
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Assessing the Effectiveness of Defect
Prediction-based Test Suites at

Localizing Faults

Orlando Macedo

Mestrado em Engenharia de Software

Supervisor: Prof. José Campos

Second Supervisor: Prof. Rui Abreu

September 20, 2023

Assessing the Effectiveness of Defect Prediction-based
Test Suites at Localizing Faults

Orlando Macedo

Mestrado em Engenharia de Software

September 20, 2023

Abstract

Debugging a software program constitutes a significant and laborious task for programmers, often
consuming a substantial amount of time. The need to identify faulty lines of code further com-
pounds this challenge, leading to decreased overall productivity. Consequently, the development
of automated tools for fault localization becomes imperative to streamline the debugging process
and enhance programmer productivity.

In recent years, the field of automatic test generation has witnessed remarkable advancements,
significantly improving the efficacy of automatic tests in detecting faults. The localization of faults
can be further optimized through the utilization of such sophisticated tools.

This dissertation aims to conduct an experimental study that assembles specialized automatic
test generation tools designed to detect faults by estimating the likelihood of code being faulty.
These tools will be compared against each other to discern their relative performance and effec-
tiveness. Additionally, the study will comprehensively compare developer-generated tests with au-
tomatically generated tests to evaluate their respective aptitude for fault localization. Through this
investigation, we seek to identify the most effective automated test generation tool while providing
valuable insights into the relative merits of developer-generated and automatically generated tests
for fault localization.

i

Acknowledgements

I would like to thank my supervisors, Professor José Campos and Professor Rui Abreu, for their
guidance and support throughout the development of this thesis. I would also like to thank all the
teachers and mentors who were present during my academic journey, as well as my family and
friends for their support.

Orlando Macedo

ii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Problem . 2
1.3 Motivation . 2
1.4 Research Questions . 2
1.5 Contributions . 3
1.6 Reproducibility . 5

2 Background 6
2.1 Introduction . 6
2.2 Fault Detection . 6
2.3 Software FL Techniques . 7

2.3.1 Traditional FL Techniques . 7
2.3.2 Advanced FL Techniques . 8
2.3.3 Technique Comparison . 11

3 State of The Art 13
3.1 Related Work on Fault Detection . 13
3.2 Related Work on Fault Localization . 14

4 Empirical Study 17
4.1 Experimental Setup . 17
4.2 Metrics . 19

4.2.1 Test Generation . 19
4.2.2 Fault Detection . 19
4.2.3 Fault Localization . 20

4.3 Results . 21
4.3.1 Test Generation . 21
4.3.2 Fault Detection . 27
4.3.3 Fault Localization . 33

4.4 Result Evaluation . 38
4.5 Threats to Validity . 41

5 Conclusion 42
5.1 Future Work . 43

References 44

iii

CONTENTS iv

A 47
A.1 Plots for fault localization results without bug interception between tools. 47
A.2 Considered bugs for fault detection . 49

A.2.1 Vanilla EvoSuite . 49
A.2.2 PreMOSA . 50
A.2.3 EntBug . 51
A.2.4 DDU . 52
A.2.5 Ulysis . 53

A.3 Detected bugs . 54
A.3.1 Vanilla EvoSuite . 54
A.3.2 PreMOSA . 55
A.3.3 EntBug . 56
A.3.4 DDU . 57
A.3.5 Ulysis . 58

A.4 Considered bugs in Fault Localization . 59
A.4.1 Vanilla EvoSuite . 59
A.4.2 PreMOSA . 60
A.4.3 EntBug . 61
A.4.4 DDU . 62
A.4.5 Ulysis . 63

A.5 Interception of bugs between tools for FL . 64

List of Figures

3.1 Entbug Algorithm . 15

4.1 Study Architecture . 18
4.2 Broken Tests . 22

(a) Vanilla EvoSuite . 22
(b) EntBug . 22
(c) DDU . 22
(d) Ulysis . 22
(e) PreMOSA . 22

4.3 Coverage & Mutation Score . 25
(a) Vanilla EvoSuite . 25
(b) EntBug . 25
(c) DDU . 25
(d) Ulysis . 25
(e) PreMOSA . 25

4.4 Compiled Bugs . 29
(a) Vanilla EvoSuite . 29
(b) EntBug . 29
(c) DDU . 29
(d) Ulysis . 29
(e) PreMOSA . 29

4.5 Detected Bugs . 31
(a) Vanilla EvoSuite . 31
(b) EntBug . 31
(c) DDU . 31
(d) Ulysis . 31
(e) PreMOSA . 31

4.6 Located Bugs . 34
(a) Vanilla EvoSuite . 34
(b) EntBug . 34
(c) DDU . 34
(d) Ulysis . 34
(e) PreMOSA . 34

4.7 Kernel Density . 37
(a) Vanilla EvoSuite & DDU . 37
(b) EntBug & Ulysis . 37
(c) Developer & PreMOSA . 37

4.8 Fault Localization on Developer Test Suites . 40

v

LIST OF FIGURES vi

4.9 Venn diagram of Bugs Located on the First Position 40

A.1 All Located Bugs . 47
(a) PreMOSA . 47
(b) Developer . 47

A.2 . 48
(a) Vanilla EvoSuite . 48
(b) EntBug . 48
(c) DDU . 48
(d) Ulysis . 48

Abbreviations and Symbols

TG Test Generation
FD Fault Detection
FL Fault Localization
SFL Software Fault Localization
SBFL Spectrum-based Fault Localization
IDE Integrated Development Environment
DS Dynamic Slicing
SS Static Slicing

vii

Chapter 1

Introduction

Despite considerable progress in the domain of software testing technologies, there persist specific

areas where substantial improvement is warranted. One such domain is automatic software fault

localization, where promising technologies exist but are yet to achieve a commendable level of

maturity. As a result, they are not yet integrated into the routine tasks of the majority of software

developers.

There is empirical evidence that indicates a direct correlation between the quality of the test

stack and the efficiency with which it exercises the codebase, ultimately leading to improved re-

sults in automatic fault localization [8]. Consequently, the utilization of automatic test generation

tools is justified. Often, the task of conceptualizing and implementing tests is viewed with disfavor

by software developers. In some instances, tests are relegated to the end of a sprint and are fore-

gone altogether when the implementation consumes the entirety of the sprint, leaving no time for

test creation. This scenario unfolds more frequently than not, thereby underscoring the imperative

need to have at least automatically generated tests. These tests are particularly advantageous in

regression testing, as they generate tests that reflect the current scope of the system. Should the

scope unexpectedly alter, these tests would identify the change. Therefore, automatic tests serve

as a reliable source of truth and should be utilized when manual test generation is neglected.

Taking into account the aforementioned correlation between a high-quality test suite and ef-

fective fault localization, coupled with the knowledge that automatic test generation can produce

superior test suites, an examination is warranted to ascertain whether a fault-focused test suite

enhances the accuracy and efficiency of fault localization. This hypothesis forms the crux of the

thesis presented in this paper, which aims to determine whether test suites automatically generated

with an emphasis on fault detection also aid in fault localization.

In the forthcoming sections, a succinct examination of fault detection and fault localization will

be proffered, primarily aiming to illuminate the temporal progression of these domains. This paper

will delve deeper into a summarization of pertinent tools imperative for executing the empirical

investigation. Additionally, we will catalog a series of similar studies that will act as a foundational

base for our won.

Ultimately, we will expound on the procedural aspects of the empirical investigation, including

1

Introduction 2

the employed metrics and an in-depth analysis of the procured results. These actions serve not only

to maintain the academic rigor inherent in the research process, but also to ensure the accessibility

and reproducibility of the results presented in this scholarly discourse.

1.1 Context

Empirical scholarly research has demonstrated significant advancements in the realm of fault de-

tection, specifically for tools concentrated on predictive analyses. These tools are poised to opti-

mize the identification of bug residences within the code. Essentially, these mechanisms proac-

tively anticipate probable locations of bugs and rigorously scrutinize those segments of the code-

base.

Prior investigations [20] [27] [8] have yielded substantial positive outcomes for fault detection.

However, a question remains as to the applicability and effectiveness of these tools in the context

of fault localization.

1.2 Problem

In light of the ongoing advancements in technologies and their consequential achievements in the

domain of fault detection, it is a logical progression to question the applicability of these tools to

the area of fault localization. A notable dearth of empirical evidence in this domain serves as a

substantial barrier to the assimilation of these tools within the software developers’ toolkit. This

lack of data highlights the necessity for further rigorous academic investigation in this sector to

ascertain the potential utility of these fault detection tools in fault localization processes.

1.3 Motivation

The continued enhancement of fault localization tools is a necessity, given their potential to aug-

ment software developers’ productivity. Building upon the accepted premise that a robust test

stack results in superior troubleshooting outcomes, it is logical that this dissertation is proposed.

It is of paramount importance within the academic community and beyond to ascertain whether

the generation of optimized tests specifically designed to exercise faulty code could aid in the

reduction of effort expended to locate faults within the codebase. The implications of such findings

could have far-reaching effects on software development practices and therefore warrant in-depth

investigation.

1.4 Research Questions

The research questions of this dissertation are related to the applicability of defect prediction-based

test suites in fault localization. Following that line of thought, the following research questions

1.5 Contributions 3

RQ1: To what extent does the employment of defect prediction-based test suites assist in fault

localization?

RQ2: Does the utilization of defect prediction-based test suites enhance fault localization

compared to developer-based test suites?

RQ3: Is there a correlation between coverage and mutation score with enhanced fault local-

ization?

RQ4: Is there a correlation between fault detection and fault localization?

RQ5: Does the volume of tests generated correlate with the effectiveness in fault detection and

fault localization?

RQ6: Do the approaches complement each other? Should we use them together?

1.5 Contributions

The development of this dissertation resulted in other contributions besides what is presented in

this document. In particular, the approaches used in the study were updated to the latest version

of EvoSuite. As all used in one way or another EvoSuite at its core, the updates were applied to

make the comparison between them fairer. This work can be found in the following repository:

https://github.com/Orlando-pt/evosuite_defect-prediction-techniques.

An approach used in the study, PreMOSA, needed to have a list of all the methods in a class to

execute properly. In that regard, a tool was developed for that purpose. It can be found in the

following repository: https://bitbucket.org/rjust/fault-localization-data/

src/d4j-2.0/utils/buggymethods/.

Still, in the context of PreMOSA, the approach needs to know which methods have

bugs, so that the tests generated are focused on those methods. The study used the bugs

from the Defects4J repository [32], there was already information on where the bugs re-

side for some of the projects. However, the latest version is fairly recent at the time

of writing, so some bugs were not yet included. To that end, the remaining bugs were

systematically added to the repository. This work can be found in the following reposi-

tory: https://bitbucket.org/rjust/fault-localization-data/src/d4j-2.0/

analysis/pipeline-scripts/buggy-lines/.

Every methodology employed in the research has undergone prior evaluation, albeit within

varied contexts. A unifying theme among them is the enhancement in the number of bugs con-

sidered for evaluation in the present study, compared to previous ones. The Defects4J repository

now encompasses a greater volume of real-world bugs, enriching the assessment and fostering the

emergence of novel perspectives. The ensuing table encapsulates the individual contributions of

each method within the purview of this dissertation.

Approach Previous Contributions Current Contributions

https://github.com/Orlando-pt/evosuite_defect-prediction-techniques
https://bitbucket.org/rjust/fault-localization-data/src/d4j-2.0/utils/buggymethods/
https://bitbucket.org/rjust/fault-localization-data/src/d4j-2.0/utils/buggymethods/
https://bitbucket.org/rjust/fault-localization-data/src/d4j-2.0/analysis/pipeline-scripts/buggy-lines/
https://bitbucket.org/rjust/fault-localization-data/src/d4j-2.0/analysis/pipeline-scripts/buggy-lines/

Introduction 4

PreMOSA

• Evaluated on 420 bugs from De-

fects4J, referent to 6 real-world

projects

• Evaluated with defect predic-

tions of 75% accuracy

• Evaluated with defect predic-

tions of 100% accuracy

• Results gathered for FD

+ Evaluated on 764 bugs from De-

fects4J used for FD, referent to

17 real-world projects

+ Evaluated on 421 bugs from De-

fects4J used for FL, referent to

16 real-world projects

• Evaluated with defect predic-

tions of 100% accuracy

+ Results gathered both for FD and

FL

EntBug

• Evaluated on 7 simple bugs, ref-

erent to 6 real-world projects.

• Results gathered for FL (diag-

nosability) and cost

+ Evaluated on 761 bugs from De-

fects4J used for FD, referent to

17 real-world projects

+ Evaluated on 420 bugs from De-

fects4J used for FL, referent to

17 real-world projects

+ Results gathered both for FD and

FL

DDU

• Evaluated on 1050 bugs gener-

ated artificially

• Evaluated on 186 bugs from De-

fects4J, referent to 5 real-world

projects

• Results gathered for FD and FL

(diagnosability)

+ Evaluated on 779 bugs from De-

fects4J used for FD, referent to

17 real-world projects

+ Evaluated on 310 bugs from De-

fects4J used for FL, referent to

16 real-world projects

+ Results gathered both for FD and

FL

1.6 Reproducibility 5

Ulysis

• Evaluated on 111 bugs from De-

fects4J, referent to 5 real-world

projects

• Results gathered for FD and FL

(coverage, diagnosability, cost)

+ Evaluated on 777 bugs from De-

fects4J used for FD, referent to

17 real-world projects

+ Evaluated on 158 bugs from De-

fects4J used for FL, referent to

16 real-world projects

+ Results gathered both for FD and

FL

1.6 Reproducibility

The study presented in this dissertation was developed with the utmost care to ensure

that the results are reproducible. To that end, all the approaches used in the study are

open-source and publicly available at: https://github.com/Orlando-pt/evosuite_

defect-prediction-techniques. Each methodology is present in a different branch, and

vanilla EvoSuite is present in the master branch.

The scripts used to run the study are also publicly available: https://github.com/jose/

fault-detection-and-localization-of-defect-prediction-based-tests

To run one of the approaches, PreMOSA, it is necessary to have a list of all the

methods that are buggy. The files with the buggy methods are also publicly avail-

able at: https://bitbucket.org/rjust/fault-localization-data/src/d4j-2.

0/analysis/pipeline-scripts/buggy-methods/.

https://github.com/Orlando-pt/evosuite_defect-prediction-techniques
https://github.com/Orlando-pt/evosuite_defect-prediction-techniques
https://github.com/jose/fault-detection-and-localization-of-defect-prediction-based-tests
https://github.com/jose/fault-detection-and-localization-of-defect-prediction-based-tests
https://bitbucket.org/rjust/fault-localization-data/src/d4j-2.0/analysis/pipeline-scripts/buggy-methods/
https://bitbucket.org/rjust/fault-localization-data/src/d4j-2.0/analysis/pipeline-scripts/buggy-methods/

Chapter 2

Background

2.1 Introduction

As mentioned earlier, creating tests can be a very tedious and error-prone task. Thus, in recent

years there has been a constant evolution of technologies to help code developers automatically

generate tests. These tests can be used as a single test base but also as a complement to the tests

created by the developers themselves.

Another big headache for programmers is related to debugging applications. It is known that

most of the time spent by a programmer is in debugging the code written by himself or someone

else. Some errors in certain situations are difficult to anticipate, so fault localization technologies

are very important because they can locate in the code the statement or line that causes a given

failure. This type of technology has great potential to significantly increase developer productivity.

It is therefore important to understand whether the generation of tests focused on detecting

defects/failures in the source code also helps when it is time to locate them.

2.2 Fault Detection

Fault detection refers to the process of identifying defects or errors in software systems. Typically

involves a combination of manual and automated approaches. Manual techniques may include

code reviews, static analysis, and manual testing, where software engineers carefully inspect the

code and execute test cases to identify potential faults. Automated techniques, on the other hand,

utilize tools and frameworks specifically designed for fault detection, such as unit testing frame-

works, code analyzers, and debugging tools.

Automated testing plays a crucial role in fault detection by executing predefined test cases and

comparing the actual software behavior against expected results. This helps identify deviations,

failures, or unexpected behaviors that indicate the presence of faults.

Manual creation of unit tests is a time-consuming and error-prone process. That is why several

tools can be used to automatically generate unit tests for existing software systems or new ones.

6

2.3 Software FL Techniques 7

These tools analyze the code, identify different execution paths, boundary conditions, and inputs,

and generate test cases to cover those scenarios.

By automatically generating test suites, developers can save time and effort in writing individ-

ual test cases. It helps increase test coverage by exploring a broader range of code paths, thereby

increasing the likelihood of detecting faults or unexpected behaviors.

Ultimately, the combination of unit testing and automatic generation of test suites contributes

to more comprehensive testing, improved code quality, and faster development cycles by automat-

ing the process of test case creation and ensuring thorough coverage of code paths.

One of the most effective test generation tools is called EvoSuite. It is a tool that automatically

generates unit tests for Java programs. Uses a genetic algorithm to evolve test cases that cover

different execution paths and inputs. It is possible to specify the desired coverage criteria, such

as statement coverage or branch coverage, and the tool will generate test cases that satisfy those

criteria.

