
Creating a Distributed Programming System Using the DSS:
A Case Study of OzDSS

Erik Klintskog

April 4, 2005

Swedish Institute of Computer Science, Kista, Sweden

SICS Technical Report T2004:16
ISSN 1100-3154

ISRN:SICS-T–2004/16-SE

1
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 3
1.1 Outline . 3

2 The Distribution Subsystem 3
2.1 Further Information About the DSS 4
2.2 Model of a Programming Language 4
2.3 DSS Distribution Support . 4
2.4 Abstract Entities . 5
2.5 Localization and Globalization . 5
2.6 Distribution Strategies . 6
2.7 The Abstract Operation Interface . 6

3 Mozart 7
3.1 The Logical Variable . 7
3.2 The Mozart Runtime-System . 8

3.2.1 The Virtual Machine . 8
3.2.2 The Heap . 9
3.2.3 The Thread Model . 9
3.2.4 Suspending and Resuming a Thread 10

4 OzDSS 10
4.1 Distributing Language Entities . 11

4.1.1 The Cell . 12
4.1.2 Capturing Operations . 12
4.1.3 The Mediator . 13
4.1.4 Executing an Abstract Operation 14
4.1.5 Suspending and Resuming Threads 15
4.1.6 Callbacks . 15

4.2 Handling Mozart Threads . 16
4.2.1 Representing a Thread . 16
4.2.2 Resuming a Suspended Operation 17

4.3 Customizing Distribution Behavior 18
4.4 Reporting Failures . 18
4.5 Transporting Data . 19
4.6 Garbage Collection . 20

4.6.1 Calculating the Root Set . 20
4.6.2 Dropping Unreferred Distributed Entities 20

4.7 I/O Handling . 21

5 Green Threads vs. Native Threads 21

6 Discussion 22
6.1 Where to Place the Guard . 23
6.2 Performance Comparision . 23
6.3 OzDSS vs Mozart . 25

2

1 Introduction

Developing distributed applications is greatly simpilfied by the use of a programming
language that incorporates distribution support into the programming model. Given
that distribution support is succesfully integrated into the programming model, a dis-
tributed application can be developed much like a centralized application (i.e. an appli-
cation that is executed on one machine only). One powerfull approach to programming
level distribution support is network transparency. We use the network transparency in
the meaning that the physical distribution of an application does not affect the function-
ality. Thus, disregarding where a resource such as an object is located in a distributed
system, the object can be accessed. Network transparency provides freedom in deploy-
ment of data over a distributed system.

Devloping implementations of programming languages, called programming sys-
tems, with comprehensive distribution support is a complicated and time consuming
task. This is indicated by the scarsness of programming system that provides some
degree of network transparency and in the mean time offers a stable implementation.
However, we argue that this is not nessesary the case. Distribution support for a pro-
gramming language can be divided into a set of tasks that are found in most existing
distributed programming system, we denote a programming system that provides a
programming model that incoroporates distribution support a distributed programming
system. The tasks that are found in most distributed programming systems is a messag-
ing facility that allows processes to communicate, protocols that allows data structures
to be accessed from more than one proces, and serializing or marshaling routines that
makes it possible to pass programming level deta betwene processes. Programming
level data can for example be data structures of operations on data structures. In this
technical report we describe how the Distribution SubSystem (DSS), a middlware that
provides generic distribution support for programming systems is coupled to two dif-
ferent programming systems, Mozart[2] and C++, in order to realize two distributed
programming systems.

Mozart, the target programming system for our experiment with using DSS to real-
ize a distributed programming system, allready provides transparent distribution on the
level of data structures[1]. However, the existing implementation of distribution sup-
port is tightly integrated with the code of the virtual machine, i.e. a monolitic system.
This have the effect that knowledge in both the virtual machine and in the distribu-
tion support is required to maintain, and extend the Mozart system. The purpose of
this document is to show how the DSS coupled to Mozart results in a non-monlitic
distributed programming system, that is efficient and provides the same functionality
that the monolitic Mozart system does. Efficincy is in this case measured towards the
original Mozart system.

1.1 Outline

2 The Distribution Subsystem

The Distribution Subsystem (DSS) is a middleware that supports distribution of pro-
gramming systems on the level of single data structures. A key component in the DSS
is its expressive interface towards a programming system that is based on a concept
of abstract entities that captures different basic semantically behaviors, like mutable or
immutable access. Programming system data structures, i.e. language entities are pro-

3

vided distribution support by being coupled to an abstract entity. This section serves as
a brief intrduction to DSS. Further information regarding details in the DSS nessesary
to understand the design desiscions taken when coupling Mozart to DSS are introducted
throughout the document.

2.1 Further Information About the DSS

The purpose of this document is to describe the Mozart system is coupled to the DSS.
Detailed descriptions of the DSS is on purpose left out of this document. For deeper
understanding of DSS we direct the reader to the following documents:

� The DSS, a Middleware Library for Efficient and Transparent Distribution of
Language Entities[7]
The paper describes the API and the assoicated semantic model provided by the
DSS. The internal structure of the DSS is also briefly described.

� A Peer-to-Peer Approach to Enhance Middleware Connectivity[8]
The paper describes the structure of the messaging layer of the DSS. The com-
ponent based design enables simple customization of connection establishment
strategies. This is illustrated by the use of a simple P2P algorithm (Gnutella-like)
to find suitable route between sites in the face of firewalls, NATs, etc.

� Internal Design of the DSS[5]

This technical report gives an overview of the implementation of the DSS on the
level of single classes. Focus is put on major concepts such as the classes that
makes the interface towards a programming system, the messaging layer of DSS,
and the consistency protocols of DSS.

Moreover, a webpage is maintained, http://dss.sics.se, where the DSS
sources and the documents describing the DSS can be retrived.

2.2 Model of a Programming Language

DSS is primary designed to provide distribution support for programming systems. By
coupling a programming system to DSS, a distributed programming system is created.
The primitives provided by DSS are explicitly designed to enable distribution of data
structures, denoted langauge entities. A distributed language entity can, in difference
from a local language entity, be accessed and invoced from more than one process. Ex-
amples of language entities in Oz[13] are cells, records, objects and logical variables.
Interaction and manipulation of a language entity is done by explicit operations. Exam-
ples of operations on language entities are the assing operation of the cell, field access
of a record, method invocation of an object, and determining the value of a logical
variable. Moreover, DSS explicitly models threads. An operation on a language entity
is supposed to be performed by a thread. Threads can be suspended on an operation
and can be resumed after being suspended.

2.3 DSS Distribution Support

The unit of distribution in the model supported by the DSS is a language entity. A lan-
guage entity is said to be distributed if it can be accessed from more than one process.
A distributed language entity is network transparent if operations can be performed on

4

the entity similarly from any process. In effect, disregarding how a language entity is
distributed, the language entity is accessed in teh same way. The distribution support
provided by DSS is network transparent.

A distributed language entity requires a consistency protocol to be network trans-
parent. For example concider RPC, there exist a home process and a set of proxyies
that allows transparent invocation of the procedure at the home. RPC is an example
of a protocol. Other examples of consistency protocols are mobile state and multiple-
reader/single-writer type of protocols.

The model of distributed language entities supported by the DSS is based on equal
instances. An instance that represents a distributed lanaguega entity is present at every
process that referes a distributed language entity. Thus, if one or more threads at a pro-
cess referes a given distributed language entity, there should be a local representative
of the language entity.

2.4 Abstract Entities

A local representation is controled and coordinated by the DSS middleware, operations
cannot be performed on the instance without consulting the DSS. This is because an
operation might have to be passed over the network in order to be resolved as in an RPC
protocol. Moreover, if a replication type of protocol is used, the local repersentative has
to be turned into a valid state before an operation can be performed. Control of a local
representation is done by abstract entities. An abstract entity representes a semantical
behavior, such as mutable access. Interaction with an abstract entity is done using
abstract operations. Thus, operations performed on a local entity instance msut be
translated into abstract operations on the associated abstarct entity. The result from the
abstract operation tells how the operation on the language entity should be performed.

