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Abstract: In this paper, we investigate the performance of 25 Gbps dual-polarized OFDM-based modulation in 

directly modulated DFB-laser over 25 Km of single-mode fiber. Volterra equalizer is used to compensate the 

nonlinear effects of the optical fiber. The results show that FBMC-OQAM modulation outperforms OFDM, UFMC 

and GFDM waveforms. Indeed, a target of BER ~ 3.810-3 (FEC limit) for FBMC, UFMC, OFDM and GFDM can 

be achieved at -30.5,-26, -16 and -14.9 dBm, respectively. The effect of DFB laser is also investigated for UFMC, 

OFDM and GFDM, they undergo a Q penalty of 2.44, 2.77 and 4.14 dB, respectively, at their FEC limit points. 

For FBMC-OQAM, the signal is perfectly recovered when excluding the DFB laser at -30.5 dBm. 

 

Keywords: 5G networks and Beyond, DFB Laser, FBMC, GFDM, OFDM, UFMC, Volterra Equalizer.  

 

* First Author, E-mail: oussama_gharbi@yahoo.com 
 

 

1. Introduction 

 

In fifth-generation networks, three main use cases are stipulated by the International Mobile 

Telecommunications (IMT) vision recommendations [1] namely, enhanced Mobile Broadband 

(eMBB), Ultra-Reliable Low Latency Communications (URLLC) and massive Machine Type 

Communications (mMTC). 

 For the eMBB scenario, it requires a wide coverage area and high data rate to support the 

emerging multimedia services such as Ultra-High Definition (U-HD) resolution and 

holographic type communication such as Augmented  Reality and Virtual Reality (AR/VR) 

gaming which is considered as a pillar for beyond 5G vision [2]. Indeed, videos will represent 

75% of data traffic by 2022 [3]. For URLLC, it is characterized by a stringent requirement on 

latency and reliability for critical communications, e.g. Remote surgery, Vehicle-to-everything 

(V2X). Accordingly, the upcoming 6G networks consider a very low latency in both fronthaul 

and backhaul in order to meet the high demands of data traffic [4]. Finally, mMTC, known also 

as Internet of things (IoT), aims to connect a massive number of devices with low power 

consumption. 

To accommodate these various scenarios, a new flexible air interface [5] and innovative scheme 

of the radio access network, known as Centralized Radio Access Network (C-RAN), are 

introduced. 

The 4G air interface is based on Orthogonal Frequency Division Multiplexing (OFDM) due its 

high spectral efficiency when compared with Frequency Division Multiplexing (FDM) by 

overlapping orthogonal subcarriers, its robustness against multipath fading (narrowband 

subcarriers, cyclic prefix) and its low complexity where the modulation is performed by Inverse 

Fast Fourier Transform (IFFT) [6]. However, OFDM system suffers from a high Peak to 
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Average Power Ratio (PAPR), which requires a high linearity of amplifiers. It has a large Out-

of-Band (OOB) radiation caused by the square pulse shaping filter. Also, the use of Cyclic 

Prefix (CP) in each OFDM symbol decreases both data rate and spectral efficiency of the signal 

and poses a challenge for the low latency use case. Furthermore, with OFDM, it is challenging 

to support applications in massive connection due to the strict synchronization. 

To overcome these limitations, several waveforms based on OFDM modulation are proposed 

for 5G and beyond air interface technology, such as Filter Bank Multicarrier (FBMC) [7], 

Universal Filtered Multicarrier (UFMC) [8] and Generalized Frequency Division Multiplexing 

(GFDM) [9]. On the other hand, the basic idea behind C-RAN technology is to aggregate the 

Base Band Units (BBUs) at the central location known as BBU hotel which is placed away 

from the Remote Radio Head (RRH) as shown in Fig.1.  