2.3 Software FL Techniques

Software Fault Localization (SFL) is a technique that allows one to find the location of faults in a

program. From Fault Localization (FL) techniques, a programmer can easily check why a program

is not working. Traditionally, if a program isn’t working then the programmer has to spend time on

debugging. Manual debugging is a task that can take a lot of time and not be effective in finding

the bug. It is for this reason that FL tools are increasingly gaining popularity. Such tools have

great potential to increase the productivity of software developers, as well as substantially reduce

the likelihood of bugs being delivered.

In the next sections it is identified what are the main FL techniques and which are the main

tools that implement these techniques.

2.3.1 Traditional FL Techniques

Since the creation of the first programming languages, there has been always a need to help pro-

grammers to debug their code. Traditional techniques to help with fault location go from logging,

assertions, breakpoints or even profiling. In the next sections, we briefly explore what these tech-

niques consist of.

Program Logging consists of simple syntactic methods, such as the use of prints in a program,

it is possible to track the location of faults or at least have a better idea of where they might be

located. In 1999 Jermaine Edwards wrote an article in which he proposed to patent and standardize

how logs should be written [15]. After several decades these standards continue to be used daily

by programmers around the world to help debug applications.

Certain conditions only manifest themselves at runtime. With assertions, it is possible to

check whether in a given point of code some condition is met or not. If the condition is not met,

the program signals that the condition at point x was not met and so the programmer has a better

idea of where the fault might be located.

Background 8

This FL technique goes back to the beginnings of programming languages, in 1992 David

Rosenblum detailed how to use this kind of technique to make a program more resilient and reli-

able [33].

Breakpoints are another very useful technique that allows programmers to pause the execution

of a program and check its current characteristics. By using BreakPoints it is possible to specify

areas of the code where we want to pause the execution of the program, after pausing we can check

which are the current values of the variables that make up the program, and we can also modify

them to check program-specific behavior.

Even nowadays this is a very used technique to debug programs. Intellij, one of the most

popular IDE [29] for languages related to Java has its own debugger with functionalities that allow

to specify lines to stop the execution, analyze the current state of the program, run the program

line by line and more [21]. Visual Studio, another very popular IDE belonging to Microsoft also

has its own debugger with identical functionalities [25].

2.3.2 Advanced FL Techniques

The systems have evolved in complexity and size over the years, which has led to the techniques

listed above decreasing their effectiveness. The area of SFL has evolved precisely because of this,

there is a need to locate faults in larger and more complex systems.

In this section it is explored 6 FL categories, namely Slice-based, Spectrum-based, Program

State-based, Machine Learning-based, Data Mining-based, Model-based and a brief comparison

between them.

2.3.2.1 Slice-Based Techniques

This set of techniques seeks to abstract a program by reducing it by removing irrelevant slices in

such a way that the resulting program continues to function as before concerning certain specifica-

tions. Since 1979, when Weiser first enunciated Static slicing, there has been a constant evolution

of these techniques. Evolution brought techniques such as dynamic slicing and its subdivisions,

namely Relevant Slicing, Conditioned Slicing and more [37].

2.3.2.2 Dynamic Slicing

Dynamic Slicing first proposed in 1990 by Korel and Laski [24] suggests that a dynamic slice it

is a part of the program that affects a given variable in a particular execution of the program. As

only one execution is taken into account, dynamic slicing can significantly reduce the slice size

compared to static slicing.

Next, some of the dynamic slicing evolutions that have been proposed over the years are ex-

plored:

• Relevant Slicing proposed by Agrawal et al. in 1993, argues that a relevant slice con-

tains not only the statement that influences the variable but also the executed statements

2.3 Software FL Techniques 9

that did not affect the output, but which could have an effect if they had been evaluated

differently [3].

• Conditioned Slicing proposed by Canfora et al. in 1998 stipulates that a conditioned slice

is a subset of program statements that preserves the behavior of the original taking into

account a slicing criterion for a given set of execution paths [9].

• Union Slicing was proposed by Hall in 1995 and introduces the notion of simultaneous

dynamic program slicing to extract executable program subsets. Works by applying any

kind of dynamic slicing algorithm that meets certain criteria (one of them stipulates the

obligation to create executable slices) and incrementally it creates the simultaneous slice

using an iterative algorithm for all test cases [17].

• Hybrid Slicing uses the advantages of static slicing and dynamic slicing to mitigate its dis-

advantages. Static slicing suffers from the problem of imprecision and dynamic slicing is

specific to only one execution. Gupta et al. [16] proposed to improve Dynamic Slicing(DS)

by incorporating dynamic information into Static Slicing(SS). This hybrid technique ex-

ploits the information that is available during the debugging phase to calculate the static

slices.

In addition to these so-called traditional techniques, variations have emerged with premises

that are also daring. Among them stand out Amorphous Slicing first explored by Harman et

al. [18], Denotation Slicing introduced by P. A. Hauser [19], and finally, Parametric program

slicing published by J. Field et al. in 1995 [14].

2.3.2.3 Program Spectrum-Based Techniques

It is a type of technique whose main ramifications are inspired by studies in probabilistic and

statistical-based causality models.

The program spectra details the execution information of a program from certain points of

view, such as execution information for conditional branches or loop-free intra-procedural paths.

In the year 1987 Collofello et al. [12] suggested that such a kind of spectra could be used to locate

faults.

When execution fails, this information can be used to identify the code that caused the fail-

ure. To that end, these techniques use code coverage metrics or executable statement hit spec-

trum(ESHS) that indicate which blocks were exercised during program execution. This informa-

tion can later be used to narrow the search surface, decreasing the effort to find the fault.

As stated by Wong et al. [35], the oldest studies referring to this area only used failed tests

to create the program spectra. But this way of seeing things proved to be very ineffective, so

posthumous studies use information from both failed and successful tests.

Renieris and Reiss [303] proposed an ESHS technique called nearest neighbor. This tech-

nique seeks to obtain information of a failed test and a successful test that is as similar as possible

Background 10

to the one that failed, so that it has the shorter distance. The bug is found in the differences be-

tween the two tests. If the bug is not located in the difference set then the program continues to run,

building the Program Dependence Graph and checking adjacent nodes unchecked on the graph

until all nodes in the graph have been examined.

Tarantula is an ESHS-based similarity coefficient-based technique that uses coverage and ex-

ecution results, both failed and successful tests, in order to compute the suspiciousness of each

statement [23]. This technique shows really good results, and despite being created in the yearly

2000’s it still reaches good results in fault localization. The main advantage is related to the sig-

nificant reduction of necessary computing power inherited from the algorithm itself.

Ochiai is another popular technique with some similarity to the nearest neighbor but with

mainly 2 differences. The first one is that Ochiai uses multiple test cases, contrasting with the

single test case from nearest neighbor. Also, Ochiai includes all successful test cases, on the other

hand, nearest neighbor only considered the closest to the failed ones [2].

Spectrum-based techniques have been particularly compared in the hope of finding the one

technique that solves all the needs. Despite some papers stating that one technique is better than

the other, the reality until now is that there is no technique that wins in every scenario. What is

clear is that some techniques are better than others in certain conditions, but lost when facing a

completely different situation. The creation of software is chaotic and doesn’t follow a specific

characteristic so that’s why it is impossible to state a clear winner [26].

2.3.2.4 Program State-Based Techniques

This technique uses the runtime state of the program to locate where the fault is. Through the

monitorization of variables and their values at a certain point in runtime, it is possible to get an

accurate prediction of where a bug might be.

Relative Debugging compares the internal state of a development version where was identi-

fied a bug with a version of the program that didn’t contain it [1]. On the opposite side, other

approaches modify the values of some variables to identify which one is causing the faulty execu-

tion.

2.3.2.5 Machine Learning-Based Techniques

Machine learning-based techniques refer to the use of various algorithms and statistical models to

analyze and learn from data in order to make predictions or decisions. In the context of FL, these

techniques can be used to automatically identify the source of errors or bugs in a software system.

This is typically done by analyzing program execution traces and comparing them to expected

behavior.

Some examples of machine learning-based techniques that can be used for FL include decision

trees, neural networks, and support vector machines. These techniques can improve the efficiency

and accuracy of FL compared to traditional ones.

2.3 Software FL Techniques 11

One example of a neural network implementation can be found in the technique presented by

Wong and Qi propose a technique based on back-propagation neural networks [36]. The BP neural

network is trained by collecting the coverage data of each test and the corresponding execution

result. With this, the network can learn what is the relationship between those tests and is able to

make predictions based on that.

2.3.2.6 Data Mining-Based Techniques

Data mining and Machine learning techniques are closely related and in some cases, used inter-

changeably, but they have some differences. Machine learning techniques typically involve the use

of a labeled dataset to train a model to make predictions or decisions, while data mining techniques

are used to uncover patterns and relationships in the data without the need for labeled data.

One of the main advantages of data mining-based techniques is that they can handle large and

complex datasets, which is often the case in software systems. For instance, in [10] is discussed a

combination of association rules and formal concept analysis that help in fault localization.

2.3.2.7 Model-Based Techniques

In this technique a model is generated directly from a program, which means that the model itself

can model bugs. In a perfect scenario, the model doesn’t contain any fault, so it can be applied in

other versions of the program, the difference in behaviors is used to find bugs. This technique has

an enormous disadvantage, it supposes that a correct model of each program is available [31].

2.3.3 Technique Comparison

The survey made by Wong et al. [35] shows that in more recent years the research community has

been focusing on slice and program spectrum-based techniques. On the opposite side, static or

dynamic slice-based techniques have been decreasing constantly their popularity.

The first reason might be that slice and program spectrum-based techniques can be applied to

a wider range of software systems than static and dynamic slicing. While static slicing is only

applicable to the source code, program slicing-based techniques are applied to the execution trace

of the program, and program spectrum-based techniques are applied to the program’s control flow

and data dependencies. This allows for a more comprehensive analysis of the system’s behavior

and increases the chances of identifying the root cause of a fault.

Second, slice and program spectrum-based techniques are more efficient and effective than

traditional slicing techniques. For example, program slicing-based techniques use dynamic slicing

which is based on running the program and obtaining a trace of the program execution, which

allows for a more accurate analysis of the program’s behavior. Program spectrum-based techniques

are able to identify faults by analyzing the program’s control flow and data dependencies, which

can be more effective than traditional slicing techniques that only focus on the code.

Background 12

Overall, slice and program spectrum-based techniques are more widely used in recent years

because they are more comprehensive, efficient, and effective than traditional slicing techniques

and are better suited to the complexity and scale of modern software systems.

Chapter 3

State of The Art

With this dissertation, we propose to study whether the approaches that currently generate tests

with a view to the detection of faults also helps when locating the fault itself. Previous studies of

Fault Detection (FD) and FL explored very interesting techniques and tools, comparing them and

taking their own conclusions.

In the next sections, we will explore some of the main studies related to fault detection.

3.1 Related Work on Fault Detection

In 2016 Shamshiri et al. [34] studied the effectiveness of 3 test generation tools checking the

ratio of detected failures to those not detected. The tools were Randoop [30], Agitar One 1 and

EvoSuite [13].

The procedure for generating the tests had 357 faults from the open database Defects4j [32]

with origin in 5 projects. 26 flaws of the JFreeChart Project 2, 133 of the Google Closure Com-

piler 3, 65 of Apache Commons Lang 4, 106 from Apache Commons Math [6] and 27 from Joda

Time [22].

In order to generate tests the study accounted for the randomness of both Randoop and Evo-

Suite by generating 10 test suites in 10 different executions. As for Agitar One, it was only done 1

run, since it is considered "fairly" deterministic.

Flaky tests and false positives are something that must be taken into account when generating

tests. Flaky tests are tests that are unstable and may be successful on some occasions and unsuc-

cessful on others. It is relatively frequent in tests involving comparisons of time, the system time is

constantly changing and may cause test failure at a given time. False positives are related to tests

that fail without having to do with the faults that actually exist. This type of situation happens

mostly when the tools break the principles of object-oriented programming, for instance, calling

private methods.

1http://www.agitar.com/solutions/products/automated_junit_generation.html
2https://github.com/jfree/jfreechart
3https://github.com/google/closure-compiler
4https://github.com/apache/commons-lang

13

State of The Art 14

After filtrating the tests that were flaky and the tests that were false positives, it was possible

to calculate the faults detected with the tools by comparing existing faults with the reason why the

generated tests failed. If a test fails and the reason why it failed was related to a fault that actually

exists, then the fault was considered covered.

PreMOSA is an approach that was also tested in terms of its effectiveness in detecting faults.

It was created by Perera et al. [27] and is a methodology that uses the information of defect

predictors to guide the search for faults.

The defect predictors are used to predict the most likely locations of faults in the code. The

information from that is then fed to PreMOSA, which uses a genetic algorithm to generate tests

that will reveal those faults.

The whole point of this process is to focus the search on a predetermined set of components

that are more likely to contain faults. Because defect predictors also have a margin of error, in a

posterior phase the approach also exercises components that are labeled as not faulty.

The premise of PreMOSA is that there is no need to waste time and resources on components

that do not contain bugs. DynaMOSA is an alternative that uses coverage information to evolve

its tests, but every component has an equal probability of being faulty. Perera et al. [27] argue

that there should be a way to focus the search where it matters, mainly because metrics such as

coverage are proven to be misleading when it comes to finding faults.

3.2 Related Work on Fault Localization

Campos, Abreu et al. proposed a metric called Entbug in order to reduce the entropy of a di-

agnostic ranking and consequently, also reduce the number of candidates needed to inspect the

reason for a failure [8]. The prototyping of the technique was achieved through the use of entropy

to customize the genetic algorithm of EvoSuite.

EntBug is based on spectrum-based reasoning approach to multiple FL. This technique is an

approximation to FL based on the probability theory. The underlying strategy is based on Model-

Based Diagnosis, which uses logical reasoning to find faults. This approximation orders a set

of program components by the probability that each of them explains a failure. The results are

obtained in two distinct phases: candidate generation and candidate ranking.

For Candidate Generation it is necessary to understand the concept of Minimal Hitting Set

(MHS). This is a problem that starts by finding a hitting set that consists of finding a set of values

that intersects another family of sets with its own values. The minimal hitting set is a hitting set

that cannot be made smaller without losing this last property 5. As this is a problem that requires

great computational effort, a technique called STACCATO was applied that significantly reduces

the computational effort by computing only a relevant set of multiple-fault candidates [8].

As far as Candidate Ranking is concerned, Candidate Generation can generate a long list of

candidates. In this phase, it is verified the probability of a given component being the cause of the

failure. Afterward, those components are ordered having that probability as the ordering factor.

5https://github.com/VeraLiconaResearchGroup/Minimal-Hitting-Set-Algorithms/blob/master/README.md

3.2 Related Work on Fault Localization 15

EntBug is a technique that takes a test suite as input and produces additional tests for that test

suite, which after adding the necessary tests will translate into a decrease in the entropy of the

diagnosis.

As mentioned before, the objective of the technique is to reduce entropy, which can be trans-

lated into other words as information gain. The information gain that a new test case provides is

determined by the reduction of the most likely suspect components. This capability reduces the

diagnostic ranking entropy and consequently improves the diagnostic quality of spectrum-based

reasoning. With the calculated generation of these tests, the number of tests in the test suite bal-

ances the density of the coverage matrix.

Figure 3.1: Entbug Algorithm

The algorithm is depicted in the figure 3.1. At the beginning, it has as input a possible empty

test suite T, the search budget ∆t that you want to spend to generate each individual test, and

condition C evaluates to true when the process has to end. The output is an extension of T.

The density of T is calculated using a Density function. EvoSuite is then called with the fitness

function δ to generate a test case with the effort ∆t. EvoSuite returns the test case that maximizes

diagnostic information, which minimizes fitness function. If no tests are returned, the test case (tc)

is ignored. If tc improves the test suite, then a new fitness function is added to it. δ is created and

the value of d is updated. The steps described above are repeated until the condition C is fulfilled.

EntBug was tested using a vending machine program [7] and 6 more bugs were selected of

4 open-source projects [4] [6] [22] [5]. To solve the Oracle Problem it was used the version of

the program where the fault existed and the later version with the correction. The experiment was

repeated 10 times to account for the randomness of the results.

To check how the diagnosis improved over time, the genetic algorithm of EvoSuite was set to

run for 10 seconds for each trial and measured the diagnostic accuracy of the evolving test suite at

5-minute intervals.

More recently, the metric DDU was proposed by Perez, Abreu et al. [28] that aims to verify

which is the effectiveness of applying spectrum-based fault localization in tests generated from an

automatic tool.

State of The Art 16

The main objective was to increase the value of the tests created for troubleshooting, creating

specially optimized tests to not only detect failures but also serve as an effective help in the precise

location of faults in the system.

Traditionally used metrics focus on the coverage of the program itself. For instance, most use

branch/path coverage, modified/condition coverage and mutation coverage. These criteria do not

take into account the needs inherent in locating program failures.

