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Abstract

We extend the framework of the finite volume method to dispersive
unidirectional water wave propagation in one space dimension. In partic-
ular we consider a KdV-BBM type equation. Explicit and IMEX Runge-
Kutta type methods are used for time discretizations. The fully discrete
schemes are validated by direct comparisons to analytic solutions. Invari-
ants conservation properties are also studied. Main applications include
important nonlinear phenomena such as dispersive shock wave formation,
solitary waves and their various interactions.

1 Introduction

Water wave modeling is a complicated process and usually leads to models
which are hard to analyze mathematically as well as to solve numerically. Un-
der certain simplifying assumptions approximate models are obtained, e.g. the
KdV equation [1], the BBM equation [2] and Boussinesq systems [3, 4, 5]. All
these models assume the wave to be weakly nonlinear and weakly dispersive,
propagating mainly in one space direction. These approximate models con-
sider mainly unidirectional or bidirectional wave propagation on flat or complex
bathymetries.
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In this paper we study the application of some finite volume schemes to a
scalar nonlinear dispersive partial differential equation modeling unidirectional
wave propagation. Specifically, we consider the KdV-BBM equation in its gen-
eral form:

ut + αux + β uux − γ uxxt + δ uxxx = 0, (1)

for x ∈ R, t > 0, where α, β, γ, δ are positive real numbers, [2]. The finite volume
method is well known for its accuracy, efficiency, robustness and excellent local
conservative properties. Most often this method is employed to approximate
solutions to hyperbolic conservation laws. The system of Nonlinear Shallow
Water Equations (NSWE) is a classical example of the successful application of
modern finite volume schemes to water wave problems.

A wide range of numerical methods have been employed to compute ap-
proximate solutions to dispersive wave equations of KdV-BBM type : finite
difference schemes [6, 7], finite element methods [8, 9, 10] and spectral meth-
ods [11, 12, 13, 14]. Recently discontinuous Galerkin schemes have also been
employed to dispersive wave equations [15, 16, 17], (the list is far from being
exhaustive). However, the application of finite volume or hybrid FV/FD meth-
ods remain most infrequent for this type of problems. To our knowledge, only
a few recent works are in this direction [18, 19, 20, 21, 22, 23].

In order to apply the finite volume method to the KdV-BBM equation (1),
we rewrite it in a conservative form, including a nontrivial evolution operator,
an advective and a dispersive flux functions. In the finite volume literature
there exist several ways to approximate these fluxes. For the advective part we
test three different numerical fluxes each one representing a particular family of
finite volume method:

• average flux (m-scheme),

• central flux, (KT-scheme) as a representative of central schemes, [24, 25],

• characteristic flux (CF-scheme), as a representative of upwind schemes
and linearized Riemann solvers, [26, 27].

The dispersive term is discretized using simply the average flux, while high
order approximations are used for the BBM term (γuxxt). The central flux and
the characteristic flux are widely used in the case of conservation laws. On
the other hand the average flux, known to be unstable for conservation laws,
performs equally well.

The evaluation of the numerical flux functions require approximate values of
the solution at the cell interfaces. The order of the approximation determines
the space accuracy of the underlying finite volume scheme. We consider first
order, taking simply piecewise constant approximations, as well as high order
schemes. The high order accuracy is achieved through application of various
reconstruction techniques such as TVD [28], UNO [29] and WENO [30].

The time discretization of (1) is based on Runge-Kutta methods. The sta-
bility of the resulting system of ode’s depends on the interplay between the
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BBM term (γ uxxt) and the KdV type dispersive term (δ uxxx). An explicit dis-
cretization of the ode system is sufficient when these terms are of the same order.
Thus, Strong Stability Preserving Runge-Kutta (SSP-RK) methods, which pre-
serve the TVD property of the finite volume scheme, [31, 32] are used for the
explicit discretization.

However, when γ � δ the resulting semidiscrete system of ode’s is highly stiff
and therefore implicit methods with strong stability characteristics are prefer-
able. To balance the high computational cost of fully implicit methods and
stability considerations we rely on Implicit-Explicit Runge-Kutta (IMEX) meth-
ods, [33]. Indeed IMEX RK methods turned out to be well suited for the time
discretization of the KdV-BBM equation (1) exhibiting excellent stability be-
havior.

The validated numerical method is applied to study the KdV-BBM equation
(1) in a systematic way through a series of numerical experiments. In particular,
we focus on the following issues:

• accuracy of the finite volume method for solitary wave propagation and
invariants conservation

• dispersive shock formation (we underline that the finite element as well as
spectral methods break down for this experiment while the finite volume
method provides robust and accurate results)

• interactions of solitary waves (overtaking collisions)

The paper is organized as follows. In Section 2 the governing equation (1) is
presented briefly along with its basic properties. In Section 3 the finite volume
discretization as well as fully discrete schemes are presented in details. In Sec-
tion 4 we validate the discretization procedure by comparisons with analytical
solution. Several important test cases are also presented.

2 Dispersive water wave model equation

We present briefly the mathematical model under consideration and some of
its basic properties. The KdV-BBM equation takes the following general form:

ut + αux + β uux − γ uxxt + δ uxxx = 0, (2)

where x ∈ R, t > 0, u denotes the free surface elevation above the still water
level u = 0 and α, β, γ, δ are positive real numbers. Equation (2) incorporates
nonlinear and dispersive effects and has been suggested as a model for surface
water waves in a uniform channel with flat bottom, cf. ([2, 34]).

When δ = 0, (2) reduces to the BBM equation [2], while taking γ = 0 leads
the celebrated KdV equation [1]. The KdV-BBM model (2) has been studied
thoroughly in the past and the Cauchy problem is known to be well-posed in
appropriate Sobolev spaces, at least locally in time. Also the well-posedness of
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some initial-boundary value problems, including the initial-periodic boundary
value problem, can be proved, cf. e.g. [2, 35, 34] and the references therein.

One may easily check that equation (2) admits exact solitary wave solutions
of the form:

u(x, t) = 3
cs − α
β

sech2

(
1

2

√
cs − α
γcs + δ

(x− cst)
)
, (3)

that travel rightwards with a given speed cs. We are going to exploit this solution
below in order to validate our discretization procedure and measure the order
of convergence of proposed numerical schemes. Further it is well known that
(2) possesses two quantities invariant under its evolution dynamics. Assuming
either the solution has compact support or u→ 0 x→ ±∞, one can easily check
that quantities

I1(t) =

∫
R
u(x, t) dx , I2(t) =

∫
R

(
u2(x, t) + γu2

x(x, t)
)
dx, (4)

are conserved in time, i.e. I1(t) = I1(0), I2(t) = I2(0),∀t > 0. The invariant I1
reflects the physical property of the mass conservation, while invariant I2 can
be assimilated to the generalized kinetic energy. Invariants conservation is a
fundamental property important not only for theoretical investigations but also
for numerics since it allows to validate numerical schemes and to quantify the
accuracy of the obtained results.

For more realistic situation one has to consider bidirectional models with
uniform or variable bathymetry cf. e.g. [5, 4]. For a systematic numerical study
of such Boussinesq type systems using finite volume methods analogous to those
presented in this paper, including the runup algorithm we refer to [36].

3 Finite volume discretization

We proceed to the discretization of (2) by a finite volume method. Our
motivation stems from the observation that the KdV-BBM equation can be
seen as a dispersive perturbation1 of the following inviscid Burgers equation:

ut +
(
αu+

β

2
u2
)
x

= 0.

Consequently, the proposed finite volume schemes are based on the correspond-
ing schemes for scalar conservation laws. A special treatment is introduced for
the discretization of dispersive terms.

Let T = {xi}, i ∈ Z be a partition of R into cells Ci = (xi− 1
2
, xi+ 1

2
), where

xi = (xi+ 1
2
+xi− 1

2
)/2 denotes the midpoint of the cell Ci. Let ∆xi = xi+ 1

2
−xi− 1

2

denote the length of the cell Ci and let ∆xi+ 1
2

= xi+1 − xi. Herein, we assume

1Since the wave is assumed to be weakly nonlinear and weakly dispersive.
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the partition T to be uniform, i.e. ∆xi = ∆xi+ 1
2

= ∆x, i ∈ Z. For a scalar

function w(x, t) let wi denotes its cell average on Ci:

wi(t) =
1

∆x

∫
Ci

w(x, t) dx.

We rewrite (2) in a conservative-like form:

(I − γ∂2
x)ut + [F (u)]x + [G(uxx)]x = 0, (5)

where the advective flux is F (u) = αu+ β
2 u

2 and the dispersive flux is G(v) =
δv. We underline that F is a convex flux function. A simple integration of (5)
over a cell Ci yields:

d

dt

[
ui(t)−

γ

∆x

(
ux(xi+ 1

2
, t)− ux(xi− 1

2
, t)
)]

+
1

∆x

[
F (u(xi+ 1

2
, t))−F (u(xi− 1

2
, t))
]
+

1

∆x

[
G(uxx(xi+ 1

2
, t))−G(uxx(xi− 1

2
, t))
]

= 0,

(6)

where the values of the advective and dispersive fluxes on the cell interfaces
have to be properly defined.

3.1 Semidiscrete scheme

We proceed to the construction of the semidiscrete finite volume approxima-
tion. Let χCi

be the characteristic function of the cell Ci. We define a piecewise
constant function uh(x, t) =

∑
i∈Z Ui(t)χCi

(x), where Ui(t) are solutions of the
following system of ordinary differential equations:

d

dt

[
Ui −

γ

∆x

(
Ui+1 − 2Ui + Ui−1

∆x

)]
+

1

∆x

(
Fi+ 1

2
−Fi− 1

2

)
+

1

∆x

(
Gi+ 1

2
− Gi− 1

2

)
= 0,

(7)
with initial conditions defined as a projection onto the space of piecewise con-
stant functions on T :

Ui(0) =
1

∆x

∫
Ci

u(x, 0) dx, i ∈ Z.

In (7) F and G denote the advective and the (KdV-type) dispersive numeri-
cal fluxes respectively. More specifically, Fi+ 1

2
= F(UL

i+ 1
2

, UR
i+ 1

2

) and Gi+ 1
2

=

G(WL
i+ 1

2

,WR
i+ 1

2

) are approximations of F (u(xi+ 1
2
, t)) andG(uxx(xi+ 1

2
, t)) respec-

tively at cell interfaces. Values UL
i+ 1

2

, UR
i+ 1

2

are approximations to the point value

u(xi+ 1
2
, t) from cells Ci, Ci+1 respectively, while WL

i+ 1
2

and WR
i+ 1

2

are corre-

sponding approximations to the point value of the second derivative uxx(xi+ 1
2
, t).

All quantities UL
i+ 1

2

, UR
i+ 1

2

as well as WL
i+ 1

2

, WR
i+ 1

2

are computed by a reconstruc-

tion process described below (see Section 3.1.2).
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3.1.1 Advective and dispersive numerical fluxes

Over the last twenty years numerous numerical fluxes F have been proposed
to discretize advective operators [37, 38, 39, 40, 41]. We select three quite
different flux functions. Namely, we consider a simple average flux Fm, a central
type flux FKT , [25, 24] and a characteristic flux FCF ,[26, 42, 27] :

Fm(U, V ) = F

(
U + V

2

)
, (8)

FKT (U, V ) =
1

2
{[F (U) + F (V )]−A(U, V ) [V − U ]} , (9)

FCF (U, V ) =
1

2
{[F (U) + F (V )]−A(U, V ) [F (V )− F (U)]} . (10)

The average flux is perhaps the simplest one and is known to be uncondi-
tionally unstable for nonlinear conservation laws. However, this flux shows very
good performance for dispersive waves (see Section 4).

The central flux is of Lax-Friedrichs type and is a representative of the family
of central schemes. The operator A in the KT-scheme is related to characteristic
speeds of the flow and is given by this expression:

A(U, V ) = max [|F ′(U)|, |F ′(V )|] . (11)

The characteristic flux function is somehow similar to the Roe scheme [37]
and the operator A in this case is defined as:

A(U, V ) = sign

(
F ′
(U + V

2

))
= sign

(
α+ β

U + V

2

)
. (12)

For the dispersive numerical flux G we choose to work with the average flux
function (8):

G(W,R) = δ
W +R

2
, (13)

where W and R are standard central approximations of the second derivative
from each side. The numerical flux G can be evaluated either using simple cell
averages, denoted by Gm, or higher order approximation based on a reconstruc-
tion procedure, denoted by Glm.

3.1.2 Reconstruction process.

The values UL
i+ 1

2

, UR
i+ 1

2

are approximations to u(xi+ 1
2
, t) from cells Ci and

Ci+1 respectively. The simplest choice is to take the piecewise constant approx-
imation in each cell:

ULi+ 1
2

= Ui, URi+ 1
2

= Ui+1. (14)

The resulting semidiscrete finite volume scheme is formally first order accurate
in space. To achieve a higher order accuracy in space, we have to adopt more
elaborated reconstruction process. The main idea is to use the cell averages Ui
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to reconstruct more accurate approximation to the solution at cell interfaces
u(xi+ 1

2
, t). For this purpose we consider three different reconstruction methods:

the classical MUSCL type (TVD2) piecewise linear reconstruction [43, 44], the
UNO2 reconstruction [29] and WENO type reconstructions, [30].

• The classical TVD2 scheme uses a linear reconstruction :

ULi+ 1
2

= Ui +
1

2
φ(ri)(Ui+1 −Ui), URi+ 1

2
= Ui+1 −

1

2
φ(ri+1)(Ui+2 −Ui+1),

(15)

where ri = Ui−Ui−1

Ui+1−Ui
, and φ is an appropriate slope limiter function, [28].

There exist many possible choices of the slope limiter. Some of the usual
choices are

– MinMod (MM) limiter : φ(θ) = max(0,min(1, θ)),

– VanLeer (VL) limiter : φ(θ) = θ+|θ|
1+|θ| ,

– Monotonized Central (MC) limiter : φ(θ) = max(0,min((1+θ)/2, 2, 2θ)),

– Van Albada (VA) limiter : φ(θ) = θ+θ2

1+θ2 .

The last three limiters have been shown to produce sharper resolution
of discontinuities, and in our case less dissipative numerical results. The
TVD2 reconstruction is formally second order accurate except at local
extrema where it reduces to the first order. Reconstructions considered
below were proposed to remove this shortcoming.

• The UNO2, like the TVD2, is also a linear reconstruction process which
is second order accurate even at local extrema. The values UL

i+ 1
2

, UR
i+ 1

2

are defined as

ULi+ 1
2

= Ui +
1

2
Si, URi+ 1

2
= Ui+1 −

1

2
Si+1, (16)

where

Si = m(S+
i , S

−
i ), S±i = di± 1

2
U ∓ 1

2
Di± 1

2
U,

di+ 1
2
U = Ui+1 − Ui, Di+ 1

2
U = m(DiU,Di+1U),

DiU = Ui+1 − 2Ui + Ui−1, m(x, y) =
1

2
(sign(x) + sign(y)) min(|x|, |y|)

The UNO2 reconstruction is formally second accurate even at local ex-
trema.

• We also consider WENO type reconstructions [30, 45]. Namely, we imple-
ment the 3rd and 5th order accurate WENO methods, hereafter referred
to as WENO3 and WENO5 respectively. For the sake of clarity, we present
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here only WENO3 scheme. First of all we compute the 3rd order recon-
structed values:

U
(0)

i+ 1
2

=
1

2
(Ui + Ui+1), U

(1)

i+ 1
2

=
1

2
(−Ui−1 + 3Ui),

U
(0)

i− 1
2

=
1

2
(3Ui − Ui+1), U

(1)

i− 1
2

=
1

2
(Ui−1 + Ui).

Then, we define the smoothness indicators:

β0 = (Ui+1 − Ui)2, β1 = (Ui − Ui−1)2,

and constants d0 = 2
3 , d1 = 1

3 , d̃0 = d1, d̃1 = d0. The weights are defined
as:

ω0 =
α0

α0 + α1
, ω1 =

α0

α0 + α1
, ω̃0 =

α̃0

α̃0 + α̃1
, ω̃1 =

α̃1

α̃0 + α̃1
,

where αi = di
ε+βi

, α̃i = d̃i
ε+βi

and ε is a small, positive number (in our

computations we set ε = 10−15).

Finally, the reconstructed values are given by formulas:

ULi+ 1
2

=

1∑
r=0

ωrU
(r)

i+ 1
2

, URi− 1
2

=

1∑
r=0

ω̃rU
(r)

i− 1
2

. (17)

Remark 1 The elliptic operator approximation in (7) is only second order ac-
curate. In the case where a high order WENO reconstruction is used, we need
to increase also the elliptic solver accuracy. For example, the following semidis-
crete scheme:

d

dt

[
Ui−1 + 10Ui + Ui+1

12
− γUi+1 − 2Ui + Ui−1

∆x2

]
+
Hi−1 + 10Hi +Hi+1

12
= 0

(18)
where Hi = 1

∆x (Fi+ 1
2
−Fi− 1

2
) + 1

∆x (Gi+ 1
2
−Gi− 1

2
) is a fourth order approxima-

tion. Thus in the WENO3 case a global third order accuracy is observed, while
for WENO5 interpolation, we profit only locally by the 5th order accuracy of the
reconstruction, cf. Section 4.1.

Remark 2 In computation of the dispersive flux we distinguish between the
simple averaging of cell centered values in Gm and of Glm, where higher order
reconstructions of the second order derivatives are used.

3.2 Fully discrete schemes

We consider now fully discrete schemes for the ode system (7). The time
discretization is based on Runge-Kutta type methods. Explicit schemes based
on TVD preserving RK-methods are presented. In certain cases where stiffness
becomes dominant, we use an implicit-explicit strategy based on IMEX type
RK-methods.
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3.2.1 Explicit schemes.

The initial value problem (7) can be discretized by various methods. When
the parameter γ is of the same order as δ the system of ode’s appeared to be non-
stiff and therefore can be integrated numerically by any explicit time-stepping
method. We use a special class of Runge-Kutta methods that preserve the TVD
property of the finite volume scheme, [31, 32, 46].

Let ∆t be the temporal stepsize and let tn+1 = tn + ∆t, n ≥ 0 be discrete
time levels, then (7) is an initial value problem of the form

TU′ = L(U), (19)

where U = {Ui}, i ∈ Z, T = I + [−γ, 2γ,−γ]/∆x2 is a tridiagonal matrix and
L is a nonlinear operator incorporating the contribution of the numerical fluxes
F , G. Assuming at time tn, Un is known then Un+1 is defined by

Un+1 = Un − ∆t

∆x

s∑
j=1

bjT
−1L(Un,j),

Un,j = Un − ∆t

∆x

s−1∑
`=1

aj`T
−1L(Un,`),

(20)

where the set of constants A = (aj`), b = (b1, . . . , bs) define a s−stage Runge-
Kutta method. The following tableau are examples of explicit TVD RK-methods
which are of 2nd and 3rd order respectively

0 0 0
1 0 1
1
2

1
2

0 0 0 0
1 0 0 1
1
4

1
4 0 1

2
1
6

1
6

2
3

(21)

In our computations we mainly use the 3-stage third order method.

3.2.2 Implicit-Explicit schemes.

As the parameter γ decreases to zero the semidiscretization of the KdV-
BBM equation leads to a stiff system of ode’s. To solve efficiently this system
we apply an IMEX type RK-method, [33]. The linear dispersive terms are
treated in an implicit way while the rest of the terms are treated explicitly.
Numerical evidence shows that IMEX methods exhibit excellent stability and
handle stiffness in an efficient and robust way even in the limiting case γ = 0.

We consider an s-stage Diagonally Implicit Runge-Kutta (DIRK) method,
properly chosen, that is given by the tableau

A τ
b

=

a11 0 · · · 0 τ1
a21 a22 · · · 0 τ2
...

...
. . .

...
...

as1 as2 · · · ass τs
b1 b2 · · · bs

, (22)
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and an s+ 1 explicit Runge-Kutta method

Â τ̂

b̂
=

0 0 · · · 0 0 0
â11 0 · · · 0 0 τ̂1
â21 â22 · · · 0 0 τ̂2
...

...
. . .

...
...

...
âs1 âs2 · · · âss 0 τ̂s
b̂1 b̂2 · · · b̂s 0

. (23)

We rewrite system (19) in the form

TU′ = F(U) + DU, (24)

where D is the five-diagonal matrix δ[−1/2, 1, 0,−1, 1/2]/∆x3 coming from the
discretization of the KdV term when we use the numerical flux function Gm.
Then the fully discrete scheme can be written in the form

(T + ∆taiiD)U(i) = TUn −∆t

i∑
j=1

âijF(U(j))−∆t

i−1∑
j=1

aijDU(j), i = 1, · · · , s,

(25)

TUn+1 = TUn −∆t

s∑
j=1

b̂jF(U(j))−∆t

s∑
j=1

bjDU(j). (26)

We employ four IMEX RK-methods of different number of stages, orders of
accuracy and stability properties. In particular we consider the following pairs,
[33]

• A two stage third order DIRK method and a corresponding three stage,
third order accurate ERK method with γ = (3 +

√
3)/6. The resulting

IMEX method is third order accurate.

γ 0 γ
1− 2γ γ 1− γ

1
2

1
2

,

0 0 0 0
γ 0 0 γ

1− γ 2(1− γ) 0 1− γ
0 1

2
1
2

, (27)

• A two stage second order DIRK method which is stiffly accurate, with
γ = (2 −

√
2)/2. The corresponding ERK is a three stage second order

accurate method with δ = −2
√

2/3. The resulting IMEX combination is
second order accurate.

γ 0 γ
1− γ γ 1
1− γ γ

,

0 0 0 0
γ 0 0 γ
δ 1− δ 0 1
0 1− γ γ

, (28)
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Method ∆t/∆x ≤
(27) 1/4
(28) 1/5
(29) 1
(30) 1

Table 1: Stability of IMEX for the KdV equation (α = β = δ = 1, γ = 0)

• A three stage third order DIRK stiffly accurate method with larger dis-
sipative region than (28). The corresponding ERK is a three stage third
order method. The resulting IMEX pair is third order accurate.

0.4358665215 0 0 0.4358665215
0.2820667392 0.4358665215 0 0.7179332608
1.208496649 −0.644363171 0.4358665215 1
1.208496649 −0.644363171 0.4358665215

,

0 0 0 0 0
0.4358665215 0 0 0 0.4358665215
0.3212788860 0.3966543747 0 0 0.7179332608
−0.105858296 0.5529291479 0.5529291479 0 1

0 1.208496649 −0.644363171 0.4358665215

,

(29)

• A four stage, L-stable DIRK method with rational coefficients. The cor-
responding ERK is a five stage third order method. The resulting IMEX
method is third order.

1
2 0 0 0 1

2
1
6

1
2 0 0 2

3
− 1

2
1
2

1
2 0 1

2
3
2 − 3

2
1
2

1
2 1

3
2 − 3

2
1
2

1
2

,

0 0 0 0 0 0
1
2 0 0 0 0 1

2
11
18

1
18 0 0 0 2

3
5
6 − 5

6
1
2 0 0 1

2
1
4

7
4

3
4 − 7

4 0 1
1
4

7
4

3
4 − 7

4 0

. (30)

We tested these IMEX methods in the case of the KdV equation with α = β =
δ = 1, γ = 0. In Table 1, we summarize the constraints for the timestep ∆t,
purely in term of ∆x, to obtain a stable solution. IMEX methods (29) and (30)
exhibit excellent stability behavior.

4 Numerical results

In this section we present a series of numerical results aiming to show the
performance and robustness of discretization procedures described above. There
are many possible combinations of numerical fluxes, types of reconstruction and
slope limiter functions. We begin by examining the accuracy of the methods
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by measuring the convergence rates in Section 4.1 and the preservation of the
invariants in Section 4.2. The ability of the schemes to capture a solitary wave
solution is demonstrated in Section 4.3. Solitary wave collisions are studied in
Section 4.4. Finally, a dispersive shock wave formation is investigated in Section
4.5.

Remark 3 The solution of the linear system involved in (19) and (25) is ob-
tained by a variation of Gauss elimination for tridiagonal systems with compu-
tational complexity O(d), d−being the dimension of the system.

4.1 Rates of convergences, accuracy test

We consider an initial value problem for (2) with periodic boundary condi-
tions in [−100, 100]. We take for simplicity α = β = γ = δ = 1 and consider a
solitary wave solution of the form (3) with cs = 1.1. We take a uniform mesh
h = ∆x = 200/N and compute the solution up to T = 100 using the three stage
third order explicit SSP-RK method (21) with time step ∆t = T/M . The errors
are measured using the discrete scaled norms E2

h and E∞h , [16]

E2
h(k) = ‖Uk‖h/‖U0‖h, ‖Uk‖h =

(
N∑
i=1

∆x|Uki |2
)1/2

,

E∞h (k) = ‖Uk‖h,∞/‖U0‖h,∞, ‖Uk‖h,∞ = max
i=1,...,N

|Uki |,

where Uk = {Uki }Ni=1 denotes the solution of the fully-discrete scheme (20) at
the time tk = k∆t. The numerical rate of convergence is defined by

Rate =
log (Eh1

/Eh2
)

log (h1/h2)
,

for two different mesh sizes h1, h2.
We perform several tests using the TVD2, UNO2 and WENO3 reconstruc-

tions. Numerical solutions are computed with CF, KT or average fluxes. Table
2 shows the rates of convergence for the CF-scheme along with UNO2 and
WENO3 reconstructions. We observe the theoretical 2nd order convergence for
the average, TVD2 (not reported) and UNO2 schemes. The WENO3 recon-
struction in conjunction with improved elliptic inversion scheme (18) gives us
the expected 3rd order convergence. Rates in Table 2 are obtained with the most
dissipative MinMod limiter function, while other limiters yield slightly sharper
results. Moreover, the convergence results for the average m−flux and the KT
numerical flux are qualitatively identical to those of CF. Analogous convergence
rates were obtained using the IMEX methods.

4.2 Invariants preservation

As already mentioned in Section 2, (2) admits at least two quantities (4)
which remain constant under the equation dynamics. We investigate the con-
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(a) UNO2 MinMod

∆x Rate(E2
h) Rate(E∞h )

0.5 2.000 2.015
0.25 2.001 2.014
0.125 2.001 2.012
0.0625 2.001 2.010
0.03125 2.001 2.008

(b) WENO3

∆x Rate(E2
h) Rate(E∞h )

0.5 2.604 2.561
0.25 2.790 2.810
0.125 2.905 2.913
0.0625 2.974 2.981
0.03125 2.968 2.995

Table 2: Rates of convergence : CF-flux

servation of these quantities by computing their discrete counterparts:

Ih1 = ∆x
∑
i

Ui, Ih2 = ∆x
∑
i

(
U2
i + γ

[
Ui+1 − Ui

∆x

]2
)
. (31)

The observation of invariants during numerical computations (20) may also give
an idea on the overall discretization accuracy.

The initial value problem for (2) with periodic boundary conditions is con-
sidered. We set α = β = γ = δ = 1 and consider a solitary wave solution with
celerity cs = 1.5. We compute its evolution up to T = 200 using ∆x = 0.1 and
∆t = ∆x/2.

The first observation is that the mass of the solitary wave Ih1 = 13.41640786499
is preserved in all computations independently from the choice either of the nu-
merical flux, reconstruction method, or the slope limiter function.

The behavior of Ih2 is quite different. Figure 1 shows the evolution of the
solitary wave amplitude and of the invariant Ih2 . The numerical solution is
obtained using Fm, FCF and FKT numerical fluxes along with TVD2 and
UNO2 reconstructions. The limiter MinMod is used and the dispersive flux
is computed with Glm flux function. The behavior of CF and KT schemes is
almost identical. Perhaps, the CF-scheme is slightly less dissipative than the
KT-scheme. However, the m-scheme appears to be the least dissipative.

For both KT and CF fluxes, the TVD2 reconstruction preserves neither the
invariant Ih2 nor the amplitude of the solitary wave. In the same time UNO2
reconstruction shows excellent behavior. Despite its simplicity, the m-scheme,
using Fm and Gm, performs very well too in preserving Ih2 and the solitary wave
amplitude.

In Figure 2 we show the influence of the dispersive flux Gm, Glm choice. One
observes that Glm flux shows better behavior than the simpler Gm flux. A com-
parable performance is achieved with CF-scheme using WENO3 and WENO5
reconstructions.

Finally, in Figure 3 we show a comparison between the various slope limiter
functions (Minmod, Van Albada, Van Leer and MC) tested with CF-scheme.
MinMod limiter exhibits a small dissipative effect, while other limiters we tested
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Figure 1: Evolution of amplitude and Ih2 with Glm flux and Minmod limiter.
’O’: CF-TVD2, ’♦’: CF-UNO2, ’�’: KT-TVD2, ’×’: KT-UNO2, ’◦’: m-scheme

show comparable behavior. The choice of the time-stepping method do not
induce any difference.

4.3 Propagation of solitary waves

We continue the presentation of numerical results by the classical test-case of
a solitary wave propagation. This class of solutions (3) plays a very important
role in the nonlinear physics and any practical numerical scheme should be able
to compute with good accuracy this type of solutions. For simplicity, we will
set to unity all coefficients α = β = γ = δ = 1 in (2).

A large-amplitude solitary wave travels rightwards with the speed cs = 1.5.
Its propagation is computed up to T = 100 with discretization parameters
∆x = ∆t = 0.1 using KT and CF numerical fluxes and TVD2 reconstruction.
In both cases we use the Van Albada limiter. In Figure 4 we compare the
analytical solution with the numerical one. Figure 4(b) is a magnification of the
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Figure 2: Evolution of amplitude and Ih2 , UNO2 reconstruction with Minmod
limiter : ’O’: FCF −Glm, ’♦’: FCF −Gm, ’�’: FKT −Glm, ’×’: FKT −Gm, ’/’:
FCF -WENO3, ’.’: FCF -WENO5 ,’◦’: Fm − Gm. (Notice the scale difference
on the vertical axis with respect to Figure 1).
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struction : ’O’: Minmod, ’♦’: MC, ’�’: Van Albada, ’◦’: Van Leer. (Notice the
scale difference on the vertical axis with respect to Figure 1).
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solitary pulse showing that the solitary wave shape is perfectly retained. Also
we note that up to the graphical resolution, all curves are undistinguishable.
In order to observe the differences between these solutions we present in 4(c)
the error E` = log10 |uexact(x, 100)− U(x, 100)|. This shows that the difference
between the numerical and the exact solution is analogous in all the cases and
very small.

The behavior of the numerical solutions can be better understood by analyz-
ing the so-called effective equation, that is the p.d.e that the numerical scheme
satisfies up to the order of the method. Obtaining an effective equation is not
always feasible. In the case of the m-scheme for the KdV-BBM equation (2),
the numerical solution uh satisfies the following effective equation:

uh,t + αuh,x + βuhuh,x − γuh,xxt + δuh,xxx

+ ∆x2

(
α

6
uh,xxx +

β

6
uhuh,xxx +

β

4
uh,xuh,xx +

δ

4
uh,xxxx −

γ

12
uh,xxxxt

)
= 0.

(32)

On Figure 5 we illustrate some artifacts of the numerical discretization for the
pure BBM equation (δ = 0). In Figure 5(a) one can observe a small dispersive
tail coming mainly from nonlinear terms discretization. The amplitude of the
tail is related to the order of the method. Taking ∆x ten times smaller leads
the reduction of the amplitude by two orders of magnitude, as it can be ob-
served on Figure 5(b). The explanation of these phenomena is contained in the
straightforward analysis of the effective equation (32).

We underline that the smallest tail is produced by the m-scheme and the
largest by the KT-scheme. This shortcoming can be further reduced by UNO2
or WENO3 reconstruction procedures. We conclude that a detailed study of
solitary wave interactions would require a combination of a higher order method
with a finer grid resolution.

4.4 Solitary wave overtaking collisions

The solitary wave solutions (also known as solitons) of the celebrated KdV
equation (α = β = δ = 1, γ = 0) have a well-known property to interact
in an elastic way during an overtaking collision. In other words, the solitary
waves retain their initial shape after the interaction, cf. [47]. Contrary to the
KdV equation, the overtaking collision of two solitary waves of the BBM model
and in general of the KdV-BBM equation is not elastic. Interacting solitary
waves change in shape and also a small dispersive tail appears after the process.
However, a nonlinear phase shift can be still observed even in the KdV-BBM
equation.

Here we study the overtaking collision of two solitary waves of the KdV-
BBM equation with α = β = γ = δ = 1. Solitary waves are located initially at
X1 = −50 and X2 = 50 with speeds cs = 1.5 and cs = 1.1 respectively. At t = 0
we have two well separated pulses and the wave behind (left) propagates faster.
Space and time variables are discretized with ∆x = ∆t = 0.01 to capture this
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Figure 4: Comparison between the analytical and numerical solutions: . . . :
analytical solution, —: CF-TVD2, - -: KT-TVD2, -.-: m-scheme.
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process accurately. The solution is computed using the CF-scheme and three
types of reconstruction: TVD2 with Van Albada limiter, UNO2 reconstruction
with MinMod limiter and WENO3 method, and with the third order explicit
SSP-RK method.

The invariant Ih1 = 18.915498698 is conserved with the digits shown in all
cases. With the invariant Ih2 the situation is slightly different: UNO2 and
WENO3 schemes preserved the value Ih2 = 15.0633, while the more dissipative
TVD2 reconstruction yields Ih2 = 15.063.

Figure 6 shows the interaction process at several time instances in the left
column, while the right column shows the corresponding magnification of the
dispersive tail. Essentially no difference can be observed among various nu-
merical solutions even in the magnified region, up to the graphical resolution.
Additional snapshots aiming to illustrate the interaction process are shown on
Figure 7. We observe that the solitary waves propagate connected as a single
pulse with a single maximum for a small time interval contrary to bidirectional
models [36] and to Euler equations (cf. [48]).

Figure 8 shows the “elastic” collision of two solitons of the KdV equation
(α = β = δ = 1, γ = 0) up to t = 600. In this experiment we took ∆x =
∆t = 0.01 and 0.005 using IMEX method (29). Contrary to the analogous
collision in the case of the BBM equation, we do not observe any new dispersive
tails. Further magnification of the images show small artifacts of the order
O(10−6). The invariants are Ih1 = 12.280014566440 and Ih2 = 9.244 for all the
computations with ∆x = 0.01. When a finer grid is considered, ∆x = 0.005 we
do not observe any improvement in the conservation of the invariant Ih1 while Ih2
was 9.2442. Analogous conservation properties observed when we studied the
collision for the KdV-BBM equation with the IMEX method (29) we observed
that Ih1 = 18.915498698945 but no other improvement in the invariant Ih2 =
15.0633.

4.5 Dispersive shock formation

It was proven that smooth solutions to the KdV equation tend to become
highly oscillatory as the parameter δ tends to zero, cf. [49]. These oscillatory
solutions are sometimes referred to in the literature as dispersive shock waves.
In this section we study numerically this special class of solutions. Recently, a
discontinuous Galerkin method was employed to study the same problem [15]
in the classical setting of the KdV equation.

