
VSB – Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science

An Optimised IoT Architecture
Based on Fog Computing with a New

Method of Data Transfer Control

PHD THESIS

2021 Jakub Jalowiczor

An Optimised IoT Architecture Based on Fog Computing with a
New Method of Data Transfer Control

Ing. Jakub Jalowiczor

PhD Thesis
Supervisor: prof. Ing. Miroslav Voznak, Ph.D.
OSTRAVA, 2021

Information

Dissertation Thesis; Delivered in November, 2021
Doctoral Study Programme:
P1807 Computer Science, Communication Technology and Applied Mathematics
Doctoral Study Branch:
2601V018 Communication Technology

Student: Ing. Jakub Jalowiczor
Department of Telecommunications
Faculty of Electrical Engineering and Computer Science
VSB – Technical University of Ostrava
17. listopadu 2172/15, Ostrava-Poruba, 708 00
jakub.jalowiczor@vsb.cz

Supervisor: prof. Ing. Miroslav Voznak, Ph.D.
Department of Telecommunications
Faculty of Electrical Engineering and Computer Science
VSB – Technical University of Ostrava
17. listopadu 2172/15, Ostrava-Poruba, 708 00
miroslav.voznak@vsb.cz

OSTRAVA, 2021

I

Declaration
I declare that this doctoral thesis was written independently by me, under the guidance of the
doctoral thesis supervisor and using the technical literature and other sources of information,
all of which are quoted in the text and detailed in the list of literature at the end of the thesis.

As the author of the doctoral thesis, I furthermore declare that, with respect to the creation
of this doctoral thesis, I have not infringed any copyright or violated anyone’s personal or
ownership rights. In this context, I am fully aware of the consequences of breaking Regulation
§11 of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any
breach of rights related to intellectual property or introduced in the amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll., Section
2, Head VI, Part 4.

................................
(author’s signature)

II

Acknowledgement

I would like to express my gratitude to my doctoral thesis supervisor, prof. Ing. Miroslav
Voznak, Ph.D., for his kind support during my doctoral studies and related research. I very
much appreciate the opportunity to work with him; his advice and the continuous support he
has given me have been objective and invaluable.

I thank all the LIPTEL team members, with whom it has always been a pleasure and
satisfaction to collaborate in solving research activities and related tasks.

Finally and importantly, I would like to thank my family and girlfriend for their immense
support and motivation during my studies and over the course of my life.

................................
(author’s signature)

III

Abstract
Over the years, distributed and grid computing paradigms have evolved to cloud computing,
which has become a common approach applied in the Internet of Things (IoT). The growing
popularity of the cloud computing paradigm lies mainly in the simple management of end devices,
uniform access to many services, elasticity of available resources and cost savings. In addition to
these advantages, the expansion of IoT devices and the demand for speed and data volume have
provided an opportunity for the emergence of new computing paradigms. The fog computing
paradigm brings data processing nearer to the end devices while preserving the cloud connection,
leading to lower latency, higher efficiency and location awareness.

The overall aim of the dissertation is the design and implementation of an optimised IoT
network architecture which adopts the fog computing paradigm. To eliminate the need to
build completely new infrastructure, the optimised network architecture is based on LoRaWAN,
which has already been deployed at many locations and offers long-distance communication
with low-power consumption. This raises several challenges which need to be overcome. For
correct functioning of the fog computing paradigm, it was necessary to explore a new method of
controlling the data transfer between IoT gateways and the cloud service. The methods explored
in this dissertation are both static (based on predefined values) and dynamic (based on machine
learning).

Keywords: computing paradigms; Internet of Things; LoRaWAN; fog computing; network
architecture

IV

Abstrakt
V průběhu let se výpočetní modely vyvíjely od distribuovaných a gridových ke cloud compu-
tingu, který se stal nejčastěji používaným přístupem v oblasti Internetu věcí. Rostoucí popularita
cloud computingu spočívá především v jednoduché správě koncových uzlů, jednotném přístupu k
velkému počtu služeb, elasticitě dostupných zdrojů a šetření jednotlivých nákladů. Přes všechny
své přínosy však narůstající počet připojených zařízení a nároků na rychlost dávají příležitost
vzniku nových výpočetních modelů. Fog computing model přenáší výpočetní výkon blíže ke kon-
covým zařízením při zachování spojení s cloudem, což vede ke snížení latence, zvýšení efektivity
a umožnění reagovat na základě aktuálních podmínek.

Výsledným cílem této disertační práce je návrh a implementace optimalizované síťové IoT
architektury s podporou pro fog computing. Pro eliminaci nutnosti budovat kompletně novou
infrastrukturu počítá výsledné optimalizované řešení s integrací do LoRaWAN, která je již nasa-
zena na mnoha místech a nabízí komunikaci na velké vzdálenosti při nízké spotřebě energie. Tato
integrace však přináší několik úskalí, jež je potřeba překonat. K dosažení správné funkčnosti fog
computingu bylo potřeba provést výzkum metody pro řízení přenosu dat mezi síťovou bránou a
cloud službou. Zkoumané metody jsou jak statické (založené na předdefinovaných hodnotách),
tak dynamické (využívající strojového učení).

Klíčová slova: výpočetní modely; Internet věcí; LoRaWAN; fog computing; síťová architektura

V

Contents

1 Introduction 1

2 State of the Art 5
2.1 Existing Studies . 5
2.2 Prevalent IoT Technologies . 7

2.2.1 Short-Range Wireless Networks . 8
2.2.2 Wireless Local Area Networks . 8
2.2.3 Conventional Cellular Networks . 8
2.2.4 Low-Power Wide-Area Networks . 8

2.3 LPWAN Technologies . 9
2.3.1 NB-IoT . 9
2.3.2 Sigfox . 10
2.3.3 LoRaWAN . 11

2.4 LPWAN Architectures . 15
2.4.1 Cloud Computing Architecture . 15
2.4.2 Edge Computing Architecture . 15
2.4.3 Fog Computing Architecture . 16

3 Machine Learning 17
3.1 Machine Learning Sub-Classes . 17

3.1.1 Supervised Learning . 17
3.1.2 Unsupervised Learning . 18
3.1.3 Semi-Supervised Learning . 18
3.1.4 Reinforcement Learning . 18
3.1.5 Deep Learning . 18

3.2 Classification Algorithms . 18
3.2.1 Decision Tree . 19
3.2.2 Random Forest . 19
3.2.3 K-Nearest Neighbor . 20
3.2.4 Support Vector Machines . 20
3.2.5 Naive Bayes . 21
3.2.6 Artificial Neural Networks . 21

3.3 Model Evaluation Metrics . 23
3.4 Cross-validation . 25

4 Aims of Dissertation 27

VI

5 Proposed Network Architectures 29
5.1 General Fog Computing Architecture . 29
5.2 Standard LoRaWAN Architecture . 30
5.3 Proposed Network Architectures . 31

5.3.1 Architecture A . 31
5.3.2 Architecture B . 32
5.3.3 Architecture C . 33

5.4 Comparison of the Proposed Architectures . 35
5.4.1 Comparison in Terms of Queuing Theory (Execution Time) 35
5.4.2 Comparison in Terms of Functional Properties 42
5.4.3 Summary of Results from the Comparison 43

6 Methods to Control Data Transfer 45
6.1 Controlled Data Transfer . 45

6.1.1 Dataset . 46
6.1.2 Payload Structure . 47
6.1.3 Classification of Data Privacy . 47

6.2 Discussion of the Results . 56

7 Implementation of Key Components 59
7.1 Chirpstack . 59
7.2 Implementation of the Architecture . 59

8 Testbed and Verification of Results 67
8.1 Current Solution at the VSB-TUO Campus . 67
8.2 Verification of Results . 68

8.2.1 Comparison of Execution Times . 68
8.2.2 Data Privacy Test . 70
8.2.3 Offline Processing Test . 70

8.3 Discussion of the Results . 72

9 Conclusions and Expected Contributions 73

10 Research Results and Activities 87
10.1 Participation in Research Projects . 87
10.2 Results of Research Activities . 88
10.3 Other Achieved Results . 88

VII

List of Acronyms

3GPP – 3rd Generation Partnership Project
ABP – Activation By Personalization
AES – Advanced Encryption Standard
AI – Artificial Intelligence
ANN – Artificial Neural Network
API – Application Programming Interface
AppSKey – Application Session Key
AUC – Area Under the Curve
BCET – Best-Case Execution Time
CF – Carrier Frequency
DevEUI – Device Extended Unique Identifier
DBPSK – Differential Binary Phase-Shift Keying
FFNN – Feed-Forward Neural Network
FHDR – Frame Header
FN – False Negative
FP – False Positive
HTTPS – Hypertext Transfer Protocol Secure
IaaS – Infrastructure as a Service
IoT – Internet of Things
ISM – Industrial, Scientific, and Medical
JSON – JavaScript Object Notation
LoRaWAN – Long Range Wide Area Network
LPWAN – Low-Power Wide-Area Network
LTE – Long Term Evolution
M2M – Machine to Machine
MAC – Medium Access Control
MHDR – Medium Access Control Header
MIC – Message Integrity Code
ML – Machine Learning
MQTT – Message Queuing Telemetry Transport
NFC – Near Field Communication
NwkSKey – Network Session Key
OTAA – Over-the-Air Activation
OS – Operating System
PaaS – Platform as a Service
PoE – Power-over-Ethernet

VIII

PSM – Power Saving Mode
QoE – Quality of Experience
QoS – Quality of Service
RF – Radio Frequency
RFID – Radio Frequency Identification
RMSE – Root Mean Square Error
ROC – Receiver Operating Characteristic
RSSI – Received Signal Strength Indicator
SaaS – Software as a Service
SF – Spreading Factor
SNR – Signal to Noise Ration
SPI – Serial Peripheral Interface
SVM – Support Vector Machines
TN – True Negative
TP – True Positive
TTN – The Things Network
UNB – Ultra Narrow Band
WCET – Worst-Case Execution Time
WPAN – Wireless Personal Area Network

IX

List of Figures

1 LoRaWAN technology stack. 11
2 LoRaWAN Class A communications scheme. 12
3 LoRaWAN Class B communications scheme. 12
4 LoRaWAN Class C communications scheme. 13
5 Diagram of a neural network. 22
6 Confusion matrix. 23
7 Example of an ROC curve. 25
8 k-fold cross-validation principle. 26
9 Three-layer fog computing architecture. 29
10 Standard LoRaWAN architecture. 31
11 Diagram of network Architecture A. 32
12 Diagram of network Architecture B. 33
13 Diagram of network Architecture C. 34
14 Diagram of the simulation model of Architecture A. 38
15 Diagram of the simulation model of Architecture C. 39
16 Comparison of architectures A and C (95% private messages). 40
17 Comparison of architectures A and C (100% private messages). 40
18 Histogram for Architecture A (95% private messages). 41
19 Histogram for Architecture C (95% private messages). 41
20 Histogram for Architecture A (100% private messages). 41
21 Histogram for Architecture C (100% private messages). 41
22 Dataset records example. 46
23 Training set example - Periodicity . 48
24 Comparison of ROC curves for different classification algorithms. 51
25 Training set example – Payload. 52
26 Comparison of ROC curves for different classification algorithms – Payload. . . . 54
27 Comparison of ROC curves for different classification algorithms – Payload (mod-

ified dataset). 55
28 Comparison of ROC curves for different classification algorithms – Payload Com-

bined (modified dataset). 55
29 LoRaWAN message structure. 60
30 Block structure. 62
31 example . 67
32 example . 68
33 Results of service times comparison. 69
34 Offline processing test results. 71

X

List of Tables

1 Execution times of the components. 36
2 Execution times of the fog gateway. 37
3 Comparison of results from the simulation. 41
4 Summary of features of the proposed architectures. 44
5 Basic statistics of the dataset . 47
6 Classification results for different FFNN topologies – periodicity. 50
7 Decision Tree confusion matrix – Periodicity. 50
8 SVM confusion matrix – Periodicity. 50
9 k-NN confusion matrix – Periodicity . 51
10 Feed-Forward NN confusion matrix – Periodicity 51
11 Decision tree confusion matrix – Payload. 53
12 Naive Bayes confusion matrix – Payload. 53
13 k-NN confusion matrix – Payload. 53
14 Random forest confusion matrix – Payload. 53
15 Naive Bayes confusion matrix – Payload (modified dataset). 54
16 MAC message types. 61
17 Relationship between FPort and session keys. 61
18 Privacy test results. 70

XI

1 1 INTRODUCTION

1 Introduction

The Internet of Things (IoT) is becoming increasingly prevalent, although the concept of in-
terconnecting computers and networks in a manner to monitor and control devices has existed
for decades. Considerable interest in this area has resulted from new technologies and market
trends that allow the interconnection of greater numbers of devices which are smaller, simpler
and less expensive.

With this expansion of the IoT and the unique requirements of IoT devices, the development
of new technologies created exclusively to provide wireless connectivity is meaningful. These
technologies aim to achieve the minimal possible energy consumption while maintaining quality
of transmission. The selection of suitable technology for a particular application is crucial in
any IoT deployment. Technologies such as Bluetooth Low Energy and ZigBee are popular for
application in smart home solutions and wearable electronics. The energy consumption of these
technologies is low, yet their limited coverage makes them unsuitable for use in urban-wide
coverage, which is necessary for many smart city applications. Low-Power Wide-Area Network
(LPWAN) technologies especially designed for long-distance wireless communication and the low
power consumption are more suited to this use. LPWAN technologies are primarily designed to
transfer a small amount of data at once, and they include technologies such as LoRa, SigFox and
NB-IoT. These network technologies implement a cloud computing paradigm which has several
drawbacks, and it is not sufficient for some IoT use cases.

Although precise predictions for the future expansion of connected IoT devices vary, the
increasing trend is clear: as the number of IoT devices increases, the demands for speed and
data volume become greater. This situation could lead to a certain threshold where cloud
computing is no longer an effective solution nor sufficient for specific IoT use cases.

As the title of the dissertation suggests, this work examines a fog computing approach,
which is a combination of cloud computing and edge computing providing the benefits of both.
While the major part of processing is performed by edge devices which additionally work as
data filters, the cloud performs less urgent or more complex computing. From that perspective,
the fog computing paradigm can be seen as an extension of the cloud computing paradigm in
applications and domains which are not suitable for cloud computing. Location awareness allows
fog computing to better adapt to end device needs. The involvement of a mechanism to control
the distribution of computational resources between the end devices in the fog layer and cloud
service is also a significant component of fog computing. This mechanism can be either static,
predefined by the data owner, or dynamic based on machine learning to automatically control
the required computational and storage resources. Suitable for a heterogeneous environment, a
dynamic mechanism considers the current conditions and applies decisions accordingly.

The above-mentioned benefits of fog computing are significant, and equally so in the IoT.
Let us imagine a company which applies LPWAN technology to collect specific information in a
production hall. Fog computing can extend the possible use cases with many valuable features.

1 INTRODUCTION 2

The company can define which data are processed and stored locally, while the rest are trans-
ferred to the cloud. The fog layer can implement a connection failure detection method. If a
connection failure is detected, all resources are computed and stored in the fog layer until the
connection is re-established. The main advantage of fog computing is a shorter response time,
which is crucial in many applications. Examples of application are primarily in smart city envi-
ronments, where many extraordinary conditions such as car accidents or fires can occur. Quick
response to such situations is imperative and cannot be expected from cloud computing. The
closer proximity of network elements actively involved in computation, however, is potentially
a suitable solution. As mentioned above, existing LPWAN technologies are mainly based on
cloud computing and a suitable substitute is not available, even though it has been the subject
of many studies.

As the Department of Telecommunications at the VSB-Technical University of Ostrava op-
erates its own campus LoRaWAN network, the proposed solution can be tested and verified
in a real-world traffic scenario. This was the main motivation for my study and proposal of a
solution which functions with LoRaWAN technology. Additionally, LoRaWAN technology offers
long-range communication [1], low energy consumption [2] and many existing deployments over a
large number of locations. However, the main conclusions of this dissertation can be generalised
to other LPWAN technologies.

Because LoRaWAN technology is deployed widely, network operators need only update indi-
vidual components of existing networks to support fog computing; the end-devices and hardware
remain unchanged. Fog computing features are therefore available at low overall cost. An ex-
ample is the campus at the VSB-Technical University of Ostrava, where LoRaWAN is already
deployed, and the addition of fog computing optimisations for further research is desirable.

The dissertation is structured as follows:

• Chapter 2: State-of-the-Art – summarises existing studies and technologies pertaining to
the IoT and describes LPWAN technologies and architectures in detail.

• Chapter 3: Machine Learning – contains a theoretical introduction to machine learning
and related methods.

• Chapter 4: Dissertation Aims – contains the aims and delimitations of the dissertation.

• Chapter 5: Proposed Network Architecture – suggests three different network architectures
based on LoRaWAN and the fog computing paradigm. The architectures are compared ac-
cording to several characteristics to select the optimal architecture. This chapter addresses
Aim 1.

• Chapter 6: Machine Learning Methods to Control Data Transfer Between a Gateway and
the Cloud – includes several approaches for controlling the selection of network elements
designated to processing data according to actual data traffic. This chapter addresses
Aim 2.

3 1 INTRODUCTION

• Chapter 7: Implementation of Key Components of the Architecture for Verification –
describes the implementation of the selected optimal network architecture.

• Chapter 8: Testbed and Verification of Results – describes the testbed located at the
VSB - Technical University of Ostrava campus and the verification process of the obtained
results. Together with Chapter 7, this chapter addresses Aim 3.

• Chapter 9: Conclusions and Expected Contributions – summarises the conclusions and
expected contributions of the results.

• Chapter 10: List of the Candidate’s Research Results and Activities – contains a summary
of results obtained during the Ph.D. study.

5 2 STATE OF THE ART

2 State of the Art

This section summarises the related knowledge in IoT technologies and reports the most recent
developments. The chapter is organised as follows: (i) a discussion of the existing studies of
IoT, fog computing, and Quality of Service (QoS); (ii) a description of the technologies prevalent
in the IoT, followed by a closer specification of LPWAN technologies; (iii) an introduction to
various network architectures.

2.1 Existing Studies

The state of the art in the IoT and various network architectures shows a trend away from
the cloud computing paradigm to fog computing. While cloud computing in some situations
cannot keep pace with the growing volume and speed of transmitted and processed data, the fog
computing paradigm can improve efficiency and attain lower latency and location awareness.

Surveys in [3] and [4] examined LPWAN technologies such as LoRaWAN, Sigfox and NB-
IoT. In [5], the authors provided a detailed introduction to cloud computing. In [6], Weisong
Shi et al. presented a definition of edge computing and its benefits over cloud computing,
some case studies, and related challenges and opportunities. Before the idea of fog computing,
Cloudlet [7] designed and developed a similar concept. It consists of a virtual machine-based
server or cluster of servers and is placed in single-hop proximity of mobile devices to respond
with low-latency. The studies [8], [9] and [10] provide overviews of fog computing. The paper
[11] provides a further survey of the fog computing paradigm along with recent research trends,
multiple definitions and architectures.

ARM, Cisco, Dell, Intel, Microsoft and Princeton University funded the OpenFog Consortium
in 2015 to define an open fog computing architecture. The consortium released the document
OpenFog Reference Architecture document [12] in which fog computing is defined as:

“A horizontal, system-level architecture that distributes computing, storage, control,
and networking functions closer to users along a cloud-to-thing continuum.”

According to this definition, fog computing is an extension of the regular cloud-based computing
paradigm, and all advantages of the cloud should be preserved.

Fog computing and its use in IoT applications are discussed in [13]. A variety of research
opportunities in the fog computing field are mentioned in [14]. In [15], Gia et al.introduced a
system and gateway architecture along with the experimental results of a fog computing case
study of healthcare IoT and ECG feature extraction.

In [16], the authors analysed and described fog computing and other computing paradigms
from a security perspective. Security and privacy issues in fog computing and the IoT, for
example, authentication, trust, access control and data protection, are presented in [17].

In [18], the authors described the design and experimental deployment of a LoRaWAN
infrastructure and the deployment of fog computing nodes at the smart campus of the University

2 STATE OF THE ART 6

of A Coruña. However, this paper focused primarily on the planning of signal radiation and
coverage.

A LoRaWAN architecture with autonomous base stations was introduced in [19], in which
the authors also gave an example of use in areas with limited internet access. The authors
proposed a master/slave base station architecture in which the master base station acts as a
central point for many slave base stations, and in this manner, an internet connection is not
required for the slave base stations.

The authors in [20] described the potential of combining fog computing with LoRaWAN in
smart cities. At the beginning of the paper, they introduced fog computing and its general
three-layer architecture, followed by a comparison with cloud computing. In the next section,
the authors described a case study in which fog computing was combined with LoRaWAN for
water distribution networks. The proposed network architecture included edge servers and LoRa
gateways connected to a LoRa network server which communicated with an application server
located in the cloud.

A comparative study of LPWAN technologies in [21] showed that while Sigfox and LoRa
have superior assumptions for applications which require longer battery lifetime, higher capacity
and lower cost, NB-IoT offers advantages in latency and QoS. However, LoRa end devices can
operate in class C (continuous) mode to handle bidirectional communications with lower latency
although with greater energy consumption.

