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Abstract 
 
 
The focus of this research is on building 3D representations of real world scenes and 
objects using different imaging sensors. Primarily range acquisition devices (such as 
laser scanners and stereo systems) that allow the recovery of 3D geometry, and multi-
spectral image sequences including visual and thermal IR images that provide 
additional scene characteristics. The crucial technical challenge that we addressed is 
the automatic point-sets registration task. In this context our main contribution is the 
development of an optimization-based method at the core of which lies a unified 
criterion that solves simultaneously for the dense point correspondence and 
transformation recovery problems. The new criterion has a straightforward expression 
in terms of the datasets and the alignment parameters and was used primarily for 3D 
rigid registration of point-sets. However it proved also useful for feature-based 
multimodal image alignment. We derived our method from simple Boolean matching 
principles by approximation and relaxation. One of the main advantages of the 
proposed approach, as compared to the widely used class of Iterative Closest Point 
(ICP) algorithms, is convexity in the neighborhood of the registration parameters and 
continuous differentiability, allowing for the use of standard gradient-based 
optimization techniques. Physically the criterion is interpreted in terms of a Gaussian 
Force Field exerted by one point-set on the other. Such formulation proved useful for 
controlling and increasing the region of convergence, and hence allowing for more 
autonomy in correspondence tasks. Furthermore, the criterion can be computed 
with linear complexity using recently developed Fast Gauss Transform numerical 
techniques. In addition, we also introduced a new local feature descriptor that was 
derived from visual saliency principles and which enhanced significantly the 
performance of the registration algorithm. The resulting technique was subjected to a 
thorough experimental analysis that highlighted its strength and showed its limitations. 
Our current applications are in the field of 3D modeling for inspection, surveillance, 
and biometrics. However, since this matching framework can be applied to any type of 
data, that can be represented as N-dimensional point-sets, the scope of the method is 
shown to reach many more pattern analysis applications. 
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1 INTRODUCTION  

Stating that among all the senses that humans possess vision is the most ubiquitous and 

the most useful in our lives may seem obvious and redundant, but the workings of such 

an important pillar of our cognition is so much misunderstood that this may be worth 

recalling at the beginning of this dissertation. In fact scientists showed that the majority 

of brain power is devoted to visual processing. We are so dependant on vision that we 

have to use the visual medium as a way of communicating and recording information 

through graphic symbols that we call letters and numbers, and even as a way of 

reasoning. Our understanding of abstract and convoluted concepts is always enhanced 

when we describe them by images and graphs. Since we like images so much and as our 

technology evolved we have equipped many of our machines with eyes of their own.  

 

The proliferation of digital imaging systems is rapidly transforming many areas of our 

lives. Current technologies, however, remain overwhelmingly devoted to acquiring and 

transmitting the images to its human end user. In most cases, such as when we look at 

the images of friends or family members transmitted to us from their wireless phones, 

that is all what we want the systems to do. The image in this case is the end product and 

is consumed for the subjective psychological satisfaction that it generates for us. Now 

imagine a scenario where a military pilot or a tank commander are operating in the dark 

of night, their night vision and other imaging systems show a moving vehicle on the 

ground. They are not sure if the vehicle is hostile or friendly. Clear images can save 

innocent lives in such contexts. Other examples of this abound including the medical 

imagery on which doctors are so dependant today for diagnosis and for intervention.   
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The problem that we have with the flood of images acquired by our cameras is that their 

value is mostly wasted if a human is not in the loop. Reducing the role of humans as the 

only interprets of visual information is the most important goal of the discipline of 

computer vision within which our research lies. Given that biological vision has proved 

very difficult to understand let alone to mimic, our only hope for accomplishing 

automated image understanding lies in the use of the mathematical tools with which we 

are more comfortable. One of advantages that we have with our technology is that we 

can extend our perception of the world beyond the visual spectrum. This offers a good 

opportunity to compensate for our limited success in understanding the world from 

color alone. At the heart of computer vision lies the task of reconstructing three 

dimensional computer models that describe objects and scenes. In addition to the 

geometry of objects it is also very useful to have the color and other multi-spectral 

information associated with each point of a scene. The spatial alignment, or registration, 

of different imaging modalities is at the heart of this research. The registration problem 

emerges because of the limited window through which imaging systems capture the 

world; limited in both the spectral and spatial domains.  The narrow field of view of 

cameras or mostly the complex topologies of real world objects require us to view them 

from different positions in order to have a better and more useful description.           

 

For the acquisition of scene geometry different systems were developed. Stereovision 

systems use the same principals of parallax and triangulation employed by human 

vision to reconstruct the geometry of objects.  Years of intensive research led to some 

success in several applications such as robotic navigation and manipulation in 

hazardous environments [Maimone98], or planetary exploration [Goldberg02]. 

Nevertheless this approach is not yet useful for applications that require precise 

measurements of the scene. The main problems with stereo are: (1) the matching or 

correspondence task, which is also at the core of the registration problem, and (2) the 

rapid decrease in depth accuracy with the increase in distance. Another popular class of 

3D scene digitization systems employs laser range scanners which are using either time 
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of flight or triangulation principles. Laser scanners offer the advantage of accuracy and 

usually provide a high resolution sampling of static and rigid object surfaces. We will 

mostly use this last method for our acquisition of scene geometry. In addition to range 

maps we will employ in our reconstruction framework color and Infra-Red images. The 

ultimate goal is twofold: to automatically build 3D models with multimodal texture 

overlay for human interpretation, and more importantly to integrate useful information 

in the different sensory inputs for fusion and automatic machine decision. Our means to 

achieve this end is a unified approach to 3D and 2D image alignment based on the 

optimization of a novel criterion that will be presented, argued for, and analyzed in 

detail as this dissertation progresses. Applications that we targeted are virtualized reality 

for simulation and reverse engineering, remote inspection in hazardous environments 

(mainly for DoE’s radioactive waste cleaning), and Biometrics.     

1.1 Our Framework 

The primary emphasis of this dissertation will be on the registration of multiple free-

from shapes for object modeling. The second technical goal is the alignment of 

multimodal 2D imagery. Both tasks are active research areas and we will present an up-

to-date overview of the state of the art in the following chapter. Our work will employ 

the most basic representation of shapes assuming their description as a cloud of points. 

Therefore our techniques will belong to the same class as that of the ubiquitous Iterative 

Closest Point (ICP) algorithm. It is in fact the limitations of ICP that we are attempting 

to overcome. The latter method while increasingly popular since its discovery (or 

invention) by Besl and McKay in 1992 [Besl92], has several shortcomings. Our 

research will concentrate on extending the range of convergence of point-based 

registration, which is one of the major problems with ICP. While these techniques can 

ensure an accurate registration when closely initialized they limit the autonomy of 

current 3D modeling systems by requiring the human to be in the loop. 
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To achieve our goals we started by devising a robust feature descriptor for general 

unorganized and noisy point-sets. Several local and global descriptors were proposed 

for surface-based registration, using mostly differential properties. Given that we work 

with the most general case of point-sets we will employ a recently developed and 

powerful tool for feature inference namely tensor voting. The philosophical reason 

behind this choice, as well as behind the choice of the point-sets representation, is that 

current 3D digitization devices actually provide point-sets sampled from the surfaces. 

Surface topology and differential properties are currently just inferred from these 

samples. In the registration task the goal is precisely to reconstruct these surfaces from 

the combination of several datasets. The redundancy of information will allow for the 

accurate recovery of shapes. Hence it is more suitable, when possible, to register the 

raw point-sets without any processing so that we don’t loose irrecoverable shape 

information. The efficient Tensor Voting framework [Medioni00] will help us in 

designing a local feature descriptor which will measure the visual importance of points, 

also known as saliency. This descriptor will prove robust to noise and information rich. 

It will allow the implicit embedding of salient feature information and confidence in a 

convenient format suitable for our registration algorithm. It will also have the advantage 

of being computationally efficient. 

 

Having a good local descriptor such as our point saliency measure will help 

significantly with the correspondence task, which is the main challenge for registration. 

In the work that will be described in this dissertation we depart from the ICP criterion 

and designing a new energy function that quantifies registration. In this we are guided 

by the limitations of ICP methods. Our development starts with a simple combinatorial 

matching criterion that is consistent with a rigorous definition of the registration task. A 

continuously differentiable energy function is obtained from this criterion by the 

method known as mollification, which is simply a smoothing by convolution with a 

Gaussian kernel. We will interpret this criterion physically in terms of Gaussian force 

fields that are exerted by one of the point-sets on the other. The strength of this field 
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will depend on the distance between the points and on the similarity of their shape and 

other attributes.   

 

Our formulation proved straightforward to implement, especially given the possibility 

of using standard gradient-based optimization techniques instead of the specialized 

heuristic employed by ICP. Even better is the recent availability of a fast computation 

method for our criterion in the form the Fast Gauss Transform [Elgammal03][Yang03]. 

This technique allows for the reduction of computational complexity from square to 

linear. By combining these elements and by studying the properties of the Gaussian 

criterion we end up with an elegant and practical framework for 3D registration. 

Quantitative and qualitative analysis will show that our algorithm allows for a 

significant increase in the range of convergence as compared with ICP, and hence offers 

a serious alternative to this standard technique. We will also show that the Gaussian 

Fields criterion can be used for multimodal image registration as well. Practical 

examples of 3D modeling, mainly photo-realistic object reconstruction and multi-sensor 

face modeling, will stress our ultimate objective of automating multimodal scene 

description as well as our application areas. In the process of developing our methods 

we also addressed in a novel way the important computer vision problem of Shape from 

Motion. In this effort lie the seeds of both the saliency measure and of the registration 

approach. The overall multimodal integration pipeline that focused our work is 

summarized in Fig. 1.1. 

1.2 Contributions 

In summary, the most important contributions of this work are the following: 

 

• The Gaussian Fields Criterion for Point-Sets Registration 
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Fig. 1.1. General flowchart of our 3D multimodal modeling system. The shaded boxes are the 
tasks that were addressed in this dissertation. 
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In this research we introduce a new optimization-based approach to 3D and 2D 

point-sets registration allowing the simultaneous recovery of point correspondences 

and aligning transformations. Our overriding goal is to obtain a differentiable 

smooth criterion with local convexity in the neighborhood of the aligned position. 

The new criterion is based on Gaussian Force fields as an efficient device for 

attracting the two datasets into the registered position. By using a standard quasi-

Newton optimization strategy we are able to extend the region of convergence of 

current automatic methods significantly. Furthermore the Fast Gauss Transform 

numerical technique offered us a powerful and well developed tool for the efficient 

implementation of our method. While we emphasized the 3D registration task our 

framework generalizes easily to N-D point-sets matching and applies directly to 

feature-based multimodal and single sensor image alignment. We believe that this 

new approach is an important contribution to the state of the art in both 3D and 2D 

free-form registration.   

 

• A New Local Feature Descriptor for Visual Saliency Measure 

 

In conjunction with the Gaussian criterion we developed a new local feature 

descriptor based on Tensor Voting. This descriptor was specifically designed with 

the consideration of differentiability in mind. It is explicitly expressed in terms of 

the point-sets and is robust to noise and clutter. The local saliency descriptor 

embeds surface and curve information that is very useful for matching. It is also 

computationally efficient unlike several other moment invariants. Experimental 

analysis showed the robustness of this criterion to high levels of noise and its 

discriminatory power which enhanced the performance of our registration algorithm.   

 

In addition to these two key contributions we also worked on the simultaneous recovery 

of camera pose and scene structure without search for explicit correspondences 

[Boughorbel03]. While this work initiated the other ideas on structure saliency and 
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ultimately contributed to our alignment framework, it was not as thoroughly 

investigated in this dissertation as the others due to our different focus.   

1.3 Document Organization 

The remainder of this dissertation is organized as follows: 

 

• Chapter 2 gives a literature review of the topics most relevant to our research. 

Namely: 3D Free-from registration, image registration, tensor voting, and shape 

from motion.      

• Chapter 3 describes our work on designing the feature saliency descriptor 

starting from our initial efforts at camera motion recovery and presenting a first 

attempt at designing a point-set registration criterion. 

• Chapter 4 is the core theory chapter that develops the Gaussian Fields 

framework using mollification and relaxation approaches. It argues theoretically 

for its advantages, and gives the details of the optimization strategy used. 

• Chapter 5 presents Fast Gauss Transform methods and shows its usefulness for 

our algorithm. 

• Chapter 6 contains a thorough experimental analysis on synthetic and real 

datasets of the 3D registration method. Included are studies of robustness to 

noise, overlap, feature choice, as well as convergence properties. This chapter 

shows the results of IR to color registration and examples of multimodal 3D 

reconstruction. 

• Chapter 7 will present a short summary of the dissertation’s seminal points, a 

discussion with concluding remarks, and opportunities for future research.  
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2 RELATED WORK  

While the main thrust of this research is the registration of 3D point-sets under rigid 

transformations, several other topics were also addressed in the process of developing 

our new method and in the context of multi-modal reconstruction. These include the 

tensor voting framework used for robust inference of features, single and multi-sensor 

image registration, and shape recovery from camera motion. In this chapter we present 

the relevant literature situating our work within the state of the art. 

2.1 3D Free-Form Registration 

Due to their limited field of view and to the occlusion problem most 3D imaging 

systems will provide partial scans of a scene. In order to build complete description of 

scene geometry, we need to merge together several of these partial views. Since these 

datasets are originally represented in the local sensor coordinates frame, registration is 

a fundamental step in most 3D modeling pipelines. In the applications most relevant to 

our work the views are related by rigid transformations : 3D rotations and 

translations. In some other fields such as medical imaging non-rigid transformations 

may be needed [Maintz98]. In this case the focus is mostly on fusing different 

modalities, or on comparing structures with important shape variability [Toga99], for a 

brief overview of image registration techniques see section 2.2.  The free-form shape 

registration problem was the focus of significant research efforts during the last 

several years. At the core of many registration approaches lies the classic problem of 

absolute orientation: recovering the rigid transformations using a set given of 3D 

correspondences [Faugeras86][Horn87].  

),( tR
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In the literature, a common distinction is found between fine and coarse registration 

methods [Campbell01], which are often used in a two-stage fashion. Coarse or 

preliminary registration can be obtained by several techniques, including hardware 

solutions, such as rotating tables, which were used to scan small objects.  But more 

commonly, a set of matches is used for the alignment of the views. These 

correspondence points can be obtained interactively as in most commercial 3D 

modeling packages [RapidForm02]. Fully automatic 3D matching using exhaustive 

constrained search techniques were attempted [Chen99]. However, these methods are 

computationally expensive and sensitive to noise. Invariant features are more 

frequently employed to reduce the search space, playing an important role in systems 

that aim for the automation of the reconstruction process.  To achieve fine registration, 

by far the most widely used algorithm is the Iterative Closest Point (ICP) algorithm 

and its very numerous variants and extensions. This accurate method is commonly 

used as a refinement step after an initial coarse registration was obtained.   

2.1.1 Registration with invariant features 

Given a set of corresponding points between two 3D data sets, Horn [Horn87] derived 

a closed from solution to the absolute orientation problem. Similar results were also 

obtained in [Faugeras86].  Automatically establishing the set of correspondences to be 

used in such algorithm is a common interest to both registration and object recognition 

tasks. Several feature descriptors were used to represent free-form surfaces and point 

sets. In the class of global descriptors spherical representations such as the Spherical 

Attribute Image (SAI), which mapped surface curvature values into a tessellated 

sphere, were employed for 3D registration [Higuchi95][Hebert95]. Also to this 

category belongs the work of Lucchese et al [Lucchese02] extending frequency-

domain methods to range data registration. Park and Subbarao [Park04] employed the 

invariant Stable Tangent Plan (STP) for crude registration. 
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Many local representations were also proposed to encode surface shape information. 

Stein and Medioni [Stein92] used the variation of the surface normals at local patches 

for matching, defining a local feature map called Splash. Thirion [Thirion96] extracted 

critical points and contours using Gaussian curvature extrema. Chua and Jarvis 

[Chua96] introduced a new local representation called the Point Signature. In this 

descriptor, a sphere centered at the surface point intersected with the surface resulting 

in a contour. The distance of these contour points to a plane approximating the tangent 

plane at the point is parametrized and stored. This approach results in a pose invariant 

description of the local shape information. Spin Images are another popular invariant 

local representation, proposed by Johnson et al [Johnson97]. These are basically 

histograms of distances and angles of neighboring surface points, which can be used 

efficiently for registration and recognition. Belonging to this same class of local 

descriptors, is the Monge patches used by Wyngaerd and Van Gool for rough 

alignment [Wyaengard02]. Most of these features rely on local normal or curvature 

information. Since we are mostly focused on the registration unorganized noisy point-

sets, where surfaces were not defined yet, differential surface attributes will not be 

used from the start. Nevertheless, using a voting process we are able to infer local 

surface information in noisy and sparse datasets.    