An abstract operation can tell the invoking thread, i.e. the thread that tries to per-
form an operation on a local entity instance, to suspend and later redo the operation
in the case of a replication protocol. If a remote execution protocol is used, the thread
is told to suspend, and later is resumed with the result of the operation. To control
programming system threads the DSS exposes an interface that enables control in the
form of suspension and resumption of threads.

The DSS provides three types of different abstract entity types that capture different
basic semantical behaviors. First, the mutable abstract entity allows for both update
and access of a language entity’s state. Second, the immutable abstract entity allows
for only non-destructive access of a language entity’s state. Third, the transient abstract
entity that allows for mutable updates of a languege entity until a certain point, defined
from progarmming system level, where only immutable access is allowed.

The purpose of the abstract entity model is to make coupling of a programming
system to DSS simple. A language entity is made distributable by interfacing the im-
plementation of the language entity towards an abstract entity type that implements the
semantical behavior nessesary to distribute the language entity. For example, an Oz
cell should be coupled to the immutable abstract entity, the record that does not allow
for any updateds should be coupled to the immutable abstract entity, and the logical
variable to the transient abstrcat entity.

2.5 Localization and Globalization

Two central concepts in the distribution model of DSS is globalization and localiza-
tion. Globalization is when a local language entity is being refered from more than one

5

process, i.e. the language entity becomes a distributed language entity. Localization
is when a distributed lanaguage entity becomes a local entity instance, i.e. only ref-
ered from one process again. Typically, a language entity starts as a local entity, only
being refered from the process where it is created. First when a reference to the lan-
guage entity is passed from the creation process to another process is the entity made a
distributed language entity.

This model of distribution on demand releaves the programmer of a distributed
application from explicitly knowing which data that will be distributed and which data
will be solely accessed from its creation process. Moreover, the local representation
is intrisnicly smaller memory vice. Thus, it is benefical to not make data distributed
unless nessesary.

Globalization takes in practice place when a local language entity is coupled to
an asbtract entity and put under the control of the abstract entity. This explains the
growth in memory footprint of a distributed language entity. For example, concider if
every language entity created would be associated with an abstract entity, disregardning
whether the entity will ever be distributed or not, the memory consumption would
inventeble be conciderable larger than if the more conservative scheme that the DSS
emphicice is used. However, the abstract entity model does not prevent using the later,
eagerly distribting model. At creation, every langguage entity can be associated with
an abstract entity, with the increased memory footrpint and the nessesary overhead o
translatingf operations on the langauge entity into abstract opertaions.

2.6 Distribution Strategies

The abstract entity defines an interface and a set of opreations in the form of abstract
operations. However, the abstract entity does not define how an abstract operation in
reality is resolved. It has been indicated that both remote execution and replication type
of protocols can be used. The protocol used, that defines how operations performed on
different local entity isnatnces are resolved correctly is denoted a distribution strategy.
Thus, a distributed langauge entity is represneted by the triplet, the local entity instance,
the abstract entity, and a distribution strategy. The distribution strategy is assigend at
creation of an abstract entity(i.e. globalization of a languiage entity), and will from that
point be hidden behind the abstract entity interafce.

Internally, DSS hosts a framework for distribution strateges that allows for cus-
tomization in three different non-functional domains. Customziation is possible in
how a language entity is replicated, how the access structure is organized, and how the
distributed garange collection is resolved. This is further described in the documents
describing the DSS, see Section 2.1.

2.7 The Abstract Operation Interface

On the level of implementaion, a langauge entity instance that acts as an representative
for a distributed language entity must implement a facility that translates operations
into abstract operations. We denote this facility the guard. The purpose of the guard
is to interact with the abstract entity and control the calling thread. An operation per-
formed on a representative must be translated into an abstract operation and performed
on the abstract entity. The result from the abstract operation (i.e. the guard) tells the
calling thread how to proceed:

proceed The operation can be executed locally by the calling thread.

6

suspend The status of the entity instance does not allow for local execution. The
distribution strategy resolves how the operation should be completed, while the
calling thread should be suspended. Later, the thread will be resumed in one out
of two modes:

doLocally The entity instance is in a state that allows for local exectution. Per-
form the operation without invoking the guard.

remoteDone The operation has been executed elsewhere. The suspended thread
is passed the result of the operation. The thread should continue with the
next instruction after the operation on the language entity.

The pseudo code below shows how the abstract entity is consulted before the
operation is invoked. Note the suspend case, the thread is suspended with the
suspended() call. The call returns when the thread should be resumed. At this
point the getResumeValue() function returns how the thread should continue, do
the operation or skip the operation.

vo id g u a r d e d O p e r a t i o n (Args . . .) �
swi tch (a b s t r a c t E n t i t y��� a b s t r a c t O p e r a t i o n ()) �

case proceed : �
break ;�

case suspend : �
suspend () ;
i f (getResumeValue () = = o p e r a t i o n Do ne) �

re turn ;�
break ;���

O p e r a t i o n ��

3 Mozart

The programming language Oz is a concurrent multi-paradigm language, simultane-
ously supporting the declarative, object oriented and constraint programming paradigms.
The Oz language has features that make it a good candidate for transparent distribu-
tion support. First, the language is concurrent, and its implementation, Mozart, allows
for thousands of simultaneously running threads. Second, the language makes a clear
separation between mutable and immutable data structures. Immutable data structures
have values that cannot be changed after creation, e.g. atoms and records from declar-
ative programming. Finally, the language is dynamically typed and in addition to data
structures allso code (i.e. classes and procedures), closures(higher order functions),
and threads are first class.

3.1 The Logical Variable

A central concept in Oz is the logic variable data type. Logic variables are used for
various purposes such as explicitly synchronizing threads, communication channels
and placeholders for to-be defined information. Moreover, logic variables are used
internally in the Mozart system to suspend and resume threads.

The value of a logic variable is at creation undetermined. The value of a logical
variable can be determined once, and causes the logical variable to dissapear. Deter-
mining the value of a lgoical variable replcaes the logical variable with the value it is
defined to. A thread that tries to read the value of a logical variable is suspended until
the value is defined.

7

IO handler

Thread
of

Execution

Thread Pool

Heap

Machine
Virtual

Operating System

Figure 1: A conceptual view of the Mozart runtime-system internals. One thread of ex-
ecution time-shares between the thread pool and the I/O handler(the garbage collector
is not shown in this picture). Threads execute byte code instructions that manipulate
objects on the heap.

What has been describe above is called bining a logic variable to a value. Logic
variable allso supports unification of values. Unificaition, however, is out of the scope
of this report.

3.2 The Mozart Runtime-System

Oz code is compiled to byte-code, executed by a virtual machine. The virtual ma-
chine is part of a runtime system, implemented in C++. The runtime system supports
lightweight threads, called green threads. The virtual machine is based on the notion of
builtin-function. A builtin-function can be seen as an abstraction of a set of byte-code
instructions and is implemented as a C++ function. Oz primitive data structures, called
language entities, are internally explicitly represented as C++ objects. Interaction (and
manipulation) of language entities is done by builtin-functions.

Internally, the Mozart runtime-system is divided in four conceptual modules (de-
picted in Figure 1), the thread pool, the heap, I/O handler, and a garbage collector. Oz
level data structures exist on the heap. The thread pool hosts the lightweight Oz threads
that executes byte code and manipulates the data structures on the heap. A thread is
either running, preempted, or suspended. At any point in time there can be at most one
running thread. The I/O handling module reads and writes to sockets. The garbage
collector is invoked periodically to remove unused data structures from the heap. One
single native thread time shares between the thread pool, the garbage collector and the
I/O handler. Thus, there is no running oz thread when the I/O is active, nor when the
garbage collector is active.

