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ABSTRACT
In this paper we present a nonlinear electromagnetic energy

harvesting device that has a broadly resonant response. The
nonlinearity is generated by a particular arrangement of mag-
nets in conjunction with an iron-cored stator. We show the res-
onant response of the system to both pure-tone excitation and
narrow-band random excitation. In addition to the primary res-
onance, the super-harmonic resonances of the harvester are also
investigated and we show that the corresponding mechanical up-
conversion of the excitation frequency may be useful for energy
harvesting. The harvester is modeled using a Duffing-type equa-
tion and the results compared to the experimental data.

1 INTRODUCTION
Many existing vibration-powered energy harvesting devices

are designed around the principle of linear resonance [1–5]
where an inertial mass mounted on a spring-damper is excited
at the resonant frequency of the spring. The benefits of this ar-
rangement are clear: strong amplification of source vibrations
and mechanically very simple. However, there are also numerous
drawbacks, particularly when the geometry of the device is con-
strained in some way (for example when the maximum allowed
displacement of the inertial mass is smaller than the excitation,
as is the case when harvesting from human motion). One of the
main limitations of a linear mass-spring-damper based energy
harvester is that its resonant peak is very narrow [6, 7]. Thus,
if the excitation frequency deviates from the resonant frequency

of the harvester, very little power is generated. There have been
several attempts to design tunable harvesters, either by changing
the electrical loading [4] or by actively changing the mechanical
properties of the system [8, 9]. However, these devices are in the
early stages of development.

One area of research that has seen little progress until re-
cently is the design of energy harvesters with nonlinear resonant
behavior. Such devices offer the potential for broadband or mul-
tiple resonant responses allowing use in a wide variety of dif-
ferent environments. Initial work by Mann and Sims [10] has
shown how nonlinear devices are more tolerant to manufactur-
ing imperfections due to their higher bandwidth (making tuning
less important). Triplett and Quinn [11] studied a weakly nonlin-
ear model of a piezoelectric energy harvester and demonstrated
that, in certain regimes, the nonlinear effect enhanced the per-
formance of the device but, in other regimes, detracted from the
performance. On the electrical side, nonlinear electrical coupling
to a piezoelectric patch has been shown by Guyomar et al. [12] to
improve power output significantly. In the related area of vibra-
tion absorption, nonlinear structures have been used much more
extensively: Carrella et al. [13] use geometric nonlinearities to
construct a spring with effectively zero linear stiffness to enable
low-frequency vibration isolation; McFarland et al. [14] exploit
the concept of energy pumping [15] (uni-directional energy trans-
fer) to localize vibrational energy in a nonlinear attachment; also
see the review article by Ibrahim [16] and references therein.

In this paper we investigate the behavior of a nonlinear en-
ergy harvester that has a broadband resonant response. The de-
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Figure 1. Top: a photograph of the harvester. Bottom: a schematic di-
agram of the harvester. The harvester consists of a cantilever beam with
a tip-mass. The magnets on the tip are arranged such that there is a
complete reversal of magnetic flux during one cycle.

vice uses electromagnetic transduction and uses materials that
have a high magnetic permeability. The use of such materials
results in strongly nonlinear mechanical characteristics, which is
why they are typically avoided in electromagnetic energy har-
vester designs (which mostly use air-cored stators to ensure lin-
ear behavior). The use of high permeability materials enables far
stronger coupling between the mechanical and electrical domains
and, consequently, better energy extraction. In order to char-
acterize the behavior of the harvester in ‘real-world’ situations
we subject it to both pure sinusoidal excitation and narrow-band
Gaussian white noise excitation with varying electrical loads. In
reality, the excitation will be neither purely sinusoidal or purely
random but, instead, somewhere between these two extremes.

The overview of the paper is as follows. In Sec. 2 the design
of the nonlinear harvester is presented and discussed. Section 3
details the mathematical modeling of the harvester and its quali-
tative reduction to a Duffing-type equation. Experimental results
are presented in Sec. 4: the effect on the frequency response
of the harvester is shown for varying excitation strength and
frequency and varying electrical loading. Furthermore, super-
harmonic resonances are investigated which shows that there is a
strong possibility for using nonlinear devices to produce usable
power levels at low frequencies. Conclusions are given in Sec. 5.

