6,893 research outputs found

    A distributed garbage collector for active objects

    Get PDF
    This paper introduces an algorithm that performs garbage collection in distributed systems of active objects (i.e., objects having their own threads of control). The proposed garbage collector is made of a set of local garbage collectors, one per node, loosely coupled to a global garbage collector. The novelties of the proposed garbage collector come from the fact that local garbage collectors need not be synchronized with each other for detecting garbage objects and that faulty communication channels are tolerated. The paper describes the proposed garbage collector, together with its implementation and performance for a concurrent object-oriented language running on a local area network of workstations

    System Description for a Scalable, Fault-Tolerant, Distributed Garbage Collector

    Full text link
    We describe an efficient and fault-tolerant algorithm for distributed cyclic garbage collection. The algorithm imposes few requirements on the local machines and allows for flexibility in the choice of local collector and distributed acyclic garbage collector to use with it. We have emphasized reducing the number and size of network messages without sacrificing the promptness of collection throughout the algorithm. Our proposed collector is a variant of back tracing to avoid extensive synchronization between machines. We have added an explicit forward tracing stage to the standard back tracing stage and designed a tuned heuristic to reduce the total amount of work done by the collector. Of particular note is the development of fault-tolerant cooperation between traces and a heuristic that aggressively reduces the set of suspect objects.Comment: 47 pages, LaTe

    A Cyclic Distributed Garbage Collector for Network Objects

    Get PDF
    This paper presents an algorithm for distributed garbage collection and outlines its implementation within the Network Objects system. The algorithm is based on a reference listing scheme, which is augmented by partial tracing in order to collect distributed garbage cycles. Processes may be dynamically organised into groups, according to appropriate heuristics, to reclaim distributed garbage cycles. The algorithm places no overhead on local collectors and suspends local mutators only briefly. Partial tracing of the distributed graph involves only objects thought to be part of a garbage cycle: no collaboration with other processes is required. The algorithm offers considerable flexibility, allowing expediency and fault-tolerance to be traded against completeness

    Modelling Garbage Collection Algorithms --- Extend abstract

    Get PDF
    We show how abstract requirements of garbage collection can be captured using temporal logic. The temporal logic specification can then be used as a basis for process algebra specifications which can involve varying amounts of parallelism. We present two simple CCS specifications as an example, followed by a more complex specification of the cyclic reference counting algorithm. The verification of such algorithms is then briefly discussed

    Creating a Distributed Programming System Using the DSS: A Case Study of OzDSS

    Get PDF
    This technical report describes the integration of the Distribution Subsystem (DSS) to the programming system Mozart. The result, OzDSS, is described in detail. Essential when coupling a programming system to the DSS is how the internal model of threads and language entities are mapped to the abstract entities of the DSS. The model of threads and language entities of Mozart is described at a detailed level to explain the design choices made when developing the code that couples the DSS to Mozart. To show the challenges associated with different thread implementations, the C++DSS system is introduced. C++DSS is a C++ library which uses the DSS to implement different types of distributed language entities in the form of C++ classes. Mozart emulates threads, thus there is no risk of multiple threads accessing the DSS simultaneously. C++DSS, on the other hand, makes use of POSIX threads, thus simultaneous access to the DSS from multiple POSIX threads can happen. The fundamental differences in how threads are treated in a system that emulates threads (Mozart) to a system that make use of native-threads~(C++DSS) is discussed. The paper is concluded by a performance comparison between the OzDSS system and other distributed programming systems. We see that the OzDSS system outperforms ``industry grade'' Java-RMI and Java-CORBA implementations

    Lock-free atom garbage collection for multithreaded Prolog

    Get PDF
    The runtime system of dynamic languages such as Prolog or Lisp and their derivatives contain a symbol table, in Prolog often called the atom table. A simple dynamically resizing hash-table used to be an adequate way to implement this table. As Prolog becomes fashionable for 24x7 server processes we need to deal with atom garbage collection and concurrent access to the atom table. Classical lock-based implementations to ensure consistency of the atom table scale poorly and a stop-the-world approach to implement atom garbage collection quickly becomes a bottle-neck, making Prolog unsuitable for soft real-time applications. In this article we describe a novel implementation for the atom table using lock-free techniques where the atom-table remains accessible even during atom garbage collection. Relying only on CAS (Compare And Swap) and not on external libraries, the implementation is straightforward and portable. Under consideration for acceptance in TPLP.Comment: Paper presented at the 32nd International Conference on Logic Programming (ICLP 2016), New York City, USA, 16-21 October 2016, 14 pages, LaTeX, 4 PDF figure
    • …
    corecore