In [22], the authors proposed and implemented an energy-efficient downlink communication
mechanism for LoRaWAN, called TRILO. The mechanism is based on the IEEE 802.11 Power
Saving Mode (PSM) adopted from IEEE 802.11 WLAN and is designed to inform end devices
of the downlink traffic waiting to be transmitted. After successfully informing the end device,
transmission of downlink traffic can be executed. The authors also compared the performance of
the TRILO mechanism with the Class B downlink scheme in simulations and demonstrated that
the TRILO mechanism’s efficiency was higher. The authors of [23] used the ns-3 simulation tool
to analyse the scalability of a single-channel multigateway LoRaWAN. The simulation results
indicated that a suitable choice of network parameters is crucial to LoRaWAN performance
and that increasing the gateway density can improve the packet delivery ratio of confirmed
upstream messages. A Monte Carlo simulation presented in the paper [24] demonstrated a sub-
optimal SF allocation method under a pure ALOHA protocol to maximise massive connectivity
in LoRaWAN. The results showed that the proposed method can increase massive connectivity
compared to the other methods the authors applied in their study. In the paper [25], the authors
presented a new method of optimisation for efficient spreading factor selection by individual end
devices, thereby increasing the probability of data delivery in LPWAN networks by 20–40%.
Although this method of optimisation led to an increase in energy consumption, the increase
was minor (1–8%). The work in [26] explored the performance and QoS optimisation of a
LoRa network by fine-tuning the optimal setting of the Spreading Factor (SF) and Carrier
Frequency (CF) parameters to reduce the packet collision rate and energy consumption. The

7 2 STATE OF THE ART

results validated by simulations showed that the proposed methodology optimised the SF and
CF settings with an average increase of 6% in Data Extraction Rate and that collisions were 13
times lower. A new MAC layer for RS-LoRa with two-step lightweight scheduling was proposed
in [27]. Its performance was evaluated with the ns-3 simulation tool, and the results showed that
in a single- gateway scenario with 1000 nodes, the proposed MAC layer reduced the Packet Error
Ratio by nearly 20%. The authors in [28] designed and developed a LoRa traffic generator based
on software-defined radio technology (SDR) which emulated thousands of LoRa sensors. The
authors analysed the communication collisions while applying different SFs at different channel
bandwidths on a single communication channel. The study presents an empirical evaluation of
LoRa modulation and an experimental analysis of the LoRa traffic generator in a semi-anechoic
chamber. The results indicated that collisions dramatically decreased overall performance. In
[29], the authors presented a smart city network architecture called Fog Computing Architecture
Network. The study showed that the network provided lower latency and improved energy
provisioning. In [30], Gupta et al. produced an iFogSim software simulation of the IoT and a
fog environment to evaluate resource management policies in terms of their effect on latency,
energy consumption and other properties. In [31], the authors used iFogSim to evaluate a
proposed QoE-aware application placement policy in fog computing environments.

Many researchers have measured and analysed QoS parameters for NB-IoT. The authors of
[32] obtained empirical measurements of the Signal-to-Noise Ratio (SNR) and Received Signal
Strength Indicator (RSSI) on different floors of a university building. Their results indicated
slight variations in the SNR and RSSI values throughout the day, possibly caused by increases in
mobile network user activity during peak times. In [33], the authors measured the QoS param-
eters (reliability, signal quality, throughput and latency) of a commercial NB-IoT network. The
real network parameters were compared to theoretical parameters, and the subsequent results
revealed that lower signal levels produced higher latency and reduced throughput. The overall
results demonstrated reliable performance of the NB-IoT network. The authors in [34] measured
the physical and application layer QoS parameters in a public NB-IoT network. Compared to
previous studies, their analysis of physical network parameters and their effect on the application
layer QoS was deeper.

The studies mentioned above indicate the topicality of the IoT and fog computing paradigm
and highlight that QoS should be considered in the optimisation of IoT architecture. The
dissertation extends these studies and provides the design for an optimised architecture based
on LoRaWAN, with a practical implementation. Although some studies describe a similar
topic, the practical aspects and many challenges, such as the end-to-end payload encryption of
a standard LoRaWAN solution, were not addressed.

2.2 Prevalent IoT Technologies

Many various network technologies are used in the IoT, but the most common are short-range
wireless networks, wireless local area networks (WLANs), cellular networks and LPWANs [3].

2 STATE OF THE ART 8

All have advantages which make them suitable for different use cases, and they are designed to
complement, not replace each other.

2.2.1 Short-Range Wireless Networks

IoT technologies falling into this category operate primarily in personal applications, in a so-
called Wireless Personal Area Network (WPAN). A critical feature of IoT applications is low
energy consumption, as the end devices in most cases are battery-powered. The short range of
these technologies eliminates their use in applications requiring urban-wide coverage. Namely,
this category includes Bluetooth Low Energy, Zigbee, ZWave, Near Field Communication (NFC)
and Radio Frequency Identification (RFID) [35].

2.2.2 Wireless Local Area Networks

This category is not principally designed for the IoT, evidenced by the higher energy consump-
tion of end devices. When power supply to an end device is not a problem, this can be a suitable
solution for smart home applications [Vas18]. Its advantage is its presence in almost all house-
holds and that building a new network infrastructure explicitly dedicated to IoT communication
is unnecessary. The physical and media access layers are specified in the IEEE 802.11 standard
(Wi-Fi) [35].

2.2.3 Conventional Cellular Networks

Current cellular networks have sufficient coverage, but they are not very suitable for IoT appli-
cations in a default state. The most significant problem is the continuous synchronisation of end
devices (mainly cellular phones) with the network given by the nature of the service, causing
higher energy consumption. Cellular networks such as 1G, 2G, 3G, 4G and 5G fall into this
category.

Because of the extended coverage capabilities of cellular networks and unsuitable features for
IoT applications, the 3GPP (3rd Generation Partnership Project) project attempted to make
adjustments in these features to minimise energy consumption. The result of this effort was NB-
IoT technology, which is integrated into the LTE standard and removes many features to remain
as simple as possible and thereby lower price and minimise battery consumption. Although NB-
IoT was adapted from the cellular network, its types of features place it under the LPWAN
category [37].

2.2.4 Low-Power Wide-Area Networks

LPWAN is a generic term for a group of technologies with common features to enable long-
distance wireless communication with low power consumption. LPWAN technologies are pri-
marily designed to transfer state information of small size in the uplink. These technologies do
not require constant synchronisation with the network since they are not designed primarily for

9 2 STATE OF THE ART

continuous downlink communication. Therefore, end devices can sleep most of the time and
send data only a few times per day, preserving battery life, which is essential, and for some
technologies, the battery can last over ten years [38]. End devices designed for this kind of
network technology are mainly placed in difficult-to-access areas and are battery-powered. Bat-
tery replacement in these areas may be difficult or even impossible. LPWAN technologies are
classified into two categories: technologies which function in an unlicensed frequency spectrum
and technologies which communicate in a licensed frequency spectrum [3]. The first category
is most often represented by LoRa (Long Range) or Sigfox. NB-IoT technology represents the
second category [1].

2.3 LPWAN Technologies

Because the dissertation discusses architecture which supports fog computing, which is especially
relative to the range of urban-wide networks, it is also relevant to examine LPWAN technologies
in the following section. According to the nature of this work and the reasons described in the
introduction, most of the content relates to LoRaWAN technology, which is discussed in detail.

2.3.1 NB-IoT

As the name of the technology suggests, NB-IoT is based on narrowband radio technology, and
it was standardised in Release 13 of the 3GPP, issued in 2016. This release introduced several
new technologies optimised for application in the IoT. The NB-IoT communication protocol is
based on the LTE protocol and reduces many features to make it suitable for the IoT. According
to the specification, NB-IoT lowers the price and energy consumption to track IoT trends [39].
An important feature of NB-IoT is its ability to coexist with GSM and LTE. NB-IoT operates in
a frequency bandwidth of 200 kHz (one resource block) and supports flexible deployment with
three different operation modes [40]:

• In-band operation mode – uses one physical resource block within an LTE carrier,

• Guard-band operation mode – uses the unused resource blocks in guard bands within an
existing LTE carrier,

• Standalone operation mode – adopts idle spectrum resources, for example, by reframing
the GSM carrier to carry NB-IoT traffic.

Mobile network operators can add NB-IoT support to the existing LTE infrastructure by
upgrading the software, which aids quick deployment. Because operators manage the NB-IoT
network, it is impossible to build private networks. In the Czech Republic, the first operator to
offer NB-IoT connection was Vodafone company.

As the NB-IoT operates in a licensed frequency spectrum and employs an LTE-based pro-
tocol, it is a better choice for guaranteed quality applications than LoRa or Sigfox. However,

2 STATE OF THE ART 10

NB-IoT end devices consume additional energy because of QoS manipulation and more energy-
intensive features inherited from LTE [41].

2.3.2 Sigfox

Sigfox [42] is a radio technology designed especially for the IoT. It uses the Ultra Narrow Band
(UNB) modulation technique to provide scalable, high-capacity, and low energy consumption for
end devices with Differential Binary Phase-Shift Keying (DBPSK) at 100 bps. Powered with a
batteries, devices connected to the Sigfox network should last several years, and in many cases,
up to ten years. A significant feature is the ability to design simple, small antennas at the end
of the network infrastructure and cheap, easy-to-match antennas on the device side. The use of
lower data transfer rates has narrower bandwidth requirements, thereby reducing the interference
level and increasing the receiver’s sensitivity. This permits coverage of large geographical areas
with fewer base stations [21]. The technology operates in the ISM (Industrial, Scientific and
Medical) band. This band is an unlicensed frequency band initially intended for industrial,
scientific and medical applications. In Europe, it is a frequency band in the area of 868 MHz.

The unlicensed frequency band has a lower price for data transfer but suffers greater inter-
ference than a licensed frequency band. Devices which communicate in unlicensed bands must
be designed to coexist with other technologies on these frequencies without the risk of collision.

Sigfox Cloud can be used for device management or data collection and provides a web
application interface. Once an end device sends a message to the Sigfox network, one of the
three main ways of handling the received data can be used:

• Graphical user interface – available via a web interface,

• REST API – this interface can be used to reach data and related information,

• Callback – a mechanism to forward each received message to the user’s application server.
Callbacks are fully configurable HTTPS requests. For example, we can set the method,
headers, type of content and content structure within the message body.

The Sigfox technology is suitable for more straightforward applications in which end devices
send uplink messages only a few times per day. In this frequency band, the number of uplink
messages for each end device is limited to 144 and the transmit power is limited to 25 mW.
Sigfox uses the duty cycle method as a mechanism to share the spectrum in the ISM band. In
Europe, the duty cycle is 1%, allowing end devices to transmit only 36 seconds every hour. With
a time-on-air of six seconds per packet, the maximum is six transmitted messages per hour with
a payload of 4, 8 or 12 bytes [43]. Radio messages handled by a Sigfox network are small (12
bytes payload in the uplink, 8 bytes in the downlink) because of the lightweight protocol. The
above implies that the Sigfox technology is not suitable in applications where bidirectional and
frequent communication throughout the day are necessary. Sigfox is a closed technology and

11 2 STATE OF THE ART

does not have many freely available detailed technical specifications. A service provider manages
the network infrastructure and data storage for all received messages [Jal19a, Gre19].

Taking into account the properties mentioned above, it can be concluded that Sigfox is
not very well prepared for the future. While NB-IoT excels primarily in providing QoS, and
LoRaWAN technology allows anyone to build a private network, Sigfox technology offers nothing
special or outstanding as an alternative.

2.3.3 LoRaWAN

LoRaWAN defines the communication protocol and system architecture for the network, while
the LoRa physical layer provides a communications link. LoRa provides wireless modulation for
long-range, low-power and low-data-rate communication. LoRa modulation is based on Chirp
Spread Spectrum (CSS) modulation, which is used by the military and for communications in
space, however LoRa is the first implementation for commercial use [21]. LoRa modulation has
been patented by Semtech Corporation. Figure 1 illustrates a LoRaWAN technology stack.

Protocol and network architecture have the most significant effect on end device battery life,
network capacity, QoS, security and applications. LoRaWAN architecture is typically deployed
in a star-of-stars topology, in which messages sent by each end device can be received by multiple
gateways, not just a single gateway. The technology operates in the ISM band [39].

Application

LoRaWAN MAC

MAC Options

Class A

LoRa Modulation

Regional ISM Band

EU 868

Class B Class C

EU 433 ------AS 430US 915

MAC Layer
(MAC)

Physical Layer
(PHY)

LoRaWAN

LoRa

Application
Layer

Figure 1: LoRaWAN technology stack.

Because end devices are used in applications which have different requirements, the Lo-
RaWAN specification defines three end device classes. The three classes and their features are
as follows [46]:

• Class A (Bidirectional end devices) – Class A end devices can communicate bidirectionally
whereby each uplink message from the end device is followed by two short downlink receive
windows, both with a specified delay. These windows use mutually different frequencies

2 STATE OF THE ART 12

and data rates. End devices of this class have the lowest power consumption. This type
of communication is suitable for communication initialised by the server shortly after
the end device has sent an uplink message. If the server sends a message at any other
time, the downlink communication must wait until the next scheduled uplink transmission.
Implementation of Class A features is mandatory for all LoRaWAN end devices. Figure 2
illustrates the communication scheme of Class A, in which RX1 and RX2 represent the
two receive windows with different parameters.

Transmit RX1 RX2

Receive Delay 1Transmit Time On Air
Receive Delay 2

Figure 2: LoRaWAN Class A communications scheme.

• Class B (Bidirectional end devices with scheduled receive slots) – Class B end devices
have more receive slots. Because the uplink messages are random, downlink transmission
in the case of Class A end devices cannot does not occur predictably. Class B end devices
therefore open extra receive windows at scheduled times in addition to the Class A random
receive windows. For this scheduled timing to function correctly, end devices of this class
periodically receive a signal from the gateway to synchronise all end devices in the network.
In this manner, end devices can open a short receive window at scheduled times to receive
downlink communications. This reception window is called a ping slot, and the downlink
which uses one of these ping slots is called a ping. Figure 3 depicts the communications
scheme of Class B.

Transmit RX1 RX2

Receive Delay 1Transmit Time On Air

BeaconBeacon

Beacon Period

Receive Delay 2

RX RX

Ping Period

Figure 3: LoRaWAN Class B communications scheme.

• Class C (Bidirectional end devices with maximum receive slots) – Class C end devices
allow bidirectional communication nearly continuously because their receive windows with
RX2 parameters are opened almost constantly and close only during transmission or while
listening on RX1. Figure 4 shows that the end device must open a short window with
RX2 parameters immediately after the end of uplink transmission and keeps this window
open until the beginning of the receive window with RX1 parameters. The end device must

13 2 STATE OF THE ART

listen on RX2 immediately after the receive window with RX1 has been closed and continue
listening until the end device transmits another uplink message. The disadvantage of Class
C is that end devices consume more energy than Class A and Class B end devices. In this
manner, Class C communication is designed for end devices only with sufficiently available
power. However, this class offers the lowest latency for server-initiated communications.

Transmit RX1 RX2

Receive Delay 1Transmit Time On Air

RX2

Extends to next uplinkReceive Delay 2

Figure 4: LoRaWAN Class C communications scheme.

As mentioned above, the LoRa physical layer implements CSS modulation. The following
configurable parameters determine its characteristics [26], [47]:

• Bandwidth (BW) – is the range of frequencies available in a certain transmission band. If
a higher BW is selected, the data rates are higher. However, the sensitivity to interference
increases with greater BW. BW can be seen as a trade-off between sensitivity and data
rate. Channels can have a BW of 125, 250 or 500 kHz, depending on the region and
frequency plan. A BW of 125 kHz corresponds to a chip rate of 125 kilo-chips-per-second
(kcps) [48].

• Spreading Factor (SF) – is the ratio between the symbol rate and the chip rate. SF values
can range from 7 to 12, and the different SFs are orthogonal to each other. Although the
authors of some works [49]–[51] have shown that the orthogonality is imperfect, it ensures
that data packets can be successfully decoded if the gateway receives them from multiple
end devices with different SFs concurrently. Higher SF values mean lower sensitivity
to interference, but with a reduced data rate, which increases the airtime and power
consumption requirements of the end device. If an end device is located near a gateway,
the signal does not propagate over a long distance, and therefore a lower SF than the SF
used in signal propagation over long distances should be used [24].

• Carrier Frequency (CF) – is a central frequency which can be configured between 137
and 1020 MHz in accordance with the legislative regulations of a specific geographical
region. The CF value affects the maximum duty cycle per hour according to the ETSI
EN300.220 standard [52]. The duty cycle represents the ratio of the maximum time a
given end device occupies a communication channel relative to a period of one hour. The
duty cycle is expressed as a percentage and represents a certain limitation of fair usage of
the shared channel [53]. Hence, each end device must remain silent for a period of time
before sending another message, thereby reducing the probability of potential collisions.

2 STATE OF THE ART 14

• Transmission Power (TXPower) – is the maximum transmit power the end device can
operate. It is a regional-specific parameter. The value of this parameter is between 0 and
15, where 0 corresponds to a power of 20 dBm and 5 corresponds to 2 dBm. The remainder
of the values are reserved for future use.

• Coding Rate (CR) – represents the ratio of useful bits to redundant bits. Redundant
bits are added to protect useful data from transmission interference when the Forward
Error Correction method is used. Thus, 5–8 redundant bits are added to every four bits.
The coding values are 4/5, 4/6, 4/7 and 4/8. Higher CR values increase the resistance
to interference. With a higher CR, both airtime and power consumption increase. In the
LoRaWAN protocol, CR is fixed at 4/5 [54].

The symbol and data rates depend on the SF and BW, as follows from the corresponding
equations. The symbol rate Rs can be calculated according to [55]:

Rs = BW

2SF
[symbols/sec] (1)

The data rate, also known as a nominal bit rate Rb, can be expressed as [55]:

Rb = SF ·
4

4+CR

2SF

BW

[bits/sec] (2)

LoRaWAN implements an Adaptive Data Rate (ADR) mechanism to successfully optimise
data rates, airtime, and energy consumption. For static end devices, the network server searches
for optimal parameters to evaluate the last 20 uplinks of a specific end device. When the network
server has found these optimal parameters, it prompts the end device to apply them through
MAC commands. This process is referred to as network-managed ADR or static ADR. The end
device itself controls ADR activation by setting the ADR bit in the Frame Header (FHDR). If
the ADR bit has not been set, the network server does not evaluate the incoming uplinks or
control the data rate of this end device. The goal of ADR is to attain transmission with the
highest data rate and lowest airtime and power consumption possible given the conditions at
the time. When the ADR optimises the SFs of the end devices, network capacity also increases
since data packets with different SFs can be transmitted simultaneously [48]. Network-managed
ADR should only be applied to static end devices or end devices with stable RF conditions.
Even a mobile end device can be stationary for a longer time, allowing network-managed ADR
to be used during those times. If the end device is not stationary, ADR is operated by the
end device without collaboration with the network server. This process is referred to as Blind
ADR. However, the end device should enable ADR whenever possible to increase battery life
and maximise network capacity [56].

When an end device needs to participate in a LoRaWAN network, an activation proce-
dure is required. During this activation procedure, two session keys and a short device address
(DevAddr) are assigned to the end device. This information is necessary for subsequent commu-

15 2 STATE OF THE ART

nication with the network. LoRaWAN supports two methods of activation. When an end device
applies over-the-air activation (OTAA), it uses static root keys to negotiate the dynamically
generated DevAddr and session keys during a join procedure. These session keys remain the
same until a new session is established. With activation by personalisation (ABP), an end device
does not contain root keys. Instead, the fixed DevAddr and session keys for the pre-selected
network are embedded in the end device. Thus, no interaction is needed to join the network.
ABP is a less safe method of activation since an end device must use the same session keys
throughout its lifetime, although the power consumption is lower [57], [58].

A benefit of LoRaWAN technology is its openness and the possibility to build private net-
works. These allow developers to design and deploy their LoRaWAN gateways, network server
and application server together with a backend interface for end-users. Deployment of private
networks is a special aspect of LoRaWAN which differentiates it from other technology.

2.4 LPWAN Architectures

In this subsection, different network architectures are discussed to describe the state of the art,
as this is the main topic of the dissertation.

2.4.1 Cloud Computing Architecture

The cloud computing paradigm offers resources (e.g., computing, storage, services, and applica-
tions) over the Internet. It provides several deployment models, for example, public or private
cloud, and three service models: SaaS (software as a service), IaaS (infrastructure as a ser-
vice) and PaaS (platform as a service). SaaS is a service model which gives end-users access
to cloud-based software or other applications. IaaS provides virtualized computing resources
over the cloud, for example, computing power or storage. PaaS is a cloud environment for the
development, deployment and testing of applications. The benefits of cloud computing include
reduced management efforts, on-demand resource allocation, convenience and flexible pricing
based on the usage of services (pay-as-you-go) [5]. In LPWA networks, this is the most com-
mon approach, which is not always suitable. Its fundamental limitation is considerable physical
distance between the cloud service and an end device, which increases the average network la-
tency and jitter and causes location-unawareness [59]. Connectivity is obtained via an internet
connection. Cloud computing may therefore not be suitable for time-sensitive applications, for
example, many smart city applications, healthcare applications and vehicular networks.

2.4.2 Edge Computing Architecture

Because the cloud computing paradigm is not an ideal solution for every application, architecture
based on edge computing eliminates the weakness of high latency. This elimination is achieved
by transferring the computing power nearer to the end devices, i.e., to the edge of the network.
Edge is a term for the intermediate element between a data source and cloud. The main idea

2 STATE OF THE ART 16

of edge computing is to perform computation in the proximity of data providers [60]. The data
providers in the IoT or M2M (various sensors in most cases) generate an enormous amount of
data in every short period. A good example is Google’s self-driving car, which produces nearly
1 GB of data every second [6]. Edge computing can save bandwidth and computational time,
which is crucial in applications where transmitting such a large quantity of data to the cloud
would be impossible.

2.4.3 Fog Computing Architecture

The concept of fog computing was introduced by Cisco Systems in 2012 [13]. Similar to edge
computing, the fog computing paradigm provides computation nearer to the end devices, with
the benefits of low latency, high bandwidth and location awareness. The term fog is an analogy of
the closer proximity of data sources, i.e., a cloud situated nearer to the ground. Fog computing
is typically cooperation with a cloud which, together with end devices, forms a three-layer
architecture. In this manner, tasks requiring low latency or location awareness can be processed
at the edge of the network, while the cloud connection can be used for more complex tasks or
to store historical data. The key differences between edge and fog computing are as follows[12]:

• Fog computing cooperates with the cloud, whereas edge computing excludes this type of
cooperation.

• Fog computing functions with a hierarchical architecture, whereas edge computing tends
to consist of a small number of layers.

• Fog computing provides computation, networking, storage and control, whereas edge com-
puting commonly offers only computation.

The distribution of responsible tasks between the fog and a backend cloud is application-
specific, and it relies on many factors. This distribution of tasks could be predefined, but it could
also be altered dynamically with the network state as a result of CPU load, storage capacity,
fault events, cost targets, etc.