2 NONLINEAR HARVESTER DESIGN
Figure 1 shows a schematic diagram of the nonlinear energy

harvester that is investigated in this paper. The harvester consists
of a mass and a set of neodymium (NdFeB) magnets mounted at
the tip of a cantilever beam in close proximity to a laminated iron
stator. The magnets are arranged with alternating polarities in the
(x, y)-plane such that a closed magnetic circuit exists with the
magnetic flux passing through the stator (and coil) as illustrated
in Fig. 1(b). The magnets are also arranged in the (x, z)-plane
with alternating polarities to ensure that the flow of magnetic flux
reverses direction as the beam vibrates. A voltage is generated
across the coil in proportion to the rate of change of magnetic
flux.

The use of a laminated iron-cored stator provides a high de-
gree of coupling between the mechanical and electrical domains
without the need for a large number of windings on the coil, un-
like air-cored designs. Many electromagnetic energy harvesters
in the literature use air-cored transducers to eliminate the extra
damping caused by eddy currents and magnetic hysteresis, how-
ever, this results in poor coupling since air has a very low mag-
netic permeability. Furthermore, the air-cored designs may have
greater electrical losses in their coils due to the increased coil
length needed to obtain a usable output voltage. It is not yet clear
which type of losses are more significant in energy harvester de-
sign.

While the use of iron in the energy harvester gives more op-
timal coupling, the interaction of the magnets with the iron stator
also gives rise to large nonlinear effects in the mechanical do-
main. The magnetic forces effectively reduce the mechanical
stiffness of the beam for small displacements. Thus, the over-
all effect is to create a hardening spring that has a lower natural
frequency than the beam without the magnets attached. The re-
duction in the natural frequency is determined by the strength of
the magnets and the size of the air gap between the magnets and
the iron stator; if the air gap is decreased sufficiently, the device
becomes bi-stable and the tip-mass will hop between between the
two stable states when given a strong enough perturbation. Con-
sequently, this design of energy harvester enables the resonant
behavior of the device to be tuned significantly with only small
mechanical changes.

If, when in the bistable regime, the stable states were equally
favored (i.e., they lie in symmetric potential wells) it would be
possible to make an energy harvester with almost zero linear
stiffness by changing the air gap appropriately. This would be
extremely useful for energy harvesting from very low frequency
vibrations as well as enabling designs that incorporate more ex-
otic ideas such as energy pumping [17]. Furthermore, in small
scale designs, where it is not always possible to design a lin-
ear resonator with an appropriate natural frequency due to size
constraints, this type of design could be successfully employed.
However, due to the extreme sensitivity of the magnetic field to
imperfections in the device, it is not possible to do this without
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high-precision machining and placement of the magnetic parts.
Consequently, zero stiffness can never be achieved in practice
but it is possible to get close; in the experiments carried out on
this device it was possible to reduce the first natural frequency of
the beam from approximately 36Hz to approximately 17Hz by
changing the size of the air gap without the aid of high-precision
instruments.

For the experimental device investigated in this paper, we
have focused on a parameter regime in which the device is mono-
stable. Operating in the bistable regime does not appear to pro-
vide significant advantages, although the magnetic coupling (flux
linkage) is stronger. A thorough investigation of the benefits of
using a bistable energy harvester is currently in progress and is
beyond the scope of the present paper. One significant conse-
quence of the bistable configuration which we note here is that
the motion of the tip mass may be chaotic if the excitation force
is not sufficiently strong and this is not desirable for providing
useful electrical output.

3 MATHEMATICAL MODELING
The mechanical part of the energy harvester as shown in

Fig. 1 can be modeled as a cantilever beam using the Euler-
Bernoulli equation with appropriate boundary conditions [18].
However, it is convenient to make the simplifying assumption
that the beam is operating solely in its first mode. This is justi-
fied by the fact that the harvester is always excited at or below
its first resonant frequency (approximately 24Hz in the experi-
ments below) and the second resonant frequency is far higher
(approximately 160Hz in the experiments below). Consequently,
the mechanical part of the energy harvester is modeled as the
mass-spring-damper system

mü+ cmechu̇+ kmechu+Fmag(u, u̇) =−mv̈

where Fmag is the magnetic interaction force and v is the displace-
ment applied to the base of the energy harvester.

