45 research outputs found

    Coexistence of OFDM and FBMC for Underlay D2D Communication in 5G Networks

    Full text link
    Device-to-device (D2D) communication is being heralded as an important part of the solution to the capacity problem in future networks, and is expected to be natively supported in 5G. Given the high network complexity and required signalling overhead associated with achieving synchronization in D2D networks, it is necessary to study asynchronous D2D communications. In this paper, we consider a scenario whereby asynchronous D2D communication underlays an OFDMA macro-cell in the uplink. Motivated by the superior performance of new waveforms with increased spectral localization in the presence of frequency and time misalignments, we compare the system-level performance of a set-up for when D2D pairs use either OFDM or FBMC/OQAM. We first demonstrate that inter-D2D interference, resulting from misaligned communications, plays a significant role in clustered D2D topologies. We then demonstrate that the resource allocation procedure can be simplified when D2D pairs use FBMC/OQAM, since the high spectral localization of FBMC/OQAM results in negligible inter-D2D interference. Specifically, we identify that FBMC/OQAM is best suited to scenarios consisting of small, densely populated D2D clusters located near the encompassing cell's edge.Comment: 7 pages, 9 figures, Accepted at IEEE Globecom 2016 Workshop

    A discrete bit loading algorithm for FBMC/OQAM

    Get PDF
    In this letter the discrete rate maximization problem is investigated for FBMC/OQAM. The analysis reveals that if there is crosstalk certain bit allocations violate the power constraints. Aiming at ensuring the feasibility along with alleviating the complexity we have devised a novel iterative algorithm, which always converges. Simulation-based results show that the proposed algorithm performs close to the upper bound for high-coherence bandwidth channels. Under highly frequency selective channels the existing algorithms are not able to guarantee the target SER whereas our approach guarantees the QoS.This work was supported by the Spanish Ministry of Science and Innovation under Projects TEC2011-29006-C03-02 (GRE3N-LINK-MAC), TEC2011-29006-C03-03 (GRE3N-SYST), and TEC2008-06327-C03-01, and by the Catalan Government (2009SGR0891).Publicad

