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Abstract

Debugging—the process of locating and fixing abnormal behavior in software—is
often cited as one of the most costly and unpredictable phases of developing software.
It is therefore essential to minimize the impact of debugging in software development,
while still ensuring the quality of software systems.

Previous research has proposed several automated fault localization techniques,
that aid developers by pinpointing which software components are likely to be
faulty. Among such techniques is Spectrum-based Fault Localization (SFL). SFL is
a runtime technique that collects the involvement of each software component in
test cases—usually called program spectrum—, and reasons about their correlation
to failing test outcomes. The assumption is that components frequently involved in
failing tests are more likely to be faulty and, conversely, components more frequently
involved in passing tests are less likely to be the root cause. The abstract nature
of program spectra allows for a language-agnostic, lightweight analysis (compared
to related approaches), with considerable accuracy. However, there are limited
accounts of successful transitions of SFL into practice. In fact, studies show that
developers quickly discard diagnostic reports after inspecting a small, limited number
of fault candidates reported by the technique.

This thesis proposes several approaches aimed at enhancing the usefulness of SFL in
practice. Namely, we introduce predictive measurements of diagnostic performance,
improve fault comprehension and fault isolation, and apply SFL theory to the context
of feature detection for program maintenance.

First, we propose a runtime measurement, named DDU, aimed at assessing the
effectiveness of a test suite at diagnosing potential faults in the code. DDU measures
three traits found in highly-diagnosable spectra, namely: moderate component
involvement density, high diversity of test cases, and high component involvement
unambiguity. Through these traits, DDU ensures that distinct combinations of
components are exercised in tandem to maximize the usefulness of SFL at pinpointing
the cause of any error that may occur. The DDU diagnosability metric thereby
serves as an indicator of the accuracy of SFL’s diagnostic reports for a given test
suite—similarly to how adequacy measurements, such as branch coverage, act as
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indicators for fault detection—allowing users to measure, and also improve, the
quality of their test suite.

Second, we conduct a large-scale evaluation assessing how faults are actually fixed
in practice. This evaluation is motivated by the fact that similarity-based SFL
techniques are most effective when only one fault is responsible for all test failures.
Similarity-based techniques cannot handle multiple simultaneous faults with the
same degree of accuracy, unlike the more computationally expensive reasoning-based
SFL techniques. Our hypothesis is that, in practice, faults are mostly detected and
fixed in isolation, thereby resulting in single-fault localization problems, which can
diagnosed with lightweight similarity-based SFL variants. We propose a methodology
for mining software repositories and classifying fixes according to the number of
faults they address. Our evaluation found that 82% of all fixes were single-faulted,
yielding high diagnostic accuracy when similarity-based variants were used.

Third, we propose an enhancement to SFL that leverages concepts from Qualitative
Reasoning (QR). QR is an area of research within Artificial Intelligence that studies
ways to abstract complexity by partitioning continuous-valued variables into dis-
crete qualitative states, which are subsequently used to model systems in a more
lightweight, tractable manner. Similarly, our approach—named Q-SFL—partitions
the runtime value of spectrum components into sets of qualitative states. These
states are then considered as contextual SFL components—their involvement in tests
are thus recorded in the spectrum. The main advantages of such augmentation
are increased fault isolation and improved fault comprehension. Our evaluation
shows that augmenting SFL through qualitative partitioning can improve diagnostic
accuracy, but further work is needed to develop effective automated partitioning
strategies.

Lastly, as a way to expand the applicability of SFL, we propose Spectrum-based
Feature Comprehension (SFC). SFC provides a mapping of SFL concepts to the
task of feature detection, which typically is the most time consuming step during
software maintenance scenarios. SFC shares many similarities with SFL, but instead
of correlating component coverage with failing tests, components are correlated with
feature involvement. Our user study shows that users were able to more accurately
pinpoint features with the aid of SFC, compared to using a test coverage tool.
Furthermore, in cases where a mapping between tests and the features they exercise
is not readily available (or if there are no tests at all), we propose Participatory
Feature Detection (PFD). PFD allows users to manually label their interactions
with a system as associated or dissociated with the feature they want to locate. Our
evaluation of PFD shows that the technique is able to achieve considerable accuracy
at detecting features, even when users misclassify their recorded interactions.
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Resumo

O debugging—processo de localizar e corrigir comportamento anormal em soft-
ware—é frequentemente citado como uma das mais dispendiosas e imprevisíveis
fases de desenvolvimento de software. É essencial, portanto, minimizar o impacto do
debugging, embora garantindo ainda assim a qualidade dos sistemas de software.

A investigação anterior propôs várias técnicas automatizadas de localização de falhas,
com o intuito de ajudar os desenvolvedores a identificar componentes de software
provavelmente defeituosos. Entre tais técnicas é de salientar o Spectrum-based
Fault Localization (SFL). O SFL é uma técnica runtime que recolhe o envolvimento
de componentes de software em testes—normalmente chamado de program spec-
trum—, correlacionando-o com os resultados de testes faltosos. A suposição é de
que componentes frequentemente envolvidos em testes faltosos são mais prováveis
de conterem defeitos e, inversamente, componentes frequentemente envolvidos em
testes que passam são menos prováveis. A natureza abstrata dos program spectra
permite uma análise leve (em comparação com abordagens relacionadas) e agnóstica
a linguagens, com considerável precisão. No entanto, existem escassos relatos de
transições bem-sucedidas para a prática. Efetivamente, os estudos mostram que os
desenvolvedores descartam rapidamente os diagnósticos reportados pelo SFL após
inspecionar um número limitado de candidatos a falhas.

Esta tese propõe abordagens destinadas a melhorar a utilidade e eficácia do SFL
na prática. Nomeadamente, introduzimos medidas preditivas de desempenho do
diagnóstico, melhoramos a compreensão de falhas e o isolamento das mesmas, e
aplicamos o SFL no contexto de deteção de features durante a fase de manutenção.

Primeiro, propomos uma métrica runtime, denominada de DDU, destinada a avaliar
a eficácia de um conjunto de testes no diagnóstico de possíveis falhas no código. O
DDU mede três caraterísticas encontradas em spectra altamente diagnosticáveis: a
moderada densidade de envolvimento de componentes, a alta diversidade de casos
de teste, e alta concentração de componentes sem envolvimento ambíguo. Através
destas caraterísticas, o DDU garante que combinações distintas de componentes
sejam exercitadas por forma a maximizar a utilidade do SFL. O DDU serve como
um indicador da precisão dos relatórios do SFL para uma determinada conjunto de
testes, permitindo medir e também melhorar a qualidade do mesmo.
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Em segundo lugar, realizamos uma avaliação em larga escala sobre como as falhas
são reparadas na prática. Esta avaliação é motivada pelo facto de que as técnicas SFL
baseadas em similaridade são mais eficazes quando apenas um defeito é responsável
por todas as falhas de teste. O SFL baseado em similaridade não localiza múltiplas
falhas com o mesmo grau de precisão, ao contrário das técnicas SFL baseadas em
reasoning (mais dispendiosas em termos computacionais). A nossa hipótese é que, na
prática, a maioria dos defeitos são detetados e reparados isoladamente, resultando
em problemas de localização de defeito único, adequados para variantes do SFL
baseadas em similaridade. Propomos uma metodologia de mining de repositórios de
software que identifica reparações de falhas e as classifica de acordo com o número
de falhas que eliminam. A nossa avaliação constatou que 82% de todas as correções
envolveram uma única falha, produzindo alta precisão de diagnóstico por parte de
variantes baseadas em similaridade.

Em terceiro lugar, propomos uma melhoria para SFL que utiliza conceitos de
Qualitative Reasoning (QR). O QR é uma área de pesquisa da Inteligência
Artificial que estuda formas de abstrair a complexidade de variáveis contínuas
através do particionamento do seu valor em estados qualitativos discretos, poste-
riormente usados para modelação de sistemas. A nossa abordagem—denominada
de Q-SFL—particiona o valor runtime de componentes do spectrum em conjuntos
de estados qualitativos. Esses estados são então considerados como componentes
contextuais, e o seu envolvimento nos testes é gravado no spectrum. As principais
vantagens assentam na melhoria do isolamento de falhas e da sua compreensão. A
nossa avaliação mostra que aumentar spectra através do particionamento qualitativo
de componentes melhora a precisão do diagnóstico, mas é necessário mais trabalho
para desenvolver estratégias de particionamento automatizadas.

Por fim, como forma de expandir a aplicabilidade das análises baseadas em spectra,
propomos o Spectrum-based Feature Comprehension (SFC). O SFC mapeia os
conceitos do SFL para a tarefa de deteção de features, que normalmente é a etapa
mais demorada durante a manutenção de software. O SFC partilha semelhanças
com o SFL, mas em vez de correlacionar a cobertura de componentes com falhas de
teste, a correlação é feita com o envolvimento de features. O nosso estudo mostra
que os utilizadores são capazes de identificar features com mais precisão com o
auxílio do SFC, em comparação com ferramentas de cobertura. Além disso, nos
casos em que o mapeamento entre testes e features que eles exercitam não estão
disponíveis, propomos o Participatory Feature Detection (PFD). O PFD permite
que os utilizadores classifiquem manualmente as suas interações com o sistema
como associadas ou dissociadas à feature que querem localizar. A nossa avaliação
mostra que o PFD é capaz de alcançar uma precisão considerável, mesmo quando os
utilizadores classificam erroneamente as suas interações.
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1Introduction

„There are two ways to write error-free programs;
only the third works.

— Alan J. Perlis

In 1947, the Harvard Mark II was being tested by Grace Murray Hopper and her
associates when the machine suddenly stopped. Upon inspection, the error was
traced to a dead moth that was trapped in a relay and had shorted out some of
the circuits. The insect was removed and taped to the machine’s logbook (see
Figure 1.1) [Kidwell, 1998]. This incident is believed to have coined the use of the
terms “bug”, “debug” and “debugging” in the field of computer science. Since then,
the term debugging is associated to the process of detecting, locating and fixing
faulty behavior in computer programs.

Figure 1.1: First actual case of bug being found1.

Software engineers have always faced the challenge of pinpointing and eliminat-
ing bugs in software—which frequently incurs in significant added costs during
development [Tassey, 2002]. As readers may be aware, the typical flow of software
development is generally comprised of four phases: (1) a requirements and design
phase, (2) an implementation phase, (3) a testing and debugging phase, and finally

1U.S. Naval Historical Center Online Library Photograph NH 96566-KN.
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(4) the release. While most of the aforementioned steps can be planned, estimated
and executed with a considerably high degree of certainty, the same cannot be said
for the testing and debugging phase. Besides the actual effort to locate the root
cause of unintended behavior, certain defects require changing the application’s
implementation or, more intrusively, its design (therefore introducing loops in the
development process). Studies have found debugging tasks to range from 50% to
75% of the total development cost [Hailpern and Santhanam, 2002].

One cannot estimate with a high degree of certainty the cost of debugging tasks
(both in terms of time and money), as the effort required to find faults fluctuates
wildly. This is due to the fact that the process of detecting, locating and fixing faults
in the source code is not trivial and is error-prone. Even experienced developers
are wrong almost 90% of the time in their initial guess while trying to identify the
cause of a behavior that deviates from the intended one [Ko and Myers, 2008].
For this reason, it is important to minimize the impact that debugging has in the
development process.

If program verification and debugging tasks are not thoroughly conducted, even
bigger costs may arise. For instance, a landmark study performed in 2002 indicated
that software defects constitute an annual $60 billion cost to the US economy
alone [Tassey, 2002]. More recently, a 2013 study from Cambridge University
estimates that software bugs cost the global software industry $316 billion per year2.
It is essential to find ways to minimize the software debugging impact on a project’s
resources. However, it is imperative that the software quality (i.e., its correctness)
is not compromised. While some defects can be tolerated by users (or even not
perceived at all), others may cause severe financial or life-threatening consequences.
Infamous examples of drastic consequences caused by software defects are:

• The software malfunction of the rocket Ariane 5, which caused it to disintegrate
37 seconds after its launch [Lions, 1996; Dowson, 1997];

• The crash of a British Royal Air Force Chinook helicopter due to a software
defect in the engine control computer, killing 29 people [Rogerson, 2002];

• The orbital insertion of the Mars Climate Orbiter probe due to a malfunction
of its flight software [Stephenson et al., 1999];

• Apple’s “goto fail” bug in the implementation of the SSL/TLS stack in iOS 6 and
OSX 10.9, which caused the Server Key Exchange message not to be checked,
potentially allowing man-in-the-middle attackers to spoof SSL servers [Bland,
2014];

2Research by Cambridge MBAs for tech firm Undo finds software bugs cost the industry $316 billion
a year: https://goo.gl/mikn7P (accessed May 2018).
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• OpenSSL’s “heartbleed” bug which omitted a bounds check in the payload
of HeartbeatRequest messages, allowing attackers to read arbitrary memory
from peers [Durumeric et al., 2014];

• The Parity Library’s Ethereum smart contract did not properly initialize the
contract’s wallet. A subsequent (possibly malicious) transaction initialized the
wallet, and rendered approximately $280M worth of Ethereum cryptocurrency
tokens unusable [Nikolic et al., 2018].

Debugging is then an important step that should not be disregarded when developing
software. However, this activity consumes large amounts of resources. Therefore,
ways to help developers in these tasks are continuously being researched. Nowadays,
automatic fault localization techniques can aid developers/testers in pinpointing
the root cause of software failures, and thereby reducing the debugging effort.
For instance, coverage-based runtime analyses to automate the debugging process
(referred to as Spectrum-based Fault Localization (SFL) techniques) have been
proposed [Abreu et al., 2009d]. SFL techniques provide to developers a sorted list of
likely faulty source-code locations, helping them prioritize their inspection of the
program. By making use of program traces, these tools can abstract the complexity of
the program, rendering them able to perform very lightweight (and even language-
agnostic) analyses. Other, more intricate approaches have also been proposed,
such as Model-based Software Debugging (MSD) [Mayer and Stumptner, 2003].
These techniques achieve higher diagnostic accuracy by inferring a model through
the application of static and dynamic analyses of the program, and the use of
logic reasoning to devise an explanation for the faulty behavior. These techniques,
however, do not scale and their use in large, real-world projects is impractical [Mayer
and Stumptner, 2008].

It is therefore our objective in this thesis to not only improve the accuracy of
diagnostic techniques that are able to scale to real-world applications (i.e, SFL), but
also guarantee their effectiveness and usefulness through predictive measurements
and expanded scope of applications.

1.1 Concepts and Definitions
Throughout this document, we use the following definitions:

Definition 1 (Component) A component is a software artifact that symbolizes a unit
of computation and therefore is considered to be atomic3.

Definition 2 (Program/System) A software program Π is formed by a sequence of
one or more components.

3Components can be considered at arbitrary granularity such as a class, a method, a statement, or a
branch [Harrold et al., 1998].
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Definition 3 (Test case) A test case t is a (i, o) tuple, where i is a collection of input
settings or variables for determining whether a software system works as expected or
not, and o is the expected output. If Π(i) = o the test case passes, otherwise fails. We
also refer to test cases as system transactions.

Definition 4 (Test suite) A test suite T = {t1, · · · , tN} is a collection of test cases
that are intended to test whether the program follows the specified set of requirements.
The cardinality of T is the number of test cases in the set |T | = N .

We also use the terminology adopted by Avižienis et al. [2004] to describe failures,
errors and faults:

• A failure is an event that occurs when delivered service deviates from correct
service.

• An error is a system state that may cause a failure.

• A fault (defect/bug) is the cause of an error in the system. Faults, defects and
bugs are used interchangeably in this document.

In this thesis, we apply this terminology to software programs, where faults are
bugs in the program code. Failures and errors are symptoms caused by faults in the
program. The purpose of fault localization is to pinpoint the root cause of observed
symptoms. Once a fault is identified, the following step is to fix it:

Definition 5 (Fix) The set of source code modifications that, when applied, eliminate
faults from the system.

1.2 Spectrum-based Fault Localization (SFL)
SFL is a dynamic software diagnosis technique that exploits coverage information
from both nominal and failing system executions to pinpoint the root cause of
failures [Abreu et al., 2009d]. SFL’s main advantage is the fact that it reasons about
the involvement of components in tests in an abstract way, allowing for a lightweight,
flexible, and language-agnostic diagnostic analysis. In SFL, the following is given:

• A finite set C = {c1, c2, · · · , cM} of M system components;

• A finite set T = {t1, t2, · · · , tN} of N system transactions, which can be seen
as records of a system execution, such as, e.g., test cases;

• The outcome of system transactions is encoded in the error vector e =
{e1, e2, · · · , eN}, where ej = 1 if transaction tj has failed and ej = 0 oth-
erwise;

• A M × N activity matrix A, where Aij = 1 encodes the involvement of
component ci in transaction tj , and Aij = 0 otherwise.
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t1 t2 t3 t4
c1    
c2   
c3   
e 7 7 7 X

(a) Component coverage rep-
resentation.

t1 t2 t3 t4
c1 1 0 1 1
c2 1 1 0 0
c3 0 1 0 1
e 1 1 1 0

(b) Matrix representation.

Figure 1.2: Spectrum of a system with 3 components and 4 transactions.

The pair (A, e) is commonly referred to as spectrum [Harrold et al., 1998]. Compo-
nent involvement is typically gathered by injecting the program with probes that
register the execution of each component at runtime, similar to the instrumentation
one would find in coverage-gathering tools. An example spectrum is shown in Fig-
ure 1.2. This spectrum depicts four transactions (i.e., test executions) of a system
composed of three components. Transactions t1, t2 and t3 fail, whereas in t4 no error
was observed. Note that the two subfigures—Figures 1.2a and 1.2b—depict the same
spectrum, via two representations which are used throughout the paper: while the
former emphasizes component involvement (the symbol  is used when a compo-
nent was active in a given transaction) and test outcomes (symbols 7 and X represent
failing and passing tests, respectively), and is typically shown alongside code snip-
pets; the latter, a more matrix-like representation, is used to depict the mathematical
properties of the activity matrix and the error vector.

1.2.1 Similarity-based SFL

We now describe the classical, similarity-based approach to SFL. This approach
assumes that the more a component’s involvement resembles failing test outcomes,
the more likely that component is the faulty one. Therefore, with the spectrum as
input, the approach measures the resemblance of each row of the activity matrix A
with the error vector e. For that, an intermediate component frequency aggregator
is computed:

npq(i) = |{j | Aij = p ∧ ej = q}| (1.1)

where npq(i) is the number of runs in which the component ci has been active during
execution (p = 1) or not (p = 0), and in which the runs failed (q = 1) or passed
(q = 0). For instance, n11(i) counts the number of times component ci has been
involved (p = 1) in failing executions (q = 1), whereas n10(i) counts the number of
times component ci has been involved in passing executions.

We then calculate similarity to the error vector by means of applying fault predictors
(also referred to as similarity coefficients) to each component to produce a score
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quantifying how likely it is to be faulty. Components are then ranked according to
such likelihood scores and reported to the user.

There is a large catalog of predictors to choose from [Lucia et al., 2014]. Table 1.1
lists a few fault predictors that are among the best performing ones in related
work [Wong et al., 2016]. All of these fault predictors will provide a numerical
score to components so that a ranked list of components for user inspection can be
produced.

Table 1.1: Fault predictor formulas.

Predictor Formula

D∗ [Wong et al., 2012; Wong et al., 2014] n11(i)∗
n01(i)+n10(i)

O [Abreu et al., 2009c; Naish et al., 2011]

{
−1 if n01(i) > 0
n00(i) otherwise

OP [Naish et al., 2011] n11(i)− n10(i)
n10(i)+n00(i)+1

Ochiai [Abreu et al., 2006] n11(i)√
n11(i)+n01(i)+

√
n11(i)+n10(i)

Tarantula [Jones and Harrold, 2005]
n11(i)

n11(i)+n01(i)
n11(i)

n11(i)+n01(i) + n10(i)
n10(i)+n00(i)

A fault predictor named DStar (D∗) was introduced by Wong et al. [2014] such that
the likelihood of a component j being faulty is: (1) proportional to the number of
failed tests that cover it, (2) inversely proportional to the number of successful tests
that cover it, and (3) inversely proportional to the number of failed tests that do
not cover it. Their intuition is that statement (1) and should carry a higher weight
than statements (2) and (3). Therefore, DStar provides a ∗ parameter — where
∗ ≥ 1 — for changing the weight carried by n11(i) in the formula’s numerator. In
this paper, we use ∗ = 2, since [Wong et al., 2012] shows that D2 is more effective
as a fault predictor than other similarity coefficients.

The O fault predictor is often called the optimal metric, but it assumes that there is
only one fault affecting the system [Naish et al., 2011]. Given only one bug, then its
n01(i) should always be zero, and therefore any component with a nonzero n01(i)
is given the lowest score. Since n11(i) + n01(i) equals the number of failing runs,
and n10(i) + n00(i) equals the number of passing runs, there is only one degree of
freedom left, expressed by assigning n00(i) as the predictor’s value, with the aim of
minimizing n10(i). Assuming one bug in the system, O was proven to be optimal
by Naish et al. [2011]. Note that this optimality does not necessarily mean that it
performs always better than other predictors [Yoo et al., 2014].

As an attempt to relax the assumptions from O, Naish et al. also proposed the OP

fault predictor, which does not assign a negative score to every component j where
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n00 n10 n01 n11 D2 O OP Ochiai Tarantula
c1 0 1 1 2 2.0 −1 1.5 .58 .40
c2 1 0 1 2 4.0 −1 2.0 .64 1.0
c3 0 1 2 1 .33 −1 .50 .32 .25

Figure 1.3: Fault predictor outcomes for the example in Figure 1.2.

n01(i) > 0 holds [Naish et al., 2011]. In contrast, OP scores components first based
on their involvement in failing transactions and second on their involvement on
passing transactions.

Ochiai, used in the context of fault localization by Abreu et al. [2006], evaluates
how similar a coverage matrix column Aj is from the error vector e—it is a proxy
for calculating the cosine similarity between two N -dimensional vectors.

The Tarantula predictor was proposed by Jones and Harrold [2005] to assist fault
localization using a visualization technique. The intuition behind this predictor
is that components that are used often in failed executions, but seldom in passed
executions, are more likely to be the root cause of observed failures.

Figure 1.3 shows component frequency values and fault predictor outcomes for the
example in Figure 1.2. Note that the predictor O scores every component with its
lowest score of −1. This is to be expected since no component in the spectrum
from Figure 1.2 is active in all failing tests, and therefore the spectrum necessarily
contains more than one fault. Component c2 exhibits the highest score in all other
predictors, which means these similarity-based SFL approaches will suggest that
component to be inspected first.

1.2.2 Reasoning-based SFL
Reasoning-based SFL, introduced by Abreu et al. [2009c], relies on an approach
that leverages a Bayesian reasoning framework to diagnose the system, which is
able to also diagnose multiple, intermittent faults. The two main steps of the
reasoning-based methodology are candidate generation and candidate ranking:

Candidate Generation The first step in reasoning-based SFL is to generate a set
D = {d1, d2, · · · , dk} of diagnosis candidates. Each diagnosis candidate dk is a
subset of C, and dk is said to be valid if every failed transaction involved at least
one component from dk. A candidate dk is minimal if no other valid candidate
d′ is contained in dk. We are only interested in minimal candidates, as they can
subsume others of higher cardinality. Heuristic approaches to finding these minimal
candidates, which is an instance of the Minimal Hitting Set (MHS) problem, thus
NP-hard, include STACCATO [Abreu and van Gemund, 2009], SAFARI [Feldman et al.,
2008] and MHS2 [Cardoso and Abreu, 2013b].

1.2 Spectrum-based Fault Localization (SFL) 7



{c1, c2, c3}

{c2, c3}

{c1, c3}

{c1, c2}

{c3}

{c2}

{c1}

{}

Figure 1.4: Hasse diagram of diagnostic candidates.

All possible (but not necessarily valid) candidates of the example spectrum from Fig-
ure 1.2 are depicted in the Hasse diagram from Figure 1.4. Colorless nodes represent
invalid candidates—ones whose components cannot explain every failing transaction.
Green nodes depict minimal valid candidates. Gray nodes depict valid non-minimal
candidates which can be subsumed by at least one minimal candidate. Therefore,
the collection of minimal valid diagnostic candidates that can explain the erroneous
behavior is:

• d1 = {c1, c2}

• d2 = {c1, c3}

Candidate Ranking For each candidate dk, their fault probability is calculated using
the Naïve Bayes rule

Pr(dk | (A, e)) = Pr(dk) ·
∏

j ∈ 1..N

Pr((Aj , ej) | dk)
Pr(Aj)

(1.2)

Let Aj be short for {Aij |i ∈ 1..M}— i.e., the jth column of matrix A, represented
by a set encoding all component involvements in test tj . The denominator Pr(Aj)
is a normalizing term that is identical for all candidates and is not considered for
ranking purposes.

In order to define Pr(dk), let pi denote the prior probability4 that a component ci is
at fault. The prior probability for a candidate dk is given by

Pr(dk) =
∏
i ∈ dk

pi ·
∏

i ∈ C\dk

(1− pi) (1.3)

Pr(dk) estimates the probability that a candidate, without further evidence, is re-
sponsible for erroneous behavior.

4Component prior probabilities depend on the chosen granularity. For instance, if components are
statements, one can approximate pj as 1/1000, i.e., 1 fault for each 1000 lines of code [Carey et al.,
1999].
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(b) Pr(d2 | (A, e))

Figure 1.5: Maximum Likelihood Estimation of candidate probability functions.

Pr((Aj , ej) | dk) is used to bias the prior probability taking observations into account.
Let gi (referred to as component goodness) denote the probability that a component
ci performs nominally

Pr((Aj , ej) | dk) =



∏
j ∈ (dk∩Abi)

gj if ej = 0

1−
∏

j ∈ (dk∩Abi)
gj otherwise

(1.4)

In cases where values for gi are not available they can be estimated by maximizing
Pr((A, e) | dk) — i.e., Maximum Likelihood Estimation (MLE) for the Naïve Bayes
classifier — under parameters {gi | i ∈ dk} [Abreu et al., 2009b]. This work uses
MLE to estimate component goodness.

If we consider our example from Figure 1.2, the probabilities for both candidates
are

Pr(d1 | (A, e)) =

Pr(d1)︷ ︸︸ ︷( 999
1000 ·

999
1000 ·

1
1000

)
×

Pr((A,e)|d1)︷ ︸︸ ︷
(1− g1 · g2)︸ ︷︷ ︸

t1

· (1− g2)︸ ︷︷ ︸
t2

· (1− g1)︸ ︷︷ ︸
t3

· g1︸︷︷︸
t4

(1.5)

Pr(d2 | (A, e)) =

Pr(d2)︷ ︸︸ ︷( 999
1000 ·

1
1000 ·

999
1000

)
×

Pr((A,e)|d2)︷ ︸︸ ︷
(1− g1)︸ ︷︷ ︸

t1

· (1− g3)︸ ︷︷ ︸
t2

· (1− g1)︸ ︷︷ ︸
t3

· g1 · g3︸ ︷︷ ︸
t4

(1.6)

By performing an MLE for both functions it follows that Equation (1.5) is maximized
for g1 = 0.50 and g2 = 0.00. Equation (1.6) is maximized for g1 = 0.33 and g3 = 0.50
(see Figure 1.5). Applying the goodness values to both expressions, it follows
that Pr(d1 | (A, e)) = 1.9× 10−9 and Pr(d2 | (A, e)) = 4.0× 10−10. It is customary
to normalize fault probabilities over the set of candidates under consideration,
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producing: Pr(d1 | (A, e)) = 0.83 and Pr(d2 | (A, e)) = 0.17, entailing the ranking
〈d1, d2〉.

1.2.3 Measuring Diagnostic Accuracy

To measure the accuracy of fault-localization approaches, the cost of diagnosis Cd
metric is often used [Abreu et al., 2009c; Campos et al., 2013; Steimann et al.,
2013; Wong et al., 2016]. Given the true fault dt and the SFL diagnostic report
R = {likelihood(d)|d ∈ D}, where likelihood(d) either denotes the fault predictor
score (in the case of similarity-based SFL5) or fault probability (in reasoning-based
variants), then Cd can be computed as

Cd = |{l > likelihood(dt)|l ∈ R}|+
|{l = likelihood(dt)|l ∈ R}|

2 (1.7)

Cd measures the average number of diagnostic candidates that need to be inspected
until the real fault is reached, given that the candidates are being inspected by de-
scending order of fault likelihood, as computed by SFL. A value of 0 for Cd indicates
an ideal diagnostic report where the faulty candidate is at the top of the ranking
and thus no spurious code inspections occur. Another common metric is Wasted
Effort (or merely Effort), that normalizes Cd over the total number of diagnostic
candidates, so that the metric ranges from 0 (optimal value—no developer time
wasted chasing wrong leads) to 1 (worst value—in which all diagnostic candidates
will be inspected until the fault is reached) in all cases.

