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Chapter 34

Visual Servoing

Summary

This chapter introduces visual servo control, using
computer vision data in the servo loop to control the
motion of a robot. We first describe the basic tech-
niques that are by now well established in the field.
We give a general overview of the formulation of the
visual servo control problem, and describe the two
archetypal visual servo control schemes: image-based
and pose-based visual servo control. We then dis-
cuss performance and stability issues that pertain to
these two schemes, motivating advanced techniques.
Of the many advanced techniques that have been de-
veloped, we discuss 2.5-D, hybrid, partitioned, and
switched approaches. Having covered a variety of
control schemes, we deal with target tracking and
controlling motion directly in the joint space and ex-
tensions to under-actuated ground and aerial robots.
We conclude by describing applications of visual ser-
voing in robotics.

Introduction

Visual servo (VS) control refers to the use of com-
puter vision data to control the motion of a robot.
The vision data may be acquired from a camera that
is mounted directly on a robot manipulator or on
a mobile robot, in which case motion of the robot in-
duces camera motion, or the camera can be fixed in
the workspace so that it can observe the robot motion
from a stationary configuration. Other configurations
can be considered, such as for instance several cam-

eras mounted on pan–tilt heads observing the robot
motion. The mathematical development of all these
cases is similar, and in this chapter we will focus pri-
marily on the former, so-called eye-in-hand , case.

Visual servo control relies on techniques from im-
age processing, computer vision, and control theory.
In the present chapter, we will deal primarily with
the issues from control theory, making connections
to previous chapters when appropriate.

34.1 The Basic Components of
Visual Servoing

The aim of all vision-based control schemes is to min-
imize an error e(t), which is typically defined by

e(t) = s(m(t),a)− s∗ . (34.1)

This formulation is quite general, and it encompasses
a wide variety approaches, as we will see below. The
parameters in (34.1) are defined as follows. The vec-
tor m(t) is a set of image measurements (e.g., the
image coordinates of interest points, or the parame-
ters of a set of image lines or segments). These image
measurements are used to compute a vector of k vi-
sual features, s(m(t),a), in which a is a set of param-
eters that represent potential additional knowledge
about the system (e.g., true or approximate camera
intrinsic parameters or a model of the object to be
tracked). The vector s∗ contains the desired values of
the features. Note that the order of the desired and
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CHAPTER 34. VISUAL SERVOING 3

actual values in (34.1) is reversed with respect to the
common convention for feedback control systems.

For now, we consider the case of a fixed goal pose
and a motionless target, i. e., s∗ is constant, and
changes in s depend only on camera motion. Fur-
ther, we consider here the case of controlling the mo-
tion of a camera with six degrees of freedom (e.g.,
a camera attached to the end effector of a six-degree-
of-freedom arm). We will treat more general cases in
later sections.

Visual servoing schemes mainly differ in the way
that s is designed. In Sects. 34.2 and 34.3, we de-
scribe classical approaches, including image-based vi-
sual servo control (IBVS), in which s consists of a set
of features that are immediately available in the im-
age, and pose-based visual servo control (PBVS), in
which s consists of a pose, which must be estimated
from image measurements. Note that in the older
visual servoing literature PBVS is named position-
based, rather than pose-based, visual servoing [3, 2].
We also present in Sect. 34.4 several more-advanced
methods.

Once s is selected, the design of the control scheme
can be quite simple. Perhaps the most straightfor-
ward approach is to design a velocity controller. To
do this, we require the relationship between the time
variation of s and the camera velocity. Let the spatial
velocity of the camera be denoted by vc = (v c, ωc)
where vc is the instantaneous linear velocity of the
origin of the camera frame and ωc is the instanta-
neous angular velocity of the camera frame. The re-
lationship between ṡ and vc is given by

ṡ = Lsvc , (34.2)

in which Ls ∈ Rk×6 is called the interaction matrix
related to s [1]. The term feature Jacobian is also
used somewhat interchangeably in the visual servo
literature [2], but in the present chapter we will use
this latter term to relate the time variation of the
features to the robot’s joint velocity (Sect. 34.9).