    Resource Management in Multicarrier Based Cognitive Radio Systems

    Get PDF
    The ever-increasing growth of the wireless application and services affirms the importance of the effective usage of the limited radio spectrum. Existing spectrum management policies have led to significant spectrum under-utilization. Recent measurements showed that large range of the spectrum is sparsely used in both temporal and spatial manner. This conflict between the inefficient usage of the spectrum and the continuous evolution in the wireless communication calls upon the development of more flexible management policies. Cognitive radio (CR) with the dynamic spectrum access (DSA) is considered to be a key technology in making the best solution of this conflict by allowing a group of secondary users (SUs) to share the radio spectrum originally allocated to the primary user (PUs). The operation of CR should not negatively alter the performance of the PUs. Therefore, the interference control along with the highly dynamic nature of PUs activities open up new resource allocation problems in CR systems. The resource allocation algorithms should ensure an effective share of the temporarily available frequency bands and deliver the solutions in timely fashion to cope with quick changes in the network. In this dissertation, the resource management problem in multicarrier based CR systems is considered. The dissertation focuses on three main issues: 1) design of efficient resource allocation algorithms to allocate subcarriers and powers between SUs such that no harmful interference is introduced to PUs, 2) compare the spectral efficiency of using different multicarrier schemes in the CR physical layer, specifically, orthogonal frequency division multiplexing (OFDM) and filter bank multicarrier (FBMC) schemes, 3) investigate the impact of the different constraints values on the overall performance of the CR system. Three different scenarios are considered in this dissertation, namely downlink transmission, uplink transmission, and relayed transmission. For every scenario, the optimal solution is examined and efficient sub-optimal algorithms are proposed to reduce the computational burden of obtaining the optimal solution. The suboptimal algorithms are developed by separate the subcarrier and power allocation into two steps in downlink and uplink scenarios. In the relayed scenario, dual decomposition technique is used to obtain an asymptotically optimal solution, and a joint heuristic algorithm is proposed to find the suboptimal solution. Numerical simulations show that the proposed suboptimal algorithms achieve a near optimal performance and perform better than the existing algorithms designed for cognitive and non-cognitive systems. Eventually, the ability of FBMC to overcome the OFDM drawbacks and achieve more spectral efficiency is verified which recommends the consideration of FBMC in the future CR systems.El crecimiento continuo de las aplicaciones y servicios en sistemas inal´ambricos, indica la importancia y necesidad de una utilizaci´on eficaz del espectro radio. Las pol´ıticas actuales de gesti´on del espectro han conducido a una infrautilizaci´on del propio espectro radioel´ectrico. Recientes mediciones en diferentes entornos han mostrado que gran parte del espectro queda poco utilizado en sus ambas vertientes, la temporal, y la espacial. El permanente conflicto entre el uso ineficiente del espectro y la evoluci´on continua de los sistemas de comunicaci´on inal´ambrica, hace que sea urgente y necesario el desarrollo de esquemas de gesti´on del espectro m´as flexibles. Se considera el acceso din´amico (DSA) al espectro en los sistemas cognitivos como una tecnolog´ıa clave para resolver este conflicto al permitir que un grupo de usuarios secundarios (SUs) puedan compartir y acceder al espectro asignado inicialmente a uno o varios usuarios primarios (PUs). Las operaciones de comunicaci´on llevadas a cabo por los sistemas radio cognitivos no deben en ning´un caso alterar (interferir) los sistemas primarios. Por tanto, el control de la interferencia junto al gran dinamismo de los sistemas primarios implica nuevos retos en el control y asignaci´on de los recursos radio en los sistemas de comunicaci´on CR. Los algoritmos de gesti´on y asignaci´on de recursos (Radio Resource Management-RRM) deben garantizar una participaci´on efectiva de las bandas con frecuencias disponibles temporalmente, y ofrecer en cada momento oportunas soluciones para hacer frente a los distintos cambios r´apidos que influyen en la misma red. En esta tesis doctoral, se analiza el problema de la gesti´on de los recursos radio en sistemas multiportadoras CR, proponiendo varias soluciones para su uso eficaz y coexistencia con los PUs. La tesis en s´ı, se centra en tres l´ıneas principales: 1) el dise˜no de algoritmos eficientes de gesti´on de recursos para la asignaci´on de sub-portadoras y distribuci´on de la potencia en sistemas segundarios, evitando asi cualquier interferencia que pueda ser perjudicial para el funcionamiento normal de los usuarios de la red primaria, 2) analizar y comparar la eficiencia espectral alcanzada a la hora de utilizar diferentes esquema de transmisi´on multiportadora en la capa f´ısica del sistema CR, espec´ıficamente en sistemas basados en OFDM y los basados en banco de filtros multiportadoras (Filter bank Multicarrier-FBMC), 3) investigar el impacto de las diferentes limitaciones en el rendimiento total del sistema de CR. Los escenarios considerados en esta tesis son tres, es decir; modo de transmisi´on descendente (downlink), modo de transmisi´on ascendente (uplink), y el modo de transmisi´on ”Relay”. En cada escenario, la soluci´on ´optima es examinada y comparada con algoritmos sub- ´optimos que tienen como objetivo principal reducir la carga computacional. Los algoritmos sub-´optimos son llevados a cabo en dos fases mediante la separaci´on del propio proceso de distribuci´on de subportadoras y la asignaci´on de la potencia en los modos de comunicaci´on descendente (downlink), y ascendente (uplink). Para los entornos de tipo ”Relay”, se ha utilizado la t´ecnica de doble descomposici´on (dual decomposition) para obtener una soluci´on asint´oticamente ´optima. Adem´as, se ha desarrollado un algoritmo heur´ıstico para poder obtener la soluci´on ´optima con un reducido coste computacional. Los resultados obtenidos mediante simulaciones num´ericas muestran que los algoritmos sub-´optimos desarrollados logran acercarse a la soluci´on ´optima en cada uno de los entornos analizados, logrando as´ı un mayor rendimiento que los ya existentes y utilizados tanto en entornos cognitivos como no-cognitivos. Se puede comprobar en varios resultados obtenidos en la tesis la superioridad del esquema multiportadora FBMC sobre los sistemas basados en OFDM para los entornos cognitivos, causando una menor interferencia que el OFDM en los sistemas primarios, y logrando una mayor eficiencia espectral. Finalmente, en base a lo analizado en esta tesis, podemos recomendar al esquema multiportadora FBMC como una id´onea y potente forma de comunicaci´on para las futuras redes cognitivas