In order to avoid monopolization of the single operating system thread, the time
consumed by the three different activities is bounded. I/O handling is non-blocking and
is periodically checked for messages to send or receive. The garbage collector, invoked
when the heap is full, will finish its execution in bounded time. In order to preempt Oz
threads, the Mozart runtime-system is periodically interrupted. At an interrupt, IO is
handled, potential GC is performed, and the oz threads are scheduled.

3.2.1 The Virtual Machine

Mozart is a multithreaded system that manages memory by a copying garbage collec-
tor. Language level data structures are explicitly represented as C++ objects. There

8

is a direct mapping between a language level operation on an language entity and an
operation on the C++ object that internally in the virtual machine reresents the entity.

Mozart is implemented as a register based virtual machine that executes byte-code
instructions. In addition to the byte-code instructions the virtual machine hosts a set of
sub-routines that byte code instructuions invoke, called builtin-functions. An oz pro-
gram is compiled into a sequence of byte code instructions that calls builtin-functions.
The builtin framework contains macro constructs that automatically performs type
checks. Checks that an argument is determined (i.e. not unbound) is included in the
type check. Thus, when a builtin is invoked, the in argument are determined and of the
right type.

Byte code-instructions and builtin-functions differ in granularity. Byte-code in-
structions typically handles the registers of the virtual machine, calls buitin-functions
and simple manipulations of basic data types such as integer arithmetics. The builtin-
functions on the other hand execute operations on language entities, interacts with I/O
and controls the virtual machine. Examples of typical builtins are array manipulation,
printing to the screen, and defining parameters of the garbage collector.

3.2.2 The Heap

The language Oz is dynamically typed, i.e. no(or little) type information exist at the
level of Oz-code. Instead of doing type checks at compile time, type checks are done
at runtime. Given a reference to a language entity, the type of the entity can be derived.
A reference to a language entity is represented in the virtual machine as a Tagged
reference, called an TaggedRef. A TaggedRef contains information regarding the
type of the language entity it refers.

3.2.3 The Thread Model

The green threads of Mozart are lightweight and the runtime system can schedule
thousands of threads without any noticeble overhead. Threads are preemptive and are
scheduled according to a round-robin scheme. A thread can suspend, or be preempted
only on the granularity of byte-code instructions. Consequently, a thread cannot be
suspended while executing a builtin-function.

A call to a builtin-function is represented by a special byte-code instructions that
has as argument the target builtin-function and the arguments to the builtin-function.
The builtin-function interface towards the virtual machine controls the calling thread.
Depending on the status of the arguments to the builtin-function, the operation will
either succed, fail, or suspend:

succeed The thread executes the next instruction.

fail An exception is raised, and the exception handling mechanism is invoked.

suspend The thread is suspended because some of the arguments to the builtin was
not determined i.e. unbound. Note that the thread is not suspended in the midst
of the operation, instead the thread is suspended conceptually before executing
the builtin. The runtime system will guarante that the thread will redo the builtin
when at least one of the undetermined arguments is determined.

replace An instruction has been pushed on the stack of the thread, much like a func-
tional call. The thread will first execute the pushed instruction and then the next
instruction.

9

Mozart runtime System

Glue

Distribution Subsystem

Figure 2: A schematic picture of the OzDSS system. The distribution support of Mozart
is replaced by the DSS. In order to couple the two systems together, a glue layer is
introduced.

3.2.4 Suspending and Resuming a Thread

Threads in Mozart suspends on the granularity of byte code instructions if the byte code
instruction cannot be executed for some reason. The common cause is that one or more
of the arguments are undetermined (i.e. a logical variable). In our case, suspension
should conceptually be on a virtual instruction in between the instruction that calls a
builtin-function and the next instruction.

Mozart threads are controlled by logic variables, a thread is said to be suspended
on a logic variable. Explicit suspension of a thread is achieved by forcing the thread to
call an special instruction that suspends on a special-purpose logical variable, called a
control-variable. The thread is resumed by binding the control-variable (when the value
is defined, the Mozart runtime system automatically resume the suspended thread).

4 OzDSS

We have used the Mozart system to create OzDSS in which the integrated distribution
support of Mozart has been replaced by an instance of the DSS middleware. OzDSS
provides the same programming model to the programmer as Mozart, with conser-
vaitive extensions in the form of interafces that allows the programmer to make use of
the instrumentability provided by DSS. In short, a programm written for Mozart can be
executed on the OzDSS system.

In order to couple the DSS to the Mozart engine, the functionality of Mozart must
be adopted to the interface of the DSS. Data structures and threads of Mozart must be
coupled to their counterparts in DSS, the abstract entities and the thread representa-
tion accordingly. A mediation layer, called the glue is introduced between the Mozart
system and the DSS, see Figure 2.

Figure 3 depicts the Mozart system extended with the DSS. Note how the glue
hosts intermediate objects, on the form of boxes that connects entities on the heap with
abstract entities in DSS. In order to couple Mozart with DSS, the glue must provide
mediation of four tasks:

1. Distribution enables language entities. Language entities in Mozart is, is based
on type, coupled withe eligible abstract entities in DSS. Furthermore, operations
on languge entities must be intercepted. and if the language entity is distributed,
translate the operation into an abstract operation.

2. Control Mozart threads. The structure necessary for controlling language level
threads from the DSS must be provided. It must be possible to suspend a threads
that performs an operation on distributed language entities and resume a sus-

10

Glue Layer

Thread
of

Execution

communication
component IO handler

abstract

entity

abstract

entity

global

thread

Thread Pool

Heap

Operating System

DSS

Machine
Virtual

Figure 3: The DSS coupled to the Mozart runtime system. The figure depicts the
internal runtime scheduler of the Mozart system, denoted Thread of Execution. The
runtime scheduler interleaves thread execution and IO handling. The threads of the
virtual machine interact with the DSS over the abstract entity interface. Furthermore,
the DSS makes use of the IO handler to resolve process communication.

pended thread so that the thread redo the operation on the distributed languege
entity.

3. Integrate the marshaler with the DSS. Mozart implements a marshaler[12] for
the integrated distribution support layer, this marshaler should be adapted to the
new distribution layer.

4. Integrate the DSS in the garbage collection loop. Garabage collection of in-
stances of distributed languege entities is controled by DSS. DSS will have ref-
erences to data structures on the heap that has to be updated. Finally, the DSS
requires information of when distributed data structures are no longer needed in
order to cater for global garbage collection.

4.1 Distributing Language Entities

The purpose of OzDSS is to show the feasability of DSS as a middleware for program-
ming systems. It is thus natural that OzDSS adapts the same model of distribution as
Mozart, transparent distribution of the language entities of Oz. The same data struc-
tures are to be used for distributed entities as for local entities, i.e. no special entities
are to be used. This is for two reasons, first, minimal change should be imposed on the
Mozart engine, second, a distribute entity should behave as a local entity. A distributed
entity is represented by a, potential, complete instance at each process that refers the
distributed entity. Complete means that the representation is in a coherent state and
that operations can be performed on the instance. Any of the instances that represents
a distributed language entity can act as server for the other instances. The behavior is
defined by the associated distribution strategy in the DSS. For the rest of the document
we will use the notation of a local entity, distributed entity and entity instance. A local
entity is a language entity that can only be accessed from one process. A distributed
entity is an entity referred from multiple processes. A distributed entity is represented
by an entity instance at each process that holds a reference to the distributed entity.

11

OzDSS is designed with the assumption that the distribution support should impose
minimal penalty on the performance of the local execution. Thus it is important to not
slow down manipulation of local data structures. Ideally the memory footprint of a data
structure should not grow just because the data structure potentially can be distributed.
However, when distributed, the total size, including the abstract entity, will be larger
than a local instance

This section describes how the language entities of Oz are coupled to abstract en-
tities. In order to simplify the description, the cell language entity is chosen as an
example.