1.3 Research Goals

SFL was shown to be a lightweight, efficient technique that help developers pinpoint
bugs in software. Its language-agnostic nature makes it exceptionally versatile and
extensible. SFL was also proven effective when coupled with more computationally
taxing diagnostic techniques—such as model-based diagnosis [Abreu et al., 2009a]
and dynamic slicing [Hofer and Wotawa, 2012]—, as the spectrum-based abstraction
allows for a thorough pruning of their search spaces.

Despite the aforementioned advantages that SFL tools provide, we are unable to find
many accounts of successful transitions of this technology into the software industry
at large. This is motivated largely by the issues pointed out by Parnin and Orso in
their 2011 study of automated debugging techniques [Parnin and Orso, 2011], which
were corroborated by Steimann et al. [2013] and Pearson et al. [2017]. Several
problems were outlined in the aforementioned studies, not the least important of
which were (1) the reliance on a thorough test-suite, and (2) the fact there is a

5Diagnostic candidates in similarity-based SFL are single components (i.e., D = C).
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considerable interest drop-off after developers inspect a small number of diagnostic
candidates.

Without a thorough test-suite, the applicability and accuracy of SFL can be signif-
icantly hindered, since the crux of the technique is that components which are
frequently covered by failing tests are more likely to be faulty than those more fre-
quently covered by passing tests. As will be shown in Section 2.2, having a test-suite
that satisfies an adequacy criterion (such as full statement coverage) might still not
yield a diagnosable system, due to, e.g., poor fault isolation. Therefore, in order
to ensure the diagnosability of the system, one should take into account the fact
that test cases created in the testing phase of the development cycle will be used by
downstream techniques such as SFL. It is thus crucial to account for the test-suite’s
propensity for diagnosis when developing tests in a measurable, actionable fashion.
Similarly, due to the abstract nature of program spectra, fault comprehension—i.e.,
the ability to identify a faulty component as such when inspecting it—may be hin-
dered. This aspect is oft overlooked by diagnostic performance metrics, such as the
ones presented in Section 1.2.3. Therefore, novel ways to provide more contextual
information detailing why candidates are considered suspicious should be embedded
in the diagnostic analysis and subsequent diagnostic report.

The abstract nature of spectrum-based analyses also lends itself useful in other tasks,
as evidenced by work on the diagnosis of spreadsheets [Abreu et al., 2014; Hofer
et al., 2015]. A particular software development task that shares many similarities
with debugging is feature localization—i.e., the task of locating where a certain unit
of functionality is implemented in the source-code. This task is important not only
for novice engineers to understand the inner workings of software systems, but also
as the first step in any software maintenance or evolution scenario.

In this thesis, we aim to consider spectrum-based diagnostic analyses and apply them
throughout the development life cycle in a more holistic manner, with the intent
of not only mitigating the issues described above but also producing higher-quality
software that is more diagnosable and more maintainable. In particular, the main
question this thesis addresses is the following:

Can we improve the usefulness and effectiveness of spectrum-based analyses throughout
the software development life cycle?

Below, we outline four research goals that will help us answer the question posed
above.

1.3.1 Diagnosability Assessment
SFL, being a dynamic analysis technique, is heavily dependent on a good test suite
that is capable of not only detecting errors, but also of isolating them. Let us define
the latter property as diagnosability:

1.3 Research Goals 11



Definition 6 (Diagnosability) The ability of a test suite to effectively and accurately
locate faults when errors arise.

In order to assess if test suites are diagnosable, we need a way to measure di-
agnosability. Previous test-suite diagnosability research has proposed measure-
ments to assess diagnostic efficiency of spectrum-based fault localization techniques.
González-Sanchez et al. [2011b] used activity matrix density (ρ) as a measure for
diagnosability:

ρ =
∑
i,j Aij

N ×M
(1.8)

The intuition was to find an optimal matrix density such that every transaction
observed reduces the entropy of the diagnostic report set R. It has been previously
demonstrated that the information gain can be modeled as:

IG(tg) =− Pr(eg = 1) · log2(Pr(eg = 1))

− Pr(eg = 0) · log2(Pr(eg = 0))
(1.9)

where Pr(eg = 1) is the probability of observing an error in transaction tg, conversely
Pr(eg = 0) is the probability of observing nominal behavior. Optimal information
gain (IG(tg) = 1) is achieved when Pr(eg = 1) = Pr(eg = 0) = 0.5. With the
assumption that transaction activity is normally distributed, then it follows that a
transaction’s average component activation rate equals the overall matrix density.
Thus, it can be said that Pr(eg = 1) = ρ, yielding ρ = 0.5 as the ideal value for
diagnosis using SFL approaches [González-Sanchez et al., 2011b].

Another diagnosability measurement was proposed by Baudry et al. [2006], which
tracks the number of dynamic basic blocks in a system. Dynamic basic blocks,
which other authors also call ambiguity groups [González-Sanchez et al., 2011a],
correspond to sets of components that exhibit the same involvement pattern across
the entire test-suite. For diagnosing a system, the more ambiguity groups there are,
the less accurate the diagnostic report can be, because one cannot distinguish among
components in a given ambiguity group, as they all show the same involvement
pattern across every transaction. The metric, which we call uniqueness, will therefore
ensure that the test-suite is able to break as many ambiguity groups as possible. To
compute the metric, consider that an activity matrix A decomposes the system into
a partition G = {g1, g2, · · · , gL} of subsets of components with identical rows in A
such that ∀a, b ∈ g,∀j ∈ T : Aaj = Abj . Then, measuring the uniqueness U of a
system can be done by

U = |G|
M

(1.10)

When U = 1/M, all components belong to the same ambiguity group. When U = 1,
all components exhibit different coverage patterns and consequently can be uniquely
identified.
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Unfortunately, the aforementioned diagnosability metrics rely on impractical as-
sumptions that are unlikely to happen in the real world. The approach by Baudry
et al. assumes all faults can trigger by exercising a single component. The density
approach assumes that all tests exercise distinct code paths and therefore would
produce different coverage patterns. In practice, it is common for different tests to
cover the same code path. If one does not account for test diversity, it is possible to
skew the test-coverage matrix to have a (supposedly) optimal density by repeating
similar test cases. These assumptions will be further examined in Section 2.3.

The theoretically ideal activity matrix for SFL diagnosis is depicted in Figure 1.6.
This ideal matrix is one that contains every combination of component activations
since it follows that every possible fault candidate in the system is exercised.

t1 t2 t3 · · · t2M−1

c1 1 0 0 · · · 0
c2 0 1 0 · · · 0
c3 0 0 1 · · · 0
c4 0 0 0 · · · 1
c5 1 1 0 · · · 0
...

...
...

...
. . .

...
cM 1 1 1 · · · 1

Figure 1.6: Ideal activity matrix for a system with M components.

However, this ideal matrix would also be impractical to achieve, as one would need
to create 2M − 1 tests. Nevertheless, this optimal scenario can help elicit a set of
essential properties that activity matrices need to exhibit for accurate spectrum-based
fault localization. Therefore, our first research goal is:

Research Goal 1

Can we create a near-optimal metric to assess SFL diagnosability of test suites
while avoiding the assumptions held in previous work?

1.3.2 Cardinality of Fixes
There is a considerable amount of research focusing on similarity-based SFL when
compared to reasoning-based SFL, even though the latter was shown to be more
accurate and shown to be able to diagnose more than one fault at a time [Abreu
et al., 2009c]. But this gain in accuracy naturally comes at a cost, given that both
the MHS computation in the candidate generation step and the MLE computation
in the candidate ranking step of the approach are computationally expensive tasks,
especially when compared to the simplicity of most fault predictors used in similarity-
based approach. This leads us to question whether the use of the (significantly faster)
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similarity-based approaches is preferred over (slower) more intricate approaches,
in the event that single-faults are more prevalent in practice. Let us define fix
cardinalities:

Definition 7 (Single-Fault Fix) A fix that eliminates one fault from the system.

Definition 8 (Multiple-Fault Fix) A fix that eliminates more than one fault from the
system.

It remains to be seen is how often such multiple-fix scenarios—that would benefit
from reasoning-based approaches to help diagnose multiple faults— actually happen
in practice. Our hypothesis is that, more often than not, programmers detect and fix
one bug at a time during development. This would mean that, most often, developers
are faced with single-faulted scenarios, so the use of (faster) fault predictors would
be justified. Note that this hypothesis does not necessarily state that systems are at
most single-faulted at any given time, but rather that faults are mostly detected in
isolation. Our research goal is then:

Research Goal 2

What is the prevalence of single-fault fixes versus multiple-fault ones, and
what is their impact in similarity-based SFL?

1.3.3 Augmenting Spectra
SFL faces several issues preventing it from widespread adoption and use. Not the
least of which is the lack of contextual information, essential for understanding
why diagnostic candidates are considered suspicious. This has been pointed out
recurrently in the fault localization literature [Parnin and Orso, 2011; Steimann
et al., 2013; Pearson et al., 2017]. As SFL reasons about failures at the coverage
level, it only has access to whether a software component was involved or not in
each test case. While this enables a language-independent, lightweight analysis, the
necessary abstraction can impose a tradeoff both in accuracy and comprehension.
Although there have been efforts to incorporate more data into the diagnostic
process—by modeling component behavior that considers the system’s state and
previous diagnoses [Cardoso and Abreu, 2013a]; or by leveraging prediction models
trained from version control and issue tracking data [Elmishali et al., 2016]—they
were focused on conditioning the fault probability of existing diagnostic candidates,
increasing accuracy but not necessarily increasing the ability to comprehend the
diagnostic report.

Aside from comprehension, and because SFL only reasons about component involve-
ment and similarity to failing tests, omission errors—errors that result from missing
code [Basili and Perricone, 1984], such as forgetting to check whether a divisor is
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def purchase_item(item_id, price, quantity, wallet): t1 t2 t3

total = price ∗ quantity_discount(item, quantity)    

balance = balances.get(wallet)    

if balance - total >= 0:    

balance = balance - total   

update_balance(wallet, balance)   

update_stock_quantity(item, quantity)   

return True   

return False  

def quantity_discount(item, quantity):

return quantity ∗ price_rates.get(item)(quantity)    

def update_balance(wallet, balance):

balances.update(wallet, balance)   

def update_stock_quantity(item, quantity):

stock = quantities.get(item)   

quantities.update(item, stock - quantity)   

Test outcome (e): X X 7

Figure 1.7: Code snippet and respective spectrum exhibiting coincidental correctness.

equal to zero—also become difficult to diagnose [Xu et al., 2011; Xie et al., 2013].
The abstract nature of the spectra that is fed into current SFL frameworks also
facilitates the occurrence of coincidental correctness:

Definition 9 (Coincidental correctness) The event when no failure is detected, even
though a fault has been executed [Richardson and Thompson, 1993; X. Wang et al.,
2009].

Depending on the component granularity selected for the analysis, coincidental
correctness can happen at a frequent rate. In particular, when two tests share the
same coverage path, but produce different outcomes, it becomes significantly harder
to distinguish them without further contextual information. Coincidental correctness
can potentially lead to exonerating real faults from inspection as they are observed
to behave nominally.

Consider the code snippet from Figure 1.7. The code implements a (simplified) item
purchasing system. Function purchase_item takes as parameters an item identifier
along with its unit price and quantity, and an identifier for the customer’s virtual
wallet. Test t2 performs a purchase with a wallet that contains enough funds to
successfully finish the transaction. The predicate balance - total >= 0 yields
True, and almost all statements in the snippet are executed. Conversely, test t3
attempts to purchase an item with a negative price. Although unusual, one can
think of several scenarios where an item’s price might become negative, such as after
applying a rebate or coupon code. However, even if this scenario happens, a user’s
wallet should never increase its balance after a transaction, which is what happens
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in t3, yielding a test failure. This is an error of omission in the code. Function
purchase_item should check if total is negative and change its value to zero if that
is the case. Tests t2 and t3 both exhibit the same coverage pattern, but the former has
a passing outcome while the latter fails. This is an example of coincidental correctness.
One way to remove the ambiguity between the two tests would be, for instance,
by inspecting the sign of the price parameter, as a contextual way to distinguish
between the two tests. We argue that the issues described above can be prevented,
or at least attenuated, if we supplement the SFL framework with more contextual
information about the system under analysis when diagnosing. Our third research
goal is thus:

Research Goal 3

Can we augment spectra with qualitative, contextual information to improve
SFL diagnoses?

1.3.4 Feature Localization

Let us define a software feature as follows:

Definition 10 (Feature) A feature is the source-code portion that implements a certain
functionality. It can encompass one or more components.

This definition is closely related to the concept of feature in the domain of software
product-line research: “a feature is a unit of functionality of a software system that sat-
isfies a requirement, represents a design decision, and provides a potential configuration
option” [Apel et al., 2013].

Typically in software maintenance or evolution scenarios, developers need to find
features in the source code to further develop them or possibly revise them. Also, it
is not uncommon for developers to spend 60% to 80% of their time in such feature
location and comprehension tasks [Tiarks, 2011]. We argue that the process of
finding features is not too dissimilar with what happens when diagnosing faults, as
in both cases developers need to pinpoint the root cause of a particular software
behavior. Therefore, we hypothesize that the feature localization task can be framed
as a software diagnosis effort and consequently leverage the approaches and tooling
that exist in the fault localization domain.

Research Goal 4

Can we leverage SFL for feature detection?
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1.4 Origin of Chapters
All chapters in this thesis have either been published in peer-reviewed venues
or are currently under review. All publications have been co-authored with Rui
Abreu. Publication of Chapter 2 has also been co-authored with Arie van Deursen.
Publication of Chapter 3 has been co-authored with Marcelo d’Amorim.

Chapter 2 is based on work submitted to the IEEE Transactions on Software En-
gineering, which is currently under review. An earlier version of this work
was published in the Proceedings of the International Conference on Software
Engineering (ICSE’17) [Perez et al., 2017b].

Chapter 3 is based on the work from [Perez et al., 2017a], published in the Pro-
ceedings of the International Conference on Software Testing, Verification and
Validation (ICST’17).

Chapter 4 is based on work from [Perez and Abreu, 2018a], to be published in
the Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI’18). A preliminary version of this work will appear as a poster in the
International Conference on Software Engineering (ICSE’18) [Perez and Abreu,
2018b].

Chapter 5 is based on work from [Perez and Abreu, 2016], which was published in
the Journal of Software: Evolution and Process, 2016. An earlier version of this
work appeared in the Proceedings of the International Conference on Program
Comprehension (ICPC’14) [Perez and Abreu, 2014].

1.5 Thesis Outline
Figure 1.8 depicts the outline for the rest of the thesis. We apply a more holistic
view on the use of spectrum-based diagnostic analyses throughout the software
development life cycle (denoted as the root of the diagram). In particular, we:

• Propose a diagnosability measurement evaluating the effectiveness of
spectrum-based approaches for a given test-suite, to be used in the testing
phase—tackling research goal 1 in Chapter 2;

• Study how faults are actually fixes in practice during the fault fixing step of
the debugging phase—tackling research goal 2 in Chapter 3;

• Improve the fault localization step of the debugging phase by augmenting
spectra with contextual, qualitative runtime descriptions—tackling research
goal 3 in Chapter 4;

• Apply spectrum-based diagnostic analyses to the task of locating features
during the maintenance phase—tackling research goal 4 in Chapter 5.
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Figure 1.8: Thesis Outline.
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2A Diagnosability Measurement

A Test-Suite Diagnosability Metric for Spectrum-based Fault
Localization Approaches
Alexandre Perez, Rui Abreu, and Arie van Deursen
In: Proceedings of the 39th International Conference on Software Engineering,
ICSE’17, Buenos Aires, Argentina, May 20-28, pp. 654–664, 2017.

Abstract Current metrics for assessing the adequacy of a test-suite plainly focus
on the number of components (be it lines, branches, paths) covered by the suite,
but do not explicitly check how the tests actually exercise these components and
whether they provide enough information so that spectrum-based fault localization
techniques can perform accurate fault isolation. We propose a metric, called DDU,
aimed at complementing adequacy measurements by quantifying a test-suite’s
diagnosability, i.e., the effectiveness of applying spectrum-based fault localization
to pinpoint faults in the code in the event of test failures. Our aim is to increase
the thoroughness of test-suites, so they are not only regarded as error detection
mechanisms but also as effective diagnostic aids that help widely-used fault-
localization techniques to accurately pinpoint the location of bugs in the system.
We have performed a topology-based simulation of thousands of spectra and have
found that DDU can not only effectively establish an upper bound on the effort to
diagnose faults, but also lower bound the fault detection rate. Furthermore, our
empirical experiments using the DEFECTS4J dataset show that optimizing a test
suite with respect to DDU yields a 34% gain in spectrum-based fault localization
report accuracy when compared to the standard branch-coverage metric.

2.1 Introduction
Current test quality metrics quantitatively describe how close a test-suite is to thor-
oughly exercising a system according to an adequacy criterion. Such criteria describe
what characteristics of a program must be exercised. Examples of current met-
rics include branch and path coverage [J. C. Miller and Maloney, 1963], modified
decision/condition coverage [Chilenski and S. P. Miller, 1994], and mutation cover-
age [Budd, 1980]. According to Zhu et al. [1997], such measurements can act as
generators, meaning that they provide an intuition on what components to exercise
to improve the suite. However, this generator property does not provide any relevant,
actionable information on how to test those components. These adequacy measure-
ments abstract away the execution information of single test executions to favor an
overall assessment of the suite, and are therefore oblivious to anti-patterns like the
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Figure 2.1: Alister Scott’s ice-cream cone software testing anti-pattern.

ice-cream cone1 (depicted in Figure 2.1). The anti-pattern states that often times
the vast majority of tests is written at the system level (or even executed manually
in an ad-hoc manner), with very few tests written at the unit granularity level (Fig-
ure 2.1a), whereas in most software development scenarios we should expect the
opposite as a best-practice (Figure 2.1b). Even though high-coverage test-suites
(such as end-to-end tests) may detect errors in the system, it is not guaranteed that
inspecting such failing tests will yield a straightforward explanation for the cause of
the observed failures, since fault isolation is not a typically primary concern. Our
hypothesis is that a complementing metric that takes into account per-test execution
information can provide further insight about the overall quality of a test-suite. This
way, if a regression happens, one would have a test suite that is not only effective at
detecting faults, but also aids spectrum-based techniques to efficiently pinpoint them
among the code.

As outlined in Section 1.3.1, previous test-suite diagnosability research has proposed
measurements to assess diagnostic efficiency of SFL techniques. One measurement
uses the density (ρ) of the activity matrix. González-Sanchez et al. [2011b] showed
that when spectrum density approaches an optimal value, the effectiveness of
spectrum-based approaches is maximal. Another approach, by Baudry et al. [2006],
proposes a test for diagnosis criterion that attempts to reduce the size of dynamic
basic blocks to improve fault localization accuracy. The aforementioned metrics rely
on impractical assumptions that are unlikely to happen in the real world—namely by
presuming faults trigger by exercising single components, or by presuming all tests
written by programmers will invariably exercise a different path through the code

1Ice-cream cone software testing anti-pattern mentioned in Alister Scott’s blog: http://goo.gl/
bhXOrN.
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and consequently produce different coverage patterns. If one does not explicitly
account for test diversity, it is possible to skew the test-coverage matrix to have a
(supposedly) optimal density by repeating similar test cases, as will be demonstrated
in Section 2.3.2.

We depict in Section 1.3.1 (Figure 1.6) the optimal coverage matrix for achieving
accurate spectrum-based fault localization. In this optimal scenario, the test-suite
contains a test case exercising every possible combination of components in the
system, so that not only single- or multiple-faults can be pinpointed but also allows
for scenarios which require simultaneous activations of components for the fault to
manifest. Such a matrix is reached when its entropy is maximal. This is the theoreti-
cally optimal scenario. However, the entropy-maximization approach is intractable
due to the sheer number of test cases required to exercise every combination of
components in any real-world system.

Nevertheless, the entropy-optimal scenario helps elicit a set of properties coverage
matrices need to exhibit for accurate spectrum-based fault localization. We lever-
age these properties in our proposed metric, coined Density-Diversity-Uniqueness
(DDU). This metric addresses the related work assumptions detailed above, while
still ensuring tractability, by combining into a single measurement the three key
properties spectra ought to have for practical and efficient diagnosability: (1) density
(ρ), ensuring components are frequently involved in tests; (2) test diversity (G),
ensuring components are tested in diverse combinations; and (3) uniqueness (U),
favoring spectra with less ambiguity among components and providing a notion
of component distinguishability. The metric addresses the quality of information
gained from the test-suite, should a program require fault-localization activities, and
is intended as a complement to adequacy measurements such as branch-coverage.

To measure the effectiveness of the proposed metric, we perform theoretical and
empirical evaluations. The theoretical evaluation simulates a vast breadth of software
systems and test suite compositions so that the range of DDU values can be effectively
generated and analyzed in a holistic manner. Our simulation is built upon a tree-
based representation of system structures—which we call topologies—that are
randomly generated following phylogenetic processes. Topologies then guide the
generation of multiple spectra, which are then fault-injected and diagnosed. This
theoretical analysis reveals that DDU can effectively predict an upper-bound on the
effort required to diagnose. We also empirically evaluate DDU by generating test
suites for real-world faulty software projects. Test generation, facilitated by the
EVOSUITE tool, is guided to optimize test suites regarding a specific metric, and
oracles are generated from correct project versions. The first empirical evaluation
shows that generating tests that optimize DDU produces test-suites that require less
diagnostic effort to find faults compared to the state-of-the-art of diagnosability
metrics, such as density. The second empirical evaluation generates test-suites for a
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wide range of subjects in the DEFECTS4J collection. We provide empirical evidence
that optimizing a suite regarding DDU yields an increase of 34% in diagnostic
accuracy when compared to test-suites that only consider branch-coverage (i.e., a
test adequacy measurement) as the optimization criterion.

This chapter’s contributions are:

• We elicit from the optimal entropy scenario three key properties matrices
ought to exhibit to preserve high diagnostic accuracy: density, diversity and
uniqueness.

• DDU, a new metric based on the aforementioned properties to assess a test-
suite’s diagnostic ability to pinpoint a fault in the system using spectrum-based
techniques. The metric complements adequacy measurements such as branch-
coverage.

• A large-scale theoretical evaluation of DDU through a topology-based program
spectra simulation able to generate and analyze a vast breadth of qualitatively
distinct faulty spectra.

• Empirical evidence that DDU is more accurate at assessing diagnostic ability
than the state-of-the-art.

• Empirical evidence that optimizing a test-suite with respect to DDU yields a
34% gain in diagnostic efficiency when compared to similarly adequate suites.

2.2 Motivation
We present two code snippets along with runtime information of several test cases
as a motivational example demonstrating the need for a new metric that accurately
describes the diagnostic ability of a test-suite2.

The first example, depicted in Figure 2.2a, shows a snippet of code from a sensor
array capable of measuring distance to the ground both when submerged and
airborne. The purpose of groundAltitude is to measure distance to the ground
using the internal altitude sensor (ALT) and the ground elevation sensor (GND). This
method has a bug: it will produce negative values if ALT is greater than GND. The line
should then read return sub(ALT, GND). Test t1 does indeed detect the error in the
system. But the problem is that no other test also exercises the branches followed
by t1 to exonerate them from suspicion. This results in the developer having to
manually inspect all components that do not appear in passing tests. Six lines out
of a total of 12 will have to be inspected, corresponding to nearly 50% of the total
code in the snippet. In this small example, it is feasible to inspect all components,
but component inspection slices can grow to fairly large numbers in a real world

2We use line of code as the component granularity throughout the motivation section.
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t1 t2 t3 t4

def groundDistance():    

if underwater():    

return surfaceDistance()   

else:  

return groundAltitude()  

def groundAltitude():    

if landed():    

return 0   

else:  

return sub(GND, ALT)  

def sub (a,b):  

return a - b  

Test outcome (e): 7 3 3 3

(a) Per-test coverage of a single-faulted system.

t1 t2 t3 t4

def descend(increment):    

if landed():    

return Status.STOPPED   

else:  

descendMeters(increment)  

return Status.DESCENDING  

def ascend(increment):   

if landed():   

liftoff()  

return Status.LIFTOFF  

else:  

ascendFeet(increment)  

return Status.ASCENDING  

Test outcome (e): 3 3 3 3

(b) Per-test coverage of a multiple-faulted system.

Figure 2.2: Motivational code snippets with respective program spectrum.

scenario. So, even though this test-suite has 100% branch-coverage, it does not
provide many diagnostic clues.

The second example, depicted in Figure 2.2b, contains a snippet of code for control-
ling the ascent and descent of a drone. The descend method uses meters to quantify
the amount of descent, while the ascend method uses feet. Assuming there is no
explicit check for altitude available, testing these methods independently will not
reveal the failure. In fact, only a test that covers both methods’ else branches may
reveal it if, for instance, there is an unexpected liftoff after a descent. Even though
we have reached 100% branch coverage, this test-suite has not managed to expose
the fault in the code. Also note that even satisfying a stronger coverage criterion
like the modified condition/decision coverage or even a stronger intra-procedural
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analysis will not expose the fault. To expose the fault in this example one would
need to exercise combinations of decisions from different methods.

2.3 The DDU Diagnosability Metric

As detailed in Section 1.3.1, the ideal activity matrix is one that contains every com-
bination of component activations—depicted in Figure 1.6. A metric that accurately
captures this exhaustiveness is entropy—the measure of uncertainty in a random
variable. Shannon Entropy [Shannon, 2001] is given by

H(X) = −
∑
i

P (xi) · log2(P (xi)) (2.1)

in this context, X is the set of unique transaction activities in the spectrum matrix.
P (xi) is the probability of selecting a transaction t ∈ T and it having the same
activity pattern as xi. When H(X) is maximal, it means that all possible transactions
are present in the spectrum. For a system with M components, maximum entropy is
M shannons (i.e., number of bits required to represent the test suite). Therefore, we
can normalize it to H(X)/M. Matrices with a normalized entropy of 1.0 would, then,
be able to efficiently diagnose any fault (single or multiple) provided that the error
detection oracles that classify transactions as faulty are sufficiently accurate. The
main downside of using entropy as a measure of diagnosability is that one would
need 2M − 1 tests to achieve this ideal spectrum (and thus a normalized entropy of
1.0). In practice, some transaction activities are impossible to be generated, either
due to the system’s topology or due to the existence of ambiguity groups: a set of
components that always exhibit the same activity pattern3.

Our goal, then, is to capture several structural properties of activity matrices that
make them ideal for diagnosing, while avoiding the combinatorial explosion of the
optimal entropy approach. We start by considering activity matrix density as the
basis for our approach, and then propose the diversity and uniqueness enhancements
so that the impractical assumptions of the base approach can be lifted.

2.3.1 Density

The ρ metric captures the density of a system. Its ideal value for minimizing the
diagnostic report entropy is 0.5, as shown in the work of González-Sanchez et al.
[2011b]. It is also straightforward to show the optimality of the value of 0.5 for the
density measurement by induction, as depicted in Figure 2.3. Suppose that we have
an activity matrix A′, which is optimal for diagnosis. Suppose also that we want
to add a new component c′ to our system. To preserve optimality, we would need

3An example of an ambiguity group is the set of statements in a basic block.
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to repeat the optimal sub-matrix A′ both when c′ is active and when it is inactive.
Therefore, the involvement rate of the newly created component c′ would be 0.5.

t1 · · · tj t′1 · · · t′j
c1
...
ci

A′ A′
c′ 0 0 0 1 1 1

Figure 2.3: Depiction of the optimal density proof.

Note that in the case of dependent faults—ones where multiple simultaneous com-
ponents must be involved for the fault to trigger —the optimal value depends on
the fault cardinality. Suppose that a system contains Nf dependent faults. The total
number of fault candidates can then be expressed by the binomial coefficient

( C
Nf

)
.

If the system’s coverage matrix density is ρ, tests that exercise it cover, on average,
ρ · C components, and thus the number of candidates of cardinality Nf exercised by
the test are

(ρ·C
Nf

)
. The probability of a test failing is then

Pr(tf ) =
(ρ·C
Nf

)
( C
Nf

) (2.2)

A binomial coefficient can be expressed using Pochhammer’s falling factorial4

Pr(tf ) =
(ρ·C)Nf

Nf !
(C)Nf

Nf !

=
(ρ · C)Nf

(C)Nf

(2.3)

As the falling factorial (x)n is equal to
∏n
i=1(x−i+1), Equation (2.3) can be rewritten

as

Pr(tf ) =
Nf∏
i=1

ρ · C − i+ 1
C − i+ 1 (2.4)

And since C � Nf , we can approximate the value of Pr(tf )

Pr(tf ) ≈ lim
C→+∞

Nf∏
i=1

ρ · C − i+ 1
C − i+ 1 = ρNf (2.5)

Then, the information gain from any given test case can be computed as demon-
strated in Equation (1.9) from Section 1.3.1

IG = −Pr(tf ) · log2(Pr(tf ))− Pr(tp) · log2(Pr(tp))

= −ρNf · log2(ρNf )− (1− ρNf ) · log2((1− ρNf ))
(2.6)

4http://mathworld.wolfram.com/FallingFactorial.html
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Figure 2.4: ρ versus IG for different fault cardinalities.