The principal advantages of C-RAN are: 

 Cost-effective: to meet the eMBB constraints, many cell towers need to be deployed, which 

makes the management operation more complicated. Furthermore, in the traditional radio 

access network, each BBU and RRH requires its cooling system. Fortunately, with the emerging 

of C-RAN configuration, the base station installation is simplified and the air-conditioner 

system can be abandoned at the antenna site, which can reduce the operational expenditures 

(OPEX) and capital expenditures (CAPEX) [10]. To give an idea, six sites based on C-RAN 

technology can reduce the equipment costs by 9%, 30% of construction costs and around 76% 

of operation and maintenance tasks. [11]. 

 Low latency: URLLC scenario can be achieved with C-RAN technology. Indeed, the BBUs 

aggregation at the same location reduces the time of information exchange between them [12]. 

The two components of C-RAN architecture (i.e. BBUs and RRHs) are connected utilizing 

Fronthaul and Backhaul segments based on the optical link. 

Fig.1 Centralized RAN scheme with Fronthaul segment [13] 

 
 

In optical communications, OFDM has been extensively addressed [14] either in coherent 

detection or in Intensity Modulation Direct Detection (IM-DD) systems. In literature, much 

work on the potential of optical OFDM-based for 5G networks and beyond has been carried 

out, but most of them have considered either Mach-Zehnder interferometer [15] or ideal 

intensity modulator [16].  But, some areas still uninvestigated, in particular, the cost-effective, 

compact size and low power consumption of the Distributed FeedBack laser (DFB) [17].  

Our objective here is to contribute to low-cost and lower-power consumption 5G networks and 

beyond based on   C-RAN architecture. 

Though, in Directly Modulated Lasers (DMLs), the output signal is commonly accompanied 

by a series of relaxation oscillations generated by the abrupt change of the current density [18]. 

This chirp leads to a spectral broadening of the signal and when coupled with the fiber 

dispersion, the intermixing interferences among subcarriers occur and degrade the system 

performance.  

To face these non-linear effects, we propose an electrical compensation technique based on 

Volterra series [19]. 
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For the first time, we investigate the performance of the dual-polarized 16-QAM OFDM-based 

modulation in directly modulated DFB-laser based on IM-DD architecture using the Volterra 

equalizer. 

The rest of this paper is organized as follows: Section 2 gives a brief overview of the proposed 

5G waveforms and beyond. Section 3 describes the transmission model link. Simulation results 

are discussed in section 4. Section 5 focuses on waveforms computational complexity and 

finally, some conclusions are drawn in Section 6. 
 

2. 5G Waveforms and Beyond  

The OFDM waveform adopts a rectangular pulse shape for the analysis and synthesis filters 

even for practical cases where the channel is not flat. It is translated into bad frequency 

localization (i.e. poor energy concentration) with high OOB emission, which poses a big 

challenge for asynchronous communications. Hence some modifications need to be introduced 

in the filtering stage to improve these weaknesses and design new waveforms. In this section, 

we briefly describe the FBMC, UFMC and GFDM modulations. 
 

2.1.  Filter Bank Multicarrier (FBMC)  

Filter Bank Multicarrier (FBMC), proposed for the first time by Saltezbeg [20], is an evolution 

of OFDM. The main idea is to substitute the rectangular pulse shaping filter with a well-

designed filter with good time-frequency localization and low spectral leakage. The filtering 

process is applied per subcarrier. The PHYDYAS filter [21] is widely used in the literature and 

its realization is based on the frequency sampling technique [22], which consists of determining 

the frequency coefficients that comply with the Nyquist criteria and build from these 

coefficients the frequency response by interpolation. The impulse response is given by applying 

IFFT. The determination of the frequency coefficients depends on the overlapping factor K = L 

/M, where L is the number of coefficients of the impulse response of the filter and M is the 

number of subcarriers.  

