14,817 research outputs found

    Positive emotion broadens attention focus through decreased position-specific spatial encoding in early visual cortex: evidence from ERPs

    Get PDF
    Recent evidence has suggested that not only stimulus-specific attributes or top-down expectations can modulate attention selection processes, but also the actual mood state of the participant. In this study, we tested the prediction that the induction of positive mood can dynamically influence attention allocation and, in turn, modulate early stimulus sensory processing in primary visual cortex (V1). High-density visual event-related potentials (ERPs) were recorded while participants performed a demanding task at fixation and were presented with peripheral irrelevant visual textures, whose position was systematically varied in the upper visual field (close, medium, or far relative to fixation). Either a neutral or a positive mood was reliably induced and maintained throughout the experimental session. The ERP results showed that the earliest retinotopic component following stimulus onset (C1) strongly varied in topography as a function of the position of the peripheral distractor, in agreement with a near-far spatial gradient. However, this effect was altered for participants in a positive relative to a neutral mood. On the contrary, positive mood did not modulate attention allocation for the central (task-relevant) stimuli, as reflected by the P300 component. We ran a control behavioral experiment confirming that positive emotion selectively impaired attention allocation to the peripheral distractors. These results suggest a mood-dependent tuning of position-specific encoding in V1 rapidly following stimulus onset. We discuss these results against the dominant broaden-and-build theory

    Temporal precedence of emotion over attention modulations in the lateral amygdala: Intracranial ERP evidence from a patient with temporal lobe epilepsy

    Get PDF
    Previous fMRI studies have reported mixed evidence for the influence of selective attention on amygdala responses to emotional stimuli, with some studies showing "automatic" emotional effects to threat-related stimuli without attention (or even without awareness), but other studies showing a gating of amygdala activity by selective attention with no response to unattended stimuli. We recorded intracranial local field potentials from the intact left lateral amygdala in a human patient prior to surgery for epilepsy and tested, with a millisecond time resolution, for neural responses to fearful faces appearing at either task-relevant or task-irrelevant locations. Our results revealed an early emotional effect in the amygdala arising prior to, and independently of, attentional modulation. However, at a later latency, we found a significant modulation of the differential emotional response when attention was directed toward or away from fearful faces. These results suggest separate influences of emotion and attention on amygdala activation and may help reconcile previous discrepancies concerning the relative responsiveness of the human amygdala to emotional and attentional factors

    The eye contact effect: mechanisms and development

    Get PDF
    The ‘eye contact effect’ is the phenomenon that perceived eye contact with another human face modulates certain aspects of the concurrent and/or immediately following cognitive processing. In addition, functional imaging studies in adults have revealed that eye contact can modulate activity in structures in the social brain network, and developmental studies show evidence for preferential orienting towards, and processing of, faces with direct gaze from early in life. We review different theories of the eye contact effect and advance a ‘fast-track modulator’ model. Specifically, we hypothesize that perceived eye contact is initially detected by a subcortical route, which then modulates the activation of the social brain as it processes the accompanying detailed sensory information

    Decoding face categories in diagnostic subregions of primary visual cortex

    Get PDF
    Higher visual areas in the occipitotemporal cortex contain discrete regions for face processing, but it remains unclear if V1 is modulated by top-down influences during face discrimination, and if this is widespread throughout V1 or localized to retinotopic regions processing task-relevant facial features. Employing functional magnetic resonance imaging (fMRI), we mapped the cortical representation of two feature locations that modulate higher visual areas during categorical judgements – the eyes and mouth. Subjects were presented with happy and fearful faces, and we measured the fMRI signal of V1 regions processing the eyes and mouth whilst subjects engaged in gender and expression categorization tasks. In a univariate analysis, we used a region-of-interest-based general linear model approach to reveal changes in activation within these regions as a function of task. We then trained a linear pattern classifier to classify facial expression or gender on the basis of V1 data from ‘eye’ and ‘mouth’ regions, and from the remaining non-diagnostic V1 region. Using multivariate techniques, we show that V1 activity discriminates face categories both in local ‘diagnostic’ and widespread ‘non-diagnostic’ cortical subregions. This indicates that V1 might receive the processed outcome of complex facial feature analysis from other cortical (i.e. fusiform face area, occipital face area) or subcortical areas (amygdala)

    Seeing the invisible: The scope and limits of unconscious processing in binocular rivalry

    Get PDF
    When an image is presented to one eye and a very different image is presented to the corresponding location of the other eye, they compete for conscious representation, such that only one image is visible at a time while the other is suppressed. Called binocular rivalry, this phenomenon and its deviants have been extensively exploited to study the mechanism and neural correlates of consciousness. In this paper, we propose a framework, the unconscious binding hypothesis, to distinguish unconscious processing from conscious processing. According to this framework, the unconscious mind not only encodes individual features but also temporally binds distributed features to give rise to cortical representation, but unlike conscious binding, such unconscious binding is fragile. Under this framework, we review evidence from psychophysical and neuroimaging studies, which suggests that: (1) for invisible low level features, prolonged exposure to visual pattern and simple translational motion can alter the appearance of subsequent visible features (i.e. adaptation); for invisible high level features, although complex spiral motion cannot produce adaptation, nor can objects/words enhance subsequent processing of related stimuli (i.e. priming), images of tools can nevertheless activate the dorsal pathway; and (2) although invisible central cues cannot orient attention, invisible erotic pictures in the periphery can nevertheless guide attention, likely through emotional arousal; reciprocally, the processing of invisible information can be modulated by attention at perceptual and neural levels

    Cortical Dynamics of Contextually-Cued Attentive Visual Learning and Search: Spatial and Object Evidence Accumulation

    Full text link
    How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.CELEST, an NSF Science of Learning Center (SBE-0354378); SyNAPSE program of Defense Advanced Research Projects Agency (HR0011-09-3-0001, HR0011-09-C-0011
    • …
    corecore