To create a spectra that has practical and efficient diagnosability the study took into account 3

aspects. Firstly, it is necessary to ensure that the components are frequently involved in the tests

(density). Secondly, it is necessary to test the components in the most diverse possible combina-

tions (test diversity). Lastly, spectra with less ambiguity should be favored by providing a notion

of component distinguishability (uniqueness). DDU was designed to implement these 3 aspects.

To verify that the metric brought value to FL, an empirical study was carried out comparing

the metric with other frequently used metrics. The metric implementation is incorporated in the

test generation tool EvoSuite [13], already mentioned before. As the tool has an indeterministic

component in the generation of tests, 10 executions of each experiment were carried out. Lastly,

each run was limited to one run of 600 seconds.

The experiments were carried out in both a controlled environment and an uncontrolled one.

The controlled environment aims to sow faults that create spectrums that are somewhat predictable.

It used open-source code namely the Apache Commons-Codec [4], Apache Commons-Compress

projects [5], Apache Commons-Math [6] and JodaTime [22]. From these projects, some faulty

components were considered, when a test went through these components there was a 75% prob-

ability that the test failed. The uncontrolled scenarios used projects from database Defects4J [32]

but without any change in source code.

The tool Crowbar6 was used to apply spectrum-based techniques to create a ranked list of

diagnostic candidates for the observed failures. With the sorted list, it is possible to calculate the

diagnosability.

Chatterjee et al. [11] proposed an evolution of DDU, called Ulysis. It uses a concept of Mul-

tiverse Analysis that considers multiple hypothetical universes, each corresponding to a scenario

where one of the components is assumed faulty.

6https://github.com/TQRG/crowbar-maven-plugin

Chapter 4

Empirical Study

This chapter is devoted to a comprehensive presentation of the empirical study conducted. The pri-

mary objective of this study was to compare the approaches and techniques delineated in chapter 3.

Through this process, we succeeded in addressing the research questions outlined in chapter 1.4.

Additionally, this methodology facilitated the provision of a structured guide designed for prospec-

tive researchers seeking to replicate, validate, or extend this work. This chapter thus serves as a

bridge between our methodology and its practical implications within the broader field of study.

4.1 Experimental Setup

The empirical study was conducted utilizing the Defects4J database [32], a comprehensive col-

lection of faults derived from various Java projects. This database, renowned within the research

community, offers unique dual versions of each project - one version containing the bug and an-

other rectified version. This distinctive characteristic is particularly advantageous in assessing the

efficacy of the approaches subjected to testing.

However, it is pertinent to mention that not all bugs available in the database were included in

this study due to certain technical constraints associated with EvoSuite and GZoltar.

As demonstrated in Figure 4.1, each methodology employed in this research utilized the same

database and the same subset of bugs. Considering this fact, each methodology was executed 5
times to mitigate the uncertainties inherent to the non-deterministic characteristic of EvoSuite.

Each approach under evaluation can be considered a modification of EvoSuite, implying that the

element of randomness permeates each approach under examination. To maintain the fairness of

the study, an attempt was made to update all methodologies to the latest version of EvoSuite.

Another critical factor is the scope within which the methodologies were assessed.

EvoSuite allows the generation of tests for a specific class, package, or even the entire project.

In this study, the scope was narrowed to specific classes associated with the bug under investi-

gation. This decision was made to minimize the time required to generate the test suites and to

reduce the complexity of the generated test suites.

17

Empirical Study 18

Figure 4.1: Study Architecture

The output of EvoSuite and its variants is a test suite. In our case, each approach was executed

5 times, yielding 5 test suites for each bug. The tests were generated using the fixed version of the

bugs, implying that the test suites generated comprise regression tests. This is notably significant

as it allows for the assessment of the quality of the generated tests in terms of their execution,

the extent of code they cover, and the mutation score they achieve. Another critical step in this

stage involves the exclusion of tests that fail to compile, are flaky, or simply fail. Section 4.2.1

delineates the metrics that can be extracted at this stage of test generation.

The final step involves filtering the tests capable of execution and those that contribute value to

the study. These tests were subsequently utilized to gather data on fault detection. Section 4.2.2

elucidates the metrics that aid in understanding the effectiveness of the approach in terms of fault

detection. Unlike TG, FD is conducted on the buggy version of the code. The regression tests

created earlier are executed to verify their capability to detect the bug.

The generated test suites further contributed to the collection of data on fault localization, fa-

cilitated by GZoltar. The output from GZoltar comprises a ranked list of suspicious lines of code.

Given this information, one can infer that each bug will correspond to 5 such lists. Section 4.2.3

explains how to extrapolate meaningful data for fault localization from these results.

It was deemed essential to establish a baseline to gauge whether the approaches were indeed

efficient at detecting bugs, and more importantly, if they assisted in localizing them. To this end,

the results generated from the vanilla EvoSuite were declared the reference point for comparisons.

As all other approaches claim superior bug detection capabilities, presuming these claims to be

valid, it becomes critical to understand the efficacy of each approach in localizing those bugs

compared to a more generic approach such as EvoSuite.

4.2 Metrics 19

4.2 Metrics

Fault detection and fault localization are two distinct concepts, each possessing unique methods

for assessing their effectiveness. The primary objective of fault detection (FD) is to ascertain

whether the bug has been detected, while for fault localization (FL), the goal is to determine if

the bug has been accurately localized. The ensuing sections provide detailed explanations of how

metrics were established for each domain of the study. Both of these stages are prefaced by the

test generation phase, during which the test suites are generated and subsequently filtered.

4.2.1 Test Generation

During the generation of tests, it is imperative to ascertain the quality of the generated tests and

their ability to execute successfully. Although this is not a primary objective of this study, it

does enable the collection of data on parameters such as coverage, mutation score, compilation
errors, and more.

The most straightforward metric to comprehend is the number of tests generated. Despite its

simplicity, this metric is of significant value as it enables us to ascertain if the approach generates

an optimal, excessive, or insufficient number of tests.

Compilation errors are relatively common during the generation of tests. This phenomenon

arises because the generated tests are not always syntactically correct. Similarly, test ’flakiness’ is

a prevalent issue, characterized by intermittent test failures and successes. Such irregularities can

be attributed to concurrent execution issues or variations in the testing environment.

Understanding the number of tests discarded due to the aforementioned reasons is also vital.

Essentially, this metric evaluates the approach’s efficacy in generating tests that are capable of

successful execution.

Coverage denotes the proportion of code lines executed by the test suite. This metric is integral

to comprehending whether the test suite effectively exercises the code under test. Hence, it is

beneficial to discern whether the generated tests can cover all lines of code. Failing to cover

lines where the bug resides implies that the bug will remain undetected. Consequently, a higher

coverage percentage is typically associated with improved fault detection outcomes [34].

Similarly, mutation score plays a critical role. This metric represents the proportion of source

code modifications, or ’mutants’, eliminated by the test suite. The mutation score carries compa-

rable significance to coverage as it aids in determining whether the test suite exercises the code

under test. Moreover, it allows for the evaluation of the test suite’s capability to exercise edge

conditions, such as assessing the outcome of altering a <= comparison to <. A higher mutation

score is generally linked to better fault detection performance [34].

4.2.2 Fault Detection

Evaluating the efficacy of methodologies for fault detection may appear straightforward, primarily

focusing on the number of bugs each methodology identifies. However, some finer points warrant

Empirical Study 20

careful consideration.

One such detail pertains to understanding why a bug was detected by one approach and not

another. This distinction may be chalked up to sheer chance or may stem from a systemic issue

evident in the data. The inherent randomness of the approaches can result in certain bugs being de-

tected only in some runs, which may not reflect the approach’s capabilities accurately. To prevent

such scenarios, it is essential to scrutinize the results meticulously.

Tests can fail due to assertions, exceptions, or timeouts. Assertions and exceptions hold the

most significance, as they directly relate to bug detection. If a test fails due to a timeout, it does

not definitively indicate bug detection. The test’s inability to conclude could stem from various

causes, such as code sections that require a significant time to execute or limited machine resources

leading to protracted execution times that exceed the timeout threshold. Given the array of factors

causing a timeout failure, such failures are not considered reliable.

With respect to fault detection, we can once again examine the coverage percentage, this time

using the buggy version of the project. This second evaluation aims to understand whether the tests

covered the buggy lines and, if so, why they did not detect the bug. Were the inputs insufficiently

robust? Or were the inputs appropriate but the assertions inadequate? These crucial questions can

be answered with the collected data. It is intriguing to explore the correlation between coverage
and FD. Does a test suite with high coverage detect more bugs than a test suite with low coverage?

4.2.3 Fault Localization

The primary aim of fault localization (FL) is to ascertain whether the predicted bug locations cor-

respond to the actual region in the code where the bug was introduced. GZoltar produces a ranked

list of suspicious lines of code, thus assessing the approach’s effectiveness merely necessitates

verifying the bug location’s position within this list.

The methodology followed in this study to evaluate the efficacy of the approaches for fault

localization is based on the work presented by Pearson et al. [26].

Pearson et al. evaluated fault localization effectiveness by employing a metric called Exam
Score. This metric can apply various levels of granularity — lines, methods, classes, or even

packages — for score calculation. In this study, line granularity was deemed most suitable given

that only tests for one class were generated at a time. The Exam Score signifies the probability that

a particular line of code is the origin of the observed failure. This score is typically computed by

contrasting the observed failure behavior with the program’s anticipated behavior. By gathering

execution data, such as test case outcomes (pass/fail) and code coverage information, the fault

localization algorithm calculates scores for distinct code locations. Higher scores suggest a higher

probability of a line being faulty, whereas lower scores indicate a lower likelihood of the line being

the source of the failure.

4.3 Results 21

4.3 Results

This section presents the findings of the study, which are categorized into three distinct sections

corresponding to each area of investigation. The initial section details the results obtained from

the test generation stage. Subsequently, the outcomes of the fault detection stage are delineated in

the second section, while the final section discloses the results from the fault localization stage.

4.3.1 Test Generation

In this phase, our primary emphasis is on the volume of test cases generated by each approach, as

well as the quantity of test cases that were subsequently eliminated. It is crucial to first scrutinize

the vanilla variant of EvoSuite, which serves as the baseline for comparison. This configuration

yielded a total of 151,257 test cases, of which 2,260 were found to be defective. This translates to

a defect rate of approximately 1.49%, which is a commendable outcome.

As demonstrated in Figure 4.2a, the vanilla variant of EvoSuite yielded a reasonable count of

test cases, with a relatively low fraction of broken tests in most instances. The exception is the

Gson project, where, on average, 8.29% of the tests generated were categorized as broken. This

proportion is substantially high in comparison with other projects, in that sense it is important to

understand why this occurs.

In a comprehensive analysis, it was determined that EvoSuite possesses a mechanism to iden-

tify inner classes and subsequently generate tests for them. The library employed by EvoSuite

for Java bytecode manipulation designates inner classes with a dollar sign ($). Notably, certain

defects within the Gson project are associated with a class labeled as $Gson$Types. These defects

compromise the generated tests, given that the system misinterprets this class as an inner class and

attempts to replace the ($) with a (.). This would be a valid operation for an actual inner class.

However, the resultant issue is not merely the generation of tests with incorrect assertions but the

production of tests that fail to compile. This shortcoming is inherent to EvoSuite, suggesting that

subsequent approaches might also encounter this challenge.

Nevertheless, vanilla EvoSuite had a positive result globally which is indicative of the ap-

proach’s efficacy at generating runnable tests.

The results yielded by EntBug, as depicted in Figure 4.2b, display a substantial resemblance

to those from vanilla EvoSuite. The percentage of broken tests shows minor variance, occasion-

ally more, sometimes less. Regrettably, the findings related to the Gson project remain less than

satisfactory. The proportion of broken tests remains exceedingly high, presenting a mean value

marginally better than that from vanilla EvoSuite. But as it was said before, this is a problem of

EvoSuite itself, it was already expected unsatisfactory results. Though EntBug generates slightly

more tests, with an average total of 154,964 tests, it also records a higher number of broken ones,

with an average total of 2,342 tests, which stands for 1.51% of broken tests. Very similar to vanilla

EvoSuite.

Figure 4.2c illustrates a considerable reduction in the number of generated tests when using

DDU. Notably, DDU displays a greater level of conservatism compared to both vanilla EvoSuite

Empirical Study 22

99.48

99.76

96.17

98.16

97.77

99.44

98.9

91.71

99.88

99.01

99.9

98.92

99.27

99.63

99.01

98.9

99.35

3.83

2
.2
3

8.29

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Total Tests Broken Tests

%

P
ro

je
ct

 I
D

(a) Vanilla EvoSuite

99.29

99.75

96.26

97.96

97.71

99.42

98.83

91.77

99.9

99.02

99.88

98.98

99.05

99.66

98.79

98.82

99.15

3.74

2
.0
4

2
.2
9

8.23

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Total Tests Broken Tests

%

P
ro

je
ct

 I
D

(b) EntBug

98.06

99.87

95.31

95.82

84.78

98.89

97.15

81.61

99.9

97.26

98.4

98.61

100.0

96.35

99.17

96.59

97.79

4.69

4.18

15.22

2
.8
5

18.39

2
.7
4

3.65

3.41

2
.2
1

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Total Tests Broken Tests

%

P
ro

je
ct

 I
D

(c) DDU

100.0

100.0

99.1

98.66

95.05

99.88

98.88

92.28

99.89

99.09

100.0

99.78

100.0

99.67

99.67

98.26

99.84

4.95

7.72

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Total Tests Broken Tests

%

P
ro

je
ct

 I
D

(d) Ulysis

99.62

96.9

95.8

87.56

95.73

98.45

96.02

81.11

99.36

94.48

97.51

97.02

98.83

98.44

93.05

96.08

93.44

3
.1

4.2

12.44

4.27

3.98

18.89

5.52

2
.4
9

2
.9
8

6.95

3.92

6.56

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Total Tests Broken Tests

%

P
ro

je
ct

 I
D

(e) PreMOSA

Figure 4.2: Broken Tests

4.3 Results 23

and EntBug with only a total of 22,454 tests generated and 618 broken (2.75% of broken tests).

This observation is of considerable interest as it underscores the more liberal nature of the other

approaches in generating tests. The implications of this characteristic can be either advantageous

or disadvantageous, contingent upon the results of FD and FL. Assuming that DDU is capable of

detecting and localizing bugs with similar proficiency to the preceding two approaches, then DDU
would demonstrate superior efficiency due to its generation of fewer tests, thereby consuming less

time and resources.

The Gson project poses a substantial challenge to DDU. In comparison to earlier examined ap-

proaches, it exhibits a heightened proportion of broken tests, averaging at 18.39%. This increased

percentage can be attributed statistically to DDU generating a smaller number of tests, thereby

elevating the ratio of broken tests. However, the specific bugs implicated remain consistent when

analyzed across different frameworks.

A subsequent observation pertains to the Collections project, which, when subjected to this

approach, begins to exhibit suboptimal results. A significant 15.22% of the tests were found to be

faulty, necessitating an exploration into the underlying causes. As previously noted, the central

reason is the relatively lower number of tests generated by DDU. Specifically, DDU produced an

average total of 58 tests, whereas the standard EvoSuite generated a substantially larger set of 646

tests. Nonetheless, both approaches exhibited broken tests, albeit in varying ratios.

It can already be observed that adopting a more conservative approach in test generation

presents certain disadvantages. While DDU is optimized in this respect, it demonstrates chal-

lenges in test generation. At times, the proportion of successful tests generated by DDU can be

statistically less favorable compared to other approaches, which can lead to less variability.

Figure 4.2d further illustrates a reduction in the number of tests generated, in this instance by

Ulysis. Similar to DDU, the beneficial or detrimental nature of this reduction will be evaluated

further. The average total number of tests produced stands at 20554, juxtaposed with an average

total of 140 defective tests. This facet of the approach is noteworthy; Ulysis yields an exceptionally

low count of malfunctioning tests, the lowest among all approaches under review, with only 0.68%

being broken. This reduced count of tests, combined with the minuscule quantity of defective ones,

suggests the approach’s efficacy in test generation. It remains crucial to ascertain its proficiency

in test detection and localization.

An additional noteworthy characteristic of Ulysis pertains to its performance on the Gson
project. The approach exhibits a reduction in the percentage of non-functional tests, registering at

7.72%. Such results position Ulysis favorably, underscoring its proficiency in producing tests that

compile and execute successfully for Gson.

The last approach under examination is illustrated in Figure 4.2e. PreMOSA produced an

average of 57,372 tests, of which 2,278 were broken. These statistics are somewhat disconcerting,

with 3.97% of the tests being broken. Notably, this constitutes the highest percentage of broken

tests among all the approaches analyzed. Based on this preliminary assessment, it may be inferred

that PreMOSA is less effective in generating tests that compile or execute successfully. It remains

Empirical Study 24

imperative to further investigate its efficacy in bug detection and localization, and subsequently

determine the approach’s overall utility.

