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Abstract

We show how abstract requirements of garbage collection can be captured using tempo�

ral logic� The temporal logic speci�cation can then be used as a basis for process algebra

speci�cations which can involve varying amounts of parallelism� We present two simple CCS

speci�cations as an example� followed by a more complex speci�cation of the cyclic reference

counting algorithm� The veri�cation of such algorithms is then brie�y discussed�

Keywords� Concurrency� garbage collection� temporal logic� CCS�

� Introduction

The memorymanagement of simple static programming languages� such as Fortran� can be handled
entirely by the compiler� The location of all variables can be fully determined at compile�time and
no run�time support for memory management is necessary� However� such languages impose con�
siderable restrictions on programming style� for example� recursive procedure calls are disallowed�
High�level languages that allow recursion� on the other hand� demand some run�time support�
Typically� the compiler determines statically the memory requirements of each procedure� When
a procedure is invoked at run�time� a frame of su�cient size is allocated to the procedure on a
stack� When this invocation of the procedure completes� the frame is popped o� the stack� No
action is required of the programmer�

Such a stack�based discipline is insu�cient for many modern high�level programming languages�
These languages require the use of a heap� Such languages may simply o�er the programmer
dynamic data structures� which are stored on the heap as their size cannot be determined at
compile�time� Furthermore their lifetime may exceed the lifetime of the procedure which created
them �e�g� Pascal �Wirth and Jensen� 	
���� Alternatively the language may support closures�
functions paired with environments of values �e�g� �Turner� 	
���� If the binding of names to
values in these environments is static rather than dynamic� then these closures must be kept on
the heap until they are no longer in use�

In general� the extent of such heap�allocated structures cannot be determined by inspection of
the program source� Either the programmer must explicitly allocate and de�allocate such objects
or an automatic storage reclamation system� a garbage collector� must be employed to identify at
run�time which objects may be in use now and in the future� and which objects cannot be used
again� The space used by the latter can be re�cycled� The advantage claimed for the manual
method is e�ciency� the programmer �knows� when objects are no longer in use� However this
claim is increasingly being challenged �see for example the recent discussion in the Internet news

	



group comp�lang�c�� on the performance of Sun�s memory allocator and de�allocator� malloc��
and free��� compared with the Bo�ehm�Weiser garbage�collected GC malloc�� �Boehm and Weiser�
	
����

Furthermore� there is considerable evidence that a high proportion of programmer time is spent
chasing memory allocation bugs �Rovner� 	
��� Automatic storage reclamation o�ers the pro�
grammer the clarity of a higher level interface to the memory sub�system with guarantees that
objects will never be prematurely deallocated �the �dangling pointer� bug� nor that the same mem�
ory will be �incorrectly� allocated to more than one object� To maintain these guarantees� it is
essential that garbage collection algorithms are demonstrably correct�

Proving the correctness of all but the simplest sequential algorithms for garbage collection is
di�cult� To take but one example� the authors know of no less than thirteen papers o�ering
di�erent strategies to prove the correctness of well�known pointer�reversal algorithms �Schorr and
Waite� 	
��� The implementation of concurrent algorithms only increases this di�culty� David
Gries �Gries� 	
�� noted the fragility of concurrent algorithms in his paper proving the correctness
of Dijkstra et al�s �on�the��y� algorithm �Dijkstra et al�� 	
���

�When we write a procedure to be used in a sequential setting� once it is written and
proved correct we can view it as a black�box operation and use it over and over again
without having to look in the black box� We worry only about what it does� In a
parallel setting� however� we must analyse the procedure each time we wish to use
it to make sure that the parallelism does not disturb its proof of correctness� And
each change in the other process forces us to re�analyse the procedure again� One
can avoid this complexity by making the procedure an indivisible operation through
the use of synchronisation and mutual exclusion primitives and by limiting the use
of shared variables� Or one can summarise in an invariant for the procedure what a
parallel process must leave true in order not to interfere�

The on�the��y garbage collector is very fragile and susceptible to such changes� Slight
changes which would seem innocent in a sequential setting are disastrous in a parallel
context��

It is surely worth noting that many attempts to prove the correctness of the �on�the��y� algorithm�
including Dijkstra�s� were found to be lacking�

The aim of our research is to model and verify concurrent garbage collection algorithms using
formal models of concurrency� In particular� we wish to turn our attention to the Cyclic Weighted
Reference Counting Algorithm �Jones and Lins� 	

�� a hybrid reference�counting�mark�scan
garbage collection algorithm for distributed processors� The formal models used are Temporal
Logic��Manna and Pnueli� 	

�� and the process algebra CCS� �Milner� 	
�
� Both temporal logic
and CCS have be en used successfully to model and verify a number of algorithms� �Sanderson�
	
��� Larsen and Milner� 	

�� Parrow� 	
��� Parrow� 	
�� and �Richier et al�� 	
��� Cavelli
and Horn� 	
��� Clarke et al�� 	
��� We show here how garbage collection algorithms can be
speci�ed using temporal logic and process algebras� The veri�cation of such algorithms is an area
of ongoing research�

This paper starts by examining those simpler algorithms upon which the CWRC has been built�
namely standard recursive marking �McCarthy� 	
�� and Cyclic Reference Counting �Martinez
et al�� 	

�� Lins� 	

�� In Section � we consider garbage collection from an abstract point of
view� These abstract requirements are formally described in temporal logic� Two speci�cations in
CCS are then given� each involving di�erent amounts of parallelism� In Section � we present the
Cyclic Reference Counting Algorithm� and show how this can be speci�ed in a process algebra�
The veri�cation of such algorithms is then discussed�

�



� An abstract model of garbage collection

One abstract view of garbage collection is the following� The heap consists of a number of cells�
one is named the root of the heap� When pointers between the cells are represented as arcs� the
active data structure is a connected� directed graph� The cells which are in the transitive closure
of the root �denoted root�� are considered to be the active cells� Cells which are not active are
considered garbage� and the purpose of garbage collection is to identify these cells and make them
available for future use�

The garbage collector does so by maintaining a set of free cells �often called the free�list� although
it need not be implemented as a list�� Let us view the free�list as the transitive closure of a named
cell free� Garbage collection is then a state change of the heap� which will alter the transitive
closure of free� We denote this state change by the use of primes to represent the e�ect of garbage
collection having taken place on the heap� This preliminary speci�cation assumes that no mutator
action happens concurrently�

Garbage collection should preserve the active cells�

root
�
� � root�

A cell which is neither active� or already on the free�list� should be placed on the free�list by the
garbage collector�

�x �� root� � free� � x �� root
�
� � x � free

�
�

The free�list should be preserved or increased by garbage collection�

free� � free
�
�

Finally active cells should never be reclaimed as garbage� this amounts to saying that at all time
the transitive closures of root and free are distinct�

root� � free� � �

These four properties make an abstract speci�cation of garbage collection� against which sequential
or concurrent implementations must be veri�ed� We now formalize these requirements by giving
a temporal logic speci�cation�

��� Temporal Logic Speci�cation

We will use Temporal Logic to express the correctness properties of garbage collection algorithms�
This form of logic has been shown to be highly suited to abstract expression of program properties
and in particular� expression of the properties of concurrent computations �Manna and Pnueli�
	

�� As �rst observed by Pnueli �Pnueli� 	
��� both safety and liveness properties can be
expressed with Temporal Logic� while only safety properties can be expressed with �rst order
logic� We will use standard Manna and Pnueli Linear Time Temporal Logic �Manna and Pnueli�
	

� in this paper�

The following Temporal Logic propositions express� in the same order� the properties of garbage
collection highlighted in the previous section�

root� � S 	 ��root� � S�

i�e� if the transitive closure of the root equals S at the start of the garbage collection� then in all
future states it will equal S�

�



�x �� �root� � free��� ��x �� root� � x � free��

i�e� all cells neither in the active or free lists will eventually be placed in the free list� The re�
expression of the other two conditions included in the above section is also straightforward� They
can be expressed as follows��

free� � S 	 ��free� 
 S�

��root� � free� � ��

��� Using CCS to model simple garbage collection algorithms

In this section we specify two simple garbage collection algorithms in CCS� One is a sequential
version� the other uses the parallelism of garbage collection as much as possible�

An invaluable introduction to CCS is given in �Milner� 	
�
� CCS is a process algebra� and all
objects within our system speci�cation �free�lists� cells� garbage collectors� will be modelled as
processes�

To model cells and pointers between them we consider the heap to consist of a �xed number of
cells �or nodes� P�� � � � � PN � A cell can then be referred to by its subscript without confusion� We
assume that the dedicated root cell is P�� To represent a cell as a process� we consider each process
to have N � 	 integer parameters which represent pointers to other cells� So in the process

Pi�x�� � � � � xN�

x� is the number of pointers from Pi to P�� x� is the number of pointers from Pi to P� etc�

We use the standard method to access and update a data�store in CCS by each parameter having
two ports� ini and outi� Each process Pi is de�ned by�

Pi�x�� � � � � xN� � ini
�
�x��Pi�x� x�� � � � � xN � � outi

�
�x���Pi�x�� x�� � � � � xN �

� ini
�
�x��Pi�x�� x� x�� � � � � xN � � outi

�
�x���Pi�x�� x�� � � � � xN�

�
���

� iniN �x��Pi�x�� � � � � xN��� x� � outiN �xN ��Pi�x�� � � � � xN �

We record the collection of active cells and free cells by maintaining two sets� The free�list �in fact
it is a set in this instance� is then de�ned by the process�

Free��� � addF �x��F ree�fxg� � emptyF �F ree���

Free�X� � addF �x��F ree�X � fxg� �minusF �x��F ree�X n fxg� X �� �

The collection of active cells is modelled by the process Active� de�ned by�

Active � addA�x��Set�fxg�

Set��� � emptyA�Active

Set�X� � addA�x��Set�X � fxg� � outA�maxX��Set�X n fmaxXg� X �� �

�



where max returns the maximum element of a �nite set of integers�

The basis method of a simple garbage collection is to start with an empty active collection� run
a recursively de�ned algorithm which checks which cells are still active� then �nally de�nes the
free�list to be all cells which are not active� The initial pre�x of an action g allows the garbage
collector to be �red into action�

GC � g��Active �� f�g��gc�����Free �� f�� � � � � Ng nActive��GC

Written formally this becomes�

GC � g�addA��gc����addF�� � � � �addFN�Y�GC

Y � outA�j��minusF �j��Y � emptyA��

The de�nition of the recursively de�ned algorithm is as follows�

gc�i� �
NY

j��

�outij�xj��if xj � � � j �� Active then addAj�gc�j��

This works as follows� for an active process Pi� gc�i� will� in parallel� check each parameter xj�
If this parameter is non�zero� then the cell Pj is connected to Pi and hence active� We add the
reference j to the active set� and recursively look at the process Pj� To ensure termination we
only perform this recursion when the process Pj has not already been discovered to be active� we
do this by checking whether j �� Active� The de�nition of this as a CCS expression is omitted�

The whole system �heap plus garbage collector running on it� is then represented by the expression

�ActivejFreejP�j � � � jPN jGC� n L

where L is the set of all sorts of the processes� Pre�xing the garbage collector by the action g allows
us to �re the process into action� Thereafter system will evolve silently� all the communications
between GC and the cells being internal transitions� until termination�

This algorithm can obviously be written without so much parallelism� For example we can de�ne
a further garbage collector GC�� by replacing the algorithm gc by�

gc��i� � outi
�
�x����if x� � � � 	 �� Active then addA	�gc

��	���

outi
�
�x����if x� � � � � �� Active then addA��gc

������

� � �

outiN �xN ���if xN � � �N �� Active then addAN�gc��N ��

A simple test for a formal speci�cation technique is then to try and prove the equivalence of the
two algorithms so given�

��� Verifying the Algorithms

Having modelled the requirements of garbage collection using temporal logic� and given simple
speci�cations using CCS� we would like to verify the process algebra speci�cations against the
temporal logic properties� One approach is to use model checking algorithms to perform this
veri�cation� This avenue is currently being explored by the authors�

Even without the temporal logic requirements� it is true that the functionality of the two CCS
systems is equivalent in some sense� Proving equivalence of the two algorithms amounts to showing

�



that for a given heap� the two algorithms will produce the same transitive closures of root and
free� The complete system� i�e� heap and the garbage collector running on it� is modelled in
the usual fashion by parallel composition of the processes Pi with the active set and the garbage
collector GC itself� One method of showing equivalence is to show that the following two processes
are bisimilar� �Milner� 	
�
��

�ActivejP�j � � � jPN jGC� n L �ActivejP�j � � � jPN jGC �� n L

The restriction by the sorts L ensures that the only non�silent communication are those communi�
cations with the process Free� The nature of the processes GC and GC� mean that this amounts to
showing the active�set will be the same in both systems� Unfortunately the equivalence technique
of deriving bisimulations requires that the order of events is identical in the two systems under
discussion� For comparisons between sequential and parallel algorithms� this is too strong a re�
quirement� since by its nature the parallel algorithm does not preserve the order of the sequential
version�

� Cyclic Reference Counting

Lazy Cyclic Reference Counting combines reference counting with lazy four�colour mark�scan
garbage collection� Cells are allocated and references are copied in a manner similar to the standard
reference counting algorithm �Collins� 	
��� as is the deletion of the last reference to an object�
However� if the target of a deleted pointer is shared then it may be part of an isolated� and hence
garbage� cycle� In the lazy algorithm �Lins� 	

�� a reference to the cell is placed on a control queue
but no further action is taken until either the free�list becomes empty or the control queue is full�
In the original algorithm �Martinez et al�� 	

�� the cell is examined immediately to determine
whether it is garbage�

In either case� cells in the transitive closure of this cell are eventually marked and scanned to �nd
any references from cells external to this subgraph� If none are found the subgraph is garbage
and is returned to the free�list� Garbage collection proceeds in three phases� In the �rst phase all
cells in the transitive closure are painted red� Each time a cell is visited its reference count �RC�
is decremented� On completion only those cells that are the target of an external reference will
have non�zero RCs� The task of the second phase is to discover any such cells� They and their
descendants are re�painted green and their RCs are corrected� All other cells are painted blue�
The third and last phase returns blue cells to the free�list�

We denote a pointer from a cell S to a cell T by � S� T ��

New�R� �

U �� pop�free�list�

RC�U� �� �

colour�U� �� green

make�pointer��R	U
�

Copy�R	�S	T
� �

RC�T� �� RC�T� � �

make�pointer��R	T
�

Delete��R	S
� �

delete�pointer��R	S
�

RC�S� �� RC�S� � �

if RC�S� � � then

for T in Sons�S� do

�



Delete��S	T
�

colour�S� �� none

push�S	free�list�

else

Markred�S�

Scan�S�

Collectblue�S�

Markred�S� �

if colour�S� �� red then

colour�S� �� red

for T in Sons�S� do

RC�T� �� RC�T� � �

Markred�T�

Scan�S� �

if colour�S� � red then

if RC�T� 
 � then

Scangreen�S�

else

colour�S� �� blue

for T in Sons�S� do

Scan�T�

Scangreen�S� �

colour�S� �� green

for T in Sons�S� do

RC�T� �� RC�T� � �

if colour�T� �� green then

Scangreen�T�

Collectblue�S� �

if colour�S� � blue then

colour�S� �� none

for T in Sons�S� do

Collectblue�T�

delete�pointer��S	T
�

push�S	free�list�

��� CCS Speci�cation of CRC

In a manner similar to before we show how we can model CRC in CCS� With CRC each cell now
contains two pieces of additional information� the �rst the reference count for a cell� the second
the colour of the cell� The colour will be green� red or blue� We extend our de�nitions of processes
representing cells by adding parameters for the reference count� and the colour� and two ports per
parameter �one to update it� one to access the value��

Pi�n� c� x�� � � � � xN � � inrefi�m��Pi�m� c� x�� � � � � xN � � outrefi�n��Pi�n� c� x�� � � � � xN �

� incoli�d��Pi�n� d� x�� � � � � xN � � outcoli�c��Pi�n� c� x�� � � � � xN �

� ini
�
�x��Pi�n� c� x� x�� � � � � xN � � outi

�
�x���Pi�n� c� x�� x�� � � � � xN�

� ini
�
�x��Pi�n� c� x�� x� x�� � � � � xN � � outi

�
�x���Pi�n� c� x�� x�� � � � � xN �

�

�



���

� iniN �x��Pi�n� c� x�� � � � � xN��� x� � outi
N
�xN ��Pi�n� c� x�� � � � � xN �

Without loss of generality we refer to the process Pi by its subscript� and henceforth all processes
will range over integer parameters� With these de�nitions the process representing the task New
is�

New�R� � popF �v��inrefv�	��incolv�green��out
R
v �x��in

R
v �x� 	���

The communication popF �v� will obtain a new cell from the free�list �which we call v�� �We
assume that the free�list is modelled as before� with ports popF and pushF to perform the required
communication�� inrefv�	� will set the reference count in v to 	� then outRv �x��in

R
v �x � 	� will

create an additional pointer from R to v�

To increase clarity we use the following abbreviation in the process de�nitions�

SONSST �P � �
NY

T��

outST �x��f if x � 	 then Pg

The remaining processes are�

Copy�R�� S� T �� � outrefT �n��inrefT �n� 	��outRT �x��in
R
T �x� 	���

Delete�� R�S �� � outRS �k��in
R
S �k � 	��outrefS�x��inrefS�x� 	��

if x � 	 then fSONSST �Delete�� S� T ���g�incolS �none��pushF �S���

else fMark red�S��Scan�S��Collect blue�S���g

Mark red�S� � outcolS �c�� if c �� red then

fincolS �red��SONSST �outrefT �y��inrefT �y � 	��Mark red�T ����g

Scan�S� � outcolS�c��outrefS�n�� if c � red then

f if n � � then Scan green�S��� else fincolS�blue��SONSST �Scan�T ����gg

Scan green�S� � incolS �green��

fSONSST �outrefT �n��inrefT �n � 	��outcolT �c�� if c �� green then Scan green�T ����g

Collect blue�S� � outcolS�c�� if c � blue then fincolS �none��

fSONSST �Collect blue�T ��in
S
T �����pushF �S���gg

�



��� Correctness of the algorithm

To show that this algorithm is correct we have to show that the following temporal logic properties
remain true under application of the garbage collector� Remember active cells are those in the
transitive closure of the root cell� We de�ne the predicate active on cells by� active�n� is true i�
� � root� n �� � � � x� n � � active�x��

I	� Safety�
��n���active�n� � free�n��

I�� Comprehensive ie there are no space leaks�

��n��active�n� � free�n��

I�� Equivalence�
��free�n� � RC�n� � ��

I�� Invariance of reference count�

��RC�n� � cardf� x� n �� active�n�g�

We believe that the use of temporal logic to express the desired properties of garbage collection
will be of particular value when we consider more advanced algorithms� Typically� such algorithms
yield highly complex concurrent behaviour arising from the simultaneous interaction of the garbage
collector and a mutator process�

� Conclusions

We have shown how abstract requirements of garbage collection can be captured using temporal
logic� The temporal logic speci�cation can then be used as a basis for process algebra speci�cations
which can involve varying amounts of parallelism� We presented two simple CCS speci�cations as
an example� followed by a more complex speci�cation of the cyclic reference counting algorithm�
The veri�cation of such algorithms was then brie�y discussed�
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