. If data stops being received the moment the node goes down
and after a reasonable amount of time (the time needed to get pods reallocated and restarted)
data starts being received again, then we are able to confirm that the system is resilient and fault
tolerant.

Scenario 5: low vs high throughput

Having one Producer versus having many Producers must have some impact on the system.
With this experiment we have one producer sending data every second versus 10 Producers
simultaneously, all starting at the same time. At the end of both tests, we compare the levels
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of CPU and RAM of all slave nodes to determine if there was indeed an impact on the system
behaviour.

5.2.3 kubernetes
Scenario 6: Time spent to add a node on a cluster with few vs many nodes

To study the influence of adding a node to a system we will start a cluster containing only one
node and will add another node to it, checking the time it takes from the ”Not ready” state to
”Ready” state. The Kubectl get nodes command is used.

In order to run this experiment, we used a script called add node time.sh that can be found in
the GitHub repository of this thesis 1. This script is called with a Linux method named timeout
that allows us to run our script for a specific amount of time (in our case for 5 minutes). In this
time the script keeps executing the command Kubectl get nodes and saves the state of the nodes
with a timestamp on a file, when the state changes from ”Not Ready” to ”Ready” we calculate
the amount of time that kubernetes needs to add the node. This test is repeated on clusters
containing 5 and 10 nodes. At the end we compare the time spent when adding the node on the
different clusters to understand if the number of nodes in a cluster has an important impact on
the time needed by the cluster to add a new node.

Scenario 7: Scaling delay

To understand the time that Kubernetes requires to scale pods, in this experiment a cluster
containing one pod running Mosquitto IN will be scaled to ten pods, twenty, thirty, forty, fifty,
sixty and seventy pods.

The time needed by Kubernetes to execute the scale command on each of these cases is saved
and afterwards they are all compared.

This way we are able to study the behaviour of Kubernetes in terms of scale time. The time
spent to execute the scaling is calculated by checking the time taken for the pods status change
from ”Creating to Running”. This status is visible by using the command Kubectl get pods.

5.2.4 Kafka
Scenario 8: Replication Factor

With this experiment we intend to verify if the system is affected by the number of Kafka
pods. Summing up, we want to see the impact of having a big replication factor vs having a low
replication factor and compare the results to understand if this factor is crucial on the system’s
performance. To verify this, the same method as in scenario 1 will be used: data will be flowing
from the Producer to the Receiver and the delay will be calculated for both cases along with
the CPU and RAM usage of the slaves running Kafka pods. If the delay, RAM or CPU usage
increases it means that replication factor has a big impact on the system.

Scenario 9: Number of partitions

In order to understand if the number of partitions has an impact on our system we perform
the same test done in scenario 7 where data is flowing from the Producer to the Receiver and see
if the delay is directly affected by the number of partitions using the measured delay plus CPU
and memory consumption.

5.3 Implementation:
In order to evaluate all scenarios defined in section 5.2 it was necessary to implement the Producers
and Receivers for all Protocols, the node state monotorization (state ”Ready” vs state ”NotReady”),

1https://github.com/jsoares11/MasterThesisExperiences/tree/main/implementation/add_node
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the code that allows a user to perform actions on the topic being used and the packet loss calcula-
tion. For the Producers, Receivers and the Monitor we picked C as the programming language to
work with, as for the remaining Shell scripts were used. Most experiments were made for a period
of two hours, for the cases where this was not true the period of the test is described in the Results
section (section 6).

In this context the following list of files was generated. All of these files are available in the
GitHub repository of this thesis 2.

• ”exp mqtt pub”: Producer that uses MQTT protocol to send packets;
• ”exp coap put”: CoAP Producer using CoAP protocol to send packets;
• ”exp rest put”: Producer that sends packets using the REST protocol;
• ”exp mqtt sub”: A Receiver that uses MQTT protocol to receive packets;
• ”exp coap get”: Receiver responsible of getting CoAP packets;
• ”exp rest get”: A Receiver using the REST protocol to receive packets;
• ”monitor”: Script that monitors the cluster node’s status to evict pods on crashed nodes;
• ”controller”: Script used by the ”Controller” pod with the only purpose of allowing a user

to list, delete or create a topic. This allows users to redefine the partitions and replication
factor of the used topic;

• ”packet loss”: Script used for packet loss calculation given a file with the sequential number
of all received messages;

• ”get cpu usage.sh”: Script responsible for capturing the CPU being used over a period of
time;

• ”get mem usage.sh”: Script that captures the RAM being used in a period of time;

The message format used for all experiments was the same. They were sent to the system
as raw text, but once inside the system and the Proxy, the current timestamp is added at the
beginning of the message and the format is changed to conform with a JSON format. After this,
the message is saved in Kafka, so Receivers get data in JSON format. In our experiments, the
message payload used in fixed message sizes had the following message:

fixed message: "standard test with fixed message size"

Once inside the Proxy, data would be translated to include the timestamp and to conform with
JSON sintaxe/format:

{1598554879520:"standard test with fixed message size"}

5.3.1 Producers
The Producers are programs that keep sending data to the system at a specific rate, during a
certain amount of time. These parameters where configured directly in source code files, which
implies a new source files compilation for each experimentation. Each message sent has a timestamp
that indicates the sending instant from the producer. This timestamp is considered part of the
payload inside the rest of the system.

These programs receive as arguments the address of the Broker or Server that will be used to
send messages. The amount of time that the Producers were sending messages was the same for
all experiments, and had a duration of two hours, while the rate was relative to each experiment
(between 1 to 1000 message(s) per second).

The implementation of each Producer is similar for all protocols, in Algorithm 1 a pseudo-code
is presented to illustrate the logic behind the producers. Since they are similar we used the MQTT
protocol as example. All implemented Producers are available on this thesis repository with the
names ”exp mqtt put.c” for MQTT, ”exp coap put.c” for CoAP and ”exp rest put.c” for REST.

During the experiment, the producer will keep on sending messages. A system call to
”mosquitto pub” is used to send messages. Each message is composed by a topic and message
payload. In our experiments the topic used was always the same ”iot”.

