
Research Article
A Dual Key-Based Activation Scheme for Secure LoRaWAN

Jaehyu Kim and JooSeok Song

Yonsei University, 3rd Engineering Building C505, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

Correspondence should be addressed to Jaehyu Kim; jaehyu kim@yonsei.ac.kr

Received 28 April 2017; Accepted 12 October 2017; Published 6 November 2017

Academic Editor: Haiyu Huang

Copyright © 2017 Jaehyu Kim and JooSeok Song. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the advent of the Internet of Things (IoT) era, we are experiencing rapid technological progress. Billions of devices are
connected to each other, and our homes, cities, hospitals, and schools are getting smarter and smarter. However, to realize
the IoT, several challenging issues such as connecting resource-constrained devices to the Internet must be resolved. Recently
introduced Low Power Wide Area Network (LPWAN) technologies have been devised to resolve this issue. Among many LPWAN
candidates, the LongRange (LoRa) is one of themost promising technologies.TheLongRangeWideAreaNetwork (LoRaWAN) is a
communication protocol for LoRa that provides basic security mechanisms. However, some security loopholes exist in LoRaWAN’s
key update and session key generation. In this paper, we propose a dual key-based activation scheme for LoRaWAN. It resolves the
problem of key updates not being fully supported. In addition, our scheme facilitates each layer in generating its own session key
directly, which ensures the independence of all layers. Real-world experimental results compared with the original scheme show
that the proposed scheme is totally feasible in terms of delay and battery consumption.

1. Introduction

Today, we are living in the Internet of Things (IoT) era
where billions of IoT devices are deployed all over the world.
According to a report from Ericsson [1], the number of
connected IoT devices will reach 28 billion by 2021. These
devices produce a massive amount of data and transfer the
information to cloud servers, which can be accessed anytime
and anywhere. Revolutionary changes are brought into our
lives.

Many approaches have been taken to realize various types
of communication used in the IoT environment. In the last
few years, short-range communication technologies, such
as Bluetooth, ZigBee, and Z-Wave, have been popular for
utilizing resource-constrained IoT devices because of their
low energy consumption [2]. However, their short commu-
nication range makes them difficult to use for important IoT
applications that require a wide communication range, such
as smart city [3]. Although cellular networks provide a wide
coverage area, they are also not fully suitable for the IoT
environment because of its complexity and cost [4]. To com-
plement the shortcomings of these conventional approaches,

Low Power Wide Area Networks (LPWAN) technologies
have recently been developed.They are devised to enable long
range communication with low battery consumption. With
these technologies, even resource-constrained small sensors
or actuators can send messages up to tens of kilometers and
survive for several years even without a power source [5].

Among the recently proposed LPWANtechnologies, such
as SigFox, LoRa,Weightless, Ingenu, and Telensa, LoRa is one
of themost competitive technologies because of its low power
consumption and low cost design [6]. LoRa is a physical
layer protocol that enables low power and long-distance
communication up to 15 km using chirp spreading spectrum
modulation [4]. LoRaWAN is an upper layer protocol based
on LoRa that defines the structure and operation of the
entire system [7]. LoRaWAN’s asynchronous communication
scheme enables much longer battery lifetime by reducing the
overhead caused by synchronization [5].

While many LPWAN technologies are primarily focused
on issues such as battery consumption and communication
range, security is also an important issue. In the IoT environ-
ment, the importance of security becomes much greater than
ever before.The IoT can be a big threat to privacy because it is

Hindawi
Wireless Communications and Mobile Computing
Volume 2017, Article ID 6590713, 12 pages
https://doi.org/10.1155/2017/6590713

https://doi.org/10.1155/2017/6590713

2 Wireless Communications and Mobile Computing

closely related to a user’s real life. Moreover, the damage from
security incidents can be unprecedentedly enormous due to
the large scale and connectivity of the IoT environment. To
prepare for this situation, previous studies on IoT security [8–
10] have addressed some important factors, one of which is
key management. According to the research, cryptographic
keys can be leaked through various attacks, considering that
IoT sensing devices are usually deployed where the attacker
can access them. This can be applied to LoRaWAN as well.
LoRaWAN specifications [7] emphasize that the key must be
uniquely managed to minimize the damage caused by key
leakage. This means that when the key is extracted from an
end node, it should not affect the other nodes. However, it
is not enough and problems still occur with key updates.
Although LoRaWAN uses cryptographic keys for several
security mechanisms, such as authentication, encryption,
and integrity checking, the current LoRaWAN specifications
provide update of these keys partially. In some cases, an end
node may have to keep using certain keys without changing
them during its lifetime. Thus, at some point in the future, if
the key is leaked, all the data that the end node has transferred
may be passed on to the attacker. To prepare for the attack,
keys must be updated periodically, as pointed out in many
previous studies [11–14]. How the session key is created in
the current LoRaWAN is also problematic. As depicted in
Figure 1, each session key is used in a different layer. Thus,
the current way in which both session keys are only created
by a network server can violate the independence between
layers. According to [15], this system could lead to a conflict
of interest between the network server and the application
server.

In this paper, we propose a dual key-based activation
scheme with a new key called a network key (NwkKey).
Our scheme resolves the problem that key updates are not
available in some cases. We also redefine the operation of
each server in the key generation process. In our scheme, a
network server and an application server generate a network
session key (Nwk SKey) and an application session key
(App SKey), respectively, so that each layer works completely
independently. Moreover, our scheme does not require any
additional entities such as a trusted third party. Finally, we
demonstrate the feasibility of our scheme through a real-
world test. To the best of our knowledge, this is the first
attempt to improve the security of LoRaWAN activation.

The rest of this paper is organized as follows. Section 2
provides related works. Section 3 is about LoRaWAN archi-
tecture. In Section 4, we provide basic information about
LoRaWAN end node activation. In Section 5, a detailed
explanation of our proposed scheme is provided. Section 6 is
a security analysis of our scheme. In Section 7, we evaluate
the performance of our scheme. Section 8 provides our
conclusion about this research.