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Performance Assessment of Dual-Polarized 5G Waveforms and Beyond in Directly Modulated DFB-Laser using Volterra Equalizer

    Get PDF
    International audienceWe investigate the performance of 25-Gbps dual-polarized orthogonal frequency division multiplexing (OFDM)-based modulation in a directly modulated distributed feedback (DFB)-laser over 25 km of single-mode fiber. A Volterra equalizer is used to compensate for the nonlinear effects of the optical fiber. The results show that FBMC-OQAM modulation outperforms OFDM, universal filtered multicarrier (UFMC), and generalized frequency division multiplexing (GFDM) waveforms. Indeed, a target bit error rate of similar to 3.8 x 10(-3) [forward error correction (FEC) limit] for FBMC, UFMC, OFDM, and GFDM can be achieved at -30.5, -26, -16, and -14.9 dBm, respectively. The effect of the DFB laser is also investigated for UFMC, OFDM, and GFDM, and they undergo a Q penalty of 2.44, 2.77, and 4.14 dB, respectively, at their FEC limit points. For FBMC-OQAM, the signal is perfectly recovered when excluding the DFB laser at -30.5 dBm. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE

    MIMO designs for filter bank multicarrier and multiantenna systems based on OQAM

    Get PDF
    From the perspective of increasingly data rate requirements in mobile communications, it is deemed necessary to do further research so that the future goals can be reached. To that end, the radio-based communications are resorting to multicarrier modulations and spatial diversity. Until today, the orthogonal frequency division multiplexing (OFDM) modulation is regarded as the dominant technology. On one hand, the OFDM modulation is able to accommodate multiantenna configurations in a very straightforward manner. On the other hand, the poor stopband attenuation exhibited by the OFDM modulation, highlights that a definitely tight synchronization is required. In addition, the cyclic prefix (CP) has to be sufficiently long to avoid inter-block interference, which may substantially reduce the spectral efficiency. In order to overcome the OFDM drawbacks, the filter bank multicarrier modulation based on OQAM (FBMC/OQAM) is introduced. This modulation does not need any CP and benefits from pulse shaping techniques. This aspect becomes crucial in cognitive radio networks and communication systems where nodes are unlikely to be synchronized. In principle, the poor frequency confinement exhibited by OFDM should tip the balance towards FBMC/OQAM. However, the perfect reconstruction property of FBMC/OQAM systems does not hold in presence of multipath fading. This means that the FBMC/OQAM modulation is affected by inter-symbol and inter-carrier interference, unless the channel is equalized to some extent. This observation highlights that the FBMC/OQAM extension to MIMO architectures becomes a big challenge due to the need to cope with both modulation- and multiantenna-induced interference. The goal of this thesis is to study how the FBMC/OQAM modulation scheme can benefit from the degrees of freedom provided by the spatial dimension. In this regard, the first attempt to put the research on track is based on designing signal processing techniques at reception. In this case the emphasis is on single-input-multiple-output (SIMO) architectures. Next, the possibility of pre-equalizing the channel at transmission is investigated. It is considered that multiple antennas are placed at the transmit side giving rise to a multiple-input-single-output (MISO) configuration. In this scenario, the research is not only focused on counteracting the channel but also on distributing the power among subcarriers. Finally, the joint transmitter and receiver design in multiple-input-multiple-output (MIMO) communication systems is covered. From the theory developed in this thesis, it is possible to conclude that the techniques originally devised in the OFDM context can be easily adapted to FBMC/OQAM systems if the channel frequency response is flat within the subchannels. However, metrics such as the peak to average power ratio or the sensitivity to the carrier frequency offset constraint the number of subcarriers, so that the frequency selectivity may be appreciable at the subcarrier level. Then, the flat fading assumption is not satisfied and the specificities of FBMC/OQAM systems have to be considered. In this situation, the proposed techniques allow FBMC/OQAM to remain competitive with OFDM. In addition, for some multiantenna configurations and propagation conditions FBMC/OQAM turns out to be the best choice. The simulation-based results together with the theoretical analysis conducted in this thesis contribute to make progress towards the application of FBMC/OQAM to MIMO channels. The signal processing techniques that are described in this dissertation allow designers to exploit the potentials of FBMC/OQAM and MIMO to improve the link reliability as well as the spectral efficiency