2.1.2 Iterative Closest Point algorithms 

The ICP algorithm was first introduced by Besl and MacKay in [Besl92]. Its basic 

version aligns a set S of 3D scene points with a geometric model 

, by minimizing the sum of the squared distances between the scene 

points and the model. For every point

},...,{ 1 sNss=

},...,{ 1 mNmmM =

Ssi ∈ , the distance to M is defined as: 

m−sMsd iMmi =
∈

min),( .  

The algorithm is summarized in the following:  
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     2.3. Using the pairs  compute the transformation that minimizes the sum of 

squared distances [Horn87].      

C

 

 

The ICP algorithm was shown to converge monotonically to a local minimum. 

Therefore, the initial estimate of the transformation should be sufficiently close to the 

correct registration.   Another limitation of the original version is that it requires large 

overlap between the datasets to be aligned. Step 2.3 in the algorithm is commonly 

solved by one of the feature matching techniques presented in 2.1.1. Independently, 

Chen and Medioni [Chen92] developed an algorithm similar to ICP. Using orientation 

information, they devised a least squares matching metric based on the distance, in the 

direction of the normal to a scene point, to the tangent plane at the model. This 

approach allowed the incorporation of local shape information, as well as the handling 

of partially overlapping datasets.  

 

Active research on the free-form registration problem gave a rise to a proliferation of 

improved ICP algorithms. Zhang [Zhang94] proposed a method based on robust 

statistics, allowing for better handling of outliers, occlusions, and partial overlap. The 

algorithm used heuristics to remove inconsistent matches.  While the ICP algorithm 

was first used in the context of registration of clouds of points, Turk and Levoy 

[Turk94] devised a modified registration metric that dealt with polygon meshes. Their 

technique is able to register partially overlapping views, by imposing mesh-based 

constraints on the selection of nearest points.  In other improvements of ICP, Masuda 



Chapter 2: Related Work 
 

13

and Yokoya [Masuda95] used a Least Mean Squares (LMS) error measure that is 

robust to partial overlap, and Dorai et al [Dorai97] proposed a Minimum Variance 

Estimate (MVE) of the registration error, that produced less error than the least 

squares error measure. In the same effort at robustness Trucco et al [Trucco99] 

employed Least Median Squares (LMedS), in the so-called Robust ICP version 

(RICP), to register noisy point-sets with missing data. Zinsser et al [Zinsser03] 

designed an algorithm coined the Picky ICP which combined the strengths of different 

currents variants to achieve both robustness and increased speed. Also for reducing the 

speed of ICP other approaches were also investigated, such as the use of k-D trees to 

handle the datasets [Zhang94], or the use of spatial subdivisions to partition mesh 

vertices [Turk94]. These data structures helped speed the search for the nearest point 

and reduced the computational cost significantly. Volumetric constraints and Voronoi 

diagrams were at the core of the fast Morphological ICP proposed by Kapoutsis et al 

[Kapoutsis99]. For points sets-to-surface registration a recent work by Pottmann et al 

[Pottmann04] devised a technique based on instantaneous kinematics, achieving 

substantial gains in speed over ICP methods. 

 

Going for the two 3D views to the case of multi-views registration, it was clear that 

using the original ICP in a sequential fashion may lead to error propagation. Hence, 

the development of several techniques that attempted to minimize, and also to balance, 

the error distribution in the registration of multiple views. Turk and Levoy [Turk94] 

used a reference cylindrical scan of the object and registered all the other views to it. 

Blais and Levine [Blais95] used the camera calibration to project pixels from one view 

onto the other range images. The resulting optimization problem was approached 

through a simulated annealing technique starting from the initial transformations. In 

yet another extension of the ICP algorithm, Bargevin et al [Bargevin96] showed that 

the transformations could not be decoupled and proposed a technique that handled 

multiple range images simultaneously. The method balances the registration errors 

between the views resulting in an overall error less than the sensor noise. Several 
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heuristics were also used in this work to achieve robustness to missing and unreliable 

data.  Eggert et al [Eggert96] used both point position and normal information in the 

search for correspondences. All the views were represented in a single coordinate 

frame, and the search was performed on the combined point sets.   

 

Using analogy to physics Eggert et al [Eggert96], and stoddart et al [Stoddart96] 

devised a force-based optimization method to register the data sets. The closest points 

were connected by springs assuring better convergence to local minima. Formulating 

the multiple-views registration problem in graph theoretic framework, Neugebauer et 

al [Neugebauer97] represented the different datasets as nodes and the transformations 

as links. The registration task in this approach consisted of finding a network with 

balanced registration errors. For improved computational efficiency, a multi-resolution 

hierarchical approach was adopted, where the number of points used at the start is low 

and increases as the registration proceeds. A similar graph theoretical algorithm was 

proposed by Huber and Hebert [Huber03]. Recently a hybrid algorithm employing 

invariant features was used to enhance the performance of the standard ICP [Sharp02]. 

The search for closest matches was performed in the extended positional and feature 

space. For recent surveys and comparisons of several common variants of the ICP 

algorithm the following references [Dalley02][Rodrigues02][Rusinkiewicz01] can be 

consulted.  

 

Several researchers studied the relationship between surface shape complexity and the 

registration accuracy. In this context, Pennec and Thirion [Pennec97] characterized the 

uncertainty of point set registration. Stoddart et al [Stoddart96] defined a registration 

index measuring shape information, and Brujic and Ristic [Brujic96] used Monte 

Carlo simulation to study the dependence of accuracy and complexity. To enhance the 

alignment in the case of scenes with low shape information content, Pito [Pito97] 

designed a registration aid that can be placed with the scanned objects ensuring precise 

matching.  
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Several of the limitations of the ICP framework stem from the non-differentiability of 

its cost function which imposed the use of a specialized heuristic for optimization. 

Addressing the registration in the context of gradient-based optimization has attracted 

some interest recently. We mainly refer here to the work of Fitzgibbon [Fitzgibbon03] 

who showed that a Levenberg-Marquardt approach to the point-set registration 

problem offered several advantages over current ICP algorithms. The proposed 

method used Chamfer distance transforms [Borgefors88] to compute derivatives for 

the ICP criterion. In addition robust estimation via a Huber kernel [Huber81] was 

employed with the effect of significantly widening the basins of convergence of 

existing techniques. This work is one of the most closely related to our efforts in 3D 

registration, since we also aim at designing a criterion that can be optimized through 

general purpose non-linear techniques. The main disadvantage of Fitzgibbon’s 

technique is that it is limited to datasets on a grid, where the Chamfer distance 

transforms and discrete derivatives are easily evaluated. For sparse unorganized point-

sets this method cannot be directly applied.  Our work is also in the same class of 

techniques as the one by Charpiat et al [Charpiat03] which approximates the 

Hausdorff distance with a differentiable metric on shape space. The resulting 

Hausdorff warping can be used for PDE-driven fitting and recognition of shapes.  

 

By introducing a new registration method that uses a straightforward differentiable 

cost function, directly and explicitly expressed in terms of the point coordinates and 

the registration parameters, we are able to overcome several problems with the ICP-

based methods described above. The smooth behavior of our registration criterion, as 

well as other characteristics which will be discussed in this dissertation, combined 

with the use of a standard optimization scheme extends the range of convergence. The 

application of the technique to the multiple views case is straightforward, and the 

registration metric can be extended to cases of non-rigid registration. Given the 

generality of our framework we can apply the Gaussian Fields method to single and 
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multi-sensor image registration tasks In the following section we briefly present 

previous work done in this field. 

2.2 Image Registration 

Intensively researched, image registration has a wide range of applications in areas 

such as pattern recognition, medical imaging, and remote sensing. In the case of single 

sensor registration the purpose is to combine several images in order to overcome the 

limited view of the camera. Multimodal registration is mainly the step preceding 

fusion, where the fused information is exploited for recognition and decision. The two 

main components that define registration methods are the measure of similarity 

between the images or between smaller areas of the images (mostly square windows), 

and the transformations modeling the mappings aligning them.   

 

In the case of single sensor registration similarity measures belonging to the class of 

correlation measures such as normalized cross-correlation with its different variants, 

the sum of squared differences (SSD), and the sum of absolute differences (SAD), 

have been used for a long time. A method belonging to this class, but that was used for 

multimodal imagery, is the Correlation Ratio (CR). Roche et al [Roche98] give a good 

comparison of the CR with other multi-modal similarity measures. Some more 

sophisticated criteria can be built from correlation measures, such as in the work of 

Irani et al [Irani98] on Infra-red and electro-optical image registration, where a global 

criterion was obtained by summing the local cross-correlation measures of small 

patches in extracted energy images. This approach does not require the global 

statistical correlation of the images, which violated in most cases of multimodal 

imagery, but just the local one.   Beside the assumptions of the statistical relations 

between the images correlation techniques may suffer from a flat similarity measure, 

requiring some sharpening through the use of edge of other feature maps.  
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Another important class of similarity measures is based on Fourier analysis and phase 

correlation. It is mostly used when the images are acquired under significantly varying 

conditions, or when they are corrupted with correlated and frequency dependant noise. 

The main issue in this class of methods is the type of transformations used. De Castro 

and Morandi [De Castro87] showed the case of alignment with translations and 

rotations. The use of Fourier-Mellin Transform [Chen94] allowed the recovery of 

scale as well. The third important family of similarity measures is the one based on 

Mutual Information; a widely popular technique in medical imaging. Introduced by 

Viola and Wells [Viola97] where it was applied to the registration of MRI images and 

to the alignment of 3D models with images and employed a gradient descent 

optimization approach. The method was almost simultaneously discovered by Maes et 

al [Maes97].  This similarity measure is derived from information theory and uses the 

concept of entropy to measure the statistical dependence between the images. For a 

comparison of mutual information with other image registration criteria see 

[Roche00][Penny98].  A related information theory method called cross entropy was 

recently used for volumetric image registration by Zhu [Zhu02].  

  

Most of these measures were used for area-based registration. These methods are 

suited for when we don’t have prominent local features, another drawback mentioned 

above is the assumption of global statistical dependence. Area-based similarity 

measures could be also applied to continuous feature maps, computed in a pre-

processing step, in order to reduce the differences between multimodal images or 

images with wide illumination differences. An example is the directional derivative 

images employed by Irani et al [Irani98] for multi-sensor registration, and the local 

frequency maps used by Liu et al [Liu02].  Another approach, relevant to our work 

presented in chapter 6 on multimodal registration, is to use binary images obtained by 

thresholding the feature maps. Huttenlocher employed the Hausdorff measure and 

showed that it performs better than cross correlation for this task [Huttelocher93]. 
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To model the transformations aligning the images several approaches were used. 

Global parametric transformations, such as affine and projective warps, assume that a 

single set of parameters will be valid for the whole image. More accurate local 

parametric mappings were employed for registration and image warping [Zitova03].  

Other methods while global in nature are capable of modeling local deformations, 

these include radial basis functions techniques, chief among which are Thin-plate 

Splines methods [Bookstein89]. While these above methods were mostly used in the 

case feature correspondences are available, other techniques recover both 

correspondences and transformations at the same time. For example another approach 

used in the case of images with complex and/or local deformation is elastic 

registration, introduced by Bajcsy [Bajcsy89].  These techniques modeled the images 

as pieces of an elastic rubber sheet that are subject to external stretching forces and 

internal smoothness and stiffness constraints that bring them into alignment with 

minimal amount of bending and stretching. The external forces are derived by 

optimization of a similarity function defined on the intensity values or on the boundary 

structures.  

 

In the case of very localized deformations registration can be addressed by the so-

called fluid registration, where a viscous fluid model was used to model the flow of 

one image in the process of aligning with the reference image [Woolny02].  In 

addition other non-rigid methods are commonly used including diffusion registration 

[Thirion98][Andersen01], and PDE-driven level sets [Hermosillo02]. For a thorough 

recent survey on image registration techniques we refer to Zitova and Flusser 

[Zitova03].  In this research the application of our new matching criterion to image 

registration was somewhat limited when compared to our work on 3D alignment; 

nonetheless we are convinced that our framework will be very useful for both 

multimodal and single-sensor image alignment under different non-rigid 

transformation models. 
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2.3 Tensor Voting 

 The framework of tensor voting was introduced in [Guy97][Medioni00] as an 

efficient tool for robust feature extraction in noisy datasets. At its core lies the salient 

feature inference engine that encodes both feature information and feature confidence 

in a unified and intuitive representation. Since the usual first-order description (vector 

representation) of features is not able to handle both aspects, in the tensor voting 

approach, a second order representation based on tensors was adopted, offering a 

convenient way to encode the visual importance of features called saliency. We will 

later explain in more details the formalism used for this representation (chapter 3). 

Additionally, tensor representation allows for an easy propagation of feature 

information from one site to neighboring sites through the process of Tensor Voting, a 

process that relies on the collection of votes at a given site using tensor summation. 

The basic features that were considered in 2D and 3D are point (junction and isolated 

point), curve, and surface elements.   

 

Tensor Voting will be used extensively in this work for inferring robust features. Its 

implementation can be thought of as a convolution operation. At the end of the voting 

step, dense saliency maps are created for the different features: junctions, curves, and 

surfaces. Building the saliency maps is achieved by decomposing the collected votes 

at each site into a collection of basic tensors the combination of which can generate 

any general tensor. The next step will be the extraction of features as local extrema in 

the saliency maps. The recovery of continuous curves and surfaces is done through 

marching techniques in the dense domain.In the case of non-oriented point sets, which 

will be our primary data in this research, a preliminary voting step will be performed 

to associate orientation to the points. In this step, the voting will be performed along 

straight lines joining the sites and using the basic so-called stick field (Fig. 2.1).  
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Fig. 2.1. Tensor voting in the case of non-oriented points. The first pass: the votes are 
represented by the sticks directed along the lines joining the sites (and encoding tangents to 
curve elements), and the lengths of the sticks decrease for farther voting sites. The ellipsoid 
reflects the orientation uncertainty of the tangent at the site. It is also the geometric expression 
of the resulting tensor sum.  

 
 

Since we are mainly working with non-oriented points the technique that will be 

described later in this dissertation is based on this first pass algorithm. Tensor voting 

for the extraction of features in noisy datasets was shown to be a robust, fast, and 

intuitive method. It is also one of the few techniques that can handle sparse point-sets 

which contain large gaps of missing data. The method has a remarkable generality that 

initiated applications to many areas of computer vision.  Applications include solving 

for epipolar geometry estimation using 8-Dimensional Tensor Voting [Tang01], the 

recovery of motion layers [Tong04][Nicolescu03], the tracking of segmented objects 

in image sequences [Kornprobst00], image repairing [Jia03], and color and texture 

segmentation [Jia04]. The tensor-voting framework was also extended to handle 

polarity information in addition to direction [Tong01]. 
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2.4 Shape from Motion 

The roots of the Shape from Motion task can be traced back to the early work of 

photogrammetrists at inferring measurements in a scene from photographs [Slama80]. 

With the emergence of the field of computer vision, and increased interest in the three 

dimensional reconstruction of objects from images, a significant research effort was 

devoted to SFM [Jebara99]. The main objective of SFM is to use feature 

correspondences between images, mainly point-features, in order to infer the motion 

of the imaging camera and then to reconstruct the matches through triangulation. 

Shape from Motion algorithms usually lead to sparse structure estimation, but a dense 

stereo matching step is added in many systems [Pollefeys99].  

 

The first step in any automatic motion and shape recovery from image sequences is 

the tracking of features, a delicate task in itself, which is still an open research area 

[Schmid00]. Once the correspondences recovered, several approaches were adopted to 

tackle SFM but we can generally divide the methods into linear and nonlinear classes.  

Although the SFM problem is commonly considered as a non-linear problem, 

projective geometry was used for the modeling of the multiple views formation in the 

framework of linear algebra. In the linear methods the relationship between features 

across images is encoded in algebraic structures such as the Fundamental Matrix 

[Faugeras92], which relates corresponding points in two views, and Trifocal tensor 

encoding correspondence between three views, as well as other higher order tensors 

that relate N views [Hartley00]. Linear methods are elegant mathematically and 

convenient computationally, unfortunately, they are very sensitive to noise and are in 

practice followed by a nonlinear refinement step.  Non-linear methods define and 

minimize a geometric cost function either in the image space in a bundle adjustment 

fashion, or in the 3D Euclidean space [Faugeras93]. To handle image sequences 

effectively these methods were also implemented in the framework of recursive 

estimation [Azarbayejani95][Soatto98]. 
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A recent research trend focused on un-calibrated cameras and several interesting 

results were obtained [Hartley00][Faugeras01]. They show that in several cases and 

given the right set of correspondences the internal parameters of cameras can be 

recovered in an auto-calibration module, the work is based on projective geometry 

stratification and invariants. In our implementation of Shape from Motion we assume 

calibrated cameras in order to have the highest possible accuracy.       