The magnetic part of the system is significantly more diffi-
cult to model due to the distributed nature of the fields involved.
Consequently, as a first approximation, we assume the magnetic
forces to be modeled well by a cubic polynomial in displacement
and a linear function with respect to velocity:

Fmag := kmagu+βmagu3 + cmagu̇+Felec

where Felec is the force reflected back from the electrical domain.
The velocity term acts as an effective magnetic damping incorpo-
rating any losses due to the magnetic field’s interaction with the
iron-cored stator (e.g., eddy current losses and magnetic hystere-
sis). The coefficients of the polynomials are determined by fitting

to experimental data; see Fig. 2. While this might seem a gross
simplification of the physics, it provides a good approximation of
the behavior of the energy harvester as shown by the experimen-
tal data. Furthermore, the alternative approaches, such as finite
element electromagnetics, are very cumbersome and very few, if
any, generally applicable design rules can be derived from them.

The bi-directional coupling between the magnetic and elec-
trical domains occurs since a changing magnetic field strength
(due to the change in position of the permanent magnets) will
induce a potential difference across the coil. In turn, this poten-
tial difference will drive the flow of current around the electrical
circuit and the flowing current will create a magnetic field in op-
position to the original changes in the magnetic field.

The relationship between the position of the magnets/tip-
mass and the magnetic field strength in the stator is approxi-
mately linear during normal operation as shown by Fig. 2. Con-
sequently, there is a one-to-one relationship between the velocity
of the magnets and the potential difference induced across the
coil.

The final nonlinear model is derived by applying Kirchhoff’s
circuit equations to the simple electrical load of two resistors
(one for the coil resistance and one for the load resistance) and
an ideal voltage source in series. This gives

mü+(cmech + cmag)u̇+(kmech + kmag)u+βmagu3 =−mv̈−θi,

θu̇ = Ri

where θ is a coupling coefficient and R := Rcoil + Rload is the
total resistance in the electrical circuit. These two equations can
be combined to give the Duffing-type equation

mü+(cmech +cmag +θ
2/R)u̇+(kmech +kmag)u+βmagu3 =−mv̈.

(1)
The Duffing equation has been extensively studied in a wide

variety of contexts and methods of solution can be found in any
good textbook on nonlinear ordinary differential equations (see
for example [19, 20]). For brevity, we omit the details here.

4 EXPERIMENTAL RESULTS
This section describes the experimental rig and the tests un-

dertaken to investigate the dynamics of the nonlinear energy har-
vester. The tests were primarily frequency sweeps with either si-
nusoidal or narrow band noise as the excitation. Both the primary
resonance and the super-harmonic resonances were considered.

When used in practice, it is unlikely that the energy harvester
will experience either of the two extremes of excitation (that is,
purely sinusoidal or purely random) and the “real” excitation will
lie somewhere in the middle. For example, when harvesting en-
ergy from machine vibrations the excitation is likely to be well
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Figure 2. (a) Mechanical spring characteristics of the beam/magnet system. The solid gray curve and the dashed gray line show the magnetic and
mechanical spring characteristics respectively; the solid black curve shows the overall spring characteristics. (b) Characteristics of the electromagnetic
induction.

defined but have a significantly more complicated spectrum than
just a simple sinusoid. Whereas, when harvesting from motion
of people or animals the excitation will be much more random
but still have some well defined characteristics. However, with-
out a particular application in mind, these two extremes provide
a guide to how the harvester will behave in reality.

4.1 Experimental set-up
Base excitation of the energy harvester was achieved us-

ing an electrodynamic shaker with a closed-loop position feed-
back controller to ensure reliable operation across all frequency
ranges. Additionally, the shaker was orientated horizontally to
ensure that no extra asymmetries were introduced into the sys-
tem by the action of gravity. The energy harvester was instru-
mented with PCB Piezotronics accelerometers on its base and on
the tip mass to provide positional measurements in addition to
the voltage output of the coil.

When the harvester was excited with sinusoidal forcing, the
position and velocity information was determined by numeri-
cally integrating the accelerometer output and determining the
integration constants by the periodicity. Since the forcing fre-
quency was relatively high, the drift of the accelerometer signal
across one oscillation was negligible and so the position and ve-
locity information obtained was reasonably accurate.