The optimal IG = 1 value corresponds to ρNf = 0.5, which means that the optimal
density is

ρ = 1

2
1

Nf

(2.7)

Figure 2.4 shows the evolution of IG’s value over the density for faults of cardinality
1, 2, and 4, where we can see a skew favoring higher densities the more components
are involved in a fault. The reason for this behavior is that it is unnecessary to run
sparse tests which execute less components than the number of components needed
to trigger a failure. In the general case, since one does not know a priori about
the cardinality of a failure, targeting a ρ = 0.5 is still the safest course of action in
terms of covering all possible fault cardinalities. However, if one has a means of
deducing the fault cardinality (for instance, using the defect prediction methodology
as outlined in [Abreu et al., 2011]), then such information can be exploited—e.g.,
by turning off sparse tests guaranteed to not trigger the complex fault and thus
reducing the time to run the test suite.

Since ρ = 0.5 is our optimal (general purpose) target value, we propose a normalized
metric ρ′ where its upper bound (1.0) is the actual target

ρ′ = 1− |1− 2 · ρ| (2.8)

and the lower bound 0 means that every cell in the matrix contains the same value.
However, this optimal target is only valid assuming that all transactions in the
activity matrix are distinct. Such assumption is not encoded in the metric itself (see
Equation (1.8)). This means that a matrix with no diversity (depicted in the example
from Figure 2.5a) is able to reach the ideal value for the ρ′ metric.
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2.3.2 Diversity
The first enhancement we propose to the ρ′ analysis is to encode a check for test
diversity. In a diagnostic sense, the advantage of having considerable variety in the
recorded transactions is related to the fact that each diagnostic candidate’s posterior
probabilities of being faulty are updated with each observed transaction. If a given
transaction is failing, it means that the diagnostic candidates whose components
are active in that transaction are further indicted as being faulty—so their fault
probability will increase. Conversely, if the transaction is passing, then it means that
the candidates that are active in the transaction will be further exonerated from
being faulty—and their fault probability will decrease. Having such diversity means
that more diagnostic candidates will have their fault probabilities updated so that
they are consistent with the observations, leading to a more accurate representation
of the state of the system.

t1 t2 t3 t4
c1 1 1 1 1
c2 1 1 1 1
c3 0 0 0 0
c4 0 0 0 0
(a) No Test Diversity.

ρ′ = 1.0 G = 0.0

t1 t2 t3 t4
c1 1 0 1 0
c2 1 0 1 0
c3 0 1 1 0
c4 0 1 0 1

(b) Test Diversity.
ρ′ = 1.0 G = 1.0

Figure 2.5: Impact of diversity on ρ′ and G.

We use the Gini-Simpson index to measure diversity (G) [Jost, 2006]. The G metric
computes the probability of two elements selected at random being of different
kinds:

G = 1−
∑
n× (n− 1)

N × (N − 1) (2.9)

where n is the number of tests that share the same activity. When G = 1, every test
has a different activity pattern. When G = 0, all tests have equal activity. Figures 2.5a
and 2.5b depict examples of repeated and diverse test cases, respectively. We can
see that the ρ′ metric by itself cannot distinguish between the two matrices, as they
have the same density. If we also account for diversity, the two matrices can be
distinguished.

2.3.3 Uniqueness
The second extension we propose has to do with checking for ambiguity in compo-
nent activity patterns. If two or more components are ambiguous, like components
c1 and c2 from the example in Figure 2.6a, then they form an ambiguity group
(see Section 1.3.1), and it is impossible to distinguish between these components
to provide a minimal diagnosis if tests t1 and t3 fail. As finding potential diagnostic
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candidates can be reduced to an MHS problem, breaking ambiguity groups means
that more components will become inconsistent with failure observations and thus
would be removed from the set of possible diagnostic candidates, improving the
tractability of the Bayesian update step of the reasoning-based SFL approach.

t1 t2 t3 t4
c1 1 0 1 0
c2 1 0 1 0
c3 0 1 1 0
c4 0 1 0 1

(a) Component Ambiguity.
ρ′ = 1.0 G = 1.0

U = 0.75

t1 t2 t3 t4
c1 1 0 1 0
c2 1 1 0 0
c3 0 1 1 0
c4 0 0 1 1

(b) No Component Ambiguity.
ρ′ = 1.0 G = 1.0

U = 1.0

Figure 2.6: Impact of component ambiguity on ρ′, G and U .

We use a check for uniqueness (U) as described in Equation (1.10) to quantify
ambiguity. Uniqueness is also used by Baudry et al. [2006] to measure diagnosability.
However, we argue that uniqueness alone does not provide sufficient insight into
the suite’s diagnostic ability. Particularly, it does not guarantee that component
activations are combined in different ways to further exonerate or indict multiple-
fault candidates. In that aspect, information regarding the diversity of a suite
provides further insight.

2.3.4 Combining Diagnostic Predictors

Our last step is to provide a relaxed version of entropy (which we call DDU) by com-
bining the three aforementioned metrics that assess the key properties (i.e., necessary
and sufficient) a coverage matrix ought to have to ensure proper diagnosability:

DDU = ρ′ × G × U (2.10)

and its ideal value is 1.0. We reduce ρ′, G and U into a single value by means of
multiplication. The reason being that since in each term the value of 0.0 corresponds
to the worst-case and 1.0 to the ideal case, we are able to leverage properties of
multiplication such as multiplicative identity and the zero property.

2.4 Theoretical Evaluation
A simulation approach to spectra generation enables us to consider an otherwise
infeasible breadth of scenarios, so that the metric’s diagnosability performance
can be analyzed from a holistic, theoretical standpoint—akin to related work on
spectrum based fault localization [González-Sanchez et al., 2011b; Abreu et al.,
2009c; Cardoso and Abreu, 2013a]. Therefore, we first evaluate the DDU metric by
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C1, C9              0.01…
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0  1  1  0  1  0  0  1  0  0
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0  1  1  0  1  0  0  1  0  0
0  1  0  0  0  1  0  0  0  1
0  0  0  0  1  1  0  1  0  1
1  1  1  0  1  0  1  1  1  1
1  0  1  1  0  0  1  1  1  1
1  0  0  1  0  0  1  1  0  1
0  0  0  1  1  0  0  1  1  1
1  0  1  0  1  0  0  1  1  1
1  0  1  0  0  0  1  1  0  1
P  F  F  F  F  P  P  F  F  F

…

Figure 2.7: Process followed by the spectra simulator.

generating a multitude of program spectra via simulation. This section (1) describes
the topology-based spectra simulator and fault injector we created for this theoretical
analysis; (2) details the experimental setup, where thousands of distinct spectra
were automatically generated by the simulator; and (3) presents an assessment
on the correlation of DDU—as well as coverage—with diagnostic effort, based on
the simulated data. Afterwards, in Section 2.5, we empirically evaluate the DDU
metric.

2.4.1 Spectra Simulator

The spectra simulator we built for this theoretical assessment is able to generate a
breadth of qualitatively distinct coverage matrices. It uses topology-based5 policies
to select which components are active on each test, and relies on component good-
nesses—as described in Section 1.2.2—to inject test failures. Figure 2.7 depicts the
overall process followed by the simulator to generate a set of faulty program spectra
and their respective diagnoses. The following subsections detail each step of the
simulation process.

Topology Generation The first step in the simulation process is to generate a
random tree with as many leaves as components to be simulated. Tree generation
follows a uniform birth-death process, commonly used to simulate phylogenetic
trees [Hartmann et al., 2010], in which lineages (or tree paths) have a constant
probability of speciating (splitting into multiple branches), and a constant probability
of going extinct, per time unit. The generated tree acts as the system topology,
and is predicated on the fact that, in most programming paradigms, source code

5The use of topologies to generate spectra is inspired by SERG-Delft’s simulator: https://github.
com/SERG-Delft/sfl-simulator
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is structured in a hierarchical fashion—especially in the case of object-oriented
languages.

Component Activation After generating a topology, the component activation step
generates a vast amount of test cases by activating components and propagating
these activations through the topology. This step starts with the selection of a
component (which we call the anchor) and setting it as active in a newly created test-
case. Anchor components are shown as red tree nodes in the Component Activation
step depicted in Figure 2.7. With the selection of an anchor, we randomly activate
other components conditioned upon their distance to the anchor—following the
assumption that the farther away two components are, the less related they are and
hence less likely to be covered in the current test-case being generated. Worth noting
that coverage density of a test can be manipulated by multiplying the activation
probability by a density term. If this term is < 1, then sparse test cases are generated.
Conversely, a value > 1 yields denser test cases. We generate test cases using a wide
spectrum of density terms.

The component activation process is repeated numerous times for each component
in the system, so that a large collection of test cases is available to the next steps in
the simulation.

Test Selection This step consists on selecting a set of test cases out of the test case
pool generated in the previous step. We have chosen to select as many tests as there
are components in the system—yielding square coverage matrices. Having the test
suite depend on the number of components allows it to (reasonably) grow with
program size, with the assumption that the larger the code base is, the more tests
are created.

Fault Injection For each matrix that the previous step produces, we inject it with:
(1) a single fault, (2) multiple independent faults, and (3) multiple dependent faults.
In the first case, we randomly assign a component from the system as the faulty one,
and set each test which covers the faulty component as having a failing outcome.
In scenario (2), multiple components are considered as being faulty, and thus tests
that cover any non-empty subset of faulty components are set to failing. In the
last scenario, only tests that cover the conjunction of all failing components are set
to failing. We include multiple-faulted scenarios in our analysis since, as will be
discussed in Chapter 3, such scenarios account for a non-trivial portion (20%) of
bug-fixing tasks in open-source projects.

The fault injection step is also able to consider component goodnesses, which, as
detailed in Section 1.2.2, describe the probability of a faulty component exhibiting
nominal behavior (and thus not triggering a test failure).
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Diagnosis We diagnose the faulty spectra generated in the previous step using the
reasoning-based SFL technique described in Section 1.2.2.

2.4.2 Setup

We have run our simulation 20 times so that 20 distinct topologies ranging from 100
to 500 components were considered. For each topology, all components acted as
anchors, generating a test-case pool using several density terms. Each test-case pool
produced 100 matrices, which were fault-injected—with a single fault, two/three
independent faults, and two/three dependent faults. Goodnesses ranged from 0 to
0.25. Regarding metrics, we have gathered coverage, DDU, entropy, and effort to
diagnose for every faulty spectra generated by the simulator.

To ensure reproducibility, our spectra simulator, and its respective configuration file
describing this experiment, are made available6. In total, more than 300,000 spectra
were simulated, fault injected, and diagnosed in this experiment.

2.4.3 Results

Below we present and discuss the spectra simulation results by (1) evaluating the
diagnostic quality using the effort metric as described in Section 1.2.3, and by
(2) evaluating the simulated spectra’s propensity for error detection.

Diagnostic Quality Diagnostic effort results for every spectrum generated in this
experiment are shown in Figures 2.8 to 2.11. Each figure shows a scatter plot
portraying the relation of diagnostic effort7 with different metrics—namely coverage,
DDU, entropy, and the average of density, diversity and uniqueness. Points in the
scatter plot represent simulated spectra. Beside each scatter plot are three two-
dimensional histograms depicting the distribution of spectra containing each fault
type.

Figure 2.8 portrays the relation between coverage and diagnostic effort for all
simulated spectra. Regarding spectra that were injected with a single fault, their
diagnosability improves by increasing coverage. Note that single-faulted spectra seem
to form several downward lines in the scatter plot—each of these lines corresponds
to a different topology used as the basis for emulating software structure. We can
therefore make two observations. The first is that, for a given topology, the selection
and composition of the test suite influences not only coverage but also the effort to
diagnose. The second is that the choice of base topology also influences diagnostic
quality.

6Available at https://github.com/aperez/sfl-simulator.
7Normalized over the number of components, so that spectra of systems with a different number of

components can effectively be compared.
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Figure 2.8: Relation between diagnostic effort and coverage.
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Figure 2.9: Relation between diagnostic effort and DDU.

While single-fault diagnostic effort decreases with coverage, the same cannot be
said for scenarios with multiple faults, especially ones where dependent faults were
injected, since several spectrum instances with high coverage are not in the bottom-
right of the plot. For these scenarios, high coverage is not a good indicator of
diagnosability. An illustrative example of such phenomenon is as follows. Consider
a spectrum that resembles a diagonal matrix, where each test exercises a single
distinct component. Such a spectrum has high coverage—because every component
is exercised—and, at the same, is sparse—since all tests contain a single component
activation. In effect, this is analogous to a high-coverage unit test suite with no
integration tests exercising multiple components. For single fault scenarios, this suite
is very likely to find and accurately isolate faults. However, in cases where a fault
requires set of component activations for an error to be triggered, this suite cannot
provide enough evidence for fault localization algorithms to pinpoint faults.

Figure 2.9 depicts the relation between DDU and effort. We can tell that this metric
upper bounds the effort to diagnose —the higher the DDU, the lower the maximal
diagnostic effort —providing a more accurate expectation of diagnosability when
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Figure 2.10: Relation between diagnostic effort and entropy.
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Figure 2.11: Relation between diagnostic effort and the average of density, diversity and
uniqueness.

compared with coverage. As opposed to coverage, multiple faults do not negatively
influence the DDU’s diagnostic accuracy.

Figure 2.10 shows test entropy—as described in Section 2.3—in the x-axis. Note
that entropy values range from 0 to 1, but to improve legibility, we are showing a
partial range of entropy values up to 0.04 as no spectra in our simulation exceeded
this value. In effect, the number of test cases generated by the simulator (set to be
the same as the number of components in every generated spectra) is insufficient
to significantly explore the entire range of entropy values. Limiting the number of
tests was an intentional way to model how developers test in practice, and therefore
it leads us to conclude that optimizing for entropy is infeasible with a reasonable
number of tests.

We discuss in Section 2.3.4 the reasons for choosing multiplication as a way of
reducing the composing terms of DDU (namely density, diversity and uniqueness)
into a single value that represents the system’s diagnosability. While we explain why
each term is important for the overall diagnosability, it might be the case that there
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Figure 2.12: Two-dimensional histograms depicting the number of simulated matrices along
with the relation between error detection and several metrics.

is a better way to reduce them into a one-dimensional value. Figure 2.11 depicts
using the average of density, diversity and uniqueness values as the measure for
diagnosability—as opposed to their multiplication, which is depicted in Figure 2.9.
We can conclude that the multiplication of density, diversity and uniqueness more
accurately predicts the diagnostic performance of the test suite.

Error Detection Besides investigating diagnostic quality, which relates to the actual
effort bugs take to be located, we have also recorded the error detection rate. This
evaluates the propensity for faults in a given coverage matrix to induce test errors,
and is achieved by keeping track of the frequency in which errors are detected in
faulty spectra. Each coverage matrix we generate is subject to multiple rounds of
fault injection. As a result, we generate sets of spectra that exhibit the same coverage
matrix and different error vectors. Error detection rate is then the frequency by
which these sets of spectra exhibit failing error vectors.

Figures 2.12a and 2.12b show two-dimensional histograms depicting the error
detection frequency of coverage matrices along coverage values and DDU values,
respectively. Figure 2.12a tells us that the majority of high coverage spectra are
able to produce test failures when faults are injected, as portrayed by the intensity
of the top-right portion of the histogram. However, we still observe a significant
portion of cases with low error detection despite their coverage value, as evidenced
by the intensity of the bottom row in the histogram. Such spectra do not have
adequate test cases that detect the injected faults. In contrast, we see that when DDU
is considered—Figure 2.12b —, there are considerably less cases of high-DDU spectra
yielding low error detection rates. This is initial evidence that DDU may be suited
for measuring the adequacy of test suites, besides simply measuring diagnosability.
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2.5 Empirical Evaluation
Results obtained by simulating a breadth of program spectra seem to indicate that,
from a theoretical standpoint, DDU effectively estimates the diagnostic effort required
to pinpoint bugs, regardless of fault type. However, these promising results do not
exclude the need to evaluate the metric against real-world subjects. This section
details our following experiment, in which we empirically evaluate the proposed
metric in regard to its ability to assess diagnostic quality. We aim to address the
following research questions:

Research Question 2.1

Is the DDU metric more accurate than the state-of-the-art in diagnosability
assessment?

Research Question 2.2

How close does the DDU metric come to the (ideal yet intractable) full en-
tropy?

Research Question 2.3

Does optimizing a test-suite with regard to DDU result in better diagnosability
than optimizing adequacy metrics such as branch-coverage in traditional
scenarios?

RQ2.1 asks if there is a benefit in utilizing the proposed approach as opposed to
density and uniqueness—which have been used in related work. RQ2.2 is concerned
with assessing if DDU shares a statistical relationship with entropy—the measurement
whose maximal value describes an optimal (yet intractable and impractical) coverage
matrix. RQ2.3 asks if using DDU as an indicator of the diagnostic ability of a test-suite
is more accurate than using standard adequacy measurements like branch-coverage
in a setting with real faults.

2.5.1 Experimental Setup
Our empirical evaluation compares DDU to several metrics in use today. To effectively
compare the diagnosability of test-suites of a given program that maximize a specific
metric, we leverage a test-generation approach. EVOSUITE8 is a tool that employs
search-based testing approaches to create new test cases [Fraser and Arcuri, 2011]. It
applies a Genetic Algorithm (GA) to minimize a fitness function which describes the
distance to an optimal solution. The metrics to be compared are DDU—our proposed
measurement; density and uniqueness to be able to answer RQ2.1; entropy to

8EVOSUITE tool is available at http://www.evosuite.org. Version 1.0.2 was used for experiments.
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answer RQ2.2 and lastly branch-coverage for RQ2.3. These metrics were encoded
as fitness functions in the EVOSUITE framework. As the GA in EVOSUITE tries to
minimize the value of a function over a test suite TS, the fitness functions for each
metricM are as follows

fM(TS) = |OM −M(TS)| (2.11)

where OM is the optimal value of metric M (e.g., 1.0 for the case of branch-coverage,
and 0.5 for density), and M(TS) is the result of applying metric M to test suite
TS. To account for the randomness of EVOSUITE’s GA, we repeated each test-suite
generation experiment 10 times. EVOSUITE’s maximum search time budget was
set to 600 seconds, which follows the setup of previous studies also using the tool
(e.g., [Campos et al., 2013]).

EVOSUITE by itself does not generate fault-finding oracles—otherwise, a model of
correct behavior would have to be provided. Instead, it creates assertions based
on static and dynamic analyses of the project’s source code. This means that if we
run the generated test-suite against the same source code used for said generation,
all tests will pass (provided the code is deterministic9). Thus, if the source code
submitted for test-generation contains faults, no generated test oracle will expose
them.

For the experiments comparing with the state-of-the-art and the idealistic approach
(to answer RQ2.1 and RQ2.2, respectively), we need a controlled environment so
that oracle quality (which in itself is an orthogonal factor) does not affect results.
Therefore, the experiment described in Section 2.5.2 mutates the program spectrum
of generated test-suites to contain seeded faults and seeded failing tests, akin to the
fault injection step of our spectra simulator (cf. Section 2.4.1). In each experiment, a
set of components were considered as faulty, and tests that exercise them were set as
failing according to a goodness probability—we have set faulty component goodnesses
to 0.25, meaning that whenever a faulty component is involved in a test, there is a
75% chance that the test will be set as failing. The chosen value is a compromise
between perfect error detection (i.e., goodness of 0) and essentially random error
detection (goodness of 0.5). This fault injection approach is common practice among
controlled, theoretical evaluations of spectrum-based diagnoses [González-Sanchez
et al., 2011b; Abreu et al., 2009b].

For assessing the applicability in real world scenarios, and to answer RQ2.3, we need
real life bugs and fixes. Therefore, in Section 2.5.3 we make use of DEFECTS4J10—a
software fault catalog [Just et al., 2014a]—to generate test-suites from fixed versions

9EVOSUITE also tries to replicate the state of the environment at each test-run so that even some
non-deterministic functionality such as random number generation can be tested.

10DEFECTS4J tool is available at https://github.com/rjust/defects4j. Version 1.0.1 was used for
experiments.
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of a program and then gather program spectra by testing the corresponding faulty
version.

Spectrum gathering was performed at the branch granularity for both experiments,
so every component in our subjects’ coverage matrices corresponds to a method
branch—this way we can fairly compare our approach to branch coverage. Each pro-
gram spectrum gathered in the previous step is then diagnosed using the automated
diagnosis tool CROWBAR11. This tool implements the spectrum-based reasoning
approach, and generates a ranked list of diagnostic candidates for the observed
failures.

For a given subject program, to compare the diagnosability of a test-suite generated
by the DDU criterion with the one generated by a criterion C, we use the following
metric

∆Effort(C) = EffortC − EffortDDU (2.12)

where EffortDDU is the effort to diagnose using the test-suite generated with the
DDU criterion and EffortC is the effort to diagnose with the test suite by maximizing
some criterion C. Effort takes as input the ranked list of diagnostic candidates from
CROWBAR and estimates quality of diagnosis as described in Section 1.2.3. The
∆Effort(C) metric ranges from −1 to 1. Positive values of ∆Effort(C) mean that the
bug is found faster in diagnoses that use the DDU generated test suite. Negative
values mean that the faulty component is ranked higher in the C-generated test-suite
than the DDU one, thus requiring less spurious diagnostic inspections. ∆Effort(C) of
value 0 means that the faulty component is ranked with the same priority in both
test generations.

We make use of kernel density estimation plots to show the ∆Effort(C) values in Fig-
ures 2.13 and 2.14. Such plots estimate the probability density function of a variable,
i.e., they describe the relative likelihood (y-axis) for a random variable (∆Effort(C)
in our case) to take on a given value (x-axis). In our experiments, the higher the
density value at a certain value in the x-axis, the more instances with ∆Effort(C) near
that value were observed. Note that the observed data is shown as a rug plot, with
tick marks along the x-axis (reminiscent of the tassels on a rug).

2.5.2 Diagnosing Seeded Faults

Our first experiment attempts to answer RQ2.1 and RQ2.2 by generating test-suites
and seeding faults in their spectra in a controlled way. We same set of subjects as
empirical evaluations from related work [Campos et al., 2013]. Namely, we use
the open-source projects Apache Commons-Codec, Apache Commons-Compress,
Apache Commons-Math and JodaTime. For each subject, we generate test-suites that

11CROWBAR tool is available at https://github.com/TQRG/crowbar-maven-plugin.
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Figure 2.13: Kernel density estimation of seeded fault experiment. Entropy generation cri-
terion shows similar diagnostic accuracy when compared DDU. The remaining
generation criteria exhibit worse diagnostic performance than DDU.

optimize DDU, branch-coverage, entropy, density, and uniqueness. In total, 1050
program spectra were generated and diagnosed.

Experimental results are shown in Figure 2.13. When we consider the entropy
generation, we can say that the resulting test-suites are very similar in terms of
diagnosability compared to DDU, since ∆Effort(H) is denser at the origin. For the
remaining generation criteria, their respective ∆Effort probability masses are shifted
to ∆Effort > 0, so their diagnostic reports perform worse at diagnosing the faults
than when DDU is utilized. In fact, our inspection of experimental results reveals
that, when optimizing branch-coverage, 78% of scenarios showed lower diagnostic
accuracy when compared to DDU. For both the density-optimized and uniqueness-
optimized test generations—which are the state-of-the-art measurements for test-
suite diagnosability—this figure rises to 100% of scenarios.

We show in Table 2.1 the dominant metric median values for each generation
criterion along with the median number of tests generated. By dominant metric
we mean the metric which that particular test generation was trying to optimize.
Along with the median value we also show (where available) the metric’s Pearson
correlation with entropy (denoted by rH) and the p-value of the correlation. With
95% confidence, we can say that the correlation values shown are statistically
significant. DDU exhibits a high correlation with entropy, having rH > 0.95 for all
subjects. In all other generation criteria, the correlation with entropy fluctuates
considerably between subjects. Also, note that for both ρ and branch-coverage
criteria, their dominant mean values approach the theoretical optima (at 0.5 and 1.0,
respectively) while ∆Effort still shows that DDU test generation was able to produce
suites with better diagnostic accuracy.

Revisiting the first research question:
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Table 2.1: Metric results for the seeded faults experiment.

Median / Size / Correlation / Correlation p-value
Subject H DDU ρ U BC

2.65×10−2 0.620 0.476 0.669 0.910
177 170 126 81 177
N.A. 0.957 0.658 0.902 0.793

Apache
Commons-

Codec N.A. 2.71×10−3 1.98×10−2 3.58×10−2 2.08×10−3

4.66×10−2 0.962 0.510 0.669 0.825
108 108 30.5 29.5 126
N.A. 0.999 0.999 0.873 0.968

Apache
Commons-
Compress N.A. 1.08×10−6 7.51×10−7 1.47×10−3 9.62×10−4

4.36×10−2 0.818 0.424 0.659 0.922
497 467 402 246 528.5
N.A. 0.989 0.905 0.725 0.885

Apache
Commons-

Math N.A. 4.68×10−4 1.85×10−2 4.79×10−2 2.31×10−2

1.580×10−2 0.582 0.369 0.417 0.790
265 265 267 171 267
N.A. 0.976 0.674 0.921 0.654JodaTime

N.A. 8.54×10−4 1.60×10−2 2.59×10−2 2.09×10−2

Research Question 2.1

Is the DDU metric more accurate than the state-of-the-art in diagnosability
assessment?

Answer: There is a clear benefit in optimizing a suite with regard to DDU compared
to density if we consider the effort of finding faults in a system. This is evidenced
by the fact that 100% of scenarios in our seeded fault experiment show improved
diagnostic accuracy when using DDU when compared to the state-of-the-art density
and uniqueness measurements.

If we look at the second research question:

Research Question 2.2

How close does the DDU metric come to the (ideal yet intractable) full en-
tropy?

Answer: Table 2.1 shows a strong correlation between entropy and DDU, with a
Pearson correlation value above 0.95 for all subjects. Correlation of other metrics
is much lower and varies greatly across subjects. Thus, we can conclude that DDU
closely captures the characteristics of entropy.

The reader might then pose the question: if maximal entropy does indeed correspond
to the optimal coverage matrix, why should one avoid using it as the diagnosability
metric? While we agree that in automated test generation settings entropy can be
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Figure 2.14: Kernel density estimation of the ∆Effort(BC) metric for DEFECTS4J subjects.
77% of instances have a positive ∆Effort(BC), meaning that branch-coverage
generations perform worse than DDU generations.

plugged as the fitness function to optimize12, for manual test generation entropy
will yield very small values for any complex system, as one can see from Table 2.1.
In fact, for a system composed of only 30 components, the number of tests needed to
reach entropy of 1.0 surpasses the billion mark. This makes it difficult for developers
to leverage information out of their test-suite’s entropy value to gauge when can one
confidently stop writing further tests.

2.5.3 Diagnosing Real Faults

We used the DEFECTS4J database [Just et al., 2014a] for sourcing the experimental
subjects. DEFECTS4J is a database and framework that contains real software bugs
from open source projects. For each bug, the framework provides faulty and fixed
versions of the program, a test suite exposing the bug, and the fault location in
the code. The idea behind DEFECTS4J is to allow for reproducible research in
software testing using real-world examples of bugs, rather than using the more
common hand-seeded faults or mutants. In our evaluation, we generate test suites
for each of DEFECTS4J’s 357 catalogued bugs, using both branch-coverage and DDU
as EVOSUITE’s fitness functions, and then compare the two generated suites with
regard to their diagnosability and adequacy. The experiments’ methodology is as
follows. For every bug in DEFECTS4J’s catalog, we use EVOSUITE to generate test
suites for the fixed version of the program. The test suites are executed against the
faulty program versions. This means that any test failure is due to the bug—which is
the delta between the faulty and fixed program versions.

Out of the 357 catalogued bugs in DEFECTS4J (version 1.0.1), not all were considered
for analysis. Scenarios were discarded due to the following reasons:

• EVOSUITE returned an empty suite;

12Because tools like EVOSUITE can be configured with a time budget as another stopping criteria.
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Table 2.2: DEFECTS4J Projects.