2. Related Works

A security report [16] written by Miller of MWR Infos-
ecurity provides LoRaWAN’s possible vulnerabilities and
countermeasures as well as basic description of LoRaWAN
security. According to the report, all LoRaWAN entities

should be prepared for vulnerabilities that can occur during
keymanagement, communications, and Internet connection.
Especially in case of an end node, the report emphasizes that
even if cryptographic keys are leaked through side channel
attacks, this should not affect other parts of the system.

In [15], Girard of Gemalto pointed out a problem
with LoRaWAN’s key provisioning method. In the current
LoRaWAN, the network server generates both session keys.
This means that the network server generates even the
application session key to be used by the application server.
According to [15], this could lead to a conflict of interest
between the network server and the application server. As
a solution to this problem, the author proposes a new
LoRaWAN network structure with the trusted third party.

In [17], Zulian analyzed the DevNonce of LoRaWAN.The
DevNonce is a random number generated by the end node.
It is used for replay attack prevention as well as session key
generation. Replay attack prevention works in such a way
that the network server determines an invalid message by
checking whether previously used DevNonce is contained
or not. The author mathematically analyzed the method and
determined that the end node can be unavailable with a
certain probability under the current DevNonce system. To
alleviate this problem, the author proposed increasing the size
of the DevNonce field to 24 or 32 bits.

Naoui et al. proposed a new security architecture for
LoRaWAN [18]. Their scheme uses the concept of a proxy
node, which performs several other functions, including the
basic function of the conventional LoRaWAN gateway. In
particular, proxy nodes evaluate each other’s trustworthiness
to create a table and forward it to the end node.The end node
can then communicate through the proxy node that has the
highest trust value.

The current LoRaWAN has problems with key update
and session key generation. In the case of the key update,
it has not been addressed in any LoRaWAN security study,
despite its seriousness. The solution proposed by [15] to
solve the problem of session key generation also has some
disadvantages. Because of the newly added trusted third
party, the whole join procedure becomes more complex and
communication overhead is increased. It is also difficult to be
applied to the existing LoRaWAN network already deployed
without the trusted third party. In this paper, we propose a
dual key-based activation scheme that fully supports the key
update and resolves the problem of session key generation
without any additional entities.

3. LoRaWAN Architecture

In this section, we briefly describe the architecture of the
LoRaWAN network and its entities. We also provide a
description of the protocol architecture and message format
that are used in the LoRaWAN network environment.

3.1. LoRaWAN Network Architecture. As shown in Figure 1,
the LoRaWAN network uses a star topology in which an
end node can send messages to multiple gateways that
communicate with the network server. Since an end node
does not belong to a specific gateway, more than one gateway

Wireless Communications and Mobile Computing 3

Secured by network session key

Secured by application session key

End node Network
server

Application
serverGateway

Application layer communication

MAC layer communication

IP connectionsIP connections

LoRa connections

Figure 1: LoRaWAN network structure.

LoRa
physical
layer

LoRaWAN
mac
layer

LoRa
physical
layer

LoRaWAN
application
layer

Conventional
physical
layer

Conventional
physical
layer

End node

Network
server

Application
server

LoRaWAN
mac
layer

Conventional
physical
layer

LoRaWAN
application
layer

Gateway

Figure 2: LoRaWAN protocol architecture.

can receive a message sent by an end node [19]. LoRa radio
technology is used in communications between an end node
and the gateways. The gateways and network server are
connected via standard IP connections. The following is a
brief description of the entities defined in the LoRaWAN
specifications [7].

(i) End node: a LoRaWAN end node is typically used to
send small amounts of data at low frequencies over
long distances. It can be utilized in various fields such
as smart city, smart building, factory automation,
farm automation, and logistics.

(ii) Gateway: a LoRaWAN gateway receives packets from
the end node via a LoRa radio link. It then forwards
them to the network server through the IP connec-
tion.

(iii) Network server: the LoRaWAN network server man-
ages the entire network. When it receives packets, it

removes the redundancy of packets and performs a
security check and then determines the most suitable
gateway to send back an acknowledgement message.

3.2. LoRaWAN Protocol Architecture. Figure 2 shows the
protocol architecture of LoRaWAN. As shown in this figure,
LoRaWAN’s protocol consists of aMAC layer and an applica-
tion layer, and it operates based on the LoRa physical layer.
The packet format is displayed in Figure 3. The maximum
payload lengths 𝑀 and 𝑁 vary with the data rate. It is
specified in [20].

(i) MAC layer: the packet processed in the MAC layer
consists of a MACHeader (MHDR), a MAC Payload,
and a Message Integrity Code (MIC). In a join proce-
dure for end node activation, theMACPayload can be
replaced by join request or join accept messages. The
entireMACHeader andMACPayload portion is used
to compute theMIC value with a network session key

4 Wireless Communications and Mobile Computing

MHDR MAC payload MIC

FHDR
7~22 bytes

FPort FRM payload

MAC
layer

Application
layer

Encrypted by AppSKey

Calculated with NwkSKey

N bytes

4 bytesM bytes

1 byte

1 byte

Figure 3: LoRaWAN packet format.

Session key generation(v)

Network
server

Application
server

Join request with MIC

[AppEUI | |DevEUI DevNonce]
(i)

End node authentication
Session key generation
(Nwk_SKey, App_SKey)

(Nwk_SKey, App_SKey)

(ii)

Join accept with MIC

||E(AppKey, [AppNonce NetID
| | |DevAddr DLSetting RxDelay CFList])

(iii)

App_SKey(iv) Transfer

End node

AppKeyAppKey

Figure 4: LoRaWAN join procedure.

(Nwk SKey). The MIC value is used to prevent the
forgery of messages and authenticate the end node.