The frequency response of PHYDYAS filter with M subcarrier is given by [23]: 
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where Ck is the frequency coefficients of the filter. For K=4, the frequency domain coefficients 

are: 

C0=1,   C±1=0.97196,    C±2=
√2

2
 ,   C±3=0.235147 

 

For long filter length (i.e. increase K), FBMC becomes more robust against multipath fading 

(i.e. fiber dispersion in optical communication). Thus, the cyclic prefix can be discarded. 

Unlike OFDM, the orthogonality must be ensured only for neighboring subcarriers and to fulfill 

this constraint, Offset-QAM (O-QAM) is used, where the orthogonality is achieved only in the 

real domain (i.e. real or imaginary part), this modulation scheme is known as FBMC-OQAM. 

In addition, the output signals after the O-QAM process is either real or imaginary valued [24]. 

In [23], the authors have proposed a low complexity implementation for FBMC by combining 

a PolyPhase Network (PPN) with IFFT/FFT, wherein the filter coefficient of length L=K×M 

can be decomposed into M interleaved sequence of K coefficients. FBMC is an attractive 

modulation scheme for cognitive radio systems compared to the conventional OFDM due to its 

high spectral efficiency [25]. Moreover,  one of the interesting finding in  [26],  is the 
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coexistence between five intra-bands carrier-aggregated based on FBMC signals and three 

intra-bands carrier-aggregated LTE-A signals with high capacity. Fig.2 illustrates the block 

diagram of the transmission system.  
 
 

 

 

 

  

 

 

 

 

 

 
 

 

 

Fig.2 Block diagram of FBMC-OQAM with PPN transceiver  
 

2.2. Universal Filtered Multicarrier (UFMC)  

The system structure for UFMC is shown in Fig. 3. In this technique, the total available 

bandwidth is split into several sub-bands. Each sub-band is filtered by the Dolph-Chebyshev 

window of length L, which is typically equal to the cyclic length of the traditional OFDM. 

Hence, the UFMC adopted a short filter duration compared to FBMC (i.e. a multiple of 

overlapping factor K) and considered as the best choice for IoT communications with short 

bursts transmission [27]. 

Because of the linear convolution between M-point IFFT and Finite Impulse Response (FIR) 

filter with length L, the UFMC symbol has the length of M + L - 1. Thus, zeros are padded to 

apply 2M-point FFT. The magnitude of the frequency response function for the Dolph- 

Chebyshev can be expressed as [28]: 
 

|H(jω)| =

)(1

1

22

c

NC





                     

(2)  

In (2), ε is a parameter that controls the amplitude of the oscillations, ωc is the 3db cut-off 

frequency and CN is the Nth order of Chebyshev polynomial. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Block diagram of UFMC transceiver [27] 
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2.3.  Generalized Frequency Division Multiplexing  (GFDM)  

Generalized Frequency Division Multiplexing was primarily suggested by G. Fettweis et al. 

[9]. In GFDM, a block of M×T symbols is transmitted over M subcarriers and T timeslots. 

Unlike FBMC and UFMC as well, GFDM uses circular convolution between data symbols and 

the transmit filter by mean of a technique called tail-biting to circumvent the filter spreading 

[29]. In other words, the CP length is reduced, leading to high spectral efficiency. Also, CP is 

appended after T timeslots rather than a CP per symbol in OFDM (i.e. one timeslot).     To deal 

with different scenarios, GFDM shows high flexibility. For example, the low latency 

requirement can be fulfilled by reducing the number of timeslots T and for T=1, the traditional 

OFDM is obtained. In this case, the number of subcarriers M must be increased, leading to high 

spectral bandwidth. Also, for narrow bandwidth signal and low PAPR, we can decrease the 

number of subcarriers M at the cost of raising the latency. Some trade-offs between frequency 

resource allocation and latency have to be made. 

GFDM is considered as a non-orthogonal waveform, where the Raised Cosine (RC) or Root 

Raised Cosine (RRC) filters are used with a roll-off factor α, ranged from 0 to 1 which describes 

how much the adjacent subcarriers overlap in the frequency domain. 