2https://github.com/jsoares11/MasterThesisExperiences/tree/main/implementation
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Algorithm 1: Mqtt producer pseudo-code
1 Producers(addr, log);

Input : addr - The address of the respective server/broker
log - The name of the file to save the timestamp of sending

Output: log with timestamp
2 do
3 system(mosquitto pub addr message);
4 log(timestamp);
5 sleep(rate);
6 while elapsed <finish time;

Regarding CoAP and REST protocols, clients based on libcoap and ”ulfius” libraries were
implemented to support both these protocols.

As described before, each protocol implementation has an external service and address that is
used to communicate with the system. Each of these Producers will establish the connection with
the corresponding service on the system, in this case MQTT producer is connected to Mosquitto
In, CoAP to CoAP Server and REST to Rest Server.

5.3.2 Receivers
In this work, the receivers did not follow the same approach for all protocols.

The MQTT receiver differs from the others because this protocol follows the publish-subscribe
pattern instead of request-response pattern.

This receiver receives as arguments the address of the Mosquitto and the name of the log file
where the received messages and arriving timestamps are registered.

With the use of the functions ”popen” and ”fgets” from C library we are able to use
”mosquitto sub” and get the messages it receives. The ”popen” command is used to create another
process that runs a program and creates a pipe between them, returning a pointer to a stream
that can be used for read or write data.

In this case the Mosquitto client (”mosquitto sub”) is called and the ”fgets” function is used to
read/obtain the received messages.

In Algorithm 2 a pseudo-code of the receiver behaviour is presented. First the ”popen” function
is used to get the stream, and then, while fgets is able to read data from that stream, the JSON
message is unwrapped to get the wanted fields.

The unwrapping was done with the use of the function ”strtok”, which breaks a message into
a series of tokens using a delimiter (the delimiter used was the character ”:”). These fields are the
timestamp (current timestamp), sent timestamp (received in the payload), payload received and
sequential number.

A log file is created at the beginning. Everytime a message is received the unwrapped fields
are appended to the log file.

Algorithm 2: Mqtt receiver pseudo-code
1 MQTT Receiver(addr, log);

Input : adr - The address of the respective broker
log - The name of the logfile to use

Output: log with received timestamp, sent timestamp, payload and sequential number
2 cmd = ”mosquitto sub addr”;
3 fp = popen(cmd, ”read”);
4 while fgets!=NULL do
5 strtok(msg rcved);
6 log(timestamp, sent tmstmp, payload, seq num);
7 end

In the case of CoAP and REST implementations the Receiver is continuously sending get
requests to the system until a timeout without receiving data is reached, in our case 20 seconds
without receiving data means the experiment is over.
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These Receivers receive as arguments the address of the server that will be used and the log
file name. A pseudo-code is shown in Algorithm 3.

In this implementation the ”popen” function was used to call a CoAP client and/or a REST
client that sends the get requests to the given address, while the ”fgets” function was used to read
messages that arrive from the server. Similar to MQTT the ”strtok” function was used to unwrap
the received messages in order to get the message fields which are stored in the log file.

Algorithm 3: CoAP and REST receiver pseudo-code
1 CoAP and REST Receivers(addr, log);

Input : addr - The address of the respective server
log - The name of the logfile to use

Output: log with received timestamp, sent timestamp, payload and sequential number
2 cmd = ”./coap-client -m get addr”;
3 # or ”./simple client GET addr” (for REST);
4 while elapsed <timeout do
5 fp = popen(cmd, ”read”);
6 while fgets!=NULL do
7 strtok(msg rcved);
8 log(timestamp, sent tmstmp, payload, seq num);
9 end

10 end

5.3.3 Monitor
The Monitor is responsible for continuously check the status of all nodes in the cluster. If a node
has a ”Not Ready” status for more then 6 minutes, the monitor evicts pods from that node. If the
node never returns, it must be manually deleted from the cluster.

The monitor doesn’t have capabilities to delete any node, only starts the eviction of pods whose
nodes had crashed.

If the node returns then the eviction will proceed and the node will be cordoned (meaning that
it is marked as an unschedulable node), hence to use it again you must uncordon the pod using
the command:

$ kubectl uncordon <node_name> -n <namespace>

Once started, the Monitor runs forever, and checks the nodes’s status with the use of the
following command:

$ kubectl get nodes -o wide | awk '{if(NR>2) print $1 $2}';

This command uses the ”awk” function to get only the ”Status” column from the output of
the command ”kubectl get nodes”, leaving out the columns ”Roles”, ”Age” and ”Version”. It is
executed in Monitor using the ”popen” command, followed by ”fgets” to have access to the output
of the ”popen” command. This output is used to check if a node status is found as ”Not Ready”.
When it happens, we need to check how long the node is ”Not Ready”. For that we need to execute
the following command:

$ kubectl describe node <nodename> | grep "Ready" | awk '{ if(NR <= 1)
print $3 $4 $5 $6 $7}');

This command uses the ”awk” command to get the last heartbeat heard from the node in
kubernetes, leaving out unnecessary information. The numbers 3 through 7 represent the columns
where the data of the last heartbeat is represented (e.g. Wed, 09 Sep 2020 14:41:51).

The ”fgets” function is used to get the output of the ”popen” function and the field heartbeat
received is forwarded to ”is node dead” function, which evaluates if a node was ”Not Ready” for
the last 6 minutes.

This ”is node dead” function uses the function ”strtok” to separate the day, year, hour, minutes
and seconds of the heartbeat and of the current time.
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Both timestamps are then evaluated in order to determine its difference. If the difference is
bigger then six minutes then we assume that the node crashed and proceed to evict its pods. To
evict the pods a new thread is created allowing the monitor to keep checking other nodes while
others are being evicted. The thread uses the following command to evict the pods:

$ kubectl drain <node_name> --force --ignore-daemonsets --delete-local-data

Algorithm 4 shows a pseudo-code that illustrates the logic of the monitor.