4.1.1 The Cell

The cell is a language entity that implements an explicit mutable pointer to arbitrary
Oz language entities. Three operations are possible to perform on the Cell; access,
read the current value of the cell; assign, update the value of the cell; exchange, update
the value and return the old value, atomically. The basic operations are reflected in the
interfaces provided by the class that implements the cell:
c l a s s C e l l : p u b l i c T e r t i a r y �
p r i v a t e :

TaggedRef v a l ;
p u b l i c :

C e l l (Board � b , TaggedRef v) : T e r t i a r y (b , Co Ce l l , Te Loca l) , v a l (v) � �
TaggedRef ge tVa lue () � re turn v a l ;

�
vo id s e t V a l u e (TaggedRef v) � v a l =v ;

�
TaggedRef exchangeVa lue (TaggedRef v) �

TaggedRef r e t = v a l ;
v a l = v ;
re turn r e t ;

�
�

;

The cell inherits from the Tertiary class, a class that auguments a language entity
with meta information. The meta information is used to express non-functional aspects
regarding an language entity. We are here only addressing the use of the Tertiary for
differentiation between a local and a globalized language entity. However, the Tertiary
is allso used by the constraint engine of Mozart. The Tertiary holds a Tagged2 object,
that provides a tag (a two bit value) and a pointer value.
enum Ter tType �

Te Loca l = 0 ,
T e D i s t r i b u t e d = 1�

;

c l a s s T e r t i a r y : p u b l i c ConstTerm �
p r i v a t e :

Tagged2 t a g g e d ; / / Te r tType + Board �	� Ter tType + OTI
p u b l i c :

Te r tType g e t T e r t T y p e () � re turn (Te r tType) t a g g e d . ge tTag () ;
�

vo id s e t T e r t T y p e (Ter tType t) � t a g g e d . s e t (t a g g e d . g e t D a t a () , (i n t) t) ;
�

vo id s e t I n d e x (i n t i) � t a g g e d . s e t V a l (i) ;
�

i n t g e t I n d e x () � re turn t a g g e d . g e t D a t a () ;
�

bool i s D i s t () � re turn (g e t T e r t T y p e () = = T e D i s t r i b u t e d) ;
��

;

The memory layout of the cell object is depicted in Figure 4. The cell requires
two memory words for its representation, one word for the meta-information from the
tertiary and one word to refer other data structures.

4.1.2 Capturing Operations

An operation on a language entity is implemented as a builtin-function. The code for
the builtin-functions is separated from the byte-code instruction interpreter, it is thus
convenient to intercept an operation ona distributed langauge entity on the level of the

12

tagged

val

Tertiary

Cell

pointer tag

Figure 4: The memory layout of the object that implements the cell. The object is two
words large. The base class of the Cell, the Tertiary adds one word containing meta
information. The cell in requires one word for storing the reference to the data structure
the cell refers.

corresponding builtin-function. A distributed language entity differs (on the Mozart
level= only in the information found in the Tertiary extension, thus the same builtin-
function will be called for a local and for a distributed entity. Conceptually, and shown
in the code below, if the entity is distributed, the guard has to be invoked. The function
pointer cellDoAccess acts as the guard for the access operation on a cell.

OZ Return a c c e s s C e l l (OZ Term c e l l , OZ Term & out)�
T e r t i a r y � t e r t = (T e r t i a r y �) t agged2Cons t (c e l l) ;
i f (t e r t ��� i s D i s t ()) �

i f ((� ce l lDoAccess) (t e r t , ou t))
re turn BI REPLACEBICALL ;�

ou t = ((C e l l �) t e r t)�
� ge tVa lue () ;

re turn PROCEED ;�

The guard can allow for local access of the cell. Local access is reflected in the
code when the cellDoAccess function returns false. In the true case, the return
value BI REPLACEBICALL indicates that a new operation has been pushed upon the
call-stack of the running thread. Note that the return value, out is passed by reference
to accessCell. Not shown here, out is called by reference to the cellDoAccess
function as well, this will be further discussed in section 4.1.4 .

If the operation is performed locally, either because the cell is local or because the
abstract entity allows for a local access the builtin returns PROCEED. The return code
PROCEED tells the virtual machine that the builtin has completed successfully.

The example of cell access is representative for how one representation of a lan-
guage entity is used to implement operations on both a local and distributed entity.
Whether a language entity is distribute or solely local is described in the meta data held
by the Tertiary extension.

4.1.3 The Mediator

An intermediate object connects the abstract entity and the entity instance. The inter-
mediate object, simply called the mediator translated operations on the language entity
into abstract operations. Morever, the mediator implements the code required by the
manipulation done by the abstract entity on the entity instance, e.g. perform remote
operation, require an entity state description or installing an entity state descritpion.
Figure 5 depicts how the mediator acts as a bridge between the language level entity
instance and the abstract entity.

Another possibiilty to connect language entities and abstract entities would have
been to let the language entity communicate directly with the abstract entity. In com-
parision, the choosen model makes the implementation of the languge entity free from
distribution specifics, resulting in leaner and simplier to maintain code. Moreover,
the design shows good separation of conerns, knowledge of how an langauge entity

13

Procedure

Watcher

Language EntityCell

Mediator

Abstract Entity

Glue

Mozart Heap

DSS

Figure 5: A distributed cell with one installed watcher. The cell is connected to a
mediator in the glue; the mediator is in turn connected to an abstract entity. A failure
handler local to the process is installed on the distributed cell, explicitly represented by
a watcher object. The procedure associated with the watcher exists on the heap and is
referred to by the watcher.

is distributed does not exists at virtual machine level, only the fact that an language
entity is distribute. A mediator is created first when a language entity is globalized, i.e.
assocaited with an abstract entity, and removed when localized.

The OzDSS system implements failure handling on the level of single language
entities. If a distributed language entity is unusable due to a network problem, the
entity is said to have failed, dedicated code, called a watcher, is executed. A watcher,
in the form of an Oz procedure, is assigned an entity together with a trigger condition.

4.1.4 Executing an Abstract Operation

In order to minimize the dependencies between the centralized engine and the DSS,
the actual interaction with the DSS is done in the glue. Thus, code in the builtin called
by the virtual machine detects that the language entity is distributed and calls a guard
function in the glue. Details regarding how to retrieve the mediator from a language
entity are local to the glue.

A language operation performed on a distributed entity is transformed into a dedi-
cated function in the glue, i.e. each language operation has its distributed counterpart
in the glue. Thus, the choice of abstract operation is statically defined. For example,
the cell access operation is transformed into cellDoAccessImpl that always performs a
read abstract operation on the mutable abstract entity associated with the cell instance,
see below.
bool ce l lDoAccess Im pl (T e r t i a r y � p , TaggedRef & ans)�

C e l l M e d i a t o r � me = s t a t i c c a s t
�

C e l l M e d i a t o r ��� (index2Me (p��� g e t I n d e x ())) ;
A b s t r a c t E n t i t y � ae = me��� g e t A b s t r a c t E n t i t y () ;
M u t a b l e A b s t r a c t E n t i t y � mae = s t a t i c c a s t

�
M u t a b l e A b s t r a c t E n t i t y ��� (ae) ;

DssThreadId � t h r I d = g e t T h r e a d I d () ;

P s t O u t C o n t a i n e r I n t e r f a c e ��� p s t o u t ;
OpRetVal c o n t = mae��� a b s t r a c t O p e r a t i o n R e a d (t h r I d , p s t o u t) ;
i f (p s t o u t ! = NULL) �� (p s t o u t) = new P s t O u t C o n t a i n e r (o z n i l ()) ;�
swi tch (c o n t)�

case DSS PROCEED :�
re turn true ;�

case DSS SUSPEND :�
OZ Term var = oz newVar i ab le () ;
ans = va r ;

14

t h r I d��� s e t T h r e a d M e d i a t o r (new SuspendedCe l lAcces s (me , ans)) ;
re turn f a l s e ;���

The code above shows how the mediator is retrieved, via a cast, from the tertiary
using the getIndex method. In turn, the abstract entity is retrieved from the me-
diator. Follows is the invocation of the abstract operation. Note how the pstout
double pointer argument to the abstract operation is handled first as a return value and
potentially later filled with a value. Only if pstout points to a non NULL value is a
pstcontainer allocated. In this very case the pstcontainer transports a dummy value (see
Section 4.1.6 where the callbacks are described).