When the harvester was excited with narrow-band random
forcing (and so the response was no longer periodic), the ac-
celerometer data was first filtered to remove low frequency com-
ponents (frequencies below 0.1Hz) before numerical integration.
The resulting positional information had approximately a zero-
mean suggesting that this was sufficient to remove the effects of
accelerometer drift.

The narrow-band random signal was created by passing

Gaussian white noise through a linear band-pass filter of the form

f̈ + γ ḟ +ω
2
f f = γ

1
2 ω fW (2)

where ω f is the center frequency, γ is the bandwidth of the fil-
ter and W is a Gaussian white noise source [21]. This was im-
plemented in a dSpace real-time controller which also enabled
automated testing of the harvester.

4.2 Physical characteristics
The system parameters of Eq. (1) where determined by per-

forming an initial frequency sweep with the coil in an open cir-
cuit state. At a discrete set of frequencies the periodic mo-
tion of the harvester was recorded. By combining all these
measurements is was possible to reconstruct the phase-space of
Eq. (1) as a (position, velocity, acceleration) triplet and so mea-
sure the spring and damping characteristics; in the systems iden-
tification literature, this is known as the restoring force surface
method [22].

Figure 2(a) shows the reconstructed force-displacement
characteristic of the harvester for zero velocity. Over the region
of operation shown, the force-displacement characteristic has a
strong cubic element with minimal asymmetry. Consequently,
the dynamics of the harvester are similar to that of a harden-
ing spring. Figure 2(b) shows the reconstructed voltage-velocity
characteristic of the harvester at peak displacement. This vali-
dates the assumption of a linear relationship between the velocity
and voltage, which only starts to break at higher velocities.

The measured parameters for the model Eq. (1) are as
follows: m = 80g, cmech = 0.06Nsm−1, cmag = 0.24Nsm−1,
θ = 7Vsm−1, 12Ω ≤ R ≤ 212Ω, kmech = 4.09× 103 Nm−1,
kmag =−2.37×103 Nm−1, βmag = 1.63×108 Nm−3.
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Figure 3. Experimental frequency sweeps (increasing frequency then decreasing frequency) for three amplitudes of excitation. The peak excitation
displacement is kept constant across a frequency sweep using a closed-loop controller around the shaker.

4.3 Primary resonance — sinusoidal forcing
Figure 3 shows the fundamental behavior of the harvester as

the excitation frequency varies. The velocity of the tip mass is
plotted against frequency since this is the most important factor
when considering the power output of the harvester. The forc-
ing is a sinusoid with a fixed amplitude of displacement and the
coil is in an open circuit state. Data is shown for three differ-
ent forcing amplitudes: 0.1mm, 0.2mm and 0.3mm peak to peak
displacement. The frequency is increased in steps of 0.2Hz from
10Hz to 40Hz and then decreased back to 10Hz to show the hys-
teresis in the response.

For small amplitude excitations, the harvester operates in a
near-linear regime. There is a pronounced increase in the veloc-
ity near the linear resonance of 23.6Hz and little hysteresis in the
response. For large amplitude excitations, the resonant behav-
ior of the system is greatly increased and covers a wide band of
frequencies, resulting in a large hysteresis loop where two stable
states coexist (one high-energy state and one low-energy state).

Figure 4 presents a comparison of the experimental data and
the model, which shows reasonable agreement between experi-
ment and theory. The response of the model was computed us-
ing the numerical continuation software AUTO-97 [23] rather
than the analytical formulas in [19, 20] due to the significant
third harmonic component found in the response. The source
of the discrepancies around the point of linear resonance are as
yet unknown, but are likely to be due to the complicated damp-
ing mechanisms of magnetic hysteresis and eddy currents and the
presence of small asymmetries in the harvester.

It is not surprising that the top branch of experimental re-
sults does not extend as far as the theory predicts. As the fre-

quency of excitation is increased, the high-energy state becomes
only weakly stable, its basin of attraction shrinks, and, conse-
quently, small disturbances cause the harvester to be knocked
into the low-energy state. With this in mind, we make the gen-
eral comment that the resonant peaks of determined by nonlinear
analysis of, for example, the Duffing equation should be treated
with great care since the solution may only have a small basin of
attraction which is not useful from a practical view point. How-
ever, it is relatively straightforward to determine the approximate
size of the basin of attraction by numerical simulation.