17 3 MACHINE LEARNING

3 Machine Learning

This chapter provides an overview of machine learning and related methods. I have included
this chapter to establish the following methods in context with the solution proposed in this
dissertation.

Machine learning (ML) is a research area in which a machine acquires the ability to modify
or adapt its actions to provide better performance in the future without being explicitly pro-
grammed. The term machine can be understood here as a computer [61]. The basis for ML is
data subsequently separated into three datasets: training (to train the model), validation (to
show how well the model has been trained as it learns), and testing (to produce the final results).
ML typically consists of three phases [62], [63]:

• Training Phase – during this phase, the model is trained by pairing the input with the
expected output. The training dataset is applied during this phase.

• Validation and Test Phase – this phase tests how well the model has been trained in
the previous phase and estimates the model’s properties (error measures, precision, etc.).
The validation and testing datasets are applied during this phase.

• Application Phase – in this phase, the model is exposed to real-world data to obtain
results.

As for the data, it can be either labelled or unlabelled. Unlabelled data is most often raw
data, which consists of samples of natural or human-made items. If a meaning in the form of
labels is attached to the unlabelled data, it becomes labelled. The labels are usually defined
by humans and considerably more expensive to acquire than unlabelled data. Both labelled
and unlabelled data can be applied to the learning model. However, greater accuracy can be
achieved by using a combination of labelled and unlabelled data [62].

3.1 Machine Learning Sub-Classes

ML can be divided into several sub-classes. The following is one method of dividing individual
ML algorithms [62].

3.1.1 Supervised Learning

Supervised learning is the most common type of ML, which consists in finding the most suitable
classifier f : Y → X for a given problem [61]. An algorithm which falls into this category
is based on creating mappings between input and output attributes, which are then used to
generate output for new input data. For supervised learning, the assumptions of what needs to
be analysed in the given dataset are known. This type of learning operates with labelled data. If
the data label type is categorical, it is a classification problem; if it is numeric, it is a regression
problem [64].

3 MACHINE LEARNING 18

3.1.2 Unsupervised Learning

This type of ML is applied if a specific aim that needs to be achieved is unknown, which also
determines that the output attributes are not defined. It is used to explore and understand
data for building up ML models where the algorithm does not have access to labels because
an unlabelled dataset is used. It is therefore associated with the creation of a model after the
process of finding similarities in the input data. This learning type is therefore not based on
finding mappings between input and output data, but instead analyses the organisation of points
in the input data. For example, clustering or outlier detection can be included in the category
of unsupervised learning [62], [64].

3.1.3 Semi-Supervised Learning

Semi-supervised learning uses both labelled and unlabelled data. Because the acquisition of
labelled data is expensive since the labels are assigned by a specialist, the dataset contains only
a small amount of labelled data and a large amount of unlabelled data. The presence of labelled
data can significantly improve learning accuracy. The assumptions for unlabelled data must be
correct, as any wrong assumptions can invalidate the model. This learning type is inspired by
human learning [62], [64].

3.1.4 Reinforcement Learning

Reinforcement learning is based on obtaining a reward or penalty depending on the achieved
results. The model is responsible for decisions which maximise performance, for which it then
receives feedback in the form of regular rewards. Unlike supervised learning, the results are
not immediate and may require a series of steps before the final result is obtained. Ideally, the
algorithm produces a sequence of selections that help to obtain the greatest reward [62], [64].

3.1.5 Deep Learning

Deep learning focuses on combining ML with artificial intelligence (AI). It is a widespread
technique applied to resolve the most complex AI problems. This area explores the creation of
more complex neural networks to solve problems classified under semi-supervised learning and
works on datasets which contain only a small amount of labelled data. A network that forms
a deep learning model contains multiple layers, which gave this area the adjective deep. This
category includes, for example, convolutional networks or deep belief networks [62].

3.2 Classification Algorithms

In this section, the selected classification algorithms (classifiers) are further discussed. Later, the
selected classifiers are used and validated in the proposed solutions discussed by this dissertation.

19 3 MACHINE LEARNING

Classification is suitable if the data type of a label is categorical and the task of a classification
algorithm is to divide the dataset into specific classes.

3.2.1 Decision Tree

The Decision Tree algorithm can be applied to solve both classification and regression problems.
It is an algorithm based on a tree-like model, which accepts a vector of attributes at the input
and returns a decision, i.e., one of the possible output values. Each inner node of the tree
represents a condition and is divided into individual branches. A branch that is not further
divided represents the leaf of the tree, i.e., the target value. Alternatively, the leaf may contain
a probability vector indicating the probability that the attribute has a particular value [65].
Features in a dataset can be numerical or categorical. The output of a classification decision
tree is a particular category (class).

Because most datasets have many features, it is necessary to prevent overfitting. This pre-
vention can be done by defining the minimum quantity of training inputs to use on each leaf.
Another option is to determine the maximum depth of the tree, i.e., the longest path from the
root of the tree to the leaf. To avoid unnecessary complexity, a decision tree can be pruned to
remove branches that use features with low importance.

A significant advantage of decision trees is their simple interpretation, which leads to an
easier understanding of the function. However, once we have a dataset with many features,
the training time increases as the tree becomes more complex. Another potential problem of
decision trees is overfitting, but the improvements described above can be applied to prevent
this problem [66].

3.2.2 Random Forest

As already mentioned, the disadvantage of a decision tree is that it is prone to overfitting, which
leads to low accuracy when applying a decision tree to a test dataset. A random forest consists
of a certain number of decision trees which perform together as an ensemble to achieve better
prediction accuracy. The concept behind the random forest classifier is known as the wisdom of
crowds [62]. The prediction of the individual trees is combined, resulting in the final prediction
of the random forest classifier. Although the predictions of some trees may be wrong, many
other trees will predict correctly, leading to the correct decision overall. Random forests can be
used with nominal and numerical attributes.

The advantage of a random forest is high efficiency and accuracy even with large datasets. In
addition, individual trees are built on bootstrapped subsets, not on the original dataset, which
prevents overfitting. Bootstrapping also ensures the uniqueness of individual decision trees in
a random forest. The disadvantage of random forest is the more complex interpretation than
with a single decision tree, because it aggregates several such decision trees. However, random
forests often have superior performance [67].

3 MACHINE LEARNING 20

3.2.3 K-Nearest Neighbor

As with the decision tree and random forest algorithms, k-nearest neighbour (k-NN) can be used
to solve classification and regression problems. This algorithm assumes that the similarities
are close to each other. Therefore, it is based on finding the nearest neighbour using some
of the distance measurement techniques. Since searching for only one nearest neighbour is a
problematic task in terms of sensitivity to outliers, the k-NN algorithm is based on searching
for k nearest neighbours. However, it is necessary to select an appropriate value of k, as too
low values may lead to sensitivity to outliers, while too high values may cause the inclusion of
too many neighbours, leading to increased inaccuracy. Selecting an optimal value is therefore
necessary. Usually k is selected as a low positive number [62].

Modification of the k-NN algorithm is a weighted k-NN, where neighbours are assigned
weights through the kernel function. The kernel function assigns higher weights to neighbours
which are closer to each other and lower weights to neighbours which are further away [68].

One of the main parameters affecting the output of k-NN is the distance measurement
technique, as there are several commonly used methods. If the algorithm works with numerical
attributes, the default method is Euclidean distance, which applies the following formula to
calculate the distance [62]. The disadvantage of this method is sensitivity to extreme values
within one attribute.

d(x, y) =

⌜⃓⃓⎷ n∑︂
i=1
|xi − yi|2, (3)

where x and y are vectors in two-dimensional vector space and n is the number of variables in
the vectors.

If the algorithm works with categorical attributes, the default method is Hamming distance.
This method is based on comparing values and determining whether they are equal. If the values
are equal, the distance is 0, otherwise the distance is 1 [63].

3.2.4 Support Vector Machines

Support Vector Machines (SVM) is a linear classifier used to solve classification problems and is
based on the principle of maximising the margin. It is especially suitable for binary classification
[69]. It only works with numerical features, for which it is more efficient. In the case of categorical
features, it is necessary to convert them into numerical features. Considering two-category
classification, SVM divides the space with hyperplane into two regions, each of these regions
corresponding to a specific class. The hyperplane can be imagined as a line in two-dimensional
space or as a plane in three-dimensional space [62]. The principle is to find a hyperplane for
which a maximal margin between this hyperplane and the nearest point of classification remains
on both halves. The points located on this hyperplane are also called support vectors.

21 3 MACHINE LEARNING

When a linear boundary dividing the data is not adequate, it is necessary to determine a
nonlinear boundary using a kernel function. Kernel-based SVM transforms the input data into
a hypothetical kernel (feature) space, where it is possible to perform linear classification [70].

The SVM classifier is one of the best in generalisation and achieves low overfitting. Its main
disadvantage is that it is not interpretable.

3.2.5 Naive Bayes

The naive Bayes algorithm is based on the “naive” assumption that all dataset attributes are
equally important and independent. Hence, the algorithm received the denomination naive
because the assumption is met only exceptionally in real data. However, despite violation of the
assumption, the naive Bayes classifier is able to achieve high accuracy. Prediction of the classifier
is based on the Bayes conditional probability formula, which is used to find the probability of a
specific outcome if we know certain other probabilities. The formula has the following form:

P (A|B) = P (B|A)P (A)
P (B) , (4)

where A and B are two events.
The naive Bayes classifier then solves the classification problem to predict the class c based

on the provided feature vector X = [x1, x2, . . . , xn]. The equation is as follows:

P (c|x1, . . . , xn) = P (x1, . . . , xn|c)P (c)
P (x1, . . . , xn) . (5)

However, the simplicity of the naive Bayes classifier may lead to a state in which a given
attribute value never occurs in the context of a particular class in a training dataset. In this
case, the conditional probability has a zero value, and if it is multiplied with other probabilities,
a zero value is returned, leading to an error in the overall result. The solution to this problem is
Laplace smoothing, where a certain low number (usually 1) is added to each cell in the frequency
table, which ensures that each class-attribute combination is at least 1 [71].

The naive Bayes classifier is used to solve classification problems, and its advantage is that
it can build a good model even with a small dataset.

3.2.6 Artificial Neural Networks

The inspiration for the artificial neural networks (ANN) classification technique was the struc-
ture of biological neural networks in mammalian brains. The general function of neurons is to
receive input signals and produce a response. Each biological neuron has dendrites which receive
information from other neurons, at most one axon to transmit the output, and contact points
between different neurons called synapses. Synapses increase or decrease the transmitted signal.
Artificial neurons (perceptrons) adopt this concept, and each neuron has defined inputs (x) and
outputs (y). An activation function is responsible for generating outputs for different neural

3 MACHINE LEARNING 22

inputs. Typically, individual inputs have associated weights (w) which multiply the incoming
information by the corresponding value. Output can be further modified by a value called bias
[72], [73].

Sigmoid neurons are often used in ANNs to provide output which is smooth, real-valued and
therefore a bounded function of all inputs (n). The following equations define the output of a
neuron which uses the sigmoid activation function [62]:

z = bias +
n∑︂

i=1
(wixi), (6)

y = 1
1 + e−z

. (7)

Neurons can be connected to form an ANN, which allows the processing of inputs that the
network does not yet know. An ANN consists of several layers which can be divided into three
groups. The first group is called the input layer and contains several neurons, each passing a
specific attribute of a dataset to the network. The second group is called the hidden layer. A
neural network can be formed with only one hidden layer, or it is possible to have multiple
hidden layers, where each layer can be responsible for specific learning. The last group is called
the output layer and contains the output of the neurons presented in the final hidden layer. Its
role is to identify the resulting classes [74]. Neurons from the input layer are connected to each
neuron in the first hidden layer. The first hidden layer neurons are connected to each neuron
in the next hidden layer. The neurons in the final hidden layer are connected to each neuron in
the output layer. An ANN where neurons in the layers do not form a directed cycle and where
information moves only forward (from the input layer, across the hidden layers, to the output
layer) is called a feedforward neural network [75].

Input Layer

1st Hidden Layer 2nd Hidden Layer

Output Layer

Figure 5: Diagram of a neural network.

For an ANN to provide the most accurate results, the weights of connections between indi-
vidual neurons must be correctly set. These weights are adjusted during the learning process
to determine their correct values. One of the learning methods in a multi-layer ANN is back-

23 3 MACHINE LEARNING

propagation, which attempts to improve the initial randomly generated weights of individual
connections. The result of this adjustment is minimisation of the error between the real and ex-
pected output of an ANN [72]. The diagram in Figure 5 illustrates a feedforward neural network
(FFNN) with two hidden layers, where the nodes represent individual artificial neurons.

Due to the nature of multi-layer ANNs, the correct choice of network topology is essential
in achieving optimal results. If an ANN contains too few neurons, it leads to the inability of
a neural network to correctly learn the presented patterns. In the case of too many neurons,
a neural network tends to reproduce the learned patterns too accurately, limiting its ability to
evaluate new input correctly.

3.3 Model Evaluation Metrics

Once a model has been trained, certain metrics are required to evaluate whether the results
obtained with this model are correct. For this purpose, the accuracy and error rate can be
evaluated. General accuracy can be calculated according to:

A = Ncorrect

Ntotal
· 100 [%], (8)

where Ncorrect is number of correctly classified inputs and Ntotal is the total number of inputs
[76].

In analysing the results, it is much more appropriate to proceed more deeply than evaluate
unweighted accuracy. It is possible to construct a confusion matrix, where the individual columns
represent the predictions obtained with a specific model and the rows represent true values. A
confusion matrix is a key element in defining the performance metrics of a model. Values on the
leading diagonal of a matrix are those which are predicted correctly. Values outside the diagonal
are predicted incorrectly [64]. The pattern of a confusion matrix is illustrated in Figure 6.

True Positive False Positive

False Negative True Negative

Po
si

tiv
e

N
eg

at
iv

e

Positive Negative

Pr
ed

ic
te

d
C

la
ss

True Class

Figure 6: Confusion matrix.

3 MACHINE LEARNING 24

Four different error metrics are the most usual in classification problems [77]:

• Accuracy – the percentage expression of correct predictions. The equation for accuracy
is:

Accuracy = TP + TN

TP + FP + TN + FN
· 100 [%] (9)

• Recall (Sensitivity, True Positive Rate) – the percentage expression of positive cases
that the model was able to predict. The equation for recall is:

Recall = TP

TP + FN
· 100 [%] (10)

• Specificity (True Negative Rate) – the percentage expression of negative cases that
the model was able to predict. The equation for specificity is:

Specificity = TN

TN + FP
· 100 [%] (11)

• False Positive Rate – the percentage expression of negative cases that are mistakenly
predicted as positive, with respect to all negative cases. The equation for false positive
rate is:

FalsePositiveRate = FP

FP + TN
· 100 [%] (12)

• Precision – the percentage expression of positive predictions that were correct. The
equation for precision is:

Precision = TP

TP + FP
· 100 [%] (13)

In addition to calculating the criteria for evaluating predictions, a graphical visualisation
with receiver operating characteristic (ROC) curves can be used to evaluate and adjust a binary
classifier. It is a graphical plot where the x-axis shows the percentage of false positives (1-
specificity) and the y-axis shows the percentage of true positives (recall). Figure 7 provides an
example of this type of curve.

Each run of a classifier generates a single point on the ROC plot. As follows from the nature
of this chart, an ideal classifier would produce a point (0, 1), which means 100% true positive
and 0% false positive rates. Conversely, the worst classifier would produce a point (1, 0), which
represents a 0% true positive rate and a 100% false positive rate. This implies that the nearer
the results are to the upper left corner, the better the classifier performance. Any classifier lying
on the diagonal from (0, 0) to (1, 1) has a random chance for the accuracy of the results. The
area under the curve (AUC) is the area measured under the ROC curve [64].

25 3 MACHINE LEARNING

AU
C

ran
do
m

cla
ssi
fica

tion

pe
rfe
ct

cla
ssi
fica

tion

RO
C

cur
ve

Figure 7: Example of an ROC curve.

3.4 Cross-validation

Cross-validation is a technique for evaluating the effectiveness of ML models. This evaluation is
then essential for selecting the appropriate ML algorithm to solve a specific prediction problem.
The cross-validation technique does not apply the entire dataset for training and testing, only
a certain subset. In this manner, cross-validation results can show whether the ML model is
overfitting, underfitting, or well generalised. Several methods can be used to select subsets from
a dataset for training and testing [78], [79]:

• Hold-out – is the simplest method. The dataset is divided into two subsets, where
one subset is used for training the given classifier and the other subset for testing. The
advantage of this method is low computational time. However, the results strongly depend
on the data contained in the training and testing dataset.

• k-fold – improves the hold-out method. The dataset is divided into k sub-sets, where one
subset is used for testing and the remaining k − 1 subsets for training. This procedure is
then repeated, each subset being used for testing only once. Usually, a value of 5 or 10 is
given to k. The advantage of this method is a relatively precise estimation of accuracy.
The disadvantage is longer computation time. Figure 8 depicts the principle of the k-fold
method.

• Repeated random sub-sampling – the dataset is randomly divided into training and
testing sets according to user-defined sizes. The advantage of this method over the previous
method is the independence of the ratio between training and testing subsets on the number
of folds. The disadvantage is the randomness that may cause some data to appear multiple
times in subsets whereas some data may not be used at all.

3 MACHINE LEARNING 26

Testing Training Training Training

Training Testing Training Training

Training Training Training Testing

Iteration 1

Iteration 2

Iteration k

Dataset

1 2 kk-1

Figure 8: k-fold cross-validation principle.

• Leave-one-out – is a modification of the k-fold method, where k corresponds to the
number of samples in the dataset. In this manner, one sample of the dataset is selected
for testing, and the rest is used for training. As follows from the nature of this method, it
is time-consuming, although it achieves the best results.

27 4 AIMS OF DISSERTATION

4 Aims of Dissertation

LPWAN technologies such as LoRa, SigFox and NB-IoT are based on the cloud computing
paradigm, mainly due to on-demand services and scalability features. However, the cloud com-
puting paradigm also has drawbacks which make it insufficient for some IoT use cases. The
main problem is that all the computation and storage of data inherently occur in a cloud. Fog
computing, however, introduces an intermediate layer which can serve for computation, storage
or filtering of data. In this manner, not all data are computed within a cloud, and this solution
can thus attain greater efficiency, selective data privacy and correct reactions for time-sensitive
applications.

Based on the researched information and state of the art, the aims of the dissertation are as
follows:

• Explore and design an optimised IoT network architecture with integrated components,
including communication with a cloud service.

• Research a new method based on machine learning to control data transfer between the
fog layer and a cloud service.

• Verification of the design features, implementation of the critical components, and com-
parison with existing IoT architecture solutions.

The aims of the dissertation were approved by a commission on rigorous examination, held
in June 2020.

By applying the fog computing paradigm to the architecture, response time and thus the
QoS can be influenced in several ways. Because location awareness is supported, the fog gateway
can better respond to current RF conditions and adjust the radio parameters individually for
different end devices or improve the existing ADR mechanism, which is discussed in Section 2.3.3.
Optimisation of these parameters has been explored in many studies, presented in Section 2.1
which discusses the existing studies. With a suitable choice of configurable LoRa modulation
parameters for individual end devices, a specific end device can be prioritised to ensure quicker
and more reliable network transmission of messages from the device. Another fog computing
optimisation method is decoding and decrypting the message payload on a fog gateway, which
reduces processing time since messages do not need to be forwarded to a public cloud. Fog
message processing also increases reliability since processing can continue even after a connection
failure between the gateway and cloud service. Moreover, fog computing allows selective message
privacy according to a specific end device.

Because the IoT network can be optimised by applying the fog computing paradigm in many
different ways, the detailed exploration, design and implementation of all methods are beyond
the scope of this dissertation. Therefore, in the following chapters, I focused mainly on decoding
and decrypting the message payload on the fog gateway and researching related optimisations,
because the State-of-the-Art section indicated that similar research does not exist.

4 AIMS OF DISSERTATION 28

To simplify the explanations of individual principles and procedures, I apply the term “pri-
vate data” in the following chapters interchangeably with the term “time-sensitive data”, ac-
cording to the meaning of the fog computing paradigm. Both private and time-sensitive data
need to be processed expeditiously and privately by a fog node, while the remaining traffic is
processed in a cloud.

Overall, the dissertation contributes with an optimised IoT network architecture that applies
the fog computing paradigm. Because a fog gateway can decode and decrypt the received
message payloads and make decisions according to the acquired data, I have proposed new
methods of controlling the transfer of data computation and storage between the fog and cloud
layers. These methods operate according to static and dynamic information. Static information
is predefined by the end device owner, and the dynamic information depends on the result of a
machine learning classifier.

29 5 PROPOSED NETWORK ARCHITECTURES

5 Proposed Network Architectures

This chapter deals with the first aim of the dissertation. It contains a description and comparison
of three proposed IoT network architectures and a discussion of which one is optimal. That is
an essential component which affects the overall properties available to end nodes.

5.1 General Fog Computing Architecture

Because the resulting architecture adopts the fog computing paradigm, it contains three layers.
Generally, the bottom layer includes IoT end devices designed to collect information from the
surrounding environment. The middle layer is called the fog layer and includes fog nodes designed
for autonomous decision-making based on processed data. The upper level is the cloud layer,
which consists of a cloud server as an addition to the fog nodes [12]. Figure 9 illustrates the
general three-layer architecture.

IoT Devices

Fog Layer

Cloud Layer

Figure 9: Three-layer fog computing architecture.

The following properties must be preserved to adopt the fog computing paradigm:

• Location-awareness – the closer proximity of end devices allows the network to react to
various end device needs and adapt to their requirements.

• Efficiency – is given by full cooperation between the fog and cloud layers. If required,
computation and storage can be transferred from the fog layer to the cloud layer and vice
versa. This transfer can happen in many circumstances, for example, during a situation
when resources are unavailable.

5 PROPOSED NETWORK ARCHITECTURES 30

• Lower latency – lower latency can be achieved through processing at the network’s edge
and applied to add support for time-sensitive applications, for example, alarm systems or
health monitoring systems.

The properties mentioned above are the main reasons for implementing fog computing in
the IoT, and their preservation is therefore essential.