(ii) Application layer: the MAC Payload handled by the
application layer consists of a FRM Header (FHDR),
an FPort, and a FRM Payload. The FPort value is
determined depending on the application type. The
FRM Payload value is encrypted with an application
session key (App SKey). This encryption is based on
the AES 128 algorithm.

4. LoRaWAN End Node Activation

When a new end node is added to a LoRa network, it should
go through an activation process. Through the activation

process, both session keys are shared between the end node
and the network server. Currently, LoRaWAN provides two
types of activation methods. One is over-the-air activation
(OTAA) and the other is activation by personalization (ABP).

4.1. Over-the-Air Activation. In the OTAA mode, an end
node communicates with the network server to perform the
activation process, which is called join procedure. According
to the LoRaWAN specifications [7], the OTAA mode is used
when an end node is deployed or reset. Figure 4 shows the
LoRaWAN join procedure. A detailed explanation of each
step is as follows.

(i) Join request message: by sending a join request
message, the end node starts the join procedure.

Wireless Communications and Mobile Computing 5

DevEUI, AppEUI, and DevNonce are included in the
join request. DevEUI and AppEUI refer to the global
end node and application identifier, respectively.They
follow the IEEE EUI-64 address space format. The
DevNonce is a random number generated by the end
node. The MIC value of join request is calculated by
the following formula:

𝑐𝑚𝑎𝑐 = 𝑎𝑒𝑠128 𝑐𝑚𝑎𝑐 (𝐴𝑝𝑝𝐾𝑒𝑦,𝑀𝐻𝐷𝑅 | 𝐴𝑝𝑝𝐸𝑈𝐼 |

𝐷𝑒V𝐸𝑈𝐼 | 𝐷𝑒V𝑁𝑜𝑛𝑐𝑒)

MIC = 𝑐𝑚𝑎𝑐 [0 ⋅ ⋅ ⋅ 3] .

(1)

An application key (AppKey) is preshared between
the end node and the network server.

(ii) After the network server receives the join request, it
performs the replay attack prevention process, which
is based on the DevNonce. If the DevNonce in the
join request is previously used, the network server
determines that the message is invalid and that the
join process will fail. If the message is valid, the
network server authenticates the end node with the
MIC value. If the end node passes the authentication,
the network server generates an Nwk SKey and an
App SKey by the following formula:

𝑁𝑤𝑘 𝑆𝐾𝑒𝑦 = 𝑎𝑒𝑠128 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝐴𝑝𝑝𝐾𝑒𝑦, 0x01 |

𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒 | 𝑁𝑒𝑡𝐼𝐷 | 𝐷𝑒V𝑁𝑜𝑛𝑐𝑒 | 𝑝𝑎𝑑16)

𝐴𝑝𝑝 𝑆𝐾𝑒y = 𝑎𝑒𝑠128 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝐴𝑝𝑝𝐾𝑒𝑦, 0x02 |

𝐴𝑝𝑝𝑁𝑜𝑛𝑐𝑒 | 𝑁𝑒𝑡𝐼𝐷 | 𝐷𝑒V𝑁𝑜𝑛𝑐𝑒 | 𝑝𝑎𝑑16) .

(2)

AppNonce is a random number generated by the
network server. NetID is a 24-bit field. Its 5 LSBs are
called NwkID which is used to separate addresses of
geographically duplicated LoRa networks. The other
bits of NetID can be freely determined by the network
server.

(iii) Join accept message: a join accept message contains
AppNonce, NetID, DevAddr, DLSettings, RxDelay,
and CFList. The DevAddr is a 32-bit identifier of the
end node within the current network. The 7 MSBs of
DevAddr are referred to as the NwkID, which is also
contained in NetID. The other bits can be arbitrarily
chosen by the network server. DLSettings contains
several values related to the downlink configuration.
RxDelay is a delay between the transmission and
reception process. CFList is an optional field that is
about channel frequencies. Finally, the whole join
accept message is encrypted with the AppKey.

(iv) Transfer App SKey: since the App SKey is devised
to secure end-to-end communications between the
end node and the application server, it should be
transferred from the network server to the application
server. The LoRaWAN specification does not specify

when and how to exchange App SKey with the appli-
cation server. We thought it is an essential part and so
included it in the join procedure.

(v) After receiving the join accept message, the end node
decrypts it and generates session keys using extracted
parameters.

4.2. Activation by Personalization. ABP is the way in which
an end node can belong to a particular LoRa network without
performing a join procedure under certain circumstances. In
theABPmode, the end node does not haveDevEUI, AppEUI,
and AppKey, which are essential for join procedure. Instead,
both session keys required for LoRaWAN communications
and DevAddr are preloaded on the end node.

4.3. Problem Statement

(1) OTAAkeyupdate: in theOTAAmode, authentication
and session key agreement is performed using the
AppKey preshared between the end node and the
network server. In this process, one of the most
critical problems is that updating the AppKey is not
supported by the LoRaWAN specifications. Under the
current standard, session keys can be updated several
times, but the AppKey that is used to generate them
cannot be updated. In other words, the end node has
to use only one AppKey for a lifetime. As pointed
out in several previous IoT security studies [8–10],
we have to prepare for key leakage, which can have
various causes, such as node capture attacks and side
channel attacks.

In this respect, LoRaWAN AppKey, which cannot be
updated, can cause serious security problems. If the
AppKey is leaked by an attacker, the attacker can get
the contents of all join accept messages that have been
sent up to that point. As shown in (2), AppNonce,
NetID, and DevNonce are used to generate session
keys. Among them, the AppNonce and NetID are
contained in the join accept message. The DevNonce
can easily be obtained in the join request transmitted
without encryption. By using these parameters, the
attacker can restore all the session keys used in the
past. Thus, the attacker can steal all the data that the
target node had previously transmitted. From this
perspective, many previous studies on key manage-
ment [11–13] and NIST [14] have emphasized that the
key must be updated periodically.