The frequency response of the RRC filter can be given as [30]: 
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where T is the number of timeslots. The truncated linear function linα(
f

T
) can be used to 

characterize the roll-off area in the frequency domain and defined as: 
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(4)  

Some techniques are used to recover the orthogonality between subcarriers caused by the 

prototype filter, namely, Serial Interference Cancellation (SIC) and double side SIC [31]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig.4 Block diagram of GFDM transceiver [32] 

 

3. Simulation Setup 

 

All the simulations and results are developed and obtained using MATLAB program. 
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As sketched in Fig.5, we employed the Two-Input Two-Output (TITO) model [14] to double 

the channel capacity of the system.  

 

(a) 

    
(b) (c) (d) (e) 

Fig. 5 (a) Block diagram of the system. (b) OFDM spectrum for the emitted signal (blue), received signal before 

Volterra (red) received signal after Volterra (green). GFDM, FBMC and UFMC spectrum are shown in (c), (d) and 

(e), respectively. CP: Cyclic Prefix, DAC: Digital to Analog Converter, PBC: Polarization Beam Combiner, SMF: 

Single-Mode Fiber, VOA: Variable Optical Attenuator, EDFA: Erbium-Doped Fiber Amplifier, PS: Polarization 

Splitter, PD: Photo-Detector, ADC: Analog to Digital Converter. 

 

The evolution of the two optical vectors, Ax and Ay, are modeled by Manakov equations which 

can be defined as [33]: 
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(6)  

 

where β2 the Group Velocity Dispersion (GVD) parameter, α is the fiber loss coefficient , γ is 

the Kerr nonlinear coefficient , z and t are spatial and temporal variables, respectively.           In 

order to numerically solve Eq.(9) and (10), the Asymmetric Split-Step Fourier Method      (A-

SSFM) is used. In this technique, the entire fiber length is divided into several sections of length 

h. For each section, the linear effects are computed in frequency domain over the first half    (i.e. 
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h/2) and   the nonlinear contributions are evaluated in time domain over the second half of the 

segment. 

In this section, a data rate of 25Gbps (i.e.2x12.5Gbps) signals are generated using the 

parameters summarized in Table I and II. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table I. System simulation parameters 

Waveform Parameter Value 

OFDM 

IFFT/FFT size  64/64  

Modulation 16-QAM 

Cyclic prefix length (%) 12.5 

Prototype filter Rectangular 

Data rate  (Gbps)  12.5 

FBMC  

IFFT/FFT size 64/64 

Modulation 16-OQAM  

Prototype filter PHYDYAS 

Overlapping factor 4 

Data rate (Gbps)  12.5 

UFMC  

IFFT/FFT size 64/128 

Sub-band Size 16 

# of Sub-bands 4 

Modulation 16-QAM 

Prototype filter Dolph-Chebyshev 

Filter length  9 

Sidelobe attenuation (dB) 40 

Data rate (Gbps)  12.5 

GFDM  

IFFT/FFT size 64/64 

Active Subcarriers / #of timeslots 32/7 

Modulation 16-QAM 

Cyclic prefix length (%) 12.5 

Prototype filter RRC (α= 0.1) 

Data rate  (Gbps)  12.5 

Table II. Optical link parameters 
 

Optical component Value 

DFB laser 

Bias current (mA) 35 

Peak-to-peak  current (mA) 15 

Wavelength (nm)  1550 

Single-mode fiber  

Chromatic dispersion (ps/km.nm) 17 

Group velocity dispersion (s2/m) -21.7x10-27 

PMD coefficient (ps/√km) 0.1 

Attenuation (dB/Km) 0.2 

Kerr coefficient (km-1 W-) 1.3 

Span length (Km) 25 

SMF core area (m2) 80x10-12 

PotoDiode (APD)  

Responsivity ( A/W) 0.9 

APD gain  20 

Bandwidth (GHZ) 80 

EDFA amplifier  



 

8 

 

 

 

It is worth noting that for FBMC, the overlapping factor K of PHYDYAS filter is set at its 

optimum value, 4 [34] and for GFDM modulation, only 32 subcarriers among 64 are used to 

carry out data in order to minimize the effects of the interference between subcarriers caused 

by the loss of orthogonality and the roll-off factor of 0.1 is considered to reduce the overlapping 

between adjacent filters. 