Consistent with the overall trend, PreMOSA encountered difficulties with the Gson project,

yielding an average of 18.89% broken tests. Surprisingly, the Codec project posed a unique chal-

lenge, with 12.44% of its tests being broken. This marked the first instance of such suboptimal

results for this project, thus necessitating a deeper exploration of the underlying causes. Closer

scrutiny of the project results reveals that the bug Codec-1 predominantly contributes to the high

number of broken tests. This specific bug is related to a very long and complex method, replete

with loops and conditional statements.

This complexity, combined with the fact that PreMOSA was provided with a list of faulty

methods (with this method being the sole defective one), steered the evolution of tests predom-

inantly towards this intricate method. Such a singular focus adversely affected the outcomes in

terms of broken tests, as considerable time and resources were expended on this specific method.

This overemphasis during test generation led to the creation of a higher number of flawed tests.

While this approach is suboptimal for generating functional tests, it is conceivable that some of

these tests might aid in the detection and localization of the bug.

The results distinctly bifurcate the approaches into two categories. The first category encom-

passes vanilla EvoSuite and EntBug, while the second contains DDU, Ulysis, and PreMOSA.

The former group displays a more aggressive approach to test generation, whereas the latter adopts

a more conservative stance in terms of the quantity of tests. This differentiation is critical as it may

significantly impact the results of both FD and FL.

It is noteworthy to mention that, in general, all the approaches produced a relatively small num-

ber of broken tests. However, the occurrence of such tests is not entirely absent. Consequently, it

is crucial to ascertain whether integrating these approaches into a testing pipeline is advantageous

or counterproductive. If these approaches are demonstrably effective in detecting and localizing

bugs, their utilization might be justified. Nonetheless, one must remain cognizant of the potential

frequency of broken tests they may generate.

During the experiment, a discernible reduction in the number of available bugs was observed,

attributed to varying complexities at different stages. In the current phase, there exists a probability

that certain bugs might not yield results if they remain unexecuted within these approaches. In a

synthesis of the present stage of the pipeline, both DDU and Ulysis generated data points for 833

bugs, EntBug accounted for 822, PreMOSA captured 831, and the standard EvoSuite tallied 823.

It is imperative to highlight that a subset of these data points encompasses executions linked to

broken tests, such data will be excluded in subsequent stages.

The process of test generation also yields valuable data pertaining to coverage and mutation
score. It is important to remember that these metrics are derived from the fixed version of each

bug. Figure 4.3a presents the results associated with vanilla EvoSuite.

The chart illustrates a significantly high percentage of line coverage for the majority of the

projects, with JacksonXml and Closure being the only two exceptions where improvements could

be seen. The former exhibits a median coverage of merely 48.2% with a third quartile of 69.4%.

4.3 Results 25

0 20 40 60 80 100

Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Line Coverage Mutation Score on covered mutants

%

P
r
o
je

c
t
 I

D

(a) Vanilla EvoSuite

0 20 40 60 80 100

Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Line Coverage Mutation Score on covered mutants

%

P
r
o
je

c
t
 I

D

(b) EntBug

0 20 40 60 80 100

Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Line Coverage Mutation Score on covered mutants

%

P
r
o
je

c
t
 I

D

(c) DDU

0 20 40 60 80 100

Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Line Coverage Mutation Score on covered mutants

%

P
r
o
je

c
t
 I

D

(d) Ulysis

0 20 40 60 80 100

Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Line Coverage Mutation Score on covered mutants

%

P
r
o
je

c
t
 I

D

(e) PreMOSA

Figure 4.3: Coverage & Mutation Score

Empirical Study 26

The latter demonstrates a median coverage of 48.7% and a third quartile of 70.1%. In academic

literature, it is well-established that higher coverage typically contributes to improved FD out-

comes. Consequently, it is hypothesized that enhanced FD and FL results should be observed

for projects with higher coverage. However, corroborating this assumption within our research

remains intriguing.

As anticipated, the percentage for mutation score is generally lower than that of coverage.

Obtaining a high mutation score is acknowledged as a challenging endeavor, thus the observed

outcomes align with expectations. The research literature also affirms that a higher mutation score

is typically associated with superior FD outcomes. With the available FD and FL data, our study

can examine the validity of this assertion. Despite the lower percentages of mutation score being

expected, the projects Mockito, JacksonXml, JacksonDatabind, and Closure display worry-

ingly low values. Among this group, JacksonDatabind exhibits the highest median value at 51.5%,

which remains quite low. It presents an intriguing scenario to observe how these projects perform

in terms of FD and FL.

When examining both line coverage and mutation score, the results suggest that these met-

rics are predominantly influenced by the complexity of the code under scrutiny. Consider, for

instance, the JacksonXml project. Bugs labeled JacksonXml-1 and JacksonXml-3 pertain to the

class FromXmlParser. The former registered an average line coverage of 24.3%, while the latter

marked 23.3%. Conversely, JacksonXml-6, which is associated with the ToXmlGenerator class,

boasted an average line coverage of 84.1%.

Upon a detailed examination of both classes, a stark disparity in their complexities becomes

evident. The ToXmlGenerator class predominantly comprises straightforward getter and setter

functions, with its methods generally being concise and encompassing rudimentary conditional

statements and occasional loops. In stark contrast, the FromXmlParser class features two par-

ticularly intricate methods, namely nextTextValue and nextToken. Each of these methods spans

approximately 100 lines of code, interwoven with multiple loops and conditional clauses.

This comparison serves as a salient illustration of the relationship between code complexity

and metrics such as line coverage and mutation score. However, it is paramount to underscore that

suboptimal results cannot be solely attributed to the approaches. Drawing from the aforementioned

example, it becomes palpable that certain methods, especially the latter two, could benefit from

refactoring to enhance clarity and maintainability.

Figure 4.3b presents the results for EntBug. The outcomes exhibit substantial similarity to

those of vanilla EvoSuite, making it challenging to discern considerable disparities between the

two charts. However, upon close inspection, minor differences do emerge. For instance, it can

be observed that the distribution of both the mutation score and line coverage is more uniform in

vanilla EvoSuite for the JacksonXml project. Conversely, the data for the Csv project appears to

have a more balanced distribution in EntBug.

The quality of the tests generated by DDU appears to diminish, as evident in Figure 4.3c.

Both the line coverage and mutation score percentages are observed to be inferior to the previous

two approaches. As discussed earlier, the literature suggests a strong correlation between these

4.3 Results 27

metrics and FD. Consequently, these findings do not portend well for DDU. Nevertheless, it will

be intriguing to assess how the results for FD and FL unfold.

The underlying cause for this observed decline in quality is not immediately evident. However,

one may postulate that, in contrast to preceding approaches, metrics like coverage and mutation

score might not be paramount for DDU. This approach employs algorithms oriented towards as-

sessing the efficacy of current tests in bug localization, potentially relegating the significance of

more conventional metrics such as coverage and mutation score to a secondary role.

Ulysis demonstrates a further decline in test quality. As Figure 4.3d illustrates, the percentages

for both metrics are even lower than those of DDU. Particularly alarming are the data for projects

like JacksonXml and Mockito, where the percentages for both metrics primarily populate the lower

end of the distribution.

This approach builds upon the foundational work of DDU, adopting a more advanced method-

ology wherein distinct universes are delineated and a singular component is deemed faulty within

a given universe. This strategy diverges from an emphasis on conventional metrics, instead cen-

tering on the identification of optimal tests to aid in bug localization. This shift in focus partially

explains the observed suboptimal outcomes.

It remains an open question whether relegating traditional metrics to a peripheral status en-

hances the efficacy of bug localization.

In Figure 4.3e, the outcomes for PreMOSA are delineated. The data bear a resemblance to

those of vanilla EvoSuite and EntBug. Given that the foundational algorithm for PreMOSA is

DynaMOSA, a parity in results with vanilla EvoSuite was anticipated. The integration of Dy-

naMOSA, particularly targeting methods perceived to be more prone to faults, does not signifi-

cantly alter the results. As evidenced by the data, certain projects depict metrics that lean in favor

of PreMOSA, while others display a proclivity towards vanilla EvoSuite.

Given the preceding analyses, there exists a discernible divergence in priorities between vanilla

EvoSuite, EntBug, and PreMOSA on one hand, and Ulysis and DDU on the other. The for-

mer group emphasizes code coverage and the generation of tests that probe boundary conditions,

whereas the latter primarily aims to produce tests with a higher likelihood of localizing bugs.

This divergence in focus presents a compelling dimension for this study, as it potentially illu-

minates which approach is more effective for FD and FL.

In the subsequent phase of evaluation, certain bugs were excluded due to reasons ranging from

compilation errors (observed in the prior stage) to issues pertaining to the approaches responsible

for computing line coverage and mutation score. At this stage, DDU accounted for the highest

number of bugs, totaling 773. This was succeeded by Ulysis with 770, vanilla EvoSuite with 745,

EntBug registered 739, and PreMOSA concluded the list with 733.

4.3.2 Fault Detection

Shifting the focus toward the buggy version of the projects. At this juncture, the aim is to ascertain

if the tests generated in the preceding stage can successfully identify the implanted bugs. By

Empirical Study 28

deploying the regression tests formulated in the prior phase, executing them in the corresponding

buggy version and verifying the detection of the bug.

There are instances where the implantation of a new bug disrupts the code compilation process.

For instance, consider an extreme case where an entire method or even a class is eliminated. The

Java compiler will halt the compilation due to the absent code during the compile time. Such

an issue is prevalent and hence, comprehending the number of test suites that cannot be executed

solely due to compilation impediments is fundamental.

As depicted in Figure 4.4a, it is observable that a significant percentage of test suites gener-

ated by EvoSuite in its vanilla form failed to compile. This scenario is particularly detrimental,

considering the consequent loss of valuable data points that would otherwise enhance the com-

prehensiveness of the study. Each discarded test suite represents a missed opportunity to evaluate

both fault detection and subsequent fault localization.

During this phase, vanilla EvoSuite encountered compilation errors for a total of 59 bugs.

Consequently, subsequent FD and FL evaluations will be limited to an analysis of the remaining

764 bugs.

In the analysis of the results, the Collections project manifests the most pronounced percent-

age of non-compiling tests, with 25.0% of the test suites not compiling successfully. Upon a

meticulous examination of the data, the primary cause of this phenomenon can be attributed to

the project’s limited number of bugs, specifically four. One notable bug involved a method that

transitioned from a private to a protected access modifier between the buggy and the fixed ver-

sions. Test suites generated based on the fixed version, which treated the method as protected,

faced compilation issues in the buggy version due to the method’s private accessibility.

Similarly, the JacksonDatabind project exhibited compilation challenges. A case in point

is the bug JacksonDatabind-75. This bug involves a modification in the method declaration by

introducing an additional parameter. The resultant test suite, constructed based on the rectified

method declaration, confronts compilation hindrances since it is incongruent with the original

buggy version of the method.

Upon examination of these compilation graphs, it becomes apparent that the performance

across all approaches is comparably consistent, with identical projects demonstrating similar be-

haviors. In Figure 4.4b, it can be seen that EntBug presents Collections as the project suffering

the highest proportion of compilation errors, as was the case with vanilla EvoSuite. Despite that,

EntBug dropped more data points than vanilla EvoSuite, with 61 bugs that could not be executed.

For DDU, as depicted in Figure 4.4c, the proportion of test suites that fail to compile dimin-

ishes for certain projects. Notably, the Mockito project, which previously exhibited a moderate

rate of non-compilation, now demonstrates a significant 39.47% of tests failing to compile.

Upon a detailed examination of the results, the specific cause for this surge in non-compiling

tests remained elusive. However, it is evident that DDU evolves its tests in a manner that ap-

pears more susceptible to compilation errors compared to the preceding approaches. For instance,

vanilla EvoSuite consistently generates tests for Mockito 4 to 8 without encountering any compi-

lation issues. Such outcomes were anticipated, given the absence of syntactical issues associated

4.3 Results 29

100

89.74

93.98

94.44

75

100

93.75

100

100

81.98

100

83.87

86.36

98.39

100

94.74

96.15

10.26

6.02

5.56

25.0

6.25

18.02

16.13

13.64

5.26

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Compiles Not Compiles

%

P
ro

je
ct

 I
D

(a) Vanilla EvoSuite

100

89.74

93.98

94.44

75

97.87

93.75

100

100

83.78

83.33

84.95

90

98.41

100

84.21

96.15

10.26

6.02

5.56

25.0

6.25

16.22

16.67

15.05

10.0

15.79

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Compiles Not Compiles

%

P
ro

je
ct

 I
D

(b) EntBug

100

92.31

94.83

94.44

75

100

100

100

100

91.96

100

86.02

90

98.44

100

60.53

100

7.69

5.17

5.56

25.0

8.04

13.98

10.0

39.47

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Compiles Not Compiles

%

P
ro

je
ct

 I
D

(c) DDU

100

89.74

94.83

94.44

75

100

100

100

100

91.96

100

86.02

90

98.44

100

60.53

96.15

10.26

5.17

5.56

25.0

8.04

13.98

10.0

39.47

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Compiles Not Compiles

%

P
ro

je
ct

 I
D

(d) Ulysis

100

92.31

94.25

94.44

75

97.87

93.75

100

100

86.49

83.33

84.95

90

98.44

100

57.89

96.15

7.69

5.75

5.56

25.0

6.25

13.51

16.67

15.05

10.0

42.11

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Compiles Not Compiles

%

P
ro

je
ct

 I
D

(e) PreMOSA

Figure 4.4: Compiled Bugs

Empirical Study 30

with these bugs. Contrarily, DDU fails to produce tests for these bugs, a limitation that under-

scores potential issues within its test evolution algorithm. Although, the approach maintains the

most bugs across all approaches, with only 54 non-compiling bugs.

A similar scenario unfolds for Ulysis, as illustrated in Figure 4.4d, with Mockito again con-

stituting the highest percentage of compilation errors at an alluring equal of 39.47%. This ob-

servation is consistent with the understanding that Ulysis represents an advancement of the work

initiated by DDU. Consequently, they share similar vulnerabilities, as underscored in this research.

Similarly, Ulysis also does a good job at keeping data points, with only 56 bugs that could not be

executed.

As depicted in Figure 4.4e, PreMOSA manifests the least favorable performance among all

the approaches assessed. Specifically, the Mockito project remains particularly challenging for

this approach, registering a compilation failure rate of 42.11%. Correspondingly, PreMOSA also

exhibits the highest number of discarded bugs, totaling 67.

The worst results observed for PreMOSA can be attributed to its inherent knowledge of the

faulty components, for which it specifically seeks to evolve tests. In contrast, other approaches

lack this specific information and thus aim to evolve tests for all components indiscriminately.

This broad focus might inadvertently confer an advantage, as these approaches could bypass some

of the intricate challenges that PreMOSA confronts.

Turning the attention to the critical metric of fault detection, Figure 4.5a reveals a commend-

able performance of EvoSuite in its vanilla form, with a sizeable proportion of bugs detected. This

is particularly evident in projects such as Csv, Chart, and JxPath, where the detection percentages

surpass 78%. Conversely, projects such as Mockito, Gson, and Closure demonstrate evident dif-

ficulties in bug detection, none reaching a detection percentage exceeding 40%. Two bugs from

Collections went undetected, while the one that remained was detected successfully. The approach

exhibited the third-highest bug detection rate, identifying 424 out of 764 bugs. This translates to a

detection rate of 55.5%.

A somewhat encouraging insight drawn from this data is the recognition that, despite the

failure to detect some bugs, a significant proportion of these bugs are still covered by the tests.

This understanding is vital, as it confirms that the tests are indeed probing the flawed code, thereby

emphasizing the necessity to refine the assertions for more effective bug detection.

However, it is crucial to recognize that a significant proportion of bugs continue to not be

detected. Having an overall detection rate of 55.5% is less than optimal, implying that the tests

generated by vanilla EvoSuite do not effectively identify the bulk of the bugs.

EntBug’s performance, as demonstrated in Figure 4.5b, once again closely mirrors that of

vanilla EvoSuite. The analysis reveals that EntBug excels and faces difficulties in the same projects

as its vanilla counterpart. EntBug shows a similar performance to vanilla EvoSuite in the total

number of bugs detected, identifying 430 out of 761 bugs, resulting in a detection rate of 56.5%,

the highest overall.

The approach has been predominantly evaluated in the context of FL. However, it stands to

reason that to localize a bug, it must first be detected. For instance, Codec-7 from the Defects4J

4.3 Results 31

84.62

65.71

39.10

64.71

33.33

63.83

86.67

27.78

60.00

49.45

50.00

48.72

78.95

62.30

71.70

25.00

76.00

15.38

31.43

19.87

29.41

8.51

6.67

27.78

16.00

18.68

33.33

21.79

15.79

16.39

19.81

27.78

16.00

6.41

6.38

6.67

5.49

5.26

34.62

5.88

66.67

21.28

44.44

24.00

26.37

16.67

26.92

18.03

6.60

44.44

8.00

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Detected Bugs Covered (Not Detected)
Partially Covered (Not Detected) Not Covered (Not Detected)

%

P
ro

je
ct

 I
D

(a) Vanilla EvoSuite

84.62

62.86

40.38

70.59

33.33

65.22

86.67

27.78

64.00

51.61

40.00

50.63

77.78

62.90

71.70

25.00

76.00

15.38

34.29

19.23

23.53

8.70

13.33

27.78

12.00

15.05

20.00

22.78

16.67

16.13

18.87

28.12

12.00

6.41

6.52

6.45

33.97

5.88

66.67

19.57

44.44

20.00

26.88

40.00

25.32

5.56

17.74

7.55

43.75

12.00

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Detected Bugs Covered (Not Detected)
Partially Covered (Not Detected) Not Covered (Not Detected)

%

P
ro

je
ct

 I
D

(b) EntBug

69.23

58.33

20.00

52.94

48.94

75.00

27.78

61.54

33.98

33.33

36.25

44.44

41.27

56.60

26.09

42.31

19.23

36.11

21.21

35.29

14.89

12.50

22.22

7.69

21.36

33.33

25.00

22.22

28.57

23.58

21.74

26.92

9.70

33.33

8.51

6.25

8.74

5.56

11.54

5.56

49.09

11.76

66.67

27.66

6.25

50.00

26.92

35.92

33.33

35.00

27.78

26.98

16.04

52.17

26.92

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Detected Bugs Covered (Not Detected)
Partially Covered (Not Detected) Not Covered (Not Detected)

%

P
ro

je
ct

 I
D

(c) DDU

38.46

28.57

8.48

35.29

25.53

43.75

22.22

26.92

22.33

33.33

20.00

11.11

22.22

27.36

8.70

12.00

30.77

20.00

14.55

52.94

12.77

18.75

16.67

11.54

13.59

33.33

22.50

27.78

33.33

29.25

21.74

48.00

5.71

4.85

33.33

12.77

6.25

5.56

7.69

14.56

5.00

5.56

7.94

7.55

8.70

30.77

45.71

72.12

11.76

66.67

48.94

31.25

55.56

53.85

49.51

33.33

52.50

55.56

36.51

35.85

60.87

40.00

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Detected Bugs Covered (Not Detected)
Partially Covered (Not Detected) Not Covered (Not Detected)

%

P
ro

je
ct

 I
D

(d) Ulysis

88.46

69.44

40.24

64.71

60.87

86.67

33.33

73.08

53.12

60.00

48.10

66.67

55.56

68.57

27.27

76.00

30.56

20.12

23.53

15.22

13.33

27.78

7.69

16.67

20.00

24.05

22.22

23.81

21.90

27.27

20.00

6.10

33.33

6.52

6.25

5.56

7.69

33.54

11.76

66.67

17.39

38.89

19.23

23.96

20.00

26.58

5.56

17.46

7.62

45.45

0 20 40 60 80 100
Chart

Cli
Closure

Codec
Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup

JxPath
Lang
Math

Mockito
Time

Detected Bugs Covered (Not Detected)
Partially Covered (Not Detected) Not Covered (Not Detected)

%

P
ro

je
ct

 I
D

(e) PreMOSA

Figure 4.5: Detected Bugs

Empirical Study 32

repository [32] corresponds to bug 99 in the Codec project [4]. Gratifyingly, this bug was identified

in our study, aligning with expectations given its emphasis in the original paper [8]. Similarly,

Compress-7, corresponding to bug 114 of the Compress project [5], and Math-27, relating to bug

835 of the Math project [6], were both detected. Math-9, which is linked to bug 938 in the Math

project was also detected.

Of the four bugs referenced in the original paper, all four were successfully detected, marking

a positive outcome. The status of the other bugs from the original study remains unresolved, as

they were not subjected to this experiment.

A shift in performance can be discerned with DDU, as illustrated in Figure 4.5c. Notably,

the detection rate of bugs is considerably low when compared with the preceding two approaches.

While maintaining some level of proficiency in projects like Chart and Csv, DDU’s overall results

leave much to be desired. All projects reflect a bug detection rate of less than 75%. A concerning

observation is a substantial increase in the percentage of non-covered bugs. This suggests that the

tests generated by DDU fail to address the lines of code associated with the bugs. This aspect war-

rants serious consideration as a test that fails to cover the buggy code is fundamentally incapable

of detecting the bug.

The foundational paper introducing the approach [28] does not offer directly comparable data

to our findings. However, it does present a list of bugs sourced from the Defects4J repository [32].

This list served as a benchmark to assess the efficacy of our results against the prior version of

Defects4J. Employing the complete dataset, DDU managed to identify 314 out of the original

779 bugs, accounting for 40.3% of the total. The authors of [28] incorporated 186 bugs in their

study, with our experiment excluding 4 from this number, leading to an intersection of 182 bugs.

Based on the present data points, DDU identified 69 bugs, amounting to 37.9% of the total. While

these findings are congruent with the initial paper, they register a marginal decline. It is crucial to

consider that the original study utilized a distinct version of EvoSuite.

The results derived from Ulysis, as presented in Figure 4.5d, demonstrate a marked deteriora-

tion in performance compared to DDU. The detection rate of bugs is decidedly low, falling under

44% for all projects. This approach yields rather unfavorable results; most notably, it does not de-

tect any bugs Collections and very few for Mockito and Closure. Adding to this, the percentage of

non-covered bugs is significantly high. Several factors could contribute to these outcomes. Firstly,

it is noteworthy that this approach/technique was incorporated into the latest version of EvoSuite.

The evolution of EvoSuite from its initial version, where Ulysis was originally developed, might

have led to critical divergences, resulting in subpar performance. Furthermore, human error as-

sociated with migrating the technique to the latest version of EvoSuite may have induced certain

discrepancies, thereby influencing the results negatively. Despite these possible justifications, it is

imperative to acknowledge that the observed results were indeed disappointing.

The paper introducing Ulysis [11] does not provide specific data regarding FD, nor does it

offer any directly comparable metrics. Nevertheless, the performance of Ulysis in bug detection

appears to be markedly suboptimal. Out of a total of 777 bugs, the approach only identified 161,

constituting a mere 20.7% of the entirety. Such a low detection rate raises questions about the

4.3 Results 33

approach’s efficacy. While potential reasons for this performance were previously explored, it’s

unequivocal that Ulysis is not yet equipped for real-world applications.

In Figure 4.5e, PreMOSA displays commendable results, even somewhat superior in some

projects when juxtaposed with vanilla EvoSuite.The outcomes remain appreciably respectable.

However, the paper introducing PreMOSA [27] posited distinct findings. The authors con-

tended that PreMOSA could detect 8.3% more bugs than the standard test evolution algorithm,

DynaMOSA. In contrast, our results illustrate that PreMOSA detected 427 out of 764 bugs, yield-

ing a detection rate of 55.9%. This rate is 0.4% higher than that of vanilla EvoSuite, which employs

the same algorithm as the baseline.

It’s noteworthy to mention that since the publication of the original paper, both DynaMOSA

and EvoSuite have undergone developments. This evolution might account for the disparity in

performance observed for the approach. Furthermore, the contemporary Defects4J dataset en-

compasses a broader range of bugs, leading to potential new scenarios that PreMOSA might not

have been originally designed to handle. Another crucial aspect to consider is the integration of

PreMOSA with the latest iteration of EvoSuite, which includes the foundational algorithm. It’s

plausible that this algorithm may not be optimally suited to the current version of EvoSuite.

Contrary to expectations, EntBug emerged as the most proficient approach in terms of FD.

While it was anticipated that approaches like PreMOSA, with its knowledge of faulty components,

would surpass vanilla EvoSuite in the number of bugs detected by some commendable margin, the

results did not corroborate this assumption.

4.3.3 Fault Localization

The final phase of the investigation involves Fault Localization. In this stage, we endeavor to

ascertain whether the bug location predictions are capable of correctly identifying the code section

where the bug was originally introduced.

It is essential to clarify that the subsequent analysis focuses on the intersection of the bugs

identified by all approaches. Specifically, the evaluation will encompass only 124 bugs that every

approach could pinpoint. However, vanilla EvoSuite produced location predictions for 411 bugs,

DDU for 310, Ulysis for 158, EntBug for 420, and PreMOSA for 421. Given this context,

certain approaches may exhibit inferior results due to the selection of bugs, although the converse

could also be true. Comprehensive results for all bugs are available in the appendix, offering a

comparative perspective on approach performance.

Figure 4.6a presents the findings for vanilla EvoSuite. The data reflect a relatively successful

outcome for most projects. A good percentage of the bugs are located within the first 10 suspected

lines of code. There are, however, a few exceptions. For instance, in the case of JacksonDatabind,

20% are located in the first position. However, the remaining bugs are located below 500. Closure

and JacksonXml have also similar disappointing results. A significant portion of bugs is found

towards the lower end of the ranked list of suspicious code lines, suggesting that most bugs were

detected beyond the top 500. This kind of result is undesirable as, in a real-world scenario, it may

not aid developers in bug detection and could potentially compound confusion.

Empirical Study 34

57.14

20.0

40.0

11.11

28.57

50.0

14.29

20.0

23.08

16.67

18.52

40.0

14.29

33.33

28.57

25.0

50.0

23.08

41.67

22.22

50.0

66.67

10.0

14.29

20.0

11.11

15.38

16.67

11.11

10.0

14.29

10.0

11.11

14.29

57.14

7.69

100.0

16.67

18.52

50.0

20.0

20.0

33.33

28.57

28.57

7.69

8.33

22.22

15.38

10.0

33.33

10.0

70.0

20.0

25.0

80.0

50.0

7.69

7.41

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(a) Vanilla EvoSuite

42.86

40.0

11.11

28.57

50.0

14.29

20.0

23.08

16.67

14.81

30.0

14.29

20.0

33.33

28.57

25.0

50.0

23.08

33.33

18.52

50.0

66.67

20.0

28.57

20.0

14.29

14.29

15.38

16.67

11.11

14.29

22.22

28.57

33.33

14.81

50.0

10.0

10.0

20.0

33.33

28.57

42.86

23.08

100.0

33.33

7.69

30.0

7.69

33.33

10.0

70.0

20.0

25.0

80.0

50.0

7.41

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(b) EntBug

14.29

40.0

11.11

14.29

14.29

7.69

8.33

7.41

30.0

28.57

20.0

33.33

14.29

50.0

20.0

23.08

25.0

14.81

50.0

33.33

14.29

20.0

11.11

14.29

50.0

100.0

8.33

14.81

50.0

10.0

28.57

10.0

11.11

14.29

25.0

42.86

23.08

41.67

11.11

30.0

14.29

20.0

22.22

42.86

28.57

15.38

16.67

33.33

33.33

11.11

14.29

23.08

7.41

20.0

7.69

33.33

10.0

70.0

20.0

25.0

80.0

50.0

11.11

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(c) DDU

10.0

14.29

40.0

11.11

14.29

25.0

14.29

7.69

16.67

11.11

40.0

28.57

10.0

33.33

57.14

50.0

28.57

20.0

50.0

23.08

25.0

18.52

50.0

66.67

28.57

10.0

7.69

100.0

16.67

7.41

10.0

28.57

10.0

20.0

11.11

14.29

23.08

16.67

18.52

20.0

33.33

28.57

28.57

23.08

25.0

33.33

50.0

11.11

14.29

15.38

10 30.0

70.0

20.0

25.0

80.0

50.0

7.41

33.33

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(d) Ulysis

10.0

10.0

20.0

28.57

50.0

20.0

7.69

16.67

11.11

20.0

57.14

44.44

28.57

25.0

14.29

7.69

33.33

18.52

33.33

10.0

14.29

11.11

14.29

28.57

50.0

7.69

7.41

33.33

20.0

28.57

20.0

40.0

11.11

28.57

7.69

25.0

14.81

20.0

20.0

33.33

28.57

28.57

46.15

100.0

25.0

37.04

100.0

15.38

10.0

7.69

33.33

10.0

70.0

20.0

25.0

80.0

50.0

7.41

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(e) PreMOSA

Figure 4.6: Located Bugs

4.3 Results 35

The outcomes for EntBug 4.6b are, predictably, quite comparable to those of vanilla EvoSuite.

However, EntBug exhibits a slight disadvantage in most projects. Notably, in the Csv project,

EntBug surpasses vanilla EvoSuite. In this context, EntBug identifies 14.29% of the bugs within

the top-5 rankings, whereas vanilla EvoSuite locates them within the top-10 rankings.

The study presented in [8] primarily emphasized the entropy of tests, thus leaving no direct

metric for result comparison. Nevertheless, an examination of bug localization in our current

experiment against the ones mentioned in the paper is feasible. Specifically, Codec-7, Compress-

7, and Math-9 are located in the first position. In contrast, Math-27 is situated further down,

occupying the 27th position.

In the original study, the bugs are accurately pinpointed with Math-27 serving as the sole ex-

ception. This suggests that the approach retains its capacity for precise bug localization. However,

the increased complexity and quantity of current bugs might be influencing its overall perfor-

mance.

As anticipated, DDU presents a decline in the quality of FL outcomes. Previous data indicated

a possible decline, and Figure 4.6c further confirms that this approach, on the whole, was less

proficient at locating bugs compared to the preceding two. Several notable observations arise from

this analysis.

DDU, while not particularly adept at pinpointing the bug within the initial suspected lines of

code, demonstrated a reasonable proficiency at mitigating the presence at the lower end of the

ranked list. As depicted in Figure 4.6c, the percentage of bugs discovered in the top 500+ is lesser

compared to vanilla EvoSuite and EntBug. This indicates that the approach succeeds in shrinking

the lower end of the ranked list of suspicious lines of code, although it falls short in locating the

bug within the initial suspected lines of code.

Lastly, it is worth noting that, DDU excels in the Mockito project. The approach manifests

superior performance in this project, locating one more bug within the top 5 while vanilla EvoSuite

locates it in the top 10. But is also important to note that only 2 bugs were located for this project,

which is a very small sample size.

Turning the attention to the analysis of Ulysis. Given the previous results, it would be prudent

not to anticipate favorable outcomes. Regrettably, Figure 4.6d confirms this expectation. The

majority of projects indicate a deterioration in quality when compared to the vanilla EvoSuite and

EntBug.

The approach’s performance is notably subpar, especially regarding the sample size it pro-

duces. Specifically, Ulysis located a mere 158 bugs, the smallest count among all evaluated ap-

proaches. This limited sample further restricts the observations of its comparative efficacy with

other approaches. Such lackluster performance further reinforces reservations against its utiliza-

tion, especially when considered alongside its other deficiencies.

The results for PreMOSA, as depicted in Figure 4.6e, are less than promising. Across most

projects, the approach’s performance lags behind that of vanilla EvoSuite, with the sole exception

being the Chart project.

Empirical Study 36

In the current dataset, the Chart project encompasses a total of 10 bugs. Notably, for one of

these bugs, PreMOSA located the bug precisely at the first position, whereas vanilla EvoSuite

identified it within the top three positions. This stands as the singular project where PreMOSA
demonstrates a superior performance.

One might anticipate that PreMOSA, given its knowledge of where to search for bugs, would

outperform vanilla EvoSuite in terms of bug localization. However, this expectation was not real-

ized, which is unfortunate given the potential utility of this approach.

It is pertinent at this juncture to examine the distribution of results to ascertain which ap-

proaches normalize their bug localization more effectively. The kernel density estimation for

vanilla EvoSuite and DDU is depicted on a logarithmic scale in Figure 4.7a. Observationally,

vanilla EvoSuite demonstrates a superior distribution, characterized by a pronounced peak and

reduced variance across the majority of projects.

Examining the peaks from vanilla EvoSuite reveals a trend where they often correspond to

an exam score of one. This implies that the bug was identified in the first position. However,

projects like Closure and JacksonDatabind raise concerns due to their peaks aligning with consid-

erably elevated Exam Score values. The Math project presents a dichotomy: certain bugs manifest

excellent results, while others are disappointing. Yet, reassuringly, the magnitude of the peaks

representing commendable results surpasses those of less favorable outcomes. This suggests a

higher number of successfully located bugs as opposed to unsuccessful attempts.

In juxtaposing vanilla EvoSuite with DDU, it becomes evident that DDU generally underper-

forms. Furthermore, it exhibits similar trends as observed for the Closure and JacksonDatabind

projects.

EntBug’s performance parallels that of vanilla EvoSuite, as delineated in Figure 4.7b. Primar-

ily, the approach’s results cluster around an Exam Score of 1. However, unlike vanilla EvoSuite,

most projects lack pronounced peaks, suggesting that EntBug often fails to locate bugs in the first

positions. Furthermore, a noticeable shift towards the spectrum’s right end implies that EntBug
frequently ranks bugs lower on its list.

In Figure 4.7b, Ulysis exhibits enhanced peak prominence for several projects, showcasing

admirable outcomes. However, a discernible observation is that these peaks correspond to worse

Exam Scores, especially when juxtaposed against vanilla EvoSuite and EntBug. Notably, Ulysis
crafted tests for the fewest bugs, signaling potential inadequacies in its test generation capabilities.