Algorithm 4: Monitor pseudo-code
1 Monitor(finish time, rate);

Input : finish time - Time of the experiment
rate - The time between each status observation

2 while elapsed <finish time do
3 cmd = ”kubectl get nodes -o wide | awk print $1 $2”;
4 fp = popen(cmd, ”read”);
5 while fgets!=NULL do
6 strcmp(status, ”Not Ready”);
7 cmd2 = ”kubectl describe node <node name> | grep ’Ready’ | awk print $3 $4 $5

$6 $7”;
8 fp = popen(cmd2, ”read”);
9 if fgets!=NULL then

10 evict ← isNodeDead();
11 if evict == true then
12 cmd3 = ”kubectl drain <node name> force ignore-daemonsets

delete-local-data”
13 end
14 end

5.3.4 Controller
The controller is used to create, list or delete a topic in Kafka. The following command is used to
enter in the Controller pod:

$ kubectl kubectl exec -n kafka --stdin --tty podname -- /bin/bash

The Controller has a set of configurations that must be specified in its arguments. The config-
urations are:

• ”Method” : The method to either Create, List or Delete topics from Kafka;

• ”Topic” : The topic to be created or deleted;

• ”Replication Factor” : Replication Factor on a newly created topic

• ”Number of Partitions” : Number of partitions on a newly created topic

• ”Zookeeper Server” : The address of the Zookeeper in the form ¡address¿:¡port¿

Taking into account the configurations given at the startup of the controller, it will execute
different operations:

• If the method given as argument is ”create”, it executes the following command, which creates
a new topic in Kafka.

$ ./kafka_2.12-2.5.0/bin/kafka-topics.sh --create --zookeeper <zook_addr>
--replication-factor <rep_factor --partitions <num_partitions>
--topic <topic>

• If the method passed as argument was ”list”, the Controller will execute the respective
command, which allows to list topics from Kafka.
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$ ./kafka_2.12-2.5.0/bin/kafka-topics.sh --list --zookeeper <zook_addr>

• If none of the above methods is passed as argument, the Controller checks if given method is
”delete”. If true, the topic mentioned in arguments is deleted from Kafka. In order to do this
the Controller will issue two different commands to the system: first will change the retention
period of messages in the topic to 1 second, which means that after 1 second messages are
destroyed; secondly deletes the topic. Both commands are listed next:

$ ./kafka_2.12-2.5.0/bin/kafka-topics.sh --zookeeper <zook_addr> --alter
--topic <topic> --config retention.ms=1000

$ ./kafka_2.12-2.5.0/bin/kafka-topics.sh --zookeeper <zook_addr> --delete
--topic <topic>

The first command is necessary because Kafka will not destroy topics that contain data.
Without this command the deletion of the topic takes the time defined for data retention in
Kafka. In Algorithm 5 the script is illustrated.

Algorithm 5: Controller pseudocode
1 Controller(method,topic,rep factor,num part,zook addr);

Input : method - create, list or delete
topic - the Kafka topic in question
rep factor - the number of replicas to use for the topic in question
num part - the number of partitions to use
zoo addr - the address of the zookeeper to use

2 if method=”create” then
3 ./kafka-topics.sh –create <zook addr> <rep factor> <num partitions> <topic>
4 if method=”list” then
5 ./kafka-topics.sh -list <zook addr>
6 if method=”delete” then
7 ./kafka-topics.sh <zook addr> –alter–topic <topic> –config retention.ms=1000

./kafka-topics.sh <zook addr> –delete–topic <topic>

5.3.5 Packet Loss
To calculate the number of messages that did not arrive into the system or arrived twice, a Packet
Loss script was built. This script evaluates the sequential number generated by producers. This
sequential number is received in each message by the Receiver that logs the value in the log file.
From that log, it was possible to get all the sequential numbers. If any number is missing, it means
the correspondent message was lost, and it counts as a lost message.

It should be noted that since CoAP and REST send get requests instead of subscribing to
the respective servers if the get request gets to the server faster than the put request (from the
Producer) the server will answer the Receiver the last message it has on the system, meaning that
the Receiver will get the same message twice. These cases are not counted as messages lost.

To get data from Kafka, servers use the respective external Service, which uses metalLB to pick
one available Kafka broker, meaning that the Kafka used is not always the same. Since replication
of data between Kafka brokers is not instantaneous, this means that for a short period some of the
Kafka Brokers might still have previous values when the Receiver asks for data. Hence, sometimes
older messages might be received by Receivers, these kind of situation is not counted as messages
lost.

The implemented script is named ”check packet loss.c” and it receives as argument the name
of the file containing the sequential numbers (this file must contain only the sequential numbers).
The script reads the file line by line, using the command ”fgets”, and compares the current line
to the previous one. If the current line has a smaller or equal value than the last line, then no
packets are lost (the value is assumed to be a duplicated). If the current message differs from
the last message by one value, then the number is sequential, which means there was no packets
lost. Otherwise, if the last message has a smaller value than the second last, and their difference
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is bigger than one, messages were lost. The number of messages lost is equal to the difference
between the current line and the second last message minus one (current - second last - 1). For
example, in a file with the sequential numbers {1,2,3,1,6} the script will assume that the second
value ”1” is duplicated and it is not counted as a message lost, but messages four and five were
not received and are counted as packets lost (6 - 3 - 1 = 2 messages lost). The script is better
illustrated in algorithm 6.

Algorithm 6: Packet Loss pseudo-code
1 check packet loss(filename);

Input : filename - the name of the file containing all sequential numbers
2 last = 0;
3 sndlast = 0;
4 while fgets != NULL do
5 if current <= last then
6 continue;
7 if current - last == 1 then
8 continue;
9 if last <sndlast then

10 if current - sndlast >1 then
11 lost += current-sndlast-1;
12 else if last - sndlast == 1 then
13 lost += current - last - 1;
14 end

5.3.6 CPU Consumption
Another measure used to evaluate our system is CPU consumption. In order to quantify the metric,
a CPU consumption script (”get cpu usage.sh”) was created. It can also be found at the thesis
repository. This script executes the ”mpstat” command in nodes to get the CPU consumption.
The ”mpstat” command outputs in the standard output activities of all available processors in the
machine. This output includes information about the following:

• %usr: Indicates the ”amount” of time spent, in percentage, by the CPU to run applications
(at user level);

• %nice: In Linux, the CPU priority is measured in nice values (between -20 and 20) [97].
The higher the nice value, the lowest the priority. The nice field in ”mqstat” indicates the
percentage of CPU usage when the execution happens at user level with nice priority (positive
nice value, meaning low priority);

• %sys: Show the CPU percentage usage at the system level (kernel);

• %iowait: Indicates the percentage of time that the processors were idle at a moment that
the system was overloaded with disk I/O requests;

• %irq: The percentage of time spent by processors to service hardware interrupts;

• %soft: Indicates the percentage of time spent by the processors to service software interrupts;

• %steal: Shows the percentage of time spent waiting by virtual CPUs while the hypervisor
served other virtual processors;

• %guest: Percentage of time spent by the CPU to run virtual processors;

• %idle: The percentage of time that the CPU was idle (no outstanding Input/Output (I/O)
requests).