(2) ABP key update: in the ABP mode, the AppKey is
not preloaded on the end node. Since the AppKey
is essential to the join procedure, the end node
cannot perform it, which means that there is no
way of updating session keys. Therefore, in the ABP
mode, the end node must use the same session key
throughout its lifetime. This can also pose a similar
security threat to the end node, as discussed in (1).
If the attacker successfully steals these keys, he or she
can get all the data sent from the target node that were

6 Wireless Communications and Mobile Computing

Session key generation(vi)

NwkKey

End node Network
server

Application
server

(i)

End node authentication
Session key generation
(Nwk_SKey)

(ii)

Join accept with MIC
E(NwkKey, [NwkNonce | NetID |

(iii)

AppKey
Join request with MIC

Session key generation
(App_SKey)

Transfer AppNonce
(iv)

(v)

E(AppKey, [AppNonce])

E(AppKey, AppNonce)])

AppKeyNwkKey

(Nwk_SKey, App_SKey)

[NetID DevNonce]|

[AppEUI | |DevEUI DevNonce]

| | |DevAddr DLSetting RxDelay CFList |

Figure 5: Dual key join procedure.

protected by the session keys. This is why supporting
the key update in theABPmode is an important issue.

(3) Session key generation: under the current LoRaWAN
session key generation system, the network server
generates all the session keys alone. Since the
Nwk SKey and the App SKey are used in different
layers, this system does not guarantee independence
between layers. According to [15], there is even the
risk that the network server with the App SKey
can intercept the application layer data. Thus, we
need to construct a new system in which each layer
independently generates its own session key.

5. Dual Key-Based End Node Activation

5.1. Dual Key-Based Over-the-Air Activation. Compared to
the original join procedure, the notable feature of our scheme
is the existence of the NwkKey. The NwkKey has the same
properties as the AppKey. They are of the same length and
should not be deduced from the public information of the end
node. They should not also be shared with other end nodes.
In our scheme, the NwkKey and the AppKey are preloaded
together on the end node. The NwkKey is shared with the
network server, and the AppKey is with the application
server. During the proposed join procedure, Nwk SKey and
App SKey are generated from the NwkKey and the AppKey,
respectively.

Our scheme works in two modes, initial and noninitial.

(1) Initial Join Procedure. The initial mode is applied when
an end node performs the join procedure for the first time.

Figure 5 represents the proposed initial join procedure, and
the details are as follows.

(i) Join request: the join request message is created in
the samemanner as the original scheme.Themessage
includes AppEUI, DevEUI, and DevNonce. The MIC
is also calculated in the same way, except that the
NwkKey is used instead of theAppKey. In our scheme,
preshared key between the end node and the network
server is not the AppKey but the NwkKey.

𝑐𝑚𝑎𝑐 = 𝑎𝑒𝑠128 𝑐𝑚𝑎𝑐 (NwkKey,𝑀𝐻𝐷𝑅 | 𝐴𝑝𝑝𝐸𝑈𝐼 |

𝐷𝑒V𝐸𝑈𝐼 | 𝐷𝑒V𝑁𝑜𝑛𝑐𝑒)

MIC = 𝑐𝑚𝑎𝑐 [0 ⋅ ⋅ ⋅ 3] .

(3)

(ii) On receipt of the join request, the network server
authenticates the end node by recalculating the MIC
value. Since the end node and the network server
share theNwkKey, the end node can be authenticated.
If the message is valid, the network server generates
the Nwk SKey with the NwkKey and transfers NetID
and DevNonce to the application server.

𝑁𝑤𝑘 𝑆𝐾𝑒𝑦 = 𝑎𝑒𝑠128 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (NwkKey, 0x01 |

NwkNonce | 𝑁𝑒𝑡𝐼𝐷 | 𝐷𝑒V𝑁𝑜𝑛𝑐𝑒 | 𝑝𝑎𝑑16) .
(4)

Compared to the original join procedure, the
NwkNonce and the NwkKey are used instead of
the AppKey and the AppNonce. The NwkNonce

Wireless Communications and Mobile Computing 7

is a random number that has essentially the same
properties as the AppNonce.

(iii) Application server generates an App SKey after
receiving the NetID and DevNonce from the network
server. The generation method is as follows:

𝐴𝑝𝑝𝑆𝐾𝑒𝑦 = 𝑎𝑒𝑠128 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (AppKey, 0x01 |

AppNonce | 𝑁𝑒𝑡𝐼𝐷 | 𝐷𝑒V𝑁𝑜𝑛𝑐𝑒 | 𝑝𝑎𝑑16) .
(5)

(iv) When the App SKey generation is completed, the
application server sends the AppNonce to the net-
work server. At this time, the AppNonce is encrypted
with the AppKey. Since the network server does not
have the AppKey, it cannot decrypt the ciphertext.

(v) Join accept message: after receiving the encrypted
AppNonce from the application server, the network
server sends a join accept message. In the proposed
scheme, theNwkNonce and the encryptedAppNonce
are included. The rest is the same as the original join
accept message. The entire message is encrypted with
the NwkKey before transmission.

(vi) The end node decrypts the join accept message. After
that, it generates the Nwk SKey and the App SKey
with the extracted parameters.

When communication is initiated with the newly created
session keys, the end node and both servers immediately
discard the NwkKey and the AppKey. This is to prevent the
key from being leaked by the attacker in the future.

(2) Noninitial Join Procedure. If the end node already joined
to the network through the initial join procedure needs to
perform join procedure again, the noninitial join procedure
is performed. The noninitial mode is almost the same as
the initial mode, except that the session keys created in the
previous join procedure are used instead of the NwkKey and
the AppKey. In other words, the noninitial join procedure
is the process of creating new session keys from the old
session keys. The joined end node no longer has the NwkKey
and the AppKey. Therefore, subsequent join procedures are
performed in the noninitial mode. Through this process, the
end node can update the keys used for LoRaWAN’s security
mechanisms.