 

Most of the work mentioned previously considered the tasks of motion recovery and 

structure reconstruction separately and sequentially. An important exception is the 

class of algorithms known as the Factorization methods [Kanade97]. In this approach, 

a closed form solution of the SFM problem is sought, where shape and motion are 

obtained simultaneously. It was obtained at the cost of simplified camera models 

(resulting in approximate reconstructions) such as the orthographic [Tomasi92], and 

paraperspective models [Poelman94]. The Factorization algorithm was extended to 

handle features other than points such as lines and planes [Morris98][Quan96], and to 

the case of multiple moving objects [Costeira95]. There is also continuing work on 

adapting it to perspective camera models, although in these cases iterative techniques 

are usually required [Han99].   

 

 

 



Chapter 3: A Feature Saliency Descriptor for Registration and Pose Recovery 
 

23

3 A FEATURE SALIENCY 
DESCRIPTOR FOR REGISTRATION 
AND POSE RECOVERY  

In this chapter we present our derivation of a new and effective local measure of visual 

saliency that we will use as point-feature descriptor for registration. The organization 

of the chapter reflects the gradual way and the thought process through which we 

came to this new measure. Our first goal was the challenging of recovering camera 

motion without search for explicit correspondences. Work on this problem led us to 

the idea of quantifying the visual saliency of a given 3D reconstruction. Using the 

framework of Tensor voting we were able to derive a straightforward local measure of 

point saliency. The next step was to employ this measure for 3D point-sets registration, 

which we approached from the principle structure saliency maximization. This first 

formulation showed several advantages, but also important limitations, which we 

overcame by further simplification in the formalism leading to the Gaussian Fields 

registration technique that will be presented in the next chapter. 

3.1 Tensor Encoding of Features 

The definition of saliency tensors as presented in Medioni et al [Medioni00] follows 

from the common representation of orientation uncertainty by an ellipsoid in 3D and 

an ellipse in 2D (Fig. 3.1). The uncertainty ellipsoid is a geometric description of the 

covariance matrix T associated with vectors such as the tangents to curves and normals 

to surfaces.  
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Fig. 3.1. The ellipsoid describing orientation uncertainty and the associated eigen-
decomposition. 
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So that T , where TTT eeeeee 333222111 λλλ ++= 321 λλλ ≥≥  are the principal axes of 

the orientation ellipsoid. The saliency of a feature is determined by the size and shape 

of the uncertainty ellipsoid and depends directly on these eigenvalues. As expressed in 

(3.1) T has the characteristic representation of a tensor. 

 

Point features are encoded using the so-called ball tensor, geometrically described by 

a circle in 2D and a sphere in 3D. Curve elements (Curvels) in 2D, consisting of the 

pair point + tangent vector, are encoded using the covariance matrix of the tangent 
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vector in a tensor known as the stick tensor. In 3D a curve element is represented by a 

plate tensor encoding the uncertainty of normal orientation. Surface elements (Surfels) 

are represented by the covariance of the normals to the surface. Table 3.2 summarizes 

the encoding of the different features which will be employed later.  The voting 

process will usually introduce tensors that are not as singular as the ones shown in 

Table 3.2.  

 

In general any saliency tensor can be decomposed as combination of these basic 

saliency tensors as follows:  

S

 

)())(()( 33221132211321121
TTTTTT eeeeeeeeeeeeS ++++−+−= λλλλλ        (3.2) 

 

where represents a stick, e a plate, and e a ball. It 

follows from this decomposition that at each point

Tee 11
TT eee 2211 + TTT eeeee 332211 ++

21 λλ −  is the component measure 

of surface-ness, 32 λλ − a measure of curve-ness and 3λ a measure of point-ness 

[Medioni00]. 

 

The input for the feature inference algorithms described in [Medioni00] consists of 

sparse tokens, usually points with or without associated orientation. These tokens are 

encoded in terms of tensors as shown above. Tensor voting is conducted by 

propagating the saliency information using voting fields. Each site in the data will cast 

a vote at the other sites using an associated voting function. Different voting fields 

correspond to the ball, plate and stick components of the saliency tensor. The design 

of the fields was done by taking in consideration perceptual organization principles 

and using analogies to physical models of potential fields. The votes will decay 

exponentially with distance to account for higher influence of neighboring sites.  A 

detailed description of the derivation of the voting functions is presented in 

[Guy97][Medioni00].  



Chapter 3: A Feature Saliency Descriptor for Registration and Pose Recovery 
 

26

 
Table. 3.2. Encoding of basic features in 2D and 3D in the tensor framework [Medioni00]. 
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3.2 Camera Motion Estimation by Search of the Most 
Salient Structure  

3.2.1 Recovering motion parameters from point matches 

The basis of most perspective camera motion recovery algorithms is the coplanarity 

constraint (Fig. 3.3), relating a 3D world point M to its projections in two images. 

Because the second camera’s reference frame is related to the first one by the rigid 

transformations : the 3D rotation and translation, the coplanarity constraint 

imposes that the rays m and , pointing from the cameras optical centers to the 

world point, be located in the same plane. Algebraically this can is expressed as 

follows: 

),( tR

1 2m

 

           0).( 21 =× Rmtm                                                    (3.3) 

 

 
 

 
 
 
Fig. 3.3. The co-planarity constraint implies that the two rays and pointing from two 
cameras optical centers toward the world point 

1m 2m
M lie on the same plane with the baseline 

vector . T
zyx tttt ),,(=

 
 

2m

t

M

1m  
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The common approach to computing the motion parameters (  uses a two-stage 

technique: starting with a linear method, followed by a non-linear refinement step 

[Faugeras93][Higgins81]. In the linear method the coplanarity constraint (3.3) is 

rewritten as: 

), tR

  

                                                                   (3.4) 021 =Emm T

 

where E  is a 3x3 matrix, known as the Essential Matrix, that embeds the motion 

parameters: , with [ the anti-symmetric matrix 

representing the cross product in a linear fashion. A system of homogeneous equations 

in the entries of 

RtE ×= ][
















−
−

−
=×

0
0

0
]

xy

xz

yz

tt
tt

tt
t

E  is then set from the point matches. Commonly more than 8 matches 

are used resulting in an over-constrained system, which is solved using singular value 

decomposition (SVD). The actual motion parameters are easily computed from the 

essential matrix. The scale of the translation, and hence of the reconstruction, is 

inherently ambiguous in the SFM problem, therefore we have only five independent 

parameters to recover: ),, zyz tt,, yx( ϕϕϕ , the three rotation angles and two translations. 

Unless some knowledge about the actual dimensions of the scene is available 

[Morris01], the scale will be arbitrary.  

 

For the non-linear refinement step several formulations were proposed, where the 

rotation matrix was parametrized as an orthonormal matrix or using unit quaternions 

[Horn90].  A classic nonlinear method is based on the least squares minimization of 

the Longuet-Higgins cost function [Faugeras93]:   

 

           
2

...1
21,

).(min ∑
=

×
matchesNi

ii

tR
Rmtm                                           (3.5) 
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After the recovery of the motion parameters, 3D points are reconstructed through 

robust triangulation from matches in two or more images. In addition to the two views 

case, extensive work was done recently on computing the relationship between 

multiple views within the framework of projective geometry [Hartley00][Faugeras01]. 

In these cases relations between the views are described by multi-linear algebraic 

structures such as the 4trilinear tensor used for three images.  

3.2.2 SFM without Correspondences  

We outlined earlier (literature review section) Dellaert’s approach to the recovery of 

camera motion without prior knowledge of point correspondences [Deallert00].  We 

will describe here a different approach that we developed to address this problem 

[Boughorbel03]. The idea behind our method is based on the following facts:  (1) If 

the 3D pose parameters, relating two perspective views of a scene are at hand, it is 

known that we can use the epipolar geometry (Fig. 3.3) to constrain the search for 

correspondences to a line search. At the correct camera pose the structure 

reconstructed from these matches (using for example window based matching) will be 

close to the actual scene geometry, although it can be noisy. (2) If we are far from the 

correct pose parameters, relying on the epipolar geometry will lead to false matches 

since the search for correspondences will be done in the wrong area (Fig. 3.4). In this 

case, the reconstruction will be close to a random cloud of points.  

 

Fig. 3.5 shows the reconstructed structure, resulting from edge-based matching, as the 

relative rotation parameter xϕ  is moved away from its correct value. The set of 

triangulated 3D points is exhibiting the expected increasing disorder.  The key to 

exploiting this fact for pose estimation is to quantify how structured the set of points is. 

Or to use another term how salient a set of points is.  
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(a)                                               (b) 

Fig. 3.4. The search for a match for the point in the left (a) image is limited by the epipolar 
constraints to a line search. For the correct pose parameters we are more likely to find the 
correct match (lower point in (b)). But in the case of wrong pose parameters the matching 
process leads to wrong correspondences (upper point in (b)). (Images from CVPR01 calibrated 
test dataset, http://vision.cse.psu.edu/cvpr2001/main1.html).  

 
 

 

 
                (a)                                (b)                              (c)                                 (d) 

 
Fig. 3.5. The degradation of the structure reconstructed from the images of Fig. 3.4 (from. (a) 
to (d)) as we move away from the correct pose parameters.    
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Compared to the work done in [Dellaert00], this approach reduces the size of the 

parameter space to be searched. In fact, in our case the focus is mostly on recovering 

the pose parameters rather than on estimating accurately the structure, which can be 

done later in a refinement step. So, in our method instead of searching for the structure 

and pose at the same time we only try to find the pose parameters, greatly reducing the 

complexity of the algorithm. Furthermore, once we devise a simple structure-saliency 

metric we can avoid the complex probability distributions arising in [Dellaert00].  

3.2.3   Tensor Voting for Structure Saliency Estimation 

The voting process that we presented earlier (sections 2.3 and 3.1) can be thought of as 

a convolution operation ( ) with a digital mask T . If  ∗ v Σ  is a set of 3D points, in our 

case reconstructed from two images at a given relative pose of the cameras, and vΣ  is 

defined by:   

 

                  Σ∗=Σ∈=Σ vv TPPSP }:))(,{(                                          (3.6) 

 

representing the points with their associated saliency S after the voting. Then the 

number of points in the reconstruction which belong to a surface, and are not isolated 

points, can be computed as follows: 

 

                            ∑
Σ∈

=
vP

SurfSurf PSPN ))(,(δ                                                 (3.7) 

where ))(,( PSPSurfδ  is defined by:  

 

                                 1)( =PSurfδ  if P is voted as a surface point, 

0)( =PSurfδ  otherwise. 
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The function )(PSurfδ  depends on the eigenvalues of S  and employs the 

appropriate thresholds to determine points that belong to two types of salient 

structures: surfaces and curves as explained in [Medioni00].  Fig. 3.6 shows the 3D 

reconstruction for different pose parameters, starting at the correct parameters at the 

left and gradually changing one of the rotation parameters. In the lower sequence are 

shown the resulting salient points after the tensor voting and feature inference process. 

Isolated points were removed. The actual variation of N  for this sequence is shown 

in Table 3.7. We see that N  can be used as a point-set saliency measure and 

employed in a pose recovery framework.  

)(P

S

S

 

This criterion is not expressed analytically in terms of the datasets and the 

transformation parameters and optimization will have to be heuristic. But the notion of 

evaluating the saliency of a set of points was the important idea that will be exploited 

for our core problem of general point-sets registration. In the next section we will shift 

our focus and present our derivation of an analytically expressed saliency criterion for 

the purpose of point-sets and free-form shape registration. While the main emphasis 

was first on the global saliency measure of a set of points, the local descriptor turned 

out to be more useful in and of its self. 

3.3 The Local Saliency Descriptor 

Our purpose at this point is to design a simple local feature descriptor which will be 

based on the principles of tensor voting. Being based on a robust feature inference 

framework the new descriptor is expected to have a good performance in the presence 

of noise and in the case of sparse and non-uniformly sampled datasets. This 

performance will be confirmed later in through experimental analysis. In this work we 

are mainly interested in the basic case of non-oriented clouds of points. To derive the 

expression of our descriptor we employ the first pass of Tensor Voting. 
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                              (a)                                  (b)                                 (c) 

 
(d) 

↓ Tensor Voting ↓ 

 
                              (v-a)                          (v-b)                           (v-c) 

 
(v-d) 

Fig. 3.6. Applying tensor voting and removing non-salient feature-points (v-a to v-d) from the 
reconstructed point-sets (a to b) for different pose parameters. Results for the correct pose are 
shown in (a) and (v-a).    
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Table. 3.7. Variation of  with SN xϕ : the number of salient points will decrease significantly 

as the quality of the reconstruction degrades ( : correct rotation). 0
xϕ

 

xϕ  0
xϕ  00 2+xϕ  00 4+xϕ  00 6+xϕ  

SN  1930 858 425 224 

 

 
 

 

We recall that in the 2D case the voting process for a point-set P is performed using a 

stick field, which encodes unit vectors pointing from one site X to 

another site X  where the vote is being cast.  Following the 

formalism described in [Medioni00] the unit vector pointing from the first site to the 

second (indexed i and j) 

Pyx T
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=  is encoded in tensor 

representation using the covariance matrix of equation (3.8). 
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As we mentioned above the strength of the votes is made to decay exponentially with 

distance. This decay is controlled by a parameterσ , which is related to the scale of the 
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dataset and to the desired smoothness in the variation of the descriptor from one site to 

neighboring ones. At one site i where local votes are collected the resulting tensor sum 

is: 

∑
∈

−
−=

PX
ij

ji
i

j

T
XX

T )exp( 2

2

σ
                                         (3.9) 
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Geometrically the accumulated votes will be represented by an eigen-system ellipsoid 

with principle axes 1λ and 2λ  (in 2D).  Our idea for quantifying the local saliency is to 

use a measure corresponding to the area of the bounding box A  of the eigen-system 

ellipse. In 2D it will be sufficient to compute the determinant of the tensor sum at site 

i: 

i

22
21 )(det iii ATD === λλ                                           (3.10) 

 

Using  as a local saliency measure offers many advantages. First, we obtain a 

straightforward analytic expression in terms of the point coordinates. This expression 

can be computed quickly for every point in the dataset, with linear computational 

complexity on a grid: , and in O  for the case of general point-sets. 

Furthermore, for feature-points with degenerate stick tensors the measure is zero. 

Given that using our one pass voting scheme this latter case will occur only in flat 

areas (zero curvature), such as lines in 2D and planar areas in 3D, the local saliency 

descriptor can thus be related to the basic differential feature which is curvature. It will 

have the added advantage of being robustly computed from noisy and sparse datasets. 

The expression of the descriptor in 2D is then given by:  

iD

)(NO )log( NN
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For the 3D case, we derive the expression of the descriptor using a similar reasoning. 

Voting will be done using plate tensors encoding the uncertainty of normals (Fig. 3.8).  

Site  will vote at neighboring site  in the 
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Fig. 3.8. Voting for feature saliency in 3D using plate tensors, the accumulated votes are 
described by the ellipsoid bounding the two plates. 
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The expression of the accumulated votes at a given site is similar to (3.9), while the 

local saliency measure is given by the determinant of the tensor T  (square of the 

volume V of the bounding box of the uncertainty ellipsoid):  

i

i

 
22

321 )(det iii VTD === λλλ                                      (3.13) 

 

3.4 A 3D Registration Criterion Derived from Joint Voting  

The development of the feature saliency descriptor presented in the previous section 

was primarily geared toward the task of 3D point-sets registration. The emphasis on 

the analytic expression of the local saliency descriptor was motivated by our goal to 

address the registration task in the framework of standard gradient-based optimization 

techniques.  Our first alignment criterion is based on the computation of global 

saliency for the joint datasets to be registered. The method relies on the fact that at the 

unregistered position the point-sets will normally have little interaction, due to the 

local nature of saliency inference. On the other hand, at the aligned position structures 

common to the registered point-sets will overlap resulting in a local increase in the 

number of votes, and hence of the measure of feature saliency as defined above. This 

is illustrated in Fig. 3.9. If we are to register the datasets , and if 

, with 

NPPP ,...,, 21

NPPPP ∪∪=Θ ...)( 21 Θ  being the transformation parameter vector, we can 

define, for a given  pose Θ , the criterion that measures the total saliency of the 

resulting structure as: 

 

∑
Θ∈

=Θ
)(

)()(
PX

XSC                                                   (3.14) 
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Fig. 3.9. Given the local nature of Tensor Voting the two datasets will have little interaction at 
the unregistered position (a). When the two patterns overlap (b) local saliency (proportional to 
uncertainty ellipse size) in the intersection will increase while remaining the same in the other 
areas. 
 

 

(b) 

(a) 

Eigen-system ellipses 
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the summation of all local descriptors. This criterion derives from the same ideas that 

we employed for camera motion recovery. Its analytic expression is straightforward to 

compute, allowing for the use of a range of well known optimization techniques 

[Teukolsky92].    

 

The method was tested on real datasets and was able to register several free-form 

shapes reconstructed from real-world data. Nonetheless, some fundamental limitations 

led as to the simplification of the expression (3.14) resulting in a different paradigm 

altogether. The first problem with the above criterion is presence of poles in the 

expression of the saliency descriptor (3.11), due to the use of unit vectors in the voting. 