To use this script, a package called ”sysstat” must be installed in the Linux environment.
The developed script ”get cpu usage.sh” receives three arguments: the rate to be used (the

amount of time between each ”get”), the number of times that is needed to ”get” the usage and
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the name of the file in which the usage values of all fields are going to be saved. To use the script
consider the following example:

$ ./get_cpu_usage 1 60 test

In this example the script reads the CPU usage every second for a total of 60 times (meaning
for a total of 60 seconds/1 minute) and place each value in a file named ”test”.

5.3.7 RAM Consumption
To capture the RAM consumption of slave nodes in the experiments defined in section 5.2, a
script named ”get mem usage.sh” was created. This script uses the ”free” command to access the
memory usage. The ”free” [67] command provides information about the total amount of free and
used physical and swap memory in the system. It also displays information about the buffers and
caches used by the kernel. The output of this command contains the following fields [80]:

• total: The total memory capacity in the machine;

• used: Represents the used memory and is calculated as total - free - buffers - cache;

• free: The unused memory in the machine;

• shared: Express the memory used by tmpfs (a virtual memory file system);

• buffers: The memory that is used by kernel buffers;

• cached: Represents the memory that is used for cache;

• buffers/cache: The sum of the previous buffers and cache fields (buffers cache);

• available: An estimation of the available memory that can be used to start new applications.

To use the ”free” command, a package must be installed in the Linux environment called
”gawk”. The developed script ”get mem usage.sh” receives only one argument, the name of the
file to save the memory usage. It is important to notice that this script has an infinite loop (”while
true”), hence its usage should be heedful. The script is designed to work this way because it is
intended to be used with the command ”timeout”. The ”timeout” command allows the user to
run a command in Linux for a set amount of time. The amount of time between each execution of
”free” is set by using the ”sleep” command that waits one second inside the loop, this way, with
the ”timeout” command, we tell the script to run until a specific amount of time every second. An
example of the use of the script can be seen next:

$ timeout 5s ./get_mem_usage.sh test_ram

In this example, the ”get mem usage.sh” script runs for five seconds and saves the captured
memory usage in the file named ”test ram”. The following Algorithm (7) shows the script in a
pseudo-code fashion.

Internally, the script uses three commands, the ”grep”, ”strftime” and ”awk” commands. The
”grep” command is used to filter the output of ”free” command in order to get only the line
containing the word ”Mem”. The ”strftime” command is used to get the timestamp, which allows
to understand the value of the RAM usage in a specific moment, and the ”awk” command is used
to add the timestamp to the line that is going to be saved in the log file.

Algorithm 7: get mem usage.sh pseudo-code
1 get mem usage.sh(log);

Input : log - the name of the log file to save the usage
2 while true do
3 free -m | grep ”Mem” | awk {print strftime()} » log

sleep 1
4 end
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6: Results

In this chapter we present the results obtained after running the experiments, determining what
aspects define our system, what went wrong, why, and how could the system be changed in order
to solve some of the aspects that went wrong. The log files from these results may be found at
https://github.com/jsoares11/MasterThesisExperiences/tree/main/result_logs.

6.1 Scenario 1: Latency and Packet Loss
In this scenario, three protocols were used to evaluate the system. Firstly, the MQTT protocol and
data rates of 1, 10 and 100 messages per second were used. Figure 6.1 shows the average latency
obtained from this experiment.

Figure 6.1: MQTT Average Latency (ms) and Packet Loss vs Rate

From Figure 6.1 we can see that an average latency of 1082 ms, 1810 ms and 5297 ms is obtained
for 1, 10 and 100 messages per second, respectively. There is a clear tendency to get higher latency
when the rate increases.

Concerning packet loss, there were no losses in any of these tests. However, packets were
received in a different order than the send order. Since there was replication involved, data was
consumed from different Kafka instances which led to a different order when receiving packets.
This issue is solved by adding a slight delay to the consumer request.

The second protocol used was the CoAP protocol. In this case, the results differ significantly
when compared with MQTT. Figure 6.2 shows the results, concerning latency and losses, obtained
from this experiment.

Figure 6.2: CoAP Average Latency (ms) and Packet Loss vs Rate
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The results showed an average latency of 2823 ms, 2833 ms and 2868 ms for rates of 1, 10 and
100 messages per second, respectively. Similar to the first case, here there is also a very small
tendency to have more latency when the rate gets higher.

Concerning packet loss, for 1 message per second 0,93% of the packets were lost, while for 10
messages per second 18,52% of the total packets sent were lost, and for 100 messages per second
17,58% packets never arrived. In this experiment we noticed that the CoAP server shows low
performance to handle a high number of requests per second.

The third protocol used was the REST protocol. In terms of latency the results obtained are
a little higher than CoAP. These results are presented in figure 6.3.

Figure 6.3: REST Average Latency (ms) and Packet Loss vs Rate

The average latency obtained in this experiment for 1 message per second rate was 3176ms,
for 10 messages per second was 3115ms and for 100 messages per second was 251ms. In this case,
contrary to MQTT and CoAP results, there doesn’t seem to be a tendency to have more latency
when the rate gets higher.

In terms of packet loss, due to an internal error that occurred inside the experiment script
(”exp rest get”) when sending the get request the receiver in the experiment would stop consuming
data. All data from that point on was not received, but not counted as packet loss because the
system was still running (no nodes or pods have crashed). Nonetheless, checking the data that was
received until the crash it was possible to see that all rates had packets lost. For rate of 1 message
per second 0,5% of the packets were lost, for rate 10 messages per second 32,5% of the messages
were lost and for rate 100 messages per second 28,3% of the messages were lost.