5.2 Standard LoRaWAN Architecture

As mentioned in Section 2.3.3 describing LoRaWAN technology, LoRaWAN enables the creation
of private networks, and because it is open technology, it allows modification of the network
architecture. Standard LoRaWAN network architecture consists of the following components
[80]:

• End devices – sensors or actuators capable of wireless communication with gateways
using LoRa RF modulation. The end devices are mostly battery-powered.

• Gateway – serves as a bridge between a low power LoRaWAN network and high band-
width IP network such as Ethernet, Wi-Fi or Cellular. The gateway works as an entry
point to the network for end-nodes, converts their RF packets into IP packets, and relays
them.

• Network server – manages the network, filters redundant received packets, performs
security checks and controls adaptive data rate, etc. It serves as an interface to the
application server.

• Application server – a final destination for data. It determines what to do with the
received data; for example, insertion into a database or visualisation in a certain web
application.

The LoRaWAN standard network architecture depicted in Figure 10 shows that a gateway is
the closest component of the architecture from the point of view of the end device. The gateway
acts as a passive area of the network from the perspective of data processing and computing.
It simply receives and transforms data into a form suitable for subsequent transmission and
processing, then forwards the data to the network server. The application server is located
somewhere in the Internet and solves data processing, computing and storage. The network
architecture corresponds to the cloud computing paradigm scheme.

31 5 PROPOSED NETWORK ARCHITECTURES

End	Devices

Gateways

Network	Server Application	Server

Figure 10: Standard LoRaWAN architecture.

5.3 Proposed Network Architectures

The hypothesis of the dissertation is as follows. If we apply specific changes to basic Lo-
RaWAN elements, we can transform them into an architecture which supports the fog computing
paradigm. The main challenge is application payload encryption, which is end-to-end encrypted
between the end device and the application server. The gateway itself does not have access to
decrypted data, and as a result, data storage and processing are not possible.

Two keys are stored in end device memory:

• Network Session Key (NwkSKey) – This key is used by both the network server and
end device to calculate and verify the message integrity code (MIC) and ensure the data
integrity in data messages. It is stored in the end device and network server memories
after a successful activation process.

• Application Session Key (AppSKey) – This key is designed for the decryption and
encryption of the application payload. It is stored in the end device and application server
memories after a successful activation process.

The integrity of the application payload is not protected, and therefore, the risk arises that
the network server may change the content of a data message. However, network servers are
commonly considered trustworthy. Both keys are specific to each end device. More information
about keys and the decryption process is presented in 7.2.

The following section of the dissertation describes three different proposed network architec-
tures. These are further compared from multiple perspectives to determine the optimal one.

5.3.1 Architecture A

In the standard LoRaWAN architecture, all gateways are separated units consisting of an RF
concentrator, an antenna and a computing unit. The RF concentrator is able to receive packets
sent by different end devices while the computing unit converts and relays the packets. The

5 PROPOSED NETWORK ARCHITECTURES 32

network and application servers are separated from the gateways, and they both run on dedicated
hardware accessible via the gateway through an internet connection.

The proposed Architecture A is based on the idea that all standard LoRaWAN network
elements can be integrated into a single unit, called a fog gateway. In this manner, each gateway,
in addition to receiving, converting and relaying packets, performs the functions of private
network and application servers. This adjustment could lead to quicker responses to current
conditions according to actual data.

However, fog processing is not always necessary, and sometimes it is not even possible.
Especially when a great amount of data is being transferred, a disproportionate load could
arise considering the limited computing resources of fog gateways. To solve the problem, a
remote cloud server is presented in this architecture as an addition to fog gateways. In the
entire LoRaWAN network, only one cloud server is available for all fog gateways. This cloud
server provides a web-based graphical interface and APIs to manage fog gateways, devices and
applications. A diagram of Architecture A is presented in Figure 11.

End	Devices

Fog	Gateways

User	Interface

Cloud	Server

Figure 11: Diagram of network Architecture A.

5.3.2 Architecture B

Architecture B applies a slightly different view on optimisation. Unlike Architecture A, the
proposed Architecture B does not require integration of the network and application servers
into each fog gateway, but it is integrated into only one gateway in the network. The remainder
of the network’s gateways function identically to the gateways in a standard LoRaWAN network
and can only receive, convert and relay packets. For the correct operation of this architecture, it

33 5 PROPOSED NETWORK ARCHITECTURES

is necessary to involve a certain communication model. Because a single complex node controls
multiple nodes with limited logic, the master/slave model comes into play.

Master/slave is a communications model in which a single node (master) controls multiple
slave nodes and mediates communication between them. These master and slave nodes perform
as gateways, in this case. The slave gateway operates as a standard LoRaWAN gateway and
transfers all traffic to the master gateway. The master gateway integrates the network and
application servers to decrypt the payload and control packet relaying by the slave gateways.

Due to the limited computational and storage resources of a fog gateway, a remote cloud
server forms a part of the architecture. This cloud server is connected to the master gateway
via the Internet and is used to store long-term data. A diagram of Architecture B is presented
in Figure 12.

End Devices

User Interface

Cloud Server

Slave Gateways

Master Gateway

Figure 12: Diagram of network Architecture B.

The main advantage of this architecture is the elimination of the need for an internet con-
nection for each gateway. An internet connection is necessary while applying the standard
LoRaWAN architecture because the network and application servers are situated in the cloud.
Only the master gateway is connected to the Internet in Architecture B since it communicates
with the remote cloud server.

5.3.3 Architecture C

Architecture C applies an entirely different principle to the previous architecture optimisations.
Instead of reallocating individual components of the standard LoRaWAN architecture, the main
difference here is the communication between a gateway and the application server. In this

5 PROPOSED NETWORK ARCHITECTURES 34

manner, Architecture C does not differ from the standard LoRaWAN architecture in terms of
structure.

As mentioned above, due to end-to-end encryption, a LoRa gateway itself does not know the
session keys and cannot access the decrypted payload since it is the application server which
performs decryption. The core concept behind this optimisation is negotiation between a specific
fog gateway and the application server to obtain and subsequently store the necessary keys for
the individual end devices in the secured database located on the fog gateway. In this manner, a
fog gateway sends requests to the application server only at first communication with a specific
end device or in the case of need. Interaction with the application server is thereby reduced to
a minimum. A diagram of Architecture C is presented in Figure 13.

End Devices

Fog Gateways User Interface

Cloud Server

Ke
y

Nego
tia

tio
n

Ke
y N

eg
oti

ati
on

Figure 13: Diagram of network Architecture C.

Communication occurs as follows:

1. After a successful process of personalisation and activation of a specific end device, this
end device can send a message via the LoRaWAN network

2. When a fog gateway in this LoRaWAN network receives the message, it checks the DevAddr
in the message header and compares it to the content in the local database.

3. Suppose the specified DevAddr is present in the local database. In this case, the end
device has already communicated with this fog gateway, and the session keys can therefore
be loaded to decrypt the message payload. If the specified DevAddr is not present in the
local database, this represents the first communication with the specific end device. In
this case, the fog gateway must negotiate the session keys with the application server and
then transfer and store them in the private local database for further use.

35 5 PROPOSED NETWORK ARCHITECTURES

4. When the session keys are loaded, the fog gateway can decrypt and process the message
payload.

5.4 Comparison of the Proposed Architectures

A comparison of the proposed architectures is presented in this section. To obtain fair results,
comparisons both in terms of execution time [Jal21] and functional properties were performed.

5.4.1 Comparison in Terms of Queuing Theory (Execution Time)

Since an IoT network can be viewed as a particular queuing system, it is possible to use queuing
theory and compare the proposed architectures in terms of service time. Individual messages
from end devices can be seen as requests to be served. The LoRa gateway, network server
and application server are queuing nodes. Assuming that the gateway can receive up to eight
LoRa messages simultaneously with different SFs on different channels [82], the queuing node
representing the gateway has eight servers which can serve requests concurrently. To establish
the same conditions for each of the proposed architectures, I assumed that all end devices fall into
Class A, use the ABP activation method and send messages without the need for confirmation.
The downlink response is therefore unnecessary.

Since the considered physical layer (LoRa) is the same for all architectures, the simulation
is mainly focused on the processing of data by individual elements of the architecture. For
correct simulation of data processing, it is necessary to model the behaviour of an individual
end device while sending messages in a certain manner. It is often the case that IoT devices
such as sensors, trackers and other similar devices send their data periodically in specific time
intervals. Aggregated traffic from a large number of the mentioned IoT devices can be seen
as a superposition of deterministic point processes. If these individual point processes are
considered independent and the individual devices generate their messages independently, this
operation can be modelled according to the Poisson process. We can describe aggregated traffic
using interarrival times, which are the intervals between end device messages from a LoRa
gateway perspective. Because of the presence of this periodicity during message transmission
by particular end devices, an error element is involved in the Poisson approximation. The
authors of publication [83] assumed that in the case of lower loads with an average use of 0.55
in a comparison of nD/D/1 and M/D/1 systems, the difference between them was negligible.
However, if we consider the real environment of an IoT network, messages and their payloads
have varying sizes. Service time is thus not deterministic but variable and corresponds to
an exponential distribution. The individual queuing nodes in this dissertation are therefore
modelled according to the M/M/n model, where n is selected according to the specific simulated
component of the network.

The problem at this point is that generally valid values for the required service times do
not exist, but they can be obtained through experimental measurements on real hardware. Of

5 PROPOSED NETWORK ARCHITECTURES 36

course, the results depend on the computational performance of these components, but assuming
identical hardware for each of the proposed architectures, the simulation results should not
possess any distortions.

Experimental Measurement
To obtain the service times of the components of each architecture, a series of experimental
measurements were conducted for this study. As hardware for the LoRa gateway, a Raspberry
Pi 4 Model B with 2 GB of RAM and Raspbian OS was used. I selected a virtual machine
with 2 GB RAM and OS Debian, which offered sufficient computational power to accomplish
the function of the network and application servers. Because message propagation time in the
radio environment was not essential for these experimental measurements, execution time was
measured from the moment the gateway received the message.

For the proposed architectures A and B, the gateway (packet forwarder) execution time
(Tpktfwd) was measured until the message was forwarded to the network server, which continued
with message processing. The network server’s execution time was measured from the moment
when this server received the message until the moment when the message was processed and
forwarded to the application server. Execution time by the application server was measured
from the moment when the message was received until the moment when the decrypted payload
was added to the database. The experimental measurements were conducted for 1000 messages.
From these measurements, I calculated the average times. The results of these experimental
measurements are shown in Table 1.

Table 1: Execution times of the components.

Component Average Execution Time (ms)
Packet forwarder (gateway) 0.16

Network Server 194.62
Application Server 15.16

Proposed Architecture C applies a different method since the packet forwarder is specifically
modified to perform fog computing operations. In this case, the packet forwarder was designed
to forward data to a network server and additionally decode the messages and decrypt the pay-
load. It is therefore necessary to add the execution times of individual fog computing functions
performed by the gateway, i.e., message decoding (Tdecode), payload decryption (Tdecrypt) and
subsequent storage of the payload to the database (Tdatabase), to the experimental measurement
result of the execution time by the packet forwarder.

37 5 PROPOSED NETWORK ARCHITECTURES

Tfog = Tdecode + Tdecrypt + Tdatabase

Ttotal = Tpktfwd + Tfog

The above formulas can be used to obtain the total message execution time necessary to
perform fog computing functions related to the proposed Architecture C. As in the previous case,
a Raspberry Pi 4 Model B was used as the gateway hardware for the experimental measurements.
One thousand measurements of the individually mentioned functions were gradually performed.
The algorithm generated a pseudo-random string of at least 20 characters for each decoding and
decryption process measurement. The decryption function is described in Section 7.2. Storage
of metadata and payload to the database was subsequently measured to obtain the final time
component. The results of these experimental measurements are shown in Table 2.

Table 2: Execution times of the fog gateway.

Time component Average Execution Time (ms)
Tdecode 1.95
Tdecrypt 1.19
Tdatabase 7.05

Tfog 10.19
Ttotal 10.35

Simulation Preface
In the previous step, I obtained the required execution times for each component of the ar-
chitecture, and it was possible to proceed to the simulation itself. For the simulation, I used
the graphical programming environment Simulink, which is an extension of the software tool
Matlab. The Time-Based Entity Generator block generated individual service requests for each
of the simulated architectures. The integration time corresponded to the Poisson distribution,
where the mean, for the sake of the simulation, was set to 0.1. I selected this value to keep
use of the packet forwarder low (around 20%), and therefore the resulting time was not affected
by blocking requests in the queue. To reduce the complexity of the simulation, I used only the
data privacy value as an input to decide whether to select fog computing or cloud computing.
In the case of a private message payload, the message was processed by the fog gateway. In the
case of a public message payload, the message was transferred to the public cloud for further
processing. All simulations were performed for 10,000 messages.

Architecture A Simulation
For proposed Architecture A, the n-server block representing the packet forwarder on the gateway

5 PROPOSED NETWORK ARCHITECTURES 38

side was the first block included in the simulation. Here, the average service time was set to 0.16
ms and the number of lines (n) to 8. The request was then passed to the infinite server (n=∞)
block, which represented a network server with an average service time of 194.62 ms, followed by
a chained infinite server block, which represented an application server with an average service
time of 15.16 ms. After processing by these chained queuing systems, the application server
evaluated whether the data was private. If true, the current processing time was stored, and the
simulation cycle ended. If it was not private, the application server forwarded the message to a
remote cloud server. A delay on the line of 0.5 ms thus contributed to the total execution time.
Because the fog gateway forwarded the data to the cloud server after processing by the network
and application servers, the cloud server only inserted the data into the database. Its average
execution time was therefore brief and set to 7 ms, according to the results of the experimental
measurements. When the decrypted payload was stored in the database, the total execution
time was then saved, and the simulation cycle ended. A diagram of the simulation model is
shown in Figure 14.

End Device

Packet
Forwarder

Network
Server

Application
ServerStart Timer

Public data

Private data

Pub/Priv
Decision

Logic

Cloud
ServerLink Delay

Stop Timer

Fog Gateway

Figure 14: Diagram of the simulation model of Architecture A.

Since Architecture B is only a variation of Architecture A in which the network and appli-
cation servers were not implemented at each gateway but only at a master gateway, it was not
necessary to perform a simulation for this architecture. The resulting execution times differed
only in a line delay of an expected 0.5 ms during transmission between the slave and master
gateways, which was not needed in Architecture A.

Architecture C Simulation
For proposed Architecture C, the n-server block representing the packet forwarder was the first
block included in the simulation. The average service time of this block was set to 0.16 ms and
the number of lines to 8. The data was then evaluated whether it was private or public. In the

39 5 PROPOSED NETWORK ARCHITECTURES

case of private data, the processing request was routed to the chained infinite server blocks for
decoding, decryption and insertion into the local database. These blocks used average service
times Tdecode, Tdecrypt and Tdatabase, respectively. This step ended message processing in the case
of private data. The total execution time was then saved, and the simulation cycle ended. In the
case of transferring public data, the message was forwarded to a cloud with a link delay of 0.5
ms. The cloud consisted of network and application servers with average service times of 194.62
and 15.16 ms, respectively. When processing on these queuing systems was completed, the total
execution time was then saved, and the simulation cycle ended. A diagram of the simulation
model for proposed Architecture C is shown in Figure 15.

End Device

Packet
Forwarder

Network
Server

Application
Server

Start Timer

Public data

Private
dataPub/Priv

Decision
Logic

Link Delay

Stop Timer

Fog Gateway

Decoding
and

Decryption

Database
Processing

Cloud Server

Figure 15: Diagram of the simulation model of Architecture C.

Results
A comparison of the total service times resulting from the simulation, with a 5% probability of
public messages, is shown in Figure 16. The chart shows that Architecture C has a much shorter
total message execution time, the average service time being 19.44 ms compared to 209.96 ms
in Architecture A. That, of course, applied only when private data predominated and primary
data processing was done by the fog gateway, which is the principle of fog computing and the
type of solution proposed in this study. Otherwise, the execution times for architectures A and
C were almost identical. We can observe significant jumps in execution time in Architecture
C, illustrating the transmission of messages to a public cloud server, where messages are then

5 PROPOSED NETWORK ARCHITECTURES 40

further processed. If the simulation is limited only to fog gateway processing, these jumps do
not occur.

Figure 16: Comparison of architectures A
and C (95% private messages).

Figure 17: Comparison of architectures A
and C (100% private messages).

A simulation without transmission to the cloud server is charted in Figure 17. In this case,
the average service time was 10.28 ms in Architecture C compared to 209.81 ms in Architecture
A. This is the best-case execution time (BCET), as the discussion concerns the shortest time for
any possible combination of inputs. The chart shows that the BCET for Architecture C was lower
because of the absence of significant jumps and because the data did not need to be processed
by the network and application servers. In Architecture A, the BCET was similar to the 5%
probability of public messages. The similarity is a result of the presence of the network and
application servers at each fog gateway. In this manner, data processing was mainly performed
by the fog gateway, and the cloud server only performed insertions into the local database.
The worst-case execution time (WCET) occurred when all data was set to public, and in this
manner, the fog computing operations remained idle. In this case, the WCET of Architecture
C was 210.41 ms, a result similar to the WCET of Architecture A with 217.78 ms.

Figures 18 and 19 display the respective histograms for Architecture A and Architecture C
and a 95% probability of private messages. A comparison of these histograms reveals that while
the total service time values for Architecture A were not scattered significantly, the histogram
for Architecture C was dispersed, and the variance of these values was much higher as a result
of the already mentioned difference in private and public processing. Figures 20 and 21 display
the respective histograms for the simulations of Architecture A and Architecture C and a 100%
probability of private messages. These histograms suggest that while the spread of the histogram
for Architecture A was almost the same in both cases, the variance of values presented in the
histogram for Architecture C and a 95% probability of private messages was much higher than
the case of private only processing.

To approximate the resulting service times for any hardware solution, we can select a time
base T corresponding to the BCET of Architecture C (10 ms). Then, the resulting times can be

41 5 PROPOSED NETWORK ARCHITECTURES

Figure 18: Histogram for Architecture A
(95% private messages).

Figure 19: Histogram for Architecture C
(95% private messages).

Figure 20: Histogram for Architecture A
(100% private messages).

Figure 21: Histogram for Architecture C
(100% private messages).

expressed as a multiplication of the time base. Table 3 provides a summary of the approximated
resulting times obtained with the simulations. The constant Tlink is the link delay during
transmission between the slave and master gateways. As we can see, proposed Architecture C
achieved the best results in all cases. However, the table also indicates that the gap between the
BCET and WCET for this architecture is wide. The simple rule is that the more public data
transferred to the network, the closer the total execution time approaches the WCET.

Table 3: Comparison of results from the simulation.

Feature Architecture A Architecture B Architecture C
Average execution time 21 · T 21 · T + Tlink 2 · T

BCET 21 · T 21 · T + Tlink T
WCET 22 · T 22 · T + Tlink 21 · T

5 PROPOSED NETWORK ARCHITECTURES 42

5.4.2 Comparison in Terms of Functional Properties

Since each of the proposed architectures attempts to solve the optimisation problem differently,
it is essential to compare the architectures in terms of functional features. These features affect
the potential use cases of the architectures and the possibility of integrating the fog gateway
into existing infrastructures.

Architecture A is notable for integrating network and application servers into each fog gate-
way. This approach eliminates the need to forward each message from an end device to the
remote network and application servers. The problem of unavailable connections can be pre-
vented in this manner. Since not every message needs to be forwarded to a public cloud server,
the privacy of the transmitted data is maintained, which slightly reduces message processing
time. However, integrating the network and application servers into the fog gateway presents
several issues. The first problem is a significant increase in computational load on the fog gate-
way, placing a greater demand on its performance, as each time a message is received from any
end device, the fog gateway performs tasks related to the network and application servers in
addition to standard LoRa gateway operations. The other problem is that several gateways
in a multi-gateway LoRaWAN can receive an identical message. Hence, a network server per-
forms redundant (duplicate) message filtering. In a standard LoRaWAN architecture, only one
shared network server is available to the gateways in a single network. Architecture A, however,
contains a private network server for each fog gateway, and thus the network server cannot
filter redundant messages. This leads to the necessity of some form of message synchronisation
between the fog gateways in Architecture A. If this type of synchronisation is not present, non-
overlapping coverage must be provided by deploying only one fog gateway to cover a given area
or by ensuring sufficient distance between individual fog gateways.

Architecture B applies a master/slave approach. The slave gateways operate under a stan-
dard LoRa gateway mode and only forward data to the single master gateway integrating the
network and application servers. This approach is suitable if an internet connection cannot be
supplied for each gateway. A gateway which does not have an internet connection can only
communicate with a locally available master gateway. The master gateway analyses whether
an end device message is private or public, and according to this information, it either stores
the message payload in its local database or forwards the message to the cloud server. This
architecture is simply a modification of Architecture A, with the advantage that the network
and application servers need not be implemented into each gateway. Providing synchronisation
between the individual gateways is not required, but it is necessary to guarantee connectivity
to the master gateway for all slave gateways.

Unlike previous architectures, proposed Architecture C does not require constant connec-
tivity to the network and application servers for proper functioning. If the fog gateway has all
available end device addresses and their session keys stored in its local database, it can process
all messages locally. The fog gateway can therefore operate entirely without cooperation with

43 5 PROPOSED NETWORK ARCHITECTURES

the network and application servers. Another significant advantage is easy integration of the fog
gateway into the standard LoRaWAN architecture. This solution is especially beneficial if only
one fog gateway is sufficient for proper coverage. If one fog gateway receives a private message,
it immediately initiates processing. Let us suppose that multiple fog gateways receive an iden-
tical private message from a single end device. In this case, each gateway performs decoding,
decryption and subsequent storage of the decrypted payload in the local database. It is clear
that this is not an ideal solution. It is therefore necessary to avoid overlapping areas of coverage
or implementing a communications mechanism between the fog gateways.

The mechanism could be based on the idea that the fog gateway, which receives a message
first, sends a notification via the MQTT protocol to all fog gateways in the coverage area.
Notified gateways do not process the message; only the fog gateway which sent this notification
proceeds with processing. When this method is used, the decrypted payload of a single end
device is fragmented between the local databases of the various fog gateways because each
message can be processed by any fog gateway in the range.