If the abstract entity returns DSS SUSPEND the calling thread is suspended. Later,
the thread is resumed and told to either redo the operation, or resumed and passed the
result of the operation (i.e. the operation has been executed remotely). Disregarding
how a thread suspended on an abstract operation is resumed, the builtin is, from the
perspective of the Mozart virtual-machine, already executed.

4.1.5 Suspending and Resuming Threads

If the abstract operation returns DSS SUSPEND, the calling thread is suspended. A
thread suspended on an abstract operation is resumed and either instructed to redo the
language operation, or handed the result of the operation and instructed to perform next
instruction. A thread resumed and told to redo the operation should not redo the guard
but only the operation(see Section 2.7).

As allready described, it is impossible to suspend while executing a builtin-function.
Thus, the task of redoing the operation is delegated to the thread mediator (the thread
mediator is described in detail in Section 4.2). Thus, if the thread is resumed and told
to redo the operation, the builtin-function is not called, but a function that implements
the operation is called.

As seen in the example above, disregarding how the thread is woken up, a place-
holder var is created. The answer thus points at a language entity, in the form of a
logical variable.

4.1.6 Callbacks

Apart from controlling operations on data structures, an abstract entity must be able to
interact with the data structure that represents the local language entity instance:

� Execute a language level operation on a language entity instance.

� Retrieve a description of the correct state of a language entity instance. The
description must be detailed enough to turn another instance of the distributed
language entity into the same state as instance the description is retreived from.

In order to couple a data structure to an abstract entity, the abstract entity must
be able to retrieve and install a complete representation of language entity. Moreover,
each abstract operation exposed by the abstract entity requires corresponding callbacks
of the mediator. The cell mediator is used as an example to explain how the callbacks
are implemented in OzDSS.

An operation performed on a language entity that represents a distributed entity is
either executed locally or remotely. If the operation is executed remotely, it is actu-
ally the abstract operation that is transported. The operation on the language entity is

15

passed as an argument to the abstract operation to the process where it will be executed.
The abstract operation is performed on the target instance (the cell mediator), with the
operation as the argument. The code below depicts the callback code for the read ab-
stract operation implemented by the cell mediator and called by the abstract entity. In
the case of the cell there is only the access language operation that is realized by the
read abstract operation. The language operation takes no arguments, this is reflected in
the callback code, the in argument pstin is not used. The operation is atomic, similar
to the language level operation, thus no thread is spawned to execute the operation.
AOca l lback
C e l l M e d i a t o r : : c a l l b a c k R e a d (DssThreadId � i d ,

D s s O p e r a t i o n I d � o p e r a t i o n i d ,
P s t I n C o n t a i n e r I n t e r f a c e � p s t i n ,
P s t O u t C o n t a i n e r I n t e r f a c e � & p o s s i b l e a n s w e r) �

C e l l L o c a l � c e l l = s t a t i c c a s t
�

C e l l L o c a l ��� (g e t C o n s t ()) ;
TaggedRef ou t = c e l l��� ge tVa lue () ;
p o s s i b l e a n s w e r = new P s t O u t C o n t a i n e r (ou t) ;
re turn AOCB FINISH ;�

Retrieving and installing the state of a cell is shown below. When transferring the
state from one process to another, a state description is retrieved from the first process,
and put in a pstconatiner. At the destination process, the install method is called
with a pstcontainer holding a description of the current state. The cell instance at
the receiving process sets its pointer to the received TaggedRef.
P s t O u t C o n t a i n e r I n t e r f a c e �
C e l l M e d i a t o r : : r e t r i e v e E n t i t y R e p r e s e n t a t i o n () �

C e l l L o c a l � c e l l = s t a t i c c a s t
�

C e l l L o c a l ��� (g e t C o n s t ()) ;
TaggedRef ou t = c e l l��� ge tVa lue () ;
re turn new P s t O u t C o n t a i n e r (ou t) ;�

vo id
C e l l M e d i a t o r : : i n s t a l l E n t i t y R e p r e s e n t a t i o n (P s t I n C o n t a i n e r I n t e r f a c e � p s t I n) �

P s t I n C o n t a i n e r � p s t = s t a t i c c a s t
�

P s t I n C o n t a i n e r �� (p s t I n) ;
TaggedRef s t a t e = p s t��� a t e r m ;
C e l l L o c a l � c e l l = s t a t i c c a s t

�
C e l l L o c a l ��� (g e t C o n s t ()) ;

c e l l��� s e t V a l u e (s t a t e) ;�

The three examples shown above depict the strengths in dynamic typing. Knowl-
edge of the type of arguments passed in pstcontainers is not required; instead the values
are passed as opaque data to and from the language level data structure.

4.2 Handling Mozart Threads

The abstract operations interface provided by the abstract entities is based on the no-
tion of a calling thread. In order to handle different implementation of threads the
DSS provides a generic framework for handling programming system threads. An pro-
gramming system level thread that interacts with an abstract entity must have an DSS
representative in the form of a DssThreadId. A DssThreadId communicates
with its programming system level thread over an instance of a callback interface.

4.2.1 Representing a Thread

The Mozart thread representation is extended with field holding an opaque value that
can be read and written from the glue. The field is used to store a reference to a
DssThreadId class that represents the thread in the DSS. A DSS thread representa-
tion is first allocated when needed, i.e. when a programming system thread performs
an operation on a distributed entity. The code below shows how the DssThreadId is
retrieved for the currently running thread.

DssThreadId � g e t T h r e a d I d () �
TaggedRef t h r = o z t h r e a d (o z c u r r e n t T h r e a d ()) ;

16

DssThreadId � i d = r e i n t e r p r e t c a s t
�

DssThreadId �� (o z t h r e a d g e t D i s t V a l (t h r , 1)) ;
i f (i d = = NULL) �

i d = dss��� m c r e a t e D s s T h r e a d I d () ;
o z t h r e a d s e t D i s t V a l (t h r , 1 , r e i n t e r p r e t c a s t

�
vo id �� (i d)) ;�

re turn i d ;�

The ThreadMediator is only invoked by the DSS when resuming the program-
ming system level thread. Consequently, the DssThreadId only needs a reference
to a mediator when the thread is suspended. This is depicted in the code for the cellAc-
cess, see Section 4.1.4.The mediator requires implementation of two interfaces, one
that instructs the thread to redo the language operation (only the operation), and one
that instructs the thread to continue with the next instruction. The interface for the
Mediator glue base class is shown here:
c l a s s SuspendedThread : p u b l i c ThreadMedia to r�
p u b l i c :

OZ Return suspend () ;
OZ Return resume () ;

v i r t u a l WakeRetVal resumeDoLocal () = 0 ;
v i r t u a l WakeRetVal resumeRemoteDone(P s t I n C o n t a i n e r I n t e r f a c e � p s t i n) = 0 ;�

;

4.2.2 Resuming a Suspended Operation

The SuspendedThread class requires implementation of two methods that resumes
the language-level suspended thread. The first method resumeDoLocal tells the
suspended thread that the language level operation now can be safely performed on
the target programming system data structure. However, the guard should not be ex-
ecuted again. The resumeRemoteDone method tells the suspended thread that the
operation has been executed, and the result of the operation is found in the pstin
argument.