One of the main challenges for the optical IM-DD system is the rising of nonlinear effects 

generated by the interaction between laser chirp and fiber dispersion (i.e. Group Velocity 

Dispersion), which exhibit subcarrier-to-subcarrier intermixing interferences (SSII) after law 

square detection. SSII mitigation can be achieved by nonlinear filtering. Volterra-based 

nonlinear equalization is an attractive tool to compensate these impairments [35], [36]. 

The Volterra series expansion can be assimilated to a Taylor series with memory where the 

current output relies on previous inputs. The discrete-time input-output relation of full Volterra 

series can be defined as [37]: 
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where h0 is a constant  and hj(.)(j≠0) is the jth-order kernels of the Volterra model. 

In practical applications, the full Volterra filter cannot be implemented due to its infinite 

memory resulting in high computational complexity. Therefore, the higher orders are fallen 

down and the Third-Order Volterra (TOV) model is widely used which can be written as [38]: 
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where h0=0, h1[i1] and h3[i1i2i3] are the linear and cubic Volterra kernel, respectively and M 

denotes the filter memory length. 

Note that even-order kernels are neglected since the even order nonlinearities are absent in 

optical fiber and only odd-order terms are retained [39]. 

From Eq. (12), it can be seen that TOV equalizer is a combination of linear FIR filter and 

nonlinear series of third-order terms. 

The Recursive Least Squares (RLS) algorithm is employed to update the coefficients of the 

adaptive filter. Indeed, these coefficients are chosen so that the error function, which is the 

difference between the desired signal (i.e. reference signal) and the actual output of the filter, 

is minimized. The structure of the TOV filter with the memory of two (M=2) is illustrated in 

Fig.6, where ten coefficients are needed.  
 

Noise figure (dB) 5.5 

Gain (dB) 20 
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Fig.6. Implementation of third-order Volterra with M=2. 

 

4. Results and Discussions 
 

 

 

 

At first glance, we remark that the effects of the Polarization Mode Dispersion (PMD) on the 

two polarization components are negligible. This can be explained by the fact that the PMD 

increases with the square root of the transmission distance. In other words, the PMD plays a 

negligible role for short transmission link.  

Fig. 7 shows the Bit Error Rate (BER) as a function of received power for different waveforms 

using both linear (RLS) and nonlinear (TOV) equalizers. 

 
 

 
Fig.7. BER vs. received power for different waveforms using RLS (w/o line) and TOV (w/line) filters 

with 8 taps over 25 Km SMF 
 

 

As expected, the RLS filter was unable to properly recover the transmitted signal due to the 

nonlinear effects generated by the interaction between the DFB oscillation output and the 

chromatic dispersion of the fiber. Whereas, TOV filter with the same number of taps (i.e. 8 

taps) shows good performance in terms of BER for all the investigated waveforms. Fig.7 shows 

that the Forward Error Correction (FEC) limit, which corresponds to input BER           ~ 3.810-
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3 [40] for FBMC, UFMC, OFDM and GFDM are obtained at -30.5, -26, -16 and -14.9 dBm, 

respectively. Compared to traditional OFDM, FBMC-OQAM improves the sensitivity of the 

receiver by 14.5 dB and 10 dB for UFMC. While GFDM modulation experiences a penalty of 

1.1 dB. Indeed, these results can be explained based on two main parameters:        (i) filtering 

operation and (ii) orthogonality.  

