
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Bowman, Howard and Derrick, John and Jones, Richard E.  (1994) Modelling Garbage Collection
Algorithms --- Extend abstract.    In: Proceedings of Principles of Distributed Computing'94.

DOI

Link to record in KAR

http://kar.kent.ac.uk/21211/

Document Version

UNSPECIFIED

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Modelling Garbage Collection Algorithms

Howard Bowman� John Derrick � Richard Jones�
Computing Laboratory� University of Kent� Canterbury� CT� �NF� UK�

�Phone� 	 

 ��� ��
���� Email� hb�ukc�ac�uk� jd��ukc�ac�uk� and rej�ukc�ac�uk�

February �� ���

Abstract

We show how abstract requirements of garbage collection can be captured using tempo�

ral logic� The temporal logic speci�cation can then be used as a basis for process algebra

speci�cations which can involve varying amounts of parallelism� We present two simple CCS

speci�cations as an example� followed by a more complex speci�cation of the cyclic reference

counting algorithm� The veri�cation of such algorithms is then brie�y discussed�

Keywords� Concurrency� garbage collection� temporal logic� CCS�

� Introduction

The memorymanagement of simple static programming languages� such as Fortran� can be handled
entirely by the compiler� The location of all variables can be fully determined at compile�time and
no run�time support for memory management is necessary� However� such languages impose con�
siderable restrictions on programming style� for example� recursive procedure calls are disallowed�
High�level languages that allow recursion� on the other hand� demand some run�time support�
Typically� the compiler determines statically the memory requirements of each procedure� When
a procedure is invoked at run�time� a frame of su�cient size is allocated to the procedure on a
stack� When this invocation of the procedure completes� the frame is popped o� the stack� No
action is required of the programmer�

Such a stack�based discipline is insu�cient for many modern high�level programming languages�
These languages require the use of a heap� Such languages may simply o�er the programmer
dynamic data structures� which are stored on the heap as their size cannot be determined at
compile�time� Furthermore their lifetime may exceed the lifetime of the procedure which created
them �e�g� Pascal �Wirth and Jensen� 	
���� Alternatively the language may support closures�
functions paired with environments of values �e�g� �Turner� 	
���� If the binding of names to
values in these environments is static rather than dynamic� then these closures must be kept on
the heap until they are no longer in use�

In general� the extent of such heap�allocated structures cannot be determined by inspection of
the program source� Either the programmer must explicitly allocate and de�allocate such objects
or an automatic storage reclamation system� a garbage collector� must be employed to identify at
run�time which objects may be in use now and in the future� and which objects cannot be used
again� The space used by the latter can be re�cycled� The advantage claimed for the manual
method is e�ciency� the programmer �knows� when objects are no longer in use� However this
claim is increasingly being challenged �see for example the recent discussion in the Internet news

	



group comp�lang�c�� on the performance of Sun�s memory allocator and de�allocator� malloc��
and free��� compared with the Bo�ehm�Weiser garbage�collected GC malloc�� �Boehm and Weiser�
	
����

Furthermore� there is considerable evidence that a high proportion of programmer time is spent
chasing memory allocation bugs �Rovner� 	
��� Automatic storage reclamation o�ers the pro�
grammer the clarity of a higher level interface to the memory sub�system with guarantees that
objects will never be prematurely deallocated �the �dangling pointer� bug� nor that the same mem�
ory will be �incorrectly� allocated to more than one object� To maintain these guarantees� it is
essential that garbage collection algorithms are demonstrably correct�

Proving the correctness of all but the simplest sequential algorithms for garbage collection is
di�cult� To take but one example� the authors know of no less than thirteen papers o�ering
di�erent strategies to prove the correctness of well�known pointer�reversal algorithms �Schorr and
Waite� 	
��� The implementation of concurrent algorithms only increases this di�culty� David
Gries �Gries� 	
�� noted the fragility of concurrent algorithms in his paper proving the correctness
of Dijkstra et al�s �on�the��y� algorithm �Dijkstra et al�� 	
���

�When we write a procedure to be used in a sequential setting� once it is written and
proved correct we can view it as a black�box operation and use it over and over again
without having to look in the black box� We worry only about what it does� In a
parallel setting� however� we must analyse the procedure each time we wish to use
it to make sure that the parallelism does not disturb its proof of correctness� And
each change in the other process forces us to re�analyse the procedure again� One
can avoid this complexity by making the procedure an indivisible operation through
the use of synchronisation and mutual exclusion primitives and by limiting the use
of shared variables� Or one can summarise in an invariant for the procedure what a
parallel process must leave true in order not to interfere�

The on�the��y garbage collector is very fragile and susceptible to such changes� Slight
changes which would seem innocent in a sequential setting are disastrous in a parallel
context��

It is surely worth noting that many attempts to prove the correctness of the �on�the��y� algorithm�
including Dijkstra�s� were found to be lacking�

The aim of our research is to model and verify concurrent garbage collection algorithms using
formal models of concurrency� In particular� we wish to turn our attention to the Cyclic Weighted
Reference Counting Algorithm �Jones and Lins� 	

�� a hybrid reference�counting�mark�scan
garbage collection algorithm for distributed processors� The formal models used are Temporal
Logic��Manna and Pnueli� 	

�� and the process algebra CCS� �Milner� 	
�
� Both temporal logic
and CCS have be en used successfully to model and verify a number of algorithms� �Sanderson�
	
��� Larsen and Milner� 	

�� Parrow� 	
��� Parrow� 	
�� and �Richier et al�� 	
��� Cavelli
and Horn� 	
��� Clarke et al�� 	
��� We show here how garbage collection algorithms can be
speci�ed using temporal logic and process algebras� The veri�cation of such algorithms is an area
of ongoing research�

This paper starts by examining those simpler algorithms upon which the CWRC has been built�
namely standard recursive marking �McCarthy� 	
�� and Cyclic Reference Counting �Martinez
et al�� 	

�� Lins� 	

�� In Section � we consider garbage collection from an abstract point of
view� These abstract requirements are formally described in temporal logic� Two speci�cations in
CCS are then given� each involving di�erent amounts of parallelism� In Section � we present the
Cyclic Reference Counting Algorithm� and show how this can be speci�ed in a process algebra�
The veri�cation of such algorithms is then discussed�

�



� An abstract model of garbage collection

One abstract view of garbage collection is the following� The heap consists of a number of cells�
one is named the root of the heap� When pointers between the cells are represented as arcs� the
active data structure is a connected� directed graph� The cells which are in the transitive closure
of the root �denoted root�� are considered to be the active cells� Cells which are not active are
considered garbage� and the purpose of garbage collection is to identify these cells and make them
available for future use�

The garbage collector does so by maintaining a set of free cells �often called the free�list� although
it need not be implemented as a list�� Let us view the free�list as the transitive closure of a named
cell free� Garbage collection is then a state change of the heap� which will alter the transitive
closure of free� We denote this state change by the use of primes to represent the e�ect of garbage
collection having taken place on the heap� This preliminary speci�cation assumes that no mutator
action happens concurrently�

Garbage collection should preserve the active cells�

root
�
� � root�

A cell which is neither active� or already on the free�list� should be placed on the free�list by the
garbage collector�

�x �� root� � free� � x �� root
�
� � x � free

�
�

The free�list should be preserved or increased by garbage collection�

free� � free
�
�

Finally active cells should never be reclaimed as garbage� this amounts to saying that at all time
the transitive closures of root and free are distinct�

root� � free� � �

These four properties make an abstract speci�cation of garbage collection� against which sequential
or concurrent implementations must be veri�ed� We now formalize these requirements by giving
a temporal logic speci�cation�

��� Temporal Logic Speci�cation

We will use Temporal Logic to express the correctness properties of garbage collection algorithms�
This form of logic has been shown to be highly suited to abstract expression of program properties
and in particular� expression of the properties of concurrent computations �Manna and Pnueli�
	

�� As �rst observed by Pnueli �Pnueli� 	
��� both safety and liveness properties can be
expressed with Temporal Logic� while only safety properties can be expressed with �rst order
logic� We will use standard Manna and Pnueli Linear Time Temporal Logic �Manna and Pnueli�
	