Since the builtins in Mozart are atomic, it is impossible to execute the body of and
operation without invoking the guard by forcing the suspended thread to redo the byte-
code instruction. Instead, the SuspendedThread instance will execute the body.
Below is the code for resuming and instructing a thread suspended on a cell access to
do an operation locally. Note that the object holds a reference to the variable a var
used as a placeholder for the answer (see Section 4.1.4). Moreover, the method returns
WRV DONE signaling the DSS that the operation is completed, i.e. no programming
system thread is spawned that is manipluating the state of the language entity instance.
WakeRetVal SuspendedCe l lAcces s : : resumeDoLocal (D s s O p e r a t i o n I d �) �

C e l l L o c a l � c e l l = s t a t i c c a s t
�

C e l l L o c a l ��� (a med��� g e t C o n s t ()) ;
OZ Term c o n t e n t s = a c e l l��� ge tVa lue () ;
o z u n i f y (a v a r , c o n t e n t s) ;
resume () ;
re turn WRV DONE;�

Passing a result to a suspended thread in OzDSS is straightforward. The Suspend-
edThread object holds a reference to the logical variable a var used as a place holder
for the answer. The result of the operation is received in the pstin argument.
WakeRetVal SuspendedCe l lAcces s : : resumeRemoteDone(P s t I n C o n t a i n e r I n t e r f a c e � p s t i n) �

P s t I n C o n t a i n e r � p s t = s t a t i c c a s t
�

P s t I n C o n t a i n e r �� (p s t i n) ;
o z u n i f y (a v a r , p s t��� a t e r m) ;
resume () ;
re turn WRV DONE;�

17

Mediator

Entity

Watcher

Procedure

Dedicated watcher
Thread

Abstract Entity

Virtual Machine

Glue

DSS

1

2
3

Figure 6: A watcher is “fired”. The abstract entity reports a fault state to the mediator.
The mediator in turn finds a watcher that whose trigger state matches the fault state
reported by the abstract entity. A dedicated Oz thread is created to execute the action
code of the watcher.

4.3 Customizing Distribution Behavior

The DSS allows for customization of distribution behavior for each abstract entity.
The behavior for a distributed entity is defined at globalization, when the a local data
structure is made a distributed entity.

One design principle in OzDSS is to keep the number of distributed language enti-
ties as small as possible. Only if an entity is referred from more than one process should
the entity globalized. Globalization thus takes place when a reference to a local entity
is passed over the network the first time. Since the user has little or no control over
exactly when a language entity is globalized custom distribution behavior for a given
entity must be assigned an entity before the entity is actually globalized. The custom
distribution behavior, , is stored in a hash table that maps entity memory addresses to
custom values.

When a language entity is globalized, a lookup is done in the hash table that holds
customization information for local language entities. If an entry is found, the value of
the entry is used to define the distribution behavior of language entity. Otherwise, if no
entry is found, a default value based on entity type is used.

4.4 Reporting Failures

The OzDSS system provides a failure reporting mechanism on the level of single dis-
tributed entities. A distributed data structure has a current failure status that describes
the access status of the entity. The failure status has three values, similar to the failure
information provided by the DSS: permanent failed, temporary failed, and no problem.

The failure model of OzDSS is inspired by the failure model of Mozart. The two
models both provide watchers, i.e. an action that is executed asynchronously when the
failure status of an entity confines to a certain value.

A watcher is installed on a particular entity, in the form of a Oz procedure with
a trigger condition. Internally in the glue, the watcher is represented by a Watcher
object held by the Mediator of the target entity. Figure 6 depicts a distributed entity
with one installed watcher. The abstract entity reports a change in fault state (1). The
Mediator checks if the fault trigger of the watcher matches the new fault state reported
by the abstract entity (2). The watcher is triggered; a new oz level thread is created (3)
that execute the procedure held by the watcher. The watcher is said to have “fired”, and
is removed from the mediator.

18

PstContainerPstContainer

DSS

Glue

Heap

Figure 7:

4.5 Transporting Data

The DSS implements a mode of message transport that allows for late marshaling and
suspended marshaling[12]. The Mozart system is well suited for such a model, as
will be described in this section, and can thus make use of the benefits the model
enables. Late marshaling is when a message is transformed into its serialized format
when actually put on the wire. Thus, a message is passed in structured format to
the DSS; later, when the message is sent, the glue is asked to serialize the message.
Suspendable marshaling is when serializing of a message can be interrupted because
of lack of buffer space. This is beneficial if messages are large. Instead of serializing
a large message into an even larger buffer (assuming that the serialized format of a
message is larger than the structural format), the message is serialized in chunks. To
achieve this, the marshaling mechanism must be able to stop in the middle of traversing
a data structure and later continue marshaling.

A challange in the late marshaling scheme is that none of the context information
available when a message is sent is available when the message is actually marshaled.
Context information can for example be type information. Concider a remote object.
When a method of the remote object is invoced, information about the type of different
arguments of the method is known. If the arguments are stored in a message structure
and later marshaled, the context information available at the point of invocation are
no longer present. For the marshaler to know how to serialize the message, the type
information must be explicitly represented.

Mozart makes use of tagged pointers, given a tagged pointer to a data structure
the type of the data structure can be deduced. Furthermore, Mozart provides a generic
traverser of oz data structures, used for both marshaling and pickling that takes as
argument a tagged pointer and produces a marshaled representation. In addition, the
generic marshaler can suspend in the middle of traversing a data structure.

The DSS provides an interface for programming system level data, called PSTC. In
the case of OzDSS, two instantiations of the PSTC are implemented. One for outgoing
messages, PstOutContainer and one for incoming messages PstInContainer.
Both incoming and outgoing PSTC’s holds pointers to language entities on the Oz
heap, in the form of tagged pointers. Thus, the containers have no explicit knowledge
of what they transport. Figure 7 depicts two PstOutContainer objects pointing at
their data structures.

The PSTC’s are managed by the DSS; it is the DSS that decides when a PSTC can
be deleted. The glue is responsible for maintaining the PSTC from the point of creation
until the point of destruction. Destruction is decided by the DSS.

19

4.6 Garbage Collection

Insert a figure of all the roots and alike
The Glue has a dual role during garbage collection of the centralized system. It is

a root for the centralized garbage collector and in the same time a subject to garbage
collection. In addition the DSS must be garbage collected in order to free internal
resources.

Garbage collection of the glue is divided into two steps. First, the root set from
the glue is calculated and all pointers are followed. Second, the glue sweeps all entity
instances connected to abstract entities. Any language entity instance not member of
the root set of the glue nor found by the complete root set of the programming system
is removed. The complete root set is defined as the union of the roots from the glue
and the roots from the programming system.

4.6.1 Calculating the Root Set

The contents of the PstContainers and the – on distributed operations – suspended
threads are roots for the local garbage collector. Furthermore, some distributed entities
can be roots for the local garbage collector, defined by the language entity instance’s
associated abstract entity.

The PstContainers and the suspended threads are organized in linked lists. Finding
the roots from the former two sets is done by traversing the lists. Eventual root status
of a distributed entity is defined by the abstract entity.

4.6.2 Dropping Unreferred Distributed Entities

Any distributed language entity not found when following the root set of the centralized
engine and the root set of the glue is subject to removal. The local garbage collector
calls the engGC method of the mediators of those distributed language entities that are
found to be live. The purpose is to make all the watchers installed on Mediator roots
for the garbage collector.