Using (34.1) and (34.2) we immediately obtain the
relationship between camera velocity and the time
variation of the error:

ė = Levc , (34.3)

where Le = Ls. Considering vc as the input to the
robot controller, and if we would like, for instance, to
design for an exponential and decoupled decrease of
the error (i. e., ė = −λe) then using (34.3) we obtain
as controller

vc = −λL+
e e , (34.4)

where L+
e ∈ R6×k is the Moore–Penrose pseudo-

inverse of Le, that is, L+
e = (L>e Le)

−1L>e when
k ≥ 6 and Le is of full rank 6. When k = 6, if
detLe 6= 0 it is possible to invert Le, giving the con-
trol vc = −λL−1e e. When k ≤ 6 and Le is of full rank

k, L+
e is given by L+

e = L>e
(
LeL

>
e

)1
. When Le is not

full rank, the numerical value of L+
e can be obtained

from the singular value decomposition of Le. In all
cases, control scheme (34.4) allows ‖ė−λLeL+

e e‖ and
‖vc‖ to be minimal. Note that the desired behavior
ė = −λe is obtained only when LeL

+
e = Ik, where

Ik is the k× k identity matrix, that is, only when Le
if of full rank k, k ≤ 6.

In real visual servo systems, it is impossible to
know perfectly in practice either Le or L+

e . So an ap-
proximation or an estimation of one of these two ma-
trices must be realized. In the sequel, we denote both
the pseudo-inverse of the approximation of the inter-
action matrix and the approximation of the pseudo-

inverse of the interaction matrix by the symbol L̂+
e .

Using this notation, the control law is in fact

vc = −λL̂+
e e = −λL̂+

s (s− s∗) . (34.5)

Closing the loop and assuming that the robot con-
troller is able to realize perfectly vc, that is insert-
ing (34.5) into (34.3), we obtain

ė = −λLeL̂+
e e . (34.6)

This equation characterizes the actual behavior of the
closed-loop system, which is different from the desired

one (ė = −λe) when ever LeL̂
+
e 6= Ik. It is also

the basis of the stability analysis of the system using
Lyapunov theory.

What we have presented above is the basic design
implemented by most visual servo controllers. All
that remains is to fill in the details. How should s be
chosen? What then is the form of Ls? How should we
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estimate L̂+
e ? What are the performance characteris-

tics of the resulting closed-loop system? These ques-
tions are addressed in the remainder of the chapter.
We first describe the two basic approaches, IBVS and
PBVS, whose principles were proposed more than
20 years ago [3]. We then present more-recent ap-
proaches that have improved their performance.

34.2 Image-Based Visual Servo

Traditional image-based control schemes [4, 3] use the
image-plane normalised coordinates of a set of points
to define the vector s. The image measurements m
are usually the pixel coordinates of the set of image
points (although this is not the only possible choice),
and the parameters a in the definition of s = s(m,a)
in (34.1) are nothing but the camera intrinsic param-
eters to go from image measurements expressed in
pixels to the features.

34.2.1 The Interaction Matrix

A three-dimensional world point with coordinates
X = (X,Y, Z) in the camera frame projects into the
image plane of a conventional perspective camera as
a two-dimensional point with normalised coordinates
x = (x, y). More precisely we have{

x = X/Z = (u− cu)/fα

y = Y/Z = (v − cv)/f
, (34.7)

where m = (u, v) gives the coordinates of the image
point expressed in pixel units, and a = (cu, cv, f, α)
is the set of camera intrinsic parameters as defined
in Chap. 032: cu and cv are the coordinates of the
principal point, f is the focal length, and α is the
ratio of the pixel dimensions. The intrinsic parameter
β defined in Chap. 032 has been assumed to be 0 here.
In this case, we take s = x = (x, y), the image plane
coordinates of the point. The details of the imaging
geometry and perspective projection can be found in
many computer vision texts, including [5, 6, 7].

Taking the time derivative of the projection equa-

tions (34.7), we obtain{
ẋ = Ẋ/Z −XŻ/Z2 = (Ẋ − xŻ)/Z

ẏ = Ẏ /Z − Y Ż/Z2 = (Ẏ − yŻ)/Z
. (34.8)

We can relate the velocity of the 3-D point to the
camera spatial velocity using the well-known equa-
tion

Ẋ = −vc − ωc ×X ⇔


Ẋ = −vx − ωyZ + ωzY

Ẏ = −vy − ωzX + ωxZ

Ż = −vz − ωxY + ωyX .

(34.9)
where vc = (vx, vy, vz) and ωc = (ωx, ωy, ωz). In-
serting (34.9) into (34.8), grouping terms, and us-
ing (34.7) we obtain{
ẋ = −vx/Z + xvz/Z + xyωx − (1 + x2)ωy + yωz

ẏ = −vy/Z + yvz/Z + (1 + y2)ωx − xyωy − xωz ,
(34.10)

which can be written

ẋ = Lxvc , (34.11)

where the interaction matrix Lx is given by

Lx =

(
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

)
.

