40 research outputs found

    A general method for the point of regard estimation in 3D space

    Full text link

    Dense Vision in Image-guided Surgery

    Get PDF
    Image-guided surgery needs an efficient and effective camera tracking system in order to perform augmented reality for overlaying preoperative models or label cancerous tissues on the 2D video images of the surgical scene. Tracking in endoscopic/laparoscopic scenes however is an extremely difficult task primarily due to tissue deformation, instrument invasion into the surgical scene and the presence of specular highlights. State of the art feature-based SLAM systems such as PTAM fail in tracking such scenes since the number of good features to track is very limited. When the scene is smoky and when there are instrument motions, it will cause feature-based tracking to fail immediately. The work of this thesis provides a systematic approach to this problem using dense vision. We initially attempted to register a 3D preoperative model with multiple 2D endoscopic/laparoscopic images using a dense method but this approach did not perform well. We subsequently proposed stereo reconstruction to directly obtain the 3D structure of the scene. By using the dense reconstructed model together with robust estimation, we demonstrate that dense stereo tracking can be incredibly robust even within extremely challenging endoscopic/laparoscopic scenes. Several validation experiments have been conducted in this thesis. The proposed stereo reconstruction algorithm has turned out to be the state of the art method for several publicly available ground truth datasets. Furthermore, the proposed robust dense stereo tracking algorithm has been proved highly accurate in synthetic environment (< 0.1 mm RMSE) and qualitatively extremely robust when being applied to real scenes in RALP prostatectomy surgery. This is an important step toward achieving accurate image-guided laparoscopic surgery.Open Acces

    Using Points at Infinity for Parameter Decoupling in Camera Calibration

    Full text link

    Visual Servoing

    Get PDF
    International audienceThis chapter introduces visual servo control, using computer vision data in the servo loop to control the motion of a robot. We first describe the basic techniques that are by now well established in the field. We give a general overview of the formulation of the visual servo control problem, and describe the two archetypal visual servo control schemes: image-based and pose-based visual servo control. We then discuss performance and stability issues that pertain to these two schemes, motivating advanced techniques. Of the many advanced techniques that have been developed , we discuss 2.5-D, hybrid, partitioned, and switched approaches. Having covered a variety of control schemes, we deal with target tracking and controlling motion directly in the joint space and extensions to under-actuated ground and aerial robots. We conclude by describing applications of visual ser-voing in robotics

    A Decoupled Calibration Method for Camera Intrinsic Parameters and Distortion Coefficients

    Get PDF
    Camera calibration is a necessary process in the field of vision measurement. In this paper, we propose a flexible and high-accuracy method to calibrate a camera. Firstly, we compute the center of radial distortion, which is important to obtain optimal results. Then, based on the radial distortion of the division model, the camera intrinsic parameters and distortion coefficients are solved in a linear way independently. Finally, the intrinsic parameters of the camera are optimized via the Levenberg-Marquardt algorithm. In the proposed method, the distortion coefficients and intrinsic parameters are successfully decoupled; calibration accuracy is further improved through the subsequent optimization process. Moreover, whether it is for relatively small image distortion or distortion larger image, utilizing our method can get a good result. Both simulation and real data experiment demonstrate the robustness and accuracy of the proposed method. Experimental results show that the proposed method can be obtaining a higher accuracy than the classical methods

    Photometric visual servoing for omnidirectional cameras

    Get PDF
    International audience2D visual servoing consists in using data provided by a vision sensor for controlling the motions of a dynamic system. Most of visual servoing approaches has relied on the geometric features that have to be tracked and matched in the image acquired by the camera. Recent works have highlighted the interest of taking into account the photometric information of the entire image. This approach was tackled with images of perspective cameras. We propose, in this paper, to extend this technique to central cameras. This generalization allows to apply this kind of method to catadioptric cameras and wide field of view cameras. Several experiments have been successfully done with a fisheye camera in order to control a 6 degrees of freedom (dof) robot and with a catadioptric camera for a mobile robot navigation task

    Toward Automated Aerial Refueling: Relative Navigation with Structure from Motion

    Get PDF
    The USAF\u27s use of UAS has expanded from reconnaissance to hunter/killer missions. As the UAS mission further expands into aerial combat, better performance and larger payloads will have a negative correlation with range and loiter times. Additionally, the Air Force Future Operating Concept calls for \formations of uninhabited refueling aircraft...[that] enable refueling operations partway inside threat areas. However, a lack of accurate relative positioning information prevents the ability to safely maintain close formation flight and contact between a tanker and a UAS. The inclusion of cutting edge vision systems on present refueling platforms may provide the information necessary to support a AAR mission by estimating the position of a trailing aircraft to provide inputs to a UAS controller capable of maintaining a given position. This research examines the ability of SfM to generate relative navigation information. Previous AAR research efforts involved the use of differential GPS, LiDAR, and vision systems. This research aims to leverage current and future imaging technology to compliment these solutions. The algorithm used in this thesis generates a point cloud by determining 3D structure from a sequence of 2D images. The algorithm then utilizes PCA to register the point cloud to a reference model. The algorithm was tested in a real world environment using a 1:7 scale F-15 model. Additionally, this thesis studies common 3D rigid registration algorithms in an effort characterize their performance in the AAR domain. Three algorithms are tested for runtime and registration accuracy with four data sets

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em

    Multimodal Three Dimensional Scene Reconstruction, The Gaussian Fields Framework

    Get PDF
    The focus of this research is on building 3D representations of real world scenes and objects using different imaging sensors. Primarily range acquisition devices (such as laser scanners and stereo systems) that allow the recovery of 3D geometry, and multi-spectral image sequences including visual and thermal IR images that provide additional scene characteristics. The crucial technical challenge that we addressed is the automatic point-sets registration task. In this context our main contribution is the development of an optimization-based method at the core of which lies a unified criterion that solves simultaneously for the dense point correspondence and transformation recovery problems. The new criterion has a straightforward expression in terms of the datasets and the alignment parameters and was used primarily for 3D rigid registration of point-sets. However it proved also useful for feature-based multimodal image alignment. We derived our method from simple Boolean matching principles by approximation and relaxation. One of the main advantages of the proposed approach, as compared to the widely used class of Iterative Closest Point (ICP) algorithms, is convexity in the neighborhood of the registration parameters and continuous differentiability, allowing for the use of standard gradient-based optimization techniques. Physically the criterion is interpreted in terms of a Gaussian Force Field exerted by one point-set on the other. Such formulation proved useful for controlling and increasing the region of convergence, and hence allowing for more autonomy in correspondence tasks. Furthermore, the criterion can be computed with linear complexity using recently developed Fast Gauss Transform numerical techniques. In addition, we also introduced a new local feature descriptor that was derived from visual saliency principles and which enhanced significantly the performance of the registration algorithm. The resulting technique was subjected to a thorough experimental analysis that highlighted its strength and showed its limitations. Our current applications are in the field of 3D modeling for inspection, surveillance, and biometrics. However, since this matching framework can be applied to any type of data, that can be represented as N-dimensional point-sets, the scope of the method is shown to reach many more pattern analysis applications
    corecore