This means that when points become too close the criterion and in particular its 

derivatives become instable. The other, more serious, problem is due to the nature of 

the voting process itself. We noticed that in the case of datasets containing a 

significant amount of smooth surfaces (and curves) the criterion will tend to have 

multiple modes none of which will be at exactly the registered position. This is 

illustrated in Fig. 3.10. The reason for this behavior is due to the fact that for smooth 

surfaces the saliency tensors are nearly degenerate and the local descriptor’s value is 

small. Therefore, in the case where these surfaces are registered the overall saliency 

will be small. It will be also small in the case where the two smooth surfaces are far 

apart, beyond voting range. It is in the intermediate case of displacements by about 

oneσ in the direction normal to the surfaces that we have an increase in the saliency. 

The increase is due to the effects of one surface on the other in the form of vertical 

tensor components. Therefore if we employ our method we risk obtaining datasets 

mis-registered by up to oneσ . These drawbacks are due to the idea performing both 

voting and registration at the same time. We found that we can overcome these 

problems by decoupling the two tasks.  
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(a) 
 
 

 
 

(b) 
 
 

 
(c) 

 
Fig. 3.10. Tensor voting in the case of smooth curves. In the case of nearly registered curves 
we will have almost degenerate tensors with the eigen-system ellipses having a small area (a). 
The ellipse will be also small for curves that are separated vertically by a distance larger than 
σ  due to the rapid decay of the votes (c). But in the intermediate case of a vertical 
displacement around one σ , we can have a larger saliency due to the vertical tensor 
components (b). Hence we have a maximum saliency at the wrong position. 

 
 

σ 

σ 

σ 
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The local saliency features, will be computed for each dataset as descriptors invariant 

to rigid transformations, proving to be very robust to noise. A new criterion, which can 

be seen as a simplification of the previous one will retain the ideas of exponentially 

decaying vote from one dataset on the other, although in this case we will have a 

scalar field instead of a tensor one. This will represent the seminal contribution of our 

work and will be introduced in the next chapter.   
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4 GAUSSIAN FIELDS FOR FREE-
FORM SHAPE REGISTRATION 

In this core theory chapter we focus on designing a new energy maximization 

algorithm for registering free-from shapes represented as point-sets. To overcome 

several of the shortcomings of standard registration techniques, in particular the ICP 

algorithm, we aim at accomplishing the following objectives: 

 

 

1. The criterion to be maximized should be differentiable and preferably convex 

in the neighborhood of the registered position, allowing for the use of standard 

optimization techniques. 

2. The method should not need any explicit set of point correspondences. 

3. The method will incorporate as much available information as possible, in 

addition to point coordinates, including local shape descriptors or associated 

intensity values. 

4. The method will allow for as large of a region of convergence as possible and 

reduce dependence on close initialization. 

5. The resulting algorithm must be computationally efficient.  

 

 

We will also show that the formulation of our new criterion addresses the important 

issues of information content and shape complexity, and discuss the applicability of 

the method to various real-world tasks. 
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4.1 A Discrete Combinatorial Criterion 

In developing our algorithm we start with a rigorous and consistent definition of the 

registration task. Registration is in fact a special sub-problem of pattern matching, 

where the purpose is to locate a ‘model’ in the ‘data’. In the registration task the goal 

is the recovery of both the correspondence and spatial transformations that ensure the 

best match. For most applications where registration is employed the assumption is 

that a significant overlap between the model and the data exists. While it is difficult to 

have a general definition that will encompass all special cases of this typical ill-posed 

problem, a good intuitive definition can consist of stating that the registered position is 

the one resulting in the maximum point-to-point overlap of model and data 

(considering the noiseless case). Such definition uses a minimum amount of 

information about the datasets, just the position of points, and could be augmented by 

requiring local shape similarity between the points. We will show the enhancing effect 

of using this local information on the quality of the registration.       

 

We start by introducing a very simple combinatorial criterion satisfying the maximum 

(point-to-point) overlap of two point-sets { }
MNiiPM ...1== and { }

DNjjQD
...1=

= , that are 

registered by a transformationT *r . We assume at this point the noiseless case. For the 

problem to be well–posed we need also to assume that M  and  have a maximum 

point-to-point overlap at the aligned position.  Then the following measure (4.1) will 

have a global maximum atT

D

*r : 
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Where d  is the distance (in our case Euclidean) between points. Incorporating 

local shape similarity in this criterion is straightforward and requires just using a 

higher dimensional representation of the datasets where points are defined by both 

position and a vector of shape attributes: 

),( QP
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MNiii PSP ...1))(,( =M = and 

{ }
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D
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))(
=

= jj QSQ (, . 

4.2 Mollification and the Gaussian Criterion  

Obviously the resulting discrete criterion is not continuous with respect to the 

alignment transformations and can be visualized by a collection of “spikes” in 

parameter space. The resulting optimization problem will not be practical since it is 

difficult to find the global maximum of discrete combinatorial functions. One of the 

core ideas of upon which our approach is built is to find a smooth approximation of 

the combinatorial criterion using an analytical method known as Mollification. This 

approach was used as a tool to regularize ill-posed problem with respect to 

differentiability [Murio93].      
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, and an arbitrary non-differentiable 

function  defined on  , a ‘mollified’ function can be obtained by 

convolution: 
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The resulting function will be an approximation of the original one such that: 

. Furthermore we will have . This operation is also 

known as the Gauss Transform and is encountered in many applications.  Now if we 

apply discrete mollification to our combinatorial registration criterion (4.1) we have: 
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The mollified criterion is a straightforward sum of Gaussians of distances between all 

pairs of model and data points. Expression (4.3) can be re-interpreted physically as the 

integration of a potential field whose sources are located at points in one of the 

datasets dataset and targets in the other one. In the noisy case the Gaussian criterion 

can account for the noise affecting the position of points by relaxing the parameterσ  

to values near that of noise variance. Fig 4.1 and Fig. 4.2 illustrate the working of the 

discrete combinatorial criterion and the mollified version.  

 

Having met the first of our objectives, which is differentiability, we now examine the 

possibility of extending the basin of convergence of our criterion. (We are focusing 

here on the case of rigid registration where tRQQTr jj +=)( ). Being the sum of 

closely packed Gaussian functions, the profile of the criterion with respect to the 

transformation parameters will generally have the appearance of a Gaussian, with 

local convexity in the neighborhood of the registered position. 
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(a) 
 

 
 

(b) 
 

 
 
 

(c) 

 
 

(d) 
Fig. 4.1. Illustration of the discrete combinatorial criterion. Two point-sets are shown in their 
registered position (a), and for two relative displacements in the horizontal direction. The 
criterion (d) will count the number of points that overlap at each position.  
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(a) 

 
 

 
 

(b) 
 
Fig. 4.2. Mollification converts the discrete combinatorial criterion into a smooth sum of 
Gaussians (a). For σ relaxed we will have an overlap between the different Gaussians. The 
mixture of these will be our registration criterion, having a dominant peak around the 
registered position (b).  
 

 
 

ntDisplaceme

ntDisplaceme



Chapter 4: Gaussian Fields for Free-Form Shape Registration 
 

48

These are important properties that allow for the use of standard and well-proven 

gradient-based optimization techniques. Extending the width of the basin of 

convergence is easily done by increasing the parameterσ . However this relaxation 

will come at the price of decreasing the localization accuracy of the criterion. The 

tradeoff between registration accuracy and size of the region of convergence (ROC) is 

mainly due to the effect of outliers (i.e. the areas that are outside the intersection of 

model and data).   This tradeoff can be illustrated with the behavior of the matching 

criteria with and without attributes as shown in Fig. 4.3. The profile of the criterion 

was plotted for a relative displacement of the two point sets of Fig. 4.3(a). 

 

Several plots are shown with increasing σ . For the non-attributed case, where 

Euclidean distance between point locations is employed, (Fig. 4.3(b)) we notice that 

asσ increases the width of the Gaussian bell increases too. However the maximum 

will also drift away from the correct location. When we use the Gaussian criterion 

augmented with moment invariants, as attributes associated with the points, the 

maximum is more stable (Fig. 4.3(c)), with nearly no drift for the range of values of σ  

shown. In the analysis section we will use real datasets to study the localization error 

as a function of the force range parameterσ . Assuming that at the registered position 

the model point-set { }
MNiiP ...1==M is completely included in the data point-set 

{ }
DNjjQD

...1=
= , and that the points of D  with corresponding matches in M  are 

labeled from 1 to , the criterion can be broken into two components representing 

both inliers-inliers and outliers-inliers interaction: 
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(a) 

 
        (b)                                                            (c) 

 
Fig. 4.3. Profiles of the Gaussian energy function for a displacement around the registered 
position of the datasets shown in (a). In (b) the profiles are plotted in the case without 
attributes for σ = 30,50,70,90,150 (from narrowest to widest). Plots with moment invariants as 
attributes for the same values of σ are shown in (c). The scale of the datasets is 
about pixels. (For (b) magnitudes were rescaled for comparison).   200200×
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It can be shown that for rigid transformations E  will have the same 

maximum for any

),( tRinin−
σ

σ . For small values of the decay parameter the second term will 

have no effect on the global maximum of the function at the registered position since 

 (again assuming the uniqueness of the aligned position). To 

reduce the effect of the outliers and ensure good localization error for the Gaussian 

registration criterion, while at the same time increasing the area of convergence, it is 

suitable to associate as much information as possible to the points. For example in the 

case of range data registration 3D scanners can provide additional intensity or color 

information for each sample acquired. Even in the case where only geometry is 

available we can compute for each point a vector of local shape descriptors. The 

inclusion of this additional information is achieved by extending the distance measure 

between points in the criterion as follows: 
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Where the ...  is the Euclidean distance in 3D and theΣ  associated with the attribute 

vector is just a diagonal matrix with positive components generalizing the 

mollification to higher dimensions, this matrix will also allow for the proper scaling of 

the different attributes before combination.   If we let:   
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)()( ,, TrETrE inoutinin −
Σ
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Σ += σσ                                             (4.6) 

 

In the case where the attributes are invariant to the aligning transformations  will 

not depend on T

ij
Σω

r . If Σ  is chosen with as small components as possible (just the noise 

level), the term  can be expected to reduce the value of  more than that 

of . This will be helpful when the spatial decay parameter 

ij
Σω )(, TrE inout−

Σσ

)(, TrE inin−
Σσ σ  is relaxed to 

extend the region of convergence by allowing good localization of the registered 

position and reducing the need for close initialization. 

 

Our framework accounts also for two important aspect in free-form registration, 

namely the quantity and quality of information available in the datasets, and the 

amount of overlap between the two datasets. Both factors strongly influence the 

accuracy of the alignment. In the context of Gaussian Fields the effect of the outliers 

will be generally important if the overlap region is small relative to the size of the two 

datasets. The information contained in the datasets, such as the complexity of the 

shapes to be registered, is directly encoded in the point attributes. The increase in 

information content results in the decrease of the weights  and reduces  

further than E , since the latter term accounts for the corresponding sets. In 

fact the quantity ∑  can be a good measure for shape complexity, having a high 

value for simple shapes and a low value for complex ones. 
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To optimize the resulting continuously differentiable registration criterion we can use 

a large variety of gradient-based strategies such as conjugate gradient and quasi-

Newton methods. In addition we also need to devise an efficient scheme for increasing 

the region of convergence.    From our earlier observations about the Gaussian Fields 

approach two main approaches can be adopted either separately or together. The first 

will rely on computing a large number of local descriptors from the point-sets and 
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include any additional independent information (such as associated color or intensity) 

to increase the ROC without increasing localization error too much. This approach can 

lead to a higher accuracy at the cost of additional computations. A second method 

based on tuning the parameter σ  can be devised. In such strategy we start initially 

with a large sigma and proceed to find the transformation parameters maximizing the 

Gaussian criterion then we will decrease the value of the decay parameter and 

maximize again starting from the previous parameters.   This last scheme will be 

chosen because of its computational efficiency and is described in more details in 

section 4.6. 

4.3 Attributes in the Case of 3D Rigid Registration 

In the case of 3D free-from registration, which is our main application of the Gaussian 

Fields method, we have the choice of several local feature descriptors as point 

attributes. When surfaces are extracted from the point-sets several descriptors based 

on differential properties can be employed, starting with curvature. Given that we 

represent our shapes as point-sets, a natural idea is to use 3D moment invariants. 

Additionally, we employ the local descriptor presented in Chapter 3 that we called 

point saliency. The three moment invariants [Sedjadi87] are commonly used for object 

recognition tasks and were also employed in registration algorithms such as in the 

extension of ICP by Sharp et al [Sharp02]. The moments , , and  are defined for 

a local neighborhood around a point  by:      
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For computational efficiency and for robustness to noise we will employ in our later 

experimental analysis only two descriptors  and the point saliency measure . 1J S

4.4 Application to Multimodal Image Registration and 
Tracking 

The Gaussian Fields approach can be readily employed for image and other 2D 

registration tasks. The method can be applied to discrete feature maps, obtained from 

gradient or frequency maps for example. This method allows for the registration of 

multimodal as well as single modality images and provides a potentially good 

approach to the task of edge-based registration and fusion. In this case we have a 2D 

point-sets registration task under appropriately chosen motion models such as the 

affine or the more common projective 8-paramters model. Radial-basis functions and 

other non-rigid warps can also be employed for the alignment when necessary. The 

main issues will be (1) the choice of shape attributes preserving the differentiability of 

the criterion, and (2) imposing regularizing constraints on the transformations so that 

spurious solutions are avoided. Although affine attributes exist, invariance in the case 

of other warps is not guaranteed. But given that invariance is not necessary and is just 

sought for simplifying gradient computation, it is sufficient for our optimization 

framework to use descriptors that are differentiable with respect to the transformation 

parameters.  

 

For single modality registration and for tracking applications it is also highly desirable 

to use color or intensity attributes in addition to local shape descriptors. In addition to 

parametric warps the Gaussian Fields criterion can be also employed to recover a 

dense point-flow that registers images and shapes, for this purpose regularized 

variational and Partial Differential Equations (PDE) methods can be readily applied. 
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While we emphasized here a general point-sets representation that is suitable for 

integrating edge maps by efficiently using shape information, the method can be 

directly applied to the original ‘continuous’ grid representation, with the pixels (and 

voxels in 3D) considered as points having associated color and intensity attributes.  

4.5 Relaxing Absolute Orientation, Closed-Form 
Approximations 

If the point-sets have sufficient complexity σ  can be chosen large (compared to the 

size of the datasets) for a bounded localization error (a fact that will be verified 

experimentally). Therefore we can attempt the approximation of the criterion (4.5) 

using a first order development of the exponential: 
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Maximizing (4.10) is equivalent to minimizing:  
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The resulting problem can be seen as a relaxation of the well known absolute 

orientation task where a list of point correspondences between the datasets is given 

[Horn87]. Proceeding in a similar way as for absolute orientation we need to add the 

orthonormality constraints on the rotation matrix R  using Lagrange 

multipliers. We obtain the modified criterion:  
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We first express the translation as a function of the rotation by computing the partial 

derivative with respect to the rotation and setting it to zero which gives: 
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Computing the partials with respect to the rotation parameters will result in the 

following system of equations:   
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We define the matrices   
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Then our system of equations (4.10) can be rewritten as: 

 

BRAR TT =Λ+                                                  (4.15) 

 

Observing that A  and Λ  are symmetric and using the SVD decomposition B UDV=  

the rotation matrix is recovered:  

 
TTUVR =                                                      (4.16) 

 

Hence, the rigid registration parameters are computed in closed form. This approach 

will not lead to accurate registration by itself; however it is very useful for finding a 

reasonable initialization to the more accurate iterative alignment step. 

4.6 Optimization Strategy 

For rigid transformation our criterion is always continuously differentiable. Also we 

notice a very dominant mode around the registered position. For sufficiently dense 

point-sets this mode will itself have a shape close to a Gaussian given that it is a 

mixture of Gaussians closely located in parameter space. We can safely assume a 

smooth convex behavior around the registered position. This can be demonstrated in 

the limit by considering, for the sake of simplicity, the two dimensional case. For a 

small value of σ  and small rigid displacements near the registered position (i.e. a ball 
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of radius ε  around the rotation angle and translation vector ),( tϕ ) the Gaussian 

criterion (4.3) can be approximated as follows  
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Using the two approximations for a small rotation cos 1≈ϕ  and ϕ≈sin , in addition 

to the first order approximation resulting from the small displacement compared with 

σ :  
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Clearly in this limit case we obtain an expression (4.17) which is quadratic in the rigid 

parameters demonstrating the convexity of the criterion. In practice even in the relaxed 

case we can assume safely convexity in the neighborhood of the registered position.  

 

To optimize the Gaussian Fields criterion we employed one of the most standard 

gradient-based schemes, namely the quasi-Newton algorithm [Teukolsky92]. The 

gradient of the criterion (4.5) with respect to a transformation parameter α  is given 

by: 
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The quasi-Newton scheme uses the analytic expression for the gradient along with an 

approximation of the Hessian to update descent directions which are extensions of the 
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basic Newton step. In each descent direction a line search routine is used to find the 

optimum. Also objective constraints are imposed to avoid excessively small and large 

steps. As a stopping criterion the relative change in the variables between successive 

steps, as well as a check of the magnitude of the gradient, are used. 

 

One of the most important questions that emerged in our earlier discussion of the 

Gaussian criterion is the issue of the drift associated with the relaxation of the force 

range parameterσ . The compromise was between an accurate localization with a 

small value of σ  and larger region of convergence for a largerσ  at the expense of 

registration accuracy. To strike a balance between these two constraints we devised a 

simple scheme based on adapting the values of σ during the optimization process. The 

scheme consists of two or more runs of the quasi-Newton routine with values of sigma 

decreasing according to suitable schedule (Fig. 4.4). Using such approach which 

recalls annealing algorithms [Kirkpatrick83][Teukolsky92] we can start far from the 

registration parameter while having a good chance of ending with an accurate 

registration. The main issue here will be a choice of a good reduction schedule forσ . 

The constraints to be considered are: (1) the lower bound onσ  is the noise level, and 

(2) avoiding being trapped at local minima. We can try to avoid a local maximum by 

studying the rate at which the global maximum is drifting with change of the force 

range parameter. We need to ensure that this drift is not resulting in the next run 

starting from outside the dominant (usually convex) mode (Fig. 4.5). By studying for 

several datasets the rate at which the maximum of the criterion drifts with respect to 

σ  and the width of the dominant mode at half the maximum for different values of the 

force range parameter we can determine the value )1,0(∈η  which multiplies σ  at 

each run of the global scheme such that we avoid the local maxima.  Experimental 

results show that in practice and with no prior knowledge about initialization we will 

only need two steps. The first of which can exploit the closed form approximation 

shown previously. 
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Fig. 4.4. The global optimization strategy that strikes a balance between the width of the 
region of convergence and the accuracy of registration is based on adapting the parameterσ , 
starting form a large value and reducing σ  until convergence. We will show experimentally 
that we just need two steps. 
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(a) 
 

 
 

(b) 
 
 
Fig. 4.5. In the global strategy we should be careful to avoid being trapped in a local 
maximum as seen in (a). This can happen if we decrease the valueσ  too much. We must 
guarantee that we start the next iteration of the optimization routine within the dominant mode 
(b). Experimental analysis will study the best schedule.  
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4.7 Bias and Variance Dilemma and Evaluation of the 
Algorithm 

So far we stressed that one of the main advantages of the Gaussian Fields framework 

is the possibility of controlling the region of convergence using one single parameter: 

σ. In addition to allowing for adaptive optimization schemes this parameter offers the 

possibility of physical understanding of the uncertainty associated with the registration 

algorithm.  An important topic in many fields of science is the quantitative evaluation 

of uncertainty. Some of the most striking examples are found in quantum physics 

where the complimentarity principle of Niels Bohr showed that particles can have 

different natures according to the type of experiments used to observe them. From this 

principle Heisenberg derived his well known uncertainty inequalities stating that the 

precise measurement of a particle’s velocity will result in the imprecise measurement 

of its position. In the same vein, but more relevant to our work, is the so-called Bias 

and Variance dilemma, which states that for many systems there is a tradeoff between 

the precision and variance of the state variables characterizing the system. Usually 

high precision is compounded by a large variance of the variables, and stable systems 

showing a low variance in the variables will be mostly biased (i.e. less precise). In 

learning theory, in particular, it was found that most estimators will be subject to the 

Bias-Variance dilemma [Hastie01][Geman92]. In section 6.3.4 we will use an 

objective measurement of uncertainty based on the Mean Squared Error (MSE), 

computed with respect to a distribution of initial transformations, to compare the 

performance of the Gaussian Fields algorithm with that of ICP. This criterion 

conveniently combines both Bias and Variance and represents a natural way of 

evaluating our method. 
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5 FAST GAUSS TRANSFORM 
METHODS 

The Gaussian Fields registration algorithm, applied to the alignment of two point-sets 

M  and D  containing respectively and  points, requires several evaluations of 

the criterion within the optimization scheme. The computational cost of direct 

evaluation of the mixture of Gaussians is O , growing quickly with the size of 

the datasets processed. The same limitation is encountered in other computer vision 

applications where similar Gaussian mixtures need to be computed, especially for the 

task of Gaussian kernel density estimation. A solution to this problem was first 

proposed in the context of potential Fields estimation for particle physics, where an 

algorithm with asymptotic linear complexity known as the Fast Gauss Transform 

(FGT) was devised by Greengard and Strain [Greengard91] for computing Gaussian 

potentials. More recently FGT was applied to the task of kernel density estimation for 

color modeling and tracking by Elgammal et al [Elgammal03].  

MN DN

(N )DM N

5.1 Fast Multipole Methods 

Several methods were employed to reduce the computational cost of kernel density 

estimation including the use of k-nearest neighbor search with special data structures 

and branch and bound methods [Postaire82][Devroye85][Fukunaga89][Jeon94]. For 

data with grid structure the Fast Fourier Transform was also employed for evaluating 

density estimates [Silverman82]. The FGT algorithm is derived from a more general 

and very efficient class of numerical techniques known as the Fast Multi-pole 

Methods (FMM) [Greengard87] which was primarily employed for the fast 



Chapter 5: Fast Gauss Transform Methods 
 

63

summation of potential fields generated by a large number of sources such as those 

encountered in electrostatic and gravitational potential problems. The FMM method 

was also extended to other applications including the solving the Helmholtz and 

Maxwell equations and the interpolation scattered data [Gimerov03]. The task of 

FMM methods is stated as the evaluation of sums of the form: 
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For which using direct evaluation will cost . In the FMM approach the 

functions 
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where  and  are respectively the multi-pole (singular) and local (regular) basis 

functions,  and  the expansion coefficients and 

nS nR

na nb ε  the error introduced by 

truncating the series after p  terms. The key to reducing the number of operations 

involved in estimating the sum (5.1) is to express it using the series (5.2) and (5.3). 

For instance substituting (5.3) in (5.1) we obtain: 
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By rearranging the order of the summations we get:  
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The resulting p-term series (5.5) can be evaluated at the M  evaluation points with a 

cost of O  operations. Constructing the coefficients C  requires O  operations, 

hence the total computational expense is

)(Mp n

)p

)(Np

)(( NMO + . In the original FMM 

framework the potential functions iϕ  are not valid over the entire domain, therefore 

so-called translation operators are used to convert singular expansions around clusters 

of points into regular expansions that are evaluated at the evaluation points.  

5.2 The Fast Gauss Transform Method 

The Fast Gauss Transform is a direct application of the FMM approach to the problem 

of evaluating sums of the form: 
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which are slightly more general than those used in our registration algorithm. In the 

expression (5.6) { }
Njjs

,...,1=
are the centers of the Gaussians known as ‘sources’ and 

 the ‘targets’.  { } Miit ,...,1=

 

The basis of the FGT is the expansion of (5.6) in terms of Hermite and Taylor series. 

Hermite expansion centered at results in (5.7):  0s
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Where are the Hermite polynomials defined by the Rodrigues 

formula: , 
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Similarly using a Taylor expansion centered at t we obtain: 0
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The first expansion (5.7) is used as counterpart to the multi-pole (far-field) expansion 

in FMM, while the second is used as the local (near-field) expansion, and the same 

approach for reducing the computational cost is used in the FGT. In the one 

dimensional case we can compute the Hermite functions using the following 

recurrence: 
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5.2.1 Basic results 

The extension to the multivariate case is straightforward. Using the same notations as 

the original FGT papers the Gaussian in ℜ is simply the product of univariate 

Gaussians:  

d

))(...)(exp())exp( 22
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For convenience multi-index notations were adopted.  A multi-index 

),...,,( 21 dαααα =  is a d-tuple of nonnegative integers, playing the role of multi-

dimensional index. For any   multi-index α  and any t  we have the following 

basic definitions: 
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And the Hermite functions are defined by:  
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The Hermite expansion of a Gaussian in ℜ is then simply: d
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Greengard and Strain [Greengard91] use three basic lemmas in the FGT algorithm, the 

first describes how to transform the field due to all sources in a box into a single 

rapidly converging Hermite expansion about the center of the box:   

 

Lemma 1  
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The second Lemma shows how to convert an Hermite expansion about s into a 

Taylor expansion about t . The Taylor series converges rapidly in a box of side 

B

C σ2r  

about , with Ct 1<r . 

 

Lemma2 

 

The Hermite expansion ∑
≥

−
=

0
)()(

α
αα σ

Bst
hAt

C

G  has the following Taylor expansion 

about an arbitrary point t : 

∑
≥

−
=

0
)()(

β
αβ σ

Ctt
hBtG , the coefficients are given by βB

 



Chapter 5: Fast Gauss Transform Methods 
 

68

∑
≥

+

−−
=

0
)(

!
)1(

α
βαα

β

β σβ
BC st

hAB  

 

Greengard and Strain [Greengard91] use also a third lemma which is a variant of 

Lemma 2 in which the Hermite series is truncated before converting it to a Taylor 

series. Truncation errors for all three cases were given and a corrected error bound was 

presented recently in [Baxter02].  

5.2.2 Algorithm and workloads 

In summary the essential feature of the FGT method (illustrated in Fig. 5.1) is the 

clustering of multiple sources using Hermite series and of multiple targets using 

Taylor series.  In the original algorithm the space is subdivided in to boxes of 

side σ2r  with . Each source is then assigned to the box 2/1≤r B  in which it lies and 

each target to the box C  where it lies. The original work details the effect on the 

precision of including only the n  nearest boxes. After subdividing the parameter space 

there are four basic ways in which the FGT algorithm accounts for the influence of  

 sources in a box B on targets in a box C. BN CM

 

 The different combinations are primarily based on the number of sources and targets 

in the boxes, the overall objective being the reduction of computations while keeping 

the accuracy of the evaluation as high as possible. The first case is the basic situation 

when the number of sources and targets is sufficiently low to allow for direct 

evaluation. The second one arises when the number of sources is low but the number 

of targets is high, in this case the Taylor expansion 5.8 is used to cluster the targets 

and accumulate the N  in the truncated series. When the number of sources in a box 

is high Hermite series allows for the clustering of sources which, the resulting series 

are evaluated at each target. 

B
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(a) 

 

   
 

                               (b)                                        (c)                                     (d) 

 
Fig. 5.1. Fast Gauss Transform and the different clustering schemes, sources are represented 
with crosses (+) and targets with circles (○). The space is subdivided into a regular grid (a). 
Hermite expansions are used to cluster several sources, which are evaluated at targets 
(b).Clustering of targets using Taylor expansion (c). Sources are clustered using Hermite 
expansion then transformed into a Taylor series near a target cluster.  Figure redrawn from 
[Elgammal03]. 
 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Fast Gauss Transform Methods 
 

70

Finally if both N  and  are large, the Hermite series expansion clusters the 

sources is shifted into the Taylor series grouping the targets. The original paper 

[Greengard03] gives the workload for each case: 

B CM

 

1- The cost of evaluating N Gaussians at M points is of the order . )(MNO

2-  Gaussians accumulated in Taylor series: the total cost of both computing 

the coefficients of the Taylor series and of evaluating the series at the sources 

is . Considering that influence is limited to the 

 boxes within range. 
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3- Hermite series directly evaluated: . ))12(()( MpnONpO ddd ++

4- Hermite series accumulated in Taylor 

series:  where accounts for box-

box interaction and is bounded by 
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The algorithm defines a threshold and switches between the different cases in order to 

reduce the overall CPU load at end asymptotic linear behavior is achieved.   

5.2.3 Limitations of the FGT method 

While the original FGT was successful in many applications Yang et al [Yang03] 

pointed to two major drawbacks. The first is due to the exponential growth of 

complexity with dimensionality seen in the factor O  showing up in the above 

mentioned workloads. This effectively limits the FGT to problems involving at most 

three dimensions. The second defect is due to the use of box data structure. The 

original algorithm subdivides the space into boxes using a uniform mesh. In higher 

dimensions such a simple space subdivision scheme is not appropriate since in most 

real applications, including our registration task, the data is clustered in lower 

dimensional manifolds. The result will be the existence of too many largely empty 

)( dp
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boxes. Hence the algorithm will be burdened by storage requirements and by the 

processing of empty boxes. Additionally in the case of the uniform subdivision 

scheme the ratio of the volume of the hypercube to that of the inscribed sphere grows 

exponentially with dimensionality. In such case the points will have a high probability 

of falling inside the cube and outside the sphere, which results in the larger truncation 

error in the Hermite and Taylor expansions.    

5.3 Improved Fast Gauss Transform 

Yang et al. [Yang03] argue that these limitations are due to the blind application of the 

FMM approach to the FGT. While the original FMM was developed for singular 

potential functions with long range forces, the Gaussian functions are . This 

essentially means that we do not need to perform multi-pole expansions accounting for 

far-field contributions. They propose an alternative algorithm called the Improved Fast 

Gauss Transform (IFGT). The algorithm is based on a simple new factorization and on 

an intelligent space subdivision scheme. 

∞C

5.3.1 The multivariate Taylor expansion   

If we have N sources { centered at s and M target points}is 0 { }jt , the exponential term 

can be expressed as: 
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where  and 0stt jj −=∆ 0sss ii −=∆ . 

 

The first two exponential terms in (5.14) can be evaluated separately at either the 

source or the target points. The only problem is then to evaluate the last term 
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containing non-separable source and target coordinates. The approach adopted in the 

IFGT method is to expand this term into the series: 
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If the infinite series (5.15) absolutely converges we can truncate after p terms. By 

rearranging (5.16) we get   
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This factorization is the basis of the IFGT, which attempts to reduce the factor O  

that hinders the speed of the original FGT.  This factor arises from the way the 

multivariate Gaussian is considered as the product of univariate Gaussian functions 

and expanded along each dimension. The idea proposed by Yang et al [Yang03] is to 

consider the dot product in (5.14) as a scalar variable that can be expanded using 

Taylor expansion. In this case the expansion functions 

)( dp

nΦ and are expressed as 

multivariate polynomials. 
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We will use the fact that the power of the dot product of two vectors x and y is 

expanded as: 
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From this we can derive the multivariate Taylor expansion of the Gaussian functions: 
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using (5.19) in addition to (5.15) and (5.17) we obtain the new factorization and 

expansion around s  0
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Once the series are truncated after a degree of p-1 the number of terms will be: 

, which for higher dimensions is much less than . In fact 

for  the number of terms tends towards .  In addition to the new 
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factorization [Yang03] suggests the use Graded lexicographic ordering for the 

multivariate polynomial coefficients for faster evaluation of (5.20).  

5.3.2 Space subdivision 

The second important feature in the IFGT framework is efficient space subdivision 

into cells. The influence of the points in each cell will be collected using the Taylor 

series expansion. To achieve such subdivision (and the box scheme of the original 

FGT), the IFGT method transforms the task into a k-center problem, which given n 

points and a predefined number of clusters k finds a partition of the points into clusters 

 and recovers the cluster centers c  so as to minimize the maximum 

radius of the clusters: 

kSS ,...,1 kc,...,1

iSvi
cv

i

−
∈

maxmax . This problem was addressed using the very 

simple algorithm proposed by Gonzalez [Gonzalez85]. This greedy algorithm called 

farthest point clustering works as follows:  

 

 

1. Pick an initial arbitrary point v  as the center of the first cluster and add it to 

the center setC . 

0

 

2. Then for  do:  ki ,...,1=

2.1. For every point compute its distance to the setC : iCci cvCv −=
∈

min).(

).(max). CvdC ivi

d . Let v  

the point that is the farthest away from C  (i.e. 

i

(di v = ). 

2.2. Add v  to the setC . i

 

3. Report the points  as the cluster centers and assign each point to its 

nearest center. 

110 ,...,, −kvvv
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This algorithm was shown to result in a partition with a maximum radius at most the 

optimum. This holds for any metric space. The computational complexity for a direct 

implementation of the algorithm is , but using Feder and Greene [Feder85] 

proposed a two phase optimal algorithm with an optimal complexity of O . In 

any case given that the number of clusters will be small the subdivision operation will 

not be expensive. We found this algorithm to be particularly effective for addressing 

our 3D datasets. Fig 5.2 shows an example where we applied the scheme to one of our 

datasets. We used Euclidean distance over the five dimensional space embedding 3D 

points augmented by the two local feature descriptor presented in the previous chapter.   

)(nkO

)log( kn

 

 

 

 

 
                                           (a)                                                    (b) 
 
Fig. 5.2. Result of applying the farthest point clustering algorithm to the 3D model (a). The 
obtained point clusters (the points of each cluster are labeled with a different color) shown in 
(b) correspond to regions that are roughly homogeneous with respect to our generalized 
distance measure (including position and attributes). 
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5.3.2 IFGT and its workloads 

The structure of the IFGT algorithm itself as given in [Yang03] is as follows: 

 

1. Assign the N sources to K clusters using the farthest-point clustering algorithm 

such that the radius is less than sσρ . 