Another method of preventing the redundant processing problem is to reserve an individual
fog gateway for processing only messages from specific end devices. If a fog gateway receives a
message from the end device managed by this fog gateway, it can decode, decrypt and store the
payload in the local database. In the other case, the fog gateway immediately terminates further
processing of the message. In this manner, the payload from one end device is stored only in
the local database of the given fog gateway which manages this end device. This method solves
the fragmentation of a decrypted payload from a single end device into the local databases of
many fog gateways.

5.4.3 Summary of Results from the Comparison

The above comparisons aided in selecting the optimal architecture from the the three proposed
architectures. This section summarises the results and then selects one architecture for imple-
mentation.

The average execution time in the case of 95% probability of private messages achieved its
lowest value in proposed Architecture C, at 19.44 ms. This time was achieved by omitting the
network and application servers in the case of fog processing. The execution time was even less
in the case of the BCET, reaching only 10.28 ms. Proposed architectures A and B integrate the
network and application servers in each fog gateway, and therefore their processing times were
many times higher.

Because evaluation of data privacy in proposed Architecture C occurs before the payload is
decrypted, the fog gateway can forward the received message to the public cloud unchanged.
This fact ensures that the fog gateway is compatible with a standard LoRaWAN infrastructure.
Architecture A and B implementations are different. Because each fog gateway integrates the
network and application servers, the message always passes through each processing stage. In
this manner, the fog gateway forwards already decrypted payloads to the cloud server, and there-

5 PROPOSED NETWORK ARCHITECTURES 44

fore it is not possible to deploy this type of fog gateway into the existing standard LoRaWAN
infrastructure.

However, the fog gateways in all the proposed architectures allow autonomous operation if the
connection to the cloud server fails. It is also evident that integrating the network and application
servers into a fog gateway increases the demand for computing power. Table 4 summarises the
features of the individual proposed architectures. The table shows that Architecture C attained
the best results. I therefore selected proposed Architecture C for further research.

Table 4: Summary of features of the proposed architectures.

Feature Architecture A Architecture B Architecture C
Average execution time 209.96 ms Similar to arch. A 19.44 ms
BCET 209.81 ms Similar to arch. A 10.28 ms
WCET 217.78 ms Similar to arch. A 210.41 ms
Deployment to existing
LoRaWAN No No Yes

Autonomous function Yes Yes Yes
Computational perf. re-
quirements Higher Higher Low

45 6 METHODS TO CONTROL DATA TRANSFER

6 Machine Learning Methods to Control Data Transfer Between
Fog and Cloud Layers

The next step after defining the network architecture for the first aim was to research a reliable
method or a combination of methods for controlling data transfer between the fog and cloud lay-
ers. The proposed methods use information predefined by the end device owner and information
resulting from a machine learning algorithm.

6.1 Controlled Data Transfer

The basic terms of ML were described in Chapter 3. This section discusses a solution to the
defined problem. Many reasons exist for transferring computation or storage between the fog
and cloud layers, but the most usual are:

• Data privacy – if the messages of a specific end device are marked as private, they should
not be transferred to the public cloud.

• Quicker response – the lower latency of fog computing allows a faster response to the
message received from a specific end device.

• Unavailability – this could be due to a lack of computing power or memory in the fog
layer. Another possible reason is loss of connection to the cloud.

• Bandwidth saving – because messages are not necessarily transferred to the cloud layer
for processing or storage, bandwidth can be saved.

• Data complexity – according to the historical data from a specific end device, complex
data processing can be expected. If required, complex computations can be transferred to
the cloud.

As the number of connected end devices grows, several end devices may transmit in short
intervals. Because fog gateways have limited computing power, it is not possible to process
every received message. It is therefore necessary to monitor the actual memory use of each fog
gateway and subsequently transfer data to the cloud according to this parameter. It is important
to reach a compromise between the limited computing power and bandwidth savings.

One of the essential features of the fog computing paradigm is the partial independence from
the cloud layer. For this reason, fog gateways must implement a connection failure detection
method. If a connection failure is detected, the fog gateway begins processing all received
messages locally until the connection with the cloud layer has been re-established.

The methods based on unavailability, bandwidth saving or data complexity should be used
in conjunction with the other described methods. A combination of several methods can help
to reach higher efficiency.

6 METHODS TO CONTROL DATA TRANSFER 46

To respect data privacy, a fog gateway must implement a specific mechanism to check whether
a received message is private or public and handle the message correspondingly. For example,
let us suppose that a company would like to use an IoT network with several sensors and collect
specific information about their business in a production hall. They have a web application
for observing individual information or control activities based on the obtained data. At this
point, a problem could arise if the company does not want to transfer private data to the public
cloud but want to store historical data there. Fog computing could be the solution. The end
device owner can define data privacy, and this information would subsequently be transferred to
a corresponding fog gateway. Once the fog gateway has this information available, private data
can be processed and stored in a local database while the other data can be transferred to the
cloud.

The lower latency in fog computing compared to cloud computing plays a key role in appli-
cations which require quicker responses. A mechanism to inform the gateways in the fog layer
of the fact that the data requires low-latency processing is therefore essential. This mechanism
may be similar to the processing of private data described above.

Because it is not always necessary to transfer all messages to the cloud server, filtering
can be performed at the fog layer. At this point, the involvement of ML could be beneficial
in automated selection between computation and storage by the fog or cloud layer. I tested
different classifiers during this stage of the work to choose a suitable solution. The following
section describes and validates several methods for classifying data privacy.

6.1.1 Dataset

Because the solution applies ML, it is first necessary to define a particular data structure to
search common patterns in the data. The default dataset contained 321604 anonymised records,
each record corresponding to a single received message from a specific IoT end device. These
data were captured over a period of three years as part of an experimental academic IoT network
deployment. In addition to the internal device identifier, message identifier and message payload,
each record contains time stamps when a specific message was received, SNR and RSSI radio
parameters, channel numbers, data rates and coding rates. An example of selected records from
the dataset is given in Figure 22.

messageid,deviceid,time,snr,rssi,channel,data_rate,coding_rate,payload
230,31,2018-01-31 23:06:11.855,5.5,-108,7,SF12BW125,4/5,alarm: true
362,30,2018-02-02 18:19:57.932,-12.8,-119,3,SF12BW125,4/5,light_main: true
399,30,2018-02-03 04:40:36.559,-15.8,-119,4,SF12BW125,4/5,light_main: false
56393,61,2018-10-22 14:59:12.413,8.8,-93,1,SF7BW125,4/5,light_hall: false
56394,58,2018-10-22 14:59:16.452,4.5,-96,2,SF9BW125,4/5,garbage_container: 74
321002,46,2019-06-05 20:05:43.398,7,-65,6,SF12BW125,4/5,humidity: 49

Figure 22: Dataset records example.

47 6 METHODS TO CONTROL DATA TRANSFER

The dataset contains messages from a total of 100 unique IoT end devices. While some
end devices sent only dozens of messages, some sent thousands of messages. Table 5 lists basic
statistics of the selected attributes from the dataset.

Table 5: Basic statistics of the dataset

Attribute Min Max Mode
Time 2017-12-22 11:18:38.586 2020-03-23 23:01:08.219 -
SNR -22.8 14.8 8.8
RSSI -131 -11 -105

Channel 0 7 0
Data Rate SF7BW125 SF12BW125 SF9BW125

Coding Rate 4/5 4/5 4/5

6.1.2 Payload Structure

It should be noted here that the application data payload does not have any format specified by
the LoRaWAN network protocol, and it may contain data in various forms. This fact introduces
complications into the solution based on ML, and it becomes necessary to define a uniform
data structure. Assuming that fog gateways are deployed within a single production hall or an
area under the management of a single provider, it should not be a major problem to follow a
consistent data structure. For simpler decoding and readability, the selected payload format is
as follows:

variable_name: value

6.1.3 Classification of Data Privacy

As mentioned above, one of the properties for deciding whether data should be processed in
the fog or cloud layer is data privacy. The classification of data privacy can be based entirely
on the judgement of the end device owner or administrator. However, if we assume an IoT
network with a large number of connected end devices, such manual classification would be very
time-consuming. It is therefore prudent to partially automate the classification process. For
proper classification, the learning model uses historical data and user-defined preferences during
the training process. By default, the end device owner selects which data should be private or
public for a small set of end devices. After proper training and testing, the ML algorithm can
decide whether a message received by a newly registered end device should be processed by a fog
gateway or forwarded to the network and application servers located in the cloud. Since one end
device, i.e., a specific sensor, usually sends consistent data and only the value of the observed
parameter changes, data privacy can be specified at the level of the particular end device. It is
therefore not necessary to deal with each message separately. The dataset, however, does not

6 METHODS TO CONTROL DATA TRANSFER 48

contain many attributes to specify data privacy. The following is an overview of the attributes
which can be applied to specify data privacy.

Message Periodicity
Individual IoT end devices can send their messages to the network periodically at predefined time
intervals. This is not the only option, as in some cases, such periodic messaging may be pointless.
The other option is to send messages only when the observed value changes. For example, if we
assume a temperature sensor, sending data periodically is logical, as air temperature changes
often during the day. If we consider a motion sensor, periodically sending the status is irrelevant,
as it could lead to sending redundant messages containing the same content. Here, transmitting
a message when the sensor only detects some movement is logical.

After analysis of the message payloads from individual end devices recorded in the dataset,
we can conclude that in most cases, data of an informative nature (temperature, humidity,
etc.) are sent periodically. In this manner, message privacy could be classified according to
periodicity. Since one of the attributes in the dataset is the message arrival time at the gateway,
I was able to trace whether the messages were sent periodically.

The default dataset must be pre-processed to determine message periodicity and to build
the training set. Since all messages are unconfirmed, some messages from the end devices may
not reach a gateway and are therefore not present in the dataset. A temporary outage may also
occur in an end device, for example, because of a low battery level. These types of error must
be taken into account. First, I assumed that the entire date-time format of message receipt time
was not essential, and I extracted only seconds from this component. Pre-processing therefore
consists of extracting seconds from the Time attribute and then filtering only messages which
belong to a certain end device. The number of identical derived seconds was then determined
for these filtered records, and the total number of received messages for specific end devices and
the maximum, minimum and average numbers of identical values of the seconds (count) were
calculated. Analysing these records, I estimated which end devices sent their data periodically
and which not. I then applied the following condition: if the minimum and a maximum number of
matches are greater than 100 (statistically evaluated) or if the number of matches is predominant
concerning the total number of end device messages, it can be concluded that the given end device
sends its messages periodically. An example of records for the training set is shown in Figure 23.

deviceid,sum(messages),maximum(count),minimum(count),average(count),periodicity
11,13,13,13,13,true
30,324,16287,244,271.4,true
33,387,11,1,6.6,false
41,1891,44,19,31.5,false
58,111018,2006,1717,1850.3,true

Figure 23: Training set example - Periodicity

49 6 METHODS TO CONTROL DATA TRANSFER

Based on an empirical comparison of the classifiers and individual configurable parameters,
the following settings were selected:

• Decision tree: 5 maximum depth, pruning applied, 0.1 confidence.

• k-NN: 5 neighbours, numerical measures, Euclidean distance, weighted vote.

• SVM: dot kernel type, automatic kernel scale.

For FFNN, it is more complicated since it was necessary to find the optimal multi-layer
network topology first. Based on the nature of the data, which unambiguously determines the
number of neurons in the input and output layers, a basic set of topologies was empirically
derived and subsequently assessed for applicability in solving the given problem. As indicated,
the maximum number of neurons in a single hidden layer is 4. Additional neurons in the hidden
layer improved the result so minimally that their use did not benefit in terms of higher demands
on computing power and time. The following is a list of the examined FFNN topologies:

• 4 - 1 - 1 (4 input neurons, 1 hidden neuron, 1 output neurons)

• 4 - 2 - 1

• 4 - 3 - 1

• 4 - 4 - 1

• 4 - 3 - 2 - 1

• 4 - 4 - 2 - 1

The most commonly used activation function, the sigmoid, was applied as the activation
function for the hidden and output layer neurons. The input layer used a linear activation
function. In all the above-mentioned topologies, bias neurons were also used in every layer apart
from the output layer. These bias neurons were inserted by default and therefore not included
in the topology description. The learning rate was empirically set to 0.01 and the number of
training cycles to 300.

Table 6 shows the results obtained in measurements where the only variable was the neural
network’s topology. All other settings remained the same. The table indicates that the 3-
layered topologies achieved better results than either of the 4-layered topologies, which is due
to significant shortcomings in the performance of some 4-layered topology networks. Taking
into account the measured parameters, I selected the 4-4-1 topology for comparison with other
classifiers.

Tables 7, 8, 9 and 10 compare the individual results obtained from different classification
algorithms trained and tested on the dataset mentioned above. The performance of these clas-
sifiers was obtained using the k-fold cross-validation method, where, considering the size of the
dataset, k = 5.

6 METHODS TO CONTROL DATA TRANSFER 50

Network Topology Accuracy RMSE Spearman Correlation
4 - 1 - 1 77% 0.402 0.518
4 - 2 - 1 77% 0.402 0.521
4 - 3 - 1 77% 0.404 0.524
4 - 4 - 1 78% 0.401 0.546

4 - 3 - 2 - 1 71% 0.441 0.343
4 - 4 - 2 - 1 72% 0.440 0.367

Table 6: Classification results for different FFNN topologies – periodicity.

The tables reveal that none of the classifiers achieved identical results for the number of TP,
TN, FP and FN. For FFNN, the precision that a message is classified periodic is 100%, while
the precision that a message is classified non-periodic is 74.12%. For SVM, the periodic class
precision is 100%, while the non-periodic class precision is 72.41%. The decision tree classifier
achieved the worst results of the selected classifiers in terms of the periodic class precision, while
the non-periodic class precision achieved the best values. The best overall results were achieved
by the k-NN classifier: 87.50% precision for the non-periodic class and 100% for the periodic
class.

Predicted True Class Class Precision
Non-Periodic 62 8 88.57%

Periodic 1 29 96.67%
Non-Periodic Periodic

Class Recall 98.41% 78.38%

Table 7: Decision Tree confusion matrix – Periodicity.

Predicted True Class Class Precision
Non-Periodic 63 24 72.41%

Periodic 0 13 100.00%
Non-Periodic Periodic

Class Recall 100.00% 35.14%

Table 8: SVM confusion matrix – Periodicity.

51 6 METHODS TO CONTROL DATA TRANSFER

Predicted True Class Class Precision
Non-Periodic 63 9 87.50%

Periodic 0 28 100.00%
Non-Periodic Periodic

Class Recall 100.00% 75.68%

Table 9: k-NN confusion matrix – Periodicity

Predicted True Class Class Precision
Non-Periodic 63 22 74.12%

Periodic 0 15 100.00%
Non-Periodic Periodic

Class Recall 100.00% 40.54%

Table 10: Feed-Forward NN confusion matrix – Periodicity

Figure 24: Comparison of ROC curves for different classification algorithms.

Figure 24 charts the ROC curves for the four mentioned classifiers. The classifier with the
worst performance, with an AUC value of 0.65, was FFNN. k-NN was third in performance,
with 0.91. The decision tree classifier had an AUC value of 0.93. The the SVM classifier had
the highest AUC value.

Payload Content
Another method of distinguishing privacy for received messages is according to the individual
message payload. A standard LoRaWAN gateway does not have access to the decrypted payload,
whereas a fog gateway permits searching for specific common patterns in the decrypted payloads

6 METHODS TO CONTROL DATA TRANSFER 52

of received messages from individual end devices. Another method is to decide according to the
data type of the payload variable.

In the first approach, if the precise structure of the payload has been defined, it should not
be too difficult to observe certain patterns of behaviour in the dataset. For example, the value
of temperature or humidity might not be critical from a privacy perspective, although the status
of a door or an alarm may be more critical, and the end device owner may want to keep them
private. To create the training set, it is necessary to pre-process messages from the default
dataset. It is not necessary to evaluate each message separately, as this would be an expensive
task computationally or with respect to time, but it is possible to unify the individual messages
according to the end device identifier and subsequently classify only individual end devices. An
example of a modified dataset used for training and testing is given in Figure 25.

deviceid,variable,privacy
7,smoke,true
9,temperature,false
11,humidity,false
12,illumination,false
13,light,true
14,motion,true

Figure 25: Training set example – Payload.

The difference from the previous method based on checking periodicity is that the payload
checking method contains categorical attributes in the input data. To use classification with
FFNN or SVM, one-hot encoding can be applied to transfer the categorical values into a form
which can be provided to the ML algorithm. As the number of categories grows, the number of
input neurons (in the case of FFNN) or dimensions (in the case of SVM) increases. Since the
variable name is usually subjective, a large number of such categories can be defined. FFNN and
SVM were therefore ineffective in solving this problem, and I used the naive Bayes and random
forest classifiers as substitutes. These should be suitable for this type of classification.

Based on the comparison of individual configurable parameters, the following settings for
individual classifiers were selected:

• Decision tree: 5 maximum depth, pruning applied, 0.1 confidence.

• k-NN: 5 neighbours, nominal measures, nominal distance (the distance between two values
is 0 if both values are the same, or otherwise 1), weighted vote.

• Random forest: 100 trees, 5 maximum depth, pruning applied, 0.1 confidence.

• Naive Bayes: Laplace smoothing applied.

Tables 11, 12, 13 and 14 compare the individual results obtained from different classification
algorithms trained and tested on the dataset mentioned above. Regarding the precision of

53 6 METHODS TO CONTROL DATA TRANSFER

the classification, the Random Forest and Naive Bayes algorithms achieved the best results,
with 95.52% of the private class and 100% of the public class. Despite the accuracy of the
random forest classifier (97%) being the same as the accuracy of the naive Bayes classifier, the
computational complexity of random forest is much greater. The naive Bayes classifier was
therefore a logical choice for solving the payload classification problem.

Predicted True Class Class Precision
Private 64 36 64.00%
Public 0 0 0.00%

Private Public
Class Recall 100.00% 0.00%

Table 11: Decision tree confusion matrix – Payload.

Predicted True Class Class Precision
Private 64 3 95.52%
Public 0 33 100.00%

Private Public
Class Recall 100.00% 91.67%

Table 12: Naive Bayes confusion matrix – Payload.

Predicted True Class Class Precision
Private 64 8 88.89%
Public 0 28 100.00%

Private Public
Class Recall 100.00% 77.78%

Table 13: k-NN confusion matrix – Payload.

Predicted True Class Class Precision
Private 64 3 95.52%
Public 0 33 100.00%

Private Public
Class Recall 100.00% 91.67%

Table 14: Random forest confusion matrix – Payload.

Figure 26 shows the ROC curves for the four mentioned classifiers. In this case, the classifier
with the worst performance, with an AUC value of 0.42, was the Decision Tree algorithm. The
other classifiers attained AUC values over 0.90. The best results were achieved with the naive

6 METHODS TO CONTROL DATA TRANSFER 54

Figure 26: Comparison of ROC curves for different classification algorithms – Payload.

Bayes and random forest classifiers, each with an AUC value of 0.99. The performance of the
k-NN classifier was 0.96.

However, the results are affected significantly by the number of unique payload variables.
Proof of this behaviour is in the three FP errors which occurred when the naive Bayes classifier
was applied (shown in Table 12). Examining these errors, they appeared only in cases where
the variable name was completely unique and occurred only once in the dataset. To verify
this behaviour, I altered the dataset to contain multiple unique non-recurring variable names
(specifically, 21 new unique names). I also removed 10 end devices with a categorical payload
type and added 10 end devices with a numerical payload type to the dataset. A greater number
of numerical variable names created a more balanced dataset given the ratio of private and
public end devices. Table 15 presents the results of the naive Bayes classifier trained and tested
on the modified dataset. Figure 27 shows the ROC curves for the four classifiers trained and
tested on the modified dataset. The results show that all of the classifiers performed worse and
were clearly affected by the greater number of unique variable names.

Predicted True Class Class Precision
Private 54 25 68.35%
Public 0 21 100.00%

Private Public
Class Recall 100.00% 45.65%

Table 15: Naive Bayes confusion matrix – Payload (modified dataset).

The second approach in data privacy classification based on payloads assumes that numerical
variables often do not have sensitive content, while the privacy of nominal values must be
maintained. An example is temperature or humidity, these values, in most cases, being sent

55 6 METHODS TO CONTROL DATA TRANSFER

Figure 27: Comparison of ROC curves for different classification algorithms – Payload (modified
dataset).

in numerical form, whereas alarm or door states are sent as nominal values. For this type of
classification, the solution does not need to implement ML, but privacy can be determined from
a simple condition.

A combination of the first and second approaches, however, improved precision, and the
classification achieved significant accuracy, even with a modified dataset. The ROC curves of
the classifications for this combination of approaches, trained and tested on the modified dataset,
are presented in Figure 28. The AUC value of all classifiers was over 0.95.

Figure 28: Comparison of ROC curves for different classification algorithms – Payload Combined
(modified dataset).

6 METHODS TO CONTROL DATA TRANSFER 56

6.2 Discussion of the Results

This section presents a summary of the results attained in this phase of the study. The simplest
method for determining whether data is processed in the fog layer or the cloud layer is based on
statically predefined options for individual end devices. The disadvantage of this method is the
necessity to manually define the processing method for each new end device.

Since a fog gateway is able to decode and decrypt the message payload, it can also distinguish
the payload data type, and the decision whether the payload contains a categorical or numerical
variable is a trivial problem. To solve the problem, the fog gateway does not need to employ
ML, and moreover, it is wasteful to decrypt each message separately to determine the payload
data type. Because individual end devices usually do not change the payload structure during
their operation, it is possible to determine whether the payload contains nominal or numerical
values from the first message sent by a specific end device and then store this information. Once
a fog gateway has the information, it can make a decision for subsequent messages from the
given end device.

Another option is to use ML. If the classification is based on the name of the variable, the
naive Bayes classifier achieved an accuracy of 97%. However, the result is affected significantly
by the payload variability. Let us suppose that the fog gateway is deployed to collect data from
a particular production hall where the message payload can respect a defined data structure. In
this example, payload variability can be kept low because the payload follows a certain format
and contains only specific prefixes or suffixes describing the purpose of the data message. In
this situation, the method may be considered reliable, but otherwise, the method might have
a significant error rate. This type of behaviour was demonstrated after modification of the
dataset. After modification, the accuracy of the naive Bayes classifier fell to 75%. However,
adding another attribute to the feature vector reduced the dependence on the number of unique
variable names.