When the local garbage collection is over, and all potential roots have been fol-
lowed, the Glue is called to remove unmarked distributed language entities. The list
of Mediators is traversed in order to find the entities that can be deleted and localized.
Below is the method that calculates whether a Mediator be remoed.
bool
Media to r : : r emoveMedia to r () �

DSS GC s t a t u s = g e t C o o r d A s s I n t e r f a c e () ��� getDssDGCStatus () ;
swi tch (s t a t u s) �
case DSS GC LOCALIZE :

i f (hasLoca lGCSta tus ()) �
l o c a l i z e () ;�

re turn true ;
case DSS GC NONE:

i f (hasLoca lGCSta tus ()) �
re turn f a l s e ;�

e l s e �
re turn true ;�

case DSS GC WEAK :
i f (! (hasLoca lGCSta tus ())) � / / Try t o remove weak

g e t C o o r d A s s I n t e r f a c e () ��� c l ea rWeakRoot () ;�
re turn f a l s e ;

case DSS GC PRIMARY:
re turn f a l s e ;��

Note that a language entity is only localized if the abstract entity has DSS GC LOCALIZE
as root status and the entity is found by the local garbage collector. If the entity is not

20

referred from the heap, the Mediator is simply removed. Furthermore, an abstract en-
tity can report a weak status that implies that that the entity instance is, temporary, used
as a repository, e.g. the entity holds the state when using a mobile state protocol. The
weak status prevents removal of a language entity instance, if the language entity is
not found by the local garbage collector the mediator tries to actively remove the weak
status.

4.7 I/O Handling

Mozart implements a generic IO-handler that provide an interface based on file descrip-
tors, similar to the sockets interface. However, the model is event driven and controlled
by the runtime system of Mozart. There is one thread of execution that either executes
language threads or the IO. The consequence is that there is no interleaving between the
IO and the threads. The OzDSS implements a specialized communication-component
that is adapted to the generic IO-handler of Mozart.

5 Green Threads vs. Native Threads

Basically, there are two approaches to implementing concurrency in programming sys-
tems. One approach is to use the thread support provided by the operating system,
sometimes called native threads. Another approach is to develop a dedicated runtime
system that supports for concurrent threads, called green threads. Native threads are
easy to use; a thread is similar to a process. The drawbacks are little or no control over
thread scheduling and a heavy-weight framework. Green threads potentially give total
control over scheduling, and can be made very light weight. The major drawback of
the green approach is that the threads are restricted in what they can execute. For ex-
ample, a Mozart thread can only be preempted or suspended while executing byte-code
instructions, not while executing ordinary C++ code.

In parallel to the development of the OzDSS system, a distributed C++ library has
been developed. The library, called the Distributed Entity Library (DEL), supports a
set of distributable objects with semantics that resembles the basic types of Mozart,
i.e. ports, variable, atoms, and cells. Concurrency in DEL is solved using POSIX
thread, i.e. native threads. Each user level thread is represented by a POSIX thread. In
addition, the communication component is managed by a dedicated POSIX thread.

The DSS is not thread safe and must be protected from concurrent access by mul-
tiple threads. The solution is to ensure single thread access of the DSS by a lock.
Figure 8 depicts how the DSS is guarded by a lock, shown as the dotted black line that
encapsulated the DSS box.

However, of more interest is how the programming system level threads are con-
trolled by the DSS, below is the code for a distributed operation on a distributed cell in
C++DSS:

MapBaseType �
C e l l M e d i a t o r : : w r i t e (MapBaseType � msg) �

P s t O u t C o n t a i n e r I n t e r f a c e ��� p s t o u t = NULL;
g mcu��� getDSS () ; / / s i n g l e a c c e s s t o t h e DSS s t a r t s
PThreadMedia to r � t h = g mcu��� m getThreadMedia to r () ;
OpRetVal c o n t = a a e ��� a b s t r a c t O p e r a t i o n W r i t e (t h��� m getThread () , p s t o u t) ;
i f (p s t o u t ! = NULL) �� (p s t o u t) = new S u s p e n d a b l e P s t Out (msg) ;�
g mcu��� retDSS () ; / / s i n g l e a c c e s s t o t h e DSS ends
swi tch (c o n t) �
case DSS SUSPEND :
t h��� m suspend () ; / / h e r e i s t h e t h r e a d suspended
i f (t h��� m g e t S t a t e () = = TREMOTE)

re turn t h��� m g e t R e s u l t () ;

21

communication

component

user
pthread

user
pthread

I/O
pthread

DSS

Figure 8: A schematic picture of an application that make use of the C++DSS library.
Two threads, denoted user pthread manipulate distributed data structures. A third
thread, denoted I/O pthread. The challange of this system compared to the OzDSS
system is that the threads can be preempted while invocing the DSS. Thus, since the
DSS is not thread safe, a lock ensures that only one thread at a time can access the
DSS, depicted by the dashed line that encompasses the DSS.

/ / o t h e r w i s e do a l o c a l w r i t e
case DSS PROCEED :

re turn a c e l l ��� w r i t e (msg) ;
break ;��

Single access to the DSS is guaranteed between the call g_mcu->getDSS and
g_mcu->retDSS. The pthread is associated with a mediator that holds a reference
to the global thread identity of the thread. Note how simple the suspension is handled.
The call to m_suspend suspends the pthread. When the call returns the suspension
is over, and the thread mediator is queried for how to continue. Either the result of
the operation is held by the mediator or the pthread does the operation locally. This
should be compared to the complicated structures required to handle the green threads
of Mozart (see Section 4.2).

An observation is that supporting distribution for a native-thread system seems sim-
pler than for a green-thread system. However, the lack of control over the scheduling
of a native-thread system requires careful design of data access. The DSS is not thread
safe. If more than one thread would execute methods on the DSS or any of the DSS
related objects (abstract entities etc.) the result is undefined.

6 Discussion

The development of OzDSS started summer 2002 and continued for approximately one
year. Two persons where involved in the development and both spent minor part of their
time on development of the system. A running system was produced with surprisingly
little effort, especially in the light of the effort required to implement the distribution
support for Mozart.

OzDSS is a fully functional prototype. It has been used to execute distributed
applications spanning more than 20 nodes and has proven to be reasonably stable.
Naturally OzDSS cannot be compared to Mozart when it comes to stability, Mozart is
a product while OzDSS is a prototype.

Replacing the integrated distribution support of Mozart with generic distribution
support provided by the DSS was educating. Many conclusion where drawn from the

22

process. In this section some of the design choices are discussed. The resulting system,
OzDSS, is compared with repect to efficiency with other distributed systems. Special
focus is on comparing OzDSS with Mozart.

6.1 Where to Place the Guard

Given our limited knowledge of the implementation of the Mozart virtual machine,
we chose to locate the guard within the atomic operation on an Oz entity. Given the
green-thread model of Mozart, this choice of guard location required duplication of
code. Each different suspended operation required a special handler in the case that the
thread is resumed and told to do the operation locally (see Section ??).

Another possible solution is insert a guard-instruction at byte-code level. Before
any byte-code instruction that operates on an entity a special instruction is inserted. The
special instruction calls the abstract operation and reacts to the result, thus treatment
of suspended threads would be straightforward. Currently, a thread can be suspended
when performing an operation on a language entity because some of the arguments are
not yet determined (i.e. unbound). A special suspension status could be introduced,
suspended on abstract operation.

The two latter designs would result in a more elegant system, than the chosen de-
sign. However, both designs require major changes to the Mozart virtual machine. In
addition, the guard-instruction design would require not only changes to the virtual
machine, but also to the Oz-compiler. A better match between the thread model of the
DSS and the thread model of Mozart can be achieved; however, the development cost
is most likely high. Moreover, there is noting that indicates that the resulting system
would be more efficient than the design implemented in the OzDSS system.

6.2 Performance Comparision

To give a fairly good estimate of how efficient the OzDSS system is we have used
simple test programs, performing remote object invocations, to benchmark the system
in comparison to other middleware. These estimates are presented here as a proof-
of-concept that despite some inevitable overhead of using the DSS, being language
independent and general in design, it is efficiency wise still a viable approach.

The test program used was a small client-server implementation using the distribu-
tion primitives offered by each evaluated system. The server side of the test program
creates an data structure of defined size that is passed by copy between processes, de-
notet the load. In addition, a language entity that allows for retreival of the first data
structure is created. A client program can perform a language operatio on the dis-
tributed languagee entity in order to retrieve the load. In Erlang, Mozart and OzDSS
the distributed language entity was realized by the port type. In Java and C#, remote
objects where used.