 

2. Choose p sufficiently large such that the Taylor series truncation error estimate 

given in (22) is sufficiently low. 

 

3. For each cluster S  with center , compute the coefficients given by the 

expression (21). 

k kc

 

4. For each target t find its neighbor clusters whose centers lie within the range j

tσρ , then the sum of Gaussians can be evaluated by the expression (5.20): 
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As mentioned previously step 1 requires O operations for direct implementation. 

For large K it can be optimized using the Feder and Greene [Feder85] algorithm 

toO . The workload for step 3 isO , with r . The cost of step 

4 will be O where n is the maximum number of neighbor clusters for each 

target. In most applications the number both the precision and the number of clusters 

can be chosen small, hence K and r will be low which leads to the linear complexity 
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performance of the IFGT algorithm. The algorithm requires only the storage of K 

coefficients of size . pdr

 

An error bound on the truncation after order p of the Taylor series (5.20) was given by 

Yang et al [Yang03] as: 
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j

jfF

 

In summary the IFGT approach presents an attractive alternative to the standard 

technique. Given that in our case we sre dealing with a dimensionality ranging from at 

least 3, in the case we are using only the coordinates in the Gaussian criterion, to a 

dimensionality of 5 if we use the moment invariant J in addition to our saliency 

measure  the IFGT is clearly more suitable. The application to our task of the 

algorithm is straightforward and does not require any other modification, except that 

we choose to include a the de-correlation step before using the generalized distance in 

both 3D coordinate and attribute space. The substantial gains in the computational cost 

of criterion evaluation, for different sizes of the point-sets, are shown in Fig. 5.3. One 

other noteworthy point is the case of the gradient of the Gaussian criterion, which 

boils down to the computation of a weighted version of the Gaussian function which is 

similar to the one in (5.6). 
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Fig. 5.3. Plot showing the CPU time (Pentium IV, 2.3 GHz) required for the evaluation of the 
Gaussian criterion for a given number of points in the datasets.  The gains in computational 
costs increase dramatically with the size of point-sets.  
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6 RESULTS 

The Bulk of this chapter is devoted to an experimental quantitative and analytic study 

of the Gaussian Fields registration method when applied to 3D registration. We also 

show results for multimodal image registration, 3D object modeling, and face 

reconstruction.   

6.1 Three Dimensional Analysis, Objectives, and 
Methodology 

One of the main advantages of the Gaussian Fields registration method is the relatively 

limited number of free parameters used. The only parameter that can change during 

the registration process is the force range σ  which is, as we stressed in chapter 4, of 

fundamental importance to the overall algorithm. Hence, a large part of the analysis 

will be devoted to it. Other parameters on which the method depends are generally 

computed only once and in most cases are derived in a process similar to sensor 

characterization. For instance the main purpose of the de-correlation matrix Σ is to 

create the orthogonal features necessary for effective fusion. In addition a confidence 

parameter Ca, which we will discuss shortly, is used to control the effects of noise on 

the features used in the Gaussian criterion. The setting of its value is also based on our 

knowledge of the noise characteristics of a given sensor.  

 

The experimental analysis that we have undertaken in this chapter attempts to be 

thorough. It will include the study of several aspects that were not jointly examined in 

a single work in the context of free-form shape registration.  We recall the full 
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expression of the Gaussian criterion in (6.1). A short description of the parameters that 

appear in this expression is shown in Table 6.1.  
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        (6.1) 

In addition to studying the effects of noise on the algorithm we will investigate the 

important issue of the role of local descriptors, studying their combination and fusion 

as well as the effect of the size of the areas over which they are computed. Another 

important aspect that we examine is the effect of the amount of overlap between the 

datasets to be registered which is crucial to all registration techniques. We also 

consider the complexity of shapes to be registered and the robustness of the Gaussian 

fields method to low levels of surface complexity.  This first set of experiments is 

conducted on synthetic datasets to isolate and focus on the different factors being 

studied.  

 
Table 6.1. Summary of the parameters used in the Gaussian Fields registration algorithm. 

 
Parameter 
 

Description 

 
σ  

 
The force range parameter, controlling the decay of  the Gaussian Field 
 

 
 

Σ  
 

 
Covariance matrix of the feature descriptors used in the algorithm. This 
matrix is computed from the data 
 

 
ρ  

 

 
Radius of the ball in which local feature descriptors are computed  

 
aC  

 

 
Confidence factor associated with the descriptors when dealing with noisy 
datasets 
 

Tr  The actual registration parameter that we are recovering, our analysis is 
focused on rigid transformations  
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Several 3d datasets acquired by various sensors, which will be described in the 

following sections, are used to study the performance of the algorithm in one of its 

primary areas of applications, namely in the case of scene reconstruction from 

multiple 3D point-sets obtained from range images. The main focus in this second set 

of experiments is on the parameter σ and on designing an optimal scheme for accurate 

registration without close initialization. This required studying the registration error 

and basins of convergence of the algorithm for several datasets. A comparison of the 

region of convergence with the standard Iterative Closest Point algorithm was also 

undertaken. In the context of performance evaluation, the robustness of the algorithm 

to low levels of sampling was investigated on all the datasets.  The set of 3D 

experiments conducted is summarized in Table 6.2. 

 
 

 
 

Table 6.2. List of experiments conducted for the 3D analysis of the registration algorithm. 
 

 
3D Synthetic experiments 

 

 
Experiments on real 3D datasets 

 
 
 
• Effects of noise 
• Analysis of local descriptors 
• Effect of the amount of overlap 
• Shape complexity and registration 

 

 
• Sample plots around registered 

position 
• Study of the parameter σ  
• Analysis of the convergence: 

basins and schedule 
• Comparison of the basin of 

convergence with ICP 
• Effects of sampling 
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6.2 3D Synthetic Experiments 

6.2.1 Noise effects 

In the Gaussian criterion framework noise will influence both the position of the point-

sets and consequently the descriptors that are computed from them. When considering 

very high levels of noise local shape descriptors can become so corrupted by noise that 

they are practically useless. It is for this reason that we added to our criterion the 

confidence factor C  which will balance the contribution of the descriptors with 

respect to the coordinates. Given that the descriptors are scaled so that there variance 

is 1, the confidence parameter is set to a low value (typically less than10 ) for 

datasets with low-to-moderate noise levels, and will be higher than unit value for very 

high levels of noise. 

a

3−

 
We will focus our experimental analysis on uniform noise. Dealing with uniform noise 

constitutes studying a worst case scenario given that in practical applications noise is 

more biased in one direction (usually the radial component with respect to the 

camera’s coordinate frame is dominant). In this experiment we use a 3D model of a 

head which we divide into two partially overlapping sections (Fig. 6.1). To each of 

these datasets we add uniform noise of amplitude going up to %12± of the length of 

the head. Each of the head sections has about 3500 points. The main purpose of the 

experiment is to study the drift in the maximum of the criterion under the effect of 

noise. This is achieved by initializing the algorithm close to the ground truth registered 

position and starting the optimization scheme. The plots shown in Fig. 6.2 give the 

resulting rotation error in degrees and translation error as a fraction of the length of the 

model. They show the rate of increase in the error for two confidence values 

 and C .  001.0=aC 0.1=a
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                   0                                       % %3±                                      %6±

 
%9±                                    %12±  

 
Fig. 6.1. Datasets used for the noise analysis. Two overlapping sections of a head model are 
used to study the effects of uniform noise. The point sets corrupted with increasing levels of 
uniform noise are shown with the noise value expressed as a fraction of the model’s length. 
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                                        (a)                                                                            (b) 
 
Fig. 6.2. Registration error versus uniform noise: (a) rotation error in degrees, (b) translation 
error as a fraction of the length the head model. We show plots for two values of the 
confidence parameter, low and high. 
 
 

 
  
 

The first conclusion that we draw from this experiment is that the algorithm is stable 

for levels of uniform noise up to %8±  which is by any practical standard very high. In 

the plots we clearly see the role that the confidence parameter plays in moderating the 

sharp increase in registration error for the higher levels of noise. This, predictably, 

comes at the expense of a more accurate registration in the low to moderate noise 

range. Such behavior is caused by the forfeiting of part of the discriminatory power 

that the descriptors add to the algorithm.  Note that we have employed here the two 

descriptors  and  computed within a ball of radius 5% the length the head. These 

same settings are also used for the experiment that we describe next. 

1J S
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6.2.2 Local descriptors and fusion   

One of the strengths of using the Gaussian criterion for free form shape registration is 

the ease with which multiple features can be fused. As discussed earlier for the method 

to benefit from these features a de-correlation step needs to be performed. The 

covariance matrix is computed in nearly flat regions and used to scale the features so 

that they have a unit variance, and so that they are independent. To study the quality of 

the features that we employed we use the same head dataset along with uniform noise. 

Our purpose is to assess the increase in registration error in the cases: (1) without 

attributes, (2) for each attribute being used alone, and (3) for the fused case. Plots of 

Fig. 6.3 show the evolution of rotation and translation errors with levels of uniform 

noise. We show results for both a low confidence factor ( 001.0=aC ) in Fig. 6.3(a) 

and for a high value (C ) in Fig. 3(b). In the first case the fused criterion, as 

expected, outperforms the other cases in the considered range with an error that is 

practically zero and that increases fast for noise levels higher than . For the 

experiment without attributes we notice a steady but slow increase in the registration 

error. The algorithm without any attributes actually outperforms the algorithm in the 

case we use J  alone; not surprising given that this feature is just an average of 

Euclidean distances to neighboring points, which does not account well for local shape 

variations. The second best performance after the fused case is obtained by the 

saliency descriptor S  which as we saw was derived from the robust tensor voting 

framework.  

0.1=a

%8±

1

 

This experiment shows clearly the usefulness of fusing multiple features which leads 

to a much better results than what each feature will give alone. Also we notice that 

fusion works well even if we use features that are coarse descriptors such as .  For 

 the gap in performance between the different criteria is reduced, while the 

error for the moderate noise level is higher. The fused criterion will slightly 

outperform the others only for very high levels of noise. 

1J

0.1=aC
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(a) 

 
(b) 

 
Fig. 6.3.  Shown are the rotation and translation errors versus levels of uniform noise for 
different descriptors and for the fused case. In (a) we have 001.0=aC , and for (b) 0.1=aC . 
The same head dataset was employed. 
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6.2.3 Local neighborhood size and features 

One other aspect that we have investigated, which, to our knowledge, was rarely 

studied rigorously before is the effect on the registration algorithm of the size of the 

neighborhood over which the features are computed.  This hole in the literature maybe 

due to the fact that this size can be deducted heuristically from the scale and noise 

characteristics of the datasets used. The size of the neighborhood will depend on the 

resolution and on the information content of the datasets. If the noise level is very low 

then one must choose the smallest neighborhood possible. This will spread the values 

of the descriptors over a larger spectrum allowing for more accurate matching. On the 

other hand in the noisy case features computed on such small domains will not be 

reliable enough to allow for accurate correspondence, hence the need to increase the 

size of the local area used for computation.  

 

When dealing with point-sets the local neighborhood is usually a ball of radius ρ  

centered at the point for which the descriptor is computed. Using the same head 

dataset we examined the effect of uniform noise with three different values of ρ . Here 

again we study both high and low confidence levels. From the plots shown in Fig. 6.4 

we deduced that for the used dataset a best behavior is obtained for %5=ρ , applying 

noise levels considered practical in our earlier discussion. This experiment gives an 

idea on the empirical study we can conduct to calibrate the value of ρ  in actual 

applications with real datasets. In such applications, for a given sensor, a similar 

analysis involving runs of the registration algorithm with different values of the 

neighborhood radius on a typical sample will provide the optimal ρ .  

6.2.4 Amount of overlap  

One of the fundamental issues in registration, and pattern matching in general, is the 

effect of outliers, by which we mean areas of the datasets that are not shared by them.  
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(a) 

 
(b) 

 
(c) 

 
Fig. 6.4.  Effects of the size of the local neighborhood used in feature computations. Rotation 
and translation errors are shown for different values of the radius of the local ball. The inner 
and outer balls (a) have radii of 5% and 10% of model’s length respectively.  In (b) we used 

, and in (c) C .  001.0=aC 0.1=a
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The lower the relative overlap between the point-sets the harder the correspondence 

problem becomes. Even for human beings. This is well accounted for in the 

formulation of our criterion, as we showed in chapter 4. Outliers will result in a drift 

of the maximum of the Gaussian criterion away from the correct position. This drift 

will only be moderated by a decrease in the value of σ  (which itself results in a 

smaller region of convergence).  The error can also be moderated by high complexity 

in the datasets. To study the effect of overlap on our registration algorithm we used a 

surface reconstructed from a digital elevation map (DEM).  Several partially 

overlapping surfaces are generated from this DEM. Fig. 6.5(a) shows four surfaces in 

the registered position with an amount of overlap ranging from approximately 25% to 

70%.  In this analysis we keep the same common area and increase the outliers. The 

drift of the criterion’s maximum caused by the outliers is studied for several pairs and 

for four values of σ  (20%, 40%, 60%, and 80%). The results are summarized in the 

plots of Fig. 6.5(b). These show that up to about 50% of overlap the criterion 

maintains a very low localization error, which starts to increase rapidly for values of 

overlap less than 30%. As expected the slowest drift is the one corresponding to the 

lowest value ofσ . The other curves evolve closely for most of the range, with the ones 

corresponding to the two higher values showing a more oscillatory behavior. This 

experiment gives an idea about the setting of force range parameter to minimize the 

effect outlier. The analysis also shows that for practical applications it is suitable to 

have at least around 40% to 50% overlap. Nevertheless the algorithm is able to handle 

lower values, at the cost of paying more attention to the way values of the force range 

parameterσ  are adapted during the optimization scheme.   

6.2.5 Surface complexity 

The issue of surface complexity was studied before in the context of 3D registration, 

mostly with the aim of introducing, physically, in the scene objects that allow current 

algorithms to function properly in the case of low levels of shape information [Pito97].  
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25%                                                             32% 
 

  
 

54%                                                                    70% 
(a) 

 
(b) 

 
Fig. 6.5.  The amount of overlap between two surfaces and its effect on the registration 
accuracy: Four of the DEM pairs used in this experiment are shown in (a). Plots of the rotation 
and translation errors versus the percentage of overlap are shown in (b).    
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This approach is not practical in many real applications. Our theoretical analysis of the 

Gaussian criterion addressed the point of shape complexity and showed that a high 

amount of surface information results in a decrease in the influence of the outliers. We 

devised a simple experiment to study the effects of surface shape variation on the 

registration accuracy. In this experiment we use pairs of partially overlapping DEMs 

(with about 60% of overlap) that were generated from a larger terrain model. In the 

overlapping we have a point to point mapping. Several pairs were created at different 

levels of averaging of the height of the DEM’s (Fig. 6.6(a)). The evolution of the 

localization error of the criterion as it varies with the variance of the height, taken here 

as a very simple measure of surface complexity, is shown in the plots of (Fig. 6.6(b)). 

For this noiseless setting and with a value of σ equal to 10% of the length of the 

datasets we have found that the drift of the maximum of the Gaussian criterion is 

extremely low. This shows that the algorithm is able to handle low levels of surface 

complexity.          

6.3 Experiments with 3D Real Datasets 

In our second set of experiments we used 3D models reconstructed from range maps. 

To show the scope of the algorithm we employed several 3D range sensors [Besl88] 

operating at largely different scales. The first sensor employed in this analysis, the 

Riegl LMS Z-210 (Fig. 6.7(a)), is a laser-based system that uses the time of flight 

principle. The Riegl’s operating range goes from about 2 m to 350 m, with an 

estimated noise level of about 20 mm and a range resolution of 25 mm. The Riegl is 

mostly used for scanning large scale scenes such as buildings and for monitoring 

construction and mining projects. The second scanner is the IVP Ranger 2200 (Fig. 

6.7(b)), also a laser scanner, but one that is based on the principle of triangulation. The 

Ranger operates by acquiring several profiles of a scene.  
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                            Z-variance = 25.0                                     Z-variance = 18.52                    

 
Z-variance = 17.0 

 
(a) 

 
(b) 

 
Fig. 6.6. Study of the registration error versus surface complexity:  a pair of DEMs with 
increasing levels of averaging is shown on (a) with their height variance (the terrain size is 
100×150). Plots of the rotation and translation errors for different height variance levels are 
shown in (b).    
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                                               (a) Riegl LMS Z-210 
 

 
 

                                                (b) IVP-Ranger2200    
           

 
 

                                    (c) Confocal Microscope Leica SP2 LSCM 
 
Fig. 6.7.  The three range scanning systems used in our registration experiments. The Ranger 
(a) system is mostly used for the acquisition of medium sized objects such as automotive parts. 
The Riegl (b) is primarily employed for large scale scenes such as buildings, and the confocal 
Microscope in the sub-millimeter domain. 
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The scanner has a camera with a two-dimensional CMOS sensor that captures a laser 

sheet of light which illuminates the imaged objects. Knowledge about the geometry of 

the system, such as the relative location of the camera and the laser source as well as 

the camera’s internal and external parameters, allows the 3D reconstruction of a given 

profile. Each profile contains 512 samples. A controlled relative motion between the 

camera and the scanned objects allows for the acquisition of a 2D range map. The 

resolution of this scanner is of about 2mm, and it is mostly used for mapping objects 

measuring several tens of centimeters in length.   