� in this paper�

The following Temporal Logic propositions express� in the same order� the properties of garbage
collection highlighted in the previous section�

root� � S 	 ��root� � S�

i�e� if the transitive closure of the root equals S at the start of the garbage collection� then in all
future states it will equal S�

�



�x �� �root� � free��� ��x �� root� � x � free��

i�e� all cells neither in the active or free lists will eventually be placed in the free list� The re�
expression of the other two conditions included in the above section is also straightforward� They
can be expressed as follows��

free� � S 	 ��free� 
 S�

��root� � free� � ��

��� Using CCS to model simple garbage collection algorithms

In this section we specify two simple garbage collection algorithms in CCS� One is a sequential
version� the other uses the parallelism of garbage collection as much as possible�

An invaluable introduction to CCS is given in �Milner� 	
�
� CCS is a process algebra� and all
objects within our system speci�cation �free�lists� cells� garbage collectors� will be modelled as
processes�

To model cells and pointers between them we consider the heap to consist of a �xed number of
cells �or nodes� P�� � � � � PN � A cell can then be referred to by its subscript without confusion� We
assume that the dedicated root cell is P�� To represent a cell as a process� we consider each process
to have N � 	 integer parameters which represent pointers to other cells� So in the process

Pi�x�� � � � � xN�

x� is the number of pointers from Pi to P�� x� is the number of pointers from Pi to P� etc�

We use the standard method to access and update a data�store in CCS by each parameter having
two ports� ini and outi� Each process Pi is de�ned by�

Pi�x�� � � � � xN� � ini
�
�x��Pi�x� x�� � � � � xN � � outi

�
�x���Pi�x�� x�� � � � � xN �

� ini
�
�x��Pi�x�� x� x�� � � � � xN � � outi

�
�x���Pi�x�� x�� � � � � xN�

�
���

� iniN �x��Pi�x�� � � � � xN��� x� � outiN �xN ��Pi�x�� � � � � xN �

We record the collection of active cells and free cells by maintaining two sets� The free�list �in fact
it is a set in this instance� is then de�ned by the process�

Free��� � addF �x��F ree�fxg� � emptyF �F ree���

Free�X� � addF �x��F ree�X � fxg� �minusF �x��F ree�X n fxg� X �� �

The collection of active cells is modelled by the process Active� de�ned by�

Active � addA�x��Set�fxg�

Set��� � emptyA�Active

Set�X� � addA�x��Set�X � fxg� � outA�maxX��Set�X n fmaxXg� X �� �

�



where max returns the maximum element of a �nite set of integers�

The basis method of a simple garbage collection is to start with an empty active collection� run
a recursively de�ned algorithm which checks which cells are still active� then �nally de�nes the
free�list to be all cells which are not active� The initial pre�x of an action g allows the garbage
collector to be �red into action�

GC � g��Active �� f�g��gc�����Free �� f�� � � � � Ng nActive��GC

Written formally this becomes�

GC � g�addA��gc����addF�� � � � �addFN�Y�GC

Y � outA�j��minusF �j��Y � emptyA��

The de�nition of the recursively de�ned algorithm is as follows�

gc�i� �
NY

j��

�outij�xj��if xj � � � j �� Active then addAj�gc�j��

This works as follows� for an active process Pi� gc�i� will� in parallel� check each parameter xj�
If this parameter is non�zero� then the cell Pj is connected to Pi and hence active� We add the
reference j to the active set� and recursively look at the process Pj� To ensure termination we
only perform this recursion when the process Pj has not already been discovered to be active� we
do this by checking whether j �� Active� The de�nition of this as a CCS expression is omitted�

The whole system �heap plus garbage collector running on it� is then represented by the expression

�ActivejFreejP�j � � � jPN jGC� n L

where L is the set of all sorts of the processes� Pre�xing the garbage collector by the action g allows
us to �re the process into action� Thereafter system will evolve silently� all the communications
between GC and the cells being internal transitions� until termination�

This algorithm can obviously be written without so much parallelism� For example we can de�ne
a further garbage collector GC�� by replacing the algorithm gc by�

gc��i� � outi
�
�x����if x� � � � 	 �� Active then addA	�gc

��	���

outi
�
�x����if x� � � � � �� Active then addA��gc

������

� � �

outiN �xN ���if xN � � �N �� Active then addAN�gc��N ��

A simple test for a formal speci�cation technique is then to try and prove the equivalence of the
two algorithms so given�

��� Verifying the Algorithms

Having modelled the requirements of garbage collection using temporal logic� and given simple
speci�cations using CCS� we would like to verify the process algebra speci�cations against the
temporal logic properties� One approach is to use model checking algorithms to perform this
veri�cation� This avenue is currently being explored by the authors�

Even without the temporal logic requirements� it is true that the functionality of the two CCS
systems is equivalent in some sense� Proving equivalence of the two algorithms amounts to showing

�



that for a given heap� the two algorithms will produce the same transitive closures of root and
free� The complete system� i�e� heap and the garbage collector running on it� is modelled in
the usual fashion by parallel composition of the processes Pi with the active set and the garbage
collector GC itself� One method of showing equivalence is to show that the following two processes
are bisimilar� �Milner� 	
�
��

�ActivejP�j � � � jPN jGC� n L �ActivejP�j � � � jPN jGC �� n L

The restriction by the sorts L ensures that the only non�silent communication are those communi�
cations with the process Free� The nature of the processes GC and GC� mean that this amounts to
showing the active�set will be the same in both systems� Unfortunately the equivalence technique
of deriving bisimulations requires that the order of events is identical in the two systems under
discussion� For comparisons between sequential and parallel algorithms� this is too strong a re�
quirement� since by its nature the parallel algorithm does not preserve the order of the sequential
version�

� Cyclic Reference Counting

Lazy Cyclic Reference Counting combines reference counting with lazy four�colour mark�scan
garbage collection� Cells are allocated and references are copied in a manner similar to the standard
reference counting algorithm �Collins� 	
��� as is the deletion of the last reference to an object�
However� if the target of a deleted pointer is shared then it may be part of an isolated� and hence
garbage� cycle� In the lazy algorithm �Lins� 	

�� a reference to the cell is placed on a control queue
but no further action is taken until either the free�list becomes empty or the control queue is full�
In the original algorithm �Martinez et al�� 	

�� the cell is examined immediately to determine
whether it is garbage�

In either case� cells in the transitive closure of this cell are eventually marked and scanned to �nd
any references from cells external to this subgraph� If none are found the subgraph is garbage
and is returned to the free�list� Garbage collection proceeds in three phases� In the �rst phase all
cells in the transitive closure are painted red� Each time a cell is visited its reference count �RC�
is decremented� On completion only those cells that are the target of an external reference will
have non�zero RCs� The task of the second phase is to discover any such cells� They and their
descendants are re�painted green and their RCs are corrected� All other cells are painted blue�
The third and last phase returns blue cells to the free�list�

We denote a pointer from a cell S to a cell T by � S� T ��

New�R� �

U �� pop�free�list�

RC�U� �� �

colour�U� �� green

make�pointer��R	U
�

Copy�R	�S	T
� �

RC�T� �� RC�T� � �

make�pointer��R	T
�

Delete��R	S
� �

delete�pointer��R	S
�

RC�S� �� RC�S� � �

if RC�S� � � then

for T in Sons�S� do

�



Delete��S	T
�

colour�S� �� none

push�S	free�list�

else

Markred�S�

Scan�S�

Collectblue�S�

Markred�S� �

if colour�S� �� red then

colour�S� �� red

for T in Sons�S� do

RC�T� �� RC�T� � �

Markred�T�

Scan�S� �

if colour�S� � red then

if RC�T� 
 � then

Scangreen�S�

else

colour�S� �� blue

for T in Sons�S� do

Scan�T�

Scangreen�S� �

colour�S� �� green

for T in Sons�S� do

RC�T� �� RC�T� � �

if colour�T� �� green then

Scangreen�T�

Collectblue�S� �

if colour�S� � blue then

colour�S� �� none

for T in Sons�S� do

Collectblue�T�

delete�pointer��S	T
�

push�S	free�list�

��� CCS Speci�cation of CRC

In a manner similar to before we show how we can model CRC in CCS� With CRC each cell now
contains two pieces of additional information� the �rst the reference count for a cell� the second
the colour of the cell� The colour will be green� red or blue� We extend our de�nitions of processes
representing cells by adding parameters for the reference count� and the colour� and two ports per
parameter �one to update it� one to access the value��

Pi�n� c� x�� � � � � xN � � inrefi�m��Pi�m� c� x�� � � � � xN � � outrefi�n��Pi�n� c� x�� � � � � xN �

� incoli�d��Pi�n� d� x�� � � � � xN � � outcoli�c��Pi�n� c� x�� � � � � xN �

� ini
�
�x��Pi�n� c� x� x�� � � � � xN � � outi

�
�x���Pi�n� c� x�� x�� � � � � xN�

� ini
�
�x��Pi�n� c� x�� x� x�� � � � � xN � � outi

�
�x���Pi�n� c� x�� x�� � � � � xN �

�

�



���

� iniN �x��Pi�n� c� x�� � � � � xN��� x� � outi
N
�xN ��Pi�n� c� x�� � � � � xN �

Without loss of generality we refer to the process Pi by its subscript� and henceforth all processes
will range over integer parameters� With these de�nitions the process representing the task New
is�

New�R� � popF �v��inrefv�	��incolv�green��out
R
v �x��in

R
v �x� 	���

The communication popF �v� will obtain a new cell from the free�list �which we call v�� �We
assume that the free�list is modelled as before� with ports popF and pushF to perform the required
communication�� inrefv�	� will set the reference count in v to 	� then outRv �x��in

R
v �x � 	� will

create an additional pointer from R to v�

To increase clarity we use the following abbreviation in the process de�nitions�

SONSST �P � �
NY

T��

outST �x��f if x � 	 then Pg

The remaining processes are�

Copy�R�� S� T �� � outrefT �n��inrefT �n� 	��outRT �x��in
R
T �x� 	���

Delete�� R�S �� � outRS �k��in
R
S �k � 	��outrefS�x��inrefS�x� 	��

if x � 	 then fSONSST �Delete�� S� T ���g�incolS �none��pushF �S���

else fMark red�S��Scan�S��Collect blue�S���g

Mark red�S� � outcolS �c�� if c �� red then

fincolS �red��SONSST �outrefT �y��inrefT �y � 	��Mark red�T ����g

Scan�S� � outcolS�c��outrefS�n�� if c � red then

f if n � � then Scan green�S��� else fincolS�blue��SONSST �Scan�T ����gg

Scan green�S� � incolS �green��

fSONSST �outrefT �n��inrefT �n � 	��outcolT �c�� if c �� green then Scan green�T ����g

Collect blue�S� � outcolS�c�� if c � blue then fincolS �none��

fSONSST �Collect blue�T ��in
S
T �����pushF �S���gg

�



��� Correctness of the algorithm

To show that this algorithm is correct we have to show that the following temporal logic properties
remain true under application of the garbage collector� Remember active cells are those in the
transitive closure of the root cell� We de�ne the predicate active on cells by� active�n� is true i�
� � root� n �� � � � x� n � � active�x��

I	� Safety�
��n���active�n� � free�n��

I�� Comprehensive ie there are no space leaks�

��n��active�n� � free�n��

I�� Equivalence�
��free�n� � RC�n� � ��

I�� Invariance of reference count�

��RC�n� � cardf� x� n �� active�n�g�

We believe that the use of temporal logic to express the desired properties of garbage collection
will be of particular value when we consider more advanced algorithms� Typically� such algorithms
yield highly complex concurrent behaviour arising from the simultaneous interaction of the garbage
collector and a mutator process�

� Conclusions

We have shown how abstract requirements of garbage collection can be captured using temporal
logic� The temporal logic speci�cation can then be used as a basis for process algebra speci�cations
which can involve varying amounts of parallelism� We presented two simple CCS speci�cations as
an example� followed by a more complex speci�cation of the cyclic reference counting algorithm�
The veri�cation of such algorithms was then brie�y discussed�

References

�Boehm and Weiser� 	
�� Hans�Juergen Boehm and Mark Weiser� Garbage collection in an un�
cooperative environment� Software Practice and Experience� 	��
���������� 	
���

�Cavelli and Horn� 	
�� A� R� Cavelli and F� Horn� Proof of speci�cation properties by using
�nite state machines and temporal logic� In Protocol Speci�cation� Testing and Veri�cation�
VII� pages ��	����� North�Holland� 	
���

�Clarke et al�� 	
�� E�M� Clarke� E�A� Emerson� and A�P� Sistla� Automatic veri�cation of �nite�
state concurrent systems using temporal logic� ACM Transactions on Programming Languages
and Systems� ������������� 	
���

�Collins� 	
�� George E� Collins� A method for overlapping and erasure of lists� Communications
of the ACM� ��	����������� December 	
���

�Dijkstra et al�� 	
�� Edsgar W� Dijkstra� Leslie Lamport� A�J� Martin� C�S� Scholten� and E�F�M�
Ste�ens� On�the��y garbage collection� An exercise in cooperation� In Lecture Notes in Com�
puter Science� No� 	
� Springer�Verlag� New York� 	
���






�Gries� 	
�� David Gries� On believing programs to be correct� Communications of the ACM�
���	���
���� January 	
���

�Jones and Lins� 	

� Richard E� Jones and Rafael D� Lins� Cyclic weighted reference counting
without delay� In PARLE��� Springer�Verlag� 	

��

�Larsen and Milner� 	

� K�G� Larsen and R� Milner� A complete protocol veri�cation using
relativised bisimulation� Journal of Information and Computation� 	

��

�Lins� 	

� Rafael D� Lins� Cyclic reference counting with lazy mark�scan� Technical Report ���
The University of Kent at Canterbury Computing Laboratory� The University� Canterbury�
Kent� July 	

�� to appear in Information Processing Letters�

�Manna and Pnueli� 	

� Z� Manna and A� Pnueli� The Temporal Logic of Reactive and Concur�
rent Systems� Springer�Verlag� 	

��

�Martinez et al�� 	

� A�D� Martinez� R� Wachenchauzer� and Rafael D� Lins� Cyclic reference
counting with local mark�scan� Information Processing Letters� ����	���� 	

��

�McCarthy� 	
�� John McCarthy� Recursive functions of symbolic expressions and their compu�
tation by machine� Communications of the ACM� ��	���	
�� 	
���

�Milner� 	
�
 R� Milner� Communication and Concurrency� Prentice Hall� 	
�
�

�Parrow� 	
�� J�G� Parrow� Fairness Properties in Process Algebra� PhD thesis� Department of
Computer Systems� Uppsala University� Sweden� 	
���

�Parrow� 	
�� J�G� Parrow� Verifying a csma�cd�protocol with ccs� Technical Report Report
ECS�LFCS����	�� Computer Science Dept� University of Edinburgh� 	
���

�Pnueli� 	
�� A� Pnueli� The temporal logic of programs� Foundations of Computer Science�
	�������� 	
���

�Richier et al�� 	
�� J�L� Richier� C� Rodriguez� J�Sifakis� and J� Voiron� Veri�cation in XESAR
of the sliding window protocol� In Protocol Speci�cation� Testing and Veri�cation� VII� pages
�������� North�Holland� 	
���

�Rovner� 	
�� Paul Rovner� On adding garbage collection and runtime types to a strongly�typed�
statically checked� concurrent language� Technical Report CSL������ Xerox PARC� July 	
���

�Sanderson� 	
�� M�T� Sanderson� Proof Techniques for CCS� PhD thesis� Computer Science
Dept� University of Edinburgh� 	
���

�Schorr and Waite� 	
�� H� Schorr and W� Waite� An e�cient machine independent procedure
for garbage collection in various list structures� Communications of the ACM� 	�������	�����
August 	
���

�Turner� 	
�� David A� Turner� Miranda  a non�strict functional language with polymorphic
types� In Jouannaud� editor� Record of the ��� Conference on Functional Programming and
Computerr Architecture� pages 	�	�� 	
��� Springer Verlag LNCS ��	�

�Wirth and Jensen� 	
�� N� Wirth and K� Jensen� The Pascal User Manual and Report� Springer�
Verlag� 	
���

	�


