72 research outputs found

    Autonomous Recovery Of Reconfigurable Logic Devices Using Priority Escalation Of Slack

    Get PDF
    Field Programmable Gate Array (FPGA) devices offer a suitable platform for survivable hardware architectures in mission-critical systems. In this dissertation, active dynamic redundancy-based fault-handling techniques are proposed which exploit the dynamic partial reconfiguration capability of SRAM-based FPGAs. Self-adaptation is realized by employing reconfiguration in detection, diagnosis, and recovery phases. To extend these concepts to semiconductor aging and process variation in the deep submicron era, resilient adaptable processing systems are sought to maintain quality and throughput requirements despite the vulnerabilities of the underlying computational devices. A new approach to autonomous fault-handling which addresses these goals is developed using only a uniplex hardware arrangement. It operates by observing a health metric to achieve Fault Demotion using Recon- figurable Slack (FaDReS). Here an autonomous fault isolation scheme is employed which neither requires test vectors nor suspends the computational throughput, but instead observes the value of a health metric based on runtime input. The deterministic flow of the fault isolation scheme guarantees success in a bounded number of reconfigurations of the FPGA fabric. FaDReS is then extended to the Priority Using Resource Escalation (PURE) online redundancy scheme which considers fault-isolation latency and throughput trade-offs under a dynamic spare arrangement. While deep-submicron designs introduce new challenges, use of adaptive techniques are seen to provide several promising avenues for improving resilience. The scheme developed is demonstrated by hardware design of various signal processing circuits and their implementation on a Xilinx Virtex-4 FPGA device. These include a Discrete Cosine Transform (DCT) core, Motion Estimation (ME) engine, Finite Impulse Response (FIR) Filter, Support Vector Machine (SVM), and Advanced Encryption Standard (AES) blocks in addition to MCNC benchmark circuits. A iii significant reduction in power consumption is achieved ranging from 83% for low motion-activity scenes to 12.5% for high motion activity video scenes in a novel ME engine configuration. For a typical benchmark video sequence, PURE is shown to maintain a PSNR baseline near 32dB. The diagnosability, reconfiguration latency, and resource overhead of each approach is analyzed. Compared to previous alternatives, PURE maintains a PSNR within a difference of 4.02dB to 6.67dB from the fault-free baseline by escalating healthy resources to higher-priority signal processing functions. The results indicate the benefits of priority-aware resiliency over conventional redundancy approaches in terms of fault-recovery, power consumption, and resource-area requirements. Together, these provide a broad range of strategies to achieve autonomous recovery of reconfigurable logic devices under a variety of constraints, operating conditions, and optimization criteria

    Goal-Oriented Mutation Testing with Focal Methods

    Full text link
    Mutation testing is the state-of-the-art technique for assessing the fault-detection capacity of a test suite. Unfortunately, mutation testing consumes enormous computing resources because it runs the whole test suite for each and every injected mutant. In this paper we explore fine-grained traceability links at method level (named focal methods), to reduce the execution time of mutation testing and to verify the quality of the test cases for each individual method, instead of the usually verified overall test suite quality. Validation of our approach on the open source Apache Ant project shows a speed-up of 573.5x for the mutants located in focal methods with a quality score of 80%.Comment: A-TEST 201

    Optimal Sensor Selection for Health Monitoring Systems

    Get PDF
    Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented

    Assessing the Effectiveness of Defect Prediction-based Test Suites at Localizing Faults

    Get PDF
    Debugging a software program constitutes a significant and laborious task for programmers, often consuming a substantial amount of time. The need to identify faulty lines of code further compounds this challenge, leading to decreased overall productivity. Consequently, the development of automated tools for fault detection becomes imperative to streamline the debugging process and enhance programmer productivity. In recent years, the field of automatic test generation has witnessed remarkable advancements, significantly improving the efficacy of automatic tests in detecting faults. The localization of faults can be further optimized through the utilization of such sophisticated tools. This dissertation aims to conduct an experimental study that assembles specialized automatic test generation tools designed to detect faults by estimating the likelihood of code being faulty. These tools will be compared against each other to discern their relative performance and effectiveness. Additionally, the study will comprehensively compare developer-generated tests with automatically generated tests to evaluate their respective aptitude for fault detection. Through this investigation, we seek to identify the most effective automated test generation tool while providing valuable insights into the relative merits of developer-generated and automatically generated tests for fault detection

    Design Disjunction for Resilient Reconfigurable Hardware

    Get PDF
    Contemporary reconfigurable hardware devices have the capability to achieve high performance, power efficiency, and adaptability required to meet a wide range of design goals. With scaling challenges facing current complementary metal oxide semiconductor (CMOS), new concepts and methodologies supporting efficient adaptation to handle reliability issues are becoming increasingly prominent. Reconfigurable hardware and their ability to realize self-organization features are expected to play a key role in designing future dependable hardware architectures. However, the exponential increase in density and complexity of current commercial SRAM-based field-programmable gate arrays (FPGAs) has escalated the overhead associated with dynamic runtime design adaptation. Traditionally, static modular redundancy techniques are considered to surmount this limitation; however, they can incur substantial overheads in both area and power requirements. To achieve a better trade-off among performance, area, power, and reliability, this research proposes design-time approaches that enable fine selection of redundancy level based on target reliability goals and autonomous adaptation to runtime demands. To achieve this goal, three studies were conducted: First, a graph and set theoretic approach, named Hypergraph-Cover Diversity (HCD), is introduced as a preemptive design technique to shift the dominant costs of resiliency to design-time. In particular, union-free hypergraphs are exploited to partition the reconfigurable resources pool into highly separable subsets of resources, each of which can be utilized by the same synthesized application netlist. The diverse implementations provide reconfiguration-based resilience throughout the system lifetime while avoiding the significant overheads associated with runtime placement and routing phases. Evaluation on a Motion-JPEG image compression core using a Xilinx 7-series-based FPGA hardware platform has demonstrated the potential of the proposed FT method to achieve 37.5% area saving and up to 66% reduction in power consumption compared to the frequently-used TMR scheme while providing superior fault tolerance. Second, Design Disjunction based on non-adaptive group testing is developed to realize a low-overhead fault tolerant system capable of handling self-testing and self-recovery using runtime partial reconfiguration. Reconfiguration is guided by resource grouping procedures which employ non-linear measurements given by the constructive property of f-disjunctness to extend runtime resilience to a large fault space and realize a favorable range of tradeoffs. Disjunct designs are created using the mosaic convergence algorithm developed such that at least one configuration in the library evades any occurrence of up to d resource faults, where d is lower-bounded by f. Experimental results for a set of MCNC and ISCAS benchmarks have demonstrated f-diagnosability at the individual slice level with average isolation resolution of 96.4% (94.4%) for f=1 (f=2) while incurring an average critical path delay impact of only 1.49% and area cost roughly comparable to conventional 2-MR approaches. Finally, the proposed Design Disjunction method is evaluated as a design-time method to improve timing yield in the presence of large random within-die (WID) process variations for application with a moderately high production capacity

    You Cannot Fix What You Cannot Find! An Investigation of Fault Localization Bias in Benchmarking Automated Program Repair Systems

    Get PDF
    Properly benchmarking Automated Program Repair (APR) systems should contribute to the development and adoption of the research outputs by practitioners. To that end, the research community must ensure that it reaches significant milestones by reliably comparing state-of-the-art tools for a better understanding of their strengths and weaknesses. In this work, we identify and investigate a practical bias caused by the fault localization (FL) step in a repair pipeline. We propose to highlight the different fault localization configurations used in the literature, and their impact on APR systems when applied to the Defects4J benchmark. Then, we explore the performance variations that can be achieved by `tweaking' the FL step. Eventually, we expect to create a new momentum for (1) full disclosure of APR experimental procedures with respect to FL, (2) realistic expectations of repairing bugs in Defects4J, as well as (3) reliable performance comparison among the state-of-the-art APR systems, and against the baseline performance results of our thoroughly assessed kPAR repair tool. Our main findings include: (a) only a subset of Defects4J bugs can be currently localized by commonly-used FL techniques; (b) current practice of comparing state-of-the-art APR systems (i.e., counting the number of fixed bugs) is potentially misleading due to the bias of FL configurations; and (c) APR authors do not properly qualify their performance achievement with respect to the different tuning parameters implemented in APR systems.Comment: Accepted by ICST 201

    Efficient Detection on Stochastic Faults in PLC Based Automated Assembly Systems With Novel Sensor Deployment and Diagnoser Design

    Get PDF
    In this dissertation, we proposed solutions on novel sensor deployment and diagnoser design to efficiently detect stochastic faults in PLC based automated systems First, a fuzzy quantitative graph based sensor deployment was called upon to model cause-effect relationship between faults and sensors. Analytic hierarchy process (AHP) was used to aggregate the heterogeneous properties between sensors and faults into single edge values in fuzzy graph, thus quantitatively determining the fault detectability. An appropriate multiple objective model was set up to minimize fault unobservability and cost while achieving required detectability performance. Lexicographical mixed integer linear programming and greedy search were respectively used to optimize the model, thus assigning the sensors to faults. Second, a diagnoser based on real time fuzzy Petri net (RTFPN) was proposed to detect faults in discrete manufacturing systems. It used the real time PN to model the manufacturing plant while using fuzzy PN to isolate the faults. It has the capability of handling uncertainties and including industry knowledge to diagnose faults. The proposed approach was implemented using Visual Basic, and tested as well as validated on a dual robot arm. Finally, the proposed sensor deployment approach and diagnoser were comprehensively evaluated based on design of experiment techniques. Two-stage statistical analysis including analysis of variance (ANOVA) and least significance difference (LSD) were conducted to evaluate the diagnosis performance including positive detection rate, false alarm, accuracy and detect delay. It illustrated the proposed approaches have better performance on those evaluation metrics. The major contributions of this research include the following aspects: (1) a novel fuzzy quantitative graph based sensor deployment approach handling sensor heterogeneity, and optimizing multiple objectives based on lexicographical integer linear programming and greedy algorithm, respectively. A case study on a five tank system showed that system detectability was improved from the approach of signed directed graph's 0.62 to the proposed approach's 0.70. The other case study on a dual robot arm also show improvement on system's detectability improved from the approach of signed directed graph's 0.61 to the proposed approach's 0.65. (2) A novel real time fuzzy Petri net diagnoser was used to remedy nonsynchronization and integrate useful but incomplete knowledge for diagnosis purpose. The third case study on a dual robot arm shows that the diagnoser can achieve a high detection accuracy of 93% and maximum detection delay of eight steps. (3) The comprehensive evaluation approach can be referenced by other diagnosis systems' design, optimization and evaluation

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    corecore