Nonetheless, on the occasions it succeeds, its performance is reasonably satisfactory.

Figure 4.7c depicts the kernel density estimation for PreMOSA in comparison with test suites

crafted by human developers. PreMOSA’s outcomes are noticeably underwhelming, exhibiting

a sample distribution that doesn’t gravitate toward favorable Exam Scores. This is particularly

evident for the Jsoup project, where a pronounced distribution suggests a propensity toward higher

Exam Scores, indicating a diminished proficiency in bug localization.

The distribution of results for test suites crafted by human developers is notably commend-

able, demonstrating the most consistent performance in comparison to all other approaches being

evaluated. These insights will be instrumental in addressing the research question RQ3.

4.3 Results 37

10 5 10 3 10 1 101 103 105 107 109

Exam Score

0.00

0.02

0.04

0.06

0.08

0.10
Den

sity

vanilla

Project
Chart
Cli
Closure
Codec
Compress
Csv
Gson
JacksonCore
JacksonDatabind
JacksonXml
Jsoup
JxPath
Lang
Math
Mockito
Time

10 4 10 2 100 102 104 106 108

Exam Score

ddu

Project
Chart
Cli
Closure
Codec
Compress
Csv
Gson
JacksonCore
JacksonDatabind
JacksonXml
Jsoup
JxPath
Lang
Math
Mockito
Time

(a) Vanilla EvoSuite & DDU

10 5 10 3 10 1 101 103 105 107 109

Exam Score

0.00

0.02

0.04

0.06

0.08

0.10

Den
sity

entbug

Project
Chart
Cli
Closure
Codec
Compress
Csv
Gson
JacksonCore
JacksonDatabind
JacksonXml
Jsoup
JxPath
Lang
Math
Mockito
Time

10 5 10 3 10 1 101 103 105 107 109

Exam Score

ulysis

Project
Chart
Cli
Closure
Codec
Compress
Csv
Gson
JacksonCore
JacksonDatabind
JacksonXml
Jsoup
JxPath
Lang
Math
Mockito
Time

(b) EntBug & Ulysis

10 5 10 3 10 1 101 103 105 107 109

Exam Score

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Den
sity

Developer

Project
Chart
Cli
Closure
Codec
Compress
Csv
Gson
JacksonCore
JacksonDatabind
JacksonXml
Jsoup
JxPath
Lang
Math
Mockito
Time

10 4 10 2 100 102 104 106 108

Exam Score

PreMOSA

Project
Chart
Cli
Closure
Codec
Compress
Csv
Gson
JacksonCore
JacksonDatabind
JacksonXml
Jsoup
JxPath
Lang
Math
Mockito
Time

(c) Developer & PreMOSA

Figure 4.7: Kernel Density

Empirical Study 38

4.4 Result Evaluation

Based on the findings thus far, it is already possible to address the research questions delineated

in section 1.4.

In response to research question RQ1, specifically, “To what extent does the employment of

defect prediction-based test suites assist in fault localization?”, the findings indicate a nuanced

outcome. When juxtaposing the performance of vanilla EvoSuite against PreMOSA-the latter

being primarily designed to harness defect prediction-based test suites—vanilla EvoSuite exhibits

superior efficacy in fault localization. Specifically, the baseline version identifies 20.2% of the

bugs in the primary position, in contrast to PreMOSA’s 11.3%. Within the interval of one to three,

vanilla EvoSuite accounted for 23.4% while PreMOSA logged 20.2%. Notably, both approaches

converge at an 8.9% rate of bug localization within the top-5 rankings.

Upon examination, the performance metrics for PreMOSA appear to be less than optimal.

One might argue that identifying bug locations beyond the top-3 rankings holds limited utility

for developers. Considering this perspective, vanilla EvoSuite consistently outperforms across the

board. This observation thus suggests that the adoption of defect prediction-based test suites does

not inherently enhance fault localization.

The other approaches in consideration also integrate algorithms tailored for bug localization.

However, as illustrated in section 4.3.3, they fall short of outperforming vanilla EvoSuite. Notably,

EntBug demonstrated noteworthy results, yet it still did not exceed the established baseline.

The second research question, RQ2, inquires: “Does the utilization of defect prediction-based

test suites enhance fault localization compared to developer-based test suites?”. Analyzing out-

comes from section 4.3.3 and the localization data in Figure 4.8, it’s discernible that the response

is not straightforward. While certain developer-written tests outperform in FL metrics, other in-

stances reveal superior results from defect prediction-based suites. For a more specific compari-

son, consider EntBug, which is tailored for pinpointing faulty components during test generation.

This approach detects 49 out of 124 bugs within the top 3 positions of the suspicious code line

ranking, in contrast to developer test suites that identify 53 bugs. This translates to EntBug having

a 39.5% accuracy in the top 3 rankings, whereas developer suites achieve a 42.7% accuracy.

While developer test suites exhibit superior results in the given instance, it’s imperative to

highlight that the identified bugs differ between the two, with unique bugs detected exclusively by

each method. Intriguingly, vanilla EvoSuite identifies an identical count of 64 bugs within the top

5 out of a total of 124. Hence, the efficacy may vary depending on the project, implying a potential

synergistic approach using both methods.

A pertinent question arises regarding the relationship between coverage and mutation score in

relation to fault localization. RQ3 seeks to elucidate: “Is there a correlation between coverage

and mutation score with enhanced fault localization?”. Comprehensive results, detailed in ap-

pendix A.1, offers a holistic perspective devoid of bug-specific influences. Notably, a discernible

correlation exists between code coverage and fault localization efficacy. An analysis of the data

in section 4.3.1 underscores that projects boasting superior code coverage concurrently exhibit

4.4 Result Evaluation 39

optimal fault localization outcomes. Projects such as Mockito and JacksonXml underscore this

correlation, as their relative code coverage is inferior compared to other projects, mirroring their

suboptimal performance in fault localization.

Regarding mutation score, a parallel observation emerges. Both aforementioned projects reg-

ister as the least proficient in terms of mutation score, and consequently, they also exhibit subpar

fault localization results. In summation, a definitive correlation exists between code coverage and

mutation score in relation to enhanced fault localization. Such an inference aligns with antici-

patory reasoning; comprehensive program execution across diverse situations logically facilitates

more precise bug localization.

Do superior detection outcomes necessarily imply enhanced localization results? RQ4 inves-

tigates this interplay by posing the question: “Is there a correlation between fault detection and

fault localization?”. The empirical evidence does not suggest a direct correlation between these

two metrics. For instance, while the Gson project excels in fault localization, its performance

in fault detection ranks near the bottom among all approaches assessed. In contrast, the Chart

project, despite demonstrating robust fault detection capabilities, fares suboptimally in fault lo-

calization. These observations underscore that the two metrics, although related, address distinct

aspects of the problem space, and proficiency in one does not guarantee success in the other.

An essential facet for examination is the number of tests produced and their efficacy in both

the detection and localization of faults. Research Question 5, denoted as RQ5, poses the question:

“Does the volume of tests generated correlate with the effectiveness in fault detection and fault

localization?”. As documented in section 4.3.1, a distinct variation was noted in the number

of tests produced by each approach. Particularly, DDU and Ulysis generated the fewest tests,

aligning with their inferior performance in FD. In the domain of FL, Ulysis yielded satisfactory

results, yet both approaches still ranked among the least effective. An additional point concerning

Ulysis is its unique behavior of generating tests targeting only 158 faulty components, results

substantially unsatisfactory relative to its counterparts. Inferred from these findings, there is a

tangible association between the number of tests produced and the efficiency in fault detection and

localization. Predominantly, approaches that generated an extensive quantity of tests demonstrated

enhanced performance across both evaluative metrics.

In addressing the sixth research question, denoted as RQ6, the inquiry arises: “Do the ap-

proaches complement each other? Should we use them together?”. The overlap of bugs located

primarily by each approach is depicted in Figure 4.9. It is evident from the data that EvoSuite
and EntBug identify almost identical bugs, suggesting minimal added value when combined. No-

tably, Ulysis is singular in its capability to locate three bugs that remain undetected by the other

approaches, positioning it as a potential complement to the aforementioned approaches. The con-

current application of these approaches carries merit. However, the prioritization methodology

for the results from each approach remains ambiguous. Consequently, while certain approaches

present complementary attributes, the current absence of a definitive result prioritization frame-

work makes their integrated utilization challenging.

Empirical Study 40

10.0

57.14

20.0

11.11

42.86

50.0

7.69

22.22

100.0

40.0

14.29

50.0

20.0

33.33

14.29

42.86

50.0

23.08

25.0

25.93

20.0

14.29

25.0

20.0

33.33

33.33

10.0

14.29

20.0

20.0

30.77

25.0

22.22

20.0

30.0

20.0

22.22

28.57

28.57

40.0

30.77

100.0

16.67

25.93

66.67

22.22

14.29

28.57

7.69

11.11

25.0

20.0

20

20

50

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

Pr
oj

ec
t

ID

Figure 4.8: Fault Localization on Developer Test Suites

1 30

0
0

0

0

1

0

0

0

0
0

0

0
3

1
00

5

4 0
3

0

0

0

0

0

1

4

4

Vanilla
DDU
EntBug
Ulysis
Premosa

Figure 4.9: Venn diagram of Bugs Located on the First Position

4.5 Threats to Validity 41

4.5 Threats to Validity

The presented results come with certain limitations that warrant acknowledgment. Notably, all

the approaches were updated to the latest version of EvoSuite. Such an update could introduce

various implications. To illustrate, every approach in this analysis was originally developed for

earlier versions of EvoSuite. The current iteration might exhibit behaviors that may not necessarily

align with the design intents of these approaches. Furthermore, the manual process required for

updating could introduce human errors into the approaches. Moving forward, it would be prudent

to evaluate the native version of each approach.

Another dimension to consider pertains to the quantity of bugs included in the study. Earlier

studies utilized fewer bugs from the Defects4J repository [32]. Employing all 835 bugs from

the repository might yield unforeseen outcomes, given that the approaches weren’t specifically

tailored for this expanded set. Had they been benchmarked with this volume of bugs initially, the

design approach for some approaches might have diverged.

Each approach possesses its unique configuration. For optimal outcomes, they need to operate

with the most suitable set of parameters. This study couldn’t experiment with varying configura-

tions for each approach. Thus, when it came to parameter tuning, the study leaned on the prior

work of Shamshiri et al. [34], running each approach with the advised parameters. However,

certain specific parameters exclusive to some approaches were exempted from this approach.

Chapter 5

Conclusion

This thesis aims to critically assess the efficacy of test suites generated via the integration of defect

prediction tools in accurately locating bugs. A pivotal component of this research was predicated

on achieving robust fault localization (FL) outcomes from PreMOSA, given its alignment with

the foundational premise of the thesis. Contrary to expectations, as delineated in the section 4.3.3,

PreMOSA exhibited challenges in effective bug localization, with outcomes not surpassing the

established baseline. It was postulated that the incorporation of a defect predictor would augment

the results by offering specific insights into the bug’s location. The underlying rationale was that

if an approach possesses prior knowledge of which components are buggy, the resultant test suite

should be inherently more adept at bug localization. Regrettably, this was not observed with

PreMOSA. The potential underlying factors for this discrepancy are explored in detail in section

4.3.2, further emphasizing the unanticipated outcomes in the area of fault detection.

While the other approaches under consideration do not place an equivalent emphasis on defect

prediction, they incorporate algorithms intended to assist in bug localization. Of these, EntBug
is the sole approach that exhibits commendable performance in both FL and FD. However, its

results do not surpass those of the established baseline for either metric. This underscores the

potential avenues for enhancement in the predictive capacity of these approaches concerning test

suite performance in FL.

A notable observation pertains to the performance of the baseline variant, vanilla EvoSuite.

Astonishingly, it outperformed other specialized approaches despite lacking specific optimizations

for bug localization. This reflects the variant’s evolutionary progress over the years, and its ability

to competently locate bugs without targeted specialization. However, the results from all eval-

uated approaches remain suboptimal for practical applications. For integration into real-world

development environments, tools must precisely pinpoint bug locations, ideally ranking them at

the top of the list of suspicious code lines. Given that none of the assessed approaches consistently

achieved this, there remains a compelling argument against their immediate adoption in real-world

scenarios.

42

5.1 Future Work 43

5.1 Future Work

Going forward, there remain aspects related to this research that warrant further exploration. Cru-

cially, assessing the original versions of each approach used in this study is essential. Given the

modifications made to update them to the most recent version of EvoSuite, testing their initial

forms would offer insights into their inherent efficacy.

As evident from the results section 4.3, nearly all approaches exhibited somewhat surprising

outcomes, not aligning with the superior performance reported in their respective original papers.

It might prove advantageous to re-evaluate these methodologies under their initial settings, such

as using the original bug count and adhering to the original parameter configurations.

Regrettably, the study couldn’t assess a wider range of approaches. Notably, there’s commend-

able research in this field; for instance, Hershkovich et al.’s [20] approach, Quadrant, showed

significant promise and would have been intriguing to evaluate. Unfortunately, due to time con-

straints, its assessment was omitted. This is just one of many examples, as numerous other ap-

proaches will provide further insights into the domain.

References

[1] David Abramson, Ian Foster, John Michalakes, and Rok Sosic. Relative debugging and its
application to the development of large numerical models. Proceedings of the ACM/IEEE
Supercomputing Conference, 2:1405–1418, 1995.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J.C. Van Gemund. An evaluation of similarity coef-
ficients for software fault localization. Proceedings - 12th Pacific Rim International Sympo-
sium on Dependable Computing, PRDC 2006, pages 39–46, 2006.

[3] Hiralal Agrawal, Joseph R. Horgan, Edward W. Krauser, and Saul A. London. Incremental
regression testing. Conference on Software Maintenance, pages 348–357, 1993.

[4] Apache. apache/commons-codec: Apache commons codec.

[5] Apache. apache/commons-compress: Apache commons compress.

[6] Apache. apache/commons-math: Apache commons math.

[7] Martin Burger and Andreas Zeller. Minimizing reproduction of software failures. 2011
International Symposium on Software Testing and Analysis, ISSTA 2011 - Proceedings, pages
221–231, 2011.

[8] Jose Campos, Rui Abreu, Gordon Fraser, and Marcelo D’Amorim. Entropy-based test gen-
eration for improved fault localization. 2013 28th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2013 - Proceedings, pages 257–267, 2013.

[9] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned program slicing.
Information and Software Technology, 40(11-12):595–607, 1998.

[10] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. Formal concept anal-
ysis enhances fault localization in software. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4933
LNAI:273–288, 2008.

[11] Prantik Chatterjee, Abhijit Chatterjee, José Campos, Rui Abreu, and Subhajit Roy. Diagnos-
ing software faults using multiverse analysis. In Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’20, 2021.

[12] James S. Collofello and Larry Cousins. Towards automatic software fault location through
decision-to-decision path analysis. Managing Requirements Knowledge, International Work-
shop on, pages 539–539, 12 1987.

[13] EvoSuite. Evosuite | automatic test suite generation for java.

44

REFERENCES 45

[14] John Field, G. Ramalingam, and Frank Tip. Parametric program slicing. Proceedings of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1995.

[15] Fig. Method, system, and program for logging statements to monitor execution of a program.
Method, system, and program for logging statements to monitor execution of a program,
pages 501–502, 12 1999.

[16] Rajiv Gupta and Mary Lou Soffa. Hybrid slicing: An approach for refining static slices using
dynamic information. SIGSOFT Softw. Eng. Notes, 20(4):29–40, oct 1995.

[17] Robert J. Hall. Automatic extraction of executable program subsets by simultaneous dynamic
program slicing. Automated Software Engineering, 2(1):33–53, 1995.

[18] Mark Harman and Sebastian Danicic. Amorphous program slicing. Program Comprehen-
sion, Workshop Proceedings, pages 70–79, 1997.

[19] Philip A. Hausler. Denotational program slicing. Proceedings of the Hawaii International
Conference on System Science, 2:486–494, 1989.

[20] Eran Hershkovich, Roni Stern, Rui Abreu, and Amir Elmishali. Prioritized test generation
guided by software fault prediction. 2021 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), pages 218–225, 2021.

[21] JetBrains. Tutorial: Debug your first java application | intellij idea documentation.

[22] JodaOrg. Jodaorg/joda-time: Joda-time is the widely used replacement for the java date and
time classes prior to java se 8.

[23] James A. Jones, M. J. Harrold, and J. Stasko. Visualization for fault localization, 2003.

[24] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Processing Letters,
29(3):155–163, 1988.

[25] Microsoft. First look at the debugger - visual studio (windows) | microsoft learn.

[26] Spencer Pearson, Jose Campos, Rene Just, Gordon Fraser, Rui Abreu, Michael D. Ernst,
Deric Pang, and Benjamin Keller. Evaluating and improving fault localization. Proceedings -
2017 IEEE/ACM 39th International Conference on Software Engineering, ICSE 2017, pages
609–620, 7 2017.