The other option mentioned in this dissertation is classification based on the periodicity of
messages. In this case, the k-NN classifier accuracy reached 91%. The main problem with this
method is the need for a large amount of historical data to correctly evaluate the periodicity of
messages. Thus, the periodicity can only be assessed for end devices that have been commu-
nicating with the network for a longer period, providing a large number of messages to build
the training set. In addition, since LoRaWAN does not guarantee reliable delivery of messages,
the periodicity may be violated because of a non-received message or low battery level. From
that point of view, of the three methods presented, this method is the most prone to message
delivery errors.

All the methods, however, are based on the assumption that a specific link between the
payload or the periodicity of the messages and the data processing in the fog layer or cloud layer
exists. Since data privacy depends mainly on the the end device owner’s decision, it is possible
that no such link may exist. These methods therefore cannot be applied generally, but it is

57 6 METHODS TO CONTROL DATA TRANSFER

always the better choice to apply adjustments according to the specific application. Another
problem associated with applying ML to a fog gateway is its limited computational power.

An alternative is to use a semi-automated mode and implement the option of using ML in
a web interface hosted by a cloud server. When a user selects this option, the ML algorithm
automatically selects data privacy for each end device according to the historical data and user
preferences. The user may then confirm, modify or reset the automatically generated settings.
A machine learning algorithm can thus improve its accuracy over time.

59 7 IMPLEMENTATION OF KEY COMPONENTS

7 Implementation of Key Components of the Architecture for
Verification

Proposed architecture C was implemented to test its effectiveness and functionality. This chapter
presents and discusses the details of implementation.

7.1 Chirpstack

ChirpStack (previously known as LoRaServer) is an open-source solution of the LoRaWAN
network stack and provides components for the LoRaWAN network to form a solution which
is ready to use. The solution is also very flexible and allows a private LoRaWAN network to
be built without dependence on shared infrastructure. ChirpStack forms the basic LoRaWAN
infrastructure for the purposes of this dissertation.

ChirpStack provides the following components:

• ChirpStack Gateway Bridge – is a service placed between the packet forwarder of a
LoRaWAN gateway and MQTT server. When a LoRaWAN gateway receives a message,
the gateway bridge converts the LoRa packet forwarder protocols into the data format
supported by the ChirpStack network server (JSON in this case). It then publishes the
message with relevant metadata to the specific topic via the MQTT protocol.

• ChirpStack Network Server – is a component of the stack. Because the network server
can receive identical messages from different gateways, its primary responsibility is to
eliminate redundant received LoRaWAN frames. Among other tasks, the network server
handles authentication for the received frames, communication with the application server
and scheduling of downlink frames. As the name suggests, it performs a function of the
LoRaWAN network server.

• ChirpStack Application Server – is a component of the stack. Its main responsibility
is management of devices and encryption/decryption of application payloads. Part of the
ChirpStack application server is a web-based application dedicated to the management of
applications and devices. This management is also available through the API for external
services. As the name suggests, this component performs a function of the LoRaWAN
application server.

The other component of the ChirpStack is Gateway OS, an open-source operating system
based on Linux. This embedded operating system contains selected ChirpStack components
installed by default [84]. However, Gateway OS was not used for the purposes of this dissertation.

7.2 Implementation of the Architecture

Since the proposed architecture adopts basic architectural features of the standard LoRaWAN
architecture, it is necessary to apply modifications, mainly to the fog gateway itself, while

7 IMPLEMENTATION OF KEY COMPONENTS 60

maintaining the standard function of the network and application servers. The advantage of
this approach is seamless integration of the fog gateway into the standard LoRaWAN network.

As already mentioned, the main problem in decryption of the application payload on the
gateway is the end-to-end encryption method. However, a necessary condition for implementa-
tion of the proposed fog computing optimisation is the ability to decrypt the message payload
at the gateway, which is conditional on the knowledge of the relevant session keys and methods.
Once the gateway knows the session keys for a particular end device, its software can be modified
to decrypt the application payload and continue further processing.

It is therefore necessary to design a support mechanism. The fog gateway first determines
the short device address (DevAddr) and then queries the application server for the session keys.
However, this process is executed only when the fog gateway does not have the session keys
stored in its local database from the previous communication. It is necessary to know the
LoRaWAN message format to decode the DevAddr and other required information relating to
the current message received by the fog gateway.

Each LoRa uplink or downlink message transmits the payload (PHYPayload). This payload
starts with the MAC header (MHDR) and ends with the message integrity code (MIC). The
structure of the LoRaWAN message is shown in Figure 29.

Figure 29: LoRaWAN message structure.

The MHDR contains important information specifying the type of message (MType). Ta-
ble 16 shows eight different MAC message types. The Unconfirmed/Confirmed Data Up types
which transmit application data are important for this dissertation. As the names suggest, the
difference between unconfirmed and confirmed messages is that the unconfirmed messages do
not require acknowledgement from the recipient. By contrast, confirmed messages must be ac-

61 7 IMPLEMENTATION OF KEY COMPONENTS

knowledged. Data messages can also be proprietary, where a non-standard message format can
be implemented, but the message format must be readable to the end devices [46], [85].

Table 16: MAC message types.

MType Description
000 Join Request
001 Join Accept
010 Unconfirmed Data Up
011 Unconfirmed Data Down
100 Confirmed Data Up
101 Confirmed Data Down
110 Reserved for Future Use
111 Proprietary

The FHDR field is important in assigning a message to a specific end device, as it contains
the DevAddr, which can identify the message sender. The DevAddr identifier is a 32-bit device
address unique to a particular network served by a single network server. To identify the end
devices globally, LoRaWAN applies a 64-bit globally unique device address (DevEUI). If an
end device uses the ABP method of activation, it can be identified by the DevAddr, which is
pre-configured in the end device program. With the OTAA method of activation, it is more
complicated because the DevAddr is dynamically assigned during a join procedure with the
network. In this manner, an end device activated with OTAA can be uniquely identified at any
time only with DevEUI, which is not a part of a data message. In the case of the OTAA method,
more frequent communication is required between the application server and the fog gateway to
determine the current DevAddr belonging to the given DevEUI.

Once a data MAC message contains a payload, it is necessary to encrypt the FRMPayload
field before calculating the MIC. The calculation is performed over all fields in the message
(MHDR + MACPayload). LoRaWAN security uses the Advanced Encryption Standard (AES)
symmetric block cipher with a key length of 128 bits. Whether NwkSKey or AppSKey is used
for encryption/decryption depends on the value of the FPort field (shown in Table 17) in the
message [46].

Table 17: Relationship between FPort and session keys.

FPort Key
0 NwkSKey

1..255 AppSKey

The cipher algorithm mentioned above defines a sequence of blocks Ai for i = 1 . . . k with
k = ceil(length(FRMPayload)/16) for each data message. The structure of these blocks is

7 IMPLEMENTATION OF KEY COMPONENTS 62

illustrated in Figure 30.

Size (bytes)

Ai

0x01 4 x 0x00

1 4

Dir

1

DevAddr

4

FCntUp or
FCntDown

4

0x00

1

i

1

Figure 30: Block structure.

The Dir field is 0 or 1 depending on whether the message is sent in the uplink or the downlink
direction (uplink - 0, downlink - 1).

Blocks Ai are encrypted to obtain a sequence S of blocks Si.

Si = aes128_encrypt(Key, Ai) for i = 1 . . . k

S = S1|S2| . . . |Sk

Truncation to the first length(FRMPayload) octets is then applied to encrypt and decrypt
the payload [46].

(FRMPayload|pad16) xor S

In this manner, it is possible to decode the individual information necessary to decrypt
the payload and then perform the decryption itself. However, a part of the gateway must be
defined where it is possible to access each received LoRaWAN message and decompose it to
obtain information from individual fields. After a full analysis, I modified the packet forwarder.
Semtech packet forwarder [86] is a program which runs on LoRa gateway. It forwards RF packets
with associated metadata (RSSI, timestamp, etc.) received by the concentrator to the server
through an IP/UDP link. In the opposite direction, the packet forwarder transmits RF packets
for messages received from the server. Packets can be forwarded over an internet connection,
local network or localhost, depending on the server location. In the solution presented in this
dissertation, public messages are forwarded to the localhost, where they are captured by the
gateway bridge and delivered via the MQTT protocol to the associated network server.

During standard operation, the packet forwarder encodes the received binary data into
Base64 format. This is then combined with the metadata, wrapped into JSON, and sent to
the network server. It was therefore necessary to modify the packet forwarder program for the
correct implementation of the architecture. In addition to forwarding RF packets, the packet
forwarder performs end device identification and subsequent payload decryption. Algorithm 1
presents the pseudocode of the proposed algorithm applied in the packet forwarder program.

If the Base64 form of the received data is converted into a sequence of hexadecimal bytes, it
is possible to systematically decompose this sequence and obtain the DevAddr to identify the
source of the message. Once the DevAddr has been obtained, it can be determined whether it
is an end device whose messages should be processed privately/faster. In the case of a public
message, decryption of the payload can be omitted and the standard method can be applied

63 7 IMPLEMENTATION OF KEY COMPONENTS

Algorithm 1 Packet forwarder fog computing algorithm
Input: Message in Base64 format
Result: Forward message to cloud server or store decyptedPayload in local database

1: for Each received message do
2: dataHex ← Decode Base64 encoded message to hexadecimal format
3: mhdr ← getMhdr(dataHex)
4: if mhdr = Unconfirmed Data Up then
5: macPayload ← getMacPayload(dataHex)
6: fhdr ← getFhdr(macPayload)
7: devAddr ← getDevAddr(fhdr)
8: if devAddr is not in local database then
9: Contact application server to negotiate nwkSKey and appSKey

10: else
11: if devAddr belongs to current LoRaWAN network then
12: if devAddr belongs to private device then
13: nwkSKey ← loadNwkSKey(devAddr)
14: appSKey ← loadAppSKey(devAddr)
15: frmPayload ← getFrmPayload(macPayload)
16: fPort ← getFPort(macPayload)
17: fCnt ← getFCnt(fhdr)
18: dir ← 1
19: if fPort = 0 then
20: key ← nwkSKey
21: else
22: key ← appSKey
23: end if
24: decryptedPayload ← decryptPayload(frmPayload,devAddr,dir,fCnt,key)
25: Store decyptedPayload in local database
26: end if
27: end if
28: end if
29: end if
30: if devAddr does not belong to private device then
31: Forward message to cloud server
32: end if
33: end for

by sending a JSON to the network server. For a private message, it is necessary to use the
NwkSKey or AppSKey key (according to the value of the FPort field) for the given end device
and then build the blocks for encryption according to the fields obtained from the sequence of
hexadecimal bytes representing the message. Encryption of these blocks and truncation of the
PHYPayload can then proceed. This process results in a decrypted payload which can be stored
in a local database of the fog gateway.

However, as already mentioned, the standard LoRaWAN gateway does not know the session
keys for the individual end devices. It was therefore necessary to implement a mechanism into

7 IMPLEMENTATION OF KEY COMPONENTS 64

the fog gateway dedicated to contacting the application/network server with a request to obtain
the session keys for a specific end device. The ChirpStack application server has a gRPC API
interface for obtaining/editing/creating applications, end devices and users. The gRPC is an
open-source remote procedure call (RPC) framework. The fog gateway can use this API to
obtain current information about the defined end device. Authentication by providing per-RPC
credentials is mandatory to prevent unauthorised access to data through the gRPC API methods
[87]. The pseudocode in Algorithm 2 defines the negotiation procedure between the fog gateway
and the application server.

Algorithm 2 Negotiation with the application server
Input: devAddr
Result: Store nwkSKey and appSKey in local database
devEui ← Contact the application server via API to receive DeviceEUI

2: if Given devEui belongs to current LoRaWAN network then
metadata ← Contact application server via API to receive metadata for given devEui

4: nwkSKey ← getNwkSKeyFromMetadata(metadata)
appSKey ← getAppSKeyFromMetadata(metadata)

6: Store nwkSKey and appSKey in local database
else

8: nwkSKey ← 00000000000000000000000000000000
appSKey ← 00000000000000000000000000000000

10: Store nwkSKey and appSKey in local database
end if

In this dissertation, a script for negotiation with the application server through the gRPC
API was implemented. This script requires the DevAddr identifier as a parameter. Based on
the parameter, the fog gateway sends a request to obtain the DevEUI, which is then used to
obtain the session keys. The session keys are subsequently stored in the fog gateway’s local
database together with information about the application payload’s privacy. By default, the
payload of individual end devices is considered non-private. If the DevAddr obtained from the
current message is already in the local database, the session keys are read immediately, and the
script is therefore not required since negotiation with the application server is unnecessary.

However, because standard LoRaWAN gateways receive messages from all end devices in the
range and a redundancy check occurs only on the network server, the DevAddr in the currently
received message may not belong to the given LoRaWAN network. In this case, the fog gateway
can ignore such a message. To avoid repetitive requests to the application server due to an end
device which periodically sends messages but does not belong to the given LoRaWAN network,
the DevAddr of this end device is added to the local database, and its AppSKey and NwKSKey
are set to zero. The fog gateway can therefore immediately recognise that it is an end device
registered in another LoRaWAN network and terminate the processing. The message is not sent
to the network server, and it does not have to be unnecessarily burdened.

65 7 IMPLEMENTATION OF KEY COMPONENTS

Each fog gateway also hosts a web application designed to manage and display available end
devices. The web application offers an important option which allows the user to control the
computing method (fog or cloud) for the individual end devices.

67 8 TESTBED AND VERIFICATION OF RESULTS

8 Testbed and Verification of Results

This chapter describes the testbed located on the campus of VSB - Technical University of
Ostrava and contains a presentation and verification of the results. In this chapter, the opti-
mised network architecture is compared with both the standard LoRaWAN network architecture
already deployed at the campus and a LoRaWAN network solution based on ChirpStack.

8.1 Current Solution at the VSB-TUO Campus

The network architecture contains end devices, gateways, The Things Network (TTN) server,
a KoIoT server, and a web application for end-users. LoRaWAN gateway serves as a bridge
between the wireless and wired components of the network. Each gateway is connected via
an Ethernet interface to the Internet to provide a connection to the TTN backend system,
which is one of the main parts of the solution and responsible for routing IoT data between
end devices and applications. The TTN provides a LoRaWAN server and functionality related
to applications. The KoIoT server is another main part of the network infrastructure. It is
fully managed by the Department of Telecommunications and is designed to store data and host
a backend web interface for end-users. Figure 31 provides a schematic representation of the
architecture.

End Devices

MQTT

Gateways User Interface

koiot.cesnet.cz

The Things Network
Backend

Figure 31: Diagram of the network infrastructure at the VSB-TUO campus.

The LoRaWAN gateway at the campus solution is based on the fourth generation monolithic
microcomputer Raspberry Pi 4 model B and a fully compatible LoRaWAN 868 MHz iC880A
concentrator. This concentrator is connected to Raspberry Pi via a serial peripheral interface
(SPI). The iC880A concentrator is a multi-channel high-power transmitter/receiver radio module
which enables up to eight LoRaWAN packets to be received simultaneously from different end
devices, with different SFs and on different channels [82]. The gateways are placed primarily on
the rooftops of large buildings. All electronic components are connected with a single twisted

8 TESTBED AND VERIFICATION OF RESULTS 68

pair Ethernet cable to provide both an internet connection and electric power. This method is
generally referred to as a power over Ethernet (PoE) system, with 230V to 12 V/1 A or 24 V/1
A source adapters. All parts of the gateway are housed inside a metal wall-mounted electronic
box (SKYBOX MB2520D140) with an IP65 rating [Jal19b]. These hardware components are
identical in each of the compared solutions.

As already mentioned, the current solution at the VSB-TUO campus uses the open global
TTN backend, each gateway being connected to a single shared TTN router. The router com-
municates with one or more TTN brokers. While the broker is a central component of the TTN,
the router performs gateway status management and transmission scheduling. A TTN handler
is then connected to each broker to handle data for a group of associated end devices.

To provide more architectures for comparison, I modified the solution deployed on campus
to employ ChirpStack components instead of the TTN. The basic software platform is therefore
the same as the platform used in the proposed solution, which should lead to more objective
results. The ChirpStack is described in Section 7.1. The modified network infrastructure is
depicted in Figure 32.

End Devices

Gateways User Interface

Cloud Server

Figure 32: Diagram of the modified network infrastructure.

8.2 Verification of Results

The following section presents a series of tests designed to verify the proper functioning of
the optimised architecture and a comparison of this architecture with the VSB-TUO campus
network and the ChirpStack network.

8.2.1 Comparison of Execution Times

This test is designed to compare the service times of the solutions. To obtain the results for
comparison, it was necessary to measure the time of the overall message processing from arrival

69 8 TESTBED AND VERIFICATION OF RESULTS

to the gateway until storage of the decrypted payload into the database. In the optimised
architecture, the payload can already be decrypted and stored on the fog gateway.

The test was performed with two end devices which sent messages every ten seconds. One
end device was set up for fog processing. With a semi-automated solution, the user can choose
the processing mode (fog, cloud, automated) in the web user interface hosted by the fog gateway.
One hundred messages sent from each end device were compared.

Figure 33: Results of service times comparison.

The results of the comparison are graphed in Figure 33. The figure reveals a vast difference
between the fog gateway and the cloud execution times. This fact was also highlighted by the
results of the simulations presented in Section 5.4. The low service time values for the optimised
architecture correspond to fog gateway processing of messages from the first end device. Fog
computing support was switched off for the second end device, and payloads were therefore
processed in the cloud. This state is represented by the individual increases in execution time
in the optimised architecture. For this test, the average total service time of the optimised
architecture was 121.74 ms. If the fog gateway processed the majority of messages, the average
total time required was lower. Exclusive processing of all messages by the fog gateway required
an average total service time of 10.44 ms. Exclusive processing of all messages in the cloud
layer required an average service time similar to the ChirpStack based network since the basic
software platform is the same. The variability of the measured values for the campus (TTN)
and ChirpStack networks is not significant since these networks did not employ fog computing;
all processing occurred in the cloud. The average total service time of the ChirpStack-based
network was 231.92 ms. The solution for the campus IoT network, based on TTN, required an
average total service time of 297.93 ms. If 50% of the messages are processed and stored in the

8 TESTBED AND VERIFICATION OF RESULTS 70

fog gateway, the optimisation proposed in this dissertation thesis reduces the service time by
more than twice compared to the current campus IoT network solution.

In many cases, the fog gateways have limited computing power. It is therefore necessary to
monitor the actual CPU and memory usage, which increases with the number of end devices
served at the same time. In the case of unavailable resources, the computing is transferred to
the cloud.

8.2.2 Data Privacy Test

The purpose of this test was to examine the reliability of the data privacy protection. If the end
device owner marks the end device messages as private, the fog gateway processes the messages
and saves them in its local database. If the messages are not private, the fog gateway does not
need to process the messages and they are forwarded to the public cloud.

During this test, two end devices periodically sent messages. Messages from one end device
were set as private, while messages from the other end device were public. Each end device sent
100 messages. I then compared the presence of the decrypted payload in the databases. If the
proposed mechanism functions correctly, all the messages from the first end device are stored in
the local database of the fog gateway, while messages from the second end device are stored in
the cloud.

Table 18: Privacy test results.

DB location Private end device Public end device
Fog gateway 99 0

Cloud 1 100
Total 100 100

The test results presented in Table 18 show that with the exception of one message, all
messages marked as private were decrypted by the fog gateway and stored in its local database.
If the private end device communicates with the fog gateway for the first time, the first message
is processed in the cloud. This first message is the catalyst for the fog gateway to obtain the
session keys from the application server and store them locally. Subsequent messages are then
processed privately. The results demonstrate the correct functioning of the proposed mechanism
implemented in the fog gateway.

For the campus and ChirpStack LoRaWAN networks, all messages were processed and stored
in the cloud since these architectures are based on the cloud computing paradigm.

8.2.3 Offline Processing Test

One of the most important features of the fog computing paradigm is partial independence from
the cloud. This allows the fog node can process messages in an offline state. Since the optimised

71 8 TESTBED AND VERIFICATION OF RESULTS

architecture employs the fog computing paradigm, this functionality is implemented in the fog
gateway; it consists in checking the network connection status with each incoming message, and
when a connection failure is detected, the fog gateway automatically switches to offline mode.
In this mode, the fog gateway processes all messages locally and stores them in its database.
Public messages are therefore not required to be sent to the public cloud, ensuring that messages
are preserved even if connection to the cloud is interrupted.

This experimental testing was based on repeated intentional disconnection of the network
connection between the fog gateway and the cloud. During this test, the end device periodically
sent its messages to the fog gateway. The fog gateway was set to forward each message to the
cloud. When the connection between the fog gateway and the cloud was established, the gateway
forwarded messages to the cloud, but when connection failure was detected, all processing was
transferred to the fog gateway.

Network Failure

Start of fog processing due to
network failure

Connection established

Start of cloud processing due
to established connection

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Cloud

Fog
Gateway

Figure 34: Offline processing test results.

Figure 34 displays the results of offline testing in a stacked chart. The upper chart represents
message processing by the fog gateway. Cloud computing is shown in the lower chart. The first
five messages were processed in the cloud, after which the connection failure occurred, which
caused processing to be transferred to the fog gateway. Without an online connection, the
fog gateway functioned in offline mode, during which all incoming messages were processed and
stored locally. Once the connection to the cloud was re-established, computation was transferred
back to the cloud. Connection failure detection is not immediate, with a delay of 0.5 seconds.
However, since the end devices communicate only at certain times and not continuously, this
delay is negligible.

8 TESTBED AND VERIFICATION OF RESULTS 72

8.3 Discussion of the Results

In the previous section, three validation tests were described to verify the results obtained in
this dissertation. This section discusses the results of the tests.