Figure 5 shows the basins of attraction of the high-energy
state (white) and the low-energy (black) for the model Eq. (1)
when (a) ω = 27.5Hz, (b) ω = 30Hz, (c) ω = 32.5Hz and (d)
ω = 35Hz. The basins are shown relative to the start of a pe-
riod of forcing (i.e., the instantaneous forcing from the shaker is
zero). It is immediately clear that the higher frequency, the more
dominant the low-energy state becomes.

Figure 6(a) shows the peak velocity against frequency for
six different electrical loading conditions. The electrical load is
a variable resistor set to one of 50Ω, 75Ω, 100Ω, 150Ω, 200Ω

or open circuit conditions. The experimental results show that
there is little change in the peak velocity of the tip mass as the
electrical damping is increased (equivalently, the resistive load
is decreased). The primary difference in behavior comes from
the change in drop down frequency. However, this jump up fre-
quency remains constant with respect to the electrical loading. It
should be noted that the voltage seen across the coil is not invari-
ant with respect to the electrical damping since the relationship
between velocity and voltage is also dependent on the electrical
load.
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Figure 5. The basins of attraction of the model Eq. (1) computed by numerical simulation for (a) 27.5Hz, (b) 30Hz, (c) 32.5Hz, (d) 35Hz. The basin of
attraction of the low energy state is colored in black and the basin of attraction of the high energy state is colored in white.

Figure 6(b) shows the peak electrical power developed in
the load against frequency for same experiments. (Note: the
open circuit condition results in zero power developed.) The
optimum peak power condition occurs at approximately 100Ω,
which is the same as the resistance required to achieve optimum
peak power for a linear harvester with the same damping coeffi-
cients. When the resistance is decreased further, the peak power
drops off. However, the power output at lower frequencies in-
creases. Thus, at the edge of the bistable region (approximately
25Hz), the optimum peak power output is obtained for 50Ω.

These results provide further support for the notion that non-
linear energy harvesters can have wide-band responses. In effect,
the bandwidth of the device can be increased considerably by in-
cluding a variable load resistance into the electrical circuit de-
sign.

4.4 Primary resonance — random forcing

Figure 7 shows a comparison of the frequency response of
the harvester in open circuit configuration with periodic exci-
tation and narrow-band random excitation (bandwidth of 2Hz).
The vertical axis shows the average tip velocity of the harvester,
which is defined as the root-mean-square (RMS) velocity aver-
aged over 10 seconds of excitation. Over the 10 second sampling
window, the average RMS of the shaker displacement is approx-
imately equal for both the periodic excitation and the random
excitation.

The results in Fig. 7 show that the peak velocity attained by
the harvester under periodic excitation is never reached by the
harvester under random excitation. However, the harvester mo-
tion of the harvester does follow the high-energy branch briefly.
The difference between the periodic and random excitation is due
to the hopping between the different energy states as the random
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Figure 6. A comparison of frequency sweeps for varying electrical loads: (a) velocity, (b) power. Note: in the open circuit condition no power is developed.
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Figure 7. A comparison of the frequency response to a pure-tone excitation and a narrow-band random signal (2Hz bandwidth) of the energy harvester
in open-circuit conditions. The response of the harvester to the random signal is averaged (RMS) over 10 seconds.

excitation changes in strength. For higher frequencies, once the
high-energy state has been left the random excitation is not suffi-
ciently strong to force the motion back into the high-energy state.

The effect of varying the bandwidth of the random excitation
is shown in Fig. 8. The panels show the frequency responses for
(a) 2Hz bandwidth, (b) 1Hz bandwidth, (c) 0.5Hz bandwidth and
(d) 0.25Hz bandwidth. It could be argued that the jump up/down
points in the frequency response are most clear in the narrow-
est bandwidth case, with the higher bandwidth cases smoothing

out the distinction, but this is a tenuous conclusion based on the
results shown here. Since there is not a great deal of difference
between the results, this indicates that there is a very sharp tran-
sition at low bandwidth between the frequency response of the
periodic excitation and the frequency responses shown here.