[27] Anjana Perera, Aldeida Aleti, Burak Turhan, and Marcel Böhme. An experimental assess-
ment of using theoretical defect predictors to guide search-based software testing. IEEE
Transactions on Software Engineering, 49(1):131–146, 2023.

[28] Alexandre Perez, Rui Abreu, and Arie Van Deursen. A test-suite diagnosability metric for
spectrum-based fault localization approaches. Proceedings - 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering, ICSE 2017, pages 654–664, 7 2017.

[29] PYPL. Top ide index.

[30] Randoop. Randoop | automatic unit test generation for java.

[31] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–
95, 1987.

REFERENCES 46

[32] Rjust. Defects4j github repository.

[33] David S. Rosenblum. Towards a method of programming with assertions. Proceedings -
International Conference on Software Engineering, pages 92–104, 1992.

[34] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and Andrea
Arcuri. Do automatically generated unit tests find real faults? an empirical study of effec-
tiveness and challenges. Proceedings - 2015 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015, pages 201–211, 1 2016.

[35] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software
fault localization. IEEE Transactions on Software Engineering, 42:707–740, 8 2016.

[36] W. Eric Wong and Yu Qi. Bp neural network-based effective fault localization.
https://doi.org/10.1142/S021819400900426X, 19:573–597, 11 2011.

[37] XuBaowen, QianJu, ZhangXiaofang, WuZhongqiang, and ChenLin. A brief survey of pro-
gram slicing. ACM SIGSOFT Software Engineering Notes, 30:1–36, 3 2005.

Appendix A

A.1 Plots for fault localization results without bug interception be-
tween tools.

4.35

8.7

10.0

15.38

33.33

10.53

16.67

22.86

5.56

10.53

13.04

30.43

7.81

10.0

25.93

30.77

16.67

21.05

33.33

5.26

16.67

22.86

13.89

16.67

10.53

4.35

4.35

14.81

7.69

16.67

10.53

33.33

7.89

11.43

4.17

10.53

8.7

21.74

6.25

30.0

25.93

21.05

5.88

7.89

8.33

14.29

18.06

50.0

10.53

30.43

26.09

14.06

30.0

25.93

46.15

16.67

36.84

50.0

25.0

25.71

47.22

33.33

42.11

8.7

10.0

5.26

10.53

8.33

5.56

5.26

17.39

25.0

5.26

13.04

8.7

67.19

10.0

16.67

5.26

88.24

33.33

5.26

5.26

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(a) PreMOSA

25.64

7.47

11.11

15.22

31.25

38.89

11.54

13.04

16.67

6.52

5.26

12.26

14.29

7.69

15.38

15.38

12.64

16.67

25.0

23.91

12.5

5.56

23.08

21.74

33.33

19.57

5.26

31.25

16.98

28.57

26.92

11.54

10.26

6.32

4.35

5.56

7.69

4.35

7.61

10.53

14.06

10.38

14.29

15.38

26.92

10.26

9.2

22.22

6.52

6.25

5.56

4.35

11.96

12.5

17.92

7.69

34.62

28.21

31.03

38.89

25.0

30.43

43.75

22.22

38.46

39.13

33.33

33.7

52.63

31.25

34.91

39.29

23.08

5.13

12.64

5.56

8.7

6.25

11.54

5.43

5.26

5.13

9.77

25.0

8.7

5.56

4.35

6.52

21.05

15.38

10.92

5.56

25.0

16.67

13.04

16.67

8.7

4.69

0 20 40 60 80 100
Chart

Cli
Closure
Codec

Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup
JxPath
Lang
Math

Mockito
Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(b) Developer

Figure A.1: All Located Bugs

47

48

4.55

31.82

7.41

20.0

30.77

40.0

13.33

18.42

28.57

15.79

11.84

11.11

15.79

22.73

13.64

10.0

37.93

15.38

20.0

20.0

66.67

15.79

14.29

36.84

19.74

33.33

15.79

9.09

9.09

7.41

10.0

10.34

20.0

6.67

10.53

13.16

7.89

22.22

5.26

9.09

18.18

10.0

24.14

23.08

40.0

13.16

28.57

10.53

17.11

11.11

10.53

22.73

18.18

7.41

40.0

100.0

24.14

30.77

13.33

31.58

21.43

21.05

36.84

22.22

26.32

9.09

6.67

5.26

7.14

15.79

9.09

5.26

13.64

9.09

72.22

10.0

20.0

93.02

33.33

5.26

5.26

0 20 40 60 80 100
Chart

Cli
Closure
Codec

Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup
JxPath
Lang
Math

Mockito
Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(a) Vanilla EvoSuite

33.33

18.18

6.9

30.77

40.0

12.5

4.35

15.0

35.71

10.26

10.53

25.0

5.26

18.18

14.29

8.62

9.09

37.93

15.38

20.0

18.75

4.35

50.0

22.5

33.33

17.11

25.0

21.05

18.18

14.29

9.09

6.9

15.38

18.75

12.5

7.14

15.38

10.53

12.5

15.79

19.05

5.17

18.18

27.59

20.0

12.5

15.0

7.14

25.64

14.47

12.5

5.26

27.27

9.52

10.34

36.36

100.0

17.24

38.46

31.25

30.0

35.71

12.82

39.47

25.0

26.32

6.25

7.14

10.53

18.18

7.14

15.79

18.18

9.52

68.97

9.09

20.0

89.13

50.0

0 20 40 60 80 100
Chart

Cli
Closure
Codec

Collections
Compress

Csv
Gson

JacksonCore
JacksonDatabind

JacksonXml
Jsoup
JxPath
Lang
Math

Mockito
Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(b) EntBug

15.0

25.0

13.64

8.33

6.25

10.34

15.38

8.33

16.67

22.22

30.0

12.5

27.27

25.0

40.0

12.5

5.71

20.69

25.0

19.23

11.67

33.33

18.18

15.0

12.5

9.09

8.33

6.25

50.0

25.0

7.69

8.33

33.33

9.09

5.56

20.0

6.25

27.27

8.33

40.0

18.75

24.14

23.08

11.67

33.33

15.0

18.75

50.0

18.18

50.0

43.75

8.57

27.59

37.5

30.77

43.33

16.67

36.36

4.55

6.25

10.34

10.0

18.18

16.67

6.25

12.5

9.09

22.22

5.0

59.38

12.5

20.0

82.86

50.0

5.0

9.09

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(c) DDU

10.0

11.11

7.14

33.33

9.09

14.29

25.0

14.29

12.5

21.43

10.34

40.0

44.44

14.29

27.27

57.14

50.0

28.57

4.55

50.0

18.75

21.43

20.69

50.0

66.67

22.22

7.14

12.5

50.0

14.29

6.9

10.0

22.22

7.14

33.33

27.27

14.29

4.55

18.75

21.43

17.24

16.67

27.27

28.57

28.57

18.75

50.0

21.43

34.48

50.0

9.09

14.29

12.5

10 30.0

64.29

16.67

25.0

90.91

50.0

6.25

6.9

33.33

0 20 40 60 80 100
Chart

Cli

Closure

Codec

Compress

Csv

Gson

JacksonCore

JacksonDatabind

JacksonXml

Jsoup

JxPath

Lang

Math

Mockito

Time

Top-1 Top-3 Top-5 Top-10
Top-100 Top-200 Top-500 Top-500+

%

P
ro

je
ct

 I
D

(d) Ulysis

Figure A.2

A.2 Considered bugs for fault detection 49

A.2 Considered bugs for fault detection

A.2.1 Vanilla EvoSuite

Project Bug ID
Chart 1-26

Cli 1-5, 7-12, 14-15, 17-20, 22-38, 40

Closure 1-9, 11-26, 28-50, 52-59, 62, 64-74, 76-79, 81-85, 87-92, 95-

136, 138-143, 145-148, 150-154, 156, 159-162, 164, 166-168,

170-176

Codec 1-12, 14-18

Collections 25, 27-28

Compress 1-47

Csv 1-15

Gson 1-18

JacksonCore 1-25

JacksonDatabind 1-9, 11-13, 16-17, 19-21, 23-29, 32-49, 51-52, 54, 57-58, 61-

68, 70-74, 76, 80-95, 97-103, 105-107, 109-112

JacksonXml 1-6

Jsoup 1-2, 4-10, 12-13, 15-20, 24-27, 29-55, 57, 59-66, 68-70, 72-73,

75-86, 88-90, 93

JxPath 1-3, 5-6, 8-12, 14-22

Lang 1, 3-28, 30-34, 36, 38-65

Math 1-106

Mockito 1-18, 20-29, 31-38

Time 1-20, 22-25, 27

50

A.2.2 PreMOSA

Project Bug ID
Chart 1-26

Cli 1-5, 7-12, 14-15, 17-20, 22-40

Closure 1-50, 52-62, 64-92, 94-136, 138-143, 145-148, 150-154, 156,

159-162, 164, 166-168, 170-176

Codec 1-12, 14-18

Collections 25, 27-28

Compress 1-32, 34-47

Csv 1-15

Gson 1-18

JacksonCore 1-26

JacksonDatabind 1-9, 11-13, 16-17, 19-29, 31-49, 51, 53-54, 56-58, 61-74, 76-

78, 80-95, 97-103, 105-107, 110-112

JacksonXml 1, 3-6

Jsoup 1-2, 4-10, 12-20, 22, 24-27, 29-30, 32-55, 57, 59-66, 68-70,

72-73, 75-86, 88-90, 93

JxPath 1-3, 5-6, 8-12, 14-21

Lang 1, 3-28, 30-65

Math 1-10, 12-106

Mockito 12-17, 22-29, 31-38

Time 1-20, 22-25, 27

A.2 Considered bugs for fault detection 51

A.2.3 EntBug

Project Bug ID
Chart 1-26

Cli 1-5, 7-12, 14-15, 17-20, 22-38, 40

Closure 1-9, 11-26, 28-50, 52-59, 62, 64-74, 76-79, 81-85, 87-92, 95-

143, 145-148, 150-154, 156, 159-161, 164, 166-168, 170-176

Codec 1-12, 14-18

Collections 25, 27-28

Compress 1-32, 34-47

Csv 1-15

Gson 1-18

JacksonCore 1-25

JacksonDatabind 1-9, 11-13, 16-17, 19-21, 23-30, 32-49, 51-54, 57-58, 61-68,

70-74, 76, 80-95, 97-103, 105-107, 109-112

JacksonXml 1, 3-6

Jsoup 1-2, 4-10, 12-13, 15-20, 22, 24-27, 29-55, 57, 59-66, 68-70,

72-73, 75-86, 88-90, 93

JxPath 1-3, 5-6, 8-12, 14-18, 20-22

Lang 1, 3-28, 30-34, 36-65

Math 1-106

Mockito 1-2, 4-5, 7-17, 20, 22-29, 31-38

Time 1-20, 22-25, 27

52

A.2.4 DDU

Project Bug ID
Chart 1-26

Cli 1-5, 7-12, 14-15, 17-20, 22-40

Closure 1-50, 52-62, 64-92, 94-143, 145-148, 150-154, 156, 159-161,

163-164, 166-168, 170-176

Codec 1-12, 14-18

Collections 25, 27-28

Compress 1-47

Csv 1-16

Gson 1-18

JacksonCore 1-26

JacksonDatabind 1-9, 11-14, 16-21, 23-51, 54-58, 60-74, 76-78, 80-108, 110-

112

JacksonXml 1-6

Jsoup 1-2, 4-10, 12-13, 15-22, 24-27, 29-30, 32-55, 57, 59-66, 68-70,

72-86, 88-90, 93

JxPath 1-3, 5-6, 8-12, 14-21

Lang 1, 3-28, 30-65

Math 1-106

Mockito 12-17, 22-38

Time 1-20, 22-27

A.2 Considered bugs for fault detection 53

A.2.5 Ulysis

Project Bug ID
Chart 1-26

Cli 1-5, 7-12, 14-15, 17-20, 22-38, 40

Closure 1-50, 52-62, 64-92, 94-136, 138-143, 145-148, 150-154, 156,

158-161, 163-164, 166-168, 170-176

Codec 1-12, 14-18

Collections 25, 27-28

Compress 1-47

Csv 1-16

Gson 1-18

JacksonCore 1-26

JacksonDatabind 1-9, 11-14, 16-52, 54-58, 60-74, 76-77, 80-103, 105-108, 110-

112

JacksonXml 1-6

Jsoup 1-2, 4-10, 12-13, 15-22, 24-27, 29-55, 57, 59-66, 68-70, 72-73,

75-86, 88-90, 93

JxPath 1-3, 5-6, 8-12, 14-15, 17-22

Lang 1, 3-28, 30-65

Math 1-106

Mockito 12-17, 22-38

Time 1-20, 22-25, 27

54

A.3 Detected bugs

A.3.1 Vanilla EvoSuite

Project Bug ID
Chart 1-6, 8-11, 14-19, 21-26

Cli 1, 5, 8, 12, 14-15, 17-20, 22-25, 29-34, 36, 38, 40

Closure 2, 7, 12, 19, 21-23, 26, 28, 30, 39, 41, 46, 49, 52, 54, 56, 68,

71-73, 76-77, 79, 81-82, 85, 91, 95, 98, 100, 103-104, 116,

124, 128, 131, 134-136, 139-141, 143, 145-148, 150-151, 153-

154, 159-161, 164, 167-168, 173-175

Codec 4-7, 9, 11-12, 15-18

Collections 25

Compress 1-4, 6-9, 11, 14, 17-19, 21, 23-24, 27, 29, 34-35, 38-47

Csv 2-14

Gson 4, 7, 9, 12, 17

JacksonCore 1-4, 7-8, 10-12, 14-17, 20, 22

JacksonDatabind 2-4, 6, 8, 11-13, 16-17, 23, 32, 35-36, 38, 40-42, 44, 46, 49,

51, 57, 61-63, 70, 72, 84, 86, 88-92, 95, 97, 99-100, 102-103,

105-107, 111

JacksonXml 3-4, 6

Jsoup 5-8, 16-20, 25-27, 30, 36, 40-42, 46-50, 52-54, 59-60, 64, 70,

72, 75, 79-80, 83, 85-86, 88-89

JxPath 1-3, 5-6, 8-9, 11-12, 14, 16-18, 21-22

Lang 1, 4-5, 7-9, 11-12, 14-20, 22-24, 27, 32-34, 36, 39, 41, 45-49,

52, 54, 57-61, 65

Math 1-6, 9, 11, 13-14, 21-27, 29, 32, 35-38, 40, 42, 45-49, 51-56,

59-68, 70-73, 75-81, 83-87, 89-90, 92, 94-99, 101-102, 104-

106

Mockito 2, 4, 17, 23, 29, 34-35, 37-38

Time 1-2, 4-9, 11-17, 20, 24-25, 27

A.3 Detected bugs 55

A.3.2 PreMOSA

Project Bug ID
Chart 1, 4-19, 21-26

Cli 1-2, 5, 8, 12, 14-15, 17-20, 22-25, 29-32, 34-35, 37-40

Closure 6-7, 19, 22, 26, 28, 30, 33, 39-41, 46, 49, 52, 54, 56, 58, 62,

65, 68, 72-73, 75-76, 79-82, 85-86, 91, 94-96, 98-100, 103-

104, 106, 109, 124, 128, 131, 134-136, 139-141, 145-148, 150,

152-154, 159, 161, 164, 166-167, 173-175

Codec 2, 4, 6-7, 9, 11-12, 15-18

Compress 1-4, 6, 8-9, 11, 14, 16-19, 23-24, 27-29, 34-35, 38-44, 46

Csv 2-14

Gson 4, 6-7, 9, 12, 17

JacksonCore 1-5, 7-8, 10-18, 20, 22, 26

JacksonDatabind 2-6, 9, 11-13, 16-17, 22-23, 25, 31-33, 36, 38-46, 48-49, 51,

56-57, 61, 63, 70, 72, 84-86, 88, 90-91, 95, 97, 99, 102-103,

105-107, 111

JacksonXml 3-4, 6

Jsoup 5, 8, 14, 16-20, 22, 25-26, 30, 36, 40-44, 46-47, 50, 52-53, 59-

60, 63-64, 72-73, 77, 79-80, 83-84, 86, 88-89, 93

JxPath 1, 3, 5-6, 8-9, 12, 14, 16, 18, 20-21

Lang 1, 4-5, 7, 9-12, 14, 16, 18-19, 22-23, 27, 32-33, 35-37, 39, 41,

44-49, 52-54, 57-59, 65

Math 1-6, 8-9, 13-14, 21-25, 27-30, 32, 35-38, 40, 42, 45-49, 51-53,

55-56, 59-67, 70-73, 75, 77-78, 80-81, 83, 85-90, 92, 94-99,

101-102, 105-106

Mockito 17, 23, 29, 35, 37-38

Time 1-6, 8-9, 11-15, 17, 20, 23-25, 27

56

A.3.3 EntBug

Project Bug ID
Chart 1-8, 10-11, 14-19, 21-26

Cli 1-2, 5, 8, 14-15, 17-20, 22-25, 29, 31-34, 36, 38, 40

Closure 1, 6-7, 12, 17, 19, 21-23, 26, 28, 30, 39, 41-43, 49, 52, 54, 56,

62, 65, 68, 72-73, 76-77, 79, 81-82, 85, 91, 95, 98-100, 104,

109, 115, 128, 131, 134-135, 137, 139-141, 143, 145-148, 150-

154, 159, 161, 164, 167, 173-174

Codec 2, 4-7, 9, 11-12, 15-18

Collections 25

Compress 1-9, 11, 14, 16-19, 23-24, 27, 29, 34-35, 38-46

Csv 2-14

Gson 4, 7, 9, 12, 17

JacksonCore 1-5, 7-8, 10-11, 14-17, 20-22

JacksonDatabind 2-4, 6-8, 11-13, 16-17, 23, 32, 35-36, 38, 40-46, 49, 51, 57, 61,