As already mentioned, FBMC and GFDM subcarriers are filtered separately, UFMC 

subcarriers are filtered in groups while OFDM used window filter. In the frequency domain, 

FBMC has the lowest OOB leakage followed by UFMC, GFDM and then OFDM. Hence, 

FBMC experiences the smallest Inter-Carrier Interference (ICI), then UFMC and OFDM.  It 

should be noted that for GFDM modulation, despite using per subcarrier filtering, the OOB 

radiations are slightly higher than UFMC due to the abrupt variations of the signal value 

between GFDM blocks [41]. 

According to the first parameter, one may deduce that GFDM modulation reaches the FEC 

threshold at a received power between UFMC and OFDM modulation which is not the case, in 

this context, the second parameter comes into play.    

For the orthogonality constraint, all the modulation schemes satisfy this condition either in 

complex or real domain except for GFDM, where the orthogonality between subcarriers is 

broken. Hence, it undergoes more ICI compared to OFDM. 

The constellations diagrams of the 16-QAM dual-polarized signals are plotted in Fig.8. It is 

interesting to note that the FBMC waveform uses 2x4-PAM constellation (i.e. purely real or 

imaginary valued), which is equivalent to 16-QAM modulation. 

 

    
(a) (b) (c) (d) 

Fig.8. Constellation diagram for (a) FBMC-OQAM (b) UFMC (c) OFDM (d) GFDM at respectively -30.5,-

26,   -16 and -14.9 dBm 

  
 

The impact of deploying DFB laser in our system is investigated and compared to an ideal 

intensity modulator (without DFB) where the launched optical power is given by the square 

root of the total electrical current applied to the DFB laser. The Q factor parameter, used to 

measure the transmission link quality, is related to BER by [42]: 
 

 

 

 

where ercf(.)  is the complementary error function. 

As can be seen in Fig.9, the FBMC-OQAM signal is perfectly recovered at a received optical 

power of -30.5 dBm when an ideal modulator is employed. Indeed, to combat interference, 

FBMC modulation uses various techniques such as O-QAM modulation, long symbol duration 

and filtering process is performed for each subcarrier separately. The highest Q penalty (Qref ~ 

8.53 dB) of 4.14 dB occurs at -14.9 dBm for GFDM signals. The interplay between laser chirp 

and fiber dispersion degrades the signal quality in addition to the interference generated by the 

loss of orthogonality. UFMC and OFDM modulations have almost the same penalties in terms 

of Q factor, which are respectively 2.44 and 2.77 dB when TOV equalizer with 8 taps is used. 
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Fig.9. Q factor versus received power for different waveforms, including (solid line) and excluding       

(dashed line) DFB laser. 
 

The investigated waveforms are evaluated by measuring their Error Vector Magnitude (EVM) 

for different received optical powers. This performance indicator quantifies the difference 

between the reference symbols (i.e. red points in Fig.8) and the measured symbols. 

Mathematically, EVM can be expressed as follows [43]: 
 












M

i

reference

i

M

i

measured

i

reference

i

S
M

SS
M

EVM

1

2

1

2

1

1

(%)  (10)  

 

where M denotes the number of symbols in I-Q constellation. Fig.10. illustrates the EVM 

performance as a function of the received optical power for different waveforms approach. The 

emitted symbols are accurately detected as the received power increases and the 3GPP EVM 

limit of 12.5% [44] is achieved at -31.2, -27.1, -16.2 and -15.5 dBm for FBMC-OQAM, UFMC, 

OFDM and GFDM modulation, respectively. These different values of received optical powers 

are approximately conformed to the previous results. 

 

 
 

Fig.10 EVM performance versus received optical power for different waveforms 
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To ensure the feasibility of the implementation depicted in Fig.5, in terms of power budget, the 

amount of light available between optical source and detector is computed according to the 

parameters given in table III. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Our implementation requires 14 connectors to connect   DFBs, PBC, VOA, EDFA, PS and 

PDs, resulting a total attenuation of 14×0.5= 7 dB. Splicing process generates 14×0.7= 9.8 dB 

of attenuation, (1 splice per connector). The total loss of the fiber for the entire path is equal to 

5 dB, (0.2×25). Therefore, the total attenuation is equal to 27.8 dB, where the safety margin is 

taken into account. 

