1,342 research outputs found

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes

    Get PDF
    In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive Green-Naghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects and we show that this source term can be computed through the resolution of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are: (i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow water equations. The resulting numerical model is validated through several benchmarks involving nonlinear wave transformations and run-up over complex topographies

    Finite volume schemes for dispersive wave propagation and runup

    Get PDF
    Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.Comment: 41 pafes, 20 figures. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    Finite volume methods for unidirectional dispersive wave models

    Get PDF
    We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular we consider a KdV-BBM type equation. Explicit and IMEX Runge-Kutta type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves and their various interactions.Comment: 25 pages, 12 figures, 51 references. Other authors papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh

    Finite volume methods for unidirectional dispersive wave model

    Get PDF
    We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular, we consider a KdV–BBM-type equation. Explicit and implicit–explicit Runge–Kutta-type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants’ conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves, and their various interaction

    Development and Optimization of Non-Hydrostatic Models for Water Waves and Fluid-Vegetation Interaction

    Get PDF
    The primary objective of this study is twofold: 1) to develop an efficient and accurate non-hydrostatic wave model for fully dispersive highly nonlinear waves, and 2) to investigate the interaction between waves and submerged flexible vegetation using a fully coupled wave-vegetation model. This research consists of three parts. Firstly, an analytical dispersion relationship is derived for waves simulated by models utilizing Keller-box scheme and central differencing for vertical discretization. The phase speed can be expressed as a rational polynomial function of the dimensionless water depth, khkh, and the layer distribution in water column becomes an optimizable parameter in this function. For a given tolerance dispersion error, the range of khkh is extended and the layer thicknesses are optimally selected. The derived theoretical dispersion relationship is tested with linear and nonlinear standing waves generated by an Euler model. The optimization method is applicable to other non-hydrostatic models for water waves. Secondly, an efficient and accurate approach is developed to solve Euler equations for fully dispersive and highly nonlinear water waves. Discontinuous Galerkin, finite difference, and spectral element formulations are used for horizontal discretization, vertical discretization, and the Poisson equation, respectively. The Keller-box scheme is adopted for its capability of resolving frequency dispersion accurately with low vertical resolution (two or three layers). A three-stage optimal Strong Stability-Preserving Runge-Kutta (SSP-RK) scheme is employed for time integration. Thirdly, a fully coupled wave-vegetation model for simulating the interaction between water waves and submerged flexible plants is presented. The complete governing equation for vegetation motion is solved with a high-order finite element method and an implicit time differencing scheme. The vegetation model is fully coupled with a wave model to explore the relationship between displacement of water particle and plant stem, as well as the effect of vegetation flexibility on wave attenuation. This vegetation deformation model can be coupled with other wave models to simulate wave-vegetation interactions
    corecore