Identifier Project Name # Scenarios Considered
1, 4, 6, 8–11, 13–15, 18, 20,

Chart JFreechart 26
22, 24, 26

3, 4, 7, 9, 12, 14–17, 19, 20–28, 30,

33–35, 39, 43, 44, 46–49, 51, 52,

54–56, 58, 63, 65, 66, 67, 69, 71–74,

76–78, 82, 85, 87, 107, 108, 110–113,

115, 116, 118, 119, 124, 126, 127,

Closure
Closure

Compiler
133

129–132

1–7, 9–14, 16, 17, 19, 21, 22,

24–28, 30, 31, 33, 36, 38–42,Lang
Apache

Commons-Lang
65

46, 47, 49, 50–57, 59–61, 65

1–10, 14–16, 18–20, 24–27, 29,

30, 32, 34, 35, 37–42, 44–46,Math
Apache

Commons-Math
106

48–56, 100, 101, 103, 105, 106

Time JodaTime 27 6, 8, 12, 15, 21, 22, 26, 27

Table 2.3: Metric medians and statistical tests.

Branch-Coverage DDU
Generation Generation

Branch
Coverage

0.85 0.75

DDU 0.10 0.42

Suite
Size

291 374

Effort 0.31 0.10

W = 0.92 W = 0.85
Shapiro-Wilk

p-value = 1.70×10−8 p-value = 1.05×10−12

Wilcoxon Z = 2335.0
Signed-rank p-value = 3.50×10−13

• The generated suite did not compile or produced a runtime error;

• No failing tests were present in either DDU or branch-coverage criteria for
generating test suites.

In total, 171 scenarios were filtered out. The remaining 186 listed in Table 2.2 are
fit for analysis and their results are used throughout this section.

Experimental results are shown in Figure 2.14. Results are shown per-subject. We
can see that for every subject in the DEFECTS4J catalog, all their estimated probability
density funtions are shifted towards ∆Effort(BC) > 0, meaning that the majority of
instances have better diagnostic accuracy when test generation optimizes DDU. In
fact, our experiments reveal that 77% of scenarios (144 in total) yield a positive
∆Effort(BC).
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We performed statistical tests to assess whether the gathered metrics yielded sta-
tistically significant results. Table 2.3 shows the relevant statistics. The first four
rows show the median values for branch-coverage, DDU, generated suite size and
diagnosis effort for both EVOSUITE test generations. As to be expected, the median
branch-coverage is higher in the branch-coverage-maximizing generation. Con-
versely, the DDU criterion yields the higher DDU. Results in the effort row corrob-
orate our observations from Figure 2.14—the test suites optimizing DDU take on
average less effort to diagnose the fault. In fact, our results show that the effort
reduction when considering DDU over branch-coverage is 34% on average. However,
this fact alone does not guarantee that the results are significant, which prompted
us to perform statistical tests. The first test performed was the Shapiro-Wilk test for
normality [Shapiro and Wilk, 1965] of effort data for both generations. The results,
which can be seen in the fourth row of Table 2.3, tell us that the distributions are
not normal, with confidence of 99%.

Given that the effort data is not normally distributed and that each observation
is paired, we use the non-parametrical statistical hypothesis test Wilcoxon signed-
rank [Wilcoxon, 1945]. Our null-hypothesis is that the median difference between
the two observations (i.e., ∆Effort) is zero. The fifth row in Table 2.3 shows the
resulting Z statistic and p-value. With 99% confidence, we can refute the null-
hypothesis. Revisiting RQ2.3:

Research Question 2.3

Does optimizing a test-suite with regard to DDU result in better diagnosability
than optimizing adequacy metrics such as branch-coverage in traditional
scenarios?

Answer: Since the median effort in the DDU generation is lower—the reduction
amounting to 34% on average—we can say that optimizing for DDU produces better,
statistically significant, diagnoses when compared to test suites that optimize for
branch-coverage.

2.5.4 Threats to Validity

We now outline the potential threats to validity of the experiment detailed above:

External Validity When choosing the projects for our study, our aim was to opt for
projects that resemble a general large-sized application being worked on by several
people. To reduce selection bias and facilitate the comparison of our results, we
decided to use the same experimental subjects from related work (such as [Campos et
al., 2013]), as well as the real-world scenarios compiled in the DEFECTS4J database.
Another threat to external validity relates to the choice of test suites generated by
EVOSUITE. Additional research is needed to see how the metric behaves both with
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different test-generation frameworks (such as RANDOOP [Pacheco and Ernst, 2007])
and with hand-written test cases.

Construct Validity A potential threat to construct validity relates to the choice
of effort as indicator for diagnosability. However, as argued in Section 1.2.3 this
choice reflects the effort that a programmer with minimal knowledge about the
system would require to effectively pinpoint all the faults that explain the observed
failures.

Internal Validity The main threat to internal validity lies in the complexity of several
of the tools used in our experiments, most notably the DDU test generator and our
diagnosis tool.

2.6 Discussion
DDU was shown to be useful for evaluating the quality of a test-suite. But what are
the practical implications of this finding? We outline such assessments next.

Composition of a Test Suite We argue that the DDU analysis can suggest an ideal
balance between unit tests and system tests (i.e., when DDU reaches its optimal value)
due to its density term. We are then able to compare the balanced suites to ones
created following testing practices currently established at software development
companies. For instance, Google suggests a 70%/20%/10% split between unit,
system and end-to-end tests in a suite13. Is this split indeed ideal in terms of
diagnostic accuracy? We believe a DDU analysis can provide guidance as to what
the answer is, as evidenced in the theoretical evaluation. Our simulation of spectra
shows that changing the composition of a test suite through test selection does
impact the diagnostic effectiveness for a given base topology, and as such, an optimal
selection can be achieved through maximization of the DDU metric.

Test Design Strategy We expect the DDU analysis to be used as the first step of a
test design strategy that aims to increase diagnostic accuracy of a suite. For that,
we envision that new test patterns that focus on optimizing diagnosability will need
to be researched and incorporated in established test strategy corpora such as that
of Binder [2000].

Additionally, an ensemble of strategies that individually improve DDU’s density, diver-
sity, and uniqueness terms could also be considered. Density-based test strategies
would focus on selecting the optimal test scope. Diversity-based strategies would
focus on identifying and exercising untested code paths. Uniqueness-based strategies
would focus on decoupling component executions. Tying into genetic-algorithm-
based automated test generation tools such as the one used in our evaluation, and
13Google Testing blog: Just Say No to More End-to-End Tests. http://goo.gl/S5HhZ7.
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with the rising interest in explainable artificial intelligence14, these three strategies
could serve as the cornerstone for a multi-objective approach to test generation that
would not only recommend the best test to add to an existing test suite, but also
provide a reasoned explanation as to why that test would benefit and improve the
system’s ability to diagnose eventual faults.

At a broader scope, our simulation experiment also tells us that system structure,
or architecture—which we call topology—also has an influence on diagnosability.
Test design strategies will necessarily need to utilize such structural information
to provide better assessments as to what tests should be performed to improve
diagnostic quality. Conversely, it is also not unreasonable to expect that a change in
the system’s structure could yield considerable gains in diagnosability.

Visualization In coverage metrics, it is straightforward to visualize the analysis of
a system so that users know what code components were left untested, highlighting
where to focus when writing new test cases. Is there a way to visualize DDU analysis
in a similar way? In our opinion, the challenge for creating such visualization would
be conveying the three different properties that the DDU metric captures in such a
way that would elucidate users regarding what their best next action is in order to
increase the system’s diagnosability. We envision that visualization approaches for
program comprehension, such as EXTRAVIS [Cornelissen et al., 2011], will constitute
a solid starting point for a study on visual, interactive and actionable ways to improve
the system’s diagnosability.

Generalization to Other Debugging Techniques We show that DDU depicts the
ability to diagnose of SFL approaches. However, our intuition is that DDU is general
and applies to any diagnosis technique that uses a failing test suite as the basis for
locating faults. We plan to investigate this hypothesis as future work.

Adequacy Assessment DDU provides an assessment of the diagnostic effectiveness
of a given test suite. It remains to be seen if that can also be said for assessing
the fault finding effectiveness, which is also a good avenue for future work. In
the meantime, we consider our metric to be a complement to adequacy metrics,
and envision that testers will employ a hybrid approach to evaluating test quality
that relies on branch coverage and DDU to assess adequacy and diagnosability,
respectively.

14Such as DARPA’s Explainable Artificial Intelligence (XAI) program: https://www.darpa.mil/
program/explainable-artificial-intelligence
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2.7 Related Work
Related work in the assessment of the diagnosability of a test suite has focused on
three key areas: test-suite minimization and generation strategies, and assessing
oracle quality.

The topic of test-suite minimization is a prime candidate for our approach, since it
has been shown that there is a tradeoff between reducing tests and the suite’s fault
localization effectiveness [Yu et al., 2008]. In minimization settings, one tries to
reduce the number of tests (and thus its overall running time) while still ensuring that
an adequacy criterion—usually branch coverage—is not greatly affected. Current
minimization strategies can often improve the diversity score of a coverage matrix
by removing tests with identical coverage patterns [Gong et al., 2012] at the cost of
overlooking density and uniqueness, which we argue are of key importance to assess
diagnosability. The uniqueness property is also exploited by Xuan and Monperrus
[2014], with a test-case purification approach that separates a test-case into multiple
smaller tests. This approach overlooks the fact that density will decrease, along with
the ability to diagnose a multiple-faulted scenario.

Current test-suite minimization frameworks that take adequacy criteria into account
could also benefit from our approach to preserve diagnostic accuracy if a multi-
objective optimization (such as, e.g., [Yoo and Harman, 2010; Alipour et al., 2016])
to also account for DDU is employed. This paves an interesting avenue for future
work.

On the test-suite generation front, previous work has also started considering di-
agnosability as a generation criterion. The work of Campos et al. [2013], which
generated tests that would converge towards coverage matrix densities of 0.5, has
paved the way for creating improved measurements like DDU. Checks for diversity
and uniqueness were not explicitly added, and we show when we answer RQ2.1
in Section 2.5 that the density criterion produces results that are less diagnostically
accurate. Another approach to suite generation is one by Artzi et al. [2010], that
proposes an online approach that leverages concolic analysis to generate tests that
are similar to existing failing tests in a system.

Lastly, we highlight some of the work targeting diagnosability by improving test
oracle accuracy. Schuler and Zeller [2011] propose checked coverage as a way of
assessing oracle quality. Checked coverage tries to gauge whether the computed
results from a test are actually being checked by the oracle. X. Wang et al. [2009]
have proposed a way of addressing coincidental correctness—when a fault is executed
but no failure is detected—by analyzing data and control-flow patterns. Just et al.
[2014b] investigated the use of mutants to estimate oracle quality, and compared
their performance against the use of real faults. Their results suggest that a suite’s
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mutation score is a better predictor of fault detection than code coverage. We
consider this topic of assessing and improving oracle quality of critical importance
towards test-suite diagnosability, but also orthogonal to DDU in that the two would
complement each other.

2.8 Summary
In this chapter, we addressed the limitations of current diagnosability measurements
outlined in Section 1.3.1. Concretely, in this chapter:

• We proposed the DDU diagnosability measurement which assesses fault local-
ization effort given a faulty test suite (Section 2.3, page 24). DDU leverages
and combines three core diagnosability traits:

1. Density of the activity matrix (Section 2.3.1, page 24);

2. Diversity of the test suite (Section 2.3.2, page 27); and

3. Uniqueness of component coverage patterns (Section 2.3.3, page 27).

• We conducted a theoretical evaluation using simulated (faulty) spectra to
evaluate the full range of possible DDU values (Section 2.4, page 28). Results
show that higher DDU values correlate to lower maximal diagnostic effort.

• We conducted an empirical evaluation on real programs, using the EVOSUITE

test generation tool to generate test suites maximizing different software
metrics, namely DDU, branch-coverage, entropy, etc (Section 2.5, page 35).
Results show that:

1. Test suites generated by maximizing DDU exhibit lower effort to diagnose
compared to test suites generated by maximizing current state-of-the-
art diagnosability metrics such as density or uniqueness (thus answer-
ing RQ2.1, page 39);

2. DDU performance is correlated with the (optimal, but intractable) entropy
measurement, showing that it effectively captures the fault-revealing
properties of entropy (answering RQ2.2, page 39);

3. Test suites that maximize DDU yield a 34% average reduction in diag-
nostic effort compared with test suites that maximize branch-coverage
(for the same Evosuite generation time budget) showing that DDU is a
more accurate diagnosability predictor than coverage (answering RQ2.3,
page 42).
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3Prevalence of Single-Fault Fixes
Throughout Development

Prevalence of Single-Fault Fixes and Its Impact on Fault Localization
Alexandre Perez, Rui Abreu, and Marcelo d’Amorim
In: Proceedings of the IEEE International Conference on Software Testing,
Verification and Validation, ICST’17, Tokyo, Japan, March 13-17, pp. 12–22, 2017.

Abstract Several fault predictors were proposed in the context of similarity-based
SFL approaches to rank software components in order of suspiciousness of being
the root-cause of observed failures. Previous work has also shown that some of
the fault predictors (near-)optimally rank software components, provided that
there is one fault in the system. Despite this, further work is being spent on
creating more complex, computationally expensive, model-based techniques that
can handle multiple-faulted scenarios accurately. However, our hypothesis is
that when software is being developed, bugs arise one-at-a-time and therefore
can be considered as single-faulted scenarios. We describe an approach to mine
repositories, find bug-fixes, and catalog them according to the number of faults
they fix, to assess the prevalence of single-fault fixes. Our empirical study using
279 open-source projects reveals that there is a prevalence of single-fault fixes,
with over 82% of all fixes only eliminating one bug from the system, enabling the
use of simpler, (near-)optimal, fault predictors.

3.1 Introduction
When considering similarity-based SFL approaches (see Section 1.2.1), the O predic-
tor, proposed by Abreu et al. [2009c] and by Naish et al. [2011], has been shown
to be the optimal heuristic for locating faults, provided the system under analysis
contained only one fault. However, in the eventuality of the system containing
multiple faults, the performance of O is expected to degrade considerably, as it
assumes that one component must be responsible for all failing tests [Abreu et al.,
2009c]. For this reason, previous research has focused on multiple-faulted scenar-
ios by either proposing less optimal fault predictors whose performance does not
degrade as severely in the presence of multiple faults (e.g., the D∗ predictor [Wong
et al., 2014]); and by proposing more intricate techniques such as reasoning-based
SFL (Section 1.2.2), that are not only more computationally expensive but also may
increase the complexity of the debugging process.

However, what remains to be seen is how often such multiple-bug scenarios actually
happen in practice. Our hypothesis is that, more often than not, programmers detect
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and fix one bug at a time during development. This would mean that, most often,
developers are faced with single-faulted scenarios, so the use of the optimal fault
predictor O could be justified given the prevalence of single-faults—and thus we
would be able to not only provide optimal diagnostic reports to developers but also
also make better use of tools and techniques that take diagnostic reports as input,
such as with program repair [Nguyen et al., 2013]. Note that our hypothesis does
not state that the system is only single-faulted at any particular point in time, but
rather that faults are mostly detected in isolation.

To assess that such single-fault fix prevalence actually exists in practice, we describe
a methodology that mines a project’s code repository to find bug fixes and label
them as being single- or multiple-faulted. The repository miner performs a reverse-
chronological exploration of commits and runs newer test suites against older
versions of the program. If a passing test-suite fails against an older codebase, it
means that the code changes between the two versions (i.e., ∆) contain a fix. If, on
the other hand, there are compilation or runtime errors while running tests (due
to, e.g., a change in the interface between components), then we consider ∆ as
adding new functionality—so there is no fix present. Our classifier will then find
if there is any component in ∆ that appears in every affected test. If so, the fix is
considered to be single-faulted. Otherwise, the fix will be labeled as multiple-faulted.
Our methodology is similar to those of Böhme and Roychoudhury [2014], Dallmeier
and Zimmermann [2007], and Sliwerski et al. [2005], in that code repositories are
explored to isolate fixes.

We conducted a large-scale empirical study where we analyzed the repositories of
279 real, open-sourced Java projects, cataloged every detected fix, and performed
fault-localization using the 5 popular predictors described in Section 1.2.1. In total,
1375 fixes were found. Out of all fixes, 1135 of them were single-faulted, thus yielding
a prevalence of 82.5%. Among single-faulted fixes we observed that the O predictor
has the best accuracy out of the tested predictors, with the faulted component being
placed at the top of the diagnostic report in over 90% of all cases. Additionally,
we found that another predictor proposed in the literature (OP , a non-optimal
variant of O [Naish et al., 2011]) performed similarly to O, while other predictors
were less accurate. For multiple-faulted fixes, the diagnostic performance of O
decreased considerably, making its fault localization reports unsuited for analysis.
Other predictors showed a less severe performance degradation.

After analyzing the results, we have verified our hypothesis that most failures
developers face are due to only one (active) bug, as there is a prevalence of single-
fault fixes. However, our results suggest that the optimal O predictor’s accuracy
deteriorates significantly in the presence of multiple faults. On the upside, the OP

fault predictor has shown comparable performance to the optimal O in the case of
single-faults, while still producing usable results for diagnosing multiple-faults.
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This chapter’s contributions are:

• A methodology for finding fixes in a software repository and labeling them as
single- or multiple-faulted.

• Empirical evidence that single-faulted fixes correspond to 82.5% of all fixes in
open-source Java projects.

• An assessment of the diagnostic performance of spectrum-based fault predictors
in single-faulted scenarios. The optional O predictor, as well as OP , show a
degree of accuracy (with virtually no wasted effort) when compared to other
predictors.

• An assessment of diagnostic performance in multiple-fault scenarios. We show
that O’s performance is essentially random. For other predictors, there is still a
performance decrease, not as significant as O’s, especially when trying to find
the last faulty component in the ranking.

3.2 Cardinality of Fixes
Throughout this chapter, we use the terms single-fault fix and multiple-fault fix as
defined in Section 1.3.2 (Definitions 7 and 8, respectively).

To identify a fix as single-faulted, we check if all tests affected by the change—i.e.,
that went from failing to passing—share at least one component modified by the
fix. For that, we look at the minimal-cardinality hitting-set (or MHS) of tests affected
by the change. If there are hitting sets of cardinality 1, it means that at least one of
the components modified by the fix is active on every affected test. Multiple-fault
fixes are ones whose hitting-sets are of size greater than one, in which more than
one component necessarily have to behave abnormally to explain the set of faulty
test outcomes.

3.3 Methodology for Fault Classification
This section details the methodology we followed for mining a project’s repository,
finding fixing commits, and labeling them as either single- or multiple-fault fixes. A
diagram depicting the methodology is shown in Figure 3.1. It should be noted that,
although we motivate our approach by mentioning SFL, the methodology described
in this section is completely separate from any diagnostic process.

3.3.1 Mining Fixing Commits
We employ a methodology for fault classification that involves access to the subject
program’s code repository, to enable the inspection of both the project’s commit
history and each commit tree (which represents the state of all checked-in files
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Figure 3.1: Methodology for mining and classifying fixes.

at a particular commit). We start by analyzing the latest commit in the main
branch—which, in most workflows, is the master branch—and iteratively explore
parent commits. This reverse-chronological exploration is able to handle most work-
flows enabled by modern version control systems (e.g., git), such as branch merging,
rebasing and commit cherry-picking1. However, note that the use of advanced history-
rewrite features—like commit squashing2—may influence the outcome of the fault
cardinality classifier, as these features allow sets of commits to be deleted, reordered,
and even collapsed into one.

During our reverse-chronological analysis, we restore the working tree of the commit
currently being explored and run the project’s test-suite. If it is a passing suite, the
commit is then considered as a fix candidate, and we advance to its parent commit,
restoring its working tree. After that we run the fix candidate’s suite—hence why
our analysis is reverse chronological: so that the fixing commit’s test-suite is run
against an earlier commit. If the suite fails, we prompt the fault cardinality classifier,
described in Section 3.3.2, to run. If, on the other hand, the suite passes, the
commit’s own test-suite is run to decide whether it should be the new fix candidate.
This process repeats until all commits are explored.

3.3.2 Classifying Fault Cardinality of a Fixing Commit
We now describe the methodology for classifying the fault cardinality of any fixing
commit discovered in Section 3.3.1. At this stage we execute test-suites at each
commit under analysis and perform code coverage instrumentation. We have selected
method-level granularity for the instrumentation so that methods are the units of our
analysis. This way, fixes that only involve one method are classified as single-faulted.
Our classification methodology encompasses four steps:

Gathering Spectra The first step in the fault classification process is to run the fixed
version’s test-suite against both fixed and faulty programs and gather their spectra
with methods as the component granularity. By faulty programs we mean programs
compiled from source code in which the fixing set of commits was rolled back. When

1Cherry-picking refers to the act of applying the changes from a set of commits to the current branch.
2Commit squashing is the act of merging together a series of commits so they appear as one in the

commit history.
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testing the suite against the fixed version, we ensure that every test is passing. Since
tests pass in the fixed version, we attribute any test failure observed when testing
the faulty program to the code changes between the two versions under analysis.

Figure 3.2 depicts example spectra generated by the two test runs. Figure 3.2a shows
the faulty version’s spectrum and Figure 3.2b shows the fixed version’s counterpart.
Highlighted components denote elements from the ∆ set—the set of components
that were modified between the two versions under analysis.

t1 t2 t3 t4
c1 1 0 0 1 ∆
c2 1 1 0 0
c3 0 1 0 1 ∆
c4 0 0 1 0
c5 1 1 0 0
c6 0 1 0 1
c7 0 0 1 0
e 0 1 0 1

(a) Faulty version.

t1 t2 t3 t4
c1 1 0 1 1 ∆
c2 1 1 0 0
c3 1 1 0 1 ∆
c4 0 0 1 0
c5 1 1 0 0
c6 0 1 0 1
c7 0 0 1 0
e 0 0 0 0

(b) Fixed version.

Figure 3.2: Spectra gathered when running test-suite from the fixed version. ∆ denotes
components changed by the fixing commit.

Note that, for the suite to run against the faulty version, the ∆ set must not include
any interface changes that render the two versions incompatible. Consequently, if
any compilation or runtime errors arise while attempting to run the test suite, ∆ is
considered as containing changes to functionality (rather than a fix) and is therefore
discarded from subsequent analysis.

Ambiguity Removal After gathering the faulty version of a spectrum, we perform an
initial filtering step to remove ambiguous components, so that only one component
from an ambiguity group is present. At the spectrum level of abstraction, components
can form an ambiguity group (also known as an equivalence class) if they always
exhibit the same execution behavior, so it is not possible to distinguish between them,
as discussed in Section 2.3.3. This inter-dependence means that these components
will always need to be inspected together. Therefore, if a bug occurs in an ambiguity
group, the group will be considered as faulty. An example of this filtering step
is depicted in Figure 3.3. We consider that if any component in ambiguity group
belongs to ∆, then the ambiguity group also belongs to ∆. This is so that the newly
created ambiguity group component can be considered in the next steps of the
analysis.

Unchanged Code Removal The faulty version’s spectrum shows test failures not
present in the fixed spectrum (cf. Figure 3.2). Recall that the test-suite is unchanged
between the two versions, as described in our step 1, so we can attribute the cause
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t1 t2 t3 t4
c1 1 0 0 1 ∆
c2 1 1 0 0
c3 0 1 0 1 ∆
c4 0 0 1 0
e 0 1 0 1

Figure 3.3: Ambiguity group filtering step. Components from Figure 3.2a that exhibit the
same behavior are grouped and collapsed into a single component.

of the erroneous behavior to a subset of components C ⊆ ∆ which is part of the
code modified between the two versions under test3. All components not in ∆ can
therefore be safely exonerated from suspicion of containing the observed fault and
are filtered out from the analysis, as shown in Figure 3.4.

t1 t2 t3 t4
c1 1 0 0 1
c3 0 1 0 1
e 0 1 0 1

Figure 3.4: Filtered from Figure 3.3 components not involved in ∆.

Hitting Set & Classification The last filtering step to be performed is one that looks
at failing tests from the faulty spectrum—namely t2 and t4 from our example—and
keeps them in the analysis. Passing tests—t1 and t3—are discarded, as they do not
reveal information about the faulty components.

The final, filtered spectrum, shown in Figure 3.5, is then submitted to MHS anal-
ysis [Abreu and van Gemund, 2009; Feldman et al., 2008] so that we are able to
determine what (sets of) components are active on every failing row of the spectrum.
Akin to what happens in reasoning-based SFL (cf. Section 1.2.2), these sets of com-
ponents can be regarded as diagnostic candidates, since, when assumed faulty, can
explain every observed error in the system. Each diagnosis candidate—a subset of all
components—is valid if every failing test-case involves at least one component from
the candidate. A candidate is minimal if removing any component from it makes it
no longer a hitting set. We are only interested in minimal candidates, as they can
subsume others of higher cardinality.

t2 t4
c1 0 1
c3 1 1
e 1 1

Figure 3.5: Spectrum depicting a single-fault after filtering passing tests from Figure 3.4.

3This assumes test outcomes are deterministic.
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If the minimal hitting set of the filtered spectrum yields solutions of cardinality 1,
it means that there is at least one component that is involved every fault-revealing
test. In Figure 3.5, component c3 is active in every test, so we consider the fixing
commit as being a single-fault fix.

Another example is depicted in Figure 3.6. In this filtered spectrum, the set of
components {c9, c10} has the minimal cardinality so that it explains every test failure.
The fact that this spectrum’s hitting set contains candidates of cardinality greater
than 1 means that there is no one component that, when modified, causes all tests
to pass. This is true because no component is active on every failing test. Therefore,
in this case, the fixing commit is labeled as a multiple-fault fix.

t5 t6 t7
c8 0 1 0
c9 1 1 0
c10 0 0 1
e 1 1 1

Figure 3.6: Spectrum depicting a multiple-fault.

3.4 Evaluation

In Section 1.2, we described several similarity-based SFL predictors and stated that,
as they yield a uni-dimensional ranking of fault likelihood, their accuracy might be
impacted in multiple-fault scenarios. However, we hypothesize that such multiple-
faulted scenarios are not that frequent during development because developers
tend to fix faults soon after they are detected. We aim to assess the prevalence of
single-fault fixes in several real, open-source software projects.

Furthermore, for cases where multiple-faults are present in a system, we aim to
quantify what is the decrease in diagnostic performance (if any) of using such
similarity-based SFL techniques to debug the system.

This work aims to address the following research questions:

Research Question 3.1

How prevalent are single-fault fixes in open-source projects?

Research Question 3.2

What is the effort to diagnose single-faults with state-of-the-art fault predic-
tors?
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Research Question 3.3

What is the impact on diagnostic performance when multiple-faults are con-
sidered?

RQ3.1 is concerned with the quantitative assessment of single-fault fixes and how
their pervasiveness compares to that of multiple-fault fixes. In RQ3.2, we ask what
is the diagnostic efficiency of current similarity-based approaches—most of which
designed to pinpoint single-faults—when solely considering single-faulted scenarios.
In RQ3.3, we shift our attention towards multiple-faulted scenarios, and ask what
the diagnostic performance of similarity-based SFL techniques is for these scenarios,
with the aim of comparing against the single-faulted baseline.

We conducted a large scale empirical study encompassing hundreds of open-source
projects. The experiment entailed mining their code repositories and finding fault-
fixing commits following the methodology described in Section 3.3. Afterward, each
pinpointed fault was diagnosed using the fault-localization techniques described
in Section 1.2.1.

3.4.1 Experimental Setup

The subjects of our study are open-source software projects originally gathered for
a study on pull request distributed development on GitHub, conducted by Gousios
and Zaidman [2014]. The catalog encompasses over 6,000 publicly available code
repositories for projects written in Java, Javascript, Python, Ruby and Scala. We
have chosen this dataset due to its breadth of subjects and the fact that the vast
majority of them contain test-cases—which are a requirement for spectrum-based
analyses. The dataset was, however, filtered to fit the needs of our experiment. We
have applied the following filtering schemes:

1. We only consider the dataset’s 1,288 Java projects. Projects written in other
languages were discarded due to the fact that our tooling only handles Java
source code (1,288 subjects out of 6,001).

2. Non-Apache Maven projects were discarded. Maven is a requisite for our
analysis because we use one of its plugins to instrument code at runtime to
obtain a test execution’s program spectra. We also ensure that the mvn compile
command terminates successfully and all dependencies can be resolved (701
subjects out of 1,288).

3. Projects should contain tests, otherwise fault-localization tools are unable to
perform the analysis (279 subjects out of 701).
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Out of all projects from the dataset, we end up considering 279 Java projects as our
subjects4. On average, subjects’ test-suites were comprised of 596 tests.

The repository miner for classifying fixes as described in Section 3.3 is available
at https://github.com/aperez/single-fault-prevalence. The miner uses the
Python library GitPython5 to iterate throughout the repository’s history. Gathering
program spectra is done through a Maven plugin that shares the same internals
for runtime instrumentation of Java programs as the GZOLTAR fault-localization
tool [Campos et al., 2012]. The fault classifier’s MHS computation is performed
using Abreu and van Gemund [2009]’s STACCATO algorithm. Fault localization is
performed at the method granularity.

3.4.2 Metrics Used

To assess diagnostic performance, we resort to the wasted effort measurement
described in Section 1.2.3. In the case of multiple-fault scenarios, since all diagnostic
candidates generated by similarity-based SFL are single components, an effort metric
by itself is insufficient to judge diagnostic efficiency [Steimann et al., 2013]. This
is because more than one faulty component is scattered throughout the ranked
list produced by similarity-based techniques. Given a set of k faulty components
F = {f1, f2, · · · , fk}, to better assess the diagnostic efficiency in these scenarios, we
provide three measurements:

1. First-fault effort, which is the effort required to reach the first faulty component:

min {Effort(f)|f ∈ F} (3.1)

2. Average-fault effort, an average of efforts to reach all faulty components:

{Effort(f)|f ∈ F} (3.2)

3. Worst-fault effort, the effort required to reach the last faulty component in the
ranking:

max {Effort(f)|f ∈ F} (3.3)

We also compare the performance of each multiple-fault scenario to an artificially-
crafted single-faulted equivalent. The artificial scenario is a proxy for a spectrum
that only contains one component responsible for all erroneous behavior, aiding
us to compare and contrast the outcome of fault-localization techniques between
single- and multiple-faulted versions of the same problem. For that, we merge

4The full list of experimental subjects is available at https://github.com/aperez/
single-fault-prevalence.

5Available at https://pypi.python.org/pypi/GitPython.
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all faulted components into one, as depicted in the example from Figures 3.7a
and 3.7b. Figure 3.7a shows a program spectrum with its two faults highlighted—i.e.,
components c1 and c3. Our merging strategy creates a new spectrum (Figure 3.7b)
with all faulty components stripped, in which a new component with the faulty
components’ coverage activity is inserted—this essentially amounts to performing a
bitwise or among all faulty rows from the original spectrum. This way, we can judge
what is the impact on diagnostic accuracy by measuring:

∆Effort = Effort− Effortmerged (3.4)

∆Effort values range from -1 to 1. A value of 1 means that the diagnostic efficiency is
minimal in the multiple-fault scenario and maximal in its single-faulted equivalent.
Conversely, ∆Effort = -1 states that efficiency is maximal for the original scenario and
minimal for the single-faulted one. ∆Effort = 0 means that both scenarios yield the
same effort to diagnose.

t1 t2 t3 t4
c1 0 1 0 0
c2 1 0 1 0
c3 1 0 0 1
c4 0 0 1 0
e 0 1 0 1

(a) Before faulty component
merger.

t1 t2 t3 t4
c2 1 0 1 0
c4 0 0 1 0
c1,3 1 1 0 1
e 0 1 0 1

(b) After faulty component
merger.

Figure 3.7: Multiple-fault components merge strategy.

In the eventuality that the fault classifier’s MHS set step produces more than one
minimal-cardinality result, it means that the spectrum has more than one fault
candidate—i.e., there are multiple sets of components that can independently ex-
plain failing tests. Figure 3.8 provides an example scenario where the hitting set
encompasses two fault candidates of cardinality 1: c1 and c3. At the spectrum level
of abstraction, one cannot distinguish the real fault among the minimal-cardinality
candidates. To do so, one has to look at the source code from the fixing commit that
provides the ground truth. However, from an SFL perspective, the fact is that any
fault candidate could contain the fault. Since we are interested in the general case,
we average the fault predictor values and effort scores for every scenario that has
more than one minimal-cardinality set able to explain all observed errors. Note that
this applies to both single-faulted and multiple-faulted scenarios.

3.4.3 Results
Out of the 279 subjects considered for evaluation, our classifier found fixing commits
in 72 of them. What this figure tells us is not that 207 projects did not have any
bug fixes, but rather that test-suites, when run against older versions of the code,
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t1 t2 t3 t4
c1 1 1 0 0
c2 1 0 0 1
c3 1 1 1 0
c4 0 0 1 1
e 1 1 0 0

Figure 3.8: Spectrum with multiple minimal-cardinality hitting sets.

do not produce any test-failure (although some still produce runtime errors, which
are discarded, following the methodology described in Section 3.3.2. Also regarding
these 207 projects, we can state that when developers find bugs in the code, they
either (1) do not create a test-case exercising such a fault or (2) do not isolate their
changes, potentially adding code for new functionality along with fixes in the same
commit causing it to no longer being labeled as a bug-fixing commit.

Overall, 12417 commits were inspected, resulting in 1375 detected fixes (11% of
inspected commits). Out of the detected fixes, 1135 of them (82.5%) were single-
faulted, where one of the components modified by the fixing commit is sufficient to
explain the faulty version’s failing tests.

The histogram and violin plot from Figure 3.9a illustrate single-fault prevalence on
different projects. For example, the prevalence of single faults ranges from 80 to
90% for 15 projects. The vertical dashed line in the plot indicates the median value
of single-fault prevalence, 91.1%. Note that more than half of all projects considered
show single-fault prevalence of 90% or more. Even considering the 25% percentile,
the prevalence figure amounts to 79.6%. These prevalence results attest to the
ubiquity of single-faults in open-sourced projects. Figure 3.9b shows fault cardinality
for all detected fixes. It shows the quantity of fixes decaying exponentially with the
fault cardinality.

Revisiting the first research question:

Research Question 3.1

How prevalent are single-fault fixes in open-source projects?

Answer: We observed that 1135 fixes out of 1375 have eliminated a single fault from
the system, yielding a single-fault prevalence of 82.5%.

We now shift our attention to the fixes classified as single-faulted to assess their
diagnostic performance. For that, we show Figure 3.10, which is a cumulative plot
of the effort required to detect the faults in our dataset when following the ranking
generated by each fault predictor. The dashed vertical line represents an effort
threshold of 0.05. We visually show this threshold because one should not assume
developers continue following the fault-localization ranking at this point, particularly
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(a) Histogram and violin plot of single-fault prevalence. A violin plot is the combi-
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(b) Histogram of fault cardinality.

Figure 3.9: Quantitative analysis of detected fixes.

when considering large codebases. This thresholding criterion is in agreement with
the study by Parnin and Orso [2011], where developers were found to abandon the
ranking if they inspected too many false positives; and the work of Nguyen et al.
[2013] in program repair, that uses the predictor ranking as a set of clues to start
the automated repair process, and places an explicit time-bounded threshold in the
exploration of the ranking.

It is immediately apparent that the O fault predictor exhibits the highest diagnostic
efficiency, with over 90% of faults being at the top of their respective rankings (since
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Figure 3.10: Diagnostic effort throughout single-fault scenarios. Values at threshold:
D2: 57.2%, O: 95.2%, OP : 92.5%, Ochiai: 70.6%, Tarantula: 79.5%

their low effort value). OP also fares comparably to O, diagnosing over 80% of faults
with virtually zero wasted effort. In fact, at the exploration threshold, O and OP

manage to detect 95.2% and 92.5% respectively, attesting to their accuracy. Other
fault predictors fare worse compared to both O and OP . In fact, at the effort = 0.05
threshold highlighted in the vertical dashed line, other fault predictors’ detection
rate ranges from 57.2% to 79.5% of total faults.

Revisiting the second research question:

Research Question 3.2

What is the effort to diagnose single-faults with state-of-the-art fault predic-
tors?

Answer: We show diagnostic for several fault predictors. One that fared consistently
well was the O metric, with a fault detection rate amounting to over 90% while
having virtually zero wasted effort.

Lastly, we look at multiple-fault scenarios. It is worth reminding the reader that a
single effort measurement is insufficient to accurately portray diagnostic efficiency
for multiple-faulted spectra, since we are using similarity-based SFL to diagnose.
The effort metric measures the number of inspections required until the fault is
reached. However, the erroneous behavior spans more than one component in
these multiple-faulted scenarios. Hence, we introduce in Section 3.4.1 the notion
of first-fault, average-fault and worst-fault efforts. Figures 3.11a to 3.11c plot such
metrics for multiple-faulted scenarios.

From the outset, we can notice that first-fault, average-fault and worst-fault efforts
for the O fault predictor are very different from the remaining predictors. The
predictor detects a very low amount of faults at low effort, and exhibits a sudden
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(a) First-fault measurement in multiple-fault scenario. Values at thresh-
old: D2: 79.6%, O: 3.5%, OP : 72.6%, Ochiai: 75.2%, Taran-
tula: 58.4%.

0.0 0.2 0.4 0.6 0.8 1.0
Effort

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
te

d 
Fa

ul
ts

 (%
)

D2

O
OP

Ochiai
Tarantula

(b) Average-fault measurement in multiple-fault scenario. Values at
threshold: D2: 46.9%, O: 0%, OP : 36.3%, Ochiai: 41.5%, Taran-
tula: 44.2%.
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(c) Worst-fault measurement in multiple-fault scenario. Values at
threshold: D2: 39.8%, O: 0%, OP : 33.6%, Ochiai: 36.2%, Taran-
tula: 39.5%.

Figure 3.11: Diagnostic effort throughout multiple-fault scenarios.
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jump in detection rate at effort’s halfway point. In fact, this is to be expected, since
according to O’s definition, it attributes a score of −1 to every component in which
n01 > 0. In other words, any component that is not active in every failing test, is
given a negative score. However, in multiple-fault scenarios, there is rarely ever
a faulty component active in all failing tests, meaning that most components in
the system will be scored with the same value, at which point locating the fault
becomes essentially a random process. The other predictors produce fairly high fault-
detection rates at low effort values to reach at least one of the faulty components
(i.e., considering the first-fault effort), with D2, OP and Ochiai exhibiting over 70%
detection rate at the effort = 0.05 threshold. As to be expected, the detection rate
decreases from the first-fault to the average-fault and from the average-fault to the
worst-fault. Considering worst-fault effort (i.e., the effort required to pinpoint all
faults in the system), detection rates range from 33.6% using OP to 39.8% using
D2.

Table 3.1 provides some additional information about the multiple-faulted scenarios.
The table shows, for each fault predictor, its median value, median effort, and
median ∆Effort—used for comparing against an equivalent single-faulted scenario, as
described in Section 3.4.1. A statistical test we performed was the was the Shapiro-
Wilk test for normality of effort data [Shapiro and Wilk, 1965]. The results tell us
that the distributions are not normal, with confidence of 99%. Given that the effort
data is not normally distributed and that each observation is paired, we use the
non-parametrical statistical hypothesis test Wilcoxon signed-rank [Wilcoxon, 1945].
Our null-hypothesis is that the median difference between the two observations (i.e.,
∆Effort) is zero. We show the resulting Z statistic and p-value in Table 3.1. With 99%
confidence, we can refute the null-hypothesis in all scenarios except for D2 first-fault,
Tarantula first-fault, Ochiai average-fault and Tarantula average-fault. In these cases,
the effort values are comparable to their single-faulted counterparts. In cases where
the null-hypothesis is refuted, only one yielded a negative ∆Effort — Ochiai first-
fault — meaning that finding the first component out of the multiple components
that comprise the fault was faster than finding the merged single-faulted component.
All in all, we can say that, except for the O metric where ∆Effort has a large magnitude,
the effort measurements are comparable to their single-faulted counterparts when we
consider the effort required to find one fault in the ranking. Diagnostic performance
decreases when considering the effort required to find all faults in the system.

Revisiting the third research question:

Research Question 3.3

What is the impact on diagnostic performance when multiple-faults are con-
sidered?
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Table 3.1: Metric medians and statistical tests in multiple-faulted scenarios.

Median Median Median Wilcoxon
Value Effort ∆Effort Signed-rank

Z = 3059.0
D2 1.00 0.02 0.00

p-value = 0.885
Z = 0.0

O −1.00 0.50 0.50
p-value = 4.07×10−20

Z = 604.5
OP 3.01 0.03 0.02

p-value = 2.85×10−13

Z = 1046.0
Ochiai 0.56 0.02 −0.02

p-value = 6.06×10−09

Z = 2351.0

Fi
rs

t
Fa

u
lt

Tarantula 0.99 0.02 −0.02
p-value = 3.64×10−02

Z = 2183.0
D2 0.96 0.05 0.04

p-value = 2.95×10−03

Z = 0.0
O −1.00 0.50 0.50

p-value = 2.78×10−20

Z = 0.0
OP 2.50 0.07 0.07

p-value = 2.78×10−20

Z = 2901.0
Ochiai 0.42 0.05 0.00

p-value = 0.651
Z = 2656.0

A
ve

ra
ge

-F
au

lt

Tarantula 0.92 0.05 0.00
p-value = 0.105
Z = 2070.0

D2 0.17 0.08 0.06
p-value = 9.79×10−04

Z = 0.0
O −1.00 0.50 0.50

p-value = 2.78×10−20

Z = 0.0
OP 1.03 0.10 0.09

p-value = 2.78×10−20

Z = 1914.0
Ochiai 0.26 0.07 0.03

p-value = 1.05×10−03

Z = 1950.0

W
or

st
-F

au
lt

Tarantula 0.85 0.07 0.03
p-value = 2.72×10−04

Answer: With the exception of the O fault predictor, which performs with random
accuracy, the first-fault effort measurements of other fault predictors are comparable
to the diagnostic effort for single-faulted equivalent scenarios. To diagnose all faults
in a system, the fault predictors’ accuracy decreases. Aside from O, the performance
among other predictors when faced with multiple-fault scenarios is similar.

3.4.4 Threats to Validity

Potential threats to the validity of our experiment are the following:

External Validity When choosing the projects for our study, our aim was to opt for
projects that resemble general, large-sized application being worked on by several
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people. To reduce selection bias and facilitate the comparison of our results, we
decided to use the real-world subjects collected in the dataset gathered by Gousios
and Zaidman [2014].

Construct Validity A potential threat to construct validity relates to our definition
of what constitutes single-faulted and multiple-faulted fixes (cf. Section 3.2). Ad-
ditionally, another threat to construct validity is our assumption that any interface
change is result of a change in requirements and not the consequence of a fix. Lastly,
we point out that history-rewrite features of modern version control systems can
influence the outcome of the fault cardinality classifier. It can be the case that many
single-faulted fixing commits collapsed into one large commit that is responsible for
fixing multiple-faults by means of commit squashing.

Internal Validity The main threat to internal validity lies in the complexity of several
of the tools used in our experiments, most notably our code instrumentation tool to
retrieve spectrum information.

3.5 Discussion
We list below some of the practical implications of this study:

• We argue that our experimental results suggest a methodology to be followed
when developers face failing test cases. As we have shown that there is a
high likelihood that there is only one bug detected by failing tests, developers
may try to find the fault by inspecting the ranking generated by the OP fault
predictor, since it produces near-optimal scores in the event of single-faults
while still being usable in multiple-faulted scenarios (unlike the O predictor).

• Results suggest that closely monitoring the system as it develops (through, for
instance, a continuous integration platform) and attempting to locate faults
as soon as failures emerge will yield debugging tasks that require less wasted
effort. This is because the likelihood of the fix being single-faulted is high
when compared to only dealing with debugging tasks once there is a significant
number of failing tests.

• Further research is needed in order to find whether there is a fault predictor
that is closer to showing optimal accuracy when diagnosing multiple faults,
exhibiting a ∆Effort that approaches zero for worst-fault scenarios.

• Effective automatic fault localization paves the way to other automatic tech-
niques, such as automated program repair. Our experimental results yields
insight into which technique will work best in practice. In particular, the
prevalence of single-fault fixes suggest that the OP fault predictor will yield
near-optimal rankings as input to automatic repair techniques in the event
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of single faults, while still providing some guidance in the event of multiple
faults.

3.6 Related Work
There is a large and varied body of work on software repository mining approaches,
following the general theme of further understanding the practice of making soft-
ware [Herzig and Zeller, 2010]. These mining approaches cover topics such as
identifying change patterns [Gall et al., 1998]; predicting defects [Bettenburg et al.,
2012; F. Zhang et al., 2016] and vulnerabilities [Munaiah et al., 2017]; detecting
functional clones [Rahman et al., 2012] and cross-project reuse [Gharehyazie et al.,
2017]; and even identifying developers [Robles and González-Barahona, 2005].
Some fault localization approaches that use concepts from repository mining have
been proposed, such as one by Cardoso and Abreu [2013a] which created a be-
havioral model of previous diagnoses to better estimate the component goodness
parameter in reasoning-based SFL; one by Elmishali et al. [2016] that leveraged
historical information from the project’s versioning system and bug tracker; and one
by Sohn and Yoo [2017] which leveraged source code metrics such as code size, age
and code churn to rank diagnostic candidates.

Software fix mining (along with defect prediction) approaches—such as the ones
proposed by Böhme and Roychoudhury [2014], Dallmeier and Zimmermann [2007],
and Sliwerski et al. [2005]—share many similarities with our study in terms of
methodology for gathering and analyzing bug fixes. One difference is that our
methodology does not rely on syntactic analysis of commit metadata (such as, e.g.,
looking for a bug tracking identification number in the commit message) like some
related work. A potential downside of overlooking such metadata is that commits
that not only fix bugs but also change functionality may be discarded from analysis
(due to compilation/runtime errors while attempting to run a given test suite on an
older version of the codebase). A potential upside is that our methodology does not
assume the target project relies on a bug tracker.

As for studying the influence of multiple faults in SFL techniques, DiGiuseppe and
Jones [2011], found that at least some kinds of faults were localizable regardless
of the presence of other faults. The authors showed that, while the presence of
more than one fault added noise to the ranking, such noise did not adversely affect
the localizability of certain types of faults. To mitigate the influence of multiple
faults, debugging in parallel approaches were also proposed [Jones et al., 2007;
Steimann and Frenkel, 2012; Hogerle et al., 2014]. These approaches cluster test
cases in order to partition the program spectrum into multiple single-faulted spectra,
which can then be diagnosed independently. However, as our empirical results
demonstrate, diagnosing single faults is still the more prevalent task. As such, we
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argue that debugging in parallel actually happens organically over the course of
software development, as bugs are detected and fixed in isolation, with all other
potential faults in the system remaining undetected.

3.7 Summary
In this chapter, motivated by the computational simplicity of similarity-based SFL
(outlined in Section 1.3.2), we thoroughly measured the cardinality of fixes across a
multitude of open-sourced software projects and analyzed the accuracy of similarity-
based techniques at locating said fixes. Concretely, in this chapter:

• We describe a methodology for mining fixing commits in software repositories
and for categorizing them according to the number of faults they address
(Section 3.3, page 49). This approach can therefore provide an insight into
how programmers find and fix bugs in practice.

• We conducted an empirical evaluation which mined fixing commits in 279
Java projects hosted on GitHub and analyzed fault-fixing behavior (Section 3.4,
page 53). Results show that:

1. Single-fault fixes account for 82.5% of the total 1375 fixing commits
found (answers RQ3.1, page 57);

2. Fixes catalogued as single faults generally exhibit low effort to diagnose
across all similarity-based fault predictors used in the evaluation. The
O predictor—shown to be optimal in single-faulted scenarios—fared
consistently well across all projects, over 90% of which having virtually
zero wasted effort (answering RQ3.2, page 59);

3. The O predictor’s accuracy severely decreases in the event of multiple
faults. Other fault predictors are still sufficiently accurate at diagnosing
at least one of the faults, but performance decreases when attempting to
locate all faults (answering RQ3.3, page 62);.
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Abstract SFL correlates a system’s components with observed failures. By rea-
soning about coverage, SFL allows for a lightweight way of pinpointing faults.
This abstraction comes at the cost of missing certain faults—such as errors of
omission—and failing to provide enough contextual information to explain why
components are considered suspicious. We propose an approach, named Q-SFL,
that leverages Qualitative Reasoning to augment the information made available
to SFL techniques. It qualitatively partitions system components, and treats each
qualitative state as a new SFL component to be used when diagnosing. Our em-
pirical evaluation shows that augmenting SFL with qualitative components can
improve diagnostic accuracy in 54% of the considered real-world subjects.

4.1 Introduction
Despite the developments and achievements in SFL research, we are unable to find
many accounts of successful transitions of this technology into the software industry
at large. We argue that this is motivated largely by the issues raised by Parnin and
Orso [2011] in their user study of automated debugging techniques, corroborated
by Steimann et al. [2013] and Pearson et al. [2017]. Namely, the authors found
that there is significant interest drop-off after developers inspect a small number of
components from the ranked list of potential faults. This issue is exacerbated as the
scale of the system under test increases. Another issue pointed out by Parnin and
Orso is the fact that many studies assume perfect bug understanding—that is, these
studies expect that once developers inspect a faulty component, they will correctly
identify it as such—, which does not always hold in practice [Gouveia et al., 2013].
Therefore, as argued in Section 1.3.3, an important goal is to find ways of enriching
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the diagnostic report generated by SFL techniques, to provide more information
about why each highly-ranked software component is under suspicion.

This chapter proposes a significant departure from current efforts as we leverage
the inspection of the runtime value for relevant variables and parameters from
the system under test, with the intent of augmenting reports generated by SFL
techniques and providing more diagnostic information to developers. Recording
every instance of these units of data for each test quickly becomes intractable, even
for a lightweight approach as SFL. Therefore, we leverage an Artificial Intelligence
concept used for modeling and simulation of complex physical systems: Qualitative
Reasoning (QR). QR provides a way of describing continuous values by their
discrete, behavioral qualities, to enable the ability of reasoning about a system’s
behavior without exact quantitative information [Forbus, 1997; Williams and de
Kleer, 1991]. Precise numerical quantities are avoided and replaced by qualitative
descriptions—such as, for instance: high, low, zero, increasing or decreasing.

We apply QR to the SFL analysis, in an approach named Qualitative Spectrum-
based Fault Localization (Q-SFL), enabling the introduction—both manually and
automatically—of quantitative landmarks that will partition the domains of relevant
data units into a set of qualitative descriptions, and insert a new SFL component for
each of these descriptions. Since behavioral qualities are considered as components,
we are then able to record their coverage for each test case and rank them according
to their correlation to failing test runs, thus not only suggesting the likely location of
the bug, but also pinpointing which behavioral properties induce a failure, enriching
the SFL report as a result. This can have benefits in bug comprehension—as an
example, a Q-SFL diagnostic report is able to tell users that a method is likely to
exhibit faulty behavior when one of its parameters has a negative value—and even
improve diagnostic report accuracy—whenever a qualitative state is more correlated
with failing behavior than its enclosing faulty component.

We perform an empirical evaluation of Q-SFL with real-world faults from the
DEFECTS4J catalog. Results show that Q-SFL has the potential to improve the
accuracy of SFL reports—with 54% of considered subjects exhibiting a lower effort
to diagnose faults. Although the results are promising, we discuss several matters
that need further research—namely, uncovering a landmarking strategy that exhibits
consistently better results and studying to what extent is the bug comprehension
improved.

This chapter’s contributions are:

• An approach, named Q-SFL, inspired by QR research, to augment program
spectra used by SFL techniques by partitioning a variable’s runtime value into
a set of qualitative states which are treated as SFL components.
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Q1: Solid Q2: Liquid Q3: Gas

Landmark L1:
T = -273.15°C

Absolute zero

Landmark L2:
T = 0°C

Freezing/Melting
Point

Landmark L3:
T = 100°C

Landmark L4:
T = +∞°C

InfinityBoiling/Condensation
Point

Q1- Q2- Q3-

Q1+ Q2+ Q3+

Figure 4.1: Example of a possible qualitative discretization of water temperature.

• Empirical evidence that QR-augmented spectra can reduce the effort to diag-
nose real bugs.

• A discussion on the practical implications of the approach and an outline of
future research.

4.2 Qualitative Reasoning (QR)
QR is a field of Artificial Intelligence that creates a discrete representation of the
continuous world [Forbus, 1997; Williams and de Kleer, 1991; de Kleer, 1977]. This
enables the reasoning of space, time, and quantity with merely a small amount of
information. It is motivated by the fact that humans are able to draw conclusions
about the physical world around them with limited information, without the need
of solving complex differential equations. [Forbus, 1997] also notes that advances
in qualitative reasoning can help scientists and engineers—who appear to use
qualitative reasoning when initially understanding a problem and when interpreting
the results of quantitative simulations, calculations, and measurements.

Figure 4.1 provides an example of a potential discretization of the water temperature
qualitative variable into three qualitative values: Q1, Q2 and Q3. Our representation
resolution—i.e., the granularity of the information detail—coincides with that of
the three physical states of matter that water can assume: solid, liquid, and gas.
Note that the established resolution will ultimately define the granularity of the
conclusions one can draw from QR. To define the qualitative states, one needs to
establish landmarks. Landmarks are constant quantitative values that establish a
point of comparison to be able to reason about the qualitative states [Kuipers, 1986].
In our water temperature example, we know that if the water is in the liquid state
(Q2), then its temperature is somewhere between landmark L2—corresponding
to 0°C, the freezing point of water—and landmark L3—its boiling point, 100°C.
Similarly, we can derive that ice (Q1) temperature assumes a value between the
absolute zero (L1) and the melting point (L2); and that water vapor (Q3) ranges
between the condensation point (L3) and positive infinity (L4). Depending on the
use case and the domain of the variable under analysis, landmarks that coincide
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with domain limits—no values can be below L1 and above L4, in this case—may be
disregarded, as they are not needed to infer a transition between states.

QR also supports the representation of derivatives between two quantities. They are
usually represented with ’+’ and ’-’ signs, denoting value increases and decreases,
respectively. This can enable, depending on the application, the use of sign alge-
bra to reason about direct influence and proportionality between two qualitative
values [Kuipers, 1986]. Derivatives also enable envisionments. An envisionment
establishes a set of transitions between qualitative states [de Kleer, 1977], essentially
modeling the abstracted world. A possible transition in our example’s envisionment
is the following: given that we observe Q2+—that is, we observe that the liquid
water’s temperature is rising—, then we know that the only possible following states
are Q2 (continues in the liquid state) and Q3 (condensates into vapor), but never
Q1 (freezes into ice).

In summary, with the QR framework, we establish a way to (i) represent quantities
through discrete states, (ii) provide a way to compare values between these states,
(iii) enable derivations and sign algebra, and (iv) model envisionments detailing
possible transitions between states. With such a framework, we can model, plan,
simulate and reason about a multitude of intricate problems in an abstract way.

4.3 Approach
As we outline in Section 1.3.3, SFL faces issues preventing it from widespread
adoption. The abstracted nature of the coverage-based analysis, while lightweight,
inevitably imposes accuracy and comprehension tradeoffs, may lead to the formation
of ambiguity groups, and facilitates the occurrence of coincidental correctness.

We argue that the issues described above can be prevented, or at least attenuated,
if we supplement the SFL framework with more contextual information about the
system under analysis when diagnosing.

4.3.1 Q-SFL
Our Q-SFL approach consists of partitioning several SFL components into multiple,
meaningful, qualitatively distinct subcomponents, to be used in the fault localization.
We leverage the QR concept of domain partitioning to inspect existing components
during each system execution and assign them a set of qualitative state. Each of these
qualitative states is then considered as a separate SFL component whose involvement
per transaction is recorded and fed into the SFL framework for diagnosis.

Figure 4.2 provides an example of how QR can be leveraged to enhance program
spectra. Figure 4.2a shows a 4 transaction by 4 component spectrum, along with
resulting diagnostic scores from applying reasoning-based SFL. Candidate generation
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A t1 t2 t3 t4
c1 1 1 1 1
c2 0 0 1 1
c3 1 1 1 0
c4 0 0 1 0
e 1 1 0 0
(a) Regular spectrum.

Pr({c1}|(A, e)) = 0.30
Pr({c3}|(A, e)) = 0.70

A′ t1 t2 t3 t4
c1 1 1 1 1
c′1 0 0 1 1
c′′1 1 1 0 0
c2 0 0 1 1
c3 1 1 1 0
c′3 1 0 0 0
c′′3 0 1 1 0
c4 0 0 1 0
e′ 1 1 0 0

(b) QR-augmented spectrum.
Pr({c1}|(A′, e′)) = 0.05
Pr({c′′1 }|(A′, e′)) = 0.82
Pr({c3}|(A′, e′)) = 0.12

Pr({c′3, c′′3 }|(A′, e′)) = 0.01

Figure 4.2: Example of coverage partitioning via QR.

yields two candidate diagnoses—components c1 and c3 can independently explain
the observed failures as both cover all failing test cases. For this example, suppose
that c1 is the faulty component. Since c1 is involved in more passing transactions
than c3, while exhibiting the same behavior in faulty transactions, the SFL framework
will assign it a lower fault probability than c3—since c3’s activity pattern seems more
correlated (i.e., more similar) to the set of failing transaction outcomes. A likely
explanation for such phenomenon is the fact that the faulty component may exhibit
several distinct modes of execution—some of which may not trigger the fault—thus
suitably explaining eventual ambiguity grouping or coincidental correctness phe-
nomena. Hence, to improve the accuracy of the SFL framework, one needs more
contextual information about component executions.

A prospective solution to the problem of encoding more contextual information in the
spectrum is, then, to partition components as an attempt to capture their different
execution modes. We envision three different types of landmarking strategies that
can be employed to define qualitative state boundaries: (i) manual landmarking,
where the system’s developers manually define what are the possible qualitative
states for a given component; (ii) static landmarking, where landmarks depend on
the type of a component; and (iii) dynamic landmarking, where a component’s value
is inspected at runtime, and partitioned into a set of categories. Examples of dynamic
strategies will be presented in Section 4.3.2 and section 4.4.

Figure 4.2b depicts the QR-augmented spectrum, where components representing
qualitative partitions of both c1 and c3 are added to the original spectrum. An
example of such partitioning using static landmarking: if c1 represents a software
procedure that contains a numeric parameter i, we can create two qualitative com-
ponents c′1 and c′′1 that represent invocations of c1 with i ≥ 0 and i < 0, respectively.
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public double getMaximumExplodePercent() { t1 t2 t3 t4

Qualitative State: this.dataset == null  

Qualitative State: this.dataset != null    

+ if (this.dataset == null) {

+ return 0.0;

+ }

double result = 0.0;     

Iterator iterator = this.dataset.getKeys().iterator();     

while (iterator.hasNext()) {    

Comparable key = (Comparable) iterator.next();   

Number explode = (Number) this.explodePercentages.get(key);   

if (explode != null) {   

result = Math.max(result, explode.doubleValue());  

}

}

return result;    

}

Test outcome (e): X X X 7

Figure 4.3: Chart 15 patch snippet with static landmarks.

This is a sign-based static partitioning strategy. Note that the original components
c1 and c3 are not removed from the QR-augmented spectrum, as partitions may not
provide further fault isolation. Since the original components remain in the spectra,
they subsume unsuccessful partitionings which are uncorrelated with the failure,
effectively yielding no increase in diagnostic effort.

If we are to diagnose the new spectrum from Figure 4.2b, component c′′1 is now
the top-ranked diagnostic candidate. This QR-augmented spectrum avoids spurious
inspections of component c3, and provides additional contextual information about
the fault, namely that i < 0 is often observed in failing transactions.

By landmarking data units associated with SFL components so that they are assigned
a qualitative state at runtime, we are providing more context to the diagnostic
process, and in some cases, consequently reducing the diagnostic effort. Such parti-
tioning is also of crucial importance towards minimizing the impact and frequency
of ambiguity grouping and coincidental correctness, as new, distinct components are
added to the system’s spectrum.

4.3.2 Q-SFL in Practice
To better depict the benefits of the Q-SFL approach, we walk through its application
in real-world subjects from the DEFECTS4J collection of faults (introduced in Sec-
tion 2.5.3). Figures 4.3 to 4.12 show the relevant code changes between faulty and
fixed versions of a DEFECTS4J subject along with a potential landmarking scheme
able to further isolate the fault. For brevity, this section details only a small subset of
representative DEFECTS4J subjects.
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public int getDomainAxisIndex(CategoryAxis axis) { t1 t2 t3 t4

Qualitative State: axis == null   

Qualitative State: axis != null   

+ if (axis == null) {

+ throw new IllegalArgumentException("Null ’axis’ argument.");

+ }

return this.domainAxes.indexOf(axis);     

}

Test outcome (e): X X 7 7

Figure 4.4: Chart 19 patch snippet with static landmarks.

public static Class<?>[] toClass(Object[] array) { t1 t2 t3 t4

Qualitative State: Arrays.asList(array).contains(null)  

if (array == null) {     

return null;  

} else if (array.length == 0) {    

return ArrayUtils.EMPTY_CLASS_ARRAY;  

}

Class<?>[] classes = new Class[array.length];   

for (int i = 0; i < array.length; i++) {   

- classes[i] = array[i].getClass();   

+ classes[i] = array[i] == null ? null : array[i].getClass();

}

return classes;  

}

Test outcome (e): X X X 7

Figure 4.5: Lang 33 patch snippet with static landmarks.

public double getSumSquaredErrors() { t1 t2 t3 t4

- return sumYY - sumXY * sumXY / sumXX;     

+ return Math.max(0d, sumYY - sumXY * sumXY / sumXX);

Qualitative State: _result == 0  

Qualitative State: _result > 0   

Qualitative State: _result < 0  

}

Test outcome (e): X X X 7

Figure 4.6: Math 105 patch snippet with static landmarks.

Static Landmarks

As mentioned in Section 4.3.1, static landmarking strategies are ones that can be
applied by inspecting the code locally, without any specific knowledge about what the
overall system is trying to achieve. Typical static analyses include type analyses and
def-use analyses, which we also consider suitable for static landmarking. Figures 4.3
to 4.5 highlight potential uses of static landmarks able to create SFL components
with higher fault correlation.
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private String getRemainingJSDocLine() { t1 t2 t3 t4

Qualitative State: this.unreadToken == NO_UNREAD_TOKEN   

Qualitative State: this.unreadToken != NO_UNREAD_TOKEN   

String result = stream.getRemainingJSDocLine();     

+ this.unreadToken = NO_UNREAD_TOKEN;

return result;     

}

Test outcome (e): X X 7 7

Figure 4.7: Closure 133 patch snippet with dynamic landmarks.

Figure 4.3 depicts the patch applied to DEFECTS4J’s Chart 15 bug. The bug lies in a
method of the PiePlot class responsible for returning the maximum percentage of
“exploded” slices—i.e., the slices pulled apart from the chart. Field this.dataset is
accessed without ensuring it is not null. This is an error of omission, and a def-use
analysis allows us to generate the proper check this.dataset == null, which has
a higher correlation with the error vector e than any other component.

Figure 4.4 depicts a similar nullity check omission error, but with a null argument
instead of a null field. Interestingly, without qualitative components, this spec-
trum’s single component is active on all test runs, exhibiting a form of coincidental
correctness. Another example of def-use analysis is shown in Figure 4.5, where each
element of an array-like argument is checked for nullity. The existence of a for loop
invoking methods of each element in the collection justifies this static landmark,
which manages to correlate with the fault.

Figure 4.6 exemplifies a sign-base check—as previously described in Sec-
tion 4.3.1—for the value returned by the faulty method (labeled as _result in
the figure). In this case, all activations of the qualitative state _result < 0 will cor-
relate with the failure, since the faulty method is intended to calculate the squared
error—whose result is supposed to be non-negative (this implementation can return
negative values due to rounding errors in the calculation of fields sumXX, sumXY and
sumYY).

Dynamic Landmarks

With dynamic landmarking, variables’ values are probed each run, with the aim
of partitioning their domains into qualitative states, following some automated
clustering criterion. One criterion might be, for instance, the euclidean distance
between values, in the case of numeric variables. Partitionings can also be guided by
test outcome, resembling a classification problem. Such inferred models can then
be translated into qualitative state boundaries, so that augmented spectra can be
generated.
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public void stop() { t1 t2 t3 t4

Qualitative State: this.runningState == STATE_SUSPENDED  

Qualitative State: this.runningState != STATE_SUSPENDED    

if(this.runningState != STATE_RUNNING && this.runningState != STATE_SUSPENDED)
{     

throw new IllegalStateException("Stopwatch is not running. ");   

}

+ if(this.runningState == STATE_RUNNING) {

stopTime = System.currentTimeMillis();   

+ }

this.runningState = STATE_STOPPED;   

}

Test outcome (e): X X X 7

Figure 4.8: Lang 55 patch snippet with dynamic landmarks.

public double doubleValue() { t1 t2 t3 t4

double result = numerator.doubleValue() / denominator.doubleValue();     

+ if (Double.isNaN(result)) {

+ int shift = Math.max(numerator.bitLength(),

+ denominator.bitLength()) - Double.MAX_EXPONENT;

+ result = numerator.shiftRight(shift).doubleValue() /

+ denominator.shiftRight(shift).doubleValue();

+ }

return result;     

Qualitative State: Double.isNaN(_return)  

}

Test outcome (e): X X X 7

Figure 4.9: Math 36 patch snippet with dynamic landmarks.

The first example of dynamic landmarking is shown in Figure 4.7. In this example,
the value of the field enumeration this.unreadToken was probed at every invo-
cation of the method getRemainingJSDocLine and correlates with the failing test
outcomes whenever its value is not NO_UNREAD_TOKEN—since, in fact, the state of
this.unreadToken is supposed to be changed when invoking the faulty method.
Given this, such qualitative partitioning can be considered in the Q-SFL analysis.
Similarly, in Figure 4.8, the stop method of the StopWatch seems to fail whenever
the field enumeration this.runningState is STATE_SUSPENDED, as the method tries
to update the final stopping time of the stop watch, when the timer is already
suspended. Figure 4.9 depicts the case where the test failures correlate with cases
when the return value of the doubleValue method is NaN.

Manual Landmarks

A third category of landmarking strategies we envision having is manual landmarking.
Manual landmarks correspond to cases where one cannot—at least in a general,
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private void removeUnreferencedFunctionArgs(Scope fnScope) { t1 t2 t3 t4

Qualitative State: this.removeGlobals == false  

Qualitative State: this.removeGlobals == true    

+ if (!this.removeGlobals) {

+ return;

+ }

Node function = fnScope.getRootNode();     

if (NodeUtil.isGetOrSetKey(function.getParent())) {     

return;  

}

Node argList = getFunctionArgList(function);    

if (!modifyCallSites || !callSiteOptimizer.canModifyCallers(function)) {    

Node lastArg;   

while ((lastArg = argList.getLastChild()) != null) {   

if (!referenced.contains(fnScope.getVar(lastArg.getString()))) {   

argList.removeChild(lastArg);   

compiler.reportCodeChange();   

} else {   

break;   

}

}

} else {  

callSiteOptimizer.optimize(fnScope, referenced);  

}

}

Test outcome (e): X X X 7

Figure 4.10: Closure 1 patch snippet with manual landmarks.

public static float max(final float a, final float b) { t1 t2 t3 t4

- return (a <= b) ? b : (Float.isNaN(a + b) ? Float.NaN : b);     

+ return (a <= b) ? b : (Float.isNaN(a + b) ? Float.NaN : a);

Qualitative State: Float.isNaN(_return)  

Qualitative State: !Float.isNaN(_return)    

Qualitative State: _return >= a && _return >= b   

Qualitative State: _return < a || _return < b  

}

Test outcome (e): X X X 7

Figure 4.11: Math 59 patch snippet with manual landmarks.

straightforward way—automatically derive a partitioning scheme able to isolate
faults, but that can be added by developers without much effort—in the form of pre-
and post-conditions, for instance.

Figure 4.10 depicts a method from the Closure compiler responsible for an optimiza-
tion that removes unreferenced arguments from a function definition. Method
removeUnreferencedFunctionArgs contains an omission error—it must check
the field variable this.removeGlobals before performing the optimization. This
method, along with others that depend on the value of this.removeGlobals, is an
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public Paint getPaint(double value) { t1 t2 t3 t4

Qualitative State: value > this.upperBound  

Qualitative State: value < this.lowerBound  

double v = Math.max(value, this.lowerBound);     

v = Math.min(v, this.upperBound);     

- int g = (int) ((value-this.lowerBound)/(this.upperBound-this.lowerBound)*255);     

+ int g = (int) ((v-this.lowerBound)/(this.upperBound-this.lowerBound)*255);

return new Color(g, g, g);     

}

Test outcome (e): X X 7 7

Figure 4.12: Chart 24 patch snippet with manual landmarks.

appropriate target for a pre-condition check—which, as mentioned above, can be
encoded as a set of qualitative SFL components.

Figure 4.11 shows a simple method to calculate the maximum value of two float-
type values. Besides a simple value comparison, additional logic is required for the
case when at least one of the arguments is not-a-number (NaN). This method is buggy
since it returns b even when its value is less than a. It fails, therefore, to ensure
the post-condition that the returned value is greater than or equal to both method
arguments.

Lastly, in Figure 4.12, the manual landmark added to the faulty method’s parameter
checks if its value lies within previously defined upper and lower bound fields. In this
case, a conjunction of the qualitative states value > this.upperBound and value
< this.lowerBound correlates with test failures.

4.3.3 Java Implementation of Landmarking Framework

We have implemented a framework for landmarking and instrumenting Java code
to facilitate the collection of QR-augmented spectra1. The inner workings of the
framework—depicted in Figure 4.13—are detailed below.

1Available at https://github.com/aperez/q-sfl.

Test Runner
Q-SFL

Class Loader

Landmark
Dispatcher

Normal Class

Annotated Class

Collector

Dynamic
Partitioner

Spectrum

Instrumented
Classes

Landmark

Landmark

Probe

Figure 4.13: Java-based qualitative landmark collection framework.
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Listing 1 Example of source code with landmarking annotations.

1 @LandmarkWidth ( DefaultDispatcher .class)
2 public class Calculator {
3 public static int add( @IntegerHandler int a,
4 @Skip int b) {
5 return a + b;
6 }
7
8 public static int sub(int a,
9 @Landmark ( handler = CustomHandler .class) int b) {

10 return a - b;
11 }
12 }

The framework allows for the creation, instrumentation and collection of both
manual and automated landmarks of method parameters and return values. With
manual landmarking, users can create specific landmark handlers for data objects
and manually annotate their source code to instruct the framework what should be
instrumented. The framework also provides generic, static landmark handlers, as
well as data probes that enable dynamic landmarking.

Our framework relies on Java annotations—a way to syntactically bind metadata to
source code—to specify what variables to partition, and how. At runtime, the anno-
tations are read by the framework during class-loading, prompting it to instrument
the necessary landmark collection code into the target class’ bytecode. Because of
the fact that we use annotations to declare how to create landmarks, and because
the code injection happens at runtime, our instrumentation can be turned off at any
time without the need to modify the code or recompile it.

Listing 1 shows a small Java code snippet exemplifying the use of our framework’s
landmarking annotations. The class-level annotation, @LandmarkWidth, is used to
specify a landmark handler dispatcher, responsible for assigning landmark handlers
to all method parameter types within the target class. The DefaultDispatcher
is a dispatcher that invokes the aforementioned default automated handlers to
partition the domain of primitive types and objects using simple sign-partitioning or
null-checking strategies. Users are free to write their own custom, domain-specific
dispatchers.

Besides dispatchers, users can assign handlers to specific parameters, as is the case
of parameter a from method add, using @IntegerHandler—the generic automated
handler for integer values. Every handler annotation specified this way takes prece-
dence over the mapping specified in a dispatcher. A given parameter can also be
skipped with a @Skip handler. Lastly, custom, manual landmark handlers are inserted
with the @Landmark annotation, pointing to the class responsible for implementing
the custom handler. Note that instrumentation is also possible without the use of
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Listing 2 Implementation of a custom handler for landmarking integer values.

1 public class CustomHandler implements Handler {
2 public int states () {
3 return 3;
4 }
5
6 public int handle ( Object o) {
7 Integer i = ( Integer )o;
8 if (i == 0) { return 0; }
9 return i > 0 ? 1 : 2;

10 }
11
12 public String landmarkName (int l) {
13 if (l == 0) { return "zero" };
14 else if (l == 1) { return " positive " };
15 return " negative ";
16 }
17 }

annotations. In classes without any landmarking annotations, the framework relies
on the landmark dispatcher configured as the default for such cases.

Listing 2 shows the user-level implementation of a landmark handler. Its states
method returns the number of qualitative states resulting from the partitioning; the
handle method is invoked with the value to be inspected, returning the respective
qualitative state identifier; and the optional landmarkName method is intended
to provide users with more contextual information about each qualitative state
identifier.

While landmark handlers are used to implement manual and static landmarking
strategies, our framework also provides the ability to specify data probes that will
store the runtime value of its target variable per method invocation, and per transac-
tion. This is to enable the use of clustering techniques for dynamic landmarking. We
should note that the data partitioning step is currently done outside of the framework
context; and that in order to gather data probes, users must ensure that their target
variables can be serialized.

Lastly, all landmarks are gathered by the framework’s collector module, responsible
for creating a spectrum representation that SFL tools—such as GZOLTAR [Campos
et al., 2012]—can understand and diagnose.

4.4 Evaluation

To evaluate our approach, we compare the cost of diagnosing a collection of faulty
software programs using regular spectra against using QR-augmented spectra. We
aim to answer the following research questions:
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Research Question 4.1

Does augmenting spectra with qualitative components improve their diagnos-
ability?

Research Question 4.2

Is there a particular automated landmarking strategy that consistently shows
improved diagnosability?

In RQ4.1 we are concerned with finding out if there exist qualitative partitionings
able to improve the fault localization ranking to the extent that faulty components
are inspected earlier—thus decreasing wasted effort in a debugging task. If RQ4.1 is
true, it prompts us to RQ4.2, which asks whether there is an automated partitioning
scheme able to qualitatively enhance spectra in an automated way—without the
need of user interaction or domain knowledge.

4.4.1 Methodology & Evaluation Metric

Our methodology for this empirical evaluation is as follows. We run the fault-
revealing test suite of each DEFECTS4J subject, gathering per-test branch-level
coverage and test outcomes, to be able to generate spectra. Besides coverage, we
also record primitive-type parameter and return values for every method call in each
test execution. This enables us to experiment with different qualitative partitioning
strategies in an offline manner.

Using the recorded argument and return value data, we create multiple (automated)
partitioning models resulting in several Q-SFL variants. A static partitioning vari-
ant using automated sign partitioning based on the variable’s type, as described
in Section 4.3.1, was considered. For dynamic partitioning, several clustering and
classification algorithms2 were considered:

Sign resorts to sign-partitioning, as described in Section 4.3.3.

X-means clustering algorithm, a variation of k-means, that iteratively increases the
number of clusters until a model selection criterion—such as the Bayesian
information criterion—is reached [Pelleg and Moore, 2000].

k-NN classification algorithm, where objects are assigned to the class that is most
common among their k nearest neighbors.

Linear classification, assignments are based on the value of a linear combination of
the features.

2We chose popular classification algorithms [Han et al., 2011] implemented in the Scikit-learn
package. X-means, as implemented in the pyclustering package, was selected as it can automati-
cally decide the optimal number of clusters to use [Pelleg and Moore, 2000].
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Logistic regression, predicts the probability that an observation falls into one of
two categories.

Decision Tree classifier, learns tree-like model of decisions, where leaf nodes rep-
resent class labels.

Random Forest classifier, constructs a group of decision trees and outputs the
mode of the individual trees’ outputs.

Using the recorded runtime data, we construct individual models for each primitive-
type method parameter and each method primitive-type return value in a DEFECTS4J
subject, leveraging every aforementioned strategy. Test outcomes are used as
the class labels in the case of supervised models. It is then possible to create a
QR-augmented spectrum per strategy, by feeding the recorded per-test value observa-
tions to the respective models and checking which class they fall into (thus emulating
the assignment of a qualitative state). Note that we are not using models for predic-
tion, but rather as a partitioning scheme based on observed values, therefore we do
not break our data into training and test sets, as is customary in prediction scenarios.
Because we use automated, domain independent partitioning, only primitive types
are considered in the evaluation.

For each DEFECTS4J subject, we choose as the landmarking strategy to consider in
the evaluation the one that is able to create the largest set of distinct, non-ambiguous
qualitative components out of the faulty method(s). All spectra are diagnosed using
reasoning-based SFL, following the methodology described in Section 1.2.2. All
tools and scripts used in this experiment, as well as gathered data, are available
at https://github.com/aperez/q-sfl-experiments.

To be able to effectively compare a QR-augmented spectrum against its respective
original spectrum (i.e., the one without components stemming from qualitative
landmarking), we first reduce the diagnostic report to method components. This
reduction is done by considering the highest fault probability of any subcomponent
belonging to each method, to effectively be able to compare method-level diagnostic
effort between the two approaches. A change in diagnostic effort is measured using

∆Cd = Cd(Original)− Cd(QR-Augmented) (4.1)

where Cd is the cost of diagnosis. A positive ∆Cd means that the faulty component
has risen in the ranking reported by SFL techniques when QR is used, yielding a
lowered cost of diagnosing. A ∆Cd equal to zero means that the effort to diagnose
the faulty component is the same in the two approaches. Negative values of ∆Cd
mean that there is an increased effort to pinpoint the fault when compared to the
original spectrum.
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Figure 4.14: Difference in Cd between original and QR-augmented spectra per subject.

4.4.2 Results
We were able to automatically partition the faulty method in 167 DEFECTS4J subjects.
The remaining DEFECTS4J subjects were discarded because (i) the faulty method
does not contain parameters nor does it return a value; because (ii) the faulty
method only contains non-primitive, non-null, complex-typed parameters, which
cannot be handled by the set of partitioning strategies described in Section 4.4.1;
or because (iii) the aforementioned partitioning strategies were unable to create
qualitative states whose coverage differs from their enclosing method3.

The breakdown of selected partitioning strategies per subject is as follows: Sign:
102 (61%); X-means: 25 (15%); k-NN: 8 (5%); Linear Regression: 1 (1%); Logistic
Regression: 4 (2%); Decision Tree: 11 (7%); Random Forest: 16 (10%). Our
sign-partitioning default strategy was used to qualitatively enhance the majority of
considered subjects, while other strategies such as linear classification and logistic
regression were rarely selected. We suspect the reason that supervised learning
approaches—which were fed test case outcomes as the target class label—only
exhibited superior performance in 40 subjects (24%) is due to the fact that the
number of failing tests in test suites is often much smaller than the amount of
passing tests, weakening the learned partitioning model.

Figure 4.14 shows a scatter plot with the ∆Cd of all subjects under analysis. Shown
in a red background are the 15 subjects (9%) with a negative ∆Cd—meaning that
the report has suffered a decrease in accuracy after augmenting the spectra. The
majority of these subjects belong to the Closure project. The 62 subjects (37%) with

3That is, subjects where all qualitative components either are never active or have exactly the same
activation pattern as the enclosing component are discarded since these subjects will invariably
produce a ∆Cd of 0.
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Table 4.1: Statistical tests.

Original QR-augmented
Spectra Spectra

Mean Cd 60.28 37.56

Median Cd 6.00 2.50

Cd Variance 2.10×104 1.56×104

W = 0.46 W = 0.32
Shapiro-Wilk

p-value = 2.20×10−22 p-value = 1.10×10−24

Wilcoxon Z = 5.45
Signed-rank p-value = 5.10×10−10

∆Cd = 0, where the faulty component has remained in the same position of the
ranking, are shown in a white background. Lastly, 90 subjects (54%) that exhibited
a positive ∆Cd—cases where QR-augmented spectra improved diagnosability—are
shown in green. All in all, Q-SFL is at least as good as the original approach in 92%
of scenarios.

The augmented spectra of such subjects where ∆Cd < 0 contains non-faulty quali-
tative states (in the sense that they do not belong to the faulty method) that have
a high correlation to failing test outcomes, which end up rising in the diagnostic
ranking. Conversely, subjects that exhibit ∆Cd > 0 contain qualitative components
are able to partition the faulty method’s coverage in a way that is highly correlated
with failing tests, not only lowering the effort to diagnose, but providing some more
context for the fault by way of their qualitative descriptions. When ∆Cd = 0, the
qualitative partitioning strategy did not manage to expose any qualitative state that
is highly correlated with the error vector.

Table 4.1 presents statistics computed to assess whether the observed metrics yield
statistically significant results. The first two rows show the mean and median
Cd values for both spectra in our analysis. As to be expected, QR-augmented
spectra exhibits an overall lower effort to diagnose when compared to the original
spectra. QR-augmented spectra also have less variance. To assess if the findings
are statistically significant, we first performed the Shapiro-Wilk test for normality
of effort data [Shapiro and Wilk, 1965] in both the original spectra case and QR
case. With 99% confidence, the test’s results—which can be seen in the fourth
row of Table 4.1—tell us that the distributions are not normal. Given that Cd is
not normally distributed and that each observation is paired—for each subject,
there is an original spectrum and a QR-augmented spectrum—, we use the non-
parametrical statistical hypothesis test Wilcoxon signed-rank [Wilcoxon, 1945]. Our
null-hypothesis is that the median difference between the two observations (i.e.,
∆Cd) is zero. The fifth row from Table 4.1 shows the resulting Z statistic and
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Figure 4.15: Breakdown of diagnostic performance per partitioning strategy.

p-value of Wilcoxon’s test. With 99% confidence, we refute the null-hypothesis.
Revisiting RQ4.1:

Research Question 4.1

Does augmenting spectra with qualitative components improve their diagnos-
ability?

Answer: Yes, augmenting faulty spectra with new components resulting from qual-
itative landmarking of method parameter (and method return) values yields a
statistically significant improved diagnostic report.

To be able to answer RQ4.1, we have selected for each subject the strategy with the
highest number of qualitative partitions targeting the faulty method, as we were
only concerned with the existence of a partitioning strategy that would improve
diagnosability. However, in practice, it is not realistic to know a-priori what the
faulty method is4. Figure 4.15 shows a breakdown of the number of subjects that fall
into the ∆Cd < 0, ∆Cd = 0 and ∆Cd > 0 categories for every partitioning strategy
considered in this evaluation. The bar plot tells us that no single strategy achieves
the same number of positive ∆Cd scenarios as the partition cardinality selection
criterion employed to answer RQ4.1 and to produce Figure 4.14. Furthermore,
strategies that were often picked by that criterion (namely, the default and X-means
strategies) also show an increased number of ∆Cd scenarios when compared to
others. This leads us to conclude that no single strategy (out of the ones that were
analyzed) is able to consistently show improved diagnoses. Revisiting RQ4.2:

4Although some effort has been put forth to hierarchically debug programs using SFL [Perez, 2012;
Perez et al., 2014].
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Research Question 4.2

Is there a particular automated landmarking strategy that consistently shows
improved diagnosability?

Answer: No, at least for the automated landmarking strategies considered in the
evaluation, there is no evidence that a single automated strategy (which only
partitions primitive-typed data, as per this evaluation) can consistently outperform
the original spectra. However, since Q-SFL can improve diagnosability, as per
the answer to RQ4.1, we presume that manual or more complex, context-aware,
automated white-box strategies—which can perform static and dynamic source code
analysis on custom data types, expanding the scope of landmarking strategies—are
more suited to outperform the original spectra due to more effective and more
informed partitioning.

4.4.3 Threats to Validity

We now outline the potential threats to the validity of the experiment detailed
above:

Construct validity In Section 4.4.1, we justify the use of automated black-box par-
titioning techniques stemming from machine learning applications by stating that
their resulting models emulate users’ manual landmarking strategies. In reality, this
may only be a rather crude and simplistic approximation of user behavior, as black-
box techniques are only fed with runtime information (such as concrete parameter
values and test outcomes). However, we argue that manual landmarking—and auto-
mated white-box landmarking alike—may be able to achieve a better, more informed
qualitative partitioning due to the fact that the source code can be analyzed.

Internal validity There is a possibility that, due to the complexity of our spectrum-
gathering and landmarking instrumentation framework, there may remain an imple-
mentation bug somewhere in the codebase. To mitigate this, we extensively reuse
thoroughly-tested code from the Java-based spectrum-gathering tool GZOLTAR.

External validity A potential threat to the external validity relates to the fact that
the chosen set of subjects may not be an accurate representation of all bugs that can
happen during development or of different software development methodologies.
We attempt to reduce the selection bias by leveraging an established collection of
real, reproducible faults that have occurred in six medium to large-sized open source
software applications (the DEFECTS4J dataset), which is extensively used in the
evaluation of related work [Pearson et al., 2017; Campos et al., 2013; Shamshiri
et al., 2015]. Understandably, this public dataset does not contain any closed-source
codebases whose development practices may differ from open source software. We
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also aim to ensure the reproducibility of our evaluation by providing the source
of our instrumentation tool, the scripts used to run the evaluation, and all data
gathered.

4.5 Discussion

In this section we discuss our findings from the empirical evaluation, as well as
outline their practical implications:

• Our evaluation has revealed that augmenting program spectra through qualita-
tively partitioning variables by their value does increase the effectiveness of
SFL reports. Figure 4.14 also shows that qualitative reasoning has the potential
to substantially decrease the cost of diagnosis, allowing the fault to rise in
the ranking by as much as 103 components in real-world, open source, buggy
projects.

• The criterion for choosing the best partitioning strategy involved assessing the
number of partitions of the faulty method. This is not applicable in practice, as
the faulty method is not known. Without such selection criterion, the use of
a single black-box partitioning strategy yields either an increased number of
negative ∆Cd cases, or a decreased number of ∆Cd cases.

• Although we mention when answering RQ4.2 that we see no evidence of
a black-box partitioning strategy that is consistently more accurate at pin-
pointing faults than the original spectrum, there may still exist a partitioning
scheme—perhaps an ensemble of partitioning strategies—able to outperform
the original spectrum. We plan to investigate this hypothesis as future work.