(34.12)
In the matrix Lx, the value Z is the depth of the
point relative to the camera frame. Therefore, any
control scheme that uses this form of the interaction
matrix must estimate or approximate the value of
Z. Similarly, the camera intrinsic parameters are in-
volved in the computation of x and y. Thus L+

x can-
not be directly used in (34.4), and an estimation or

an approximation L̂+
x must be used, as in (34.5). We

discuss this in more detail below.
To control the six degrees of freedom, at least three

points are necessary (i. e., we require k ≥ 6). If we
use the feature vector x = (x1,x2,x3), by merely
stacking interaction matrices for three points we ob-
tain

Lx =

Lx1

Lx2

Lx3

 .
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In this case, there will exist some configurations
for which Lx is singular [8]. Furthermore, there exist
four distinct camera poses for which e = 0, i. e., four
global minima exist for the error function ‖e‖, and it
is impossible to differentiate them [9]. For these rea-
sons, more than three points are usually considered.

34.2.2 Approximating the Interaction
Matrix

There are several choices available for constructing

the estimate L̂+
e to be used in the control law. One

popular scheme is of course to choose L̂+
e = L+

e if
Le = Lx is known, that is if the current depth Z
of each point is available [2]. In practice, these pa-
rameters must be estimated at each iteration of the
control scheme. The basic IBVS methods use classi-
cal pose-estimation methods (see Chap. 032 and the
beginning of Sect. 34.3). Another popular approach

is to choose L̂+
e = L+

e∗ where Le∗ is the value of Le for

the desired position e = e∗ = 0 [1]. In this case, L̂+
e

is constant, and only the desired depth of each point
has to be set, which means no varying 3-D param-
eters have to be estimated during the visual servo.

Finally, the choice L̂+
e = (Le/2 + Le∗/2)

+
has been

proposed [10]. Since Le is involved in this method,
the current depth of each point also has to be avail-
able.

We illustrate the behavior of these control schemes
with an example. The goal is to position the cam-
era so that it observes a square centered in the image
(see Fig. 34.1). We define s to include the x and
y coordinates of the four points forming the square.
Note that the initial camera pose has been selected
far away from the desired pose, particularly with re-
gard to the rotational motions, which are known to
be the most problematic for IBVS. In the simulations
presented in the following, no noise or modeling er-
rors have been introduced in order to allow compar-
ison of different behaviors in perfect conditions. The
accompanying videos show experimental results ob-
tained using an Adept Viper robot arm and the ViSP
library [11]. The videos all show the same task being
performed from the same initial conditions, and only

the control approach varies.

The results obtained by using L̂+
e = L+

e∗ are given
in Fig. 34.2 and Video 34.1. Note that despite the
large displacement that is required the system con-
verges. However, neither the behavior in the image,
nor the computed camera velocity components, nor
the 3-D trajectory of the camera present desirable
properties far from the convergence (i. e., for the first
30 or so iterations).

The results obtained using L̂+
e = L+

e are given
in Fig. 34.3 and Video 34.2. In this case, the trajec-
tories of the points in the image are almost straight
lines, which means that the points never leave the
camera’s field of view. However the behavior induced
in the camera frame is even less satisfactory than for
the case of L̂+

e = L+
e∗ . The large camera velocities at

the beginning of the servo indicate that the condition

number of L̂+
e is high at the start of the trajectory,

and the camera trajectory is far from a straight line.

The choice L̂+
e = (Le/2 + Le∗/2)

+
provides good

performance in practice. Indeed, as can be seen
in Fig. 34.4, the camera velocity components do not
include large oscillations, which provides a smooth
trajectory in both the image and in 3-D space (see
also Video 34.3).

34.2.3 A Geometrical Interpretation
of IBVS

It is quite easy to provide a geometric interpretation
of the behavior of the control schemes defined above.
The example illustrated in Fig. 34.5 corresponds to
a pure rotation around the optical axis from the ini-
tial configuration (shown in blue) to the desired con-
figuration of four coplanar points parallel to the im-
age plane (shown in red).

As explained above, using L+
e in the control scheme

attempts to ensure an exponential decrease of the er-
ror e. This means that, when x and y image point
coordinates compose this error, the points’ trajecto-
ries in the image follow straight lines from their ini-
tial to their desired positions, when this is possible.
This leads to the image motion plotted in green in
the figure. The camera motion to realize this im-
age motion can be easily deduced and is indeed com-
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a) b) c)

Figure 34.1: Example of positioning task: (a) the desired camera pose with respect to a simple target, (b)
the initial camera pose, and (c) the corresponding initial and desired image of the target
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Figure 34.2: IBVS system behavior using s = (x1, y1, . . . , x4, y4) and L̂+
e = L+

e∗ : (a) image point trajec-
tories including the trajectory of the center of the square, which is not used in the control scheme, (b) vc
components (cm/s and deg/s) computed at each iteration of the control scheme, and (c) the 3-D trajectory
of the camera optical center expressed in the desired camera frame Rc∗ (cm)
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Figure 34.3: IBVS system behavior using s = (x1, y1, . . . , x4, y4) and L̂+
e = L+

e
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Figure 34.4: IBVS system behavior using s = (x1, y1, . . . , x4, y4) and L̂+
e = (Le/2 + L∗e/2)

+
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Figure 34.5: Geometrical interpretation of IBVS:
going from the blue position to the red one. In
green, image motion when L+

e is used in the con-
trol scheme; in blue, when L+

e∗ is used; and in black

when
(
Le/2 +Le∗/2

)+
is used (see the text for more

details)

posed of a rotational motion around the optical axis,
but combined with a retreating translational motion
along the optical axis [12]. This unexpected motion
is due to the choice of the features and the form of
the third and sixth columns in the interaction ma-
trix, which induces a coupling between the features
and the two degrees of freedom involved (vz and ωz).
If the rotation between the initial and desired con-
figurations is very large, this phenomenon is ampli-
fied, and leads to a particular case for a rotation of
π radians where no rotational motion at all will be in-
duced by the control scheme [13]. On the other hand,
when the rotation is small, this phenomenon almost
disappears. To conclude, the behavior is locally sat-
isfactory (i. e., when the error is small), but it can
be unsatisfactory when the error is large. As we will
see below, these results are consistent with the local
asymptotic stability results that can be obtained for
IBVS.

If instead we use L+
e∗ in the control scheme, the

image motion generated can easily be shown to be the
blue one plotted in Fig. 34.5. Indeed, if we consider

the same control scheme as before but starting from
s∗ to reach s, we obtain

vc = −λL+
e∗(s∗ − s) ,

which again induces straight-line trajectories from
the red points to the blue ones, causing the image
motion plotted in brown. Going back to our prob-
lem, the control scheme computes a camera velocity
that is exactly the opposite one

vc = −λL+
e∗(s− s∗) ,

and thus generates the image motion plotted in red
at the red points. Transformed to the blue points,
the camera velocity generates the blue image motion
and corresponds once again to a rotational motion
around the optical axis, combined now with an un-
expected forward motion along the optical axis. The
same analysis can be done as before for the case of
large or small errors. We can add that, as soon as
the error decreases significantly, both control schemes
get closer, and tend to the same one (since Le = Le∗

when e = e∗) with a nice behavior characterized with
the image motion plotted in black and a camera mo-
tion composed of only a rotation around the optical
axis when the error tends towards zero.

If we instead use L̂+
e =

(
Le/2+Le∗/2

)+
, it is intu-

itively clear that considering the mean of Le and Le∗

generates the image motion plotted in black, even
when the error is large. In all cases but the rotation
of π radians, the camera motion is now a pure rota-
tion around the optical axis, without any unexpected
translational motion.

34.2.4 Stability Analysis

We now consider the fundamental issues related to
the stability of IBVS. To assess the stability of the
closed-loop visual servo systems, we will use Lya-
punov analysis. In particular, consider the candidate
Lyapunov function defined by the squared error norm
L = 1

2‖e(t)‖2, whose derivative is given by

L̇ = e>ė

= −λe>LeL̂+
e e
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since ė is given by (34.6). The global asymptotic
stability of the system is thus obtained when the fol-
lowing sufficient condition is satisfied:

LeL̂
+
e > 0 . (34.13)

If the number of features is equal to the number of
camera degrees of freedom (i. e., k = 6), and if the
features are chosen and the control scheme designed

so that Le and L̂+
e are of full rank 6, then the condi-

tion (34.13) is satisfied if the approximations involved

in L̂+
e are not too coarse.

As discussed above, for most IBVS approaches we
have k > 6. Therefore the condition (34.13) can

never be ensured since LeL̂
+
e ∈ Rk×k is at most of

rank 6, and thus LeL̂
+
e has a nontrivial null space.

In this case, configurations such that e ∈ ker L̂+
e

correspond to local minima. Reaching such a local
minimum is illustrated in Fig. 34.6. As can be seen
in Fig. 34.6d, each component of e has a nice ex-
ponential decrease with the same convergence speed,
causing straight-line trajectories to be realized in the
image, but the error reached is not exactly zero, and
it is clear from Fig. 34.6c that the system has been at-
tracted to a local minimum far away from the desired
configuration. Thus, only local asymptotic stability
can be obtained for IBVS.