5.2. Dual Key-Based Activation by Personalization. In the
current LoRaWAN’s ABP mode, both session keys and
DevAddr are directly mounted on the end node. Since there
are no DevEUI, AppEUI, and AppKey, the join procedure
cannot be performed. This means that the session keys
mounted on the end node cannot be automatically updated.
For the absence of an AppKey, our proposed noninitial join
procedure that utilizes both session keys can be a solution.
However, a problem still remains, in that the join request
cannot be made due to the absence of DevEUI and AppEUI.
Therefore, we propose a new join request for ABP mode as
follows:

𝐽𝑜𝑖𝑛𝑅𝑒𝑞𝑒𝑠𝑡𝑓𝑜𝑟𝐴𝐵𝑃 = [𝐷𝑒V𝐴𝑑𝑑𝑟 | 𝐷𝑒V𝑁𝑜𝑛𝑐𝑒] . (6)

It uses DevAddr as an identifier. All the other steps, such
as session key generation and join accept processing, can be
done in the samemanner as the noninitial join procedure. As
a result, the end node activated via ABPmode can also update
its session keys.

6. Security Analysis

6.1. Basic Security Mechanisms. Our scheme satisfies the
same security requirements as LoRaWAN, such as authen-
tication, message integrity, data confidentiality, and replay
attack prevention. End node authentication is achieved by
using the NwkKey and the MIC value. When a join request
arrives, the network server authenticates the end node by
recalculating the MIC value with the NwkKey. The MIC is
also used for message integrity checking. If the recalculated
MIC value is different from the transmitted one, this means
that the message is manipulated by unauthorized entities.
Application data is encrypted by the App SKey. In the current
LoRaWAN, since the network server generates the App SKey,
application data confidentiality may not be perfectly guar-
anteed. However, in the proposed scheme, the App SKey is
only shared between the end node and the application server.
Thus, application data confidentiality is guaranteed. Replay
attack prevention is provided by the DevNonce. When a
previously used DevNonce is contained in a join request, the
network server considers it invalid.

6.2. KeyUpdate. In the current LoRaWANactivation process,
the key update is not fully supported. In the OTAAmode, the
end node cannot update the preloaded AppKey and in the
ABP mode, preloaded session keys cannot be updated. The
end nodemust use these keys for a lifetime without updating.
Thus, if the key is stolen by the attacker, he or she can steal all
the data that the target node had previously transmitted.

On the contrary, in our scheme, the end node can update
keys in any cases. Regardless of the activation mode in which
the end node is activated, the end node can update the
key using the proposed initial or noninitial join procedure.
Another important aspect of our scheme is that once the key
is updated, the previously used key is discarded. In case of
the initial join, preloadedNwkKey andAppKey are discarded
after the procedure is done.Through the noninitial join, both
previously used session keys are discarded. All keys are valid
only for the session in our scheme.Thus, the data transmitted
in the previous sessions can be protected even if the current
session keys are leaked.

6.3. Session Key Generation. LoRaWAN network communi-
cation consists of two layers. Each layer has a different session
key. Under the current LoRaWAN session key generation
system, the network server creates both session keys. There-
fore, the security mechanism of each layer is not completely
isolated. The network server with the App SKey can access
the application layer data, which should not be permitted.

However, in our scheme, each layer generates its own
key. The network server creates the Nwk SKey, and the
application server creates the App SKey. This means that the
network server is no longer involved in creating App Skey

8 Wireless Communications and Mobile Computing

(a) End node: SK-IM880B demo board (b) Gateway: Raspberry Pi2 with IMST IC880A board

Figure 6: LoRaWAN devices.

and cannot access the application layer data. Thus, compared
with the previous method, each layer independently operates
a security mechanism.

7. Performance Evaluation

We performed a real-world experiment to demonstrate the
feasibility of the proposed scheme. In this section, we provide
detailed information on the experimental environment and
an analysis of the experimental results.

7.1. Experimentation Environment

(1) Hardware Environment. We have installed a private
LoRaWAN network consisting of four entities: the end node,
gateway, network server, and application server. Figure 6
shows LoRaWAN devices that we used in this experiment.
Hardware specification is shown in Table 1.

(i) End node: we installed the end node by uploading the
source code [21] provided by Semtech to the demo
board included in SK-IM880B [22].

(ii) Gateway: wemade a gateway device by connecting the
Raspberry Pi 2 and IMST IC880A [23] board accord-
ing to the tutorial [24, 25] provided by Semtech and
The Things Network. We uploaded the LoRaWAN
gateway source code [26, 27] provided by Semtech to
complete the gateway installation.

(iii) Network server: there are open source projects for
implementing LoRa network server [28, 29]. We
established the network server by installing these
source codes on Ubuntu OS.

(iv) Application server: there is also an open source
project for LoRa application server [30]. It is installed
on our application server computer, which runs on
Ubuntu OS.

We implemented the proposed scheme by modifying the
source code on each entity.

(2) Network Environment. We installed the network environ-
ment according to [20]. In this document, parameters related

Table 1: Hardware specification.

End node STM32L151CB MCU, 128K Flash, 10K
RAM, IM880B-L Module

Gateway Raspberry Pi 2 with IC880A, Wi-Fi
connection

Network server Intel Core i5-470UM 1.33GHz CPU, 4G
RAM, Ethernet connection

Application server Intel Core 2 6600 2.4GHz CPU, 4G
RAM, Ethernet connection

to LoRa transmission, such as default channels, frequency,
date rate, and delays, are specified.

(i) Band: in South Korea where we have conducted ex-
periments, the LoRa dedicated band is 920–923MHz
[20]. Currently, however, student researchers face dif-
ficulty in obtaining experimental equipment for the
band. Therefore, we conducted experiments with EU
863–870MHz band equipment, which can be easily
purchased online. Although the band is being used
for other purposes in South Korea, we determined
that simply verifying the feasibility of our scheme is
possible.