6.2 Scenario 2: Messages with big size - latency vs msg size

In this scenario, the same tests made in scenario 1 for MQTT were repeated with a bigger message
size (2000B). The results obtained from this experiment were compared with the results from the
previous experiment (scenario 1) in order to understand the impact of the message size in the
system. The figure 6.4 shows a comparison of the results obtained from this experiment and from
the experiment done in scenario 1 in terms of latency.

Figure 6.4: MQTT Small vs Big message latency
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From the above figure it is possible to see a latency of 1075ms, 1757ms and 1840ms for rates
of 1, 10 and 100 messages per second, respectively. There seems to be a tendency to have a bigger
delay for higher sending rates.

Excluding the latency obtained for a small sized message with rate of 100 messages per second,
results from both experiments seem very similar when comparing small versus big sized messages.
There seems to be a tendency to have a similar latency when messages have small or big message
size.

Concerning the packets lost, there were no packets lost for all experiments.

6.3 Scenario 3: Messages with variable size - latency vs
message size

In this experiment the same approach of scenario 2 was used. To evaluate the impact the message
size, the same tests made for MQTT in scenario 1 are going to be repeated, but a variable message
size (between 100 B and 1000 B) was used. The results from this experiment were compared
with the results obtained in scenario 1. Figure 6.6 shows the comparison made between both
experiments results obtained for each rate, concerning the latency and packet loss.

Figure 6.5: MQTT Small vs Big message la-
tency

Figure 6.6: MQTT Small vs Big message
packets lost

In terms of latency, the values obtained for rates of 1, 10 and 100 messages per second are
1079 ms, 1760 ms and 2019 ms, respectively. These values seem to be similar to the values
obtained in scenario 1, except for the results using rate of 100 messages per second.

Concerning packet loss, 21,5 %, 22,27 % and 86,6 % of packets were lost for rate of 1, 10 and
100 of messages per second, respectively. Using messages with variable size, we found out that
the system has a big struggle handling the requests. Higher rates originate higher the number of
packets lost.

6.4 Scenario 4: fail recovery (node suddenly unavailable)
In this experiment we had a Producer sending data with MQTT to a Receiver for 20 minutes. When
the timeline reached half the test (10 minutes), a node was manually ”crashed” (forced crashed)
by turning off one of the slave nodes, in this case the Mosquitto IN service goes down, so that
we could see data stop being received. The expected behaviour was that kubernetes would listen
to the heartbeats of the node and understand it had crashed. After that, kubernetes should wait
about five minutes before evicting the pods in the node and reschedule them to another available
node. Unfortunately, we found out that there is a bug concerning Daemon Sets in Kubernetes,
that leads to a misbehave of the Node Controller. The Node Controller is responsible for evicting
the pods out of the nodes that crash, but as we understood, it doesn’t deal well with Daemon Sets
unless the cluster is on the cloud. ”Mosquitto In” doesn’t use Daemon Sets itself, but since we
use bare metal kubernetes cluster, to be able to communicate externally metalLB is used to give
external ip addresses to services, and metalLB uses Daemon Sets.

This way the actual behaviour was the node status becoming ”NotReady” but the pods were
still running as if the node was alive. To bypass this problem a script called node monitor was
built. This script checks all node’s status, if it finds a status ”NotReady” first it checks for how
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long it has been in that status. If the node has been ”NotReady” for more then six minutes, the
script enforces an eviction of the pods in that node. The result is an instant rescheduling of the
pods and the comeback of the service.

Figure 6.7 shows the packets received on the log file, where it’s visible that packets were being
received until around the packet number 350. After that, for a while no message arrived, this
is due to the fact that the node monitor hasn’t yet recognized the node as unfeasible (because
kubernetes takes some time to recognize the node as ”NotReady” and that time is added to the
six minutes monitor waits). The next message received is around the message number 400 and
from then on the messages are received again. This shows us that the node has gone down (in our
case intentionally), its status became ”NotReady” and the Monitor took action to evict the nodes
and bringing the service back up.

In figure 6.7 the number 0 represents messages that have not arrived and the number 1
represents the messages that have arrived. Meaning that from number 357 until 419 all messages
were lost on a total of 1062 messages sent. This totals a number of 62 packets lost from the
moment the node crashed until the pods started running on a new node.

Figure 6.7: #Packets Received

6.5 Scenario 5: low vs high throughput
To evaluate the system behaviour on high vs low throughput we had a Producer sending data to
the Receiver using MQTT protocol and measured the CPU and RAM levels of all slave nodes.
After this, the same experiment was repeated, but with 2 different virtual machines sending data.
Each machine was responsible to run 5 Producers in parallel, having in total 10 Producers sending
data to the system.

Figures 6.8, 6.9 and 6.10 show the results of this experiment in terms of CPU and RAM usage
levels. These figures show that for all slaves there is no much difference in CPU level from having
a single Producer sending data or having ten, hence having low vs high throughput has no impact
on the system.

Figure 6.8: Slave 1 - CPU level - 1 Producer vs 10 Producers
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Figure 6.9: Slave 2 - CPU level - 1 Producer vs 10 Producers

Figure 6.10: Slave 3 - CPU level - 1 Producer vs 10 Producers

In terms of RAM, the same is not true. We found out that the usage of RAM increases in
all slave nodes during the experiment. Hence, to determine if the throughput has impact on the
system, we decided to compare the impact of one producer with the impact of 10 producers.
Although, for tests with only one producer the starting point of RAM usage was around 1900 MB,
and for 10 producers was around 1400 MB. After searching the logs for an explanation we found
out that the buffer/cache was higher for tests with 10 Producers, which means that in the first
test each slave saved information in cache. Looking at the figures 6.11, 6.12 and 6.13 we can
see an orange line representing the free space, a blue line representing the memory used and a
grey line representing the cache. The figures show that RAM level increases for both tests (low
and high throughput), but not which test had the highest increment of memory usage. It can
be identified in Tables 6.1 and 6.2, which represent the maximum and minimum values for RAM
usage. With these tables we are able to compare the growth of memory usage in each slave node.