The client side of the program starts with establishing a connection to the server,
then invokes the remote object several times to trigger any initialization cost in com-
munication and runtime optimizations for those systems supporting it, as well as sta-
bilization of the server. After this is completed the system total time in milliseconds is
read and the remote method is then invoked ten thousand times (10000). As these re-
mote method invocations are synchronous and thus sequential, the total time may then
be read out directly after the last invocation, as it is assured that every call has been
completed.

23

The test program was executed with two different sized data structures in the trans-
mitted object. In one case the object contained thirty integers, referred to as the medium
object, and in the other only one integer, referred to as the small object. Thirty integers
is a small enough data set to not exaggerate the marshaller of the different systems.
The object implemented a serializeable interface on those systems requiring that. The
decision to have a different sized data sets thus showing how a programmer should
handle data in objects for the respective systems. The test programs files are available
at http://dss.sics.se/files/test.tar.gz in a gzipped tar archive.

The test program measured the total time to execute a remote execution session.
The time thus contains a couple of different components: How the programming sys-
tems handle I/O, i.e how often does it check if something is to be sent/received. How
effective the messaging service is. How well coupled the middleware is to the rest of
the system, i.e. is there a big overhead of doing distributed operations. How well is
marshaling implemented, is there a noticeable difference when sending small objects
compared to larger, which will be shown by the different data sizes. The programming
system also performs garbage collections in different ways, this might also be included
in the tests. What the test thus shows is the overall execution cost in terms of time,
when doing distributed object invocations. The different systems will show how well
they handle this task in overall, not how costly each component is.

The test programs, both the client and the server part, were executed on an Intel
Pentium 4 machine, 2400Mhz, 533FSB, using the i845GE chip set with 512 MB of
DDR SDRAM. The machine ran RedHat Linux release 7.3, using kernel 2.4.20-pre10.
The compiler used to compile the systems, when needed, was GCC version 2.96, in-
cluded in RedHat Linux release 7.3. The operating system was not under any additional
load except core system processes. For the .Net-Remoting tests Windows XP profes-
sional SP1 was used, on the same machine. The different versions of Java and the other
system specifications are listed below:

� SUN Java2. The Standard edition SDK, version 1.4.1 01 for Linux, in a pre-
compiled rpm package downloadable from suns’ java homepage [10]. This im-
plementation will be referred to as Sun in this chapter.

� IBM:s Java2. The JDK for Linux 32-bit xSeries (Intel Compat.) version 1.4.0,
available for download in a pre-compiled rpm package, from the IBM homepage
[4]. This java implementation will be referred to as IBM for the rest of this
chapter.

� Mozart developers version 1.3.0 [3]. Downloaded from CVS repository 2002-
06-20. Compiled from source code using standard compilation options.

� Mozart developers version 1.3.0 as the Oz base with the DSS version 1.0 fully
coupled. The complete source is not yet publicly available.

� Erlang version OTP R9B-0 [11]. Compiled from source code using standard
compiler options.

� .Net Remoting Release version of the .Net framework [9].

The system-specific versions of the test program were compiled using the standard
compilation optimizations, such as an ”-O” optimization flag.

The choice of two versions of Java was to give an estimate of the differences in
distribution behavior between different implementations. The CORBA facilities used,

24

Language dependant middlewares (RMI) versus General DSS.
Mozart Oz/DSS Erlang Sun RMI IBM RMI .Net Remoting

small 0.86 1 1 4.30 3.17 5.94
medium 0.92 1.06 1.06 5.38 4.18 7.05

Table 1: Test times for each tested system normalized against the time for Oz/DSS. The
test compares different language dependent middlewares against the integrated general

such as the ORB and the idl-to-java generator, were those included in each Java distri-
bution, with the implementation of the test program following the POA model.

The test program sessions were executed 20 times and an average was calculated.
The results are presented below, they are normalized against the Oz/DSS times for the
one integer test and gives an estimate of the order of magnitude in difference between
distributed operations on different platforms, using different types of middleware:

One thing we can conclude from Table 1 is that languages designed for distribu-
tion also performs simple remote object operations better than languages coupled with
middleware designed to do only this. The assumption when creating the DSS was
that when efficiently coupled to the EVM, the DSS would be almost on par with a
specialized language dependant middleware, or within 10 to 20 percent. Our Oz/DSS
implementation is slower than the original Mozart implementation, a fact we contribute
to the total language independence and absence of optimizations due to generality. The
difference is not that big, the benefits with the new middleware are justified against a
penalty within 15 percent, given the potential of including more specialized or complex
algorithms.

All systems seem to handle larger data structures fairly well except for RMI on
either java implementation and also .Net Remoting. From the figures in Table 1 we
can conclude that the marshaling of data structures, which are replicated, has a minor
impact on the total execution time. The DSS is within the same range as the Mozart
system thus marshalling with the DSS is entirely language dependant.

6.3 OzDSS vs Mozart

The OzDSS system is fully compatible with the Mozart on the level of Oz code. In
addition, the OzDSS system provides more functionality when it comes to distribution
than the Mozart system. Mozart provides one distribution pattern for each distributed-
able data structure (not all data structures are distributable). OzDSS on the other hand
allows for custom distribution pattern on a single language entity basis.

As indicated by the evaluation in Section 6.2 the coupling to the DSS inflicts a small
overhead, compared to the closely integrated solution. This is a natural consequence
of the indirection caused by the glue and the DSS. However, this is a small price to pay
when taking into account the added functionality provided by the OzDSS compared to
Mozart. As shown[6], efficient distribution is a result of choosing the right protocol.

Given that the size of the DSS library is excluded, the OzDSS system is approx-
imately 20k lines of code smaller than the Mozart system. The distribution support
for Mozart is 31523 lines, and the glue layer for Oz is 12694 lines. Furthermore, the
glue layer is mediating between the virtual machine and the DSS and is functionality
wise closer to the virtual machine than the DSS. Thus, we argue that it is easier to
maintain the OzDSS system. First, the OzDSS system is smaller code wise. Second,
the complicated distribution support code is not part of the programming system code

25

base.

References

[1] Mozart Consortium. http://www.mozart-oz.org.

[2] Mozart Consortium. The mozart system. http://www.mozart-oz.org/.

[3] Mozart Consortium. Mozart developers version 1.3.0, December 2002. Available
for download at http://www.mozart-oz.org/download/.

[4] IBM. Java developers kit version 1.4.0, December 2002. Available for download
at http://www-106.ibm.com/developerworks/java/jdk/.

[5] E. Klintskog. Internal design of the dss. Technical Report T2004:15, Swedish
Institute of Computer Science, 2004.

[6] E. Klintskog, Z. El Banna, P. Brand, and S. Haridi. The design and evaluation of a
middleware library for distribution of language entities. In

���	�
Asian Computing

Conference, Dec. 2003.

[7] E. Klintskog, Z. El Banna, P. Brand, and S. Haridi. The dss, a middleware library
for efficient and transparent distribution of language entities. In Thirty-seventh
Annual HAWAI’I INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES,
Jan. 2004.

[8] E. Klintskog, V. Mesaros, Z. El Banna, P. Brand, and S. Haridi. A peer-to-peer ap-
proach to enhance middleware connectivity. In OPODIS 2003: � �	� International
Conference on Principles of Distributed Systems, Dec. 2003. To appear.

[9] Microsoft. Microsoft .net sdk with service pack 2, December 2002. .NET Re-
moting Release version available through Microsoft Developers Network.

[10] Sun Microsystems. Java2 standard edition version 1.4.1, December 2002. Avail-
able for download at http://java.sun.com/j2se/1.4.1/.

[11] Erlang OTP. Erlang otp version r9b-0 source code, December 2002. Available
for download at http://www.erlang.org/download.html.

[12] Konstantin Popov, Vladimir Vlassov, Per Brand, and Seif Haridi. An efficient
marshaling framework for distributed systems. In PaCT, 2003.

[13] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, March 2004.

26