Further experiments (not shown) when varying the electrical
loading indicate that the peak power output is obtained for very
low electrical resistances (approximately 50Ω), which is consis-
tent with the data presented in Fig. 6 since much of the high-
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Figure 8. Frequency sweeps for varying bandwidth narrow-band random excitation. The corresponding bandwidths are (a) 2Hz, (b) 1Hz, (c) 0.5Hz, (d)
0.25Hz.

energy branch is not present.
Overall, the experimental results presented here are in broad

agreement with theoretical findings on the Duffing equation with
narrow-band excitation [21, 24]. Simply stated, increasing the
bandwidth of the narrow-band excitation results in the device ap-
pearing increasingly linear — in effect the nonlinear behavior of
the device is averaged out. If the bandwidth of the random excita-
tion is decreased sufficiently (approximately 0.1Hz) most of the
hysteresis loop seen in the pure-tone excitation case reappears.

4.5 Super-harmonics
Nonlinear devices often exhibit sub-/super-harmonic reso-

nances, where the frequency of the response is lower/higher than
the excitation frequency respectively. Of interest here are the
super-harmonic responses, where the harvester responses at a
higher frequency than the excitation frequency — a mechanical
up-conversion of the frequency.

Figure 9 shows the low-frequency response of the nonlinear
harvester for a variety of electrical loading conditions. Super-
harmonic resonances at approximately 4.6Hz and 7.8Hz are
clearly seen. The harvester is responding at its natural frequency
when excited with a frequency of 5 times and 3 times lower re-
spectively. These resonances are caused by the dominant cubic
characteristic of the harvester. It is also possible to make out
two additional super-harmonic resonances at 5.8Hz and 11.7Hz;
these correspond to 1:4 resonances and 1:2 resonances respec-
tively. These second two resonances are much smaller since they
are determined by quadratic characteristics within the harvester
(asymmetries in the force-displacement characteristics), which

are very small.
The super-harmonic resonances appear very similar to linear

resonances in that they possess no hysteretic regions in the fre-
quency response. However, in general the super-harmonic reso-
nances may also take the same form as the primary resonance if
the nonlinear characteristics are suitably strong.

Although the super-harmonic response is far less than the
primary response, the super-harmonic resonances may be use-
ful in designing very low frequency energy harvesters or very
small energy harvesters where it is not possible to build a lin-
ear resonator of sufficiently low frequency. In addition, the up-
regulation of the frequency means that the overall displacement
remains low while providing a relatively high velocity (compared
with the excitation force). Consequently, future designs might
seek to strengthen these super-harmonic resonances.

5 DISCUSSION AND CONCLUSIONS
In this paper we have shown that a nonlinear energy har-

vester is able to overcome some of the inherent limitations of
a linear energy harvester, namely that of having a narrow res-
onant response. Moreover, the bandwidth of the harvester can
be increased further with a varying resistive load. However, the
advantages of the wide bandwidth are only apparent when there
is a consistent (uninterrupted/non-random) vibration source (for
example when the harvester is attached to a piece of rotating ma-
chinery) due to the coexistence of a low-energy state and a high-
energy state. In particular, random excitations appear to aver-
age out the high-energy and low-energy states. We are currently
investigating possible ways of incorporating a restarting mecha-
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Figure 9. Super-harmonic resonances of the energy harvester for varying electrical loads. At the resonance peaks the harvester is responding at an
integer multiple of the excitation frequency (as denoted above each peak in the figure). At the most prominent peak the harvester is responding at three
times the excitation frequency.

nism, to over come sudden drops in the source vibration as found
with random excitation, which uses a small amount of the previ-
ously harvested energy to perturb the harvester back into a high
energy state.

While the model presented in this paper shows reasonable
quantitative agreement with the experimental results, a much
more in depth analysis of magnetic loss mechanisms is needed
to fully model the system. A better model of the magnetic losses
would also help determine the usefulness of iron-cored stator de-
signs. The high magnetic permeability of iron gives a high de-
gree of coupling between mechanical and electrical domains but
it is still not clear if this benefit out weights the corresponding
magnetic losses.

One important benefit of using a nonlinear harvester is the
presence of super-harmonic resonances at frequencies well be-
low the (linear) natural frequency. At these resonances the har-
vester responds at a higher frequency than the excitation fre-
quency — a mechanical up-conversion of frequency. These
super-harmonic resonances may enable the design of devices that
resonate at low frequencies while still being able to extract mod-
erate amounts of power.
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