Figure 6.11: Slave 1 - CPU level - 1 vs 10 Producers
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Figure 6.12: Slave 2 - CPU level - 1 vs 10 Producers

Figure 6.13: Slave 3 - CPU level - 1 vs 10 Producers

Node vs
RAM (MB) Slave1 Slave2 Slave3

Máx Used 2108 2233 2143
Min Used 1841 2071 1964
Increased 267 162 179

Table 6.1: Increment of RAM usage on tests with one Producer

Node vs
RAM (MB) Slave1 Slave2 Slave3

Máx Used 1839 1558 1499
Min Used 1431 1455 1479
Increment 408 103 20

Table 6.2: Increment of RAM usage on tests with ten Producers

From tables 6.1 and 6.2 we can see the growth of the memory usage concerning the throughput.
It is possible to see that on both cases (low and high throughput) the slave 1 has a higher increase
of RAM used than the other slaves. For low throughput slave 1 has the usage of RAM increased
by 267 MB, while slave 2 and 3 have 162 MB and 179 MB respectively. For high throughput
slave 1 has the usage of RAM increased by 408 MB, while slave 2 and 3 have 103 MB and 20 MB
respectively. The reason for this behaviour is that the pod that handled the requests was running
on the slave node 1, hence, needed more memory to work than the other slaves.

Based on this experiment we conclude that throughput does indeed have an impact on the
system behaviour, but it is mainly directed to the usage of RAM and only affects the nodes that
are directly connected to the work that is being done (in this case, Mosquitto In).
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6.6 Scenario 6: Time spent to add a node on a cluster with
few vs many nodes

The starting point for this experiment consists on a cluster with one master and one slave nodes.
From here on forward we added nodes to the cluster checking the time it took to become ”Ready”.

A script named ”add node time.sh” is used along with the function timeout of the linux library
in order to stop the program after a specific time. The script runs a while true that calls the
command ”kubectl get nodes” and saves the state of a desired node on a pre-defined file along with
the timestamp.

The timestamp was calculated using the command strftime of the Linux distribution. Running
this script before adding the node to the cluster and stopping it after the node is ready outputs a
file containing the first moment that the node was recognized but wasn’t available on the cluster,
status: ”Not Ready”, and also the moment when that status changed to ”Ready”.

With both those timestamps we were able to determine the time needed to add one single node
to the kubernetes cluster having already 1, 3, 5, 8 and 10 nodes.

The results show that for any of these clusters the amount of time is very similar, around 30
to 40 seconds. There is no sign of a tendency, maybe the tests were few and with a cluster with
more nodes would actually have an impact but with a cluster containing from one to ten nodes
the latency is very similar. The results are shown in figure 6.14. From this figure is clear that the
time spent doesn’t follow the number of nodes that are added (there is no direct relation in terms
of time consuming).

Figure 6.14: #Nodes in the cluster vs time spent to add another node

6.7 Scenario 7: Scaling delay
This experiment started on a cluster with a master and three slave nodes. Firstly, we created a
deploy of the system without replication of any component.

In order to evaluate how much time each scaling would take, a program called ”scale time.sh”
was used along with the Linux command ”timeout” in order to run the script for a specific amount
of time, similar to ”add node time.sh”.

This script runs a while true that calls the ”kubectl get replicasets -n kafka” command which
shows information (namely, the Desired number of pods, Current existing pods and those that are
Ready under a Replicaset) in the namespace kafka.

This information is saved in a given file and is used to find the first time that the cluster finds
out about the need to scale the chosen pod (Desired) and also to find the first time that the number
of needed pods are all ready to be used in the cluster (Ready).

For our experiments we picked Mosquitto in as the pod subject and started by scaling it with
the command:

$ kubectl scale deployment mosquitto-deployment-in --replicas=10 -n kafka

A scale of 20, 30, 40, 50, 60 and 70 pods were performed. All went fine until the scale for 70
pods. Apparently, our cluster can’t handle scaling 70 pods, the result of trying is a crash of one or
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more nodes. Until the 70 pod scaling the results obtained show that in fact the higher the number
of pods we tried to scale is too much and requires longer processing times from kubernetes.

Also, we learned that if the cluster doesn’t have slaves with enough resources to handle such
number, then nodes may crash, leading to a need to scale down the pods or increase the cluster
resources. These results are illustrated in Figure 6.15.

Figure 6.15: #Instances vs time spent scaling them

6.8 Scenario 8: Replication Factor

In this scenario we had an MQTT Producer sending data to the system and an MQTT Receiver
subscribing that data. The experiment comprised tests with replication factor 1, 3, 7, 10 and 15.

The initial system is composed by 3 slave nodes that comprises 3 Kafka pods. In this experiment
this setup was changed to support a replication factor bigger than 3. To do this we scaled the
Kafka pods with the command:

$ kubectl scale statefulsets kafka --replicas=<#replicas> -n kafka

Tests with replication factor (#replicas) 1, 3 and 7 had an average latency of 1644 ms, 1541 ms
and 1545 ms, respectively. In terms of packet loss, there were no packets lost in any of the tests.
These results can be seen in figure 6.16.

Figure 6.16: Replication factor vs Avg. latency

Despite the difference of 100 ms in the test with replication factor 1, we assume that this is
related to the lack of parallelism that is offered by the Kafka replication feature. In this case
producers and consumers are using the same replica to write and read data, which may introduce
some extra latency.

Hence we concluded that replication factor has some impact on write and read delays. The
performance of the system improves when many replicas are used. Since many producers and
consumers may interact with the system, at the same time, it is important to distribute the load
of writing or reading by different replicas, which has impact on the behaviour of the system.

In this experiment we noticed that replication factors of 10 and 15 are not supported since slave
nodes are constantly crashed. In our opinion this is due to the lack of resources, mainly RAM
memory that is allocated to each slave node.
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6.9 Scenario 9: Number of Partitions
In order to study if the behaviour of the system is influenced by the number of partitions in a
topic, tests with MQTT Producer sending data and MQTT Receiver subscribing that data were
performed with topics configured with 1, 50 and 100 partitions. The Controller component was
used to change the number of partitions of the topic for each test.

