
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2015

Design Disjunction for Resilient Reconfigurable Hardware Design Disjunction for Resilient Reconfigurable Hardware

Ahmad Alzahrani
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Alzahrani, Ahmad, "Design Disjunction for Resilient Reconfigurable Hardware" (2015). Electronic Theses
and Dissertations, 2004-2019. 5147.
https://stars.library.ucf.edu/etd/5147

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F5147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/5147?utm_source=stars.library.ucf.edu%2Fetd%2F5147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

DESIGN DISJUNCTION FOR RESILIENT RECONFIGURABLE HARDWARE

by

AHMAD A ALZAHRANI
B.S. Umm Al-Qura University, Saudi Arabia, 2002

M.Sc. University of Arkansas, Fayetteville, 2009

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, FL

Fall Term
2015

Major Professor: Ronald F. DeMara

c© 2015 AHMAD A ALZAHRANI

ii

ABSTRACT

Contemporary reconfigurable hardware devices have the capability to achieve high perfor-

mance, power efficiency, and adaptability required to meet a wide range of design goals. With

scaling challenges facing current complementary metal oxide semiconductor (CMOS), new

concepts and methodologies supporting efficient adaptation to handle reliability issues are

becoming increasingly prominent. Reconfigurable hardware and their ability to realize self-

organization features are expected to play a key role in designing future dependable hardware

architectures. However, the exponential increase in density and complexity of current com-

mercial SRAM-based field-programmable gate arrays (FPGAs) has escalated the overhead as-

sociated with dynamic runtime design adaptation. Traditionally, static modular redundancy

techniques are considered to surmount this limitation; however, they can incur substantial

overheads in both area and power requirements. To achieve a better trade-off among per-

formance, area, power, and reliability, this research presents design-time approaches that

enable fine selection of redundancy level based on target reliability goals and autonomous

adaptation to runtime demands. To achieve this goal, three studies were conducted:

First, a graph and set theoretic approach, named Hypergraph-Cover Diversity (HCD), is

introduced as a preemptive design technique to shift the dominant costs of resiliency to

design-time. In particular, union-free hypergraphs are exploited to partition the recon-

figurable resources pool into highly separable subsets of resources, each of which can be

utilized by the same synthesized application netlist. The diverse implementations provide

reconfiguration-based resilience throughout the system lifetime while avoiding the significant

overheads associated with runtime placement and routing phases. Evaluation on a Motion-

JPEG image compression core using a Xilinx 7-series-based FPGA hardware platform has

demonstrated the potential of the proposed FT method to achieve 37.5% area saving and

iii

up to 66% reduction in power consumption compared to the frequently-used TMR scheme

while providing superior fault tolerance.

Second, Design Disjunction based on non-adaptive group testing is developed to realize a

low-overhead fault tolerant system capable of handling self-testing and self-recovery using

runtime partial reconfiguration. Reconfiguration is guided by resource grouping procedures

which employ non-linear measurements given by the constructive property of f -disjunctness

to extend runtime resilience to a large fault space and realize a favorable range of tradeoffs.

Disjunct designs are created using the mosaic convergence algorithm developed such that at

least one configuration in the library evades any occurrence of up to d resource faults, where d

is lower-bounded by f . Experimental results for a set of MCNC and ISCAS benchmarks have

demonstrated f-diagnosability at the individual slice level with average isolation resolution

of 96.4% (94.4%) for f=1 (f=2) while incurring an average critical path delay impact of

only 1.49% and area cost roughly comparable to conventional 2-MR approaches.

Finally, the proposed Design Disjunction method is evaluated as a design-time method to

improve timing yield in the presence of large random within-die (WID) process variations

for application with a moderately high production capacity. Results for a set of benchmarks

show an average gain in timing yield of up to 39.42%, 36.91%, and 57.45% for total variations

of 25%, 15%, and 5%, respectively. The enhanced timing yield is attained while achieving

reductions in mean delay of 9.96% 6.85%, and 3.58% for the same variability levels.

iv

Dedicated to my family for their support throughout my educational life.

v

ACKNOWLEDGMENTS

I’m genuinely grateful for the financial support from the Ministry of Education of Saudi

Arabia. I also wish to acknowledge with sincere thanks my academic advisor, Prof. Ronald F.

DeMara, for his time, technical feedback, and for providing all needed resources to accomplish

this work. Finally, I would like to extend gratitude to my doctoral committee for their helpful

comments and suggestions.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xii

LIST OF TABLES . xvi

CHAPTER 1: INTRODUCTION . 1

1.1 Reliability Challenges of Reconfigurable Systems 1

1.2 Importance of Runtime Reconfiguration . 3

1.3 Challenges of Online Diagnosis of Reconfigurable Hardware 4

1.4 Mitigating Process Variation Impact on Yield 4

1.5 Contributions of the Dissertation . 5

CHAPTER 2: BACKGROUND AND RELATED RESEARCH 8

2.1 Common Failures in SRAM-based FPGAs 9

2.2 Partial Reconfiguration . 10

2.3 Fault Tolerance using SRAM-based FPGAs 10

2.4 Online fault Diagnosis and Recovery of SRAM-based FPGAs 12

CHAPTER 3: PROBABILISTIC GROUP TESTING TECHNIQUE FOR FAULT

vii

ISOLATION IN RECONFIGURABLE LOGICS 17

3.1 Adaptive Group Testing (AGT) . 17

3.2 Proposed Probabilistic AGT Scheme . 19

3.3 Evaluation Setup . 22

3.4 Results and Analysis . 23

3.5 Summary . 25

CHAPTER 4: FAST ONLINE DIAGNOSIS AND RECOVERY OF RECONFIG-

URABLE LOGIC FABRICS USING DESIGN DISJUNCTION 28

4.1 Design Disjunction . 29

4.2 Non-adaptive Group Testing . 30

4.3 Design for Disjunction on Reconfigurable Architectures 36

4.4 Constructing Disjunct DCs . 37

4.5 Fault Diagnosis using Design Disjunction . 41

4.6 Fault Recovery using Design Disjunction . 43

4.7 Incidental Disjunction for Interconnect Fault Tolerance 45

4.8 Inarticulate Functional Tests . 46

4.9 Case Studies . 48

viii

4.9.1 Evaluation Setup . 49

4.9.2 Case Study 1: ISCAS and MCNC Benchmarks 51

4.9.3 Case Study 2: AES-128 Encryption Core 56

4.9.4 Case Study 3: 2D-DCT Image Processing Core 63

4.10 Comparison of Design Disjunction and Modular Redundancy 66

4.11 Summary . 71

CHAPTER 5: HYPERGRAPH-COVER DIVERSITY FOR MAXIMALLY-RESILIENT

RECONFIGURABLE SYSTEMS . 72

5.1 Introduction . 72

5.2 Background and Related Work . 74

5.2.1 Previous Work on FT on Reconfigurable Hardware 75

5.2.2 Union-free Hypergraphs . 76

5.3 Hypergraph-Cover Diversity . 78

5.4 Evaluation . 84

5.5 Conclusion . 90

CHAPTER 6: PROCESS VARIATION IMMUNITY OF ALTERNATIVE 16NM HK/MG-

BASED FPGA LOGIC BLOCKS . 92

ix

6.1 Introduction . 92

6.2 Effects of Process Variation . 94

6.2.1 Pass Transistor-based Multiplexers with Half-latch 96

6.2.2 Transmission Gate-based Multiplexers 97

6.3 Evaluation Framework . 97

6.4 Results and Conclusions . 100

CHAPTER 7: MITIGATING THE IMPACT OF PROCESS VARIATIONS VIA DIS-

JUNCT RESOURCE UTILIZATION 105

7.1 Introduction . 105

7.2 Delay Modeling under Process Variation . 108

7.3 Evaluation Framework . 110

7.4 Results and Anylsis . 114

7.5 Summary . 118

CHAPTER 8: CONCLUSION AND FUTURE WORK 120

8.1 Fast Online Diagnosis and Recovery using Design Disjunction 120

8.2 Hypergraph-Cover Diversity for Maximally-Resilient Reconfigurable Systems 122

8.3 Mitigating the Impact of Process Variations via Disjunct Resource Utilization 122

x

8.4 Future Work . 123

LIST OF REFERENCES . 124

xi

LIST OF FIGURES

Figure 2.1 FPGA fault tolerance approaches classification. 11

Figure 2.2 FPGA fault diagnosis approaches classification. 12

Figure 3.1 Example of adaptive group testing. 18

Figure 3.2 Strategy for region selection to create each test configuration. . . 21

Figure 3.3 Convergence of suspect set, non-suspect set, and the region size

for the tree multiplier . 23

Figure 3.4 Convergence of suspect set, non-suspect set, and the region size

for the DES . 24

Figure 3.5 Slices articulation count for the tree multiplier 25

Figure 3.6 Slices articulation count for the tree DES. 26

Figure 4.1 Objectives of proposed design disjunction technique. 30

Figure 4.2 (a) Example of a 2-disjunct design matrix. (b) Conventional di-

agnosis decoder. 31

Figure 4.3 Required number of DCs vs. resource count for typical values of

f (δ = 1). 40

Figure 4.4 Fault diagnosis using FSR metric. 43

xii

Figure 4.5 Test coverage vs. number of DCs (T=1000, d=2). 44

Figure 4.6 Fault evasion coverage for f -disjunct set of designs. 46

Figure 4.7 DC count for increasing e (f = 1). 48

Figure 4.8 KC705 board components. 49

Figure 4.9 Articulation rate for the ISCAS and MCNC benchmarks (f=1,

δ = 1). 52

Figure 4.10 Fault recovery coverage (f=1, δ = 1). 55

Figure 4.11 Effect of design disjunction on system performance. 56

Figure 4.12 Hardware implementation block diagram for proposed FT scheme. 58

Figure 4.13 Design flow and fault injection for hardware implementation. . . 59

Figure 4.14 Diagnostic results for resources and DCs (f = 1, e = 2). 61

Figure 4.15 Execution of isolation phase on an AES module. 62

Figure 4.16 Hardware implementation speed-up for the 2D-DCT block on the

KC705 board. 63

Figure 4.17 Overhead distribution of M-JPEG blocks on the KC705 board. . 64

Figure 4.18 Obtained PSNR value for all DCs. 65

Figure 4.19 FSR in ascending order for all resources. 66

Figure 4.20 Average and top PSNR results for partial recovery. 67

xiii

Figure 4.21 Partial recovery results on a test image. 68

Figure 4.22 Area efficiency of design disjunction. 69

Figure 5.1 Example of a (a) Union-free hypergraph. (b) Its incidence matrix. 78

Figure 5.2 (a) Constructing union-free hypergraph using its incidence matrix.

(b) Reducing degree of hypergraph by deleting disjoint hyperedges. . . . 79

Figure 5.3 (a) Constructing hypergraph using its incidence matrix. (b) Ad-

justing degree of hypergraph to fit target application size. 81

Figure 5.4 Example of two equivalent sets of separable HCD resource allo-

cations on 2D array. 84

Figure 5.5 PlanAhead layout for a aingle HCD design alternative. 87

Figure 5.6 PIPs usage overlap among HCD designs. 88

Figure 5.7 PSNR results for proposed HCD and TMR. 88

Figure 5.8 Image quality under varying defect count for HCD. 90

Figure 5.9 Image quality under varying defect count for TMR. 91

Figure 6.1 Netlist for (a) 2:1 PT-based MUX. (b) PT-based 6-input LUT (par-

tial view). 98

Figure 6.2 Design diagram for (a) 2:1 TG-based MUX. (b) TG-based 6-input

LUT (partial view). 99

xiv

Figure 6.3 Delay distribution for (a) PT-based 6-input LUT (w = 2). (b)

TG-based 6-input LUT (w = 1) at σVth = 10%. 101

Figure 6.4 LUT defect rate vs. variation σVth using 16nm PTM model 1 ≤

w ≤ 4. 102

Figure 6.5 Effect of variation on mean delay using PT and TG MUXes. . . 103

Figure 6.6 Design delay variation vs. σVth of PT and TG MUXes. 104

Figure 6.7 Energy-delay product vs. σVth for PT and TG MUXes. 104

Figure 7.1 Quad-tree model using five layers. 108

Figure 7.2 Example of routing resource utilization for two nets. 112

Figure 7.3 Density of delay of critical paths for AES benchmark. 113

Figure 7.4 Density of delay of critical paths for adpcm benchmark. 115

Figure 7.5 Density of delay of critical paths for s38417 benchmark. 115

Figure 7.6 Probability density of delay of critical paths for baseline and de-

sign disjunction . 116

xv

LIST OF TABLES

Table 3.1 Parameters for Each Test Stage (DES Design) 27

Table 4.1 Comparison of Design Disjunction with Related Approaches . . . 32

Table 4.2 Isolation Accuracy Results (δ = 1) 54

Table 4.3 Isolation Accuracy vs. δ for Selected Benchmarks (f = 1) 54

Table 4.4 Design Parameters for AES Modules 60

Table 4.5 Design Parameters for the DCT Hardware Accelerator 65

Table 5.1 Design Parameters for Implemented TMR and HCD 86

Table 7.1 Delay of Critical Path for Baseline and Disjunct Designs 117

xvi

CHAPTER 1: INTRODUCTION

The increased demand for reliable and high performance computing for many applications

including data-centers, medical devices, military aerospace, automobiles, power generation,

electric rail systems, smart grids, and industrial manufacturing have fueled the growth of

FPGA-based systems. In 2013, the global market for FPGAs was valued at $5.45 billion and

it is forecasted to reach $9.88 billion by 2020 according to Grand View Research, Inc. The

requirement for more reliable FPGA-based systems is further driven by the promotion of

safety regulations in electric and hybrid electric automobiles and increased high availability

requirements of virtualization, social, cloud, and mobile technologies. Furthermore, reliable

FPGA-based systems are considered crucial elements for the success of upcoming space

exploration missions. This chapter discuses motivation for techniques to addresses reliability

challenges for reconfigurable hardware and highlights the contributions of this work.

1.1 Reliability Challenges of Reconfigurable Systems

Continued scaling of transistor feature size has exacerbated reliability issues, e.g. aging ef-

fects, latent faults, and temporary failures in integrated circuits (ICs). Consequently, the

need for effective fault tolerance (FT) techniques has received increasing interest over the last

decade. A well recognized approach for designing effective reliable systems leverages recon-

figurable hardware such as FPGAs, which can provide exceptional computational capability

at a high level of performance per area and power [1]. Hardware-adaptive devices and their

ability to realize self-organization features are expected to become a key role in designing

future dependable hardware architectures [2]. Additionally, autonomous FT operations real-

ized by reconfigurable hardware have become attractive design decision for deployed systems

1

in remote and harsh environments where routine repair and service are either impossible or

prohibitively expensive. At present, the most widely adopted reconfigurable architectures

are SRAM-based FPGA devices whose capacity can exceed a million logic cells that can

be leveraged to enable new FT techniques. SRAM-based FPGAs have become ubiquitous

in application-specific embedded systems, high performance computing centers as well as

safety-impacting, mission-critical, and high availability commerce-enabling systems. The

FPGA devices themselves can occupy a significant role in overall reliability of FPGA-based

systems [3]. Fortunately, the runtime partial reconfiguration capabilities of contemporary

FPGAs can be utilized to maintain degraded-mode operation while enabling rapid recovery

from a wide range of failure modes.

Over the last two decades, a considerable amount of research has been conducted on realizing

FPGA-based systems that are robust to permanent and transient failures. Device-level and

manufacturing techniques exist to increase FPGA lifetime and reliability at the expense of

higher cost and dramatic decrease in performance as compared to commercial-off-the-shelf

(COTS) components. FT techniques developed for FPGAs are often based on fault-masking

using replication with majority voting. Alternatively, dynamic remapping of a single design

implementation at the functional-module level or logic-tile level is prevalent to relinquish

permanently damaged resources [4]. Commonly-deployed schemes based on voting analysis

such as N-modular redundancy (NMR) can incur N -fold power and area overhead to toler-

ate temporary and permanent failure in up to
⌊
N−1

2

⌋
modules. Effective techniques such as

re-execution and reconfiguration scrubbing [5] [6] have also been adopted along with fault-

masking schemes to provide low-cost recovery form temporary failures. On the other hand,

techniques based on remapping of resources offer the potential to increase fault coverage at

the expense of execution-time complexity. Some runtime remapping processes may entail

on-board execution of the FPGA design flow including placement and routing which are

2

time-consuming tasks even for high performance fabric-embedded cores [7]. Thus, conven-

tional dynamic remapping techniques typically require the system be taken offline for an

undesirable interval of time. For time-sensitive and mission-critical applications, availability

and mitigating downtime can be a crucial requirement for assuring system dependability.

1.2 Importance of Runtime Reconfiguration

With the rise of reconfigurable hardware (RH) over the last two decades, in-field reconfigura-

bility has opened up new possibilities to incorporate pseudo-intelligent FT attributes such as

self-repair and autonomous fault recovery [8]. Such attributes are key enablers for efficient

and sustainable fault-tolerant systems. RH is expected to have an essential role in design-

ing future dependable embedded systems [2]. Unfortunately, exploiting design flexibility of

modern RH for runtime FT is encumbered by the heuristic nature and increasing complexity

of design placement and routing mechanisms. FPGAs being the prominent example of RH

can exemplify this challenge. Execution of a design flow targeting an SRAM-based FPGA

can take an order of minutes to hours using a high-end multi-processing machine [9]. For

low-performance fabric-embedded cores, the computational and energy constraints to exe-

cute in-field design reroute can be prohibitive [7]. We emphasize our observation here based

on the current state of computer-aided design (CAD) tools used with available commercial

off-the-shelf (COTS) reconfigurable components due to the increasing trend in using COTS-

based embedded systems [10] [11]. In light of this major concern, design-time FT strategies

that minimize reliance on runtime execution of design flow are sought which can be readily

integrated with existing vendor tools. More specifically, the dominant implementation cost of

reconfigurability feature can be mitigated by preparing an optimal set of design alternatives

at design phase that properly cover the solution space for reliability exposures at runtime.

3

1.3 Challenges of Online Diagnosis of Reconfigurable Hardware

Test is the enabling technology by which fault tolerance can be ensured. The ability to ob-

tain information about faulty resources is a critical factor to realize efficient self-repair. It

facilitates fault evasion whereby faulty resources are avoided, or whereby partially-damaged

resources can be reassigned other useful functionalities. online fault isolation and recov-

ery approaches for FPGA logic using dynamic reconfiguration have relied on built-in self-

test (BIST) [12] [13]. However, dedicated BIST structures including test pattern genera-

tors (TPGs) and output response analyzers (ORAs) are typically not available for FPGA

platforms [13]. Modern FPGA architectures are also not fully scan-ready. Thus, scan

chains, TGPs, and ORAs are frequently implemented in the fabric directly using look-up

tables (LUTs) and shift registers. As a consequence, BIST-inspired methods can incur up

to 50% increase in FPGA resources [14]. Alternatives that eliminate BIST area and power

overheads, referred to operational testing techniques, conduct functional tests via input data

that is simultaneously used for normal throughput [15]. These techniques attain availability

by relying on runtime inputs, computational redundancy, and output comparison to assess

the subset of resources currently used by an application.

1.4 Mitigating Process Variation Impact on Yield

There is a growing concern as design complexity and process variation continue to grow.

The impact of process variation can affect both functional and timing yield of a final de-

sign. Functional yield describes the proportion of dies that achieve functional correctness,

whereas timing yield necessitates that final designs adhere to specific timing requirements.

For FPGAs, target applications at the time of manufacturing are likely unknown due to

4

the design flexibility nature of these devices. This adds further complexity to performance

prediction and analysis to find the best design and architectural solutions to improve yield.

Fortunately, target applications can take advantage of the reconfigurability of FPGAs by

assigning the application functional blocks to faster resources and region inside a device.

1.5 Contributions of the Dissertation

The main contributions of the dissertation are listed below:

Probabilistic Group Testing Technique for Fault Isolation in Reconfigurable Log-

ics: A probabilistic group testing-based method to isolate multiple faults in reconfigurable

logic is presented. The proposed technique is aimed to locate faulty elements using a low

number of configurations even under the impact of the low coverage problem of functional

testing. The performance of the method was demonstrated using an 8x8 tree multiplier and

data encryption standard (DES) implemented on Xilinx Virtex-2 pro and Virtex-4 FPGAs.

The results have shown that the group testing techniques can be used to carry out fault

isolation phase with a clear outlier behavior. This work is highlighted in Chapter 3.

Fast Online Diagnosis and Recovery of Reconfigurable Logic Fabrics using De-

sign Disjunction: This research proposes novel Design Space Exploration (DSE) [16] ap-

proachES to realize a FT FPGA system. It provides a low-cost fault localization / fault

isolation capability along with rapid fault recovery from temporary and permanent faults

while incurring minimal perturbation to normal system operation. In particular, a small

library of alternative design configurations (DCs) with f -disjunct resource usage are created

during dealing time. The disjunctness of these alternatives enables fault localization using

non-adaptive sparse recovery technique. Furthermore, fault resilience against large fault sce-

5

narios is achieved by reusing a subset of disjunct designs that ensure continual execution

with minimal recovery time. The contributions of this work are summarized as follows:

1. The first attempt to utilize non-adaptive group testing techniques to provide runtime

diagnostic analysis for reconfigurable hardware.

2. Extension of non-adaptive group testing to cases where false test outcomes can disrupt

diagnosis resolution, and

3. An explicit approach to design the optimal number of DCs at design time for recovery

from multiple logic and interconnect faults during the system lifetime.

To realize and validate the effectiveness of the proposed approach, the work is divided into

two phases. The first phase addresses the need for dynamic creation of DCs on existing

reconfigurable architectures and CAD tools with minimal design modifications. The sec-

ond phase involves developing the simulation environment and fault injection mechanism to

experimentally validate the work. The detail of this research is discussed in Chapter 4.

Hypergraph-Cover Diversity for Maximally-Resilient Reconfigurable Systems: In

this work, a design-time FT strategy that minimize reliance on runtime execution of design

flow are sought which can be readily integrated with existing vendor tools. More specifically,

the dominant implementation cost of reconfigurability feature can be mitigated by preparing

an optimal set of design alternatives at design phase that properly cover the solution space for

reliability exposures at runtime. In this work, hypergraph-cover diversity (HCD) approach

based on graph and set theory is proposed to attain this objective for the FT coverage

problem on embedded reconfigurable fabric. The HCD method exploits the strong notion

of separability [17] obtained by union-free hypergraphs [18] to model resource allocation

6

among distinct design alternatives for highly diverse and fault resilient designs. This work is

presented in Chapter 5.