 

For smaller objects we acquired 3D imagery with a Leica SP2 LSCM confocal 

microscope (Fig. 6.7(c)) that resolves objects as small as 1 µm. The confocal 

microscope uses depth from focus to build several layers of the scanned objects. A full 

three dimensional model is reconstructed by assembling these layers. The system is 

commonly used to inspect small scale components and for both material science and 

life sciences applications. We acquired six datasets using these sensors, two per 

scanner. The datasets consist of a pair of 3D scans of various objects corresponding to 

the typical operating ranges of the cameras. The two scans are acquired from 

significantly different viewing points. To build a ground truth registration the surface 

is reconstructed from the original high resolution scans, corresponding points are 

picked by hand and the registering transformation is computed using the classic 

absolute orientation SVD-based technique [Horn87]. A refinement step is performed 

using an extended ICP version that takes into account normal information. In our 

actual analysis we use lower resolution sub-sampled models (less then 10000 points), 

and all the results are obtained in the context of point-set registration. Figures 6.8 to 

6.13 show the different datasets used in the experiments. The first pair of 3D views 

acquired by the Riegl is of a 14 passenger Van. The reference 3D view (blue) has a 

bounding box of dimensions 5 53.242.428. ××  m.  
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(a) 
 
 

 
                             (b)                                                                                (c) 
 
 
Fig. 6.8.  Van Dataset: Color image (a), 3D scans in unregistered (b) and registered (c) 
positions. Scans acquired by the Riegl system. The dimensions of the van are 

 m. 53.242.428.5 ××
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(a) 
 

 
                                      (b)                                                             (c) 
 
Fig. 6.9. Building Dataset: Color image (a), 3D scans in unregistered (b) and registered (c) 
positions. Data acquired by the Riegl scanner. The dimensions of the building scene are 

 m. 82.1287.2159.33 ××
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(a) 
 

 
                                               (a)                                                   (b) 
 
Fig. 6.10. Parts Dataset: shown are the color image of the scanned objects (a) and two 
reconstructed scans in unregistered (b) and registered (c) positions. The Ranger scanner was 
used to acquire this dataset. The dimensions of the scene are 127235237 ×× mm. 
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(a) 
 

 
                                (b)                                                                      (c) 
 
 
Fig. 6.11. Boat Dataset: Color image of the model boat (a) and two reconstructed scans shown 
in unregistered (b) and registered (c) positions. Scans acquired by the Ranger system. The 
dimensions of the scene are 140273462 ××  mm. 
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                                                      (a)                                      (b) 
 
 

 
                                  (c)                                                                   (d) 
 
Fig. 6.12.  Gear Dataset: image of the green gear showing a scale comparison with a dime (a). 
In (b) we show the intensity image obtained by the Leica confocal microscope. Two 3D 
reconstructions from confocal slices are shown in unregistered (c) and registered (d) positions. 
The dimensions of the merged views are 1385 1251462×× µm. 
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Fig. 6.13.  Microchip Dataset: image of the microchip showing a scale comparison with a 
penny (a). In (b) we show the intensity image of part of the surface of the microchip obtained 
by the confocal microscope. Two 3D reconstructions from confocal slices are shown in 
unregistered (c) and registered (d) positions. The dimensions of the merged views are 

µm. 8149149 ××
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In addition to this ‘Van’ dataset (Fig. 6.8), we acquired a ‘Building’ datasets with size  

82.1287.2159.33 ××  m (Fig. 6.9). The first dataset captured by the Ranger 2200 

consists of a set of parts and objects that we call ‘Parts’ dataset (Fig. 6.10), the 

reference view has dimensions 237 127235××  mm. The second pair of scans is of a 

model boat. The scene has dimensions  462 140273××  mm and will be called ‘Boat’ 

dataset (Fig. 6.11).  Using the Leica confocal microscope a further two pairs of views 

were obtained. First a couple of scans of a small gear shown in Fig. 6.12 (referred later 

as ‘Gear’ dataset 1385 1251462××  µm). Fig. 6.13 shows the second set of confocal 

microscope 3D views focused on a small area of a Microchip (‘Microchip’ dataset 

 µm). 8149149 ××

6.3.1 Plots around the ground truth 

We start by plotting the profile of the Gaussian criterion around the ground truth 

registration for all the datasets. The behavior is quite similar for all the six pairs of 

views, with the usual dominant mode resembling the one of the simple 2D experiment 

shown in chapter 4. We show in Fig. 6.14 sample plots obtained using the ‘Parts’ 

dataset. The plots are generated for various values of the Gaussian force range 

parameter σ  ranging from 5% to 100% of the length of the datasets. The original 

plots for one translation parameter along with the plots for one rotation parameter are 

shown in Fig. 6.14(a). The increase in sigma results in an increase of the amplitude 

(dimensionless) of the criterion. It also leads to a drift in the position of the maximum 

away from the correct position, a behavior that we explained in the theory. To 

emphasize the increase in the width of the dominant mode of the Gaussian criterion 

we show the same plots scaled by the maximum in Fig. 14(b). In these latter plots we 

can see an increase that is almost proportional to the increase in the values of σ  for 

the lower ranges of this parameter but which is slower for the higher ones. This 

behavior is discussed in the next sections. 
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(a) 

 
(b) 

 
Fig. 6.14. In (a) are shown the plots of the Gaussian criterion versus the rotation around the z-
axis (perpendicular to the plan of view of the datasets in Fig. 6.8), and the translation along the 
x-axis (the horizontal axis in Fig. 6.8) for seven values of σ (as a % of the length). The plots in 
(b) are the scaled version (of unit maximum) of those in (a) emphasizing the relative increase 
in the width of the dominant mode. 
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6.3.2 Effects of varying sigma 

From the plots generated for all six datasets, with the different values of  σ  we can 

measure the drift of the dominant mode in the different dimensions of the registration 

parameter space and plot their evolution. This is shown in Fig. 6.15 which renders the 

evolution of localization error withσ . The overall behavior is similar for the six 

datasets, in the sense that it starts with an almost linear increase in the drift as a 

function of σ . For larger values this drift is much slower and tends toward an 

asymptotic limit.  This can be explained by the fact that, as shown earlier, the force 

range parameter controls the influence of outliers, hence the relatively rapid increase 

in the lower range in particular for a dataset with low amount of overlap such as the 

‘Microchip’. The asymptotic stabilization is explained by the fact that as σ exceeds 

the average distance between points in the datasets the exponential can be 

approximated by its first order development: 
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The actual optimization problem will not in fact depend on σ  anymore. We can easily 

show that in the case of large force range parameter the problem of maximizing the 

Gaussian criterion is equivalent to minimizing the sum of average distances from the 

points of one dataset to the other dataset (6.3). 
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Fig. 6.15. Plots showing the evolution of the rotation and translation errors as a function of the 
parameter σ (as a fraction of the length). 
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This problem is independent of the value ofσ , whence the asymptotic behavior. This 

fact is quite useful in our algorithm since it insures that the registration error is 

bounded from above, for the plots shown the maximum error for most datasets is 

between 7% and 10% for translation and between 2º and 20º for the rotation, 

excluding the ‘Microchip’ dataset which has an overlap area that we consider too 

small and which is very flat. Such dataset presents great difficulty for registration 

algorithms. 

 

An important issue that we discussed in chapter 4 was the optimization scheme and 

the adequate choice of a schedule for σ, so that we can enlarge the basin of 

convergence while obtaining accurate alignment. A rigorous condition can be 

developed to avoid falling into local maxima when we reduce σ between two runs of 

the basic optimization routine. A study of the profiles of the criterion suggests that we 

can impose a simple constraint to avoid this problem. The dominant peak of the 

criterion is safely convex starting from about 50% its height. We will require that the 

drift of the maximum does not exceed half the width of the criterion at 50% of the 

peak. As shown in Fig. 6.16 this empirical condition will ensure that we avoid the 

local extrema. Fig. 6.17 shows plots of the width of the dominant peak at 50% as a 

function of σ. By comparing these with the plots of drift of maximum with respect to σ, 

we conclude that this condition is practically always fulfilled. These can be visualized 

also by directly observing the profiles of the criterion in Fig 6.14 where the drifting 

peak for higher σ does not fall into the rugged areas of the plots corresponding to the 

lower values of this parameter.  It emerges from this that we will need only a two steps 

algorithm, starting with an initial rough alignment with large σ that will be followed 

by refinement step where σ is decreased sharply. 
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6.16. Finding a constraint on the schedule of σ between two runs of the optimization scheme. 
Making sure that the drift between the two steps (D) does not exceed half the width (W) of the 
dominant peak at 50% of its amplitude will avoid the local exterma. 
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                                                                         (a) 

 
                                                                        (b) 
 
6.17. Variation of the width of the Gaussian criterion at 50% of the peak (as explained in Fig. 
6.16) as a function of σ (as a fraction of the length) for rotation (a) and translation (b) 
parameters. 
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6.3.3 Basins of convergence and comparison with ICP 

The effect of σ on the region of convergence (ROC) can be clearly seen from the 

analysis of the two previous sections. But to have a better understanding of the scale 

of these Regions of Convergence, for our different real datasets, and to determine the 

nature of the relationship with the force range parameter we analyzed the basins of 

convergence of the algorithm for our datasets (Fig. 6.18). The plots of Figures 6.19 

and 6.20 show the relationship between the initial value of the transformation 

parameters provided to the algorithm and the residual registration error at the end of 

the process. These so-called basins of convergence were obtained for several values of 

σ.  

 

What these plots confirm is the tradeoff between a large basin of convergence for a 

large value of σ associated with a large residual error as well, and a smaller basin of 

convergence for lower values of σ that come with a better registration accuracy. This 

fact argues again for the two-steps scheme discussed before. We note that the width of 

the basins will grow fast first but then does not increase much after a certain value of 

the force range parameter which was already deduced from the profiles of the criterion. 

Also the width of these basins is significantly larger than the value of σ (generally 

around 10 times for values less then 5%).  When these basins are compared with those 

of the point-based ICP algorithm (Figures 6.21 to 6.26) we notice that they are wider 

for all datasets even for low values of σ. This is to be expected, since we know that 

ICP is a close-range locally convergent scheme. On the other hand ICP has a smaller 

residual error except when compared with the algorithm tuned for close range 

Gaussian Fields. A balance between residual error and ROC size is clearly achieved 

by the adaptive optimization strategy.  The resulting basin of convergence for a typical 

two-steps approach is shown in Fig. 6.27, showing the both the increase of the basin of 

convergence combined with the reduction of the residual error. 

 

 



Chapter 6: Results 
 

109

 
 

 

 
 
 
 
Fig. 6.18. For our convergence experiments we initialize one of the views in several positions 
around the registered position then we run the algorithm. The obtained residual registration 
error is used to measure the quality of the convergence. In this Figure we have two 
initializations (Red and Green) obtained by rotation around the z-axis of one of the views 
around the fixed reference one (Blue).  
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Van 

 
Building 

 
Parts 

 
Fig. 6.19. Basins of convergence of the method showing residual registration error, as a 
function of initialization, for rotation around z-axis and translation along the x-axis. Datasets 
from top to bottom: Parts, Boat, and Gear. 
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Boat 

 
Gear 

 
Microchip 

 
Fig. 6.20.  Basins of convergence of our method showing residual registration error, as a 
function of initialization, for rotation around z-axis and translation along the x-axis. Datasets 
from top to bottom: Microchip, Van, and Building. 
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Fig. 6.21. Comparison of the method’s Basins of convergence with the ICP basins:  Van 
dataset. 
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Fig. 6.22. Comparison of the basins of convergence with the ICP basins:  Building dataset. 
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Fig. 6.23. Comparison of the method’s basins of convergence for several values of σ with the 
ICP basin of convergence.  Parts dataset. 
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Fig. 6.24. Comparison of the method’s basins of convergence with the ICP basins:  Boat 
dataset. 
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Fig. 6.25. Comparison of the method’s basins of convergence with the ICP basins:  Gear 
dataset. 
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Fig. 6.26. Comparison of the method’s basins of convergence with the ICP basins:  Microchip 
dataset. 
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Fig. 6.27. Example of basins of convergence with the two-step algorithm for the Gear dataset 
compared with basins obtained with the single step runs for different values of σ, and 
compared with the ICP basin. 
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6.3.4 Mean Squared Error, Bias and Variance, and Comparison with ICP   

In this section we will show: (1) that our method has an optimum parameter σ which 

balances the accuracy of registration and the region of convergence with respect to the 

initial starting parameters of the Gaussian Fields algorithm and (2) that for a large 

range of σ values our algorithm outperforms the ICP algorithm with respect to the 

Mean Squared Error (MSE) criterion. We start by decomposing the MSE into the Bias 

and Variance terms. The MSE criterion offers a natural benchmark for quantifying the 

quality of registration across a range of perturbations. Since we are primarily 

interested in the sensitivity to initialization (which is the main weakness of current 

algorithms) we will compute the MSE with respect to a distribution of initial starting 

points of the algorithm.  Furthermore the MSE will give as a way of directly 

comparing the performance of our method with the ICP algorithm. Let the actual 

registration parameters for a pair of datasets be T *r (the ground truth in our case), and 

let Tr the result of the registration for a given initial guess x and for a given σ. 

The MSE with respect to the distribution of initial parameters is: 

)(xσ

  

)))((( 2*TrxTrEMSE x −= σ                                    (6.4) 
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The term E represents square of the Bias of the registration, 

while   is the Variance of the registration parameters 

with respect to the initial relative positions of the datasets. Hence: 
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We have shown that if σ is large the criterion will become independent of this 

parameter. The criterion will flatten and tend toward a constant function resulting in a 

unique result for all initializations. Therefore 0lim =
∞→ σσ
V  and , a constant 

value. For the lower values of σ the Bias will decrease given that the maximum of the 

criterion will be closer to the correct position as discussed earlier but the narrowing of 

the width of the dominant mode and the appearance of local maxima will result in the 

increase of the variance of the algorithm with respect to initialization. This behavior is 

illustrated by the plots of Fig. 6.28. In the case of ICP we know that the method is 

precise locally, hence characterized by a local low bias. Given this it is natural to 

expect a high variance over a large range of initializations. The question that we will 

answer experimentally is: how does the two methods compare with the respect to the 

MSE (Bias+Variance) criterion? 

BB =
∞→ σσ

lim

 

For a quantitative comparison of the performance of the Gaussian Fields method as 

compared to ICP we use the same six real-world datasets. We illustrate the difference 

between the two methods by using a uniform distribution of initial translations (along 

the x-axis), in the same way that we obtained the basins of convergence. For each 

dataset we compute over the different initializations. The results are 

obtained for several values of σ set as a fraction of the size of the datasets (ranging 

from 0.5% to 30%). The plots of Figures 6.29 to 6.31 show the variation of MSE 

criterion with respect to sigma as compared to the MSE of the ICP algorithm. For all 

datasets, except for the Van dataset, where the difference is still relatively small, there 

is a point at which the Gaussian method will outperform the ICP algorithm. We clearly 

see also that a minimum of the MSE is obtained with respect to σ corresponding to an 

optimal behavior balancing the Bias and Variance constraints. The threshold below 

which the Gaussian method is better than ICP as well as the optimal σ are inevitably 

dependant on the datasets, as can be clearly seen from the different plots.  

2
σσ BVMSE +=
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Fig. 6.28. Evolution of the Bias and Variance components of the Mean Squared Error (MSE) 
computed with respect to a uniform distribution of initial transformations for the Gaussian 
Fields method, and for increasing values of σ (boat dataset). The Bias will increase as σ 
increases while the Variance becomes smaller. 
 
 

 
 
 
 
 
 
 



Chapter 6: Results 
 

122

 
 

Gear 

 
Microchip 

 
 

Fig. 6.29. Comparison of the MSE of the Gaussian Fields method with the MSE of ICP (MSE 
computed with respect to initialization), Gear and Microchip datasets. Two points emerge: (1) 
there is a threshold for σ below which the Gaussian Fields method will have a lower MSE than 
the ICP algorithm, and (2) there exists an optimum σ that minimizes the MSE uncertainty 
criterion.  
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Parts 

 
 

Boat 

 
 

Fig. 6.30. Comparison of the MSE of the Gaussian Fields method with the MSE of ICP, Parts 
and Boat datasets.  Notice that the value of σ below which the MSE of the Gaussian Fields 
method is lower than ICP will change from one dataset to the other, also the value of σ 
minimizing the MSE is data which is to be expected. 
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Van 

 
 

Building 

 
Fig. 6.31. Comparison of the MSE of the Gaussian Fields method with the MSE of ICP, Van 
and Building datasets.  Two extreme cases: (1) for the Van dataset the ICP algorithm has a 
lower MSE than the Gaussian Fields method although for the optimum σ the difference is 
relatively small, (2) for the Building dataset the MSE of the Gaussian Fields method is safely 
below that of ICP for the entire range of σ considered. 
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6.3.5 Sampling effects 

The interest of studying the effects of sub-sampling on the registration algorithm 

stems from two important issues: (1) reducing the computational burden, and (2) 

studying the robustness of  the algorithm to the reduction in shape information 

resulting from using less vertices to describe the same object. While the first of these 

two issues can be addressed by using the FGT framework it is also interesting to see to 

what level can accuracy be preserved while the number of points is reduced with, 

keeping in mind the inherent speed gains of combined sub-sampling and FGT 

techniques. To study the influence of the reduction of resolution we sub-sampled our 

six datasets in two different ways: (1) uniform sampling, and (2) curvature-based 

sampling, this last method puts the selected number of points in areas with high shape 

variations while the first distributes the point in a uniform manner (Fig. 6.32). We start 

with the relatively low number of 2800 points for each view then sample by two to 

obtain the next pairs until we reach 400 points.  