    Millimetre-Wave Fibre-Wireless Technologies for 5G Mobile Fronthaul

    Get PDF
    The unprecedented growth in mobile data traffic, driven primarily by bandwidth rich applications and high definition video is accelerating the development of fifth generation (5G) mobile network. As mobile access network evolves towards centralisation, mobile fronthaul (MFH) architecture becomes essential in providing high capacity, ubiquitous and yet affordable services to subscribers. In order to meet the demand for high data rates in the access, Millimetre-wave (mmWave) has been highlighted as an essential technology in the development of 5G-new radio (5G-NR). In the present MFH architecture which is typically based on common public radio interface (CPRI) protocol, baseband signals are digitised before fibre transmission, featuring high overhead data and stringent synchronisation requirements. A direct application of mmWave 5G-NR to CPRI digital MFH, where signal bandwidth is expected to be up to 1GHz will be challenging, due to the increased complexity of the digitising interface and huge overhead data that will be required for such bandwidth. Alternatively, radio over fibre (RoF) technique can be employed in the transportation of mmWave wireless signals via the MFH link, thereby avoiding the expensive digitisation interface and excessive overhead associated with its implementation. Additionally, mmWave carrier can be realised with the aid of photonic components employed in the RoF link, further reducing the system complexity. However, noise and nonlinearities inherent to analog transmission presents implementation challenges, limiting the system dynamic range. Therefore, it is important to investigate the effects of these impairments in RoF based MFH architecture. This thesis presents extensive research on the impact of noise and nonlinearities on 5G candidate waveforms, in mmWave 5G fibre wireless MFH. Besides orthogonal frequency division multiplexing (OFDM), another radio access technology (RAT) that has received significant attention is filter bank multicarrier (FBMC), particularly due to its high spectral containment and excellent performance in asynchronous transmission. Hence, FBMC waveform is adopted in this work to study the impact of noise and nonlinearities on the mmWave fibre-wireless MFH architecture. Since OFDM is widely deployed and it has been adopted for 5G-NR, the performance of OFDM and FBMC based 5G mmWave RAT in fibre wireless MFH architecture is compared for several implementations and transmission scenarios. To this extent, an end to end transmission testbed is designed and implemented using industry standard VPI Transmission Maker® to investigate five mmWave upconversion techniques. Simulation results show that the impact of noise is higher in FBMC when the signal to-noise (SNR) is low, however, FBMC exhibits better performance compared to OFDM as the SNR improved. More importantly, an evaluation of the contribution of each noise component to the overall system SNR is carried out. It is observed in the investigation that noise contribution from the optical carriers employed in the heterodyne upconversion of intermediate frequency (IF) signals to mmWave frequency dominate the system noise. An adaptive modulation technique is employed to optimise the system throughput based on the received SNR. The throughput of FBMC based system reduced significantly compared to OFDM, due to laser phase noise and chromatic dispersion (CD). Additionally, it is shown that by employing frequency domain averaging technique to enhance the channel estimation (CE), the throughput of FBMC is significantly increased and consequently, a comparable performance is obtained for both waveforms. Furthermore, several coexistence scenarios for multi service transmission are studied, considering OFDM and FBMC based RATs to evaluate the impact inter band interference (IBI), due to power amplifier (PA) nonlinearity on the system performance. The low out of band (OOB) emission in FBMC plays an important role in minimising IBI to adjacent services. Therefore, FBMC requires less guardband in coexistence with multiple services in 5G fibre-wireless MFH. Conversely, OFDM introduced significant OOB to adjacent services requiring large guardband in multi-service coexistence transmission scenario. Finally, a novel transmission scheme is proposed and investigated to simultaneously generate multiple mmWave signals using laser heterodyning mmWave upconversion technique. With appropriate IF and optical frequency plan, several mmWave signals can be realised. Simulation results demonstrate successful simultaneous realisation of 28GHz, 38GHz, and 60GHz mmWave signals
    corecore