• By showing that diagnostic improvements are possible through QR, this work
paves the way for future efforts, namely by leveraging manual and automated
white-box landmarking instead of the (simplistic) black-box methods explored
in the evaluation. In particular, we believe that using techniques such as
abstract interpretation [P. Cousot and R. Cousot, 1977] and other static/dy-
namic analyses—to perform a more thorough boundary value analysis and
equivalence-class partitioning—will likely produce better diagnostic results,
both in terms of accuracy as well as comprehension.

4.6 Related Work

There have been previous forays into enhancing the diagnostic report of automated
fault localization techniques to either improve their accuracy or comprehension of
the failing component. This section outlines some of the efforts in these research
areas.
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SFL approaches to debugging typically present their report to users as a list of
suspicious components that is sorted according to the likelihood of being faulty.
Jones et al. [2002] and Jones and Harrold [2005] proposed a visual way of depicting
the results of a similarity-based SFL diagnosis. The TARANTULA tool presents an
interactive visualization that shows the entire codebase under analysis, and color-
codes each code fragment according to their SFL suspiciousness score, ranging from
red (high suspiciousness) to green (low suspiciousness). Campos et al. [2012]
presented the GZOLTAR tool, which expands on the visual concept by leveraging
tree-based visualizations that innately exploit the tree-like structure of Java code,
naturally aggregating neighboring components and aiding exploration of suspicious
code regions. In a user study by Gouveia et al. [2013], the authors showed that
visual encoding of SFL diagnostic reports does improve their effectiveness, as it
provides users with more structural context to perform the debugging task.

Another approach to improve the comprehension of faults was proposed by Ko and
Myers [2008]. The approach, called Whyline, allowed the users to obtain evidence
about the program’s execution before forming an explanation of the cause by provid-
ing the ability to ask “why did” and “why didn’t” questions about program output.
Users were able to explore answers to such questions using a combined timeline
visualization, bookmarking tool and navigational aid. The authors performed a
user study with a prototype able to analyze Java projects, and showed that Whyline
users managed to diagnose faults three times as often and were two times as fast
compared to the control group [Ko and Myers, 2009].

De Souza and Chaim [2013] proposed an extension to SFL to improve comprehen-
sion. It uses integration coverage data—by way of capturing method invocation
pairs—to guide the fault localization process. By calculating the fault suspiciousness
of component pairs, the authors were able to generate roadmaps for code inves-
tigation, guiding users through likely faulty paths and increasing the amount of
contextual cues.

Advancements in bug prediction [D’Ambros et al., 2010; Bettenburg et al., 2012;
F. Zhang et al., 2016]—i.e., the creation of predictive models that assess whether a
software artifact is likely to contain bugs by relying in diverse information, such as
code metrics [Nagappan et al., 2006], process metrics [Moser et al., 2008], previous
defects [Kim et al., 2007], etc.—enabled its use within automated fault localization
processes. S. Wang and Lo [2014] proposed an ensemble approach to fault localiza-
tion that exploits information from versioning systems, bug tracking repositories and
structured information retrieval from the source code. Cardoso and Abreu [2013a]
relied on kernel density estimation models of component behavior and previous
diagnoses to better estimate the component goodness parameter in spectrum-based
reasoning. Elmishali et al. [2016] also modified the traditional spectrum-based
reasoning framework by leveraging a fault prediction model trained with historical
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information from the project’s versioning system and bug tracker to compute the
prior probability distribution of diagnostic candidates. Sohn and Yoo [2017] used
similarity-based SFL suspiciousness values, as well as source code metrics—code
size, age and code churn—as features for two learn-to-rank techniques: genetic
programming and linear rank support vector machines.

Augmenting fault-localization via slicing has also been proposed. Mao et al. [2014]
proposed the use of dynamic backward slices—comprised of statements that directly
or indirectly effect the computation of the output value through data- or control-
dependency chains [Korel and Laski, 1988]—as components in similarity-based
SFL. Hofer and Wotawa [2012] propose an approach that leverages a model-based
slicing-hitting-set-computation [Wotawa, 2010]—which computes the dynamic slices
of all faulty variables in all failed test cases, derives minimal diagnostic candidates
from the slices and computes fault probabilities for each statement based on number
of the diagnoses that contain it. Similarity-based SFL scores are used as a-priori fault
probabilities for the model-based technique.

4.7 Summary
In this chapter, we propose a methodology to mitigate the limitations concerning the
abstract nature of program spectra, which are outline in Section 1.3.3. Concretely,
in this chapter:

• We proposed the Q-SFL approach (Section 4.3, page 70):
– It leverages concepts from QR (Section 4.2, page 69), which models com-

plex systems by describing continuous values by their discrete, behavioral
qualities, so that we can simulate and reason about a system without
exact quantitative information;

– Our approach inspects the runtime behavior of parameters and return
values, and partitions their domains into qualitative states. Each qualita-
tive state is subsequently treated as an SFL component, thereby providing
the SFL framework with more qualitative information and also increasing
fault isolation.

• We demonstrated several examples of how different domain partitioning strate-
gies can be used to improve the accuracy of traditional SFL (Section 4.3.2,
page 72).

• We conducted an empirical evaluation comparing the accuracy of Q-SFL ver-
sus traditional SFL on real faults from the DEFECTS4J catalog (Section 4.4,
page 79). Results show that:

1. Spectra which were augmented using qualitative partitioning of method
parameters show a (statistically significant) improvement in the diagnos-
tic accuracy (answering RQ4.1, page 84);
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2. However, out of the partitioning strategies we considered, we have found
none that performed consistently better than traditional SFL (answering
RQ4.2, page 85). This result leads us to conclude that more intricate
partitioning strategies (such as ensembles of strategies, or white-box tech-
niques to partition complex types) will be required to effectively improve
diagnostic accuracy.
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Abstract Program comprehension is a time-consuming task performed during
the process of reusing, re-engineering, and enhancing existing systems. Currently,
there are tools to assist in program comprehension by means of dynamic analysis.
However, most cannot identify the topology and the interactions of a certain
functionality in need of change, especially when used in large, real-world soft-
ware applications. We propose an approach, coined Spectrum-based Feature
Comprehension (SFC), that borrows techniques used for automatic software fault
localization. SFC analyses the program by exploiting run-time information from
test case executions to identify the components responsible for implementing a
given targeted feature, helping software engineers to understand how a program
is structured. We present a toolset, coined PANGOLIN, that implements SFC and
displays its report to the user using an intuitive visualization. A user study with
the open-source application Rhino is presented, demonstrating the efficiency of
PANGOLIN in locating the components that should be inspected when changing
a certain functionality. Participants using SFC spent a median of 50 minutes
locating the feature with greater accuracy, whereas participants using coverage
tools took 60 minutes. Finally, we also detail the Participatory Feature Detection
(PFD) approach, an extension of SFC, where user interactions with the system are
captured, removing the hinderance of requiring pre-existing automated tests.

5.1 Introduction
Software maintenance is a crucial part of software engineering. The need to add
or change features in existing software applications is becoming more and more
prevalent. Furthermore, the ever increasing complexity of software systems and
applications renders software maintenance even more challenging. One of the
most daunting tasks of software maintenance is to understand the application at
hand [Corbi, 1989]. In fact, recent studies point out that developers spend 60%
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to 80% of their time in comprehension tasks [Tiarks, 2011]. During this program
understanding task, software engineers try to find a way to make both the source-
code and the overall program functionality more intelligible. One of these ways is to
create a “mental map” of the system structure, its functionality, and the relationships
and dependencies between software components [Lange and Nakamura, 1997;
Renieris and Reiss, 1999].

To fully understand how a software application behaves, software engineers need to
thoroughly study the source-code, its documentation and any other available artifacts.
Only then do engineers gain sufficient understanding of the application, enabling
them to seek, gather, and make use of available information to efficiently conduct
maintenance or evolution tasks. This program comprehension (also known as program
understanding/software comprehension) phase is thus resource and time consuming.
In fact, studies show that up to 50% of the time needed to complete maintenance
tasks is spent on understanding the software application and gaining sufficient
knowledge to change the desired functionality [Corbi, 1989]. Currently, there are
several approaches that focus on dynamic analysis to provide visualizations of the
software system, identifying their components and their relationships, e.g., [Pauw et
al., 1998; Reiss and Renieris, 2001; Greevy et al., 2006]. However, these approaches
may not clearly show what code regions the developer needs to inspect in order to
change a certain functionality. Another problem regarding these dynamic analyses
is the fact that program traces of sizable programs encompass large amounts of
data [Zaidman, 2006].

We propose an approach, coined Spectrum-based Feature Comprehension (SFC),
that departs from related work by leveraging techniques from the software fault
localization domain (namely SFL), which were shown to be efficient, even for large,
resource-constrained environments [Abreu et al., 2009d]. Fault localization tasks
therefore exhibit many similarities with maintenance or evolution tasks—which in-
volve pinpointing features among the code in order to change a particular application
behavior. Thus, our SFC approach maps SFL to the problem of feature localization
to provide efficient program comprehension and dependency visualization, thereby
decreasing developer effort.

To assess the effectiveness of our approach, we have conducted a user study with
the open-source project Rhino. It demonstrates the accuracy and effectiveness of the
SFC approach in aiding users to pinpoint the components that need to be inspected
when evolving/changing a certain feature in the application. It also shows that users
spend less time locating features with SFC when compared to using standard code
coverage tools. In the case of the user study, participants using SFC spent a median
of 50 minutes locating a feature, whereas participants using coverage tools took 60
minutes.
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We also address a potential drawback of the SFC approach by extending it to allow
Participatory Feature Detection (PFD). To pinpoint a feature with PFD, developers
are asked to interact with the application and to record whether the feature they
want to locate was involved or not in each execution. This way, SFC becomes
applicable to any interactive application, without requiring a test suite to obtain the
execution traces required by spectrum-based techniques.

The chapter makes the following contributions:

• We describe SFC, an approach that, similar to fault-localization techniques,
exploits run-time information from system executions to identify dependencies
between components, helping software engineers in understanding how a
program is structured.

• We provide a toolset, PANGOLIN, which generates a visualization of associated
and dissociated components of an application functionality.

• A user study with a large, real-world, software project, demonstrating the
effectiveness of our approach in locating the components that should be
inspected when evolving/changing a certain feature.

• We extend the approach to allow participatory feature detection: users can
manually collect and label executions on any interactive project, removing the
hinderance of requiring pre-existing automated tests.

• We propose an accuracy metric to evaluate the effectiveness of the SFC ap-
proach.

5.2 Spectrum-based Feature Comprehension
(SFC)

The SFC approach to be presented in this section is in essence a mapping between
feature detection and comprehension concepts and spectrum-based fault localization
concepts, enabling the use of SFL in software maintenance or evolution scenarios.

5.2.1 Mapping Feature Detection to Fault Localization

As argued in Section 1.3.4, locating features—i.e., portions of source-code responsible
for implementing a given functionality (Definition 10)—closely resembles the act
of locating the root cause of system failures, as the objective of both tasks is to
pinpoint in the code the origin of a particular behavior. To leverage fault localization
techniques in the feature detection context, we first present a mapping between the
two domains.
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When trying to evolve/modify a certain feature f , one is interested in the runtime
relationships and interactions between f and other system components. As such,
one should not use the error vector e—which is responsible for cataloging erroneous
behavior—as with traditional SFL approaches presented in Section 1.2. Instead, we
propose the use of an evolution vector evf when pinpointing features:

Definition 11 (Evolution Vector) The evolution vector evf is an N -length binary
vector. In this vector, a given position j is true (i.e., evf (j) = 1), if the jth transaction
executes feature f .

While the error vector captures whether transactions have passed or failed, the evo-
lution vector evf captures whether feature f was involved or not in each transaction.
Methodologies for actually gathering evf for a given feature detection task will be
detailed in Sections 5.3 and 5.4. The resemblance between the evolution vector and
system components is captured by the association measure:

Definition 12 (Association Measure) The association measure af (i) indicates the
degree of correlation between a component i’s activity (i.e., {Aij |j ∈ 1..N}) and the
evolution vector evf .

Association measures for each component i therefore correspond to the outcome of
the SFL technique (i.e., similarity scores or fault probabilities, depending whether
similarity-based or reasoning-based techniques are used) given an activity matrix
A and the evolution vector evf as input. We assume that association measures
range between 0 and 1, meaning that in the case of similarity-based SFL, one should
normalize the fault predictor score if necessary. For conciseness, we will be using
similarity-based SFL with the Ochiai predictor throughout this chapter.

When evolving a feature f , it is important to inspect its associated components
because they may either call f or be called by f , and thus may need to be modified
in accordance with the changes made to f .

Definition 13 (Associated Component) A component i is associated with f if its
association measure af (i) is close to 1. This means that when f is executed, i is likely
to be involved.

In contrast to associated components, if a component is dissociated to f , it does not
need to be inspected when f is modified.

Definition 14 (Dissociated Component) A component i is dissociated to f if its
association measure af (i) is close to 0. This means that when f is executed, i is not
likely to be involved.
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Components with association measures of neither 0 nor 1 should be inspected, but
only modified with great care. This is because these components are shared among
features. We will revisit this assertion while evaluating the approach in Section 5.3.

5.2.2 Pangolin Toolset

We now introduce the PANGOLIN toolset1, an Eclipse plugin that implements the
SFC approach and displays its results with the aid of a sunburst visualization. Its an
extension of the GZOLTAR toolset which enables feature localization.

Figure 5.1: PANGOLIN’s sunburst visualization.

The PANGOLIN plugin performs a very lightweight dynamic analysis by instrumenting
the project, so that the activity matrix is gathered during runtime. The plugin uses
the project’s JUnit test cases as the set of system runs. In order to perform the
analysis, users are prompted to identify which system runs exercise the feature under
consideration. Subsequently, PANGOLIN plugin computes SFC’s feature-association
measure for every component in the project, and displays that information in a
sunburst visualization, as shown in Figure 5.1. This sunburst visualization depicts the
current project’s topology in a hierarchic fashion, starting from the root component
representing the whole project in the inner circle, up to individual lines of code in
the outer circle. Each component is color coded with the corresponding association
measure, ranging from bright green if the association measure is close to zero; to
yellow if the association measure is close to 0.5 and to red if it is close to 1. When a
user hovers the mouse on a component, a label identifying that component and its
association measure is shown, as depicted in Figure 5.1. By selecting a particular
component, Eclipse’s code editor will open and the cursor is positioned on the
start of the chosen component. Sunburst was shown to be effective at conveying

1PANGOLIN is available online at www.gzoltar.com/pangolin.
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actionable diagnostic information (more so than mere list-based reports) in a user
study by Gouveia et al. [2013].

Intuitiveness of the Sunburst Visualization Lawrance et al. [2013] have applied
information-foraging theory to explain the intuitiveness of such visualization ap-
proaches and their effectiveness in conveying diagnostic reports. Information-
foraging theory aims to both “explain and predict how people will best shape themselves
for their information environments and how information environments can be shaped
for people”, as defined by Pirolli [2007]. This theory is itself based on optimal
foraging theory, which tries to explain the behavior of predators and preys. Predators
try to find preys by following their scent, and preys are more likely to be in places (or
patches) where the scent is more intense. In the information-foraging context, the
predators are the people in need of information and the preys are the information
itself. The scent is the interpretation of the environment by the predators. In the
context of feature detection, we consider the following mapping:

• Predator is the person performing the maintenance task;

• Prey is what the predator seeks to know to pinpoint the code regions that need
to be changed;

• Proximal cues are the runtime behaviors that suggest scent related to the prey;

• Information scent is the predator interpretation of the SFC report;

• Topology is the collection of navigable links between in the visualization.

Information-foraging theory assumes that the developer’s choices are an attempt
to maximize the information gain per navigation interaction’s cost [Fleming et al.,
2013]. Since these are not known by developers a priori, their decisions will be
based on the expected gain and cost. Perez and Abreu [2013] have shown that the
sunburst visualization, along with its interaction features, can indeed reduce the
cost of navigating through the various system components (be it packages, classes,
methods, even statements). By color coding each system component, proximal cues
are also provided, guiding the developer towards likely associated regions of the
source-code. At the same time, regions that should not be explored (where, e.g.,
relevant executions were not active) are also distinctively highlighted. Hence, a
better information scent is conveyed to the developer, increasing the information
gain.

5.3 User Study

In this section, we evaluate the effectiveness of SFC when applied to a real-world
application—the Rhino project. This user study aims to answer the following research
questions:
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Research Question 5.1

Can programmers using PANGOLIN pinpoint a feature more accurately than by
inspecting standard test coverage traces?

Research Question 5.2

Is the time taken to pinpoint a feature with PANGOLIN at least comparable to
inspecting standard test coverage traces?

In RQ5.1, we are concerned about assessing the effectiveness of the technique and
our tool. RQ5.2 tries to ensure that our approach will not negatively impact existing
program comprehension processes.

First, we describe the subject of our evaluation and the setup for our user study.
Afterward, we present the results of the user study and potential threats to validity.

5.3.1 The Rhino Project

The software application under consideration for this case study is the open-source
project Rhino2. Rhino is a Javascript engine written entirely in Java, maintained by
the Mozilla Foundation. It is typically embedded into Java applications to provide
scripting to end users. It also allows Javascript programs to leverage Java platform
APIs. Rhino automatically handles the conversion of Javascript primitives to Java
primitives, and vice versa (e.g., Javascript scripts can set and query Java properties
and invoke Java methods). Rhino is comprised by 28 packages, 433 classes and
75170 source lines of code. Furthermore, this project contains 441 unit tests, written
for the JUnit framework, which cover 56% of the project’s statements and 45% of
branches (9,323 out of a total 20,802 branches).

5.3.2 User Study Setup

The user study was performed by 108 students enrolled in the Software Engineering
course of the Master in Informatics and Computing Engineering program from the
Faculty of Engineering of University of Porto. The experiment was performed in
the context of a lab session for the Software Engineering course. A pre-requisite for
enrollment in that course is that students must have completed the following courses:
‘Programming Fundamentals’, ‘Algorithms and Data Structures’ and ‘Object-Oriented
Programming Lab’, which means that all participants had at least three years of
experience with the Java programming language and were familiar with both the
Eclipse IDE and the JUnit testing framework. Additionally, no participants had
used Rhino before. Participants were grouped into pairs to perform the requested

2Available at https://developer.mozilla.org/en-US/docs/Rhino

5.3 User Study 97

https://developer.mozilla.org/en-US/docs/Rhino


Coverage 
Intersection of 
Feature Tests

Coverage of 
Remaining 

Tests

Feature Implementation (1)

Shared Code between Features (2)

Figure 5.2: Feature analysis with a coverage tool.

task, which was also a course requirement. Each pair had access to one computer
to perform the task. They were not compensated for performing the experiment.
However, with the experiment being performed in a lab session, its attendance was
mandatory.

The requested task was the following. Participants were requested to identify source-
code regions that exclusively implement a certain feature (labeled as task (T1)),
and also regions where that feature is being used (i.e., code regions shared among
different features, labeled as task (T2)). It is important to distinguish between
these two kinds of regions when changing a feature. While developers can change
regions labeled as (T1) without many concerns, regions labeled as (T2) require
a more detailed inspection before changing the code, as the changes can break
other unrelated functionality. The feature under consideration for this user study
was Rhino’s continuation context creation. This feature is responsible for creating
a snapshot of a context, which contains the execution information needed to run
Javascript code. One example of the information stored in a context is the call stack
representation. These snapshots, which Rhino calls continuation objects, allow for
users to pause execution and/or to return to a previous state in the execution.3 A
tutorial explaining the feature in detail was given to all participants,4 which were
given 20 minutes before the start of the experiment to study all materials provided.
A time limit of 100 minutes was established to complete the task.

3More information about Rhino’s continuation objects is available at https://developer.mozilla.
org/en-US/docs/Mozilla/Projects/Rhino/New_in_Rhino_1.7R2

4All tutorials produced for this user study are available online at
http://gzoltar.com/pangolin/replication-package/
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The set of tests relevant to the creation of continuation contexts was gathered
by the authors, manually inspecting every test before when setting up the ex-
periment, and was given to all participants. The methodology for choosing the
tests was as follows. First, all tests that did not execute Javascript scripts in in-
terpreted mode were discarded. Rhino’s continuations API is only supported in
interpreted mode, which is selected by invoking setOptimizationLevel(-1) in the
Context instance. Second, a further restriction taken into consideration is that con-
tinuation objects only capture contexts when scripts are called via the methods
executeScriptWithContinuations and callFunctionWithContinuations from
the Context instance. The search yielded two test classes, ContinuationsApiTest
and Bug482203Test. The former exercises Rhino’s continuations API, by execut-
ing scripts, pausing them, and capturing/restoring state; the latter was created to
expose a bug in a previous version of Rhino that threw NullPointerException
exceptions when capturing a continuation state. Manual inspection revealed that
both test classes exercised the feature under consideration (namely, by covering the
captureContinuation method in the Context class).

Participants were divided into two groups. One group comprising 26 pairs of
participants was asked to use the PANGOLIN plugin to complete the task. As all
participants were unfamiliar with PANGOLIN, a short tutorial explaining how to
work with the tool (and how to interpret the results) was shown. For this group of
participants to successfully complete the task, they need to use the tool to indicate
the set of tests exercising the feature and run PANGOLIN’s analysis. After the analysis
is complete, the sunburst visualization appears in the corresponding Eclipse view. To
identify the code regions that implement the feature (T1), participants should look
for components whose association measure is 1 (color coded as red). Code regions
shared among several features (T2) are components whose association measure is
above 0 and below 1, and therefore color coded as different shades of yellow.

The other group of participants comprised by 28 pairs was the control group. Partici-
pants were asked to use the features from a standard version of the Eclipse IDE and
its code-coverage plugin EclEmma5, that shows, for a set of tests, what statements
were executed. A short tutorial on how to work with EclEmma plugin was given
beforehand. For the task to be successfully completed, participants need to gather
the code-coverage information of all tests that exercise the feature, and compute
their intersection. The intersection between these tests denotes the code regions
that were executed on every test. A set difference between this intersection and
the coverage of remaining tests in the test suite allows us to identify the regions
that (T1) exclusively implement the feature and that (T2) are shared among many
features, as is depicted in Figure 5.2.

5Available at http://www.eclemma.org/
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Figure 5.3: Violing plots depicting both groups’ accuracy when labeling components.

For the particular feature considered in this user study, Rhino’s continuation context
creation (described in the previous subsection), users have to identify code regions
in 3 classes that exclusively implement the feature (T1), and another 41 classes
where that feature is used among many others (T2).

5.3.3 Results & Discussion
From the group that used the PANGOLIN plugin, participants were able to correctly
identify a median of 2.5 classes from category (T1) and 13.5 from category (T2).
In the group that used the code-coverage plugin EclEmma, participants identified a
median of 0.5 classes from category (T1) and 35 from category (T2). Figures 5.3a
and 5.3b show violin plots6 depicting the amount of correct components detected
by participants. We can see that, for identifying components in category (T1),
participants working with PANGOLIN were able to achieve better results. In fact, over
two thirds of the pairs of participants working with that plugin were able to find at

6A violin plot is the combination of a box plot and a kernel density plot.
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Table 5.1: Mann-Whitney U tests.

EclEmma PANGOLIN
Null Hypothesis U p-value

Mean Mean
Effect size (d)

Detected components (T1) come from the same pop.
(Figure 5.3a)

127.5 1.12× 10−5 0.82 2.27 Large (1.46)

Detected components (T2) come from the same pop.
(Figure 5.3b)

223.5 7.60× 10−3 25.07 15.03 Medium (0.75)

False positives (T1) come from the same pop.
(Figure 5.3c)

48.0 1.03× 10−8 19.14 1.65 Large (0.83)

False positives (T2) come from the same pop.
(Figure 5.3d)

130.0 2.23× 10−5 57.93 10.88 Large (1.07)

Elapsed time comes from the same pop.
(Figure 5.4)

234.0 1.20× 10−2 64.10 51.23 Medium (0.66)

least two correct components (out of three in total), as opposed to participants using
EclEmma, where only 5 pairs identified at least two correct components.

As for the identification of components from category (T2), participants using
EclEmma showed an increased overall accuracy when compared to PANGOLIN. How-
ever, and along with the correct code regions, there were several false positives
identified by participants. While identifying regions that exclusively implement the
feature (task category (T1)), the EclEmma group registered a median of 6 false
positives, whereas the group using PANGOLIN registered a median of 0 false positives.
The second category, code regions with shared features, yielded a median of 53.5
false positives when using EclEmma versus only 1 false positive when PANGOLIN is
used. The amount of false positives each pair of participants identified is depicted in
the violin plots from Figures 5.3c and 5.3d. In both categories, we see a substantial
increase in the amount of false positives when the code-coverage EclEmma plugin is
used to perform the requested task. This happens because the majority of partici-
pants using EclEmma, after gathering code-coverages for the indicted test cases, did
not perform an intersection of the traces, as depicted in Figure 5.2. As a result, a
considerable number of components were labeled incorrectly.

We also performed statistical tests to assess whether the gathered metrics yielded
statistically significant results. The statistical test used is the Mann-Whitney U

test [Mann and Whitney, 1947]. The reason we use Mann-Whitney instead of, e.g.,
Student’s t-test is because it does not assume that the data is normally distributed.
In fact, a Shapiro-Wilk test [Shapiro and Wilk, 1965] on the data confirms that the
distributions are not normal.

The results shown on Table 5.1 include the description of the null hypothesis, the
task category from which the data originated, the test’s U statistic and p-value.
The p-values for all tests performed suggest that, according to the data, the null
hypothesis must be rejected. The first four tests indicate that the two groups of
participants can be considered statistically significant with 99% confidence, the last
one has a 95% significance. Also shown are the means gathered for both groups
(using EclEmma and using Pangolin) for each test. Lastly, the Cohen’s difference
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between two means (d) for measuring the effect size is shown, as well as Cohen’s
qualitative effect size description [Cohen, 1988].

Revisiting the first research question:

Research Question 5.1

Can programmers using PANGOLIN pinpoint a feature more accurately than by
inspecting standard test coverage traces?

Answer: Results show that the information about the program provided by the SFC
analysis and the sunburst visualization is more accurate (particularly, in category
(T1)) than requiring users to inspect and compare several traces with a code-coverage
tool. Although in category (T2), users working with EclEmma were able to detect
more components, this approach yielded a large number of false positives, which
will most likely increase the comprehension effort, as users will need to inspect those
components and deem then dissociated from the feature.

Task completion time for each pair of participants was also gathered. Although a
time limit of 100 minutes was established, only two pairs required that amount
to submit their results. Figure 5.4 depicts the elapsed time for the two groups of
participants. Overall, the group using PANGOLIN completed the task in less time
compared to the group using EclEmma. Participants using PANGOLIN took a median
of 50 minutes to complete, whereas participants working with the EclEmma plugin
took 60 minutes. The main reason for participants using EclEmma taking longer
to complete the task is the fact that, after gathering the coverage information, they
needed to perform the coverage analysis as shown in Figure 5.2. Participants using
PANGOLIN only needed to gather the information shown to them via the sunburst
visualization. No extra analysis was required.

Revisiting the second research question:

Research Question 5.2

Is the time taken to pinpoint a feature with PANGOLIN at least comparable to
inspecting standard test coverage traces?

Answer: We conclude that using PANGOLIN does not negatively impact the time
needed for comprehension processes, with the added advantage of being more
accurate (as seen by answering RQ5.1).

5.3.4 Threats to Validity
Construct Validity Regarding construct validity, a threat is the fact that we measure
components at a class level. Although the majority of the PANGOLIN groups have
provided methods and line numbers in their reports, EclEmma groups had difficulty
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Figure 5.4: Time required by each pair of participants to complete the task, sorted by
ascending order.

reporting components of finer granularity. Faced with this fact, we had to settle with
class granularity so that both approaches could be compared.

Internal Validity A potential threat to the internal validity of this study is related to
the selection of Mozilla Rhino as the application under analysis. When choosing the
application for our study, our aim was to opt for application that (1) is indicative
of a general, large-sized application being worked on by several people, and that
(2) also provides significant understanding challenge to participants. To reduce
selection bias, we decided to choose an application used in the evaluation of related
work [Eaddy et al., 2008a; Eaddy et al., 2008b; Y. Zhang et al., 2006]. Other threat
is the fact that the participants worked in pairs and chose who they wanted to pair
up with within each group, which can introduce a potential bias to the experiment.