64, 70, 72, 80, 84, 86, 88-92, 95, 97, 99-100, 102-103, 105-

107, 111

JacksonXml 4, 6

Jsoup 4-5, 7-8, 12, 16, 18-20, 22, 25-27, 30, 36, 40-41, 44, 46-47,

49-50, 52-55, 59-60, 63-64, 72, 75, 77, 79-80, 83, 86, 88-89,

93

JxPath 1, 3, 5-6, 8-10, 12, 14, 16-18, 21-22

Lang 1, 4-5, 7-9, 11-12, 14-20, 22-24, 27-28, 32-34, 36-37, 39, 41,

45-49, 52, 57-61, 65

Math 1-6, 9, 11, 13-14, 21-27, 29, 32, 35-38, 40, 42, 45-49, 51-

56, 59-68, 70-73, 75-77, 79-81, 83-87, 89-92, 94-99, 101-102,

104-106

Mockito 2, 4, 17, 23, 29, 35, 37-38

Time 1-2, 4-9, 11-17, 20, 23-25

A.3 Detected bugs 57

A.3.4 DDU

Project Bug ID
Chart 4-6, 8, 10-12, 14-19, 21-25

Cli 1-2, 5, 8, 15, 17-20, 22-25, 27, 29, 31-32, 34, 38-40

Closure 19, 22, 28, 33, 39, 41, 49, 54, 56, 68, 73, 77, 80, 85, 100, 104,

106, 131, 134, 140-141, 146-148, 150-151, 153, 164, 166-167,

173-175

Codec 2, 4, 6-7, 11-12, 16-18

Compress 1-4, 6, 8-9, 11, 14, 17-19, 26-27, 29, 34, 38, 40-42, 44-46

Csv 2-13

Gson 4, 7, 9, 12, 17

JacksonCore 1-8, 10-11, 14-17, 20, 22

JacksonDatabind 2-4, 6, 8, 11-13, 16, 35-36, 38, 41, 44, 46, 49, 55, 57, 61, 63,

72, 84, 86, 88-90, 92, 97, 99-100, 104-107, 111

JacksonXml 4, 6

Jsoup 5, 8, 16, 18-22, 26, 30, 34, 36, 40-41, 46-47, 50, 52-53, 60, 64,

72, 75, 77, 79, 83, 86, 88-89

JxPath 3, 5-6, 9, 11-12, 16, 18

Lang 1, 7, 9, 11-12, 16, 18-19, 22-23, 32-33, 36, 39, 41, 45-49, 52,

57, 59, 61, 63, 65

Math 1, 3-6, 8, 11, 13-14, 21-24, 26-27, 29, 32-33, 35, 37-38, 40,

42-43, 45-47, 49, 51, 53, 55, 59-60, 62-67, 70-71, 73, 77-78,

80-81, 83, 85-89, 92, 95-98, 101-102, 105

Mockito 17, 23, 29, 35, 37-38

Time 1-2, 4-6, 8-9, 11, 14, 17, 24

58

A.3.5 Ulysis

Project Bug ID
Chart 4, 10, 14-19, 22, 24

Cli 5, 8, 23-25, 27, 31-32, 34, 40

Closure 21-22, 27, 54, 56, 73, 104, 106, 128, 140-141, 146, 148, 174

Codec 4, 7, 11-12, 17-18

Compress 1, 4, 8-9, 11, 14, 18, 29, 34-35, 42, 45

Csv 3-5, 8-9, 12-13

Gson 4, 9, 12, 17

JacksonCore 1-2, 10, 16-17, 20, 22

JacksonDatabind 2, 4, 12-14, 16, 32, 35-36, 43, 46, 55, 57, 61, 63, 72, 88-90, 92,

97, 99, 105

JacksonXml 4, 6

Jsoup 8, 16, 18, 21-22, 26, 30, 40, 49-50, 52, 79, 83, 86, 88-89

JxPath 8-9

Lang 10-12, 18, 32-34, 41, 46-48, 52, 57, 65

Math 1, 3-6, 11, 13-14, 22, 27, 29, 37, 45-46, 56, 59, 66-67, 70-71,

77, 85-86, 89, 92, 96-98, 101

Mockito 35, 38

Time 2, 8, 11

A.4 Considered bugs in Fault Localization 59

A.4 Considered bugs in Fault Localization

A.4.1 Vanilla EvoSuite

Project Bug ID
Chart 1-6, 8-11, 14-19, 21-26

Cli 1, 5, 8, 12, 14-15, 17-20, 22-25, 29-33, 36, 38, 40

Closure 2, 7, 12, 19, 22-23, 26, 28, 30, 39, 41, 46, 49, 52, 54, 56, 68,

72-73, 76-77, 81-82, 85, 91, 95, 100, 103-104, 124, 128, 131,

134-136, 139-141, 143, 145-148, 150-151, 153-154, 159-161,

164, 167, 173-174

Codec 4-7, 9, 12, 15-18

Collections 25

Compress 1-4, 6-8, 11, 14, 17-19, 21, 23-24, 27, 29, 34-35, 38-47

Csv 2-14

Gson 4, 7, 9, 12, 17

JacksonCore 1-4, 7-8, 10-12, 14-17, 20, 22

JacksonDatabind 2-4, 6, 8, 11-13, 16-17, 23, 32, 35, 38, 40-42, 44, 46, 49, 51,

57, 61-63, 70, 72, 84, 86, 88-92, 95, 97, 99-100, 102, 105-107,

111

JacksonXml 3-4, 6

Jsoup 5-8, 16-20, 25-27, 30, 36, 40-42, 46-50, 52-54, 59-60, 64, 70,

72, 75, 79-80, 83, 85-86, 88-89

JxPath 1, 3, 5-6, 8-9, 11-12, 14, 16-18, 21-22

Lang 1, 4-5, 7-9, 11-12, 14-20, 22-24, 27, 32-34, 36, 39, 41, 45-49,

52, 54, 57-61, 65

Math 1-6, 9, 11, 13-14, 21-27, 29, 32, 35-38, 40, 42, 45-49, 51-56,

59-68, 70-73, 75-81, 83-87, 89-90, 92, 94-99, 101-102, 104-

106

Mockito 2, 4, 17, 23, 29, 34-35, 37-38

Time 1-2, 4-9, 11-17, 20, 24-25, 27

60

A.4.2 PreMOSA

Project Bug ID
Chart 1, 4-19, 21-26

Cli 1-2, 5, 8, 12, 14-15, 17-20, 22-25, 29-31, 35, 37-40

Closure 7, 19, 22, 26, 28, 30, 33, 39-41, 46, 49, 52, 54, 56, 58, 62, 65,

68, 72-73, 75-76, 79-82, 85-86, 91, 94-96, 99-100, 103-104,

106, 109, 124, 128, 131, 134-136, 139-141, 145-148, 150, 152-

154, 159, 161, 164, 166-167, 173-175

Codec 2, 4, 6-7, 9, 12, 15-18

Compress 1-4, 6, 8, 11, 14, 16-19, 23-24, 27-29, 34-35, 38-44, 46

Csv 2-14

Gson 4, 6-7, 9, 12, 17

JacksonCore 1-5, 7-8, 10-18, 20, 22, 26

JacksonDatabind 2-6, 9, 11-13, 16-17, 22-23, 25, 31-33, 36, 38-46, 48-49, 51,

56-57, 61, 63, 70, 72, 84-86, 88, 90-91, 95, 97, 99, 102-103,

105-107, 111

JacksonXml 3-4, 6

Jsoup 5, 8, 14, 16-20, 22, 25-26, 30, 36, 40-44, 46-47, 50, 52-53, 59-

60, 63-64, 72-73, 77, 79-80, 83-84, 86, 88-89, 93

JxPath 1, 3, 5-6, 8-9, 12, 14, 16, 18, 20-21

Lang 1, 4-5, 7, 9-12, 14, 16, 18-19, 22-23, 27, 32-33, 35-37, 39, 41,

44-49, 52-54, 57-59, 65

Math 1-6, 8-9, 13-14, 21-25, 27-30, 32, 35-38, 40, 42, 45-49, 51-53,

55-56, 59-67, 70-73, 75, 77-78, 80-81, 83, 85-90, 92, 94-99,

101-102, 105-106

Mockito 17, 23, 29, 35, 37-38

Time 1-6, 8-9, 11-15, 17, 20, 23-25, 27

A.4 Considered bugs in Fault Localization 61

A.4.3 EntBug

Project Bug ID
Chart 1-8, 10-11, 14-19, 21-26

Cli 1-2, 5, 8, 14-15, 17-20, 22-25, 29, 31-33, 36, 38, 40

Closure 1, 6-7, 12, 19, 22-23, 26, 28, 30, 39, 41-43, 49, 52, 54, 56, 62,

65, 68, 72-73, 76-77, 81-82, 85, 91, 95, 99-100, 104, 109, 115,

128, 131, 134-135, 139-141, 143, 145-148, 150-154, 159, 161,

164, 167, 173-174

Codec 2, 4-7, 9, 12, 15-18

Collections 25

Compress 1-8, 11, 14, 16-19, 23-24, 27, 29, 34-35, 38-46

Csv 2-14

Gson 4, 7, 9, 12, 17

JacksonCore 1-5, 7-8, 10-11, 14-17, 20-22

JacksonDatabind 2-4, 6-8, 11-13, 16-17, 23, 32, 35, 38, 40-46, 49, 51, 57, 61,

64, 70, 72, 80, 84, 86, 88-92, 95, 97, 99-100, 102, 105-107,

111

JacksonXml 4, 6

Jsoup 4-5, 7-8, 12, 16, 18-20, 22, 25-27, 30, 36, 40-41, 44, 46-47,

49-50, 52-55, 59-60, 63-64, 72, 75, 77, 79-80, 83, 86, 88-89,

93

JxPath 1, 3, 5-6, 8-10, 12, 14, 16-18, 21-22

Lang 1, 4-5, 7-9, 11-12, 14-20, 22-24, 27-28, 32-34, 36-37, 39, 41,

45-49, 52, 57-61, 65

Math 1-6, 9, 11, 13-14, 21-27, 29, 32, 35-38, 40, 42, 45-49, 51-

56, 59-68, 70-73, 75-77, 79-81, 83-87, 89-92, 94-99, 101-102,

104-106

Mockito 2, 4, 17, 23, 29, 35, 37-38

Time 1-2, 4-9, 11-17, 20, 23-25

62

A.4.4 DDU

Project Bug ID
Chart 4-6, 8, 10-12, 14-19, 21-25

Cli 1-2, 5, 8, 15, 17-20, 22-25, 27, 29, 31-32, 38-40

Closure 19, 22, 28, 33, 39, 41, 49, 54, 56, 68, 73, 77, 80, 85, 100, 104,

106, 131, 134, 140-141, 146-148, 150-151, 153, 164, 166-167,

173-174

Codec 2, 4, 6-7, 12, 16-18

Compress 1-4, 6, 8, 11, 14, 17-19, 26-27, 29, 34, 38, 40-42, 44-46

Csv 2-13

Gson 4, 7, 9, 12, 17

JacksonCore 1-8, 10-11, 14-17, 20, 22

JacksonDatabind 2-4, 6, 8, 11-13, 16, 35-36, 38, 41, 44, 46, 49, 55, 57, 61, 63,

72, 84, 86, 88-90, 92, 97, 99-100, 104-107, 111

JacksonXml 4, 6

Jsoup 5, 8, 16, 18-22, 26, 30, 34, 36, 40-41, 46-47, 50, 52-53, 60, 64,

72, 75, 77, 79, 83, 86, 88-89

JxPath 3, 5-6, 9, 11-12, 16, 18

Lang 1, 7, 9, 11-12, 16, 18-19, 22-23, 32-33, 36, 39, 41, 45-49, 52,

57, 59, 61, 63, 65

Math 1, 3-6, 8, 11, 13-14, 21-24, 26-27, 29, 32-33, 35, 37-38, 40,

42-43, 45-47, 49, 51, 53, 55, 59-60, 62-67, 70-71, 73, 77-78,

80-81, 83, 85-89, 92, 95-98, 101-102, 105

Mockito 17, 23, 29, 35, 37-38

Time 1-2, 4-6, 8-9, 11, 14, 17, 24

A.4 Considered bugs in Fault Localization 63

A.4.5 Ulysis

Project Bug ID
Chart 4, 10, 14-19, 22, 24

Cli 5, 8, 23-25, 27, 31-32, 40

Closure 21-22, 27, 54, 56, 73, 104, 106, 128, 140-141, 146, 148, 174

Codec 4, 7, 11-12, 17-18

Compress 1, 4, 8, 11, 14, 18, 29, 34-35, 42, 45

Csv 3-5, 8-9, 12-13

Gson 4, 9, 12, 17

JacksonCore 1-2, 10, 16-17, 20, 22

JacksonDatabind 2, 4, 12-14, 16, 32, 35, 43, 46, 55, 57, 61, 63, 72, 88-90, 92,

97, 99, 105

JacksonXml 4, 6

Jsoup 8, 16, 18, 21-22, 26, 30, 40, 49-50, 52, 79, 83, 86, 88-89

JxPath 8-9

Lang 10-12, 18, 32-34, 41, 46-48, 52, 57, 65

Math 1, 3-6, 11, 13-14, 22, 27, 29, 37, 45-46, 56, 59, 66-67, 70-71,

77, 85-86, 89, 92, 96-98, 101

Mockito 35, 38

Time 2, 8, 11

64

A.5 Interception of bugs between tools for FL

Project Bug ID
Chart 4, 10, 14-19, 22, 24

Cli 5, 8, 23-25, 31, 40

Closure 22, 54, 56, 73, 104, 140-141, 146, 148, 174

Codec 4, 7, 12, 17-18

Compress 1, 4, 8, 11, 14, 18, 29, 34, 42

Csv 3-5, 8-9, 12-13

Gson 4, 9, 12, 17

JacksonCore 1-2, 10, 16-17, 20, 22

JacksonDatabind 2, 4, 12-13, 16

JacksonXml 4, 6

Jsoup 8, 16, 18, 26, 30, 40, 50, 52, 79, 83, 86, 88-89

JxPath 9

Lang 11-12, 18, 32-33, 41, 46-48, 52, 57, 65

Math 1, 3-6, 13-14, 22, 27, 29, 37, 45-46, 59, 66-67, 70-71, 77, 85-

86, 89, 92, 96-98, 101

Mockito 35, 38

Time 2, 8, 11

	Front Page
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Motivation
	1.4 Research Questions
	1.5 Contributions
	1.6 Reproducibility

	2 Background
	2.1 Introduction
	2.2 Fault Detection
	2.3 Software FL Techniques
	2.3.1 Traditional FL Techniques
	2.3.2 Advanced FL Techniques
	2.3.3 Technique Comparison

	3 State of The Art
	3.1 Related Work on Fault Detection
	3.2 Related Work on Fault Localization

	4 Empirical Study
	4.1 Experimental Setup
	4.2 Metrics
	4.2.1 Test Generation
	4.2.2 Fault Detection
	4.2.3 Fault Localization

	4.3 Results
	4.3.1 Test Generation
	4.3.2 Fault Detection
	4.3.3 Fault Localization

	4.4 Result Evaluation
	4.5 Threats to Validity

	5 Conclusion
	5.1 Future Work

	References
	A
	A.1 Plots for fault localization results without bug interception between tools.
	A.2 Considered bugs for fault detection
	A.2.1 Vanilla EvoSuite
	A.2.2 PreMOSA
	A.2.3 EntBug
	A.2.4 DDU
	A.2.5 Ulysis

	A.3 Detected bugs
	A.3.1 Vanilla EvoSuite
	A.3.2 PreMOSA
	A.3.3 EntBug
	A.3.4 DDU
	A.3.5 Ulysis

	A.4 Considered bugs in Fault Localization
	A.4.1 Vanilla EvoSuite
	A.4.2 PreMOSA
	A.4.3 EntBug
	A.4.4 DDU
	A.4.5 Ulysis

	A.5 Interception of bugs between tools for FL