 Moreover, the required margin is given by the difference between the emitted power and the 

APD sensitivity, which is equal to 35 dB. Accordingly, a headroom of 33.2 dB is obtained when 

including the system margin of 6 dB and the EDFA gain.  

 Therefore, our architecture can be deployed without any performance degradation. Noting that 

the insertion loss of the PBC and the PS are neglected due to their low contributions.  

5. Computational complexity  
 

In this section, we compare all the investigated waveforms in terms of computational 

complexity at the transmitter side.  

The number of real multiplications of OFDM transmitter based on M-point FFT using a split-

radix algorithm is given by: 
 
 

 

 
 

 

 As shown in Fig.2, FBMC transmitter scheme involves three main blocks, namely, O-QAM 

pre-processing, IFFT and PPN. For O-QAM pre-processing, just a simple multiplication by a 

power of j (i.e. to maintain orthogonality between subcarriers), so it can be considered as 

multiplication free. The complexity of the second block (i.e. IFFT) is given in Eq. (15).  The 

resulting signals after the IFFT process are filtered in the time domain with a polyphase filter 

where the number of multiplications, C1, depends on the IFFT size (i.e. M), and the overlapping 

factor K. 

The filter bank is deducted from the prototype filter by performing the frequency shift where 

the numerical complexity is given in C2. Assuming that multiplication with the phase rotation 

is negligible, the resulting complexity of FBMC-OQAM with PPN can be expressed as: 
 

 

 

 

 

Table III. Power budget parameters 
 

Parameter Value 

Transmitter Power (dBm) 0 

Received  power (dBm) -35 

Connector loss (dB) 0.5 

Splice loss (dB) 0.7 

System margin (dB) 6 

Fiber loss (dB/Km) 0.2 

Amplifier gain (dB) 20 

FFT

Tx

OFDM CC 
 

 
  43)(log 2  MM
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)4)3)((log(2 212 CCMMCTX
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)224)3)((log(2 2 activeMMKMM   
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According to Fig.3, the UFMC transmitter has two main steps, namely, IFFT and filtering 

operation. For each sub-band, linear convolution is performed between IFFT outputs and the 

filter impulse response. Hence, the complexity implementation of the UFMC transmitter is 

obtained by summed up all the B sub-bands and given by: 
  
 

 

 
 

In Eq. (17), L denotes the filter length. 

 For GFDM, the output signal can be mathematically expressed as a multiplication between 

modulation matrix, A, of size KM × KM and the symbols vector of size KM × 1. In this way, 

the number of complex multiplications can be calculated as: 
 

 

 

   

According to Eq. (16), (17), (18), the computational complexity of FBMC-OQAM with PPN, 

UFMC and GFDM is much higher than OFDM. Indeed, the FBMC-OQAM approach increases 

with the overlapping factor K, whereas UFMC complexity is proportional to the number of sub-

band. In [45], the authors summarized the computational complexity of the proposed 5G and 

beyond waveforms where the UFMC approach has the highest complexity due to increased FFT 

size at the receiver followed by GFDM, FBMC and then OFDM. 

 

6. Conclusion  

 

In our paper, we assess for the first time the performance of 25 Gbps dual-polarized 5G 

waveforms and beyond in directly modulated DFB-laser over 25 Km of single-mode fiber using 

Volterra equalizer. Our simulation results show that FBMC-OQAM with PPN structure is the 

most resilient to subcarrier-to-subcarrier intermixing interferences with acceptable complexity.  

Adaptive Volterra equalizer is a prominent tool to deal with nonlinear impairments and it is 

able to show higher performance when increasing the memory depth. However, this 

enhancement comes at the cost of a more complex burden. Sparse-Volterra filter can be deferred 

for future works to reduce the arithmetic computations. 
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