Namely we consider the KdV-BBM equation with α = β = 1, γ = 10−5

and δ = 0. A solitary wave solution (3) is taken as an initial condition with
parameters α = β = γ = 1, δ = 0 and cs = 1.3. We underline that this initial
condition is not an exact solution to the BBM equation under consideration,
since the coefficient γ is different. A fine grid with ∆x = 0.001 is required to
observe this phenomenon. We note that even much more accurate schemes [15]
require almost the same resolution. Figure 9 shows the formation of a dispersive
shock wave. The numerical solution is computed with four different methods:
the m-scheme and CF-scheme with TVD2, UNO2 and WENO5 reconstructions.

20



−300 −200 −100 0 100 200 300

0

0.5

1

1.5

2

2.5

x
 

 

CF−TVD2

CF−UNO2

CF−WENO3

(a) t = 0

−300 −200 −100 0 100 200 300

−6

−4

−2

0

2

4

6

x 10
−4

x
 

 

CF−TVD2

CF−UNO2

CF−WENO3

(b) t = 0 (magnification)

−300 −200 −100 0 100 200 300

0

0.5

1

1.5

2

2.5

x
 

 

CF−TVD2

CF−UNO2

CF−WENO3

(c) t = 200

−300 −200 −100 0 100 200 300

−6

−4

−2

0

2

4

6

x 10
−4

x
 

 

CF−TVD2

CF−UNO2

CF−WENO3

(d) t = 200 (magnification)

−300 −200 −100 0 100 200 300

0

0.5

1

1.5

2

2.5

x
 

 

CF−TVD2

CF−UNO2

CF−WENO3

(e) t = 350

−300 −200 −100 0 100 200 300

−6

−4

−2

0

2

4

6

x 10
−4

x
 

 

CF−TVD2

CF−UNO2

CF−WENO3

(f) t = 350 (magnification)

−300 −200 −100 0 100 200 300

0

0.5

1

1.5

2

2.5

x
 

 

CF−TVD2

CF−UNO2

CF−WENO3

(g) t = 600

−300 −200 −100 0 100 200 300

−6

−4

−2

0

2

4

6

x 10
−4

x
 

 

CF−TVD2

CF−UNO2

CF−WENO3

(h) t = 600 (magnification)

Figure 6: Inelastic overtaking collision of two solitary waves for the KdV-BBM
equation
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Figure 7: Inelastic overtaking collision of two solitary waves for the KdV-BBM
equation (detailed view)

The KT flux was also tested, producing almost identical to that of the CF-
scheme. In all the cases we took ∆t = ∆x/10 except in the case of the WENO5
reconstruction where ∆t = ∆x/2.

The invariant Ih1 = 7.493997530 conserving the digits shown during all sim-
ulations for all numerical schemes we tested. The behavior of Ih2 is considerably
different. Figure 10 (left) shows that from the time the dispersive shock was
formed, all numerical schemes, except the m-scheme, loose the conservation of
the invariant Ih2 . As for the m-scheme the Ih2 invariant was conserved to one
decimal digit, during the whole simulation, see Figure 10 (b).

On the other hand, when a solitary wave solution evolves for longer time
intervals, using for example the m-scheme, we observe that solitary-wave-like
structures are formed, cf. Figure 11, while retaining the conservation of the
invariant Ih2 up to one digit. Analogous behavior is observed for the KdV
equation where general initial conditions evolved into series of solitary waves,
cf. [47].

In Figure 12 we present the same experiment for the KdV equation (α =
β = 1, γ = 0, δ = 10−5) where the time integration is performed with the
IMEX method (29) up to T = 20 with discretization parameters ∆x = 0.001
and ∆t = ∆x/2. We observe that the invariant Ih2 is conserved with slightly,
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Figure 8: Elastic overtaking collision of two solitary waves computed with the
KdV equation
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Figure 9: Near the zero dispersion limit, BBM equation
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Figure 11: Near the zero dispersion limit
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Figure 12: Near the zero dispersion limit, KdV equation

27



less accuracy while the Ih1 = 6.572670686045. When we use the IMEX method
(29) and the m-scheme in the case of the BBM equation we observe that the
invariant Ih2 conserves 2 digits Ih2 = 4.49, while Ih1 = 7.493997530374 conserving
the digits shown. Thus we conclude that in this experiment (as also observed in
all previous ones) the use of the IMEX method might improve the conservation
of mass.

5 Conclusions

The main scope of the present article is to extend the framework of finite
volume methods to scalar unidirectional dispersive models. We chose the cele-
brated BBM-KdV equation (2) as an important representative model arising in
the water wave theory and having all main features of dispersive wave equations.

The BBM-KdV equation can be also viewed as a dispersive perturbation
of the inviscid Burgers equation. Consequently, our method relies on classical
finite volume schemes which discretize the advection operator. Then, a special
treatment was proposed for the KdV-dispersion term, while the BBM-dispersion
required an elliptic operator inversion per each time step, hence, providing a
physical regularization to numerical solutions. We propose and implement also
several methods to obtain high order accurate schemes.

The proposed discretization procedure is validated by comparisons with an
analytical solitary wave solution. The order of convergence is measured as well as
invariant preservation is studied extensively. The numerical method is applied to
several important test cases such as a solitary wave propagation and a dispersive
shock formation. We make also use of proposed higher order extensions to study
the overtaking solitary waves collision for the KdV-BBM equation.

The extension to more realistic bi-directional wave propagation models such
as Boussinesq type equations [4, 50, 51, 36].
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