Process Variation Immunity of Alternative 16nm HK/MG-based FPGA Logic

Blocks: Continued miniaturization of semiconductor technology to nanoscale dimensions

has elevated reliability challenges of high density Field-Programmable Gate Arrays (FPGA)

devices due to increasing impacts of Process Variation (PV). The issue is addressed in this

work using a systematic bottom-up analysis by determining the relative influence of PV on

alternate design realizations of FPGA logic blocks. Results for conventional design structures

are obtained through detailed SPICE simulations and related to structural risk features.

Namely, Transmission Gate (TG) and Pass Transistor (PT) based MUX architectures for

realizing Look-Up-Tables (LUTs) are compared. PT-based designs that meet the 95% yield

objective can exhibit as high delay variation which could lead to a considerable failure rate.

PV impact can be reduced if TG-based LUT is considered as alternative. The impact of

transistor sizing is also investigated as a method of mitigating PV susceptibility in FPGA

structures. This detail and results analysis of this work is presented in chapter 6.

Mitigating the Impact of Process Variations via Disjunct Resource Utilization:

The high reconfigurability nature of FPGAs which leads to effective solutions in the domain

of fault tolerance can also be exploited for mitigating the challenge of process variation.

However the cost of exercising reconfigurability feature is high if applied for each affected

device. Thus, a universal set of designs that can be used for a large quantity is sought in

this work through design-time approaches that can be integrated with current commercial

toolchain. The resource diversity achieved by design disjunction allows higher likelihood that

a design may circumvent resources affected by variability. In chapter 7, design disjunction

is investigated for this objective with results that show effectiveness of the proposed design

method to lower the impact of variability.

7

CHAPTER 2: BACKGROUND AND RELATED RESEARCH

FPGAs can be classified into many categories according to different attributes and criteria.

The most common attribute is the memory technology used to store design configurations.

SRAM-Based FPGAs are the most successful type due to the high density of SRAM man-

ufacturing process. Other types found can be based on Flash, EEPROM or anti-fuse links,

each of which has its advantages and target applications.

A great deal of research has been devoted on the ability of reconfigurable logics to build

autonomous fault-tolerant systems. Reconfigurable hardware carry the advantage of reducing

system complexity through offering high degree of flexibility that can ease designers job by

focusing on high level system goals. FPGAs uses configurable logic block (CLB) as flexible

logic resources to implement large diverse applications. They offer this high diversity without

exceeding high power and space envelope. The configurability of these devices makes them a

viable solution to build flexible systems that meet the requirements of fault-tolerant systems.

The primary objective of this work is to utilize reconfigurability of SRAM-Based FPGAs at

fine resolution to ensure correct functionality over a given system lifetime while rapidly and

efficiently mitigating occurred failures. For SRAM-based FPGAs, the primary short-term

reliability challenge is single-event effects (SEUs). Fortunately, this challenge can be ad-

dressed through runtime reconfiguration capability of modern devices. Long-term reliability

concerns include permanent damage in one or more elements of the device. The cause of

permanent failures can be unpredicted which presents a challenge to system designers to

find the optimal design decision for balancing area and power overheads and complexity of

recovery execution time.

8

2.1 Common Failures in SRAM-based FPGAs

Failures in SRAM-based FPGAs can be classified into permanent and transient failures.

Permanent failures include any irreversible damage to the physical resources, whereas tran-

sient failures are short-term events induced by external sources such as power supply noise,

electromagnetic interference, or charged particles [19]. One primary source of failures in

SRAM-Based FPGAs is single event effects (SEEs) which occur when high-energy particles,

such as heavy ions and protons, collide with silicon atoms in the device transistors. The

energy produced by this collision can be high enough to cause single-event-upsets (SEUs)

which invert the logical value retained in a memory cell [20]. Particle-induced faults, also

called soft errors, alter SRAM configuration bits and subsequently lead to a continual func-

tional failure. The affected memory cell has to be rewritten with the correct logic value

to maintain functional correctness. With the high SRAM density of modern FPGAs, the

probability of SEUs occurrence becomes a major concern, particularly in a high radiation

dose environment such as orbital vehicles and nuclear facilities. Another type of SEEs is

single-event latchups (SELs) which arise when particle collision with silicon device forms a

forward-biased diode structure in the device substrate causing high destructive current that

could permanently damage the device. Existing manufacturing process techniques exist to

mitigate this type. Another common source of permanent failures is attributed to wear-out,

or aging, mechanisms such as negative bias temperature instability (NBTI), time-dependent

dielectric breakdown (TDDB), and hot carrier injection (HCI). An effective technique to

mitigate aging is achieved through wear-level mechanism where extra area overhead is in-

troduced and the stress caused by switching activity on logics is distributed evenly among

all available resources. The increase in lifetime due to the balanced stress distribution is

proportional to the area overhead.

9

2.2 Partial Reconfiguration

Modern SRAM-based FPGAs enable partial reconfiguration (PR) which allows the configu-

ration data of a region in an FPGA to be modified without disturbance to the functionality

implemented in other regions of the device. This feature facilitates runtime adaptation to

different system requirements. During design time, system designers identify partial recon-

figurable regions (PRRs) along with the associated partial reconfigurable modules (PRMs)

and use vendor CAD tools to create partial configuration bitstreams for the PRMs. The sizes

of partial bitstreams can be considerably lower than the device full bitstream depending on

the size of the PRRs. This leads to reduced storage requirement and substantial decrease in

configuration time. During runtime, partial bitstream can be loaded to the device through

either external configuration controller, e.g. microcontroller, or internal configuration port,

e.g. Xilinx’s internal configuration access port (ICAP). Currently, PR is supported by the

top two FPGA vendors, Xilinx [21] and Altera [22].

2.3 Fault Tolerance using SRAM-based FPGAs

Fault tolerant system is described as having the property of continuing normal operation in

the presence of failures [23]. Implementing fault tolerant systems has become an important

part in many applications that require high degree of reliability and availability. Mission crit-

ical systems, e.g. those used in space exploration and harsh environments, can be exposed to

a wide range of thermal and environmental stress, ultra-violate radiation, and unknown and

unpredictable operational conditions not account for during design phase. Consequently, the

need for of autonomous fault tolerant platforms to adapt to changing operational conditions.

Typically, fault tolerant systems encompass two important strategies: fault diagnosis and

10

fault recovery, Figure 2.1.

Fault recovery is an important factor when developing a fault tolerant system. It can be

defined as the ability to recover a system to a reliable operation when a fault has occurred

and caused erroneous behavior. Fault recovery techniques normally rely on fault diagnosis

to trigger and direct the recovery phase.

Most fault tolerant systems for reconfigurable devices can be divided into either device-

level or configuration-level. Device level approaches use hardware spatial redundancy to

implement fault tolerance by replacing faulty components with healthy resources or modules.

Configuration level approaches take advantage of device reconfigurability to avoid faulty

fabrics.

Figure 2.1: FPGA fault tolerance approaches classification.

Fault diagnosis, on the other hand, is the process of detecting faults and finding the cause

of system failure. Fault diagnosis often requires two phases: fault detection and fault iso-

lation or fault localization [24] as depicted in Figure 2.2. Fault diagnosis strategy can be

either functional testing or resource-oriented testing. Majority of fault diagnosis methods

are based on resource-oriented approaches which attempt to detect and isolate faults using

11

hardware-based mechanism. The common approaches under this category are: built-in-self-

test (BIST) as in roving STARs approach [12], iterative logic array (ILA) [25], and array

based techniques [26]. The drawbacks of these approaches are the fact that they require

exhaustive testing and mostly force device under test (DUT) operation to be taken offline.

Furthermore, these methods only provide fixed fault isolation granularity and can incur high

detection latency. Functional testing approaches mitigate this problem by checking system

functionality through voting elements, e.g. triple modular redundancy (TMR) [27], or out-

put verification circuitry. However due to area overhead imposed by voting system, it can

be less attractive to many target applications.

Figure 2.2: FPGA fault diagnosis approaches classification.

2.4 Online fault Diagnosis and Recovery of SRAM-based FPGAs

Fault tolerant reconfigurable systems are often deployed in mission-critical applications

with strict high reliability and high-availability requirements that mandate minimal down-

time [28]. A critical factor to maintain availability through fault recovery is fault localiza-

tion overhead. Low-overhead fault isolation facilitates rapid fault evasion whereby faulty

resources are bypassed and partially damaged resources can be reassigned useful function-

12

ality. Online fault localization and recovery often considers the structural heterogeneity

of contemporary FPGAs. Testing and fault isolation schemes for structures such as pro-

grammable logic, interconnect, and RAM have been developed through the years based on

the nature of each structure. For example, RAM-based testing has been extensively stud-

ied for decades and the well-known MARCH algorithms [29] have been proven effective for

testing and diagnosis of RAM cells in FPGAs. Previous runtime fault isolation and recovery

approaches for FPGA logic using dynamic reconfiguration have relied on BIST [12] [13]. The

roving STARs scheme [12] partitions the reconfigurable fabric into tiles, and online testing

is carried out by continuously roving a BISTer from one tile to another while resources not

used by the test task are dynamically reconfigured to maintain online operation. Although

failures are resolved at a fine resolution, processing must continuously be suspended to copy

state values prior to each tile movement. Resource recycling is facilitated, although fault

detection depends on the latency of BISTers to rove the device before encountering faulty

cells which, under worst cases, could lead to a large downtime.

Another recent BIST-based fault tolerant FPGA approach is illustrated by the reliable recon-

figurable real-time operating system (R3TOS) [30] whereby a hardware microkernel (HWuK)

provides a Task Scheduler, an Allocator to manage FPGA resources for tile placement, and

a Configuration Manager which converts commands issued by the scheduler and allocator

into FPGA reconfiguration operations. To minimize single-point of failure exposures, HWuK

components are realized by an 8-bit PicoBlaze processor occupying 6 Block RAMs (BRAMs)

and 500 configurable logic blocks (CLBs) protected with selective TMR whose resources also

undergo periodic testing. The HWuK orchestrates redundant instances of critical circuits

using a quarantining process based on BIST and is demonstrated for an inverter controller

of a railway motor and CubeSat space-based application on a Xilinx-4 device. The impact

of BIST overhead in this approach can be hidden by the use of hardware replication and

13

voting.

To reduce the high complexity and cost of BIST, application-dependent BIST testing [31]

focuses on the subset of resources used to maintain design functionality. Thus, exhaustive

test vectors generated by a TPG and response analysis carried out by an ORA can be

relaxed without continually engaging a dedicated reconfiguration controller to carry out the

test. The work in [31] also demonstrates an effective application-dependent diagnosis for

FPGA interconnects. Distinct test configurations are applied to modulate application LUT

functionalities and study output patterns to discern which nets are faulty. These application-

dependent approaches assume the resources undergoing diagnosis procedures are unavailable

during diagnosis. Thus, methods which eliminate these limitations on availability are sought.

Alternative approaches that eliminate BIST area and power overheads, referred to as oper-

ational testing techniques, conduct functional tests via input data that are simultaneously

used for normal throughput [15]. These techniques attain availability by relying on run-time

inputs, computational redundancy, and output comparison to assess the subset of resources

currently used by an application. Permanent and temporary fault monitoring for opera-

tional testing can be realized using concurrent error detection (CED) techniques based on

duplication with comparison (DWC) or parity-based methods [32]. DWC that compares the

Hamming distance between the outputs of two spatially redundant modules is compatible

with recent multi-objective DSE approaches [33] which utilize a cost function that considers

area requirements and resource utilization against overhead of reconfiguration time. In [34],

another operational testing method based on adaptive group testing (AGT) for diagnosis

of reconfigurable fabrics is described under a single-fault assumption. However, since the

creation of test designs are adaptive based on outcomes of successive tests, the AGT method

is unsuitable for high availability applications. Similar to iterative logic array (ILA) and

array-based testing methods [?], most functional testing techniques are mainly used for test-

14

ing a group of resources and provide no fault localization at a fine resolution. In this work,

benefits of operational testing are explored with design disjunction to locate faulty resources

while avoiding BIST overheads.

Other previous design-time approaches for run-time fault recovery have used genetic algo-

rithms (GAs) [27] to evolve a pool of best-fit designs that exhibit resilience to various failures.

The evolved designs are used at run-time to maintain system functionality. Although GAs

can succeed in finding resilient designs, the number of evolved designs requiring functional

evaluation is large, and also being a probabilistic process does not explicitly guarantee con-

vergence. The work in [35] presents an algebraic method for devising an optimal remapping

strategy for logic blocks at row and column levels to reduce recovery latency and minimize

number of spare rows and columns required to tolerate a large combination of fault locations.

Remapping by interchange of device columns and rows is still performed at run-time, which

relies on an independent fault diagnosis process to locate faulty cells before identifying which

resources to interchange. The consensus-based evaluation (CBE) method described in [15]

generates, at design-time, a diverse pool of FPGA designs with alternative device resources.

These designs are evaluated against each other using a duplex arrangement. Statistical clus-

tering is used to identify operationally correct designs without the assumption of a golden

element. The module diversity approach described in [36] provides yet another method for

generating diverse designs at design-time for mitigating aging effects at run-time. The di-

verse designs can be deployed according to a scheduling policy that results in a steady stress

distribution across resources to achieve an extended lifetime. The set of diverse designs also

guarantees fault recovery under a single-fault assumption for all possible single CLB faults.

Unfortunately, none of the existing approaches demonstrate provable coverage for multiple

faults nor do they allow the use of diverse designs for diagnostic tests to locate faulty re-

sources. In this work, we describe an explicit method for generating the optimal number of

15

DCs that guarantee recovery from multiple faults at fine granularity while providing rapid

fault isolation. Broader surveys of recent techniques for fault tolerance, autonomous recovery,

and self-healing of FPGA-based systems are presented in [37], [24], and [38], respectively.

16

CHAPTER 3: PROBABILISTIC GROUP TESTING

TECHNIQUE FOR FAULT ISOLATION IN

RECONFIGURABLE LOGICS

If a test is required to find d defectives among T elements, where d is unknown, then a

straightforward procedure is to test each element individually. Assuming all tests are reliable,

then the time complexity becomes O(T). This cost can be very significant, especially if T

is much larger than d. The cost can be substantially reduced by dividing the T elements

into smaller g subsets, called groups. The collective results after testing each group are

decoded to identify the d defectives. The challenge is to sample the minimal number of

groups sufficient to identify defectives. This is the basic idea behind group testing which

was first introduced by Dorfman [39] for screening a large numbers of soldiers via blood

tests during World War II. Group testing has since been adopted to diverse applications

such as testing for manufacturing defects, DNA library screening, coding theory, software

testing, and BIST-based diagnosis in digital systems [40] [41]. Based upon how test groups

are sampled, most group testing techniques can be classified into adaptive and non-adaptive

categories. In this chapter, the use of adaptive group testing techniques (AGT) for fault

isolation in reconfigurable logics is discussed and a novel probabilistic AGT based strategy

is presented for multiple fault isolation at the slice level.

3.1 Adaptive Group Testing (AGT)

When using adaptive group testing, complete knowledge of how groups are sampled before

the testing process begins is not specified. Groups are constructed iteratively during the

17

Figure 3.1: Example of adaptive group testing.

testing procedure based on test outcomes. As testing progresses, the iterative sampling

of groups narrows down the candidate set of faulty elements until defectives are isolated.

Adaptive group testing was first proposed for functional testing for FPGAs in [34]. Figure 3.1

shows a motivating example that illustrates how adaptive group testing isolates a single

defective programmable logic cell within an array of 36 cells. The reconfigurable region under

test is referred to as a container. Each test group is a set of resources that implements a

functionally equivalent design configuration. Distinct groups are signified by color. Initially,

all cells in the container are deemed suspect. The test starts by dividing the 36 suspect

cells among three configurations. The suspect set is narrowed down to those that are used

by the erroneous configuration. The suspect set is iteratively divided among a new set of

configurations as manifested by stage 1 through stage 3. The algorithm terminates once the

18

suspect set contains only a single cell which identifies the defective cell. The complexity of

this algorithm is logarithmic in the number of cells, T , and depends on the allowed maximum

number of configurations in every test generation.

3.2 Proposed Probabilistic AGT Scheme

Finding faulty slices in FPGA using adaptive group testing can be very challenging due to

the low coverage problem of functional testing. Depending on the target application, fault

articulation may not be manifested under a large input space. This challenge can hinder any

group testing based technique from being an efficient fault isolation method. Fault articula-

tion is essential to the convergence of the algorithm. Even under a single fault assumption,

the isolation process can be delayed or impossible to succeed if the fault articulation rate is

low. A one way to approach this problem is to incorporate group testing with probabilistic

measures. In the proposed scheme herein, two dedicated history matrices are used. A one

matrix is employed to track the fault articulation count for each FPGA slice. The other ma-

trix is used to determine what resource regions in the FPGA can be considered for sampling

test groups in each stage. Group sampling and testing procedures of the proposed scheme

are detailed as follows:

1. Initially suspect resources are divided into eight regions (labeled from r1 to r8) with

equal sizes. Since the number of faulty slices is unknown at the beginning of the

test, and no information are given about faulty elements, all resources are considered

suspects. Thus, for a hardware utilization of approximately 1/2, each region should

contain less than half of the required resources necessary to implement the target

application.

19

2. For each test stage, eight configurations (labeled from C1 to C8) are created such that

each configuration covers only two regions as expressed below and shown in Figure. 3.2:

C1 = r1 ∧ r2

C2 = r2 ∧ r3

C3 = r3 ∧ r4

C4 = r1 ∧ r4

C5 = r5 ∧ r6

C6 = r6 ∧ r7

C7 = r7 ∧ r8

C8 = r5 ∧ r8

Each configuration utilizes only suspect resources from its two assigned regions. The

region size may decrease to a point where two regions have no enough resources to

realize the target application. In that case, a random number of non-suspects are

chosen to complete the required resources. The random selection of non-suspects is

crucial to overcome the low fault articulation that causes some faulty resources to be

exonerated in earlier stages.

3. Configurations are tested against a small set of inputs. In this work, a subset of

random inputs generated from a uniform distribution is considered for testing each

configuration.

4. For configurations that manifest erroneous outputs, entries of the history and region

matrices will be updated for the used resources and their respective regions.

5. The regions that exhibit no fault manifestation will be marked as non-suspect. The

regions that exhibit erroneous outputs are grouped together and divided again into

20

Figure 3.2: Strategy for region selection to create each test configuration.

eight regions. To further increase convergence towards the isolation of faulty elements,

regions are ordered according to the articulation rates of their contained resources.

6. For each new test stage, the non-suspect individual that has the highest fault articula-

tion count is introduced back to the suspect pool. Thus, the faulty slices that escape

the suspect set will be marked again as suspect by the random selection of non-suspect

resources described in step 2. As the algorithm progresses, exonerated faulty slices will

accumulate higher articulation rates and hence can be brought back to the suspect set.

7. The region history matrix is reset for each new stage.

8. Steps 2 through 7 are repeated till the region size becomes small enough to observe

the wide difference in articulation record of reconfigurable resources.

In this scheme, resources that are utilized by faulty configurations will survive in the

suspect pool; thus, increasing the chance for being grouped with other faulty resources

21

to manifest more fault articulations. The target number of faulty resources that can

be isolated by the proposed scheme depends on the number of regions considered. For

the 8-region scheme described herein, the number of faults that can be identified is

at most three. By adapting the number of regions, a higher number of faults can be

identified.

As the test progresses, it is expected that the region size will decrease. If all regions exhibit at

least one faulty output, no region will be excluded in a proceeding test stage, thus new eight

configurations are created and tested again. In addition, the number of suspects should also

decrease as the region size decreases. The faulty slices can be identified once the region size

becomes equal to 1. At this point, faulty slices have much higher accumulated entries in the

history matrix than non-faulty elements. Some faulty resources may move to the non-suspect

set, but they return to the suspect pool as their matrix entries increase. Since regions with

higher articulation rates are forced to be at the top order of the described grouping scheme,

faulty slices will drift to the regions having a lower order to increase the chance to exclude

more regions as the number of test stages increases.

3.3 Evaluation Setup

A modified version of the fault injection and analysis tool (FIAT) tool [34] is developed to

demonstrate the effectiveness of the proposed probabilistic AGT method. Two case studies

are conducted in this evaluation. First, an 8x8 tree multiplier is implemented using a Virtex-

2 pro FPGA. The required resources for the considered tree multiplier are 99 slices. Second,

a data encryption standard (DES) core is implemented using a Virtex-4 FPGA. The DES

core requires 322 slices in the target FPGA. The hardware utilization ratio for both case

studies is set to 25%. Three stuck-at faults (SATs) are injected at randomly chosen LUT

22

inputs for each case study. In all experiments, the described AGT procedure is allowed to

run till the region size becomes 1 and distinct difference between faulty and non-faulty slices

is observed. In this evaluation, test vectors are 60 input patterns generated randomly to

avoid any bias towards specific input dataset.

Figure 3.3: Convergence of suspect set, non-suspect set, and the region size for the tree
multiplier

3.4 Results and Analysis

To observe how fault isolation is converged towards the locations of faulty slices, the numbers

of suspects and non-suspects in every test stage are recorded for each case study. The region

size is also examined as the test progresses for each case study. Figures 3.3 and 3.4 depict

23

the results for the tree multiplier and DES designs, respectively. As shown in both figures,

the size of the suspect set in the first test stage equals the application size since all resources

are considered faulty. The suspect set is narrowed down to those that implement a fault-

affected configuration. The testing procedure terminates when the region size becomes one.

The number of test stages needed to locate all faulty slices for the multiplier and DES designs

are 24 and 20, respectively.

Figure 3.4: Convergence of suspect set, non-suspect set, and the region size for the DES

Figures 3.5 and 3.6 show the articulation count for each slice in the tree multiplier and

DES designs, respectively. It is evident that the proposed procedure can identify all faulty

slices after the testing procedure terminates. The maximum discrepancy count will favor

faulty slices, leading to a distinct separation line between faulty and healthy slices. It is also

observed from both figures that articulation data for healthy slices are clustered in a specific

24

range which can be used to determine the outlier status for each slice and thus the target

isolation accuracy required to achieve reliability objectives.

Figure 3.5: Slices articulation count for the tree multiplier

Table 3.1 lists the various algorithm parameters as the test progresses for the multiplier

design. The maximum discrepancy count, denoted by H, reflects the successful fault articu-

lation in each test stage; thus, leading to a fast convergence of the fault isolation approach.

3.5 Summary

In this chapter, a new probabilistic group testing scheme for isolating multiple faults in

reconfigurable logics is described and evaluated using two case studies. The experimental

results demonstrate successful fault isolation of up to three faulty elements using 24 and

25

Figure 3.6: Slices articulation count for the tree DES.

20 test stages for an 8x8 tree multiplier and DES designs, respectively. The number of

regions used in all experiments was fixed to eight, limiting the number of faults isolated

by the method to at most three. However, the scheme can be further extended to include

dynamic number of regions with more optimized resource selection mechanism to increase

fault articulation rate.

26

Table 3.1: Parameters for Each Test Stage (DES Design)

27

CHAPTER 4: FAST ONLINE DIAGNOSIS AND RECOVERY

OF RECONFIGURABLE LOGIC FABRICS USING DESIGN

DISJUNCTION

In this chapter, design disjunction is developed to offer a broad coverage, high resolution, and

low overhead approach to online diagnosis and recovery of reconfigurable fabrics. Design dis-

junction leverages the condensed diagnosability of T logic resources to achieve self-recovery

using partial reconfiguration in O(log T) steps. Reconfiguration is guided by the constructive

property of f -disjunctness which forms O(log T) resource groups at design-time. Resolu-

tion of f simultaneous resource faults is shown to be guaranteed when the resource groups

are mutually f -disjunct. This extends runtime fault resilience to a large resource space

with certainty for up to f faults using a decision-free resolution process that also provides

a high likelihood of identifying the fault’s location to a fine granularity. Finally, design

disjunction is parameterized to accommodate the low coverage issue of functional testing

for which inarticulate tests can otherwise impair fault isolation. Experimental results for

MCNC and ISCAS benchmarks on a Xilinx 7-series field programmable gate array (FPGA)

demonstrate f -diagnosability at the individual slice level with a minimum average isolation

accuracy of 96.4% (94.4%) for f = 1 (f = 2). Results have also demonstrated millisecond

order recovery with a minimum increase of 83.6% in fault coverage compared to N -modular

redundancy (NMR) schemes. Recovery is achieved while incurring average critical path

delay impact of only 1.49% and energy cost roughly comparable to conventional 2-MR ap-

proaches [42].

28

4.1 Design Disjunction

A new deterministic design space exploration (DSE) [43] [16] method is used to realize

FPGA fault tolerance that achieves the availability and reliability objectives shown in Fig-

ure 4.1. The design space, and thus the fault-resolution space, need only be explored at

design-time by creating a small library of alternative design configurations (DCs) with f -

disjunct resource usage. DCs are created using the mosaic convergence algorithm developed

such that at least one DC in the library evades any occurrence up to d resource faults, where

d is lower-bounded by f . The f -disjunction of resources among alternative DCs enables run-

time fault localization by a non-adaptive group testing (NGT) technique. This realizes a

novel low-overhead fault localization/fault isolation capability along with rapid fault recov-

ery from temporary and permanent faults in reconfigurable fabrics while incurring minimal

area, power, and perturbation to normal system throughput. We show that the combinato-

rial properties of f -disjunctness, along with FPGA dynamic partial reconfiguration, enable

fault resilience against extensive fault scenarios by reusing a subset of the DCs to ensure

continual execution with minimal recovery time.

The remainder of this chapter is organized as follows. First, an introduction to NGT and the

property of f -disjunctness is provided, along with illustrative examples. Second, design for

resource disjunction using the developed mosaic convergence algorithm is presented. Third,

fault isolation and recovery schemes for reconfigurable fabrics using design disjunction are

developed. Forth, evaluation results for several case studies are provided and discussed.

Fifth, a comparison between the proposed work and existing schemes is presented. Finally,

a brief conclusion is provided.

29

Figure 4.1: Objectives of proposed design disjunction technique.

4.2 Non-adaptive Group Testing

The proposed approach adopts a novel functional testing based on non-adaptive group test-

ing to realize efficient online fault isolation and recovery in reconfigurable devices using

design disjunction. Design disjunction is a group testing approach using a set of equivalent

DCs, each of which utilizes a group of FPGA resources to implement functionality in the

target device. These alternative DCs have been placed and routed such that the resource

designation of each design is governed by the f -disjunctness property. This non-adaptive

group testing approach provides highly-compressed diagnosability which can significantly

lower testing costs for online fault localization. In addition, the combinatorial properties

conferred by f -disjunctness allow low-overhead online fault evasion using a small number of

reconfigurations with low requirement of storage capacity.

30

cells

DCs

D10×10 =

1 0 0 1 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0 0 1
0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 1 0 0 1 0





S = {6, 7}

1 0 0 1 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0 0 1
0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 1 0 0 1 0




• h =

1
1
1
0
0
0
1
0
1
1





(a)

(b)

test outcomes
pass(0), fail(1)

defect defect
c4 c9

Figure 4.2: (a) Example of a 2-disjunct design matrix. (b) Conventional diagnosis decoder.

Table 4.1 summarizes features of the proposed scheme and other related approaches discussed

in chapter 2.

31

Table 4.1: Comparison of Design Disjunction with Related Approaches

Approach

Runtime
Fault
Isola-
tion

Resource
Coverage:
Resolution

Provable
Multiple-
fault

Cover-
age

Error-
tolerant
Fault
Isola-
tion

Recovery
Latency

Intrinsic
Wear-
leveling

Recovery-
time

Routing
Advantage

STARs [12] Yes Logic: LUT Yes No
Exhaustive

BIST
Overhead

No Required
Resource
Recycling

R3TOS [30] Yes Logic: LUT Yes Yes
Exhaustive

BIST
Overhead

No Required
Robust
Control

Mechanism

Module
Diversity [36]

No Logic: CLB No No µs→ ms Yes
Unnecessary

Effective
Aging

Mitigation

Hahanov
et al. [35]

No Logic: CLB Yes No
Routing

Overhead
No Required

Provable
Coverage

AGT [34] No Logic: slice No No PAR Overhead No Required
Intrinsic

Adaptation

Consensus-
Based
Evaluation [15]

Yes Logic: slice No No PAR Overhead No Required
Outlier

Identification

Design
Disjunction
(approach
herein)

Yes
Logic: slice &
Interconnect:

PIPs
Yes Yes µs→ ms Yes

Unnecessary Condensed
Diagnosis

32

For non-adaptive group testing, the sampling procedure for all groups is known apriori to the

execution of tests. An intuitive way to model and describe the problem of fault isolation in

FPGAs using this class of group testing techniques is through matrix algebra. The following

notations are used throughout the paper:

• Design matrix Dg×T is a binary matrix indicating the subset of resources used by each of

g DCs. Rows in this matrix correspond to DCs whereas columns correspond to resources.

An entry ki,j of D matrix is one if resource j is utilized by DCi, and zero otherwise.

• Health vector hT×1 is a binary vector of length T representing the health of the T re-

sources, i.e. an entry hj is one if resource j is defective and zero if resource j is healthy.

• Outcome vector og×1 is a binary vector of length g containing the error detection outcomes

of all g DCs, i.e. an entry oi is one if an erroneous outcome is detected while DCi is

deployed and zero if DCi sustains correct operation.

• Set ψ(v) is the subset of elements in binary vector v whose entries are one.

• ω(v) is the weight of binary vector v , i.e. number of elements whose entries are one.

• Γnr is the set of all r-combinations of n elements.

The Outcome Vector, og×1, can be given as follows:

og×1 = Dg×T · hT×1 (4.1)

The objective is to recover the health vector h given that both the design matrix and

the outcome vector are known. The health vector can be efficiently recovered if the design

33

matrix obeys the f -disjunctness property and no more than f resources are defective [44].

The f -disjunctness property constrains how alternative groups are overlapped such that f -

diagnosability still holds. It provides an efficient strategy to distribute each possible subset

of resources of size up to f among a unique subset of DCs. Therefore, defective resources

can be identified by finding the common resources among faulty DCs. The matrix Dg×T is

considered f -disjunct if and only if for any possible combination of columns, S, of size f ,

every column not in S has at least δ row elements whose entries are one and all entries of

the columns S are zero [45]. This can be expressed as:

∀S ∈ ΓTf ,

g∑
i=1

(
Di,j = 1 ∧

⋃
k∈S

Di,k = 0

)
> δ (4.2)

where 1 6 j 6 T and j 6∈ S.

The parameter δ represents the number of rows that satisfy the left side of inequality in

eq. (4.2). We refer to this parameter as the disjunction factor. The minimum value of δ

necessary to ensure f -disjunctness is 1 in which all possible combinations of up to f faulty

resources can be identified provided that all tests are reliable, i.e. each faulty DC will

generate a detectable erroneous outcome. Figure 4.2(a) shows a 2-disjunct matrix and a one

subset of columns, S, of size 2 that meets the condition given by eq. (4.2) for δ = 1.

The decoding procedure to infer the sparse health vector assuming reliable testing is illus-

trated through a binary comparison between each column vector, c, of the D matrix and

the outcome vector o. If the subset of elements of ck having value equal to one is fully

contained within the subset of elements of the outcome vector o having value equal to one,

34

then the resource k must be faulty. Thus, the health vector can be obtained as follows:

h = {hk | hk =


1 if ψ(ck) ⊆ ψ(o)

0 otherwise

, 1 ≤ k ≤ T} (4.3)

Figure 4.2(b) illustrates how the same 2-disjunct matrix is used to single out the two defective

resources, 4 and 9, using the described decoding method. In this example, the sparse health

vector is given as:

h = (0 0 0 1 0 0 0 0 1 0)T (4.4)

Although the binary decoder is efficient, there are two main challenges to properly exploit this

technique for fault isolation of reconfigurable hardware. The first challenge is the well-known

limitation of low coverage from functional testing which can introduce a sampling noise to

the binary decoding method leading to misdiagnosis. Hence, a suspiciousness ranking metric

that classifies resources according to their existence rate in failed DCs is developed instead

of binary decoding methods. Additionally, f -disjunctness for δ > 1 along with the proposed

ranking metric are shown to be effective for surmounting the low coverage issue of functional

testing. Since all DCs implement the same application functionality while utilizing a disjunct

set of T resources, each DC requires the same resource count. The second challenge is to

construct a constrained f -disjunct design matrix for any given T and with rows of equal

weight dictated by the application size, R. Available techniques used to construct f -disjunct

matrices stipulate a set of conditions on matrix size and the row weights which preclude

the flexibility needed to meet design and resource count constraints of operational testing

of reconfigurable fabrics. In this work, a new combinatorial search algorithm is described

35

to achieve f -disjunctness for any given design parameters T , R, and δ. In this chapter, we

address these two challenges and present results demonstrating the feasibility and advantages

of proposed approach.

4.3 Design for Disjunction on Reconfigurable Architectures

The structural regularity of modern reconfigurable devices and the efficient diagnosability

of non-adaptive group testing can be exploited to realize an effective FT scheme. The

conceptual idea behind design disjunction is to realize a set of disjunct DCs and employs them

to evade and locate defective resources during system operation while maintaining optimal

availability. These DCs are functionally equivalent, but disjunct in terms of the physical

resources that they utilize. Fault tolerance can be achieved by runtime reconfiguration to

load any design in the DCs set that do not utilize defective resources. The diversity in

resource utilization of DCs can also be leveraged during normal system operation for stress

relief to extend system lifetime. As DCs are implemented prior to deployment, only partial

reconfiguration overhead is imposed during testing and recovery. Thus, the need to invoke

the computationally intensive design flow during testing and recovery is eliminated.

The constructive f -disjunctness property provides an effective way for extracting highly fault-

resilient DCs against logic and interconnect failures. Contemporary FPGAs have different

levels of programmable cell granularity. For instance, the basic logic elements such as LUTs,

and flip-flops in the Xilinx FPGA families are organized into logic blocks called slices. Slices

are also grouped into CLBs. In this work, design disjunction is examined at the slice level.

Thus, in the rest of this dissertation, the terms slice and resource are used interchangeably.

To achieve design disjunciton at slice level, the columns in the design matrix correspond to

slices and rows represent DCs. We focus on logic fault localization. However, without loss

36

of generality, the proposed scheme can be combined with a low-cost application-dependent

interconnect testing such as [31] to achieve diagnosis resolution at the interconnect point level.

Moreover, incidental fault recovery of interconnect resources is also seen, as demonstrated

in case studies.

4.4 Constructing Disjunct DCs

Assuming an application is synthesized to a minimum of R slices, then the weight, i.e. the

number of non-zero elements, of every row of the design matrix must equal R. The problem

of constructing f -disjunct matrices has been increasingly studied within coding theory lit-

erature [44]. For the interest of this work, we empirically evaluate the lower bound on DC

count required to reach f -disjunction using the developed mosaic convergence algorithm.

Let the notation (T ,R,f)-disjunct matrix denote an f -disjunct design matrix whose rows

have exactly R non-zero entries out of T . Algorithm 4.4.1 shows the pseudocode for the

proposed mosaic convergence approach for constructing such a matrix. Starting with an ini-

tial row that has R non-zero entries (lines 4-7), each added row represents the best-found

row vector that maximizes the accumulative disjunction ratio (lines 36-49). The disjunction

ratio is defined as follows:

Definition 4.4.1. Disjunction ratio (DR) is the proportion of ΓTf elements that satisfy the

condition stated in eq. (4.2).

37

Algorithm 4.4.1: Mosaic Convergence Algorithm for Constructing (T ,R,f)-disjunct

Design Matrix
Procedure construct (T ,R,f)-disjunct matrix
Input: T : Total Number of Resources

R: Required Resources to Implement Application
f : Number of Defects
δ: Disjunction Factor

Output: Design Matrix, D g×T .

1 φ :=
(T
f

)
= T !
f!(T−f)!

2 ε := φ× (T − f) // binary check count
3 DR := 0
4 Generate a random row vector v, s.t.: length(v) = T and ω(v) = R
5 g := 1 // point to the first row of D
6 Dg := v // insert v as the first row of the design matrix
7 g := g + 1

8 C := ΓTf // set of all f-combinations out of T

9 λφ×T := [δ]φ×T // initialize binary coverage matrix entries to δ
10 DR func(v) // call function DR func to update DR after inserting the row vector v

11 while (DR 6= 1) do
12 v := [1]1×T // start with a row vector v s.t. length(v) = ω(v) = T
13 S max := Cz max

14 for each k ∈ S max do
15 vk := 0

16 while (ω(v) 6= R) do
17 max := 0
18 for i := 1 to T do
19 if (vi 6= 0) then
20 t := v
21 y := λz max
22 ti := 0
23 count := 0

24 for each S ∈ C s.t. i ∈ S do
25 for j := 1 to T do
26 if (tj = 1 ∧ yj 6= 0) then
27 yj := yj − 1
28 count := count + 1

29 if (count > max) then
30 top entry index := i
31 max := count

32 vtop entry index := 0

33 Dg := v
34 g := g + 1
35 DR func(v)

// update DR after inserting a new row

36 Function DR func(a)
37 count := 0
38 max := 0
39 for z := 1 to φ do
40 S := Cz

41 if (∀ k ∈ S, ak = 0) then
42 for j := 1 to T s.t. j 6∈ S do
43 if (λz , j 6= 0 ∧ aj = 1) then
44 λz , j := λz , j − 1
45 count := count+ 1

46 if (ω(λz) > max) then
47 z max := z
48 max := ω(λz)

49 DR := DR+
count

ε× δ

38

The binary coverage matrix λ (line 9) tracks whether each combination S ∈ ΓTf has satisfied

the condition in eq. (4.2). Every added row is initially a T -dimensional row vector v of weight

equals T (line 12). The combinatorial search for optimal v, requires two nested sequential

loops (lines 17-31) which examine each non-zero element in v and pick the element which,

if flipped to zero, yields the largest increment to the disjunction ratio DR. This latter step

is repeated until the weight of the vector v is reduced to R. Once an optimal row vector

is found, the coverage matrix λ is updated to include the incremental coverage of each

row (lines 36-49). The row-by-row construction of design matrix D terminates once the DR

value reaches its maximum value of 1 (line 11).

The complexity of the binary search for each new row is largely determined by T and the

cardinality of set < ⊆ ΓTf that have not yet satisfied the condition expressed in eq. (4.2). The

cardinality of < decreases exponentially as number of rows in the D matrix increase. For

search of the first few rows, the search space for optimal v is still large, which rapidly decreases

as more rows are added to the D matrix. To decrease the execution time of the algorithm,

one option is to limit the combinatorial search to a randomly selected subset of <. This will

increase the speed of the construction algorithm at the expense of obtaining a suboptimal v in

each row iteration. The effect of this suboptimality appears in the final solution as an increase

in g, or number of required DCs to achieve f -disjunctness. In this work, we utilized exhaustive

combinatorial search to capture the lower bound on number of DCs needed to achieve the

discussed FT objectives, although search can be relaxed in practice. The constructed design

matrix is then used to define the set of placement constraints supplied to the design tools to

implement disjunct DCs.

The mosaic convergence algorithm was implemented on an Intel quad-core processor based

39

PC design station. The number of DCs g required to reach f -disjunctness with respect to T

and f is obtained for δ = 1. Figure 4.3 shows collected g values for f = 1, 2, and 3. The

logarithmic trend lines indicate that g grows linearly as resource count increases exponen-

tially. The advantageous logarithmic dependence of g on resource count T obtained by the

mosaic convergence procedure is consistent with results from other probabilistic methods for

constructing unconstrained disjunct matrices [46] [40]. Figure 4.3 also shows the non-linear

increase in g for increasing f . The small number of disjunct DCs signifies the advantage of

design disjunction to lower testing cost and recovery overhead.

Figure 4.3: Required number of DCs vs. resource count for typical values of f (δ = 1).

40

4.5 Fault Diagnosis using Design Disjunction

The binary decoder described in Section 3.2 provides only binary diagnostic data which can

lead to incorrect fault diagnosis in the presence of inarticulate tests. Instead, a ranking

scheme that assesses resources according to their existence rate in failed DCs can reveal a

more accurate estimate of the failure state of the resources. For each resource, the proportion

of failed DCs that utilize the resource is computed and compared with other resources. This

ratio is referred to as fault sensing ratio (FSR) and can be expressed as follows:

FSRi =

∣∣∣∣ g⋃
k=1

Dk,i | Dk,i = 1 ∧ ok = 1

∣∣∣∣
ω(ci)

, 1 ≤ i ≤ T (4.5)

where ci is the ith column vector of the design matrix D .

A resource with a large FSR has a high likelihood of being faulty. To illustrate how FSR is

obtained, the health vector h given by the example described in Section 3.2 can be rewritten

using FSR for each cell, as follows, in which faulty resources get the highest FSR values.

h = (0.3̄ 0.6̄ 0.3̄ 1 0.6̄ 0.6̄ 0.6̄ 0.6̄ 1 0)T

Similarly, the cumulative sum of FSR, denoted as CFSR, for all resources used by each DC

yields a failure ranking metric for DCs. The CFSR is used to determine the best operational

DC if fault isolation at the design configuration level is sought.

We first focus on the case of ideal test coverage in which all fault-affected DCs manifest at

least one erroneous functional output. Figure 4.4 illustrates an example of a single fault

isolation case on a reconfigurable partition of size 20 × 15 = 300 slices for an application

mapped to 195 slices. Using the mosaic convergence procedure in Algorithm 4.4.1, 16 DCs

41

(indexed 1-16) are found sufficient to achieve 1-disjunctness for δ = 1 in this example. The

resource grouping defined by a (300, 195, 1)-disjunct design matrix is shown by the dark blue

cells for each DC. Based on fault detection outcomes after evaluating all the 16 DCs, the

FSR value for each slice is computed. The highest observed FSR reveals the location of

faulty slice as depicted by the FSR heat map.

To examine the quality of fault isolation using the proposed ranking method, the terms

isolation accuracy and fault coverage are defined as follows:

Definition 4.5.1. Isolation accuracy is the number of non-faulty resources that have lower

FSR values than all defectives, divided by the total number of resources.

For instance, given a pool of 1, 000 resources having two defects, an isolation accuracy of

95% indicates that b998× 95%c = 948 of non-faulty resources score lower FSR values than

the two defects.

Definition 4.5.2. Fault coverage is the proportion of all combinations of faulty resources

of size up to f that attain a specified isolation accuracy.

Figure 4.5 shows the required number of DCs, g, to reach various isolation accuracies and

their fault coverage values. The results also demonstrate how Algorithm 4.4.1 progresses

towards the termination criteria, i.e. DR = 100%, as g increases. The resource count T

chosen for this analysis equals 1, 000 and disjunction parameters are f = 2 and δ = 1. In this

case, 55 DCs are sufficient to identify all
(

1,000
2

)
+
(

1,000
1

)
possible fault locations with 100%

isolation accuracy. The value of g can be considerably reduced while maintaining a high

isolation accuracy. A reduction of 36.4% (61.8%) in g results in a slight decrease in isolation

accuracy of 1% (5%). This tradeoff between isolation accuracy and number of required tests

can be conducted based on system reliability goals, e.g. the extent sufficient to achieve fast

42

Figure 4.4: Fault diagnosis using FSR metric.

self-repair. It is important to note again that these simulation results are collected under

the conditions of reliable tests.

4.6 Fault Recovery using Design Disjunction

The combinatorial characteristics of f -disjunct design matrices add another advantage for

design disjunction. The definition expressed in eq. (4.2) implies that any f -disjunct set of

DCs should guarantee that for any possible accumulation of f faulty resources there exists

43

Figure 4.5: Test coverage vs. number of DCs (T=1000, d=2).

at least one DC whose resource set does not include a defective. This implication should not

be considered as the upper bound on the number of recoverable defectives. Since hardware

utilization ratio R/T can increase or decrease the sparsity of design matrix, it is possible to

guarantee fault evasion for larger than f defectives. The normal probability pdc nf(d) that

up to d defective resources are not used by a DC is given as:

pdc nf(d) =
d∏

k=1

(
1− R

T − k − 1

)
, d > 1 (4.6)

Thus, recovery coverage (RC), defined by the probability of recovery for g DCs, can be

computed for any accumulated fault count d as:

RC(d) = 1− [1− pdc nf(d)]g , d > 1 (4.7)

44

where g is the number of DCs.

In order to examine the recovery behavior of the proposed method, three sets of f -disjunct

designs for f = 1, 2, and 3 were tested against all possible set of fault locations ΓTd for varying

accumulated fault count d. Figure 4.6 compares simulation results against our model given

by eq. (4.7). Recovery coverage on the left vertical axis also indicates the proportion of

ΓTd combinations of defective(s) that were successfully evaded by at least one DC. All three

disjunct sets exhibit high fault resilience for fault count d larger than f . A target recovery

rate can be met by choosing the appropriate hardware utilization as indicated in eq. (4.6).

For practical considerations, the optimal number of DCs for recovery during the system

lifetime can be generated at design-time and stored in an off-chip flash memory.The data in

the external flash memory can be protected using hardware redundancy or error correction

schemes in addition to functional verification by CED which is resident on the FPGA.

4.7 Incidental Disjunction for Interconnect Fault Tolerance

Contemporary reconfigurable devices utilize hundreds of thousands of routing points. For

instance, the Xilinx 7-series FPGA family fabricated in 28nm process allows over 3,500

Programmable Interconnect Points (PIPs) to be defined in each switch matrix tile of the

device. This enormous amount of routing flexibility presents a significant challenge for

runtime interconnect testing and diagnosis. Specialized functional testing for interconnects

based on output pattern analysis [31] has been shown effective for diagnosis at the net-

level of a single design. However, a given net can utilize a considerable number of PIPs

spanning multiple interconnect tiles which can prolong the self-repair process. Therefore,

an optimal set of pre-compiled DCs that can evade a large set of faults is highly desirable

for rapid recovery. Since interconnect utilization is precipitated by mapping and placement

45

Figure 4.6: Fault evasion coverage for f -disjunct set of designs.

of logic blocks, a strong design disjunction in the logic fabric has been demonstrated to

also precipitate very strong incidental disjunction in interconnect resources. This property

effectively extends non-adaptive fault recovery to routing fabrics as demonstrated later in

the case studies.

4.8 Inarticulate Functional Tests

In the preceding analysis, we have assumed that a test outcome generated by a fault de-

tection scheme embedded within each DC is reflective of the actual health state of used

resources. However, this assumption for functional testing of digital designs cannot be guar-

46

anteed for various reasons. These include low test coverage due to node’s controllability and

observability constraints, common mode failures, or stuck-at 0 fault conditions in the fault

detection logic. Error-resilient NGT was previously investigated through probabilistic and

theoretical analysis with direct numerical simulations [40] [47]. In Section 3.2, a discussion

was provided for the classical requirement to obtain f -disjunction which states that δ must

be greater than or equal 1. As δ increases beyond 1, the effect of inarticulate tests on the

decoding procedure can be masked. In the context of operational testing of reconfigurable

hardware, increasing the disjunction factor δ results in an increased number of alternative

DCs. Since resources are sensitized in a diverse way as the device is reconfigured to different

DCs, diversity among DCs enables a better collective diagnostic coverage to attenuate the

chance of false test outcomes during individual tests.

In this work, we study how such an extension affects fault diagnosis using the proposed

ranking scheme. The described combinatorial construction method given by the mosaic

convergence procedure in Algorithm 4.4.1 is also used to realize design disjunction for δ > 1.

Figure 4.7 shows the number of DCs for 1-disjunctness and selected δ values. It is evident

that design disjunction for δ > 1 is achieved at modest linear increase in DC count g.

For instance, the case of 7, 000 resources indicates that δ can be increased by an order of

magnitude from δ = 1 to δ = 10 while only roughly tripling the number of DCs required. In

the evaluation section, the effect of increasing δ on fault diagnosis for various case studies are

studied in which we compare the isolation accuracy under the low coverage of operational

testing.

47

Figure 4.7: DC count for increasing e (f = 1).

4.9 Case Studies

The proposed design disjunction was evaluated on a set of MCNC and ISCAS to show its

applicability to a broad range of designs. Two real world applications: AES128 encryption

core and discrete cosine transform (DCT)-based image processing application are also im-

plemented in an FPGA test board to demonstrate autonomous fault diagnosis and recovery

using design disjunction. These two real world examples represent two class of applications.

The AES encryption core is an example of applications that are sensitive to failure and do not

provide inherent fault tolerance. The 2D-DCT image processing core is a known example to

a class of applications that allow degraded performance mode whereby system functionality

can still provide a useful throughput even under the presence of multiple faults. Addition-

48

ally, these applications can adapt diverse ways of fault detection methods. We show how

fault isolation and recovery performance of the proposed technique can work with different

detection techniques such as parity-based, duplication with comparison, and system-level

metrics such as the peak signal-to-noise ratio(PSNR).

For all case studies, Xilinx 7-series FPGAs using Xilinx design and simulation toolsets were

used to generate DCs. For hardware implementation, the Xilinx KC705 embedded board [48]

is adopted, Figure 4.8. This FPGA test board features: 28nm Kintex-7 FPGA, 1 GB DDR3

memory, 128MB linear flash memory, and a USB JTAG port.

Figure 4.8: KC705 board components.

Other distinction in implementation and design flow will be described for each case study.

4.9.1 Evaluation Setup

The proposed work is initially evaluated on a set of MCNC and ISCAS benchmarks through

hardware simulations to show its applicability to a variety of applications. A modularized

49

AES128 encryption core is selected as a realistic target application for the hardware pro-

totype. The actual hardware demonstration is performed on the commercial Xilinx KC705

FPGA evaluation board. The KC705 board features: 28nm-based Kintex-7 FPGA, 1 GB

DDR3 memory, 128MB linear flash memory, and a joint test action group (JTAG) inter-

face. For hardware simulation, a software-based CED scheme is utilized to detect failures

during simulation. Parity-based and DWC error detection methods are adopted in the hard-

ware prototype. For all case studies, Xilinx 7-series FPGAs using Xilinx design toolsets are

used to generate disjunct DCs.

The design flow for the evaluation framework is depicted in Figure 4.13. The flow starts

from a conventional design in a hardware description language using Xilinx’s ISE synthesis

tool. The synthesized netlists for target application are imported to Xilinx’s PlanAhead to

generate the physical implementation of all disjunct DCs. To enable partial reconfiguration

support in the PlanAhead tool, a reconfigurable partition (RP) must be floorplanned such

that it contains T resources necessary to realize the disjunct DCs. The RP is interfaced with

the static region (SR) outside the RP through proxy LUTs. All disjunct DCs must use the

same proxy logic for the target application’s input and output ports which is possible by

locking all port sets with the LOC constraint. Each DC is defined as a distinct reconfigurable

module (RM) inside the RP. Resource allocation for each RM is dictated by the design matrix

constructed for the target application according to the discussed design parameters. Resource

allocation for each DC is added to the design flow by defining the placement AREA GROUP and

CONFIG PROHIBIT constraints in the user constraints file (UCF) for each RM. The PlanAhead

tool then generates Xilinx’s native circuit description (NCD) netlist for each RM.

The stuck-at fault (SAF) model is adopted for fault injection in this evaluation. Fault

injection is incorporated into the flow using Xilinx’s FPGA Editor which can inject SAF

into NCD netlists at any randomly chosen location. Resource information for generating

50

appropriate fault injection commands for the FPGA Editor tool are extracted from Xilinx

design language (XDL) netlists. For hardware simulation of each benchmark, a post PAR

simulation model is generated from each NCD netlist before Xilinx’s ISim simulator is invoked

to verify functionality of each DC. To drive each simulation case, a subset of random inputs

generated from a uniform distribution are used to mimic run-time operational inputs. It is

worth noting that operational testing using concurrent error detection schemes employs a

functional fault model (FFM) which encompasses SAF and a wide range of failure modes

that can alter application functionality.

The evaluation process including resource allocation for design disjunction, fault injection,

and simulation, is carried out by a Python-based software module that automates design and

simulation tasks by invoking all required Xilinx tools through external system commands.

The Python module also parses post PAR design files to extract delays and build a slice-

level netlist using a net connectivity graph with associated functionality and routing resource

information. This netlist is used to examine the recovery rate in relation to logic resources

and PIPs.

4.9.2 Case Study 1: ISCAS and MCNC Benchmarks

For each MCNC and ISCAS benchmark, two f -disjunct sets of DCs are generated for f = 1

and f = 2. Table 4.2 lists the isolation accuracy results averaged over 1, 000 experimental

runs on all benchmarks for f = 1 and f = 2. Results include the 95% confidence interval (CI)

and the area requirements indicated by parameters R and T . In this evaluation, T values are

selected such that the area overhead T/R ≈ 2 and T/R ≈ 3 for f = 1 and f = 2, respectively,

to demonstrate adaptation to various design parameters. The execution time of the mosaic

convergence algorithm, denoted by τmc, to generate the (T ,R,f)-disjunct design matrix for

51

each benchmark is also included. For this evaluation, design disjunction for each benchmark

is realized using δ = 1 to observe the effect of inarticulate operational testing on fault

isolation. As discussed in Section 4, the execution time of the mosaic convergence algorithm

depends largely on T and size of ΓTf . The average execution time of the algorithm for the

application set examined in this evaluation is 89.8 ms (61.1 s) for f = 1 (f = 2). Table 4.2

also shows that the average isolation accuracy over all benchmarks for f = 1 (f = 2) is

96.4% (94.4%). Although the obtained isolation accuracy results are still promising, it is

evident that design disjunction for δ > 1 is needed to overcome the impact of low test

coverage. Figure 4.9 indicates the articulation rate for each benchmark included in this

evaluation which supports the need for a design measure to overcome the low coverage of

operational testing. It is also worthy to note that test coverage depends on the quality of

input test patterns, a higher isolation accuracy can be achieved if specialized high-coverage

test patterns generated by conventional ATPG tools at design-time are used at run-time.

Figure 4.9: Articulation rate for the ISCAS and MCNC benchmarks (f=1, δ = 1).

52

Design disjunction for δ > 1 is also evaluated to demonstrate feasibility to reach optimal fault

isolation under inarticulate testing. Table 4.3 shows how design disjunction for a moderate

increase in disjunction factor δ results in a greater than 99% isolation accuracy for all selected

benchmarks. The three selected benchmarks include the misex3 benchmark which gives the

worst combined isolation accuracy for f = 1 and f = 2 using δ = 1. Nevertheless, isolation

accuracy exceeding > 99% given by the upper 95% CI is reached using δ = 5. A diminishing

return in improving isolation accuracy is also observed as δ increases. Thus, the range

16 δ 6 11 can be chosen for an optimal tradeoff between isolation accuracy and g. A linear

dependency of g on δ is also observed that is consistent with the analysis provided in Section

5.

Figure 4.10 reports fault recovery results for the exhaustive fault coverage evaluation on

logic and PIPs for f = 1 and δ = 1. The design parameters for these benchmarks are similar

to those listed in Table 4.2. It is evident that design disjunction allows the ratio of shared

PIPs among DCs to be much lower than that of logic resources. This is attributed to the

PAR mechanism in the FPGA tool and its reaction to the diverse logic realizations. Also, it

translates into an increase in the likelihood of finding at least one DC that avoids all faulty

resources as confirmed here for logic slices and PIPs.

53

Table 4.2: Isolation Accuracy Results (δ = 1)

f = 1 f = 2
Isolation Accuracy (%) Isolation Accuracy (%)

Benchmark R T g τmc µ 95% CI T g τmc µ 95% CI

Circuit (ms) lower upper (s) lower upper

alu4 73 144 15 41 96.86 96.07 97.65 198 41 12.74 95.78 93.89 97.67

c880 16 30 10 7 95.80 93.85 97.75 45 25 0.057 95.56 93.54 97.57
misex3 103 198 15 98 91.73 89.28 94.18 286 44 51.7 88.16 84.34 91.99
exp5 22 40 11 9 97.17 96.28 98.07 66 29 0.161 93.42 90.19 96.64
vda 43 84 14 13 98.32 97.15 99.50 119 35 1.97 97.13 95.12 99.15

c6288 139 256 15 211 99.14 98.53 99.75 390 48 174.7 97.01 94.69 99.33
seq 132 252 15 205 91.71 89.69 93.74 385 47 170.3 89.90 86.49 93.32

apex4 70 136 14 31 98.56 97.75 99.37 204 41 14.7 97.40 95.87 98.94
des 146 275 16 262 97.31 96.26 98.35 391 48 179.8 92.67 89.55 95.79

c3540 58 112 14 21 97.66 96.31 99.01 162 38 5.97 96.67 95.16 98.19

average – – – 89.8 96.43 95.11 97.74 – – 61.12 94.37 91.88 96.86

Table 4.3: Isolation Accuracy vs. δ for Selected Benchmarks (f = 1)

misex3 c3540 alu4
Isolation Accuracy (%) Isolation Accuracy (%) Isolation Accuracy (%)

δ g τmc µ 95% CI g τmc µ 95% CI g τmc µ 95% CI
(ms) lower upper (ms) lower upper (ms) lower upper

1 15 98 91.7 89.3 94.2 14 21 97.7 96.3 99.0 15 41 96.9 96.1 97.7
3 25 146 96.4 94.7 98.0 23 43 99.7 99.5 99.9 26 75 99.7 98.4 99.5
5 36 201 97.7 96.0 99.4 33 59 99.8 99.7 100.0 34 101 99.7 99.5 99.9
7 46 281 98.8 97.6 100.0 42 79 99.9 99.8 100.0 44 142 99.8 99.7 100.0
9 55 339 98.9 98.0 99.7 51 123 100.0 99.9 100.0 53 179 100.0 100.0 100.0
11 65 426 99.3 98.5 100.0 – – – – – – – – – –

54

Figure 4.10: Fault recovery coverage (f=1, δ = 1).

To observe the impact of design disjunction on application performance, the timing slacks

along critical paths of all DCs are compared to the total slack of baseline design for each

benchmark. The baseline design is the conventional physical implementation of an application

inside its dedicated RP without resource constraints. For typical implementation, PAR

algorithms search for the best placement and routing to meet timing constraints. Total slack

s is given by post PAR timing reports as follows:

s = ttarget − ttotal = ttarget − [tcp − tcps + tcu] (4.8)

where ttarget is target clock period, ttotal is total delay, tcp is critical path delay, tcps is clock

path skew, and tcu is clock uncertainty. ttarget is set such that the total slack of baseline

55

design is 2 ns. Figure 4.11 shows s and tcp data for each benchmark. The average increase

in tcp compared to the baseline design is 1.49% and the average decrease in the ratio of the

total slack to the total delay is only 1.78%. It is also observed that the top-performing DC

can be slightly faster than the baseline design due to the stochastic nature of placement and

routing algorithms which does not guarantee convergence to the optimal solution.

Figure 4.11: Effect of design disjunction on system performance.

4.9.3 Case Study 2: AES-128 Encryption Core

The considered AES encryption core for the hardware prototype is comprised of non-linear

substitution boxes, a key expansion and addition units, and other logic blocks for shifting and

mixing columns of the state matrix where input words are arranged. The AES core is decom-

posed into eight modules each of which has its own embedded error detection domain. Fig-

56

ure 4.12 shows a block diagram for the hardware demonstration system on the KC705 FPGA

board. Error detection schemes for the AES modules are derived mostly from [49]. An em-

bedded MicroBlaze processor orchestrates execution flow of fault recovery and diagnosis,

and constitutes a golden element in this prototype. Partial reconfiguration (PR) using the

internal configuration access port (ICAP) is utilized for partial reconfiguration to minimize

reconfiguration overhead. Xilinx provides the AXI HWICAP IP core and a set of basic li-

brary functions supplied with the Xilinx’s software development kit (SDK) that are used

to control partial reconfiguration via the ICAP at the system level. The advanced extensi-

ble interface (AXI) bus system is used to interface the processor with the ICAP, memory

interfaces, RPs, and other IPs used in the prototype.

Design disjunction is evaluated on the hardware platform using high-resolution image data

which reside in the external DDR3 during the recovery process. A hardware timer is attached

to the developed system bus to accurately capture system throughput and processing time

of fault diagnosis flow. Xilinx’s IPs which form the processing system (PS) including the

MicroBlaze core, memory and communication interfaces, and ICAP reconfiguration logic,

reside in the SR of the device. Partial reconfiguration is integrated in this prototype by

defining a distinct RP for each AES module. Disjunct RMs are then defined and added for

each RP. The design flow of the hardware prototype is extended from the implementation

steps of experimental simulation. The static bitfile for the SR and partial bitfiles for each

RP are obtained from the NCD netlists using the Xilinx’s BitGen tool. The software module

running on the embedded processor developed for the prototype using the Xilinx’s SDK

is combined with the static bitfile using Xilinx’s Data2MEM tool before programming the

FPGA board through its JTAG interface. Partial bitfiles for all RPs are stored in the

off-FPGA flash memory chip before the evaluation begins. When partial reconfiguration

is required, the embedded MicroBlaze processor moves each partial bitstream in the flash

57

memory to the DDR3 memory before being written by the ICAP.

Figure 4.12: Hardware implementation block diagram for proposed FT scheme.

58

Figure 4.13: Design flow and fault injection for hardware implementation.

59

Table 4.4: Design Parameters for AES Modules

Module R T δ g τmc(ms) Bitstream Size Detection Scheme
32-Bit s-boxes 60 119 3 24 41 Parity-based [49]
Mix Columns & Add Round Key 55 111 3 24 39 57.9 KB
128-bit Rotate/Rcon Logics for Key
Expansion 52 102 3 23 32 DWC

Table 4.4 lists design parameters, execution time to realize the design matrix, error detection

method, and size of partial bitstream for each distinct AES module shown in Figure 4.12.

A failure in any module triggers the embedded processor to execute diagnosis and recovery

service routines. Initially, transient and permanent failures are undistinguished. Thus,

articulating inputs are re-issued to ascertain if reconfiguration scrubbing can resolve possible

SEUs. If discrepancies persist, then DCs of the respective RP are configured to the FPGA

through the ICAP. Reconfiguration occurs while using application throughput to stimulate

test sequences and maintain availability. The evaluation window for this prototype is set

to 1, 000 blocks which can be adapted to maintain a desired throughput rate. If the fault

detection signal is asserted at any time within the evaluation window, the fault isolation

flow will continue by loading a subsequent DC. The feedback from the fault detection logic

is captured by the processor where diagnostic data are decoded to identify faulty resources

and the optimal resilient DC based on the ranking scheme described in section 5.1.

Figure. 4.14(a) and Figure. 4.14(b) show the outlier behavior for FSR and CFSR ranking

metrics, respectively, for 15 test cases. For the sake of comparison, FSR and CFSR values

for each test case are normalized from 1 to 10. Each test case is conducted by first selecting

an AES module at random and then injecting a SAF at a randomly chosen LUT input. Fig-

ure 4.14(a) depicts the top 50 resources in ascending order of FSR for each of the 15 test

cases. The defective resources indicated by the red dots rank the highest in FSR with a

considerable difference to their next lower ranking resources. The normalized CFSR values

60

for DCs for the 15 test cases depicted in Figure 4.14(b) show that faulty DCs accumulate

higher CFSR values. Thus, the DC ranking the lowest CFSR for each test case is selected

as the optimal fault-resilient candidate DC for recovery.

Figure 4.14: Diagnostic results for resources and DCs (f = 1, e = 2).

Figure. 4.15 shows the encryption time of the AES core during fault-handling routine for

a selected test case. The test procedure is triggered after injecting a SAF at a randomly

chosen LUT input in one of the 32-bit s-boxes. At the beginning, DC14 is deployed during

fault occurrence. The fault recovery procedure reconfigures the device with the partial bitfile

of DC14 to rule out SEUs. Since discrepancies persist, diagnosis flow continues by testing

the remaining 23 DCs. Execution time is given per 100 plaintext blocks. The encryption

core throughput is mainly impacted by the partial reconfiguration overhead tpr = 4.58 ms

61

and the latency of post-testing decoding phase td = 6.14 ms. The entire diagnosis flow

completes in a millisecond-order time. Fault recovery is achieved after the second test using

DC2 which can be kept in service to maintain availability during time-critical events. The

fault diagnosis flow can continue as shown until all DCs are evaluated so that the locations of

damaged resources and DC for recovery are determined. Since design disjunction is realized

using δ = 3 for the hardware prototype, the inarticulate tests of DC12 and DC19 have no

impact on the trends given by FSR and CFSR. The obtained optimal resilient DC in this

test case is DC6 which is deployed to guarantee sustained recovery.

Figure 4.15: Execution of isolation phase on an AES module.

The hardware prototype illustrates and validates the proposed disjunction technique with

an embedded processor. For practical applications, hard-core processing systems instead of

soft-core IPs can enable lower processing and reconfiguration overheads.

62

4.9.4 Case Study 3: 2D-DCT Image Processing Core

The DCT-based Motion-JPEG (MJPEG) was selected due to its widespread use for image

and video compression. Image and video compression applications are commonly used in

space exploration missions, earth satellites, and monitoring systems in high radiation-dose

environments. MJPEG core comprises different blocks, most of which are not computation-

ally intensive and can be implemented in software with a reasonable efficiency. Contrarily,

the DCT block in MJPEG core carries out high computational workload; thus, to reach a

balance among MJPEG pipeline stages and get far better efficiency, it is favorable to imple-

ment DCT block using a dedicated reconfigurable hardware. Figures 4.16 and 4.17 present

a few overhead results collected during implementation phase on the KC705 FPGA board

which support these facts.

Figure 4.16: Hardware implementation speed-up for the 2D-DCT block on the KC705 board.

In this case study, we show how fault diagnosis and recovery based on proposed approach

63

can be effective for this type of applications. By using quantifiable characteristics such as

the PSNR [50], the need for hardware error detection can be eliminated, thereby a large

saving in area and power can be obtained. PSNR is based on mean square error (MSE)

computed by averaging the intensity difference between pixels of recovered and original

images. The recovered image is obtained by a fast software-based inverse discrete cosine

transform (IDCT).

Figure 4.17: Overhead distribution of M-JPEG blocks on the KC705 board.

Table 4.5 shows the required number of resources to implement the DCT accelerator on

the KC705 board, the total dedicated resources for its RP, the number of DCs required for

1-disjunctness, and bitstream size for its RP.

Fault isolation using still images are considered in this work. To achieve fault isolation using

the PSNR metric, the PSNR value for each DC is computed for the same image frame. The

problem of finding which DC is faulty turns out to be equivalent to finding the mode of the

64

Table 4.5: Design Parameters for the DCT Hardware Accelerator

Figure 4.18: Obtained PSNR value for all DCs.

collected PSNR values. Since each DC uses resources in a different way, the PSNR value

for each faulty DC tends to be unique. In contrast, healthy DCs maintain a similar PSNR

value. By finding the mode, the described decoding scheme using the FSR and CFSR

metrics can be used to isolate faulty resources. Figure 4.18 shows the PSNR values for all

DCs after injecting a single random SAF. As seen in the figure, healthy DCs can be clearly

distinguished by simply finding the most commonly repeated PSNR value. Figure 4.19

illustrates the computed FSR in ascending order for all resources. The resource having the

65

highest FSR value identifies the faulty resource, i.e. X113Y228.

Figure 4.19: FSR in ascending order for all resources.

Fault recovery was also demonstrated against a large fault rate. The best operational DC is

determined by the highest recorded PSNR. Figure 4.20 shows fault recovery rate using the

proposed approach for the DCT core. Figure 4.21 shows the best JPEG images that can be

generated from all DCs under different fault rates. These images reflect the highest image

quality identified by the PSNR metric. Image quality was observed to deteriorate as the

number of injected faults increases beyond 30 faults.

4.10 Comparison of Design Disjunction and Modular Redundancy

Modular redundancy using an NMR method is the most common form of hardware redun-

dancy to tolerate failures. NMR methods can be realized using commercially-available and

66

Figure 4.20: Average and top PSNR results for partial recovery.

academic design tools such as Xilinx TMR (XTMR) and BYU-LANL TMR (BL-TMR),

respectively. NMR employs N replicas and majority voting which masks failed modules by

selecting a majority output. The area and power overheads of this scheme are approximately

(N−1)-fold including overheads incurred by voting logic. A single failure in a module can ren-

der that module unusable which compromises failure recoverability besides pre-determining

resource use. Failure recoverability, denoted by FR, is defined as the cumulative sum of

recovery coverage for all possible combinations of fault locations. This definition can be

expressed for a given fault count d as:

FR =
T∑
d=1

RC(d) (4.9)

Let Am be the minimum resource count required to implement a single module and mf be

the number of failed modules, then recovery coverage for NMR scheme denoted by RCNMR

67

Figure 4.21: Partial recovery results on a test image.

is computed as follows:

RCNMR(d) =
|{x ∈ ΓTd s.t. mf 6 bN−1

2
c}|

|ΓTd |
(4.10)

For NMR systems where N = 3 and N = 5, RCNMR can be given as 3 · |ΓAm
d |/|ΓTd | and[

10 · |Γ2Am
d | − 15 · |ΓAm

d |
]
/|ΓTd |, respectively. Fig. 4.22(a) compares the FR of the proposed

work with that of NMR. The area overhead of design disjunction in this comparison includes

68

the overhead of CED based on DWC. Both redundancy methods achieve a linear increase

in failure recoverability as more redundant resources are added; however, design disjunction

offers a higher linear increase. Designing for a higher disjunction factor δ increases g which

proportionately results in a higher RC as given by eq. (4.7) and thus improves FR.

Figure 4.22: Area efficiency of design disjunction.

As depicted in Fig. 4.22(a), due to the provision of fine-grained resource allocation and

relocation by design disjunction, a higher FR compared to NMR schemes can be obtained

for the same area overhead. For instance, with a similar area overhead to TMR, design

disjunction achieves 83.6% (143.3%) increase in FR over TMR for δ = 1 (δ = 7). Similarly,

design disjunction can provide a comparable FR to that of TMR using a considerably lower

69

area overhead. Fig. 4.22(b) reflects the area efficiency of the proposed work compared to

modular redundancy. Area efficiency is quantified by the ratio of FR to the total resource

count T . Similar to modular redundancy methods, a diminishing return on FR occurs as

more hardware resources are considered. The resultant area advantage from using design

disjunction is more prominent for larger area overhead. For the lowest design setting, i.e.

f = 1 and δ = 1, design disjunction still enables a higher FR per area than any NMR

setup included in this analysis. It is also worth noting that the area advantage of design

disjunction can be further enhanced by using parity-based error detection instead of DWC.

The proposed approach can be applied at the reconfigurable logic block level with a broad-

ened range of design parameters to meet area and power constraints while maintaining

both adequate fault isolation and recovery. The area overhead imposed by design disjunc-

tion is roughly limited to T/R, where R includes the resources required to deploy a CED

scheme. Other components such as the embedded processor and memory controller are often

present in embedded reconfigurable systems, and thus do not incur an additional area cost.

The reliability of these components falls within the scope of embedded system reliability

and can be protected by appropriate techniques [51]. The reconfiguration structure is not

limited to ICAP. For instance, Xilinx has recently introduced processor configuration access

port (PCAP) interface [52] for ARM-based systems to write configuration bits. Design dis-

junction is realized without loss of generality by the regularity and reconfigurability features

of the FPGA device used. Since these features are ubiquitous in contemporary reconfigurable

devices, the proposed approach can be highly compatible with many FPGA families from

different vendors and other classes of reconfigurable ICs, such as complex programmable

logic devices (CPLDs).

70

4.11 Summary

Design disjunction offers a mathematically-rooted, parameterized, multi-fault isolation and

recovery technique for reconfigurable hardware fabrics. Combinatorial construction methods

for disjunction and failure ranking schemes for fault diagnosis are developed using operational

testing techniques. Experimental results for a set of benchmarks on a Xilinx 7-series FPGA

have demonstrated f -diagnosability at the individual slice level with a minimum average

isolation accuracy of 96.4% (94.4%) for f = 1 (f = 2). An algebraic-based extension was

also developed to tolerate inarticulate tests and increase isolation accuracy to any level

deemed adequate for successful recovery and repair. Based on these favorable properties

and low costs, design disjunction is worthy of consideration for autonomous resiliency in

reconfigurable systems demanding high availability.

71

CHAPTER 5: HYPERGRAPH-COVER DIVERSITY FOR

MAXIMALLY-RESILIENT RECONFIGURABLE SYSTEMS

Scaling trends of reconfigurable hardware (RH) and their design flexibility have proliferated

their use in dependability-critical embedded applications. Although their reconfigurability

can enable significant fault tolerance, due to the complexity of execution time in their de-

sign flow, in-field reconfigurability can be infeasible and thus limit such potential. This

need is addressed by developing a graph and set theoretic approach, named hypergraph-

cover diversity (HCD), as a preemptive design technique to shift the dominant costs of

resiliency to design-time. In particular, union-free hypergraphs are exploited to partition

the reconfigurable resources pool into highly separable subsets of resources, each of which

can be utilized by the same synthesized application netlist. The diverse implementations

provide reconfiguration-based resilience throughout the system lifetime while avoiding the

significant overheads associated with runtime placement and routing phases. Two novel

scalable algorithms to construct union-free hypergraphs are proposed and described. Evalu-

ation on a Motion-JPEG image compression core using a Xilinx 7-series-based FPGA hard-

ware platform demonstrates a statistically significant increase in fault tolerance and area

efficiency when using proposed work compared to commonly-used modular redundancy ap-

proaches [53].

5.1 Introduction

The exponential growth in number of switching devices in very-large-scale integration (VLSI)

designs dictated by Moore’s law has rapidly increased the likelihood of fault occurrence in

hardware systems. This challenge is aggravated further by the advent of nanofabrication

72

technology which introduced unprecedented reliability issues. Thus, fault tolerance (FT)

techniques for computing systems have received a considerable attention in recent years.

Traditionally, FT techniques have relied on passive modular redundancy which have a lim-

ited benefit per unit area and power. For many critical embedded systems such as those used

in space and avionics platforms, unmanned aerial vehicles (UAVs), land and ocean-based re-

mote sensing units (RSUs), environmental stress and conditions can result in a failure rate

beyond what fault-handling capability of passive approaches can resolve. For such applica-

tions, immediate hands-on maintenance and repair is infeasible and hence a duly deployed

autonomous method which caters to fault tolerance using available healthy resources is cru-

cial for maintaining reliable long-term operation.

With the rise of reconfigurable hardware (RH) over the last two decades, in-field reconfig-

urability has opened up new possibilities to incorporate pseudo-intelligent FT attributes

such as self-repair and autonomous fault recovery [8]. Such attributes are key enablers for

efficient and sustainable fault-tolerant systems. RH is expected to have an essential role in

designing future dependable embedded systems [2]. Unfortunately, exploiting design flexi-

bility of modern RH for runtime FT is encumbered by the heuristic nature and increasing

complexity of design placement and routing mechanisms. SRAM-based field programmable

gate arrays (FPGAs) being the prominent example of RH can exemplify this challenge. Ex-

ecution of a design flow targeting an SRAM-based FPGA can take an order of minutes to

hours using a high-end multi-processing machine [9]. For low-performance fabric-embedded

cores, the computational and energy constraints to execute in-field design reroute can be

prohibitive [7]. We emphasize our observation here based on the current state of computer-

aided design (CAD) tools used with available commercial off-the-shelf (COTS) reconfigurable

components due to the increasing trend in using COTS-based embedded systems [10] [11].

73

In light of this major concern, design-time FT strategies that minimize reliance on runtime

execution of design flow while can easily be integrated with existing vendors tools become

more favorable. More specifically, the dominant implementation cost of reconfigurability

feature can be mitigated by preparing an optimal set of design alternatives at design phase

that properly cover the solution space for reliability exposures at runtime. In this work,

hypergraph-cover diversity (HCD) approach based on graph and set theory is proposed to

attain this objective for the FT coverage problem on embedded reconfigurable fabric. HCD

method exploits the strong notion of separability [17] obtained by union-free hypergraphs [18]

to model resources allocation among distinct design alternatives for highly diverse and fault

resilient designs.

The remainder of the paper is organized as follows. Section II provides background and sum-

marizes related work. Section III describes the graph model for proposed work. Section IV

discuses the case study adopted for evaluation and experimental results. Finally, conclusions

are given in Section V.

5.2 Background and Related Work

FPGA-based embedded systems have become ubiquitous computing platforms owing to the

increasing embedded system functionality and the low non-recurring engineering costs (NREs)

of embedded processor development using FPGAs. A typical FPGA-based embedded sys-

tem may comprise application specific integrated circuits (ASICs) blocks, e.g. digital signal

processors (DSPs), peripheral interfaces, memory controllers to interface with external non-

volatile and main memory, a system bus, and a reconfigurable fabric tightly coupled to a

general purpose processor (GPP). The reconfigurable fabric can act as a general hardware

accelerator for performance-critical functions or as flexible design circuitry to apply runtime

74

changes such as protocol extensions, bug fixes, or advanced features to existing implemen-

tation [54]. Resources in the reconfigurable fabric are organized in a regular 2D array of

identical tiles. Each tile includes a single configurable logic blocks (CLBs) as well as switch-

ing and connection blocks to facilitate inter and intra CLB connections. A CLB is also

referred to as a logic array block (LABs) depending on FPGA device vendor. Each CLB

is a group of identical programmable logical cells called slices. Each slice can have several

look-up tables (LUTs), flip-flops (FFs), multiplexers, carry chains, and dedicated gates for

combining LUTs to realize more complex Boolean functions.

5.2.1 Previous Work on FT on Reconfigurable Hardware

Regularity and logic density of contemporary reconfigurable architectures are particularity

well suited for provision of runtime FT. A great deal of research has been conducted in the

area of FT of reconfigurable hardware [55] [56]. Most FT approaches that exploit runtime

reconfiguration for fault recovery can be classified into covering approaches or embedding

approaches [57].

In the covering approaches, a set of spare resources are predefined and made available to

replace faulty elements [8] [28]. The reconfiguration problem is to find the optimal assignment

of spares to faulty resources such that large combinations of faulty resources can be covered.

In [8], assignment of spare columns of resources is proposed for single-fault tolerance. A

faulty column is avoided by shifting the column-based design implementation to a different

set of healthy columns. Since number of spare assignments is low, they are implemented

at design-time and used during system lifetime to provide low-overhead fault recovery. A

single faulty resource in a column renders the whole column unusable and hence this method

can result in a low area efficiency. The work in [28] distributes locations of individual spare

75

resources evenly across the fabric boundary. Distance-based evaluation score is used to define

spare assignment at runtime and incremental runtime re-routing is required to achieve fault

recovery. Although, this technique can cover a large set of multiple faults, its practicality

can be very challenging given the complexity and routing overhead of contemporary FPGAs.

Alternatively, embedding approaches make no distinction between spare and normal re-

sources. A system should have more resources than what is required to implement an

application. Fault tolerance is achieved by remapping (embedding) fault-effected design

into (in) remaining healthy resources. The challenge in this approach is to define a minimal

set of alternative designs that achieve the target level of fault tolerance. A heuristic search

algorithm to generate a set of diverse designs for single-fault tolerance at the CLB level

was recently proposed in [36]. To the best of our knowledge, no formal technique based

on a theoretical concept has been proposed as an embedding approach to real-time FT in

reconfigurable systems. The work in [58]

In this paper, we exploit the notion of set separability given by the union-free hyper-

graphs [18] to identify highly diverse and fault resilient designs. A different hypergraph

model was previously used in [59] to define a FT connection topology as a yield enhance-

ment technique for processor arrays. Hypergraph was also used to study the spare assignment

problem in the covering approach of FT processor arrays [60].

The following subsection will describe graph model developed herein with examples.

5.2.2 Union-free Hypergraphs

A hypergraph H = (V , Eh) can be described as a generalization of a graph in which edges Eh,

or hyperedges, can connect any number of vertices. For the interest of this work, resources

76

will be represented by hyperedges and vertices are considered the distinct designs. Thus,

a hypergraph in this representation defines how resources (hyperedges) are allocated to

(connect to) different designs (vertices). Each hyperedge can be expressed by the subset of

vertices it connects to. In hypergraph theory, a highly strong notion of set separability is

described by a class of hypergraphs known as union-free hypergraphs. Consider hex, hey,

and hez to be three distinct hyperedges in H. Based on the original definition of union-free

property [61], H is union-free if:

∀ hex, hey, hez ∈ Eh , hex ∪ hey 6= hez (5.1)

This definition implies that there are no two distinct hyperedges (resources) in H connected

to (utilized by) the same set of vertices (designs). Figure 5.1(a) shows an example of a union-

free hypergraph with 6 vertices and 8 hyperedges and its incidence matrix in Figure 5.1(b).

Columns of the incidence matrix represent hyperedges (resources) and rows represent vertices

(designs). An element xij of the incidence matrix is one if hyperedge i connects to vertex j.

Therefore, the number of one elements in each column indicates the subset of resources used

by each design.

We propose a systematic way for constructing such a union-free hypergraph using trivial

binary matrix manipulations. Given that embedding approaches require more resources

than what are needed for design implementation, resrouce utilization ratio U is expected

to be less than 1. In the next section, we describe two novel algorithms to construct the

described hypergraph model for utilization ratio U = 1/2 and U = 2/3. These target values

result in a low area overhead compared to commonly-used modular redundancy schemes,

e.g. Triple Modular Redundancy (TMR).

77

c5 c1 c3

c4 c2 c6

r1

r7

r3

r5

r4

r6

r2

r8

1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 1 0 1





vertex hyperedge
(design) (hardware resource)

r1
r2
r3
r4
r5
r6
r7
r8

c1 c2 c3 c4 c5 c6

(a)
(b)

Figure 5.1: Example of a (a) Union-free hypergraph. (b) Its incidence matrix.

5.3 Hypergraph-Cover Diversity

To construct a union-free hypergraph H suitable to generate resilient designs, two properties

have to be maintained:

• First, condition (1) must be satisfied.

• Second, H is a regular hypergraph1 with a degree2 γ(H) = A, where A is the minimum

number of resources required to implement the application.

We propose the first algorithm, Algorithm 5.3.1, for U = 1
2

which achieves union-free property

using only d2 · log2(2 · A)e designs. For the sake of clarity, the incidence matrix is used for

the illustration of proposed algorithm. The corresponding steps in the graph domain are

given in the pseudo-code. As an example, assume the size of the target application is

A = 6 FPGA slices, the algorithm starts with a zero incidence matrix having a number

of rows r = 2x, where x = dlog2(2 · A)e, thus r = 16, and a number of columns equals

1A regular hypergraph is a graph where each vertex has the same number of edges

2The degree of a regular graph is the number of edges connected to each vertex

78

c = 2 · x, hence c = 8, (lines 1 through 7 of Algorithm 5.3.1). For odd-indexed columns

(1, 3, ..., r − 1), the elements indicated by ’one’ are distributed according to the binary tree

pattern depicted in Figure 5.2(a). Each of the even-indexed columns (2, ..., r) is obtained by

simply complementing its immediate lower-indexed column. These steps are more formally

defined in lines 10 through 21 of the pseudo-code.

1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 1 0
1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 0 1
0 1 1 0 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0
0 1 1 0 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 0
0 1 0 1 0 1 0 1





⇒

1 0 1 0 1 0 1 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 0
1 0 1 0 0 1 0 1
1 0 0 1 1 0 1 0
1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0
1 0 0 1 0 1 0 1
0 1 1 0 1 0 1 0
0 1 1 0 1 0 0 1
0 1 1 0 0 1 1 0
0 1 1 0 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 1 0 0 1
0 1 0 1 0 1 1 0
0 1 0 1 0 1 0 1





10101010
10101001
10100110
10100101
10011001
10010101
01101010
01100110
01011010
01011001
01010110
01010101





(a)

(b)

| Eh |= 16

| Eh |= 12

γ(H) = 8

γ(H) = 6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8

Figure 5.2: (a) Constructing union-free hypergraph using its incidence matrix. (b) Reducing
degree of hypergraph by deleting disjoint hyperedges.

The hypergraph given by resultant incidence matrix should satisfy condition (1). A further

step is needed to reduce the degree of the graph to γ(H) = A. We observe that complimentary

rows (or disjoint hyperedges) can be deleted without violating condition (1). Deleting a pair

of disjoint hyperedges will decrement γ(H) by 1 as shown in Figure 5.2(b). This step is

repeated until γ(H) = A (lines 22 through 28 of Algorithm 5.3.1).

79

Algorithm 5.3.1: Algorithm for Constructing Union-free Hypergraph for U = 1/2

procedure construct hypergraph H = (V , Eh)

Input: A: Resource Count Required to Implement Application

Output: Hypergraph H = (V , Eh)

1 V := ∅ // set of vertices

2 Eh := ∅ // set of hyperedges

3 x := dlog2(2 ·A)e
4 r := 2x // initial number of hyperedges

5 c := 2 · x // initial number of vertices

6 V := {v1, v2,, vc} // initialize V with c vertices

7 Eh := {he1, he2,, her} // initialize Eh with r hyperedges

8 k := 0 // level index in the binary tree

9 cindex := 1 // index to loop through each pair of vertices

10 while (cindex < c) do

11 p := 2k // parameter to determine number leaves in each level of the

binary tree

12 e := r
2·p // parameter to determine subset of hyperedges connected to each

pair of vertices

13 i := 1 // index to loop through all r hyperedges

14 while (i < r) do

15 for m := i→ (i+ e) do

16 hem := hem ∪ {v2·k+1} // inclusion of odd-indexed vertex

17 for m := i+ e→ (i+ 2 · e) do

18 hem := hem ∪ {v2·k+2} // inclusion of even-indexed vertex

19 i := i+ 2 · e

20 k := k + 1

21 cindex := cindex + 2

// reduce degree of hypergraph H by deleting disjoint hyperedges, one pair

at a time

22 if γ(H) 6= A then

23 for every hex, hey ∈ Eh | x 6= y do

24 if hex ∩ hey = ∅ then
25 remove hex and hey from H

26 if γ(H) = A then

27 return H

28 end

80

In a similar manner, an algorithm can be devised for hardware utilization U = 2
3
. Algo-

rithm 5.3.2 achieves union-free resource assignments for d3 · log3(
3
2
· A)e designs. Assuming

A = 5, the algorithm starts with a zero incidence matrix having a number or rows r = 3x,

where x = dlog3(
3
2
· A)e, thus r = 9, and a number of columns equals c = 3 · x = 6 , as given

in lines 1 through 7 of Algorithm 5.3.2.

The distribution of the one-encoded elements in the incidence matrix follows a ternary tree

pattern among three groups of columns: (1,4,7,..,etc), (2,5,8,.., etc), and (3,6,9, .., etc). Since

U = 2/3, two thirds of each column’s elements must be one. As shown in Figure 5.3(a), the

order of those thirds, from top to bottom, is (1st, 2nd), (1st, 3rd), and (2st, 3rd) for the three

groups of columns, respectively (lines 10 through 23 of Algorithm 5.3.2). This arrangement

results in a union-free hypergraph in which γ(H) = 2
3
· r.

1 1 0 1 1 0
1 1 0 1 0 1
1 1 0 0 1 1
1 0 1 1 1 0
1 0 1 1 0 1
1 0 1 0 1 1
0 1 1 1 1 0
0 1 1 1 0 1
0 1 1 0 1 1




⇒

1 1 0 1 1 0
1 1 0 1 0 1
1 1 0 0 1 1
1 0 1 1 1 0
1 0 1 1 0 1
1 0 1 0 1 1
0 1 1 1 1 0
0 1 1 1 0 1
0 1 1 0 1 1





1 1 0 1 0 1
1 1 0 0 1 1
1 0 1 1 1 0
1 0 1 0 1 1
0 1 1 1 1 0
0 1 1 1 0 1



⇒
1 1 0 1 0 1
1 1 0 0 1 1
1 0 1 1 1 0
1 0 1 0 1 1
0 1 1 1 1 0
0 1 1 1 0 1
1 1 1 0 0 0
0 0 0 1 1 1




(a)

(b)

| Eh |= 9

| Eh |= 6 | Eh |= 8

γ(H) = 6

γ(H) = 4
γ(H) = 5

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6 1

2

3

4

5

6

7

8

1 2 3 4 5 6

Figure 5.3: (a) Constructing hypergraph using its incidence matrix. (b) Adjusting degree of
hypergraph to fit target application size.

By removing hyperedges hex, hey, hez such that |hex ∩ hey| = |hex ∩ hez| = |hey ∩ hez| = 2,

γ(H) is decremented by 2 while preserving the union-free property (lines 24 through 30). If

A is odd number, a last step to pad the incidence matrix is necessary to reach γ(H) = A.

81

Padding is conducted by simply adding a pair of disjoint hyperedges (lines 31 through 36 of

Algorithm 5.3.2) or complementary rows as shown in Figure 5.3(b) to attain A = 5.

A salient attribute of the proposed HCD technique that is crucial to its practicality and

effectiveness is the ability to swap all hyperedges in the hypergraph without violating condi-

tion (1) or degrading the achieved separability of resultant designs. Figure 5.4 depicts how

resources are assigned to diverse designs using a union-free hypergraph for a reconfigurable

region of size 9 · 9 = 81 and application size A = 54. Algorithm 5.3.2 is used in this example

to define 12 separable designs. The 81 resources are ordered from left to right and up to

down. Figure 5.4(a) shows arrangement of resources defined by Algorithm 5.3.2 without

changing the order of hyperedges. Figure 5.4(b) shows how this arrangement is mapped

to an equivalent one by randomly swapping all hyperedges of the constructed hypergraph.

Both arrangements exhibit the same resource separability dictated by the union-free prop-

erty. This feature is important because routing congestion of tightly-closed resources (as

in Designs 1,3,7, and 9 of Figure 5.4(a)) can lead to a failed routing. In addition, timing

violations can occur if distant groups of resources (as in Designs 2 and 8 of Figure 5.4(a))

are used to implement design alternatives.

82

Algorithm 5.3.2: Algorithm for Constructing Union-free Hypergraph for U = 2/3

procedure construct hypergraph H = (V , Eh)
Input: A: Resource Count Required to Implement Application
Output: Hypergraph H = (V , Eh)

1 V := ∅ // set of vertices
2 Eh := ∅ // set of hyperedges

3 x :=
⌈
log3(32 ·A)

⌉
4 r := 3x // initial number of hyperedges
5 c := 3 · x // initial number of vertices
6 V := {v1, v2,, vc} // initial number of vertices
7 Eh := {he1, he2,, her} // initialize Eh with r hyperedges
8 k := 0 // level index in the ternary tree
9 cindex := 1 // index to loop through each triad of vertices

10 while (cindex < c) do
11 p := 3k // parameter to determine number leaves in each level of the ternary

tree
12 e := r

3·p // parameter to determine subset of hyperedges connected to each

triad of vertices
13 i := 1
14 while (i < r) do
15 for m := i→ (i+ e) do
16 hem := hem ∪ {v3·k+1, v3·k+2} // inclusion of 1st & 2nd vertices of each

triad

17 for m := i+ e→ (i+ 2 · e) do
18 hem := hem ∪ {v3·k+1, v3·k+3} // inclusion of 1st & 3rd vertices of each

triad

19 for m := i+ 2 · e→ (i+ 3 · e) do
20 hem := hem ∪ {v3·k+2, v3·k+3} // inclusion of 2nd & 3rd vertices of each

triad

21 i := i+ 3 · e
22 k := k + 1
23 cindex := cindex + 3

// reduce degree of hypergraph H by deleting appropriate hyperedges, one triad
at a time

24 if γ(H) 6= A then
25 for hex, hey, hez ∈ Eh | x 6= y 6= z do
26 if |hex ∩ hey| = |hex ∩ hez| = |hey ∩ hez| = 2 then
27 remove hex, hey, and hez from H
28 if γ(H) = A then
29 return H
30 end

31 if γ(H) < A then
// add a one pair of disjoint hyperedges to attain γ(H) = A

32 he1 := {
⌈
c
2

⌉
random vertices from V}

33 he2 := {v | v /∈ he1}
34 add he1 and he2 to Eh

35 return H
36 end

83

Figure 5.4: Example of two equivalent sets of separable HCD resource allocations on 2D
array.

The number of distinct arrangements that can be constructed is intractably vast which allows

CAD tools a large freedom for finding the performance and power consumption goals under

proposed HCD design technique.

5.4 Evaluation

A Discrete Cosine Transform (DCT)-based Motion-JPEG (MJPEG) compression core was

selected as a case study for this work due to its widespread use for image and video com-

pression. Image and video compression applications are commonly used in space exploration

missions, satellites, and monitoring systems in high radiation-dose and harsh environments.

Such systems require rigid requirements in system reliability and durability. This includes

84

ability to operate for a long lifetime while providing adequate processing to meet increasing

future demands. For instance, systems used in low-orbit satellites are expected to remain in

service for up to 25 years [62]. A failure in an on-board system can render a mission objective

obsolete. For survivable systems under these conditions where hands-on human maintenance

is infeasible, a form of redundancy is mandatory to replace or mask failed components.

Evaluation of HCD method is conducted on an FPGA-based computing system using the

commercial Xilinx KC705 FPGA evaluation board [63]. The KC705 board includes a 28nm

Xilinx 7-series FPGA, DDR3 and FLASH memories. Xilinx Embedded Development Kit

(EDK) and PlanAhead tools are used to generate the bitfiles for all of the implementations in

this evaluation. Bitfiles are stored in the external flash memory before evaluation procedures

begin. An embedded MicroBlaze soft processor is employed to control reconfiguration flow

for autonomous fault recovery. We used the Xilinx Software Development Kit to develop the

software module that runs on the embedded processor to reconfigure HCD designs onto the

device and to control the FT flow. The processor can be protected against soft and hard

faults using proper techniques such as TMR, rollback, check-pointing, and reconfiguration-

based approaches [64] [65]. Partial reconfiguration using Xilinx Internal Configuration Access

Port (ICAP) is utilized in this work for rapid reconfiguration.

The MJPEG core comprises different blocks, most of which are not computationally intensive

and hence implemented by software processing using the embedded MicroBlaze processor.

Contrarily, the 2D-DCT block of the MJPEG core carries out a high computational workload

as reflected by the latency ratio of all blocks in the left stacked bar of Figure 4.17(a). To

achieve balanced critical paths among MJPEG pipeline stages, it is favorable to implement

DCT block as a hardware accelerator on reconfigurable fabric. Figure 4.17(b) shows the

normalized latency of DCT Implementable using both software and hardware processing on

the KC705 board. The right stacked bar of Figure 4.17(a) shows modified latency ratios of

85

MJPEG blocks after a DCT accelerator is implemented on the reconfigurable fabric. The

proposed HCD scheme is applied to the DCT hardware accelerator. Resource assignments

of HCD designs are adopted at the slice level and enforced using placement constraints

applied by defining the placement AREA GROUP and CONFIG PROHIBIT statements in the User

Constraints File (.ucf) used by the Place and Route (PAR) tools.

By using a quantifiable image quality metric such as the Peak Signal-to-Noise Ratio (PSNR),

the need for hardware error detection can be eliminated, thereby a large saving in area and

power is achieved [50]. PSNR is based on Mean Square Error (MSE) computed by averaging

the intensity difference between pixels of recovered and original images. The recovered image

is obtained by a fast software-based implementation of the Inverse Discrete Cosine Transform

(IDCT). The input test image in this evaluation is a high-resolution satellite image placed

in the external DDR3 memory.

Table 5.1: Design Parameters for Implemented TMR and HCD

Technique Design
Alterna-

tives

Power
Consump-
tion (mW)

Resource Count (slices)

Hypergraph-based
Diversity

Avg. 24.11 Total 844

18 Min. 23.29 Active Resources 422
Max. 25.40

Total 1350
TMR 1 71.01 Active Resources 1270

In this evaluation, HCD is compared to the most frequently used FT technique, TMR, which

is the conventional strategy used by the Xilinx X-TMR FT tool. Table 5.1 shows the resource

count and power consumption of DCT accelerator for HCD and TMR implementations.

422 slices are required to implement a single DCT accelerator. Algorithm 5.3.1 is used to

generate HCD alternatives for hardware utilization U = 1
2
; hence total number of resources

86

is 844 slices. Only 18 design alternatives were found sufficient to achieve union-free property.

Figure 5.5 depicts a screen-shot of the PlanAhead tool layout of the Partial Reconfiguration

Region (PRR) for an HCD implementation of DCT accelerator.

Figure 5.5: PlanAhead layout for a aingle HCD design alternative.

Since FPGA routing resources are configured during routing phase to connect logic slices to

realize the structure of target design, we would expect a low overlap for routing resources

among separable designs. Figure 5.6 shows the proportion of all used Programmable Inter-

connect Points (PIP) according to their utilization count among HCD designs for the DCT

implementation. We observe an steep exponential decline in the number of PIPs that are

utilized by more than one design. This indicates fault resilience of HCD method against

routing failures as evaluated herein.

For TMR implementation, three replicas of DCT accelerator with a voting logic are realized

using 3 · 422 + 4 (for voter) = 1270 slices. For each replica extra unused slices are required

for successful routing. This issue does not affect the implementation of HCD designs since

half of the total resources are unused.

87

Figure 5.6: PIPs usage overlap among HCD designs.

Figure 5.7: PSNR results for proposed HCD and TMR.

88

To compare effectiveness of fault tolerance of HCD and TMR, up to 40 Stuck-at Faults (SAFs)

at LUTs input terminals are randomly injected with a uniform distribution on each experi-

mental run. Input terminals are chosen to exercise both logic and routing faults. Figure 5.7

shows retrieved PSNR values over 25 experimental for HCD and TMR schemes. Due to the

large set of possible combinations of distinct faults, the upper and lower whiskers at each

point indicate the 95% confidence interval of the results. The PSNR values of HCD repre-

sent the highest PSNR values achieved by any of the 18 design alternatives. The proposed

FT scheme maintains substantially a higher image quality throughout the evaluation. It is

observed that image quality of TMR design deteriorates quickly for a defect count d less

than 14. HCD scheme maintains roughly twice the image quality of TMR counterpart for d

higher than 10.

Figure 5.8 and Figure 5.9 show output JPEG images for an experimental run using proposed

HCD and TMR methods, respectively. The results here reveal the considerable advantage

of HCD to tolerate faults compared to modular redundancy. The effect of hardware defects

on image quality of TMR design can be apparent to a human perception for d > 8. In the

case of the proposed scheme, the image quality differences are hardly distinguishable even

for d = 40.

Table 5.1 also indicates the area and power measurements of the two implementations. The

proposed scheme results in a total resource saving of 37.5%. The average power consumption

of HCD design alternatives is 24.11 mW. Compared to TMR, HCD results in a power saving

of 66%. This is attributed to the fact that only one implementation of DCT accelerator is

active at a time as opposed to the three replicas of the TMR scheme.

89

Figure 5.8: Image quality under varying defect count for HCD.

5.5 Conclusion

In this work, we show that set separability defined by hypergraph theory can be used ef-

fectively to create highly resilient designs at design-time for provision of low-overhead fault

recovery during system lifetime. Systematic algorithms to construct design diversity using

union-free hypergraph model for different target hardware utilization values are also pre-

sented. Results have demonstrated the potential of the proposed FT method to achieve 37.5%

area saving and up to 66% reduction in power consumption compared to the frequently-used

TMR scheme while providing superior fault tolerance.

90

Figure 5.9: Image quality under varying defect count for TMR.

91

CHAPTER 6: PROCESS VARIATION IMMUNITY OF

ALTERNATIVE 16NM HK/MG-BASED FPGA LOGIC

BLOCKS

Continued miniaturization of semiconductor technology to nanoscale dimensions has ele-

vated reliability challenges of high density Field-Programmable Gate Arrays (FPGA) de-

vices due to increasing impacts of Process Variation (PV). The issue is addressed herein

using a systematic bottom-up analysis by determining the relative influence of PV on alter-

nate design realizations of FPGA logic blocks. Results for conventional design structures

are obtained through detailed SPICE simulations and related to structural risk features.

Namely, Transmission Gate (TG) and Pass Transistor (PT) based MUX architectures for

realizing Look-Up-Tables (LUTs) are compared. At threshold voltage variation σVth = 14%,

PT-based designs that meet the 95% yield objective can exhibit as high delay variation as

23.3%. PV impact can be reduced to 4.9% if TG-based LUT is considered. Finally, the

impact of transistor sizing is investigated as a method of mitigating PV susceptibility in

FPGA structures [66].

6.1 Introduction

Advancement of CMOS manufacturing technology to reduce device dimensions has ushered

in significant challenges resulting from Process Variation (PV) [67]. Significant sources of

variation in sub-45nm manufacturing processes include imprecise lithography, etching, de-

position, and dopant implantation [68]. These can lead to Random Dopant Fluctuation,

Line-Edge Roughness, and structure dimension variance, e.g. channel length and oxide

92

thickness. Variation in these physical parameters translates into deviation in device elec-

tric characteristics, such as Vth and drive current Idsat, from the intended specifications.

Therefore, PV can lead to slow, weak, or defective transistors, thus affecting yield, final

product performance, efficiency, and reliability. The International Technology Roadmap for

Semiconductors (ITRS) has estimated that Vth variation, given by three-sigma (3σVth), has

already reached 42% (σVth = 14%) and can reach up to 79% (σVth = 26%) for near-future

process technology, according to table DESN10 in [69]. Fortunately, PV exhibits a statisti-

cal nature which makes it feasible to study at various levels of design abstraction, which are

compared in this paper for alternate functional realizations. Traditionally, Statistical Static

Timing Analysis (SSTA) technique is used to predict design behavior at design-time and

accordingly devise the appropriate mitigation strategies to minimize PV effects and increase

yield. Traditionally, Statistical Static Timing Analysis (SSTA) technique is used to predict

design behavior at design-time and accordingly devise the appropriate mitigation strategies

to minimize PV effects and increase yield.

SRAM-based Field Programmable Gate Arrays (FPGAs) have been at the frontier of tech-

nology scaling owing to the increased demand for high performance and low-power reconfig-

urable systems. Thus, the design of FPGA logic blocks have an increasing need to cope with

PV issues emerging at each new process node. Contemporary SRAM-based FPGAs designs

are composed of array of tiles, which contain Logic Clusters (LCs), Connection Boxes (CBs),

and Switching Box (SBs). A logic cluster contains Look-Up-Tables (LUTs) and flip-flops

which implement logic functionality. Connection and switching boxes provide the required

connectivity among LCs and routing channels. Commercial FPGAs have utilized multiplex-

ers (MUXes) to implement LUTs, CBs, and SBs due to the lower required number of control

inputs and favorable area-delay product [70] [71]. Because of the uniform fabric of modern

SRAM-based FPGAs, multiplexers can be viewed as a dominating fundamental logic struc-

93

ture in these devices besides SRAM cells. To reduce cost and area, FPGA vendors have

relied on NMOS Pass-Transistors (PTs) as the preferred fundamental switching elements for

realizing multiplexers. NMOS PTs are known for conveying a weak high logic signal level

at a saturated output of VDD − Vth. As aggressive scaling of devices continues, the voltage

difference between VDD and Vth decreases; thus half-latch restoration logic has been used

to mitigate resultant reliability and performance issues. Recently, the work in [70] inves-

tigated the use of Transmission Gates (TGs) as an alternative design option to implement

FPGAs blocks while achieving lower area-delay product. In [72], PV-induced failure rate

in a PT-based multiplexer without the restoration logic is studied. However, the work did

not consider that transistor sizing can substantially reduce defect rate as demonstrated later

in this work. To the best of our knowledge, there has not been a study on how PT and

TG-based structures compare as design options for FPGA structures under the effect of

variations. In this paper, we study the impact of variation on these two design alternatives

and report the Defective Rate, Delay, and Energy Delay Product (EDP).

The remainder of the paper is organized as follows. Section 2 of the chapter provides a

background on PV and the FPGA structures to be considered for the evaluation. Section

3 describes the evaluation framework and toolset adopted for simulation. Results and Con-

clusions are discussed in Section 4.

6.2 Effects of Process Variation

Process variation is a key challenge for continued technology scaling. It can affect functional,

leakage, or timing yield and power efficiency of final design due to the need for wider volt-

age margins. Variation can include any nanoscopic imprecision in manufacturing processes

during physical realization of design layout. PV can be manifested as Die-to-Die (D2D) or

94

WithIn-Die (WID) variations. WID variation becomes a significant factor in the impact of

variation and thus is the scope of this work. At the individual transistor-level, the prominent

negative effect of WID variation is observed as a variation in device threshold voltage and the

amount of current flow during transistor ON-OFF states. Threshold voltage variation σVth

is essentially a function of device dimensions and dopant density in the channel as expressed

below [73].

σVth ∝
tox
εox

√
nch

3 · w · l
(6.1)

where w and l are the channel width and length respectively, tox is the gate oxide thickness,

εox is the permittivity of oxide layer, and nch is the concentration of channel doping. Since

device delay tg is tightly dependent on Vth as given by the well-cited alpha-power law in (6.2),

high variation can severely impact transistor speed and cause timing yield loss.

tg ∝
leff · VDD

(VDD − Vth)α
(6.2)

where leff is the effective channel length, α is a constant depending on process technology.

Similarly, threshold voltage affects the transistor ON saturation current IDsat as given in (3)

which results in a weak or slow driving transistor.

IDsat =
w · νsat · εox

tox
· (Vgs − Vth − Vdsat) (6.3)

where Vgs is the gate voltage, and Vdsat is the saturation drain voltage. This effect leads to

a situation where a transistor is either not a strong enough to trigger downstream gates,

or does so at a slow pace causing higher sub-threshold current to flow in fanout gates.

Thus, PV can cause a functional yield loss and power constraint violation even if timing

95

requirements determined by the proportion of gates in the critical path are met. In this paper,

we consider the case where PV can cause FPGA structures to functionally fail. Previous

work for the effects of PV in FPGAs have considered the timing and leakage yield [74] [75],

whereas in [72] functional failure is studied for a single MUX design without considering other

design alternatives or device-level mitigation strategies such as transistor sizing to combat

variation. FPGA group testing studied for hard faults can offer an emerging alternative [34].

The key logic structures for realizing SRAM-based FPGAs are SRAM cells and MUXes. Due

to their ubiquitous applications, variation in SRAM cells has been extensively studied [76].

In the case of FPGAs, the effect of PV on SRAM cells is less limited since SRAM cells are not

packed in an array structure in the same organization used in other custom VLSI designs, e.g.

cache memory. In addition, SRAM cells in FPGAs are not often written; thus, the overhead

imposed by any deployed technique to avoid PV-induced write failures can be negligible. To

that end, we focus on MUX-based structures and consider two commonly accepted design

options for implementing them in FPGAs [77]. Namely, the effect of variation on PT-based

MUXes with half-latches and TG-based counterparts are compared.

6.2.1 Pass Transistor-based Multiplexers with Half-latch

Figure 6.1(a) shows an example of 2:1 PT-based multiplexer. Two NMOS pass transistors

t0 and t1 with complementary control inputs are used to select which input signal to pass

to the multiplexer output. Due to their higher mobility, NMOS transistors are favored for

relative driving strength over PMOS transistors. Since NMOS transistor passes a weak high

logic level with a voltage swing ranging from 0 to VDD − Vth, some restoration logic, or

half-latch, is required to pull-up the weak-1 output to recover a strong-1 level. The half-

latch is an inverter with a pull-up transistor tr controlled by the inverter output. When

96

a weak-1 is propagated to the inverter input, inverter output transition to a low voltage

will activate the pull-up transistor tr to boost the inverter input to a strong-1 for a stable

operation. The restoration logic can be placed after every two or more cascaded PTs in a

large multiplexer, as depicted in Figure 6.1(b), to reduce area and latency overhead at the

expense of less reliable signal propagation. High variation in a PT-based MUX can lead to a

low VDD − Vth voltage difference insufficient to trigger the inverter, precipitating functional

failure as demonstrated in Section IV.

6.2.2 Transmission Gate-based Multiplexers

A transmission gate is composed of NMOS and PMOS transistors connected in parallel to

avoid the issue of passing a weak-1 or weak-0 at the expense of the added area of a PMOS

transistor. The two transistors are controlled by two complementary signals to activate both

during TG transparent state. Figure 6.2(a) depicts the structure of a 2:1 TG-based MUX.

Two TGs tg0 and tg1 are connected to complimentary signals to select one of the two inputs.

Restoration logic is not needed as TG can pass both strong-0 and strong-1.

6.3 Evaluation Framework

To facilitate valid comparisons, a fracturable 6-input LUT that can be utilized as 6-input

or 5-input LUT is adopted as a case study. 6-input LUTs are considered the optimal size

in terms of area-delay product [78] and are also used in latest commercial FPGAs, e.g.

Xilinx Virtex 7 and Altera Stratix V. Design and simulation for this evaluation are based on

the High-K Metal-Gate (HK/MG) 16nm Predictive Technology Model (PTM) from Arizona

State University. Moreover, the insight gathered from this case study can be generalized to

97

Figure 6.1: Netlist for (a) 2:1 PT-based MUX. (b) PT-based 6-input LUT (partial view).

other MUX-based FPGA structures. The 6-input LUT is implemented as a fully-encoded

MUX tree using 26 − 1 = 63 multiplexers. Figure 6.1(a) and Figure 6.2(a) depict a partial

view of PT-based and TG-based implementation. Internal re-buffering with proper sizes are

also used to maintain optimal latency. The baseline sizes for NMOS and PMOS transistors

98

Figure 6.2: Design diagram for (a) 2:1 TG-based MUX. (b) TG-based 6-input LUT (partial
view).

are determined based on the optimal DC Voltage Transfer Characteristic (VTC) curve.

Initially, Cadence Virtuoso platform with Spectre simulator was used to determine optimal

transistor sizes and extract corresponding threshold voltages for each sized device. The Gaus-

99

sian random variable [79] was used to study the effect of WID variation on delay, efficiency,

and output correctness. For each LUT implementation, 1,000 Monte Carlo samples are gen-

erated by assigning a random deviation in threshold voltage using a Gaussian distribution.

Monte Carlo simulations are carried out using Synopsys HSPICE. To check transition faults

at all MUX nodes, the commercial Synopsys TetraMAX APTG tool was used to generate

the minimum number of test patterns that can be applied as LUT inputs and configuration

values to check all possible transition at MUXes ports. The generated input sequence was

used to test each Monte Carlo sample during SPICE simulation. Delays and power consump-

tion data are collected for each sample. Due to the limited drive of pass transistors, different

PT-based designs with increasing transistor sizes were included. The unit size parameter w

signifies multiplication factor for transistor size whereby w = 2 indicates twice its original

w/l ratio.

6.4 Results and Conclusions

Figure 6.3 (a) and (b) display the obtained frequency distribution of delay values for the 1,000

Monte Carlo sample designs of PT-based and TG-based LUTs, respectively, at σVth = 10%.

The red vertical line in each figure indicates delay value for baseline design without variation

dbaseline. It is evident that the effect of PV on performance follows a Gaussian distribution.

It is also observed that the mean of delay distribution µVth is higher than delay of baseline

design.

The test patterns used during simulation provide high coverage to check against transition

failures caused by any failed multiplexer. The defect rate defined by the proportion of

1,000 LUT designs that fail at least one test pattern for different design implementations is

given in Figure 6.4. These simulation results reveal interesting observations. As expected,

100

Figure 6.3: Delay distribution for (a) PT-based 6-input LUT (w = 2). (b) TG-based 6-input
LUT (w = 1) at σVth = 10%.

designing a structure using PT-based multiplexers without proper transistor sizing results

in a substantially high failure rate that exponentially increases as variation increases beyond

6%. Results also show that sizing pass transistors has considerably decreased defect rate

as seen in the design cases where w = 2, 3, and 4. A diminishing improvement in variation

tolerance is also observed as w increases. On the contrary, TG-based structure offers much

less sensitivity to variation than any PT-based design in this evaluation. This is achieved

while using the minimum optimal w/l ratio. The results here are restricted to a maximum

variation of 30% which covers the ITRS expected variation range for current and future

technology.

Figure 6.5 shows variation impact on mean delay for Monte Carlo simulations across vari-

ation range where functional yield > 95%, i.e. defect rate is less than 5%. The TG-based

101

Figure 6.4: LUT defect rate vs. variation σVth using 16nm PTM model 1 ≤ w ≤ 4.

implementation maintains another significant advantage in terms of latency. For instance,

at σVth = 14%, TG-based LUT enables 64.4% (57.9%) reduction in latency compared to

PT-based alternatives for w = 2 (w = 3). Transistor sizing for PT-based designs allows

expected reduction in delay at a diminishing rate as w increases.

The effect of threshold voltage variation σVth on delay variation σdelay is shown in Figure 6.6.

The results reveal a pseudo-linear relation with exponential amplification under high vari-

ation. PT-based designs are indeed much more susceptible to variation than TG-based

structures. Results also show that transistor sizing for pass transistors has a minor effect

on mitigating design delay variation. At σVth = 14%, PT-based designs that meet the 95%

yield objective can exhibit as high delay variation as 23.3%. This variation impact can be

reduced to 4.9% if TG-based LUT is considered. Variation impact on design efficiency given

102

Figure 6.5: Effect of variation on mean delay using PT and TG MUXes.

by EDP is shown in Figure 6.7. We observe that the EDP increases with variation while

TG-based design provides substantially lower EDP than any PT-based design. Results show

that TG-based designs offer a substantially superior resilience to WID variation compared

to other PT-based alternatives. This is achieved while using the optimal minimal transistor

sizing.

103

Figure 6.6: Design delay variation vs. σVth of PT and TG MUXes.

Figure 6.7: Energy-delay product vs. σVth for PT and TG MUXes.

104

CHAPTER 7: MITIGATING THE IMPACT OF PROCESS

VARIATIONS VIA DISJUNCT RESOURCE UTILIZATION

This chapter investigates the applicability of using design disjunction as a post-silicon tech-

nique to increase the timing yield induced by process variation for reconfigurable hardware.

The conventional method to reduce timing yield loss has replied on speed binning techniques

to increase profit, which works effectively against time variation between dies. However, with

the increasing within-die variability in current and future technology processes, the effective-

ness of speed binning methods is expected to diminish in the nearest future; thus elevating

the need for new alternative methods to address this problem. In this work, the performance

of diverse resource utilization defined by design disjunction is assessed under varying lev-

els of within-die process variation. Since design disjunction is demonstrated to provide an

effective recoverability against hard failures, this advantage is extended here to circumvent

resources affected by parametric variation. Experiments conducted on multiple designs have

demonstrated up to 9.96% increase in performance and up to 57.45% gain in timing yield.

7.1 Introduction

Process variation presents a challenging problem for the design of digital circuit on scaled

technologies. The impact of process variation can be observed as a fluctuation in final design

performance and power efficiency. The impact of process variation on design performance

can reach up to 30% [80]. Parametric variation can also lead to a reliability variation in

which the lifespan of a design can significantly vary from one chip to another [81]. Thus

analytical approaches to predict how final designs could behave should incorporate statistical

methods to enhance their accuracy. The advancement in FPGAs architectures and their

105

capabilities have led to their widespread use in high performance applications. This entails

a due consideration to mitigate the effect of process variation on reducing timing yield.

Process variation can be classified into inter-die and intra-die variation [82]. Inter-die vari-

ation refers to variation in parameters across identical dies. Intra-die variation is deviation

of a design parameter within any one die. Inter-die variation can exhibit spatial correlation

such that devices with a close proximity have a higher likelihood of having identical param-

eters than those that are far from each other. Independent variation can also occur within a

die on each device [83]. For advanced technologies, inter-die, or within-die, variation has be-

come a major source of variation [74]. Inevitable impact of inter-die variation can be masked

by techniques such as speed pinning [84]. The objective of speed binning is to isolate high

performing chips from chips that are affected by variation and sell each to the appropriate

target market. This works effectively when different identical ASICs chips with known target

applications in which performance of a design can be tested to classify each chip. However,

considering the increasing impact of within-die variation, a design implementation on an

FPGA may perform differently depending on where design blocks are placed and routed

in the chip. In addition, the increasing variability on interconnect parasitics in advanced

technology [85] [86] pushes for more consideration to mitigate process variation for FPGAs

whose performance is largely determined by interconnects. It is also relevant to note that

due to FPGA reconfigurability features, target applications are likely unknown after chips

are manufactured, thus effective architectural optimization can be hard to realize.

To cope with the increasing sensitivity to within-die variation for FPGAs, researchers have

proposed variation-aware placement and routing techniques [87] [88] [89]. These techniques

rely on the delay and leakage data for each block in the chip before the optimal place-

ment and routing can be determined. Extracting delay and leakage data for each chip can

be computationally expensive given the increasing density of contemporary devices. Design

106

techniques, such as body-bias controlling and architecture enhancements methods [90] [74]

are also proposed as timing optimization approaches. Due to the increasing trend in using

COTS-based reconfigurable devices, new methods to address this problem should favorably

be readily integrated with existing commercial devices and design tools. Thus, design so-

lutions that dictate architectural changes in the FPGA design or are not possible to apply

using closed-source vendors’ tools are not considered in this work.

Another strategy to mitigate within-die variation is to use a set of distinct configurations [91]

prepared before chips are arrived and the best performing configuration which meets design

constraints can be used. The idea is to generate mutually exclusive critical path configura-

tions (MECPCs) by identifying critical and near critical paths and reroute them to generate

multiple independent configurations while placement is fixed. Results obtained using the

academic tool VPR show a reduction of up to 49% for 30% variation in Vth. Although the

method is easy, it requires a modification to the existing commercial place-and-route tools

which is not possible; thus, it may not be utilized. The described work in this chapter pro-

vides an equivalent approach using design disjunction which can be integrated with the latest

Xilinx toolchain. The proposed work provides the first study and assessment of Xilinx tools

capability to produce highly disjunct designs for the purpose of increasing timing yield. This

study also considers systematic and random within-die variations of both logic and routing

resources.

The remainder of the paper is organized as follows. Section 2 describes the statistical design

modeling under process variation used for the evaluation of this work. Section 3 discuses

evaluation framework. Section 4 presents the experimental results. Finally, conclusions are

given in Section 5.

107

7.2 Delay Modeling under Process Variation

Accurate modeling of process variation can be challenging due to the spatial correlation

among all transistors in a chip. The two conventional methods for modeling process vari-

ation considering correlation are the principal component based model [92] and the quad-

tree model [93] [94]. For the principal component based model, the high computational

complexity required to analyze correlated parameters is simplified by transforming the set

of correlated parameters to their uncorrelated principle components. This transformation

depends on a covariance matrix which describes the level of spatial correlation among pa-

rameters. Spatial correlation using the principal component based model is normally based

on an exponentially decaying function.

Figure 7.1: Quad-tree model using five layers.

The quad-tree method models process variation using a hierarchical quad tree structure. Fig-

ure 7.1 shows an example of a quad-tree model structure with five hierarchical layers. Each

layer defines how design chip is partitioned into equal grids. Each grid gets a random vari-

able with a variance identical to other grids in the same layer; and each layer has its own

independent variation. The first top layer has a one gird of a size equivalent to the die area,

108

this layer is dedicated to represent inter-die variation. The rest layers, with the exception

of the last bottom layer, are used to represent the effect of spatial within-die variation. The

last bottom layer is used for independent random variation at the individual device level. To

obtain a variation map for a design parameter p in a chip, the grid location of each layer k

that covers the device is found and based on the variation value assigned to each grid, the

effective parameter value is obtained by simply adding deviation values across all layers to

the nominal value of the parameter as follows:

ptotal = pnominal +
n∑
k=1

∆pk (7.1)

where n is the number of layers in the model.

Spatial correlation between devices in this model is captured by the cells they share across

these layers. The more layers added to this model the more accurate the results; however, the

computational cost will increase. The total variation given by this model can be computed

from the total variance as provided below:

σ2
total =

n∑
k=1

σ2
k (7.2)

In this work, a quad-tree model with six layers for high accuracy is adopted. To reflect the

effect of worsening within-die variation in our evaluation, the variations across the layers are

made progressively increasing from top to bottom layers. The increased variation is governed

109

by the following form:

σ2
total =

n∑
k=1

(ωkσk)
2 (7.3)

where ωl = ωl−1 + 1 for all l ∈ [1, n], and ω1 = 1

Normally, variations across all layers are made equal as considered in [74]. However, for ad-

vanced technology, within-die variation is expected to become a major component of the total

variability; thus, justifying the above consideration for allowing higher variability weights for

lower layers. The quad-tree model is also used to model interconnect variability. To consider

within variation of interconnects, the corresponding total variation values for an interconnect

segment will depend on the location of its driving device within each model layer.

7.3 Evaluation Framework

In this work, the Xilinx 7-series was considered as a baseline architecture for the evaluation of

design disjunction as a process variation mitigation technique. As demonstrated in chapters

4 and 5, Xilinx toolchain provide high flexibility to extract detailed post-place-and-route

delay data for any given design. For the purpose of this work, delay data for each LUT

and net used by critical and near critical paths are obtained using Xilinx’s static timing

analysis tool. Critical paths are the longest combinational paths between any two flipflops

triggered by the same clock signal. Since the number of critical and near critical paths can

be high which can later be computationally expensive to analyze, a cutoff of 80% from the

longest critical path was used to identify the set of paths to be included in the analysis.

In other words, only paths whose delays are greater than 80% of the longest critical path

110

are considered in this evaluation. The reason these near critical paths are considered is to

account for the likelihood that process variation may cause a near critical path to emerge as

a new top critical path for the design.

For each considered path, the utilized logic and routing resources from source node to desti-

nation node(s) are identified through the resource utilization description given by the XDL

design file for post-place-and-route netlist. The Xilinx static timing analysis tool reports

only the total delay for each defined net in a path. A net can be realized using several PIPs

and wire segments located at distant sites on a chip. Thus, to model the effect of process

variation using a quad-tree model for a net, the total delay variation for the net is computed

by obtaining the weighted average variation for all PIPs used by that net. The weight for

each PIP depends on the ratio of the length of the wire segment it drives to the total length

of the net. The length of a wire segment is given by the number of tiles it spans.

To illustrate this delay model, consider net n1 used by design DCx as depicted in Figure 7.2

which comprises six segments (s11, s12, s13, s14, s15, and, s16). The total delay of n1 equals the

sum of arrival time at each PIP along the net which, for sake of simplicity, is equivalent to

the sum of wire segments’ delays. Since only the total delay is provided by the tool, the net

variation is computed as follows:

∆n1 =

∑6
k=1 len(s1k)×∆s1k

len(n1)
(7.4)

where len(x) denotes the length of interconnect element x

Decomposition of net delay in terms of its segments’ latency is crucial to capture how distinct

design implementations perform under identical variation map. Figure 7.2 also depicts net

n2 used by design DCy. Both nets have a mutual resource utilization of segments s14, or s23.

111

Figure 7.2: Example of routing resource utilization for two nets.

Given a variation map obtained by the quad-tree model, delays of nets n1 and n2 should be

affected by the same variation observed at segment s14.

After delay and resource utilization information of a design are extracted by parsing post-

place-and-route design files, a variation map generated using the described quad-tree model,

is applied to the utilized resources to find the amount of delay variation for each resource

based on its coordinate location in the chip. The considered critical and near-critical paths

are then updated according to the delay variation on all logics and nets on each path. The

112

largest path delay under variation is identified for each DC and used for comparison with

other DCs. Top performing DC is the DC that reports the fastest critical path which is

evaluated against the critical path of the baseline design under the same variation map. This

latter step is repeated for 1000 randomly generated variation maps to get a statistically

accurate assessment. Three different benchmarks: AES, s38417, and adpcm are considered

for the evaluation in this work and results are reported in the following section. Design

disjunction is evaluated for δ = 1 and δ = 3 to show the effect of increasing the number

of disjunct configurations g on reducing variation effects. Three levels of total variations:

25%, 15%, and 5% are evaluated to assess the performance of the proposed design method

as variation increases.

Figure 7.3: Density of delay of critical paths for AES benchmark.

113

7.4 Results and Anylsis

Figures 7.3, 7.4, and 7.5 show delay density of critical path for the three considered bench-

marks after applying 1000 randomly generated variation maps for both baseline design and

1-disjunct set of DCs. It is evident that delay density of DCs exhibits a lower variation than

that of the baseline design and also a lower mean for each benchmark. Reduction in delay

mean µ and variance σ can be captured by the µ+ 3σ value which reflects the upper 99.7%

confidence limit for the probability density function. Table 7.1 shows the obtained delay data

for critical paths of the three benchmarks considered in this work. Results for the upper

99.7% confidence limit show average reductions in critical path of 8.88%, 5.95%, and 2.78%

under total variations of 25%, 15%, and 5%, respectively. These results indicate that design

disjunction can provide a higher delay reduction as total variation increases. The reduction

can be slightly increased to reach 9.96%, 6.85%, and 3.58% if disjunction ratio is increased

from δ = 1 to δ = 3. This moderate increase in reduction demonstrates that increasing

the number of alternative designs to get a lower critical path is not effective; thus, disjunct

design using low δ values, offers the largest impact on reducing the effect of variability.

114

Figure 7.4: Density of delay of critical paths for adpcm benchmark.

Figure 7.5: Density of delay of critical paths for s38417 benchmark.

115

Figure 7.6: Probability density of delay of critical paths for baseline and design disjunction

116

Table 7.1: Delay of Critical Path for Baseline and Disjunct Designs

117

The gain in timing yield G can be quantified by computing the area under the PDF of delay

distribution of baseline over the interval [µd + 3σd,µb + 3σb] as illustrated in Figure 7.6. The

gain G can be expressed as follows:

G =

∫ µb+3σb

µd+3σd

PDFb dx (7.5)

This quantity can also be defined in terms of the cumulative distribution function (CDF) of

the baseline delay distribution as:

G =

∫ µb+3σb

0

CDFb dx−
∫ µd+3σd

0

CDFb dx (7.6)

Table 7.1 reports G for each benchmark. The average gain in timing yield are 29.26%,

25.31%, and 33.55% for total variations of 25%, 15%, and 5%, respectively. The substantial

gain in timing yield proves the effectiveness of the proposed design method to mitigate the

impact of within-die variability. This gain in timing yield can also be enhanced by designing

for δ > 1. For δ = 3, the gains are increased to 39.42%, 36.91%, and 57.45%, respectively.

7.5 Summary

In this work, we show that within-die variation on logic resources and interconnects can

be mitigated through a set of disjunct configurations. These configurations are prepared at

design-time using current commercial toolchain without the need for hardware and software

modifications. Results for a set of benchmarks show average gains in timing yield of up to

39.42%, 36.91%, and 57.45% for total variations of 25%, 15%, and 5%, respectively. The

enhanced timing yield is attained while achieving reductions in mean delay of 9.96% 6.85%,

118

and 3.58% for the same variability levels.

119

CHAPTER 8: CONCLUSION AND FUTURE WORK

8.1 Fast Online Diagnosis and Recovery using Design Disjunction

Current scaling trend of reconfigurable hardware and their improving design flexibility have

fueled the continuous increase of their adoption in various applications. The reconfigurability

feature can provide immense opportunities for designing effective FT platforms. Unfortu-

nately, the design flexibility of reconfigurable hardware does not come at no cost. With cur-

rent programmable logic and interconnect density, implementation time including place and

route phases can take an order of minutes to hours using a state-of-the-art multi-processing

machine [9]. Although, the complexity of execution time can be substantially decreased for

incremental re-place and re-reroute tasks, it is still a difficult computational workload for em-

bedded processing cores. Therefore, design-time FT approaches that minimize dependency

on run-time invocation of design flow are more favorable.

In this research, a novel design-time technique for providing multi-fault isolation and recovery

for reconfigurable hardware based on design disjunction and non-adaptive group testing has

been presented. The research has featured three primary tasks:

The first task was to develop a parameterized construction method that defines how re-

sources are distributed to achieve the described disjunctive property on implemented design

configurations. The developed construction method based on the mosaic convergence algo-

rithm can scale to thousands of resources which allows applicability to large designs and

to allow a fine selection of any resource count and target design size. The defined resource

distribution can be directly translated into a placement constraint file format supported by

existing design tools.

120

The second task was to realize and validate the proposed FT approach. This includes defining

and implementing the design steps that can be integrated into existing vendor CAD tools

with minimal effort required to alter the conventional design flow. The proposed approach is

validated and implemented on the latest Xilinx 7-sieres FPGA family. Experimental results

on a set of diverse benchmarks have demonstrated f -diagnosability at the individual slice

level with a minimum average isolation resolution of 96.4% (94.4%) for f = 1 (f = 2)

without accounting for the impact of the low coverage of functional testing. An algebraic-

based method was also introduced to further increase the fault isolation accuracy of proposed

method to any level deemed adequate for successful recovery and for efficient and rapid repair.

We also demonstrate the potential benefits of the proposed technique as a fault recovery. In

particular, the proposed approach was theoretically and empirically demonstrated to provide

multi-fault recoverability coverage at minimal time complexity.

The third task was to develop a framework for autonomous fault tolerance operations on

an embedded reconfigurable hardware based on the proposed approach. A hardware im-

plementation on a commercial Xilinx test and embedded board was considered to validate

applicability of the proposed scheme to cover the second and third tasks.

The demonstrated tasks have shown that the proposed approach for fault tolerance can

be integrated with other commonly used fault detection mechanisms such as TMR, DWC,

parity-based, or any user-defined fault detection method at the system-level. The proposed

FT scheme can also be combined with other fault tolerance approaches to ameliorate their

fault recovery strategies.

121

8.2 Hypergraph-Cover Diversity for Maximally-Resilient Reconfigurable Systems

Although design disjunction can attain the reliability objectives through a combinatorial

search for the optimal set of designs, the exponential time complexity of the search may

hinder their applicability to very large systems. In this work, two novel deterministic algo-

rithms based on graph and set theory are developed to address scalability concerns of the

mosaic convergence algorithm. We show that set separability defined by hypergraph theory

has great potential to create highly resilient designs at design-time for optimal low recov-

ery overhead and energy saving. Results have demonstrated the potential of the proposed

FT method to achieve 37.5% area saving and up to 66% reduction in power consumption

compared to the frequently-used TMR scheme while providing a superior fault tolerance.

8.3 Mitigating the Impact of Process Variations via Disjunct Resource Utilization

Process variation has emerges as a major obstacle in the advance of manufacturing tech-

nology. The high impact of process variation can lead to a diminishing return from scaling

devices. Traditionally, FPGAs have been at the frontier to adopt new scaling technology.

This entails careful design considerations to avoid yield loss and maintain the expected ad-

vantages of smaller nodes. Although reconfigurability can be an obvious solution to mitigate

the shortcoming related to both manufacturing and reliability, the complexity and cost of

fine reconfiguration for a large density has been a challenge up until now. In this disserta-

tion, the emphasis has been to address this problem by shifting the associated cost of design

implementation to design-time. We extended our investigation of design disjunction to mit-

igating process variation through pre-defined set of diverse design which can be tested after

target devices are manufactured to find the most variation tolerant. Results have shown

122

statistical significance to reduce mean delay and increase timing yield.

8.4 Future Work

Current implementation of design disjunction is limited to the structural grouping of hard-

ware resources. Although this strategy simplifies how the method is realized using commer-

cial toolchain, a better approach should include a functional grouping to increase the test

coverage while providing equivalent isolation accuracy using a lower number of configura-

tions. It is also remained to be investigated whether such an extension can be universally

applicable to a large set of design topologies rather than being an application-dependent

design-time solution.

The effect of leakage power in the final timing yield of the PV study in this work is not

included. It is worthy to be investigated for an accurate prediction of how diversification in

resource utilization can improve the overall timing yield.

123

LIST OF REFERENCES

[1] J. Williams, C. Massie, A. D. George, J. Richardson, K. Gosrani, and H. Lam, “Char-

acterization of fixed and reconfigurable multi-core devices for application acceleration,”

ACM Trans. Reconfigurable Technol. Syst., vol. 3, no. 4, pp. 19:1–19:29, Nov. 2010.

[2] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte, S. Chakraborty, M. En-

gel, R. Ernst, H. Hartig, L. Hedrich et al., “Design and architectures for dependable

embedded systems,” in Proc. IEEE 9th International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS’11), Taipei, Taiwan, Oct. 2011, pp. 69–

78.

[3] P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S. Graham, K. S. Morgan, B. H. Pratt,

H. M. Quinn, and M. J. Wirthlin, “SRAM FPGA reliability analysis for harsh radiation

environments,” IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3519–3526, Dec. 2009.

[4] S. Mitra, W.-J. Huang, N. R. Saxena, S.-Y. Yu, and E. J. McCluskey, “Reconfigurable

architecture for autonomous self-repair,” IEEE Des. Test. Comput., vol. 21, no. 3, pp.

228–240, Jun. 2004.

[5] C. Carmichael and C. W. Tseng, “Correcting single-event upsets in Virtex-4 FPGA

configuration memory,” Xilinx, Application Note XAPP1088(v1.0), Oct. 2009.

[6] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfiguration via con-

figuration scrubbing,” in Proc. IEEE International Conference on Field Programmable

Logic and Applications (FPL’09), Prague, Czech Republic, Aug./Sep. 2009, pp. 99–104.

124

[7] W. Zha, “Facilitating FPGA reconfiguration through low-level manipulation,” Ph.D.

dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, Feb.

2014.

[8] S. Mitra, W.-J. Huang, N. R. Saxena, S.-Y. Yu, and E. J. McCluskey, “Reconfigurable

architecture for autonomous self-repair,” IEEE Des. Test. Comput., vol. 21, no. 3, pp.

228–240, Jun. 2004.

[9] Xilinx, “Vivado design suite,” White Paper WP416 (v1.1), Jun. 2012.

[10] M. Pignol, “COTS-based applications in space avionics,” in Proc. of Design, Automation

and Test in Europe Conference (DATE’10), Dresden, Germany, Mar. 2010, pp. 1213–

1219.

[11] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu, “Hardware runtime monitoring

for dependable COTS-based real-time embedded systems,” in Proc. of IEEE 29th Real-

Time Systems Symposium (RTSS’08), Barcelona, Spain, Nov./Dec. 2008, pp. 481–491.

[12] M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya, and V. Verma, “Using roving

STARs for on-line testing and diagnosis of FPGAs in fault-tolerant applications,” in

Proc. IEEE International Test Conference (ITC’99), Atlantic City, NJ, Sep. 1999, pp.

973–982.

[13] L. Bauer, C. Braun, M. Imhof, M. Kochte, E. Schneider, H. Zhang, J. Henkel, and H.-J.

Wunderlich, “Test strategies for reliable runtime reconfigurable architectures,” IEEE

Trans. Comput., vol. 62, no. 8, pp. 1494–1507, Aug. 2013.

