2,458 research outputs found

    Nonlinear mechanisms in passive microwave devices

    Get PDF
    Premi extraordinari doctorat curs 2010-2011, àmbit d’Enginyeria de les TICThe telecommunications industry follows a tendency towards smaller devices, higher power and higher frequency, which imply an increase on the complexity of the electronics involved. Moreover, there is a need for extended capabilities like frequency tunable devices, ultra-low losses or high power handling, which make use of advanced materials for these purposes. In addition, increasingly demanding communication standards and regulations push the limits of the acceptable performance degrading indicators. This is the case of nonlinearities, whose effects, like increased Adjacent Channel Power Ratio (ACPR), harmonics, or intermodulation distortion among others, are being included in the performance requirements, as maximum tolerable levels. In this context, proper modeling of the devices at the design stage is of crucial importance in predicting not only the device performance but also the global system indicators and to make sure that the requirements are fulfilled. In accordance with that, this work proposes the necessary steps for circuit models implementation of different passive microwave devices, from the linear and nonlinear measurements to the simulations to validate them. Bulk acoustic wave resonators and transmission lines made of high temperature superconductors, ferroelectrics or regular metals and dielectrics are the subject of this work. Both phenomenological and physical approaches are considered and circuit models are proposed and compared with measurements. The nonlinear observables, being harmonics, intermodulation distortion, and saturation or detuning, are properly related to the material properties that originate them. The obtained models can be used in circuit simulators to predict the performance of these microwave devices under complex modulated signals, or even be used to predict their performance when integrated into more complex systems. A key step to achieve this goal is an accurate characterization of materials and devices, which is faced by making use of advanced measurement techniques. Therefore, considerations on special measurement setups are being made along this thesis.Award-winningPostprint (published version

    A Nanoscale Parametric Feedback Oscillator

    Get PDF
    We describe and demonstrate a new oscillator topology, the parametric feedback oscillator (PFO). The PFO paradigm is applicable to a wide variety of nanoscale devices and opens the possibility of new classes of oscillators employing innovative frequency-determining elements, such as nanoelectromechanical systems (NEMS), facilitating integration with circuitry and system-size reduction. We show that the PFO topology can also improve nanoscale oscillator performance by circumventing detrimental effects that are otherwise imposed by the strong device nonlinearity in this size regime

    Recent Progress in Electrical Generators for Oceanic Wave Energy Conversion

    Get PDF
    Oceanic wave energy extraction through electrical generator is one of the most interesting topics in the field of power engineering. Almost all the existing relevant review paper focus on electrical generator with the working principle of electromagnetic induction or piezoelectric or triboelectric effect. In this paper, all the existing types (based on principle of operation) of electrical generator used for wave power harvesting are discussed. This paper not only covers recent progress in electrical power generation by electro-magnetic induction, piezoelectric generator, and electrostatic induction, but also presents critical comparative review as well where suitable use and weakness of each type of generators are discussed. Moreover, the application of advanced magnetic core, winding, and permanent magnets are discussed with extensive explanation which are not focused in the existing reviews. Various new constructional features of the electrical generators such as split translator flux switching, two-point absorber, triangular coil, dual port linear generator, piezoelectric, triboelectric nanogenerator, etc. are highlighted with principles of operation. It also includes emerging human intervened optimization method for determining optimum shape of generator and cooling system which is necessary to prevent demagnetization of the permanent magnet. Finally, the way of supply the generated electrical power form the generator to load/grid is thoroughly described in a separate section that would be obvious for successful operation. The comparison among all types of generators in terms of output voltage, current, scale of power production, power-frequency characteristics, power density, cascading, and approaches are tabulated in this paper

    Analysis of the magnetoelectric sensor's usability for the energy harvesting

    Get PDF
    The paper presents the analysis of the magnetic sensor’s applicability to the energy harvesting operations. The general scheme and technical advancement of the energy extraction from the electric vehicle (such as a tram or a train) is presented. The proposed methodology of applying the magnetic sensor to the energy harvesting is provided. The experimental scheme for the sensor characteristics and measurement results is discussed. Conclusions and future prospects regarding the practical implementation of the energy harvesting system are provided

    A Balanced Slew-Rate High-Voltage Integrated Bipolar Pulse Generator for Medical Ultrasonic Imaging Applications

    Get PDF
    This chapter describes the use of silicon-on-insulator (SOI) technology to develop balanced slew-rate pulse generators for medical ultrasound scanners, especially for multi-channel portable systems. Since ultrasonic transducers are usually composed of piezoelectric materials, most of which are capacitive, and the resonant frequency is usually in the order of tens of MHz, it is preferred to convert the high-frequency excited signals into high-voltage pulses to efficiently drive the transducers. In addition, the second harmonic leakage of the high-voltage pulse signal output by the pulse generator needs to be controlled such that the pulse generator can be applied to tissue harmonic imaging. Based on these considerations, the pulse generator architecture with balanced rising and falling edges proposed in this chapter is designed by synthesizing low-power, high-speed level shifters and a high-voltage H-bridge output stage to output high-voltage pulse signals with low harmonic distortion. The entire circuit integrates an 8-channel pulse generator, producing pulse signals >100 Vpp. The rise and fall times of the pulses are within 18.6 and 18.5 ns, respectively. The overall quiescent current is 2 A and the second harmonic distortion is as low as −40 dBc, indicating that the integrated pulse generator can be used in advanced, portable ultrasonic harmonic imaging systems

    High-Q Gold and Silicon Nitride Bilayer Nanostrings

    Full text link
    Low-mass, high-Q, silicon nitride nanostrings are at the cutting edge of nanomechanical devices for sensing applications. Here we show that the addition of a chemically functionalizable gold overlayer does not adversely affect the Q of the fundamental out-of-plane mode. Instead the device retains its mechanical responsiveness while gaining sensitivity to molecular bonding. Furthermore, differences in thermal expansion within the bilayer give rise to internal stresses that can be electrically controlled. In particular, an alternating current excites resonant motion of the nanostring. This AC thermoelastic actuation is simple, robust, and provides an integrated approach to sensor actuation.Comment: 5 pages, 4 figures + supplementary materia

    Investigation of nonlinear effects in piezoelectric discs and radiated sound field

    Get PDF
    Masteroppgave i havteknologiHTEK3995MAMN-HTEKMAMN-HTE
    • …
    corecore