The first test aimed to compare the implemented optimised architecture and the campus
LoRaWAN infrastructure. However, the campus network includes TTN services, which are
shared. I therefore modified the campus network with ChirpStack to obtain more objective test
results. These results demonstrated that the optimised architecture achieves significantly lower
latency in message processing since the fog gateway is able to process messages from specified end
devices locally. The test results therefore confirmed the simulation results and the hypothesis
that fog computing will significantly reduce service time.

The second test verified compliance with messages privacy. If the end device message is
marked as private, it should be processed by the fog gateway and then stored in its local database.
The gateway may not forward private messages to the public cloud. The test confirmed the
suitability of the mechanism to evaluate predefined message privacy.

The final test verified the offline capabilities of the fog gateway. The fog computing paradigm
allows for partial independence from cloud services: if the fog gateway has the necessary session
keys available in the local database, it is able to process incoming messages without communi-
cating with the cloud. The charted test results verified that when the connection to the cloud
service failed, messages from all known end devices were automatically processed by the fog
gateway.

73 9 CONCLUSIONS AND EXPECTED CONTRIBUTIONS

9 Conclusions and Expected Contributions

Three main aims were established in this dissertation. Chapter 5 presented a solution to pursue
Aim 1 and determine which of three fog computing architecture proposals was the optimal
solution. Chapter 6 addressed Aim 2 and investigated various machine learning algorithms and
controlled data transfer methods to determine the method with the greatest accuracy. Chapter
7 and Chapter 8 focused on Aim 3 and discussed implementation of the optimised architecture
and testbed. The proposed optimal architecture was additionally verified in a series of tests
especially designed to demonstrate correct functioning of the architecture. The obtained results
were compared with a standard LoRaWAN network architecture located at the campus of the
VSB-Technical University of Ostrava.

All three aims of the dissertation defined in Chapter 4 were fulfilled. The core of this dis-
sertation was published in [Jal21]. Other results related to this dissertation can be found in
[Jal19a, Jal19b]. The following section summarises the content and the results of the disserta-
tion’s experiment.

Because the resulting optimised architecture employs the fog computing paradigm, it was
necessary to describe the general fog computing architecture, which consists of the IoT devices
and the fog and cloud layers. Standard LoRaWAN architecture was subsequently introduced
because the optimised network architecture applied LoRaWAN infrastructure components. The
standard LoRaWAN architecture corresponds to the cloud computing paradigm scheme. The
fog computing paradigm provides computation nearer to a data source while maintaining coop-
eration with cloud services.

As a part of this dissertation, I designed three network architectures and subsequently tested
which one was an optimal solution. Architecture A integrates the network and application servers
in the fog gateway and uses the cloud service for data storage and management. Architecture B
is derived from Architecture A, but it adopts a master/slave architecture to eliminate the need
for integration of the network and application servers into each gateway. These servers are im-
plemented only in the master gateway, and the other gateways operate in slave mode. The slave
gateways perform the same functions as the standard LoRa gateways. Architecture C applies an
entirely different principle. Instead of moving the network and application servers, Architecture
C optimisation is based on communication between the fog gateways and the application server.
In this manner, the gateway can negotiate the necessary information regarding the end device
and related session keys. When the gateway obtains all the information, the message payload
can be decrypted and subsequently stored in the local database without forwarding the messages
to the cloud server.

To determine which of the three proposed architectures is optimal, I conducted various
comparisons. First, I compared the proposed architectures in simulations, where queuing theory
was applied. The simulation results showed that Architecture C achieves shorter service times
than the other proposed architectures. The resulting service times for Architecture C were

9 CONCLUSIONS AND EXPECTED CONTRIBUTIONS 74

strongly affected by whether the processing occurred on the gateway or in the cloud. The larger
number of messages processed in the cloud increased the service time. Without fog processing,
Architecture C achieves similar results as the other proposed architectures. Second, I compared
the functional properties, where the architectures were compared in terms of deployment to
the existing LoRaWAN infrastructure, autonomous functions and computational performance
requirements. Architecture C achieved the best overall results in both comparisons.

A specific mechanism is required for the decision whether to process a message in the fog
gateway or in the cloud. Methods which applied ML were also investigated in detail. These
methods assumed that messages from different end devices can be divided into private and
public classes. While the private messages cannot be published and therefore require local
processing by the fog gateways, public messages can be sent and processed in the public cloud.
The first method assumed a specific link between the periodicity of messages and their privacy.
It was assumed that the informative payload is usually sent periodically and that the status
payload is sent when the observed parameter changes. According to the proposed method,
periodic messages are processed in the cloud, while non-periodic messages are processed in the
fog gateway. The best results were achieved by the k-NN classifier, whose accuracy reached
97%. The second method examined the application payload. With a defined payload structure,
it can be assumed whether the message is informative or status. Based on this information, the
classifier can determine the privacy of the message. In this case, the best results were achieved
with the naive Bayes classifier. However, the accuracy decreased with the number of unique
variable names. The problem of all these methods was that the decision privacy mechanism for
messages assumes a link between the message privacy and its content or periodicity. In real IoT
data traffic, this link may not exist since privacy can be fully managed by the end device owner.
It is therefore necessary to train the classifier according to the specific deployment of the fog
gateway.

The individual components of the selected optimal Architecture C were then implemented. I
selected the open-source solution Chirpstack to implement the network and application servers,
but made major adjustments to the gateway, where I applied an algorithm to decode each
message on the fog gateway to obtain the DevAddr identifier, encrypted payload and other
necessary data. Because the standard LoRa gateway does not have access to the session keys,
I implemented a provisioning script to negotiate the keys between the fog gateway and the
application server. A payload decryption algorithm was subsequently introduced into the fog
gateway. In this manner, the fog gateway can obtain the application payload, which can be
further processed. The fog gateway does not process all received messages, only messages marked
for fog processing.

Once all the components of the optimised architecture had been introduced, it was then
possible to proceed with verification of results; three tests were designed for this purpose. The
first test compared the optimised architecture with the campus LoRaWAN infrastructure in
terms of total execution time. The test results showed that the optimised architecture achieves

75 9 CONCLUSIONS AND EXPECTED CONTRIBUTIONS

significantly lower latency in message processing due to the omission of the network and ap-
plication servers during fog layer computing. The average service times were 121.71 ms in the
optimised architecture, 297.93 ms for the campus LoRaWAN network (TTN based), and 231.92
ms for the ChirpStack based LoRaWAN network. It can be stated that in the case of 50%
occurrence of private messages, the proposed optimisations reduce the average service time by
more than twice compared to the current campus IoT network solution. A simple rule follows
from the optimised architecture: if the number of messages processed in the cloud is higher, the
average processing time increases. The second test verified compliance with message privacy. If
the fog gateway receives a private message, it processes the message, otherwise, the fog gateway
forwards the message to the public cloud. The results showed that the first message received
from a specific end device serves as a catalyst for the fog gateway to negotiate the associated
session keys with the application server. The first message is therefore always processed in the
cloud independently of the privacy settings. For subsequent messages, the session keys have
already been stored in the local database of the fog gateway. The final test verified the offline
functions of the fog gateway. If a connection to the cloud service fails, the fog gateway should
temporarily operate autonomously and process all received messages from known end devices.
The results of this test demonstrated the correct functioning of this offline process. The results
of all performed tests verified the suitability of the optimisations applied to the architecture.

The designed and deployed optimised architecture will serve as a basis for future studies
which explore the fog computing paradigm. The main contributions of this dissertation are the
following:

1. Optimisation of the current standard LoRaWAN architecture for applications which re-
quire quicker responses and message privacy handling.

2. Research of ML-based methods to control the transfer of data computation and storage
between the fog and cloud layers.

3. Computation and data storage better adapted to end device requirements and the demands
of the end device owner through location awareness.

4. Seamless deployment of fog gateways into existing LoRaWAN infrastructure.

5. In the case of locally available session keys and device identifiers, the fog gateway can be
deployed without the network and application servers.

6. Received messages are not lost if a connection between the fog gateway and the cloud layer
fails.

77 REFERENCES

References

[1] A. Ikpehai, B. Adebisi, K. M. Rabie, K. Anoh, R. E. Ande, M. Hammoudeh, H. Gacanin,
and U. M. Mbanaso, “Low-power wide area network technologies for internet-of-things: A
comparative review”, IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2225–2240, 2019.
doi: 10.1109/jiot.2018.2883728.

[2] M. Ballerini, T. Polonelli, D. Brunelli, M. Magno, and L. Benini, “NB-IoT versus Lo-
RaWAN: An experimental evaluation for industrial applications”, IEEE Transactions on
Industrial Informatics, vol. 16, no. 12, pp. 7802–7811, 2020. doi: 10.1109/tii.2020.298

7423.

[3] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low power wide area networks: An
overview”, IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 855–873, 2017.
doi: 10.1109/comst.2017.2652320.

[4] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of cellular LPWAN technologies
for IoT deployment: Sigfox, LoRaWAN, and NB-IoT”, in 2018 IEEE International Con-
ference on Pervasive Computing and Communications Workshops (PerCom Workshops),
IEEE, 2018. doi: 10.1109/percomw.2018.8480255.

[5] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and challenges”, in 2010 24th
IEEE International Conference on Advanced Information Networking and Applications,
IEEE, 2010. doi: 10.1109/aina.2010.187.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges”,
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016. doi: 10.1109/jiot.2

016.2579198.

[7] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-based cloudlets
in mobile computing”, IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009. doi: 10

.1109/mprv.2009.64.

[8] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications”, in 2015
Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), IEEE,
2015. doi: 10.1109/hotweb.2015.22.

[9] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts, applications and issues”, in
Proceedings of the 2015 Workshop on Mobile Big Data - Mobidata ’15, ACM Press, 2015.
doi: 10.1145/2757384.2757397.

[10] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A
comprehensive survey on fog computing: State-of-the-art and research challenges”, IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp. 416–464, 2018. doi: 10.1109/co

mst.2017.2771153.

https://doi.org/10.1109/jiot.2018.2883728
https://doi.org/10.1109/tii.2020.2987423
https://doi.org/10.1109/tii.2020.2987423
https://doi.org/10.1109/comst.2017.2652320
https://doi.org/10.1109/percomw.2018.8480255
https://doi.org/10.1109/aina.2010.187
https://doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.1109/jiot.2016.2579198
https://doi.org/10.1109/mprv.2009.64
https://doi.org/10.1109/mprv.2009.64
https://doi.org/10.1109/hotweb.2015.22
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1109/comst.2017.2771153
https://doi.org/10.1109/comst.2017.2771153

REFERENCES 78

[11] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang, and R.
Ranjan, “Fog computing: Survey of trends, architectures, requirements, and research di-
rections”, IEEE Access, vol. 6, pp. 47 980–48 009, 2018. doi: 10.1109/access.2018.286

6491.

[12] OpenFog Consortium, IEEE standard for adoption of OpenFog reference architecture for
fog computing. doi: 10.1109/ieeestd.2018.8423800.

[13] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the inter-
net of things”, in Proceedings of the first edition of the MCC workshop on Mobile cloud
computing - MCC ’12, ACM Press, 2012. doi: 10.1145/2342509.2342513.

[14] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportunities”, IEEE
Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016. doi: 10.1109/jiot.2016.25

84538.

[15] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen, “Fog
computing in healthcare internet of things: A case study on ECG feature extraction”, in
2015 IEEE International Conference on Computer and Information Technology;Ubiquitous
Computing and Communications;Dependable, Autonomic and Secure Computing; Perva-
sive Intelligence and Computing, IEEE, 2015. doi: 10.1109/cit/iucc/dasc/picom.201

5.51.

[16] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et al.: A survey and
analysis of security threats and challenges”, Future Generation Computer Systems, vol. 78,
pp. 680–698, 2018. doi: 10.1016/j.future.2016.11.009.

[17] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, “Fog computing for the internet of
things: Security and privacy issues”, IEEE Internet Computing, vol. 21, no. 2, pp. 34–42,
2017. doi: 10.1109/mic.2017.37.

[18] P. Fraga-Lamas, M. Celaya-Echarri, P. Lopez-Iturri, L. Castedo, L. Azpilicueta, E. Aguirre,
M. Suárez-Albela, F. Falcone, and T. M. Fernández-Caramés, “Design and experimental
validation of a LoRaWAN fog computing based architecture for IoT enabled smart campus
applications”, Sensors, vol. 19, no. 15, p. 3287, 2019. doi: 10.3390/s19153287.

[19] P. Barro, M. Zennaro, J. Degila, and E. Pietrosemoli, “A smart cities LoRaWAN network
based on autonomous base stations (BS) for some countries with limited internet access”,
Future Internet, vol. 11, no. 4, p. 93, 2019. doi: 10.3390/fi11040093.

[20] S. Sobhi, M. A. Ali, and M. F. Abdelkader, “Combining fog computing and lorawan
technologies for smart cities applications”, ser. The 2nd Europe – Middle East – North
African Regional Conference of the International Telecommunications Society: "Leveraging
Technologies For Growth", International Telecommunications Society (ITS), 2019.

https://doi.org/10.1109/access.2018.2866491
https://doi.org/10.1109/access.2018.2866491
https://doi.org/10.1109/ieeestd.2018.8423800
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/jiot.2016.2584538
https://doi.org/10.1109/jiot.2016.2584538
https://doi.org/10.1109/cit/iucc/dasc/picom.2015.51
https://doi.org/10.1109/cit/iucc/dasc/picom.2015.51
https://doi.org/10.1016/j.future.2016.11.009
https://doi.org/10.1109/mic.2017.37
https://doi.org/10.3390/s19153287
https://doi.org/10.3390/fi11040093

79 REFERENCES

[21] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of LPWAN tech-
nologies for large-scale IoT deployment”, ICT Express, vol. 5, no. 1, pp. 1–7, 2019. doi:
10.1016/j.icte.2017.12.005.

[22] Y. Oh, J. Lee, and C.-K. Kim, “TRILO: A traffic indication-based downlink communica-
tion protocol for LoRaWAN”, Wireless Communications and Mobile Computing, vol. 2018,
pp. 1–14, Sep. 2018. doi: 10.1155/2018/6463097.

[23] F. V. den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Scalability analysis of
large-scale LoRaWAN networks in ns-3”, IEEE Internet of Things Journal, vol. 4, no. 6,
pp. 2186–2198, 2017. doi: 10.1109/jiot.2017.2768498.

[24] J.-T. Lim and Y. Han, “Spreading factor allocation for massive connectivity in LoRa
systems”, IEEE Communications Letters, vol. 22, no. 4, pp. 800–803, 2018. doi: 10.1109

/lcomm.2018.2797274.

[25] A. Tiurlikova, N. Stepanov, and K. Mikhaylov, “Method of assigning spreading factor
to improve the scalability of the LoRaWan wide area network”, in 2018 10th Interna-
tional Congress on Ultra Modern Telecommunications and Control Systems and Workshops
(ICUMT), IEEE, 2018. doi: 10.1109/icumt.2018.8631273.

[26] E. Sallum, N. Pereira, M. Alves, and M. Santos, “Improving quality-of-service in LoRa
low-power wide-area networks through optimized radio resource management”, Journal of
Sensor and Actuator Networks, vol. 9, no. 1, p. 10, 2020. doi: 10.3390/jsan9010010.

[27] B. Reynders, Q. Wang, P. Tuset-Peiro, X. Vilajosana, and S. Pollin, “Improving reliability
and scalability of LoRaWANs through lightweight scheduling”, IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1830–1842, 2018. doi: 10.1109/jiot.2018.2815150.

[28] A. Lavric, A. I. Petrariu, E. Coca, and V. Popa, “LoRa traffic generator based on soft-
ware defined radio technology for LoRa modulation orthogonality analysis: Empirical and
experimental evaluation”, Sensors, vol. 20, no. 15, p. 4123, 2020. doi: 10.3390/s20154123.

[29] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya, “FOCAN: A fog-
supported smart city network architecture for management of applications in the internet
of everything environments”, Journal of Parallel and Distributed Computing, vol. 132,
pp. 274–283, Oct. 2019. doi: 10.1016/j.jpdc.2018.07.003.

[30] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit for model-
ing and simulation of resource management techniques in the internet of things, edge and
fog computing environments”, Software: Practice and Experience, vol. 47, no. 9, pp. 1275–
1296, 2017. doi: 10.1002/spe.2509.

[31] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality of experience
(QoE)-aware placement of applications in fog computing environments”, Journal of Par-
allel and Distributed Computing, vol. 132, pp. 190–203, Oct. 2019. doi: 10.1016/j.jpdc

.2018.03.004.

https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.1155/2018/6463097
https://doi.org/10.1109/jiot.2017.2768498
https://doi.org/10.1109/lcomm.2018.2797274
https://doi.org/10.1109/lcomm.2018.2797274
https://doi.org/10.1109/icumt.2018.8631273
https://doi.org/10.3390/jsan9010010
https://doi.org/10.1109/jiot.2018.2815150
https://doi.org/10.3390/s20154123
https://doi.org/10.1016/j.jpdc.2018.07.003
https://doi.org/10.1002/spe.2509
https://doi.org/10.1016/j.jpdc.2018.03.004
https://doi.org/10.1016/j.jpdc.2018.03.004

REFERENCES 80

[32] S. Z. Khan, H. Malik, J. L. R. Sarmiento, M. M. Alam, and Y. L. Moullec, “DORM: Nar-
rowband IoT development platform and indoor deployment coverage analysis”, Procedia
Computer Science, vol. 151, pp. 1084–1091, 2019. doi: 10.1016/j.procs.2019.04.154.

[33] S. S. Basu, A. K. Sultania, J. Famaey, and J. Hoebeke, “Experimental performance eval-
uation of NB-IoT”, in 2019 International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), IEEE, 2019. doi: 10.1109/wimob.2019.892

3221.

[34] A. P. Matz, J.-A. Fernandez-Prieto, J. Cañada-Bago, and U. Birkel, “A systematic analysis
of narrowband IoT quality of service”, Sensors, vol. 20, no. 6, p. 1636, 2020. doi: 10.339

0/s20061636.

[35] L. Oliveira, J. Rodrigues, S. Kozlov, R. Rabêlo, and V. Albuquerque, “MAC layer protocols
for internet of things: A survey”, Future Internet, vol. 11, no. 1, p. 16, 2019. doi: 10.339

0/fi11010016.

[37] R. S. Sinha, Y. Wei, and S.-H. Hwang, “A survey on LPWA technology: LoRa and NB-
IoT”, ICT Express, vol. 3, no. 1, pp. 14–21, 2017. doi: 10.1016/j.icte.2017.03.004.

[38] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, and A. Ghosh, “NB-IoT system for m2m
communication”, in 2016 IEEE Wireless Communications and Networking Conference,
IEEE, 2016. doi: 10.1109/wcncw.2016.7552737.

[39] W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J.-C. Prevotet, “Internet of mobile
things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and sup-
ported mobility”, IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1561–
1581, 2019. doi: 10.1109/comst.2018.2877382.

[40] C. B. Mwakwata, H. Malik, M. M. Alam, Y. L. Moullec, S. Parand, and S. Mumtaz,
“Narrowband internet of things (NB-IoT): From physical (PHY) and media access control
(MAC) layers perspectives”, Sensors, vol. 19, no. 11, p. 2613, 2019. doi: 10.3390/s1911

2613.

[41] M. Chen, Y. Miao, Y. Hao, and K. Hwang, “Narrow band internet of things”, IEEE Access,
vol. 5, pp. 20 557–20 577, 2017. doi: 10.1109/access.2017.2751586.

[42] Sigfox, Sigfox Technology, Available online, https://www.sigfox.com/, (Accessed: 12
December 2019).

[43] B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen, and M. Sorensen,
“Coverage and capacity analysis of sigfox, LoRa, GPRS, and NB-IoT”, in 2017 IEEE 85th
Vehicular Technology Conference (VTC Spring), IEEE, 2017. doi: 10.1109/vtcspring.2

017.8108666.

[46] LoRa Alliance, LoRaWAN 1.0.4 Specification, Available online, https://lora-allianc

e.org/resource_hub/lorawan-104-specification-package, (Accessed: 1 February
2021).

https://doi.org/10.1016/j.procs.2019.04.154
https://doi.org/10.1109/wimob.2019.8923221
https://doi.org/10.1109/wimob.2019.8923221
https://doi.org/10.3390/s20061636
https://doi.org/10.3390/s20061636
https://doi.org/10.3390/fi11010016
https://doi.org/10.3390/fi11010016
https://doi.org/10.1016/j.icte.2017.03.004
https://doi.org/10.1109/wcncw.2016.7552737
https://doi.org/10.1109/comst.2018.2877382
https://doi.org/10.3390/s19112613
https://doi.org/10.3390/s19112613
https://doi.org/10.1109/access.2017.2751586
https://www.sigfox.com/
https://doi.org/10.1109/vtcspring.2017.8108666
https://doi.org/10.1109/vtcspring.2017.8108666
https://lora-alliance.org/resource_hub/lorawan-104-specification-package
https://lora-alliance.org/resource_hub/lorawan-104-specification-package

81 REFERENCES

[47] M. Bor and U. Roedig, “LoRa transmission parameter selection”, in 2017 13th Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS), IEEE, 2017.
doi: 10.1109/dcoss.2017.10.

[48] R. Kufakunesu, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on adaptive data
rate optimization in LoRaWAN: Recent solutions and major challenges”, Sensors, vol. 20,
no. 18, p. 5044, Sep. 2020. doi: 10.3390/s20185044.

[49] D. Croce, M. Gucciardo, I. Tinnirello, D. Garlisi, and S. Mangione, “Impact of spread-
ing factor imperfect orthogonality in lora communications”, in Digital Communication.
Towards a Smart and Secure Future Internet, Springer International Publishing, 2017,
pp. 165–179. doi: 10.1007/978-3-319-67639-5_13.

[50] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello, “Impact of
lora imperfect orthogonality: Analysis of link-level performance”, IEEE Communications
Letters, vol. 22, no. 4, pp. 796–799, 2018. doi: 10.1109/lcomm.2018.2797057.

[51] A. Waret, M. Kaneko, A. Guitton, and N. El Rachkidy, “Lora throughput analysis with
imperfect spreading factor orthogonality”, IEEE Wireless Communications Letters, vol. 8,
no. 2, pp. 408–411, 2019. doi: 10.1109/lwc.2018.2873705.