Figures 6.17 and 6.18 show the average latency and the packet loss that result from this ex-
periment. The test with a single partition had an average latency of 1531 ms without losses. This
value is similar (around 1548 ms) for 50 partitions, while it takes 27253 ms when 100 partitions
are considered. In terms of packet losses, the system showed no losses for 1 and 50 partitions.
Concerning the test with 100 partitions 1,42% of the packets were lost. In this case the system
shown high level of CPU and RAM usage, originating the crash of the node after one and half
hours.

Figure 6.17: Number of Partitions vs Avg.
latency

Figure 6.18: Number of Partitions vs Packet
Loss

This test allows to conclude that there is a limitation on our system from which the number
of partitions within a topic is going to be troublesome. In the current version of the system that
number is between 50 and 100 partitions. Other configurations must be tested in order to evaluate
the capability to handle more partitions.
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7: Conclusion

Summary

With this work we have gained a considerable amount of knowledge relative to IoT systems,
namely, how IoT started to appear, what the community is working on, which tools are being
studied and built in order to have systems fulfilling the most possible requirements defined in 3.2.

We had the opportunity to study many technologies such as the communication Technologies,
the patterns and protocols that are used in the communication between devices and IoT platforms.

Additionally, we learned how systems work in the context of resource constrained environ-
ments, where multiple failures may happen due to many different reasons, that vary from simple
programming bugs to bad design of the system as a whole.

In IoT systems it is very important to be prepared to accommodate new technologies and
devices that raise quickly. So it is important to have flexible and adaptable architectures. In this
context, Cloud computing, micro-services, Kubernetes and Kafka are frameworks that help to
create good solutions. For example, with the use of the cloud infrastructure it is possible to obtain
more resources that allow, for instance, to use kubernetes to deal with large number of devices
from a single cluster. It is important to manage devices easily at a single point. Additionally, it
is important to deal with large amount of data. For that, Kafka offers a good solution for data
persistence, fault tolerance and concurrent readings (high performance).

In this thesis we proposed, developed and evaluated an architecture designed for IoT applica-
tions where a large number of devices, producing data and/or consuming it, may be connected.
The proposed architecture is designed to run in a cluster fashion, where kubernetes and kafka
brokers are used to offer high degree of reliability and performance. Moreover, the architecture
is supported by micro-services that offer capabilities to be easily scaled and updated. This
structure of micro-services is also important to add or remove data protocols that are used in the
whole system. As demonstrated in the experimental section, the architecture is able to deal with
different data protocols (e.g., MQTT, CoAP and REST), it is resilient, ensures data availability,
is scalable and offer mechanisms to deal with faults (fault-tolerance mechanisms). In order to
simplify the use of the architecture, device and data management mechanisms were also included
in its design.

Accomplishments

Taking into account the final version of the architecture and the requirements specified for
this work, the major requirements were achieved. However, we do not deal with security aspects.
This is an important requirement that should be addressed in the future work. In terms of
data transmission, Robust connectivity was defined as requirement for this thesis. We do not
address any issue related with data protocols, we just use them based on the default configurations.

Problems

The first problem that we found was related with the transport layer used by CoAP protocol.
The CoAP protocol offers support to be used with UDP or TCP transport layer. However, in our
solution, due to the use of a basic load balancer (MetalLB), the architecture is limited to the use
of TCP protocol.

The second problem that we found was related with kubernetes pods eviction. According to
the specification of kubernetes is should be done automatically. However, we noticed that this is
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not true for our implementation, and we were forced to implement a solution to avoid this problem
and redistribute the pods by other nodes automatically. A new process was needed to monitor the
nodes and take care the needed actions.

Finally, testing conditions were not ideal. The experimental setup was composed by
four slave nodes with 2600 MB RAM, and therefore some experimental conditions were limited
to this setup, which may be insufficient to demonstrate all capabilities of the proposed architecture.

Future Work

As future work we would point some directions that we do not have time to explore:

• Evaluate the performance of the system when many data topics are used simultaneously;

• Develop a strategy to deal with UDP protocol, at the transport layer, when CoAP is used in
the system;

• Implementation of more micro-services to deal with other data communication protocols,
such as AMQP or OPC-UA;

• Explore the possibility to integrate the LoRaWAN server inside the cluster;

• Study and implement mechanisms to automatically add or remove nodes from the cluster,
in run-time, to avoid unnecessary resources when they are not needed, keeping the system
energy efficient;

• Study and explore debugging tools and mechanisms to improve the system administration,
allowing easy debugging and reconfiguration;

• Testing the whole architecture in a cluster environment with more resources and different
loads.
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Appendix A: Kubernetes Installation

To install a Kubernetes cluster some commands must be applied. These commands are applied
manually or using scripts that were build to automate the installation.

The manual installation is presented below as a simple guide to help the user or ad-
ministrator to replicate the work done in this thesis. In order to make it simple, a set of
scripts were created. One script creates and configures a master node and the other script
allows to configure the slave nodes that will integrate the cluster. These scripts can be
found in https://github.com/jsoares11/MasterThesisExperiences with the names ”kuber-
netes installation master.sh” and ”kubernetes installation slave.sh”.

Installation and configuration based on scripts:

To install Kubernetes cluster through the scripts, firstly choose the node type (master or slave),
download the corresponding file from the repository and give it permissions to run on the machine.
The execution permissions can be changed through the terminal by using the following command:

Master node: $ sudo chmod +x kubernetes_installation_master.sh
Slave node: $ sudo chmod +x kubernetes_installation_slave.sh

After running the master script, a kubernetes cluster containing only the master node is created
and a token is generated as output (besides other information). This token must be saved because
it will be used together with join function which allows slaves to join to the cluster.

In order to add nodes to the cluster, the script ”kubernetes installation slave.sh” must be
executed in all slave nodes. This script receives as an argument the name of the slave node within
the cluster (this will replace the hostname of the machine). The following commands are used to
configure the master and slave nodes:

$ ./kubernetes_installation_master.sh
$ ./kubernetes_installation_slave .sh slave1

When a slave wants to join to the cluster, it must run the join command where the arguments
must be the ones retrieved by the execution of the ”kubernetes installation master.sh” script. The
join command must be similar to the following one, where ¡address:port¿, ¡token¿ and ¡generated
value¿ are filled with the information retrieved by the script.