(ii) Reception windows: Figure 7 shows when reception
windows open in an end node. After completion of
the join request transmission, the end node opens
two reception windows. A join accept packet can be
received only when the reception window is open.
The first reception window (RX1) is opened Join
Accept Delay1 seconds after the completion of the
join request transmission. The Join Accept Delay1 is
defined as 5 seconds for EU band. By default, the
join accept packet received by RX1 uses the same
frequency and same date rate as the join request. The
second reception window (RX2) opens after the Join
Accept Delay2 and uses the predefined channel. The
Join Accept Delay2 is defined as 6 seconds for EU
band. The network server decides which reception
window to use when creating a join accept message.
Since the predefined channel for RX2 is not contained

Wireless Communications and Mobile Computing 9

Join request
transmission

Join Accept Delay1

Join Accept Delay2

RX1
Open

RX2
Open

Figure 7: LoRaWAN reception windows.

4500

4700

4900

5100

5300

5500

To
ta

l j
oi

n
de

lay
 (m

s)

3 5 971 43373531 47 4925 27 2921 331917 39 4115 4513 2311

Trial (count)

Original
Dual

Figure 8: Total join delay.

in the default channel list provided in [20], we use RX1
as a default setting in our experiment.

7.2. Experimentation Results. In this section, we provide the
experimentation results. Our proposed scheme has addi-
tional work on the end node and server-side compared to
the original scheme. This may increase delay and battery
consumption. Thus, we compared with the proposed initial
join procedure and the original join procedure in terms of
delay and battery consumption, which are key elements of
feasibility.

(1) Delay. At first, we measured the total join delay from the
end of the join request transmission until the end of the join
procedure on the end node. Figure 8 shows the experimental
result after performing the original join procedure and
the proposed initial join procedure 50 times, respectively.
Some of the abnormal values seemed to be caused by the
temporarily impaired LoRa wireless link. Table 2 shows the
average time spent on each scheme. According to the results,
the total join delay in the proposed initial join procedure
increased by about 18ms on average. To find out the cause
of the increase in delay, we analyzed how the delay occurs at
each step of the join procedure. Figure 9 shows the structure
of the delay that occurs in the join procedure. Both original

Table 2: Total join delay.

Total join delay
Original join 5057.92ms
Proposed initial join 5076.64ms

and proposed join procedure follow this structure. According
to the structure, the total delay can be expressed as follows.

𝑇𝑜𝑡𝑎𝑙𝐽𝑜𝑖𝑛𝐷𝑒𝑙𝑎𝑦 = 𝐶𝑜𝑚𝐷𝑒𝑙𝑎𝑦𝑗𝑜𝑖𝑛𝑟𝑒𝑞

+ 𝐽𝑜𝑖𝑛𝐷𝑒𝑙𝑎𝑦𝑔𝑎𝑡𝑒𝑤𝑎𝑦

+ 𝑃𝑟𝑜𝑐𝑇𝑖𝑚𝑒𝑗𝑜𝑖𝑛𝑎𝑐𝑝𝑡

+ 𝐶𝑜𝑚𝐷𝑒𝑙𝑎𝑦𝑗𝑜𝑖𝑛𝑎𝑐𝑝𝑡.

(7)

𝐶𝑜𝑚𝐷𝑒𝑙𝑎𝑦𝑗𝑜𝑖𝑛𝑟𝑒𝑞 means join request communication
delay between the end node and gateway. 𝐽𝑜𝑖𝑛𝐷𝑒𝑙𝑎𝑦𝑔𝑎𝑡𝑒𝑤𝑎𝑦
means gateway join delay. 𝑃𝑟𝑜𝑐𝑇𝑖𝑚𝑒𝑗𝑜𝑖𝑛𝑎𝑐𝑝𝑡 means the join
accept processing time of the end node. 𝐶𝑜𝑚𝐷𝑒𝑙𝑎𝑦𝑗𝑜𝑖𝑛𝑎𝑐𝑝𝑡
means join accept communication delay between the gateway
and end node.

(1) 𝐶𝑜𝑚𝐷𝑒𝑙𝑎𝑦𝑗𝑜𝑖𝑛𝑟𝑒𝑞: the join request had no differ-
ence between the proposed scheme and the original
scheme. Therefore, it can be assumed that the same
delay occurs.

(2) 𝐽𝑜𝑖𝑛𝐷𝑒𝑙𝑎𝑦𝑔𝑎𝑡𝑒𝑤𝑎𝑦: as depicted in Figure 9, the gateway
join delay is the time when the join request packet is
received on the gateway until the join accept packet
starts sending. This value mainly consists of server-
side processing time and gateway waiting time. At
the end node, RX1 is opened 5 seconds after the
join request is sent, and the join accept message
must arrive at this time. As shown in Figure 10 and
Table 3, the server-side processing time is less than 1
second. So the gateway must wait until RX1 is open
on the end node. If the gateway immediately sends
a join accept message without the waiting time, a
message cannot be received on the end node where
RX1 has not yet been opened. Thus, proper waiting
time on the gateway is essential for the successful
join procedure. In our experiment, the network server
deliberately set the gateway join delay to 5 seconds,
which is the same as Join Accept Delay1, to generate
a proper waiting time on the gateway. According to
this mechanism, the gateway waits until the gateway
join delay becomes 5 seconds and then sends the join
accept message. As a result, the gateway join delay of
both schemes is equally 5 seconds.

(3) 𝑃𝑟𝑜𝑐𝑇𝑖𝑚𝑒𝑗𝑜𝑖𝑛𝑎𝑐𝑝𝑡: as can be seen in Table 4, the join
accept processing time increased by about 0.4ms
on average in the proposed scheme. This is because
it performed AES encryption once more. However,
since the increased value was very small, the effect on
the overall delay was negligible.