[52] Duty Cycle for LoRaWAN Devices, Available online, https://www.thethingsnetwork.o

rg/docs/lorawan/duty-cycle.html, (Accessed: 18 March 2021).

[53] M. Saelens, J. Hoebeke, A. Shahid, and E. D. Poorter, “Impact of EU duty cycle and
transmission power limitations for sub-GHz LPWAN SRDs: An overview and future chal-
lenges”, EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1,
2019. doi: 10.1186/s13638-019-1502-5.

[54] Semtech Corporation, LoRa and LoRaWAN: A Technical Overview, Available online, htt

ps://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-

A_Tech_Overview-Downloadable.pdf, (Accessed: 1 March 2021).

[55] Semtech Corporation, LoRa Modulation Basics AN1200.22, Available online, https://ww

w.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf, (Accessed: 1
March 2021).

[56] LoRa Alliance, Understanding the LoRa Adaptive Data Rate, Available online, https://l

ora-developers.semtech.com/uploads/documents/files/Understanding_LoRa_Adap

tive_Data_Rate_Downloadable.pdf, (Accessed: 25 February 2021).

[57] J. Toussaint, N. E. Rachkidy, and A. Guitton, “Performance analysis of the on-the-air
activation in LoRaWAN”, in 2016 IEEE 7th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), IEEE, 2016. doi: 10.1109/iemcon

.2016.7746082.

https://doi.org/10.1109/dcoss.2017.10
https://doi.org/10.3390/s20185044
https://doi.org/10.1007/978-3-319-67639-5_13
https://doi.org/10.1109/lcomm.2018.2797057
https://doi.org/10.1109/lwc.2018.2873705
https://www.thethingsnetwork.org/docs/lorawan/duty-cycle.html
https://www.thethingsnetwork.org/docs/lorawan/duty-cycle.html
https://doi.org/10.1186/s13638-019-1502-5
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf
https://lora-developers.semtech.com/uploads/documents/files/LoRa_and_LoRaWAN-A_Tech_Overview-Downloadable.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://lora-developers.semtech.com/uploads/documents/files/Understanding_LoRa_Adaptive_Data_Rate_Downloadable.pdf
https://lora-developers.semtech.com/uploads/documents/files/Understanding_LoRa_Adaptive_Data_Rate_Downloadable.pdf
https://lora-developers.semtech.com/uploads/documents/files/Understanding_LoRa_Adaptive_Data_Rate_Downloadable.pdf
https://doi.org/10.1109/iemcon.2016.7746082
https://doi.org/10.1109/iemcon.2016.7746082

REFERENCES 82

[58] J. Kim and J. Song, “A dual key-based activation scheme for secure LoRaWAN”, Wireless
Communications and Mobile Computing, vol. 2017, pp. 1–12, 2017. doi: 10.1155/2017/6

590713.

[59] A. Sunyaev, Cloud Computing, ser. Internet Computing: Principles of Distributed Sys-
tems and Emerging Internet-Based Technologies. Springer International Publishing, 2020,
pp. 195–236. doi: 10.1007/978-3-030-34957-8_7.

[60] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A survey”,
Future Generation Computer Systems, vol. 97, pp. 219–235, 2019. doi: 10.1016/j.futur

e.2019.02.050.

[61] R. F. de Mello and M. A. Ponti, Machine learning : A practical approach on the statistical
learning theory. Cham, Switzerland: Springer International Publishing, 2018. doi: 10.10

07/978-3-319-94989-5.

[62] S. Gollapudi, Practical Machine Learning, ser. Community experience distilled. Packt Pub-
lishing, 2016, isbn: 9781784399689.

[63] S. Marsland, Machine Learning: An Algorithmic Perspective, Second Edition, 2nd. Chap-
man & Hall/CRC, 2014, isbn: 1466583282.

[64] U. Kamath and K. Choppella, Mastering Java Machine Learning: A Java Developer’s
Guide to Implementing Machine Learning and Big Data Architectures. Packt Publishing,
2017, isbn: 1785880519.

[65] L. Rokach and O. Maimon, Decision Trees, ser. Data Mining and Knowledge Discovery
Handbook. Boston, MA: Springer, 2005, pp. 165–192. doi: 10.1007/0-387-25465-x_9.

[66] R. García Leiva, A. Fernández Anta, V. Mancuso, and P. Casari, “A novel hyperparameter-
free approach to decision tree construction that avoids overfitting by design”, IEEE Access,
vol. 7, pp. 99 978–99 987, 2019. doi: 10.1109/access.2019.2930235.

[67] M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning”, The
Stata Journal: Promoting communications on statistics and Stata, vol. 20, no. 1, pp. 3–29,
Mar. 2020. doi: 10.1177/1536867x20909688.

[68] M. Bicego and M. Loog, “Weighted k-nearest neighbor revisited”, in 2016 23rd Interna-
tional Conference on Pattern Recognition (ICPR), IEEE, 2016. doi: 10.1109/icpr.2016

.7899872.

[69] M. N. Murty and R. Raghava, Linear Support Vector Machines, ser. Support Vector Ma-
chines and Perceptrons: Learning, Optimization, Classification, and Application to Social
Networks. Springer International Publishing, 2016, pp. 41–56. doi: 10.1007/978-3-319-

41063-0_4.

https://doi.org/10.1155/2017/6590713
https://doi.org/10.1155/2017/6590713
https://doi.org/10.1007/978-3-030-34957-8_7
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1007/978-3-319-94989-5
https://doi.org/10.1007/978-3-319-94989-5
https://doi.org/10.1007/0-387-25465-x_9
https://doi.org/10.1109/access.2019.2930235
https://doi.org/10.1177/1536867x20909688
https://doi.org/10.1109/icpr.2016.7899872
https://doi.org/10.1109/icpr.2016.7899872
https://doi.org/10.1007/978-3-319-41063-0_4
https://doi.org/10.1007/978-3-319-41063-0_4

83 REFERENCES

[70] Murty, M. N. and Raghava, Rashmi, Kernel-Based SVM, ser. Support Vector Machines and
Perceptrons: Learning, Optimization, Classification, and Application to Social Networks.
Springer International Publishing, 2016, pp. 57–67. doi: 10.1007/978-3-319-41063-0_5.

[71] I. D. Dinov, Probabilistic Learning: Classification Using Naive Bayes, ser. Data Science and
Predictive Analytics: Biomedical and Health Applications using R. Springer International
Publishing, 2018, pp. 289–305. doi: 10.1007/978-3-319-72347-1_8.

[72] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015, Available
online, http://neuralnetworksanddeeplearning.com/.

[73] I. Vondrak, Umela inteligence a neuronove site. Ostrava: VSB - Technical University of
Ostrava, 1994, isbn: 80-7078-259-5.

[74] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad,
“State-of-the-art in artificial neural network applications: A survey”, Heliyon, vol. 4, no. 11,
2018. doi: 10.1016/j.heliyon.2018.e00938.

[75] T. Fine, Feedforward neural network methodology. New York: Springer, 1999, isbn: 978-
0387226491.

[76] A. Zheng, Evaluating machine learning models : A beginner’s guide to key concepts and
pitfalls. Sebastopol, Calif: O’Reilly Media, 2015, isbn: 978-1-491-93246-9.

[77] H. M and S. M.N, “A review on evaluation metrics for data classification evaluations”,
International Journal of Data Mining & Knowledge Management Process, vol. 5, no. 2,
pp. 01–11, 2015. doi: 10.5121/ijdkp.2015.5201.

[78] D. Berrar, “Cross-validation”, in Encyclopedia of Bioinformatics and Computational Bi-
ology, Elsevier, 2019, pp. 542–545. doi: 10.1016/b978-0-12-809633-8.20349-x.

[79] S. Yadav and S. Shukla, “Analysis of k-fold cross-validation over hold-out validation on
colossal datasets for quality classification”, in 2016 IEEE 6th International Conference on
Advanced Computing (IACC), IEEE, 2016. doi: 10.1109/iacc.2016.25.

[80] LoRa Alliance, LoRaWAN Backend Interfaces, Available online, https://lora-allianc

e.org/wp-content/uploads/2020/11/TS002-1.1.0_LoRaWAN_Backend_Interfaces.pd

f, (Accessed: 20 February 2021).

[82] IMST GmbH, WiMOD iC880A Datasheet, Available online, https://www.wireless-

solutions.de/downloads/Radio- Modules/iC880A/iC880A_Datasheet_V1_0.pdf,
(Accessed: 15 March 2019).

[83] F. Metzger, T. Hobfeld, A. Bauer, S. Kounev, and P. E. Heegaard, “Modeling of aggregated
IoT traffic and its application to an IoT cloud”, Proceedings of the IEEE, vol. 107, no. 4,
pp. 679–694, 2019. doi: 10.1109/jproc.2019.2901578.

[84] ChirpStack, Available online, https://www.chirpstack.io, (Accessed: 2 December 2020).

https://doi.org/10.1007/978-3-319-41063-0_5
https://doi.org/10.1007/978-3-319-72347-1_8
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1016/b978-0-12-809633-8.20349-x
https://doi.org/10.1109/iacc.2016.25
https://lora-alliance.org/wp-content/uploads/2020/11/TS002-1.1.0_LoRaWAN_Backend_Interfaces.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/TS002-1.1.0_LoRaWAN_Backend_Interfaces.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/TS002-1.1.0_LoRaWAN_Backend_Interfaces.pdf
https://www.wireless-solutions.de/downloads/Radio-Modules/iC880A/iC880A_Datasheet_V1_0.pdf
https://www.wireless-solutions.de/downloads/Radio-Modules/iC880A/iC880A_Datasheet_V1_0.pdf
https://doi.org/10.1109/jproc.2019.2901578
https://www.chirpstack.io

REFERENCES 84

[85] O. Pospisil, R. Fujdiak, K. Mikhaylov, H. Ruotsalainen, and J. Misurec, “Testbed for
LoRaWAN security: Design and validation through man-in-the-middle attacks study”,
Applied Sciences, vol. 11, no. 16, p. 7642, 2021. doi: 10.3390/app11167642.

[86] Lora network packet forwarder project, Available online, https://www.github.com, (Ac-
cessed: 8 December 2020).

[87] ChirpStack API, Available online, https://www.chirpstack.io/application-server

/api/, (Accessed: 10 March 2021).

https://doi.org/10.3390/app11167642
https://www.github.com
https://www.chirpstack.io/application-server/api/
https://www.chirpstack.io/application-server/api/

85 CANDIDATE’S RESEARCH CITED IN THIS WORK

Candidate’s research cited in this work

[Vas18] D. Vasicek, J. Jalowiczor, L. Sevcik, and M. Voznak, “IoT smart home concept”, in
2018 26th Telecommunications Forum (TELFOR), IEEE, Belgrade, Nov. 2018. doi:
10.1109/telfor.2018.8612078.

[Jal19a] J. Jalowiczor and M. Voznak, “Proposal and implementation of probe for sigfox tech-
nology”, in Lecture Notes in Electrical Engineering, Springer International Publishing,
Apr. 2019, pp. 420–428. doi: 10.1007/978-3-030-14907-9_41.

[Gre19] E. Gresak, J. Jalowiczor, J. Rozhon, F. Rezac, and J. Safarik, “Detection of changes
in the qualitative parameters for LoRaWAN and SigFox network”, in Disruptive Tech-
nologies in Information Sciences II, M. Blowers, R. D. Hall, and V. R. Dasari, Eds.,
SPIE, May 2019. doi: 10.1117/12.2518853.

[Jal21] J. Jalowiczor, J. Rozhon, and M. Voznak, “Study of the efficiency of fog computing
in an optimized LoRaWAN cloud architecture”, Sensors, vol. 21, no. 9, p. 3159, May
2021. doi: 10.3390/s21093159, IF: 3.576, Q2 (2020).

[Jal19b] J. Jalowiczor, E. Gresak, F. Rezac, J. Rozhon, and J. Safarik, “Development and
deployment of the main parts of LoRaWAN private network”, in Autonomous Systems:
Sensors, Processing, and Security for Vehicles and Infrastructure 2019, SPIE, May
2019. doi: 10.1117/12.2518225.

https://doi.org/10.1109/telfor.2018.8612078
https://doi.org/10.1007/978-3-030-14907-9_41
https://doi.org/10.1117/12.2518853
https://doi.org/10.3390/s21093159
https://doi.org/10.1117/12.2518225

87 10 RESEARCH RESULTS AND ACTIVITIES

10 List of Candidate’s Research Results and Activities

10.1 Participation in Research Projects

• Grant agreement number 761349 – TETRAMAX, Technology Transfer via Multi-
national Application Experiments, The European Union’s Horizon 2020 research and
innovation programme, 2017 – 2021, PI at VSB-TUO: prof. Voznak, my position: junior
researcher (6/2020 – 12/2020).

• Reg. No. EG19_262/0020122 – Development of external modules TAMAS II,
Ministry of Industry and Trade within programme OP PIK, 2020 – 2022, PI at VSB-
TUO: Dr. Tovarek, my position: junior researcher (3/2021 – still active).

• Reg. No. HS7851901 – Modular Open Source Secure Mobile Communication,
contract research for The National Cyber and Information Security Authority (NUKIB),
2019 – 2021, PI at VSB-TUO: prof. Voznak, my position: junior researcher (3/2020 -–
3/2021).

• Reg. No. VI20172020079 – Secure Gateway for the Internet of Things (SIoT), Min-
istry of the Interior within programme Security research for needs of the Czech Republic,
2017 - 2020, PI at VSB-TUO: prof. Voznak, my position: junior researcher (10/2017 –
3/2020).

• Reg. No. CZ.01.1.02/0.0/0.0/16_084/0009815 – Development of Industrial Sensors
and Extension of IoT Services Portfolio, Ministry of Industry and Trade within
programme APLIKACE III., 2017 - 2020, PI at VSB-TUO: prof. Voznak, my position:
junior researcher (10/2019 – 3/2020).

• Reg. No. SP2021/25 – Networks and Communication Technologies for Smart
Cities IV, Specific research SGS FEI VSB-TUO project, 2021, PI at VSB-TUO: Dr.
Rezac, my position: junior researcher (still active).

• Reg. No. SP2020/65 – Networks and Communication Technologies for Smart
Cities III, Specific research SGS FEI VSB-TUO project, 2020, PI at VSB-TUO: Dr.
Rezac, my position: junior researcher (2020).

• Reg. No. SP2019/41 – Networks and Communication Technologies for Smart
Cities II, Specific research SGS FEI VSB-TUO project, 2019, PI at VSB-TUO: Dr.
Rezac, my position: junior researcher (2019).

• Reg. No. SP2018/59 – Networks and Communication Technologies for Smart
Cities, Specific research SGS FEI VSB-TUO project, 2018, PI at VSB-TUO: Dr. Rezac,
my position: junior researcher (2018).

10 RESEARCH RESULTS AND ACTIVITIES 88

• Reg. No. SP2017/174 – Networks and their security, modeling, simulation, knowl-
edge mining and communication technologies for smart cities, Specific research
SGS FEI VSB-TUO project, 2017, PI at VSB-TUO: prof. Voznak, my position: junior
researcher (2017).

• Reg. No. HS4401512 – Unattended test tools for mobile networks, contract research
for Huawei Technologies, 2015 - 2018, PI at VSB-TUO: prof. Voznak, my position: junior
researcher (2016).

10.2 Results of Research Activities Achieved During My Ph.D. Study

ORCID: 0000-0002-0838-4024

• Results indexed in Elsevier Scopus: 17 (14 conference papers, 3 articles in journals)

• Results indexed in Web of Science: 15 (12 conference papers, 3 articles in journals)

• Registered software (2)

10.3 Other Results Achieved During My Ph.D. Study Indexed in Elsevier
Scopus or Web of Science

[Others01] H. T. Van, Q. -N. Van, D. H. Le, H. -P. Van, J. Jalowiczor, H. -S. Nguyen,
and M. Voznak, “Opportunistic DF-AF Selection Relaying in Hybrid Wireless
and Power Line Communication for Indoor IoT Networks”, Sensors, vol. 21,
no. 16, 2021. DOI: 10.3390/s21165469, IF: 3.576, Q2 (2020).

[Others02] J. Rozhon, F. Rezac, J. Jalowiczor, and L. Behan, “Augmenting Speech Qual-
ity Estimation in Software-Defined Networking Using Machine Learning Algo-
rithms”, Sensors, vol. 21, no. 10, 2021. DOI: 10.3390/s21103477, IF: 3.576,
Q2 (2020).

[Others03] H. S. Nguyen, N. X. H. Nguyen, Q. P. Ma, J. Jalowiczor, and M. Voznak,
“Symbol Error Probability of Secondary User in Underlay Cognitive Radio
Networks with Adaptive Transmit Power Constraint”, in Multimedia Com-
munications, Services and Security, Springer International Publishing, 2020,
pp. 307-319. DOI: 10.1007/978-3-030-59000-0_23.

[Others04] P. Partila, J. Tovarek, J. Rozhon, J. Jalowiczor, “Human stress detection
from the speech in danger situation”, in Mobile Multimedia/Image Pro-
cessing, Security, and Applications 2019, 2019, art. no 109930U. DOI:

10.1117/12.2521405.

https://orcid.org/0000-0002-0838-4024
https://doi.org/10.3390/s21165469
https://doi.org/10.3390/s21103477
https://doi.org/10.1007/978-3-030-59000-0_23
https://doi.org/10.1117/12.2521405
https://doi.org/10.1117/12.2521405

89 10 RESEARCH RESULTS AND ACTIVITIES

[Others05] J. Rozhon, F. Rezac, J. Safarik, E. Gresak, J. Jalowiczor, “Measuring
and monitoring the QoS and QoE in software defined networking envi-
ronments”, in Signal Processing, Sensor/Information Fusion, and Target
Recognition XXVIII, 2019, art. no. 110181M. DOI: 10.1117/12.2518838.

[Others06] F. Rezac, J. Rozhon, J. Safarik, J. Jalowiczor, E. Gresak, “Using embedded
operating system as a modular provisioning platform for IP telephony”,
in Mobile Multimedia/Image Processing, Security, and Applications 2019,
2019, art. no. 109930I. DOI: 10.1117/12.2517752.

[Others07] K. Witas, S. Zabka, J. Frnda, M. Novák, J. Jalowiczor, M. Stolarik,
R. Jaros, “Analysis of the effect of long-time thermal load on the to-
tal losses of the selected fiber-optic couplers”, in Integrated Optics: De-
sign, Devices, Systems, and Applications V, 2019, art. no 110311D. DOI:

10.1117/12.2519836.
[Others08] K. Witas, M. Stolarik, M. Pinka, S. Zabka, J. Jalowiczor, M. Novak, R.

Jaros, “Perimetric monitoring: A comparison of a classical seismic sensor
and fiber-optic interferometric sensor”, in Optical Sensors 2019, 2019, art.
no 110282K. DOI: 10.1117/12.2522309.

[Others09] J. Safarik, J. Jalowiczor, E. Gresak, and J. Rozhon, “Genetic algorithm
for automatic tuning of neural network hyperparameters”, in Autonomous
Systems: Sensors, Vehicles, Security, and the Internet of Everything, 2018,
art. no 106430Q. DOI: 10.1117/12.2304955.

[Others10] J. Rozhon, E. Gresak, and J. Jalowiczor, “Using LSTM Cells for SIP Di-
alogs Mapping and Security Analysis”, in 2018 26th Telecommunications
Forum (TELFOR), 2018, pp. 1-4. DOI: 10.1109/TELFOR.2018.8612019.

[Others11] L. Behan, L. Kapicak, J. Jalowiczor, “Development and implementation
of VoIP honeypots with wide range of analysis”, in Cyber Sensing 2018,
2018, p. 28-. DOI: 10.1117/12.2304602.

[Others12] F. Rezac, J. Safarik, E. Gresak, J. Rozhon, J. Jalowiczor, “Automatic
voice control system for UAV-based accessories”, in Unmanned Systems
Technology XX, 2018, p. 26-. DOI: 10.1117/12.2301242.

https://doi.org/10.1117/12.2518838
https://doi.org/10.1117/12.2517752
https://doi.org/10.1117/12.2519836
https://doi.org/10.1117/12.2519836
https://doi.org/10.1117/12.2522309
https://doi.org/10.1117/12.2304955
https://doi.org/10.1109/TELFOR.2018.8612019
https://doi.org/10.1117/12.2304602
https://doi.org/10.1117/12.2301242

	Introduction
	State of the Art
	Existing Studies
	Prevalent IoT Technologies
	Short-Range Wireless Networks
	Wireless Local Area Networks
	Conventional Cellular Networks
	Low-Power Wide-Area Networks

	LPWAN Technologies
	NB-IoT
	Sigfox
	LoRaWAN

	LPWAN Architectures
	Cloud Computing Architecture
	Edge Computing Architecture
	Fog Computing Architecture

	Machine Learning
	Machine Learning Sub-Classes
	Supervised Learning
	Unsupervised Learning
	Semi-Supervised Learning
	Reinforcement Learning
	Deep Learning

	Classification Algorithms
	Decision Tree
	Random Forest
	K-Nearest Neighbor
	Support Vector Machines
	Naive Bayes
	Artificial Neural Networks

	Model Evaluation Metrics
	Cross-validation

	Aims of Dissertation
	Proposed Network Architectures
	General Fog Computing Architecture
	Standard LoRaWAN Architecture
	Proposed Network Architectures
	Architecture A
	Architecture B
	Architecture C

	Comparison of the Proposed Architectures
	Comparison in Terms of Queuing Theory (Execution Time)
	Comparison in Terms of Functional Properties
	Summary of Results from the Comparison

	Methods to Control Data Transfer
	Controlled Data Transfer
	Dataset
	Payload Structure
	Classification of Data Privacy

	Discussion of the Results

	Implementation of Key Components
	Chirpstack
	Implementation of the Architecture

	Testbed and Verification of Results
	Current Solution at the VSB-TUO Campus
	Verification of Results
	Comparison of Execution Times
	Data Privacy Test
	Offline Processing Test

	Discussion of the Results

	Conclusions and Expected Contributions
	Research Results and Activities
	Participation in Research Projects
	Results of Research Activities
	Other Achieved Results