 

The two ways of sampling offer both advantages and disadvantages for the method. In 

the case of uniform sampling we have on one hand a better spatial distribution of the 

points which will be scattered on a larger area, a fact that is usually helpful for 

computing rigid transformations, on the other hand the constraint on the distribution of 

the points results on a coarser description of the object. As for curvature-based 

sampling it provides for a good visual description of the object, by investing the 

available point in high-information regions, but the clustering of the points in 

relatively small areas can result in ambiguities and degenerate solutions. In the plots 

showing registration error versus the number of points (Figures 6.33 and 6.34) we see 

no consistent advantage of either sampling scheme. But we notice also that the 

algorithm handles very high level of sampling and degenerates only when the datasets 

are described by just few hundred points. This promises further reduction in the 

computational burden through the use of multi-resolution optimization strategy that 

initializes at coarser levels. 
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Fig. 6.32.  The sub-sampling of the points of Parts dataset using uniform and curvature based 
sampling. 
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Fig. 6.33. Rotation and translation errors for the Gaussian method as a function of the number 
of points for uniform and curvature-based sampling.  
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Fig. 6.34.  Rotation and translation errors for the Gaussian method as a function of the number 
of points for uniform and curvature-based sampling.  The remaining datasets. 
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6.4 Multimodal Image Registration and Integration for 
Modeling and Recognition 

So far we have studied the workings of our registration method in the case of 3D point 

sets registration. The fundamental theory behind our alignment framework also 

extends, as we have argued in chapter 4, to the case of image registration. Single-

modality image registration and tracking in particular should be a good application 

area of this work. Due to our interest in some specific applications in biometrics and 

3D object modeling, we mainly investigated the applicability of the Gaussian Fields 

method to the task of multimodal 2D image alignment.  In addition we have also 

worked on the integration of the registered range, color, and Infra-Red imagery for 

object reconstruction. 

6.4.1 2D Matching under non-rigid transformations 

The main change for the case of image registration from the previous work will come 

from the need to consider warps which are usually much less constrained than the 

rigid ones addressed so far. As with any other non-rigid registration criterion we will 

need in this case to impose enough constraints as to avoid spurious results. The 

question of local descriptors and attributes will be important here. In fact in the case of 

non-rigid registration adding more attributes will help constrain the registering 

transformations, acting as a regularizing factor. In several cases of relatively simple 

warps such as affine ones it will be useful to employ attributes that are invariant to 

these transformations. Otherwise we need to make sure that these attributes keep the 

criterion’s nice properties of differentiability and local convexity intact. 

 

 Some of the preliminary tests that we conducted to verify the usefulness  of the 

Gaussian Fields algorithm for 2D registration were simple synthetic experiments 

where we applied an affine transformation to a reference shape, then tried to use the 

algorithm to align the deformed shape with the original one. In the case illustrated in 



Chapter 6: Results 
 

130

Fig. 6.35 we modified slightly the algorithm by using as attributes affine invariant 

moments. Given that rigid transformations are a special case of affine warps the 

modification of our algorithm was straightforward. The registration process converged 

after a few iterations to the accurate alignment. This showed that in principle we can 

apply the method to non-rigid transforms. 

6.4.2 IR-Color alignment 

Our study of the Gaussian Fields registration method for IR-Color images registration 

focused mostly on multimodal face recognition applications. The fusion of IR and 

color imagery for face recognition was shown to increase significantly the recognition 

rates of currently deployed systems [Heo04]. An improvement that is due to the 

important amount of independent information available in these modalities. In this 

context, shortcomings of color imagery such as sensitivity to illumination changes can 

be compensated for by fusion with IR data. Furthermore, while color imagery provides 

information about the surface of the face, IR images show the blood vessel and heat 

emission patterns unique to every person. Another important application of IR-color 

fused images is the location of the eyes for recognition purposes. 

 

Our purpose was to examine the behavior of the Gaussian criterion for this particularly 

challenging task. The difficulty of this task stems from the wide difference between 

the salient patterns and features in the two images. First, the two images need to be 

brought to a common space by a feature extraction step. Given the large differences 

between the two modalities, we will have a much larger disparity of the values of local 

feature descriptors when we go from one image to another than in the single modality 

case.  Therefore the algorithm will rely mostly on the global visual similarity to 

achieve the alignment.     
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Fig. 6.35. Several steps of the iterative alignment of hand contours which are related 
by an affine transformation using the Gaussian Fields method. 

 
 

The registration algorithm was applied to pairs of IR-Color images such as the ones 

shown in Fig. 6.36. Edge maps were extracted using a generic canny edge detector. 

Given that for non-rigid transformations initialization is an important issue, the 

parameters and relative position of the imagers can be set so that we have a significant 

overlap between the faces in the image pair. In real application this will not be a 

hindering constraint, since we can have a fairly controlled setup for identification 

purposes in places such as ports of entry. To further improve the convergence of the 

method we start by employing a transformation constrained to a similarity (rigid + 

scale). After the initial registration further refinement is obtained by using the 

projective 8-parameter transformation: 
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(a)                                                      (b) 

 
                                                                   (c)                                            

 

  
(d)                                                                  (e) 

Fig.6.36. Thermal (a) and Color (b) images of faces are registered as shown in the composite 
image in (c) by maximizing the Gaussian registration criterion to align the edges shown in the 
unregistered (d) and registered (e) cases. 
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The method allowed for the registration of the widely dissimilar images by 

maximizing the overlap between the edge maps and by implicitly matching the locally 

computed shape descriptors. The next step in this particular task is to study several 

more sophisticated feature extraction techniques that can provide better matches 

between the images. It will be also useful to investigate the use of more elaborate 

motion models both parametric and dense motion fields which are expected to provide 

more accurate results than those obtained so far.  

6.4.3 Integrating range and color imagery 

We turn now to the alignment of range maps with color images, a task needed in 

applications such as virtualized reality where photo-realistic models are required. The 

commonly adopted approach to the registration of color and range images, in the 

context of 3D modeling, is the formulation of the problem in terms of camera pose 

estimation [El-Hakim98][Sequiera99][Stamos00]. Assuming that the system is 

calibrated and that the relative position of the 3D scanner and of the color camera is 

fixed during the imaging process, the registration will need to be done only once.  In 

some other applications where accurate calibration is not available we can adopt an 

approach based on image warping to map the color image onto the range map  We 

also think that it is straightforward to extend the Gaussian Fields registration method 

to this task by employing edge maps extracted  from both color and range imagery.  

The optimization process will have to recover the 3D to 2D projective transformation, 

which is in fact much more constrained than the non-rigid warps that we discussed in 

the case of IR-color alignment. Going back to the standard pose estimation approach 

we need first to establish point correspondences between the range and color images. 

Once the image-to-image matches found a set of 3D-2D matches can be inferred using 

the scanner’s calibration parameters.  
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Using the now commonplace 3D editing tools these matches can be established 

directly between the 3D model reconstructed from the range maps and the color 

images. The list of correspondences is used to recover the 3×4 camera projection 

matrix P mapping the world coordinate system to the retinal plan of the color camera 

as follows: 
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This matrix is computed using a two-stage approach, starting with a linear over-

constrained system. The solution of this system will be a rough approximation of the 

mapping that will be refined by non-linear methods widely studied in camera 

calibration literature [Tasi87][Faugeras93][Hartley]. After the recovery of the model-

to-image mapping, texture maps can be generated. These are images used by 3D 

rendering engines for overlay on top of polygon models [Weinhaus97]. For each 

triangle in the 3D mesh, the associated texture is determined by finding the texture-

coordinates of each vertex, which are the 2D coordinates of the projected vertices in 

the texture image.  In Fig. 6.37 we show an example of a model that we reconstructed 

from range and color imagery. Some areas of the reconstructed scene that are not 

visible from the camera’s point of view are determined using z-buffering techniques, 

associating a depth buffer to each texture element so that when several 3D surface 

samples are mapped into that element only the closest one will be considered as non-

occluded.       
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                                                     (a)                                (b) 

   
(c) 

Fig. 6.37. The input of a photo-realistic modeling system: (a) color image, (b) range map. The 
reconstructed geometry with the registered texture map is rendered from different viewpoints 
in (c). 
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6.4.4 Multimodal 3D face reconstruction 

In another illustration of multimodal object modeling we reconstructed 3D faces from 

image sequences, Infra-Red imagery, and range data. Face modeling has several 

applications in the fields of computer vision, biometrics, and graphics, where there is a 

need for 3D face recognition and facial animation [Pighin02][Liu99]. A preliminary 

step will be to register the 2D multimodal imagery using the method described earlier. 

Following this a generic face model (shown in Fig. 6.38(c)) was reconstructed from 

dense range scans of the mannequin’s head shown in Fig. 6.38(a). Strategically located 

landmark points were chosen in the range image (Fig. 6.38(b)). An image sequence of 

the moving face of interest was captured, and the feature-points were tracked 

throughout the sequence (Fig. 6.38(d)). To perform the tracking, pre-defined facial 

feature templates could be used and matched with the images. In our experiment we 

picked the features manually for the purpose of illustrating the overall approach. The 

tracked points will be reconstructed using SFM. It is clear that the few selected 

features will result in a very coarse structure of the face, as can be seen in Fig. 6.38(f). 

We will fill in the structure with some generic face shape information provided by the 

dense range data. For this purpose the face model is warped using 3D thin-plate 

splines [Toga99] interpolation to fit the SFM-reconstructed points. With this approach, 

a far more realistic 3D model of the face is obtained. Color texture is mapped into this 

model using the color images as shown in Fig. 6.38(g).The registered thermal imagery 

(6.38(e)) is also overlaid in a similar way (Fig 6.38(h)). From these results, we can see 

that the method was able to recover a significant level of detail of the modeled object. 

In particular, the use of thin-plate splines mapping allowed for a good approximation 

of both global and local shape variations. The technique works well because the 

generic model embeds already an important amount of face shape information. Hence, 

the combination of dense range data and SFM resulted in a fast video-IR-Range face 

reconstruction pipeline. Recently several publications adopting a warping approach to 

face modeling appeared including the work of Chowdhury et al [Chowdhury02], 

Hwang and Lee [Hwang02], and Zhang and Cohen [Zhang02]. 
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                                     (a)                  (b)                          (c) 

  
                                                          (d)                                                      (e) 

 
                                                                    (f)  

       
                                  (g)                                                             (h) 

Fig. 6.38. Multi-modal Face reconstruction from range, color sequences and thermal images. 
The input imagery used will be: range imagery (b) of a generic face (mannequin head (a)), 
from which a 3D model is reconstructed (c); color image sequences from which features are 
extracted and matched (d); and thermal images. A skeleton of the face is reconstructed using 
SFM (f), then a more accurate model is obtained by aligning the generic face model with it. 
The resulting reconstruction is texture mapped with registered color (g) and thermal images.  
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7 CONCLUSIONS AND FUTURE 
WORK  

In summary, this work is an attempt at further automating the registration task, which 

is the main bottleneck in modeling and fusion pipelines. The need for operator 

intervention is very clear in commercial 3D modeling and editing software platforms 

that are increasingly popular for different applications. The scanning systems and their 

associated interfaces require point-picking by the operators, use special fiducial 

markers to find the correspondences, or rely on the controlled motion of either the 

scanning platform or the scanner itself to register the different views.  The ICP 

algorithm is the basis for close-range accurate registration, a task for which it is well 

suited. In this dissertation we have stressed the fundamental limits of this method 

pointing to the non-differentiable nature of the criterion that required a specialized 

optimization heuristic. The question that was at the core of our efforts is: can we 

design a new criterion which balances the two conflicting goals of registration 

accuracy and large range of convergence? We believe that the Gaussian Fields method 

developed in this dissertation offers a good answer to this question. 

7.1 Dissertation Key Points 

The key points forming the backbone of this research are the following 

 

A robust feature saliency descriptor for general point-sets 

 

We developed the saliency measure first in the context of camera motion recovery but 

soon it proved a good feature descriptor for noisy point-sets. For this we relied on the 
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efficient framework of tensor voting to robustly infer the nature of point-features. 

Most other local descriptors use differential surface information, and invariant 

moment invariants that can be computed for point-sets are very computationally 

expensive. Furthermore, higher order invariants are very sensitive to noise. The local 

saliency measure strikes a compromise between good discrimination and robustness. 

Structure information is embedded in an efficient way without any need for explicit 

extraction. Additionally the descriptor is analytically expressed in terms of the point-

sets which will be very helpful later for criterion optimization.   

 

The Gaussian Fields criterion for registration 

 

The Gaussian criterion constitutes the most important contribution of this research. It 

was developed in our effort to overcome several shortcomings of ICP-based 

algorithms. The method has the following advantages over current techniques:    

 

1. The criterion stems from a clear and rigorous formulation of the registration 

task as a search for the maximum overlap between the datasets. We extend the 

overlap to the multi-dimensional space of both position and local attributes. 

This formulation allows for the easy incorporation of intensity and shape 

information in the registration framework. Our formulation derives from the 

use simple combinatorial matching principles, along with mollification and 

relaxation techniques.  

 

2. The Gaussian criterion gives a straightforward understanding of the effect of 

outliers as well and provides a mechanism for their control.  

 

3. An intuitive physical interpretation of the method can be provided by analogy 

to particle physics where points are subject to some exponentially decaying 

force fields. 
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4. The criterion has the nice properties of continuous differentiability and can be 

also shown to be locally convex in the neighborhood of the registered position. 

Such properties allow for the use of the well developed gradient based 

optimization techniques. 

 

5. In addition to easy optimization the criterion allows for the increase of the 

range of convergence by tuning the Gaussian smoothing parameter to have a 

two-stage global scheme. Hence we have with the same framework both 

initialization and refinement without need for explicit point-feature matching. 

 

The Fast Gauss Transform  

 

This powerful numerical technique saves our method from what was going to be its 

main drawback which is the nearly O(N2) computational complexity. By employing 

clever analytic ‘tricks’ it clusters several data points substituting them with a small 

number of field sources and targets, thus achieving a remarkable linear O(N) 

complexity. Computational burden was also in our minds when we chose the local 

descriptors, ruling out some expensive high-order moments.  

 

Multimodal image registration 

 

By extracting local feature maps we are able to employ the method for single and 

multi-sensor image registration. The application of Gaussian framework needs no 

major modifications to extend to this important task. 

 

Applications 

 

Our targeted applications are virtualized reality for simulation reverse engineering and 

design verification, remote inspection and hazardous waste management, and 
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biometrics. In the dissertation we showed examples of 3D multimodal reconstruction 

from color, IR, and range imagery. 

7.2 New Questions, Other applications, and Future 
Research  

Of course this research while claiming an important contribution to the state of the art 

in point-sets registration does not pretend to ‘solve’ the problem in any definitive way. 

Many areas in the 3D registration framework could be improved, especially in the 

optimization part. Gaussian convolution was used in other applications as a way of 

regularizing noisy data and of stabilizing energy minimizing methods. This comes 

usually at the price of a loss to accuracy, and while we showed here that we can 

empirically design a multi-step global scheme to strike a balance between the range of 

convergence and accuracy we cannot actually prove that global convergence is a 

certainty.    

 

This work opens several promising research opportunities. We are particularly 

interested in the application of the Gaussian fields approach to non-rigid alignment 

tasks. In several applications, such as in medical imaging, addressing this problem is 

of great importance. Our work on feature-based multi-modal image registration 

offered a first step in this direction but so far the transformations used were rather 

simple. More complex mappings will need to be considered in many other cases. The 

use of the saliency descriptor will be helpful in this task given its differentiability 

properties which are more important in this case then not invariance, which is not 

possible in case of complex transformations. We think that our framework is well 

suited to video frame-to-frame registration and to in video sequences tracking. For 

these applications the Gaussian Fields method offers a good technique that uses both 

shape and color information to find the correspondences. The formulation of our 

criterion as a multidimensional matching energy function extends beyond our 
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immediate image processing context to general pattern recognition. We think that we 

are far from exhausting the possibilities that this paradigm offers. 
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