(4) 𝐶𝑜𝑚𝐷𝑒𝑙𝑎𝑦𝑗𝑜𝑖𝑛𝑎𝑐𝑝𝑡: according to our analysis, the other
factors constituting the total join delay had little effect

10 Wireless Communications and Mobile Computing

End node Gateway Server-side

Server-side
processing
time

Waiting
time

Join request communication delay

Gateway
join delay

= 5 Ｍ

Join accept communication delay

Join
Accept
Delay1
= 5 Ｍ

Rx
Window1

Open

Total
join

delay

JoinDelaygateway

=

=

ComDelay joinreq

Join accept
processing time

ProcTime joinacpt= ComDelay joinacpt=

Figure 9: Delay structure.

201
202
203
204
205
206
207
208
209
210

Se
rv

er
-s

id
e p

ro
ce

ss
in

g
tim

e (
m

s)

91 73 5 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 5111

Trial (count)

Original
Dual

Figure 10: Server-side processing time.

Table 3: Server-side processing time.

Server-side processing time
Original join 205.07ms
Proposed initial join 205.53ms

Table 4: Join accept processing time.

Join accept processing time
Original join 1.3ms
Proposed initial join 1.78ms

on the increased delay of the proposed scheme.There-
fore, the join accept communication delay can be
inferred as the most decisive factor on the increased
delay. The only change in the join accept message
of the proposed scheme was the payload length. As

Table 5: Join accept packet size (without CFList field).

Join accept payload length
Original join 12 bytes
Proposed initial join 28 bytes

shown in Table 5, the payload length of the join accept
message increased by 16 bytes.We concluded that this
is the main cause of the delay increase.
For further analysis, we carried out a simulation
with the LoRa Modem Calculator [31] provided by
Semtech. The result shown in Figure 11 cannot be
directly applied to our experimental results because
the calculator does not support the SX1257 transmit-
ter that is equipped in our IC880A gateway board.
However, at least we can determine how the trans-
mission time was changed according to the payload
length.
We also considered the maximum payload length.
According to [20], the maximum payload length
varies from 59 bytes to 230 bytes depending on the
data rate. Thus, we can ensure that the increased pay-
load length did not affect feasibility because the 28-
byte payload length satisfied the maximum payload
length in any cases.

As a result, the total join delay of our scheme increased
by about 18ms because the payload length of the join accept
packet increased.This payload length completely satisfied the
maximum payload length criterion specified by LoRaWAN.
Therefore, in terms of delay, our scheme is feasible.

(2) Battery Consumption. Our end node uses two AAA-sized
1.5-V batteries.The source code [21] provided by Semtech has

Wireless Communications and Mobile Computing 11

0

10

20

30

40

50

60

70

Ti
m

e o
n

ai
r (

m
s)

7 95 6 8 11 1514 17 181612 13 19 20 21 22 23 24 25 26 27 28 2910

Payload length (bytes) ∗DataRate: SF7/125 Ｅ（Ｔ

Figure 11: LoRa Modem Calculator result.

Original
Dual

0

1

2

3

4

5

6

Ba
tte

ry
 co

ns
um

pt
io

n
(m

v)

2 3 4 5 6 7 8 9 101
Trial (set)

Figure 12: Battery consumption.

Table 6: Average battery consumption.

Average battery consumption
Original join 0.23mv
Proposed initial join 0.24mv

a function that measures the remaining battery capacity of
the end node in millivolts. We use this function to measure
the battery consumed during the join procedure. However,
we cannot obtain meaningful values in one or two join
procedures because the battery consumption is less than
one millivolt. To overcome the limitation of measurement
method, we decide to measure after performing 10 consec-
utive join procedures. Figure 12 is the result of 10 sets of
experiments, 10 times per set.

Due to transmission errors, function errors, and so on,
the battery consumption value per set seemed not to be
constant. We performed 10 sets, a total of 100 experiments,
to ensure that these external factors are equally applied to
both schemes. Therefore, the relative battery consumption of
the proposed scheme for the original scheme is trustworthy.
Table 6 shows that the battery consumption of the proposed
scheme is not significantly different from the original scheme.
Therefore, in terms of battery consumption, the proposed
scheme is feasible.

8. Conclusion

In this paper, we proposed a dual key-based activation
scheme. Our scheme uses NwkKey and AppKey to perform
the initial join procedure. From the second join procedure,
session keys are used, which are created in the previous
join procedure. This resolves the key update problem, which
was not fully supported in the original scheme. In addition,
our scheme makes each layer generate its own session key
so that the layers can work independently. We compared
the performance of the original scheme and the proposed
scheme through a real-world experiment. According to the
experimental results, our scheme is feasible in terms of delay
and battery consumption.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2015R1D1A1A01058928).

References

[1] “EricssonMobility Report: On the Pulse of theNetworked Soci-
ety,” 2015. http://www.ericsson.com/res/docs/2015/mobility-
report/ericsson-mobility-report-nov-2015.pdf.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: a survey on enabling tech-
nologies, protocols, and applications,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[3] X. Xiong, K. Zheng, R. Xu, W. Xiang, and P. Chatzimisios,
“Low power wide area machine-to-machine networks: Key
techniques and prototype,” IEEE Communications Magazine,
vol. 53, no. 9, pp. 64–71, 2015.

[4] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-
range communications in unlicensed bands: The rising stars in
the IoT and smart city scenarios,” IEEE Wireless Communica-
tions Magazine, vol. 230, no. 5, pp. 60–67, 2016.

[5] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide
area networks: an overview,” IEEE Communications Surveys &
Tutorials, 2017.

[6] O. Georgiou andU. Raza, “Low power wide area network analy-
sis: can LoRa scale?” IEEEWireless Communications Letters, vol.
6, no. 2, pp. 162–165, 2017.

[7] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent,
“LoRaWAN Specification V1.0.2,” LoRa Alliance, 2016.

[8] Z.-K. Zhang, M. C. Y. Cho, and S. Shieh, “Emerging security
threats and countermeasures in IoT,” in Proceedings of the 10th
ACM Symposium on Information, Computer and Communica-
tions Security (ASIA CCS ’15), pp. 1–6, ACM, April 2015.