[14] M. Renovell, P. Faure, J. M. Portal, J. Figueras, and Y. Zorian, “IS-FPGA: a new

symmetric FPGA architecture with implicit scan,” in Proc. IEEE International Test

Conference (ITS’01), Baltimore, MD, Oct./Nov. 2001, pp. 924–931.

125

[15] K. Zhang, R. F. DeMara, and C. A. Sharma, “Consensus-based evaluation for fault

isolation and on-line evolutionary regeneration,” in Evolvable Systems: From Biology to

Hardware. Berlin, Germany: Springer, 2005, pp. 12–24.

[16] S. Chakraverty, A. Agarwal, A. Agarwal, A. Kumar, and A. Sikri, “Design space explo-

ration for high availability drFPGA based embedded systems,” in Proc. 1st International

Conference on Advanced Machine Learning Technologies and Applications (AMLTA’12),

Cairo, Egypt, Dec. 2012, pp. 234–243.

[17] B. Bollobás, Modern graph theory. Springer Science & Business Media, 1998, vol. 184.

[18] P. Frankl and Z. Föredi, “Union-free hypergraphs and probability theory,” European

Journal of Combinatorics, vol. 5, no. 2, pp. 127–131, 1984.

[19] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,” IEEE Micro,

vol. 23, no. 4, pp. 14–19, Sep. 2003.

[20] T. Karnik and P. Hazucha, “Characterization of soft errors caused by single event upsets

in CMOS processes,” Dependable and Secure Computing, IEEE Transactions on, vol. 1,

no. 2, pp. 128–143, April 2004.

[21] Xilinx, “Partial reconfiguration user guide,” Application Note UG702 (v14.5), Apr.

2013.

[22] Altera, “Increasing design functionality with partial and dynamic reconfiguration in

28-nm FPGAs,” White Paper WP-01137-1.0, Jul. 2010.

[23] M. Berg, “Fault tolerance implementation within SRAM based FPGA design based

upon the increased level of single event upset susceptibility,” in Proc. IEEE 12th Inter-

national Symposium on On-Line Testing (IOLTS’06), Lake of Como, Italy, Jul. 2006,

pp. 89–91.

126

[24] M. G. Parris, C. A. Sharma, and R. F. Demara, “Progress in autonomous fault recovery

of field programmable gate arrays,” ACM Computing Surveys (CSUR), vol. 43, no. 4,

p. 31, Oct. 2011.

[25] C. Stroud, E. Lee, S. Konala, and M. Abramovici, “Using ILA testing for BIST in

FPGAs,” in Proc. IEEE International Test Conference (ITC’96), Washington, DC,

Oct. 1996, pp. 68–75.

[26] A. Doumar and H. Ito, “Detecting, diagnosing, and tolerating faults in SRAM-based

field programmable gate arrays: a survey,” IEEE Trans. VLSI Syst., vol. 11, no. 3, pp.

386–405, Jun. 2003.

[27] D. Keymeulen, R. Zebulum, Y. Jin, and A. Stoica, “Fault-tolerant evolvable hardware

using field-programmable transistor arrays,” IEEE Trans. Rel., vol. 49, no. 3, pp. 305–

316, Sep. 2000.

[28] J. Emmert, C. Stroud, and M. Abramovici, “Online fault tolerance for FPGA logic

blocks,” IEEE Trans. VLSI Syst., vol. 15, no. 2, pp. 216–226, Feb. 2007.

[29] A. J. Van De Goor, “Using march tests to test srams,” IEEE Des. Test. Comput.,

vol. 10, no. 1, pp. 8–14, Mar. 1993.

[30] X. Iturbe, A. Ebrahim, K. Benkrid, C. Hong, T. Arslan, J. Perez, D. Keymeulen, and

M. Santambrogio, “R3TOS-based autonomous fault-tolerant systems,” IEEE Micro,

vol. 99, preprint, Jul. 2014, http://doi.ieeecomputersociety.org/10.1109/MM.2014.58.

[31] M. B. Tahoori, “High resolution application specific fault diagnosis of FPGAs,” IEEE

Trans. VLSI Syst., vol. 19, no. 10, pp. 1775–1786, Oct. 2011.

[32] S. Mitra and E. McCluskey, “Which concurrent error detection scheme to choose ?” in

Proc. of IEEE Int. Test Conf. (ITC’00), Atlantic City, NJ, Oct. 2000, pp. 985–994.

127

[33] C. Bolchini, A. Miele, and C. Sandionigi, “Autonomous fault-tolerant systems onto

SRAM-based FPGA platforms,” Journal of Electronic Testing, vol. 29, no. 6, pp. 779–

793, Nov. 2013.

[34] C. A. Sharma, A. Sarvi, A. Alzahrani, and R. F. Demara, “Self-healing reconfigurable

logic using autonomous group testing,” Microprocessors and Microsystems, vol. 37,

no. 2, pp. 174–184, Mar. 2013.

[35] V. Hahanov, S. Galagan, V. Olchovoy, and A. Priymak, “Algebra-logical repair

method for FPGA logic blocks,” in Proc. IEEE East-West Design & Test Symposium

(EWDTS’10), St. Petersburg, Russia, Sep. 2010, pp. 482–487.

[36] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, C. Braun, M. E. Imhof, H.-J. Wun-

derlich, and J. Henkel, “Module diversification: Fault tolerance and aging mitigation

for runtime reconfigurable architectures,” in Proc. IEEE International Test Conference

(ITC’13), Anaheim, CA, Sep. 2013, pp. 1–10.

[37] E. A. Stott, N. P. Sedcole, and P. Y. K. Cheung, “Fault tolerance and reliability in

field-programmable gatearrays,” IET Computers & Digital Techniques, vol. 4, no. 3,

pp. 196–210, May 2010.

[38] A. Seffrin and A. Biedermann, “Cellular-array implementations of bio-inspired self-

healing systems: State of the art and future perspectives,” in Design Methodologies for

Secure Embedded Systems. Berlin, Germany: Springer, 2011, vol. 78, pp. 151–170.

[39] R. Dorfman, “The detection of defective members of large populations,” The Annals of

Mathematical Statistics, vol. 14, no. 4, pp. 436–440, Dec. 1943.

128

[40] M. Cheraghchi, A. Hormati, A. Karbasi, and M. Vetterli, “Group testing with proba-

bilistic tests: Theory, design and application,” IEEE Trans. Inf. Theory, vol. 57, no. 10,

pp. 7057–7067, Oct. 2011.

[41] A. B. Kahng and S. Reda, “New and improved BIST diagnosis methods from combina-

torial group testing theory,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 25, no. 3, pp. 533–543, Mar. 2006.

[42] A. Alzahrani and R. F. DeMara, “Non-adaptive sparse recovery and fault evasion using

disjunct design configurations,” in Proc. ACM/SIGDA International Symposium on

Field-programmable Gate Arrays (FPGA’14), Monterey, California, Feb. 2014, pp. 251–

251.

[43] C. Bolchini and A. Miele, “Design space exploration for the design of reliable SRAM-

based FPGA systems,” in Proc. IEEE International Symposium on Defect and Fault

Tolerance of VLSI Systems (DFTVS’08), Boston, MA, Oct. 2008, pp. 332–340.

[44] M. Cheraghchi, “Coding-theoretic methods for sparse recovery,” in Proc. IEEE 49th

Annual Allerton Conference on Communication, Control and Computing (Allerton’11),

Monticello, IL, Sep. 2011, pp. 909–916.

[45] A. J. Macula, “A simple construction of d-disjunct matrices with certain constant

weights,” Discrete Mathematics, vol. 162, no. 1-3, pp. 311–312, Dec. 1996.

[46] C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive group testing:

Explicit bounds and novel algorithms,” in Proc. of IEEE International Symposium on

Information Theory (ISIT’12), Jul. 2012, pp. 1837–1841.

[47] E. Knill, W. J. Bruno, and D. C. Torney, “Non-adaptive group testing in the presence

of errors,” Discrete Applied Mathematics, vol. 88, no. 1, pp. 261–290, Nov. 1998.

129

[48] Xilinx, “Kc705 evaluation board for the kintex-7 fpga,” User Guide UG810 (v1.5), Jul.

2014.

[49] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent structure-independent

fault detection schemes for the advanced encryption standard,” IEEE Trans. Comput.,

vol. 59, no. 5, pp. 608–622, May 2010.

[50] G. Varatkar and N. Shanbhag, “Error-resilient motion estimation architecture,” IEEE

Trans. VLSI Syst., vol. 16, no. 10, pp. 1399–1412, Oct 2008.

[51] H. Kopetz, Real-time systems: design principles for distributed embedded applications,

2nd ed. Berlin, Germany: Springer, Apr. 2011.

[52] C. Kohn, “Partial reconfiguration of a hardware accelerator on Zynq-7000 all pro-

grammable SoC devices,” Xilinx, Application Note XAPP1088(v1.0), Jan. 2013.

[53] A. Alzahrani and R. DeMara, “Hypergraph-cover diversity for maximally-resilient re-

configurable systems,” in Proc. of IEEE 12th International Conference on Embedded

Software and Systems (ICESS’15), New York, USA, Aug 2015, pp. 1–7.

[54] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, “An overview of reconfigurable

hardware in embedded systems,” EURASIP Journal on Embedded Systems, vol. 2006,

no. 1, pp. 13–13, Jan. 2006.

[55] E. Stott, P. Sedcole, and P. Cheung, “Fault tolerance and reliability in field-

programmable gate arrays,” IET Computers & Digital Techniques, vol. 4, no. 3, pp.

196–210, May 2010.

[56] M. G. Parris, C. A. Sharma, and R. F. Demara, “Progress in autonomous fault recovery

of field programmable gate arrays,” ACM Computing Surveys (CSUR), vol. 43, no. 4,

p. 31, Oct. 2011.

130

[57] R. Libeskind-Hadas, N. Hasan, J. Cong, P. K. McKinley, and C. L. Liu, Fault Covering

Problems in Reconfigurable VLSI Systems. Norwell, MA: Kluwer Academic Publishers,

1992.

[58] M. Garca-Valls, P. Uriol-Resuela, F. Ibez-Vzquez, and P. Basanta-Val, “Low complexity

reconfiguration for real-time data-intensive service-oriented applications,” Future Gen-

eration Computer Systems, vol. 37, pp. 191–200, Jul. 2014.

[59] A. L. Rosenberg, “A hypergraph model for fault-tolerant VLSI processor arrays,” IEEE

Trans. Comput., vol. C-34, no. 6, pp. 578–584, Jun. 1985.

[60] K. Sugihara and T. Kikuno, “On fault tolerance of reconfigurable arrays using spare

processors,” in Proc. of IEEE Pacific Rim International Symposium on Fault Tolerant

Systems (PRFTS’91), Kawasaki, Japan, Sep. 1991, pp. 10–15.

[61] P. Erdös and S. Shelah, “On problems of moser and hanson,” in Graph theory and

applications. Springer, 1972, vol. 303, pp. 75–79.

[62] “Process for limiting orbital debris,” NASA, Technical Standard NASA-STD-8719.14A,

Dec. 2011. [Online]. Available: http://http://www.hq.nasa.gov/office/codeq/doctree/

871914.pdf

[63] “KC705 evaluation board for the Kintex-7 FPGA,” Xilinx, User Guide UG810(v1.6.1),

Apr. 2015.

[64] A. Vavousis, A. Apostolakis, and M. Psarakis, “A fault tolerant approach for FPGA

embedded processors based on runtime partial reconfiguration,” Journal of Electronic

Testing: Theory and Applications, vol. 29, no. 6, pp. 805–823, Dec. 2013.

131

http://http://www.hq.nasa.gov/office/codeq/doctree/871914.pdf
http://http://www.hq.nasa.gov/office/codeq/doctree/871914.pdf

[65] M. Violante, C. Meinhardt, R. Reis, and M. Reorda, “A low-cost solution for deploying

processor cores in harsh environments,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp.

2617–2626, Jul. 2011.

[66] A. Alzahrani and R. DeMara, “Process variation immunity of alternative 16nm HK/MG-

based FPGA logic blocks,” in Proc. of IEEE 58th International Midwest Symposium on

Circuits and Systems (MWSCAS’15), Fort Collins, CO, Aug 2015, pp. 1–4.

[67] K. Kuhn, M. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. Ma, A. Maheshwari,

and S. Mudanai, “Process technology variation,” IEEE Trans. Electron Devices, vol. 58,

no. 8, pp. 2197–2208, Aug 2011.

[68] K. Kuhn, “Reducing variation in advanced logic technologies: Approaches to process

and design for manufacturability of nanoscale CMOS,” in IEEE International Electron

Devices Mtg, Wash., DC, Dec. 2007, pp. 471–474.

[69] “Design for manufacturability technology requirements table,” International

Technology Roadmap for Semiconductors ITRS, Tech. Rep., 2011. [On-

line]. Available: http://www.itrs.net/ITRS∼1999-2014∼Mtgs,∼Presentations∼&∼Links/

2011ITRS/2011Tables/Design 2011Tables.xlsx

[70] C. Chiasson and V. Betz, “Should FPGAs abandon the pass-gate?” in Proc. Intl. Conf.

on Field Programmable Logic and Appl., Porto, Portugal, Sep. 2013, pp. 1–8.

[71] C. Chen, R. Parsa, N. Patil, S. Chong, K. Akarvardar, J. Provine, D. Lewis, J. Watt,

R. T. Howe, H.-S. P. Wong, and S. Mitra, “Efficient fpgas using nanoelectromechanical

relays,” in Proc. 18th Annual ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays (FPGA’10), Monterey, CA, Feb. 2010, pp. 273–282.

132

http://www.itrs.net/ITRS~1999-2014~Mtgs,~Presentations~&~Links/2011ITRS/2011Tables/Design_ 2011Tables.xlsx
http://www.itrs.net/ITRS~1999-2014~Mtgs,~Presentations~&~Links/2011ITRS/2011Tables/Design_ 2011Tables.xlsx

[72] A. DeHon and N. Mehta, “Exploiting partially defective LUTs: Why you don’t need

perfect fabrication,” in Proc. International Conference on Field-Programmable Technol-

ogy (FPT’13), Kyoto, Japan, Dec. 2013, pp. 12–19.

[73] Y. Taur, D. Buchanan, W. Chen, D. Frank, K. Ismail, S.-H. Lo, G. Sai-Halasz,

R. Viswanathan, H.-J. Wann, S. Wind, and H.-S. Wong, “CMOS scaling into the

nanometer regime,” Proceedings of the IEEE, vol. 85, no. 4, pp. 486–504, Apr. 1997.

[74] A. Kumar and M. Anis, “FPGA design for timing yield under process variations,” IEEE

Trans. VLSI Syst., vol. 18, no. 3, pp. 423–435, Mar. 2010.

[75] H.-Y. Wong, L. Cheng, Y. Lin, and L. He, “FPGA device and architecture evalua-

tion considering process variations,” in Proc. IEEE/ACM International Conference on

Computer-Aided Design (ICCAD’05), San Jose, CA, Nov. 2005, pp. 19–24.

[76] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure probability and

statistical design of SRAM array for yield enhancement in nanoscaled CMOS,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 12, pp. 1859–1880, Dec.

2005.

[77] T. Pi and P. J. Crotty, “FPGA lookup table with transmission gate structure for reliable

low-voltage operation,” Dec. 23 2003, US Patent 6,667,635.

[78] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron FPGA

performance and density,” IEEE Trans. VLSI Syst., vol. 12, no. 3, pp. 288–298, Mar.

2004.

[79] S. Nassif, K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji, E. Nowak, D. Pearson,

and N. Rohrer, “High performance CMOS variability in the 65nm regime and beyond,”

in IEEE International Electron Devices Meeting, Wash., DC, Dec. 2007, pp. 569–571.

133

[80] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter

variations and impact on circuits and microarchitecture,” in Proc. 40th Annual Design

Automation Conference (DAC’03), Anaheim, CA, Jun. 2003, pp. 338–342.

[81] C. Zhuo, D. Sylvester, and D. Blaauw, “A statistical framework for post-fabrication

oxide breakdown reliability prediction and management,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 32, no. 4, pp. 630–643, Apr. 2013.

[82] A. Agarwal, V. Zolotov, and D. Blaauw, “Statistical clock skew analysis considering

intradie-process variations,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 23, no. 8, pp. 1231–1242, Aug. 2004.

[83] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas, “VAR-

IUS: A model of process variation and resulting timing errors for microarchitects,” IEEE

Trans. Semicond. Manuf., vol. 21, no. 1, pp. 3–13, Feb 2008.

[84] S. Bhunia, S. Mukhopadhyay, and K. Roy, “Process variations and process-tolerant

design,” in Proc. 20th International Conference on VLSI Design, Bangalore, India, Jan.

2007, pp. 699–704.

[85] E. Foreman, P. Habitz, M. Cheng, and C. Visweswariah, “A novel method for reducing

metal variation with statistical static timing analysis,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 31, no. 8, pp. 1293–1297, Aug 2012.

[86] A. Ceyhan and A. Naeemi, “Cu/Low-k interconnect technology design and benchmark-

ing for future technology nodes,” IEEE Trans. Electron Devices, vol. 60, no. 12, pp.

4041–4047, Dec 2013.

[87] Z. Guan, J. Wong, S. Chaudhuri, G. Constantinides, and P. Cheung, “A two-stage

variation-aware placement method for FPGAS exploiting variation maps classification,”

134

in Proc. 22nd International Conference on Field Programmable Logic and Applications

(FPL’12), Oslo, Norway, Aug 2012, pp. 519–522.

[88] L. Cheng, J. Xiong, L. He, and M. Hutton, “FPGA performance optimization via

chipwise placement considering process variations,” in Proc. International Conference

on Field Programmable Logic and Applications (FPL’06), Madrid, Spain, Aug. 2006,

pp. 1–6.

[89] S. SRINIVASAN and V. Narayanan, “Variation aware placement for FPGAs,” in Proc.

IEEE Annual Symposium on Emerging VLSI Technologies and Architectures, Karlsruhe,

Germany, March 2006.

[90] G. Nabaa, N. Azizi, and F. Najm, “An adaptive FPGA architecture with process varia-

tion compensation and reduced leakage,” in Proc. 43rd ACM/IEEEDesign Automation

Conference(DAC’06), San Francisco, CA, Jul. 2006, pp. 624–629.

[91] Y. Matsumoto, M. Hioki, T. Kawanami, H. Koike, T. Tsutsumi, T. Nakagawa, and

T. Sekigawa, “Suppression of intrinsic delay variation in FPGAs using multiple config-

urations,” ACM Trans. Reconfigurable Technol. Syst., pp. 1–31, Mar. 2008.

[92] H. Chang and S. Sapatnekar, “Statistical timing analysis under spatial correlations,”

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 9, pp. 1467–1482,

Sep. 2005.

[93] B. Cline, K. Chopra, D. Blaauw, and Y. Cao, “Analysis and modeling of CD variation for

statistical static timing,” in Proc. IEEE/ACM International Conference on Computer-

Aided Design (ICCAD’06), San Jose, CA, Nov. 2006, pp. 60–66.

135

[94] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for intra-die process

variations with spatial correlations,” in Proc. IEEE/ACM International Conference on

Computer-Aided Design (ICCAD’03), San Jose, CA, Nov. 2003, pp. 900–907.

136

	Design Disjunction for Resilient Reconfigurable Hardware
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Reliability Challenges of Reconfigurable Systems
	1.2 Importance of Runtime Reconfiguration
	1.3 Challenges of Online Diagnosis of Reconfigurable Hardware
	1.4 Mitigating Process Variation Impact on Yield
	1.5 Contributions of the Dissertation

	CHAPTER 2: BACKGROUND AND RELATED RESEARCH
	2.1 Common Failures in SRAM-based FPGAs
	2.2 Partial Reconfiguration
	2.3 Fault Tolerance using SRAM-based FPGAs
	2.4 Online fault Diagnosis and Recovery of SRAM-based FPGAs

	CHAPTER 3: PROBABILISTIC GROUP TESTING TECHNIQUE FOR FAULT ISOLATION IN RECONFIGURABLE LOGICS
	3.1 Adaptive Group Testing (AGT)
	3.2 Proposed Probabilistic AGT Scheme
	3.3 Evaluation Setup
	3.4 Results and Analysis
	3.5 Summary

	CHAPTER 4: FAST ONLINE DIAGNOSIS AND RECOVERY OF RECONFIGURABLE LOGIC FABRICS USING DESIGN DISJUNCTION
	4.1 Design Disjunction
	4.2 Non-adaptive Group Testing
	4.3 Design for Disjunction on Reconfigurable Architectures
	4.4 Constructing Disjunct DCs
	4.5 Fault Diagnosis using Design Disjunction
	4.6 Fault Recovery using Design Disjunction
	4.7 Incidental Disjunction for Interconnect Fault Tolerance
	4.8 Inarticulate Functional Tests
	4.9 Case Studies
	4.9.1 Evaluation Setup
	4.9.2 Case Study 1: ISCAS and MCNC Benchmarks
	4.9.3 Case Study 2: AES-128 Encryption Core
	4.9.4 Case Study 3: 2D-DCT Image Processing Core

	4.10 Comparison of Design Disjunction and Modular Redundancy
	4.11 Summary

	CHAPTER 5: HYPERGRAPH-COVER DIVERSITY FOR MAXIMALLY-RESILIENT RECONFIGURABLE SYSTEMS
	5.1 Introduction
	5.2 Background and Related Work
	5.2.1 Previous Work on FT on Reconfigurable Hardware
	5.2.2 Union-free Hypergraphs

	5.3 Hypergraph-Cover Diversity
	5.4 Evaluation
	5.5 Conclusion

	CHAPTER 6: PROCESS VARIATION IMMUNITY OF ALTERNATIVE 16NM HK/MG-BASED FPGA LOGIC BLOCKS
	6.1 Introduction
	6.2 Effects of Process Variation
	6.2.1 Pass Transistor-based Multiplexers with Half-latch
	6.2.2 Transmission Gate-based Multiplexers

	6.3 Evaluation Framework
	6.4 Results and Conclusions

	CHAPTER 7: MITIGATING THE IMPACT OF PROCESS VARIATIONS VIA DISJUNCT RESOURCE UTILIZATION
	7.1 Introduction
	7.2 Delay Modeling under Process Variation
	7.3 Evaluation Framework
	7.4 Results and Anylsis
	7.5 Summary

	CHAPTER 8: CONCLUSION AND FUTURE WORK
	8.1 Fast Online Diagnosis and Recovery using Design Disjunction
	8.2 Hypergraph-Cover Diversity for Maximally-Resilient Reconfigurable Systems
	8.3 Mitigating the Impact of Process Variations via Disjunct Resource Utilization
	8.4 Future Work

	LIST OF REFERENCES