External Validity The main threat to the external validity of these results is the
fact that participants were given the set of tests that exercise the feature under
consideration. Information about what features each test is exercising may not
be available or difficult to obtain. In fact, software projects may not even have
tests for every feature (we attempt to mitigate this issue in Section 5.4). Also,
all participants in the user study were software engineering students, and the
study was performed in an academic setting, so it may not correctly reproduce the
problems that the industry deals with. However, we argue that our setting closely
resembles an important challenge faced in the software industry regarding program
comprehension: introducing junior programmers into well established projects.
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5.4 Participatory Feature Detection (PFD)

Feedback from the user study participants was that PANGOLIN had helped them
locating the fault. However, at the end of the experiment, when participants were
running the analysis against other projects, they were rarely able to successfully
perform feature localization. This happens because the majority of the projects they
experimented with did not have any unit tests, so the hit spectra matrix, required
for the SFC analysis, was empty. In fact, as was pointed out in Section 5.3.4,
our approach provides an automated way of locating features in the code, given
that (1) there is a test suite and (2) the mapping between features and tests is
known. In real software development scenarios, although it is good practice to test
the system and to maintain a test-feature mapping, these are rarely available, which
limits the applicability of the approach. To address this concern, we introduce and
evaluate the concept of Participatory Feature Detection (PFD).

5.4.1 The PFD Concept

The PANGOLIN tool has limited applicability when there is no pre-existing set of
transactions (i.e., no test suite available) or when there is no information on which
runs have exercised the feature we are looking for. To address these issues, we
extended both our SFC approach and our tool to account for user involvement. PFD
allows users to capture manual interactions with the system, enabling them to label
each interaction as associated or dissociated with the feature.

Figure 5.5: PANGOLIN’s PFD window.

As SFC only requires abstracted execution traces (i.e., program spectra), the instru-
mentation code—to gather such traces—that is injected into the application under
test causes minimal impact on performance. This means that PANGOLIN can be
enhanced to feature user participation in an online fashion, where users are part of
the analysis loop, receiving immediate feedback through the sunburst visualization
after labeling each interaction. We have extended our tool to display an extra win-
dow during runtime, as shown in Figure 5.5, and the typical workflow of feature
localization with PFD is as follows:

1. The analysis begins by running PANGOLIN. The subject application starts
running and the PFD window appears (cf. Figure 5.5).

2. To begin a transaction, we click the ‘Start Transaction’ button.
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3. PANGOLIN starts recording the trace of the application. We can now interact
with the application and execute the feature we are trying to locate.

4. By pressing the ‘End Associated Transaction’ button, we are ending the current
transaction, and labeling our interactions with the system as associated.

5. PANGOLIN runs the SFC analysis and displays the current results in its sun-
burst view. After one associated transaction, the visualization will look like
Figure 5.6a, where every component in the trace has an association measure
of 1.0.

6. After registering associated transactions, we need to capture dissociated in-
teractions. To do so, we press the button ‘Start Transaction’, interact with the
system without exercising the feature we are looking for, and then finish the
transaction by pressing ‘End Dissociated Transaction’.

7. When a new transaction is recorded, PANGOLIN will automatically update the
SFC analysis and the sunburst visualization. Step 6 can be regarded as a way
to minimize the slice of code that needs inspection, and can be repeated by
registering different interactions with the system.

Figures 5.6a to 5.6d show the impact of adding new dissociated transactions to the
analysis. By showing the updated report after every transaction, this enables the user
to determine when to stop interacting with the system. It is worth noting that adding
multiple associated transactions can also be beneficial for minimizing the slice of
code to be inspected, since SFC will rank the intersected code regions (labeled as
(T1) in Section 5.3.2) as more likely to contain the implementation of the feature.

The PFD approach, since it requires user participation, is suited for analyzing in-
teractive applications (in particular, Graphical User Interface (GUI) applications),
as most of their features can be triggered by interacting with the interface in some
fashion.

5.4.2 Case Study with JHotDraw

In order to evaluate the PFD approach, we performed a case study with the JHotDraw
project. In this case study, we analyze what is the gain in information when adding
associated and dissociated transactions to find a pre-selected feature.

JHotDraw7 is a customizable Java framework for editing drawings. It can be used
for sketches, diagrams, and artistic drawings. For the case study, we used the latest
version available at the time of writing (JHotDraw 7, revision 789). It is comprised
by 688 classes and 65 packages, with over 82,000 lines of code. As opposed to the
Rhino project, used in our user study in Section 5.3, version 7 of JHotDraw does not

7Available at http://sourceforge.net/projects/jhotdraw/.
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(a) 1 Associated Transaction, 0 Dissociated
Transactions.

(b) 1 Associated Transaction, 1 Dissociated
Transaction.

(c) 1 Associated Transaction, 2 Dissociated
Transactions.

(d) 1 Associated Transaction, 3 Dissociated
Transactions.

Figure 5.6: Sunburst report updated after each transaction.

currently contain any unit tests. Therefore, one could not use the non-PFD variant
of PANGOLIN to locate its features.

The feature under consideration for this case study was the creation of triangle shapes
in the drawing canvas. The aim of this exercise is to identify where that feature is
implemented by just interacting with the application, and without having to inspect
many spurious code locations. To do so, we recorded several associated transactions
and dissociated transactions. Examples of associated transactions include creating
a triangle shape of default size by single-clicking in the drawing area, creating a
triangle with a custom size by click-dragging in the drawing area, and copy-pasting
a triangle. Examples of dissociated transactions include changing an existing shape’s
color, resizing it or saving a drawing to a file.

With this case study, we aim to answer the following research questions:
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Research Question 5.3

Are manual user interactions an accurate input to the SFC analysis when test
cases are unavailable?

Research Question 5.4

What is the impact of incorrect interaction classifications on the accuracy of
the PFD report?

In RQ5.3 we want to assess if PFD can be considered as a fallback alternative in
instances where there is no test suite available. RQ5.4 is concerned with the viability
of placing a human in the analysis loop, which consequently may lead to errors
classifying system interactions.

5.4.3 Evaluation

We further detail the experiments performed to assess the accuracy of the
participation-based extension of the SFC method. To evaluate our approach, we
propose a metric that quantifies the accuracy of the report generated by SFC

accuracy =
∑R+
i ε(i) · af (i)
|R+|

(5.1)

where R+ is the list of components that were scored with non-zero association
measure. ε(i) is a membership function that states whether component i is in fact
part of the feature implementation. ε(i) is given by

ε(i) =

1 if component i is part of the feature implementation

−1 otherwise
(5.2)

Accuracy can range between −1 and 1. In the best case scenario, where every
reported component has a score of 1.0 and is a member of the feature implementation,
the accuracy value would be 1. In the worst case scenario, the report would be solely
comprised of dissociated components, and its accuracy would be −1.

The first experiment was set up in order to emulate the conventional use of PFD,
where users would start by exercising the feature in the first transaction, and after
that they would record several dissociated interactions with the aim of reducing
their code inspection efforts. Therefore, in this experiment we analyze the impact
of adding new dissociated transactions, given that the first recorded transaction
is an associated one. The results are shown in Figure 5.7. As to be expected, the
first transaction—the associated transaction where the feature is exercised—causes
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Figure 5.7: Accuracy metric for each recorded transaction.

a steep dip in the accuracy graph. Since at this time there is only one recorded
execution and since there are typically many more dissociated components that are
active in a single execution trace, this means that the accuracy will be negative. In
the case of the triangle shape creation feature for JHotDraw, the accuracy drops to a
value close to −0.7.

When dissociated transactions are added, we see a steady increase in the accuracy of
the SFC analysis with PFD. This happens because, as different transaction traces are
included in the spectrum-based analysis, we are reducing the cardinality of the set of
components that are active exclusively in the associated transaction. This means that
the association measure for dissociated components will decrease and, conversely,
associated components will remain with a high association measure. We see that, by
collecting a low amount of transactions (about 20 in the case of the triangle shape
creation), we are able to achieve a high accuracy in the feature localization.

In the experiment above, we have only considered one transaction as associated,
and analyzed the impact on accuracy of adding dissociated transactions. We have
also performed another experiment where we vary the number of associated and dis-
sociated transactions in the feature localization. Results are presented in Figure 5.8,
under the format of a 3D plot (Figure 5.8b), and as an heat map (Figure 5.8a). We
conclude that having more dissociated transactions yields a better accuracy than
having more associated ones. This happens because, generally, two associated traces
are much more similar than an associated trace and a dissociated trace. Therefore, a
dissociated trace is better at exonerating components and reducing their score. This
means that there is more information gained by adding a dissociated transaction
than by adding associated transactions to the analysis.

Revisiting the third research question:
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(a) Heat map.
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Figure 5.8: Accuracy metric when changing the cardinality of associated and dissociated
transactions.

Research Question 5.3

Are manual user interactions an accurate input to the SFC analysis when test
cases are unavailable?

Answer: Allowing users to manually execute interactive applications and label
their interactions as associated or dissociated can be an accurate alternative to the
automated test suite. We found that a small number of transactions is enough to
achieve considerable accuracy and that the approach is resilient to classification
mistakes. We also found that the information gained by adding one dissociated
transaction is higher than adding one associated transaction. Therefore, the best
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scenario to achieve accurate results with the participatory approach is to collect just
a few associated transactions, and to collect as many dissociated transactions as
possible.
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δ = 0.05

δ = 0.1
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Figure 5.9: Impact of misclassification (δ) in PFD’s accuracy.

Since this participation-based approach to SFC involves users in the analysis loop
and requires them to interact with the system, PFD has to be resilient to eventual
mistakes when labeling executions. To assess how our approach behaves when there
are erroneous transactions present, we consider the concept of misclassification (δ).
δ is the probability that a transaction labeled as dissociated by the user is, in fact,
associated with the feature. For that, we have repeated the first experiment with δ
equal to 0.05, 0.10 and 0.50. The results are shown in Figure 5.9.

Revisiting the fourth research question:

Research Question 5.4

What is the impact of incorrect interaction classifications on the accuracy of
the PFD report?

Answer: Both δ = 0.05 and δ = 0.10 show some decrease in accuracy, but they re-
main, however, comparable to having δ = 0.0. In fact, we are able to achieve similar
accuracies if we increase the number of dissociated transactions in both misclassi-
fication scenarios. This means that if users are unsure if some of the transactions
they are collecting are in fact dissociated, then they should add more transactions
to mitigate this effect. At the extreme case of δ = 0.50, the results yielded by SFC
are much more inaccurate. In such case, the score for the associated components
decreases, because their activity pattern starts to differ from the (manually labeled)
evolution vector.
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5.4.4 Threats to validity

Construct Validity The case study was conducted by the authors. To ensure no
bias in the execution of the experiment, one of the authors selected the feature.
The other, which had no prior knowledge of JHotDraw’s code, was responsible for
running the PANGOLIN analysis. Misclassifications were labeled by checking each
transaction’s coverage and intersecting it with the feature implementation region.

Internal Validity A pre-requisite to using PFD is that the target applications need to
have some kind of interactive interface so that the user can label different transac-
tions (i.e., interactions). For instance, Rhino—the subject of our user study described
in the previous section—, being a Javascript interpreter library for java, cannot be
used in PFD mode, as it is not an interactive application. For this reason, we selected
JHotDraw as the subject of this case study. This application has also been used in
previous related work [Cornelissen et al., 2008]. One advantage of using JHotDraw
is to show that a project with no test cases can be analyzed using PFD. In fact, this
participatory approach is an attempt to increase the applicability domain of SFC by
removing the requirement of having existing test cases. Instead, users are asked
to interact with the application to generate coverage information that SFC can act
upon.

External Validity The results presented may not generalize for all kinds of inter-
active applications. Due to the different ways applications can handle interaction
events, classifying an interaction as associated/dissociated may not be trivial. Also,
although it is shown that the approach is resilient with regards to varying levels
of interaction misclassifications, there is, to our knowledge, no study on the actual
value for the average misclassification rate for interactive applications.

5.5 Related Work
Various techniques and tools were developed as a result of several years of research
into trace visualization and feature localization [Cornelissen et al., 2009; Dit et al.,
2013]. This section provides an overview—not meant to be exhaustive—of the
related work in this area.

Trace Visualization Pauw et al. [1993] developed a tool—coined Jinsight—for
visually exploring a program’s runtime behavior [Pauw et al., 1998]. Although this
tool was shown to be useful for program comprehension, scalability concerns render
the tool impractical for use in large applications. Reiss and Renieris [2001] showed
that execution traces are typically too large to be visualized and understood by the
user. As such, Reiss proposed a way to select and compact trace data to improve
the visualization’s intelligibility. Live run-time visualizations were also proposed
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as a way to reduce overheads [Reiss, 2003], but made it harder to visualize entire
executions.

Ducasse et al. [2004] proposed a way of representing condensed runtime metrics
(such as attribute-usage frequencies, object allocation frequencies, object lifetime,
among others) with the use of polymetric views. Greevy et al. [2006] proposed a
3D visualization of the run-time traces of a software system. Components were
depicted as towers whose height was influenced by the amount of runtime instances
created. The main objective of this technique is to determine which system regions
are involved in the execution of a certain feature, but the visualization may not be
trivial to grasp (particularly in large applications).

Cornelissen et al. [2007] developed a tool—Extravis—that visualized execution
traces by employing two synchronized views: a circular bundle view for structural
elements and an interactive overview via a sequence view. Its effectiveness was also
demonstrated for three reverse engineering contexts: exploratory program compre-
hension, feature detection and feature comprehension [Cornelissen et al., 2008].
Pinzger et al. [2008] proposed DA4Java, a tool that represented the source-code as
a nested graph. Vertices in the graph represented code components, such as pack-
ages, classes and methods, and edges represented dependencies (e.g., inheritance or
method calls). Graph representations were also used in other works. Such is that
of Yazdanshenas and Moonen [2012], which, like PANGOLIN, was able to visualize
information flow at various abstraction levels. Ishio et al. [2012] also used graphs to
generate interprocedural data-flow paths.

Trümper et al. [2013] implemented the TraceDiff tool, to ease the comparison of
large-scale system traces. The tool provided visualizations featuring a modified hier-
archical edge-bundling layout and icicle plot-node aggregation, to address scalability
in large traces. Maletic et al. [2011] proposed the MosaiCode tool, that uses a 2D
metaphor to support the visualization and understanding of various aspects of large
scale software systems. It supported multiple coordinated views of these systems
and leveraged a mosaic visualization to map their characteristics so that it is easy to
understand by programmers, managers, and architects.

Stengel et al. [2011] developed the View Infinity tool. It provided a zoomable
interface of Software Product Lines (SPL). In SPL, software is implemented in
terms of reusable user-visible characteristics. Features in SPL are particularly difficult
to understand due to the inherent variability of this type of applications. Like
PANGOLIN, the View Infinity tool offered a customizable granularity visualization, as
well as a navigable interface.

Feature Localization Work related to locating features in code includes the
software-reconnaissance approach proposed by Wilde and Scully [1995]. This
approach tried to answer the question “In which parts of this program is functionality
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X implemented?” using only dynamic information, namely execution traces. Similarly
to SFC, the Software Reconnaissance approach distinguishes two sets of test cases
(or scenarios): scenarios that activate the feature, and scenarios that do not activate
the feature. The former are used to locate the portions of code that implement
the feature and the latter are used to reduce the size of those code portions. The
SFC approach differs from this approach as it uses a spectrum-based analysis to
further indict or exonerate components based on each observed transaction. Another
approach to feature localization, coined SNIAFL, was proposed in the work of Zhao
et al. [2006]. This approach uses static techniques to locate features in the source
code. The main idea behind the approach is to use information retrieval techniques
to reveal the basic connection between features and computational units in source
code, based on the premise that programmers use meaningful names as classifiers.

Information-foraging-based theories to explain information-seeking strategies have
been used in the context of program comprehension and software engineering
before. Relevant works include those of Ko et al. [2006] in the context of software
maintenance; Romero et al. [2007], Lawrance et al. [2013], and Fleming et al.
[2013], and Piorkowski et al. [2012] in software debugging; Chi et al. [2001]
and Spool et al. [2004] for website design and evaluation.

5.6 Summary

In this chapter, we detailed the application of SFL techniques to the context of feature
localization, as we initially suggested in Section 1.3.4. Concretely, in this chapter:

• We introduced SFC, which provides a mapping between similar concepts from
fault localization concepts and feature localization (Section 5.2, page 93).

– Instead of calculating the correlation to test failures, SFC calculates the
correlation to feature usage patterns. SFC can thus rank components
by their likelihood of being part of a feature’s implementation, thereby
reducing the effort of code inspection.

• We presented PANGOLIN, an Eclipse plugin that implements the SFC analysis
for Java projects and presents tree-based radial visualization where each
component is color-coded according to their likelihood of being associated
with the feature being analyzed (Section 5.2.2, page 95).

• We conducted a user study to assess the effectiveness of SFC versus a coverage
tool, where participants were asked to pinpoint the source-code location where
a certain feature was implemented in the Rhino project (Section 5.3, page 96).
Results show that:

1. SFC users were able to pinpoint associated components more accurately
(answering RQ5.1, page 102); and
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2. SFC users completed the feature localization task in less time compared
to the group using a coverage tool (answering RQ5.2, page 102).

• We extended the SFC approach to allow for user participation in interactive
applications (Section 5.4, page 104). With the PFD approach, users can
capture manual executions of the application and label them as associated or
dissociated with the feature. This allows the use of feature localization for
interactive applications, even if there are no automated tests available. Our
evaluation of PFD shows that:

1. Allowing users to manually execute interactive applications and label their
interactions as associated or dissociated can be an accurate alternative to
the automated test suite (answering RQ5.3, page 109); and that

2. While misclassification impacts accuracy, it can be mitigated by increasing
the number of recorded transactions (answering RQ5.4, page 110).
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6Conclusions

„The key to understanding complicated things is
knowing what not to look at.

— Gerald Jay Sussman

Throughout this thesis, we have detailed the inner workings of SFL techniques,
outlined some of the flaws and shortcomings hindering them from widespread
adoption and use in practice, and proposed several methodologies to improve their
applicability and effectiveness, motivated by the question we posed at the beginning
of the thesis (cf. Section 1.3):

Can we improve the usefulness and effectiveness of spectrum-based analyses throughout
the software development life cycle?

The question above has spawned four main avenues of research covered in this
thesis—which we denominated by research goals, and introduced in Section 1.3—fo-
cused on improving different aspects of spectrum-based analyses throughout the
software development life cycle. We start this concluding chapter by outlining the
work performed in the scope of each research goal. Then, we list the main contri-
butions resulting from this work. Finally, we discuss recommendations for future
research.

6.1 Research Goals

Research Goal 1

Can we create a near-optimal metric to assess SFL diagnosability of test suites
while avoiding the assumptions held in previous work?

This research goal highlights the importance of diagnosability—the ability to effec-
tively locate potential faults in the code—as a criterion for assessing the quality of
a test suite. In Chapter 2, we propose DDU as a measurement of program spectra
diagnosability. Ideal diagnostic ability can be proved to exist when a suite reaches
maximum entropy, however, the number of tests required to achieve that is imprac-
tical, as the number of components in the system increases. DDU focuses on three
particular properties of entropy: (1) ensures that test cases are diverse; (2) ensures
that there are no ambiguous components; (3) ensures that there is a proportional
number of tests of distinct granularity; while still ensuring tractability. As opposed
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to adequacy measurements such as coverage, which mainly tackle the issue of error
detection, a diagnosability measurement like DDU analyses how combinations of
components are exercised in tandem in order to maximize the usefulness of fault
localization techniques at pinpointing the cause of any error that may occur.

Our topology-based simulation of program spectra was able to reveal that DDU
effectively establishes an upper-bound on the maximal effort required to diagnose
faults, regardless of fault type or cardinality. We also performed an empirical
evaluation to assess DDU as a metric for diagnosability. Our experiments used
the EVOSUITE tool to generate test suites for faulty programs from the DEFECTS4J
catalog, optimizing different metrics. We observed a statistically significant increase
in diagnostic performance (of about 34%) when locating faults by optimizing DDU
compared to branch-coverage.

Research Goal 2

What is the prevalence of single-fault fixes versus multiple-fault ones, and
what is their impact in similarity-based SFL?

In Chapter 3, we study the prevalence of single-fault fixes in open-source Java
projects, motivated by the fact that fault predictors (used by similarity-based SFL
approaches) can perform optimally in the event of a system being single-faulted, with
minimal computational overhead. Our hypothesis is that while a software application
can have many dormant bugs, these bugs are detected (and fixed) individually, thus
constituting single-faulted events.

We describe an approach for mining software repositories in search for fixes—i.e.,
source code modifications that eliminate faults from the system—and for classifying
said fixes according to the number of bugs they eliminate. The motivation behind
creating such methodology is to study how debugging actually happens in practice
and whether there is prevalence of single-fault fixes throughout the development of
software.

We conducted an experiment with hundreds of open-source Java projects from
GitHub, mining their repositories and cataloging the identified fixes. Overall, we
have found 1375 fixes in over 70 projects. Out of all fixes, 82.5% were single-
faulted (i.e., only eliminate one bug from the system), indicating that single-faults
are indeed prevalent among fixes. We have found that, for the detected single-
faults, fault predictors O and OP manage to achieve high diagnostic accuracy. For
the remaining multiple-faulted scenarios, average-fault and worst-fault diagnostic
accuracies decreased using most fault predictors. A glaring exception is with the O
predictor: because its definition assumes systems are single-faulted, it exhibits an
essentially random diagnostic performance in multiple-faulted scenarios.
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Research Goal 3

Can we augment spectra with qualitative, contextual information to improve
SFL diagnoses?

In Chapter 4, we propose Q-SFL, a new approach to spectrum-based fault localization
that leverages QR. QR is a research field of Artificial Intelligence focused on the
study of ways to describe continuous variables by a set of finite qualitative states,
allowing for the modeling, simulation and reasoning of complex systems. Q-SFL
splits data variables from the software system under analysis into qualitative states
through the creation of qualitative landmarks that partition the variables domain.
These qualitative states are then considered as SFL components to be ranked using
traditional fault-localization methodologies. Since we treat qualitative descriptions
of variable domain partitions as components, our diagnostic reports not only recom-
mend likely fault locations, but also what behaviors neighboring variables assume
when failures are detected, facilitating the comprehension of the fault.

We evaluate the approach on subjects from the DEFECTS4J catalog of real faults from
medium and large-sized open source projects. Results show that spectra which were
augmented using qualitative partitioning of method parameters shows a (statistically
significant) improvement in the diagnostic accuracy. However, no automated black-
box partitioning strategy used in our evaluation was consistently better than the
original spectra, meaning that more intricate strategies (possibly with access to
source code) will likely be necessary for practical applications of the approach.

Research Goal 4

Can we leverage SFL for feature detection?

Chapter 5 tackles the challenge of understanding and locating code features pre-
existing source code by leveraging concepts and algorithms from the field of software
fault localization. We provide a mapping between the problem of fault localization
and the problem of locating features in the code, and present an approach, coined
SFC. The main difference between the two approaches is that, instead of calculating
the correlation to failure patterns, SFC calculates the correlation to feature usage
patterns. SFC can thus rank components by their likelihood of being part of a
feature’s implementation, thereby reducing the effort of code inspection.

The chapter also presents PANGOLIN, an Eclipse plugin that implements the SFC
analysis for Java projects. This tool, besides running test cases and performing
SFC, also presents the analysis by means of a tree-based code visualization called
Sunburst, where each component is color-coded according to their likelihood of
being associated with the feature being analyzed.
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To assess the effectiveness of SFC and PANGOLIN, a user study was carried out, where
participants where asked to pinpoint components that need to be inspected when
evolving/changing a certain feature in the Rhino open source project. Results show
that participants using PANGOLIN were able to more accurately pinpoint code that
implemented the feature and code that used it when compared to participants only
using test coverage reports.

We extend SFC to enable user participation in the analysis process. With the PFD
approach users can, instead of using test cases, capture manual executions of the
application and label them as associated or dissociated with the feature. This allows
the use of feature localization in interactive applications, even if no automated tests
are made available. Our experimental results lead us to conclude that users should
strive to collect few associated executions and several dissociated executions to
achieve considerable feature localization accuracy, and that the approach is resilient
to misclassifications by the user.

6.2 Contributions
This thesis’ main contributions are the following:

• Introduces DDU, a new metric to assess a test-suite’s diagnostic ability to
pinpoint a fault in the system using spectrum-based techniques. The DDU
metric, intended to complement adequacy measurements such as branch
coverage, was shown to be more accurate at assessing diagnosability than the
state-of-the-art.

• Details a methodology for finding bug fixes in a software repository and
labeling them according to their bug cardinality, based on a spectrum-based
analysis. This methodology allows us to assess the prevalence of single-fault
fixes throughout development and also to assess what is the difference in
similarity-based SFL’s diagnostic accuracy when debugging single faults versus
multiple faults.

• Outlines an extension to SFL that leverages QR to augment program spectra.
This augmentation is done by partitioning system variables’ runtime values
into sets of qualitative descriptions, which are then treated as SFL components
to be analyzed. With more contextual information encoded in the spectra, it
allows for improved fault isolation and fault comprehension.

• Details an approach, SFC, that uses spectrum-based analysis to help software
engineers in locating where specific features are implemented in the code
and understanding how a program is structured. We consider this approach
particularly useful in program maintenance and evolution tasks.
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6.3 Recommendations for Future Research
Diagnosable Architectures The main purpose behind introducing the DDU metric
in Chapter 2 was to evaluate a test suite’s ability to pinpoint faults in the event of
failures. This metric is therefore a fitting complement to test adequacy measurements,
aimed at assessing the quality of test suites. However, the structure of the system
under test (its topology, as we refer to in Chapter 2) will also necessarily influence
its propensity for fault isolation. Hence, we consider the study of diagnosable
architectures to be an important avenue of future work. Namely, we envision the
creation of architectural design patterns, coding frameworks, runtimes, and even
high-level languages in which diagnosability (and by extension, the ease of improving
DDU) is one of the core concerns. Examples of existing research that could yield
advancements in diagnosable architectures include:

• Model-driven software engineering [Schmidt, 2006] approaches to system
design and verification. In particular, developments in both model-based test
generation [Dalal et al., 1999] and model-based diagnosis techniques [Ye
and Dague, 2010; Mayer and Stumptner, 2008] can help elicit precise design
requirements for both testable and diagnosable systems;

• Automated invariant inference, both at runtime (e.g., by training code screen-
ers [Abreu et al., 2008]), and even at compile time (e.g., by ensuring that data
ownership and lifetime are explicitly declared and checked [Jung et al., 2018])
may help developers improve their understanding of the faulty behavior (and
may also play a role as Q-SFL landmarking strategies);

• “Pseudoexhaustive” and (semi-)automated combinatorial testing [Kuhn et al.,
2004; Kuhn et al., 2009] for generating thorough and diverse test suites
(for instance, optimizing measurements such as DDU by studying the target’s
topology).

Differential Diagnosis As discussed in Chapter 3, since often times observed er-
rors are due to single-faults, similarity-based SFL approaches—which are consid-
erably less computationally demanding than reasoning-based counterparts—can
be effectively employed with negligible overhead, improving the perceived user
experience. In the event of multiple or intermittent faults, however, similarity-based
SFL may be less accurate. Therefore, we envision that performance improvements in
reasoning-based SFL may reduce the computational gap between the two kinds of
SFL approaches and thus also reduce the incentive for using similarity-based tech-
niques. We consider work (1) that takes into account previous diagnoses (such as the
component goodness estimation approach by Cardoso and Abreu [2013a]), (2) that
parallelizes the work required to perform the candidate generation step [Cardoso
and Abreu, 2013b], and (3) that leverages information from the system’s repository
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and bug tracker [Elmishali et al., 2016], to be examples of preliminary work in this
direction. Expanding on the aforementioned work, the development of intermediate
representations for storing set-cover constraints (akin to current strategies for solv-
ing online set-cover problems [Alon et al., 2009]) which only need to update the
constraints of modified components between two code revisions, may substantially
improve the candidate generation performance.

Automated Landmarking for Complex Types The Q-SFL approach outlined in Chap-
ter 4 was shown to produce better diagnoses, even tough only primitive types (and
object nullity) were considered for qualitative landmarking. Due to this limitation, no
general landmarking strategy was able to achieve consistent results when compared
to the baseline. Particularly, faults related to complex types will likely not be isolated.
It this therefore essential to also partition and landmark complex data types, so that
more types of faults can be covered. Hence, we believe future work focusing on
the creation of automated partitioning strategies for these data types to be the next
step in the development of Q-SFL. We envision that such partitioning strategies will
need to adopt concepts and techniques from static and dynamic software analysis.
Among other approaches, we consider the use of abstract interpretation [P. Cousot
and R. Cousot, 2014] and delta debugging [Zeller, 1999], to be particularly suited
for discriminating the qualitative states of a custom data type in an automated
fashion.

Code Summarization The SFC approach (described in Chapter 5) allows users to
leverage SFL techniques in the context of feature maintenance and evolution. We
consider the PFD extension to be particularly useful for end-users to pinpoint feature
implementations as they receive iterative, visual feedback while recording their
interactions with the system. As future work, we plan to augment the information
displayed to users, which currently only includes each component’s association
measures. One way to achieve this is by enhancing highly associated components
with summaries of what they are responsible for, via code summarization techniques
based on stereotypes [Moreno et al., 2013; Alhindawi et al., 2013], along with
searchable, interactive visualization filtering options.
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