To study local asymptotic stability when k > 6,

let us first define a new error e′ with e′ = L̂+
e e. The

time derivative of this error is given by

ė′ = L̂+
e ė+

.

L̂+
e e

= (L̂+
e Le +O)vc ,

where O ∈ R6×6 is equal to 0 when e = 0,

whatever the choice of L̂+
e [14]. Using the control

scheme (34.5), we obtain

ė′ = −λ(L̂+
e Le +O)e′ ,

which is known to be locally asymptotically stable in
a neighborhood of e = e∗ = 0 if

L̂+
e Le > 0 , (34.14)

where L̂+
e Le ∈ R6×6. Indeed, only the linearized sys-

tem ė′ = −λL̂+
e Lee

′ has to be considered if we are
interested in the local asymptotic stability [15].

Once again, if the features are chosen and the con-

trol scheme designed so that Le and L̂+
e are of full

rank 6, then condition (34.14) is ensured if the ap-

proximations involved in L̂+
e are not too coarse.

To end the demonstration of local asymptotic sta-
bility, we must show that there does not exist any

configuration e 6= e∗ such that e ∈ ker L̂+
e in a small

neighborhood of e∗ and in a small neighborhood of
the corresponding pose p∗. Such configurations cor-
respond to local minima where vc = 0 and e 6= e∗. If
such a pose p would exist, it is possible to restrict the
neighborhood around p∗ so that there exists a camera
velocity v to reach p∗ from p. This camera velocity
would imply a variation of the error ė = Lev. How-

ever, such a variation cannot belong to ker L̂+
e since

L̂+
e Le > 0. Therefore, we have vc = 0 if and only if
ė = 0, i. e., e = e∗, in a neighborhood of p∗.

Even though local asymptotic stability can be en-
sured when k > 6, we recall that global asymptotic
stability cannot be ensured. For instance, as illus-
trated in Fig. 34.6, there may exist local minima

corresponding to configurations where e ∈ ker L̂+
e ,

which are outside of the neighborhood considered
above. Determining the size of the neighborhood in
which stability and the convergence are ensured is
still an open issue, even if this neighborhood is sur-
prisingly quite large in practice.

34.2.5 IBVS with a Stereo Vision Sys-
tem

It is straightforward to extend the IBVS approach to
a multicamera system. If a stereo vision system is
used, and a world point is visible in both left and
right images (see Fig. 34.7), it is possible to use as
visual features

s = xs = (xl,xr) = (xl, yl, xr, yr)

i. e., to represent the point by just stacking in s the
x and y coordinates of the observed point in the left



CHAPTER 34. VISUAL SERVOING 10

IRISAIRISAIRISAIRISAIRISAIRISAIRISAIRISAIRISA/INRI/INRI/INRI/INRI/INRI/INRI/INRI/INRI/INRIA RenA RenA RenA RenA RenA RenA RenA RenA Rennes vnes vnes vnes vnes vnes vnes vnes vnes vue exue exue exue exue exue exue exue exue exterieterieterieterieterieterieterieterieterieureureureureureureureureureIRISA/INRIA Rennes vue exterieure IRISAIRISAIRISAIRISAIRISAIRISAIRISAIRISAIRISA/INRI/INRI/INRI/INRI/INRI/INRI/INRI/INRI/INRI/INRIA RenA RenA RenA RenA RenA RenA RenA RenA Rennes vnes vnes vnes vnes vnes vnes vnes vnes vue exue exue exue exue exue exue exue exue exterieterieterieterieterieterieterieterieterieureureureureureureureureureIRISA/INRIA Rennes vue exterieure IRISAIRISAIRISAIRISAIRISAIRISAIRISAIRISAIRISA/INRI/INRI/INRI/INRI/INRI/INRI/INRI/INRI/INRI/INRIA RenA RenA RenA RenA RenA RenA RenA RenA RenA Rennes vnes vnes vnes vnes vnes vnes vnes vnes vue exue exue exue exue exue exue exue exue exterieterieterieterieterieterieterieterieterieterieureureureureureureureureureureIRISA/INRIA Rennes vue exterieure

a) b) c)

v0

v1

v2

v3

v4

v5

0 20 40

c0

c1

c2

c3

c4

c5

c6

c7

60 80 100

d)
0.05

0

–0.05

–0.1

–0.15

–0.2

–0.25
0 20 40 60 80 100

e)
2

1.5

1

0.5

0

–0.5

–1

–1.5

Figure 34.6: IBVS reaching a local minimum using s = (x1, y1, . . . , x4, y4) and L̂+
e = L+

e : (a) the initial
configuration, (b) the desired one, (c) the configuration reached after the convergence of the control scheme,
(d) the evolution of the error e at each iteration of the control scheme, and (e) the evolution of the six
components of the camera velocity vc