$ kubeadm join <address:port> --token <token> --discovery-token-ca-cert
-hashsha256:<generated value>

The kubernetes also includes a Dashboard. It is a feature that is not enabled by default.
However, it can be turned on by following the manual installation (step 7), described next.
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Installing Kubernetes manually:

Step 1: Docker Installation

The first tool needed to install Kubernetes is the Docker. Before installing Docker, an update
must be done to keep the system updated in the last version and to avoid missing dependencies
that might be needed later. After this, the Docker may be installed and enabled. This must be
done in all nodes that will be part of the cluster. The following commands are used to do the
Docker installation:

$ sudo apt-get update
$ sudo apt install docker.io
$ sudo systemctl enable docker

In the process of software installation a ”Y/N” option might be shown, make sure to hit
”Y” followed by ”Enter” to proceed with the installation. The command ”docker –version” can
be used to verify if the docker installation ran without any error. If the installation finished
successfully, the docker version should be printed.

Step 2: Download Signing Key

After Docker installation, a signing key must be obtained, again for all the nodes. For this, the
curl command must be used, which is usually already installed in the Ubuntu 18.04 distribution.
Otherwise, a previous installation of the curl command is necessary and only then the download
of the key is possible:

$ sudo apt install curl
$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo

apt-key add

Step 3: Download Kubernetes Repository

After getting the Kubernetes signing key on all the nodes, we need to add the Kubernetes
repository in our nodes and install the Kubeadm tool. This tool allows users to easily create a
simple Kubernetes cluster and/or install other necessary tools. After installing kubeadm check the
installation version to make sure that the installation was successful (optional). The following
commands can be used to do that:

$ sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial
main"

$ sudo apt install kubeadm
$ sudo kubeadm version

Step 4: Disable Swapping

The swap memory should also be disabled on all the nodes because kubernetes doesn’t behave
properly in systems with swap memory enabled. To enforce swap memory to be permanently
disabled, the swapoff command must be used and a specific file must be edited (”/etc/fstab”, in
Ubuntu 18.04 distribution). In this file, the ”swap” field must be deleted or commented (last line
of the file). Otherwise swap memory will be enabled again after node restart.

$ sudo swapoff -a
$ sudo nano /etc/fstab

Step 5: Changing hostnames

Suggestive hostnames should be given to all the nodes composing the cluster. On the master
node consider using, for example, ”master-node” and for the slaves ”slave-node-1, ”slave-node-2
and so on for all the slave nodes in the system. The following commands are used to perform these
actions:
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$ sudo hostnamectl set-hostname master-node
$ sudo hostnamectl set-hostname slave-node-1

Step 6: Run Kubernetes and Join slave nodes

The Kubernetes cluster may now be created in the master node. To do this, run the following
command on the master node:

$ sudo kubeadm init --pod-network-cidr=10.244.0.0/16

It is important to notice that kubernetes will trow some warnings related to the number of
CPUS, when trying to install Kubernetes on machines with less than two CPUs. It is possible to
proceed the installation by ignoring the warnings, but this is not recommended since the system
will crash by lack of resources when synchronization and node analysis are performed. To ignore
the warnings use the option -ignore-preflight-errors=NumCPU as shown below. To avoid this
problem, it is recommended that the devices used in the Kubernetes cluster have, at least, two
CPUs.

sudo kubeadm init --pod-network-cidr=10.244.0.0/16 kubectl
--ignore-preflight-errors=NumCPU

This command will output four other commands. The first three commands are used to create a
directory named ”.kube” where a configuration file, named ”config”, is created. The last command
in the output should be saved because it is going to be used to join slave nodes into the cluster.

$ mkdir -p ˜/.kube
$ sudo cp -i /etc/kubernetes/admin.conf ˜/.kube/config
$ sudo chown $(id -u):$(id -g) ˜/.kube/config
$ kubeadm join <address:port> --token <token> --discovery-token-ca-cert-hash

sha256:<generated value>

Before executing the last command in all slave nodes, a pod network acting as an intermediate
between the nodes and the network should be deployed. To do this, use the apply command:

$ sudo kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/
master/Documentation/kube-flannel.yml

After running the join command on all slave nodes, the created cluster can be verified in the
master node through the following command:

$ kubectl get nodes

Step 7(optional): Enabling Kubernetes Dashboard

It is possible to do everything on Kubernetes through the terminal, but there is also a Dashboard
available to be used. The Dashboard allows to perform the same actions on the cluster as the
terminal however in a more pleasant way.

The Dashboard isn’t enabled by default, to enable it, some steps are needed. First, the deploy-
ment of the Dashboard must be done, to do that a YAML file available on the Kubernetes GitHub
1 must be applied. After doing this, access to the Dashboard is possible, locally, but to sign-in a
token is needed.

The token is used by kubernetes to protect the access to the Dashboard. To get this token, a
Service Account must be created by applying another YAML file available on our GitHub repository
2.

1https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
2https://github.com/jsoares11/MasterThesisExperiences/blob/main/k8s-dashboard-admin-user.yaml
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After applying it, the token will be created. To access the token the command kubectl must be
used with the option describe to describe the admin-user and check the existing secrets.

After finding the secret, we are now able to use the describe option again and check what
token it has. After accessing the token, it may be used in the dashboard to login. The code to all
of these steps is described below:

Deploy the Dashboard:

$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/
v2.0.1/aio/deploy/recommended.yaml

Run the Dashboard:

$ kubectl proxy

Access the Dashboard locally:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:
kubernetes-dashboard:/proxy/

Sign-in to the Dashboard:

Create Service Account

$ kubectl apply -f https://gist.githubusercontent.com/chukaofili/
9e94d966e73566eba5abdca7ccb067e6/raw/
0f17cd37d2932fb4c3a2e7f4434d08bc64432090/k8s-dashboard-admin-user.yaml

or

$ kubectl apply -f https://github.com/jsoares11/MasterThesisExperiences/
blob/main/k8s-dashboard-admin-user.yaml}

Find the token:

$ kubectl get sa admin-user -n kube-system
$ kubectl describe sa admin-user -n kube-system
$ kubectl describe secret admin-user-token-<generatedValue> -n kube-system
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