[9] M.M.Hossain,M. Fotouhi, andR.Hasan, “Towards anAnalysis
of Security Issues, Challenges, and Open Problems in the
Internet of Things,” in Proceedings of the IEEE World Congress
on Services, SERVICES 2015, pp. 21–28, July 2015.

http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf
http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf

12 Wireless Communications and Mobile Computing

[10] K. Zhao and L. Ge, “A survey on the internet of things
security,” in Proceedings of the 9th International Conference on
Computational Intelligence and Security, CIS 2013, pp. 663–667,
December 2013.

[11] S.-H. Seo, J. Won, S. Sultana, and E. Bertino, “Effective key
management in dynamicwireless sensor networks,” IEEETrans-
actions on Information Forensics and Security, vol. 10, no. 2, pp.
371–383, 2015.

[12] S. Agrawal, R. Roman, ML. Das, A. Mathuria, and J. Lopez,
“A novel key update protocol in mobile sensor networks,”
in Proceedings of the International Conference on Information
Systems Security, pp. 194–207, Springer, 2012.

[13] J. He, X. Zhang, and Q. Wei, “EDDK: Energy-efficient dis-
tributed deterministic key management for wireless sensor
networks,” EURASIP Journal on Wireless Communications and
Networking, vol. 2011, 2011.

[14] E. Barker,W. Barker,W. Burr,W. Polk, andM. Smid,Recommen-
dation for Key Management Part 1: General (Revision 4), NIST
Special Publication, 2016.

[15] P. Girard, “Low Power Widw Area Networks security,” 2015.
https://docbox.etsi.org/Workshop/2015/201512 M2MWORK-
SHOP/S04 WirelessTechnoforIoTandSecurityChallenges/GE-
MALTO GIRARD.pdf.

[16] R. Miller, “LoRa Security: Building a Secure LoRa Solution,”
2016. https://labs.mwrinfosecurity.com/publications/lo/.

[17] S. Zulian, Security Threat Analysis and Countermeasures for
LoRaWAN Join Procedure, 2016, http://tesi.cab.unipd.it/53210/.

[18] S. Naoui, M. E. Elhdhili, and L. A. Saidane, “Enhancing the
security of the IoT LoraWAN architecture,” in Proceedings of
the 5th IFIP International Conference on Performance Evaluation
and Modeling in Wired and Wireless Networks, PEMWN 2016,
November 2016.

[19] “LoRaWAN - What is it: A technical overview of LoRa
and LoRaWAN,” 2015. https://www.lora-alliance.org/portals/0/
documents/whitepapers/LoRaWAN101.pdf.

[20] LoRa Alliance Technical committee, LoRaWAN Regional
Parameters, 2016.

[21] Semtech, LoRaWAN endpoint stack implementation and exam-
ple projects, 2013. https://github.com/Lora-net/LoRaMac-node.

[22] SK-iM880B –LongRangeRadioStarterKit https://wireless-solu-
tions.de/products/starterkits/sk-im880b.html.

[23] iC880A - LoRaWAN Concentrator 868MHz https://wireless-
solutions.de/products/radiomodules/ic880a.html.

[24] Semtech,Use with Raspberry Pi, 2016. https://github.com/Lora-
net/packet forwarder/wiki/Use-with-Raspberry-Pi.

[25] The Things Network, From zero to LoRaWAN in a weekend,
2016. https://github.com/ttn-zh/ic880a-gateway/wiki.

[26] Semtech, LoRa Gateway project https://github.com/Lora-net/
lora gateway.

[27] Semtech, Lora network packet forwarder project https://github
.com/Lora-net/packet forwarder.

[28] Brocaar, LoRa Gateway Bridge https://github.com/brocaar/
lora-gateway-bridge.

[29] Brocaar, LoRa Server https://github.com/brocaar/loraserver.
[30] Brocaar,LoRaApp Server https://github.com/brocaar/lora-app-

server.
[31] Semtech,LoRaCalculator http://www.semtech.com/wireless-rf/

rf-transceivers/sx1272/.

https://docbox.etsi.org/Workshop/2015/201512_M2MWORKSHOP/S04_WirelessTechnoforIoTandSecurityChallenges/GEMALTO_GIRARD.pdf
https://docbox.etsi.org/Workshop/2015/201512_M2MWORKSHOP/S04_WirelessTechnoforIoTandSecurityChallenges/GEMALTO_GIRARD.pdf
https://docbox.etsi.org/Workshop/2015/201512_M2MWORKSHOP/S04_WirelessTechnoforIoTandSecurityChallenges/GEMALTO_GIRARD.pdf
https://labs.mwrinfosecurity.com/publications/lo/
http://tesi.cab.unipd.it/53210/
https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
https://www.lora-alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
https://github.com/Lora-net/LoRaMac-node
https://wireless-solutions.de/products/starterkits/sk-im880b.html
https://wireless-solutions.de/products/starterkits/sk-im880b.html
https://wireless-solutions.de/products/radiomodules/ic880a.html
https://wireless-solutions.de/products/radiomodules/ic880a.html
https://github.com/Lora-net/packet_forwarder/wiki/Use-with-Raspberry-Pi
https://github.com/Lora-net/packet_forwarder/wiki/Use-with-Raspberry-Pi
https://github.com/ttn-zh/ic880a-gateway/wiki
https://github.com/Lora-net/lora_gateway
https://github.com/Lora-net/lora_gateway
https://github.com/Lora-net/packet_forwarder
https://github.com/Lora-net/packet_forwarder
https://github.com/brocaar/lora-gateway-bridge
https://github.com/brocaar/lora-gateway-bridge
https://github.com/brocaar/loraserver
https://github.com/brocaar/lora-app-server
https://github.com/brocaar/lora-app-server
http://www.semtech.com/wireless-rf/rf-transceivers/sx1272/
http://www.semtech.com/wireless-rf/rf-transceivers/sx1272/

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