CHAPTER 34. VISUAL SERVOING 11

and right images [16]. However, care must be taken
when constructing the corresponding interaction ma-
trix since the form given in (34.11) is expressed in
either the left or right camera frame. More precisely,
we have {

ẋl = Lxl
vl ,

ẋr = Lxr
vr ,

where vl and vr are the spatial velocity of the left and
right camera, respectively, and where the analytical
form of Lxl

and Lxr
are given by (34.12).
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Figure 34.7: A stereo vision system

By choosing a sensor frame rigidly linked to the
stereo vision system, we obtain

ẋs =

(
ẋl

ẋr

)
= Lxsvs ,

where the interaction matrix related to xs can be
determined using the spatial motion transform ma-
trix V defined in Chap. 002 to transform velocities
expressed in the left or right cameras frames to the
sensor frame. We recall that V is given by

V =

(
R [t]×R
0 R

)
, (34.15)

where [t]× is the skew-symmetric matrix associated
to the vector t and where (R, t) ∈ SE(3) is the rigid-
body transformation from the camera to the sensor
frame. The numerical values for these matrices are di-
rectly obtained from the calibration step of the stereo
vision system. Using this equation, we obtain

Lxs =

(
Lxl

lVs
Lxr

rVs

)
.

Note that Lxs ∈ R4×6 is always of rank 3 because
of the epipolar constraint that links the perspective
projection of a 3-D point in a stereo vision system
(see Fig. 34.7). Another simple interpretation is that
a 3-D point is represented by three independent pa-
rameters, which makes it impossible to find more
than three independent parameters using any sensor
observing that point.

To control the six degrees of freedom of the system,
it is necessary to consider at least three points, as the
rank of the interaction matrix considering only two
points is 5.

Using a stereo vision system, since the 3-D coor-
dinates of any point observed in both images can
be easily estimated by a simple triangulation pro-
cess it is possible and quite natural to use these 3-
D coordinates in the features set s. Such an ap-
proach would be, strictly speaking, a position-based
approach, since it would require 3-D parameters in s.

34.2.6 IBVS with Cylindrical Coordi-
nates of Image Points

In the previous sections, we have considered the
Cartesian coordinates of image points. As proposed
in [17] it may be useful to consider instead the cylin-
drical coordinates γ = (ρ, θ) of the image points in-
stead of their Cartesian coordinates x = (x, y). They
are given by

ρ =
√
x2 + y2 , θ = arctan

y

x

from which we deduce

ρ̇ = (xẋ+ yẏ)/ρ , θ̇ = (xẏ − yẋ)/ρ2 .

Using (34.11) and then substituting x by ρ cos θ and
y by ρ sin θ, we obtain immediately

Lγ =

(−c
Z

−s
Z

ρ
Z (1 + ρ2)s −(1 + ρ2)c 0

s
ρZ

−c
ρZ 0 c

ρ
s
ρ −1

)
,

(34.16)

where c = cos θ and s = sin θ. Note that θ is not
defined when the image point lies at the principal
point (where x = y = ρ = 0). It is thus not surprising
that the interaction matrix Lγ is singular in that case.
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If we go back to the example depicted in Fig. 34.5,
the behavior obtained using cylindrical coordinates
will be the expected one, that is a pure rotation
around the optical axis, by using either L+

e , L+
e∗

or

(Le/2 + Le∗/2)
+

in the control scheme. This is due
to the form of the third and sixth columns of the in-
teraction matrix (34.16), which leads to a decoupled
system.

34.2.7 IBVS with Other Geometrical
Features

In the previous sections, we have only considered im-
age point coordinates in s. Other geometrical primi-
tives can of course be used. There are several reasons
to do so. Firstly, the scene observed by the camera
cannot always be described merely by a collection
of points, in which case the image processing pro-
vides other types of measurements, such as a set of
straight lines or the contours of an object. Secondly,
richer geometric primitives may ameliorate the de-
coupling and linearizing issues that motivate the de-
sign of partitioned systems (see Sect. 34.4). Finally,
the robotic task to be achieved may be expressed in
terms of virtual linkages (or fixtures) between the
camera and the observed objects [18, 19], sometimes
expressed directly by constraints between primitives,
such as point-to-line [20] (which means that an ob-
served point must lie on a specified line).

It is possible to determine the interaction matrix
related to the perspective projection of a large class
of geometrical primitives, such as segments, straight
lines, spheres, circles, and cylinders. The results are
given in [1] and [18]. Recently, the analytical form of
the interaction matrix related to any image moments
corresponding to planar objects has been computed.
This makes it possible to consider planar objects of
any shape [21]. If a collection of points is measured
in the image, moments can also be used [22]. In both
cases, moments allow the use of intuitive geometrical
features, such as the center of gravity or the orienta-
tion of an object. By selecting an adequate combi-
nation of moments, it is then possible to determine
partitioned systems with good decoupling and lin-
earizing properties [21, 22].

Note that, for all these features (geometrical prim-
itives, moments), the depth of the primitive or of
the object considered appears in the coefficients of
the interaction matrix related to the translational de-
grees of freedom, as was the case for the image points.
An estimation of this depth is thus generally neces-
sary (see Sect. 34.6). In a few situations, for instance
with a suitable normalization of moments [22], only
the constant desired depth appears in the interaction
matrix, which makes estimating depth unnecessary.

34.2.8 Non-perspective Cameras

The vast majority of cameras we use, and our own
eyes, are characterized by a perspective projection
model which closely approximate the ideal pinhole
imaging model. Such cameras have a narrow field of
view, typically less than one half hemisphere. For
robotics it is often advantageous to have a large field
of view and this can be achieved using a fisheye lens
camera or a catadioptric (lens and mirror system)
camera (often referred to as a panoramic camera).
For these non-perspective sensors the interaction ma-
trix of any visual feature has a different form to those
discussed above, such as (34.12) and (34.16) for an
image point.

Rather than determine the interaction matrix of
visual features expressed in the image plane of non-
perspective cameras, we can transform the images
from these cameras to the view that would be seen
by an ideal spherical camera. The spherical model
projects world points onto a unit sphere, the intersec-
tion of the unit sphere with the ray from the world
point to the centre of the sphere. Such an ideal cam-
era has the largest possible field of view. The unified
imaging model [23] shown in Figure 34.8 provides a
general mechanism to project a world point to the
image plane of a large class of cameras. To be pre-
cise it includes all central projection cameras and this
includes perspective and some catadioptric cameras
with particular mirror shapes, but in practice it is a
very good approximation to non-central cameras in-
cluding fisheye and general catadioptric systems. The
mechanism of this unified model can also be used to
reproject points from these varied image planes to a
spherical camera.
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Figure 34.8: Unified imaging model of Geyer and
Daniilidis (from [7] with permission)

Referring to Figure 34.8 the world point P is rep-
resented by the vector X = (X, Y, Z) in the camera
frame, and is projected onto the surface of the unit
sphere at the point xs = (xs, ys, zs) with

xs =
X

R
, ys =

Y

R
, and zs =

Z

R

where R =
√
X2 + Y 2 + Z2 is the distance from the

sphere centre to the world point.
The interaction matrix of xs is derived in essen-

tially the same manner as for the perspective camera,
and it can be shown to be [24]

Lxs =

(x2s − 1)/R xsys/R xszs/R 0 −zs ys
xsys/R (y2s − 1)/R yszs/R zs 0 −xs
xszs/R yszs/R (z2s − 1)/R −ys xs 0

 .

(34.17)
Note that R can be expressed as a function of the
point depth Z by using R = Z

√
1 + x2s + y2s . There-

fore, the general spherical model does not add any
supplementary unknown in the interaction matrix.

A particular advantage of the spherical model is
that for pure camera rotation the shape of an object
is invariant, which eases determining visual features
that are only linked to translational motions.

34.2.9 Direct Estimation

In the previous sections, we have focused on the ana-
lytical form of the interaction matrix. It is also pos-

sible to estimate its numerical value directly using
either an offline learning step, or an online estima-
tion scheme.

All the methods proposed to estimate the inter-
action matrix numerically rely on the observation of
a variation of the features due to a known or mea-
sured camera motion. More precisely, if we measure
a feature’s variation ∆s due to a camera motion ∆vc,
we have from (34.2):

Ls∆vc = ∆s ,

which provides k equations while we have k × 6 un-
known values in Ls. Using a set of N independent
camera motions with N > 6, it is thus possible to
estimate Ls by solving

LsA = B ,

where the columns of A ∈ R6×N and B ∈ Rk×N are,
respectively, formed from the set of camera motions
and the set of corresponding features variations. The
least-square solution is of course given by

L̂s = BA+ . (34.18)

Methods based on neural networks have also been
developed to estimate Ls [25, 26]. It is also possible
to estimate the numerical value of L+

s directly, which
in practice provides a better behavior [27]. In this
case, the basic relation is

L+
s ∆s = ∆vc ,

which provides six equations. Using a set of N mea-
surements, with N > k, we now obtain

L̂+
s = AB+ . (34.19)

In the first case (34.18), the six columns of Ls are
estimated by solving six linear systems, while in the
second case (34.19), the k columns of L+

s are esti-
mated by solving k linear systems, which explains
the difference in the results.

Estimating the interaction matrix online can be
viewed as an optimization problem, and consequently
a number of researchers have investigated approaches
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that derive from optimization methods. These meth-
ods typically discretize the system equation (34.2),
and use an iterative updating scheme to refine the

estimate of L̂s at each stage. One such online and
iterative formulation uses the Broyden update rule
given by [28, 29]:

L̂s(t+ 1) = L̂s(t) +
α

∆v>c ∆vc

[
∆x− L̂s(t)∆vc

]
∆v>c ,

where α defines the update speed. This method has
been generalized to the case of moving objects in [30].

The main interest of using such numerical estima-
tions in the control scheme is that it avoids all the
modeling and calibration steps. It is particularly use-
ful when using features whose interaction matrix is
not available in analytical form. For instance, in [31],
the main eigenvalues of the principal component anal-
ysis of an image have been considered in a visual ser-
voing scheme. The drawback of these methods is that
no theoretical stability and robustness analysis can be
made.

34.3 Pose-Based Visual Servo

Pose-based control schemes (PBVS) [3, 32, 33] use the
pose of the camera with respect to some reference co-
ordinate frame to define s. Computing this pose from
a set of measurements in one image necessitates the
camera intrinsic parameters and the 3-D model of the
object observed to be known. This classic computer
vision problem is called the 3-D localization problem.
While this problem is beyond the scope of the present
chapter, many solutions have been presented in the
literature [34, 35] and its basic principles are recalled
in Chap. 032.

It is then typical to define s in terms of the param-
eterization used to represent the camera pose. Note
that the parameters a involved in the definition (34.1)
of s are now the camera intrinsic parameters and the
3-D model of the object.

It is convenient to consider three coordinate
frames: the current camera frame Fc, the desired
camera frame Fc∗ , and a reference frame Fo attached
to the object. We adopt here the standard notation
of using a leading superscript to denote the frame

with respect to which a set of coordinates is defined.
Thus, the coordinate vectors cto and c∗to give the co-
ordinates of the origin of the object frame expressed
relative to the current camera frame, and relative to
the desired camera frame, respectively. Furthermore,
let R = c∗Rc be the rotation matrix that gives the
orientation of the current camera frame relative to
the desired frame.

We can define s to be (t, θu), in which t is a trans-
lation vector, and θu gives the angle/axis parameter-
ization for the rotation. We now discuss two choices
for t, and give the corresponding control laws.

If t is defined relative to the object frame Fo, we
obtain s = (cto, θu), s∗ = (c

∗
to, 0), and e = (cto −

c∗to, θu). In this case, the interaction matrix related
to e is given by

Le =

(
−I3 [cto]×
0 Lθu

)
, (34.20)

in which I3 is the 3 × 3 identity matrix and Lθu is
given by [36]

Lθu = I3 −
θ

2
[u]× +

1− sinc θ

sinc2
θ

2

 [u]
2
× , (34.21)

where sinc x is the sinus cardinal defined such that
x sinc x = sinx and sinc 0 = 1.

Following the development in Sect. 34.1, we obtain
the control scheme

vc = −λL̂−1e e

since the dimension k of s is six, that is, the number
of camera degrees of freedom. By setting

L̂−1e =

(
−I3 [cto]× L−1θu
0 L−1θu

)
, (34.22)

we obtain after simple developments:{
vc = −λ

[
c∗to − cto

]
+
[c
to
]
×θu

ωc = −λθu
. (34.23)

since Lθu is such that L−1θuθu = θu.
Ideally, that is, if the pose parameters are perfectly

estimated, the behavior of e will be the expected one
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(ė = −λe). The choice of e causes the rotational
motion to follow a geodesic with an exponential de-
creasing speed and causes the translational parame-
ters involved in s to decrease at the same speed. This
explains the nice exponential decrease of the camera
velocity components in Fig. 34.9. Furthermore, the
trajectory in the image of the origin of the object
frame follows a straight line (here the center of the
four points has been selected as this origin). On the
other hand, the camera trajectory does not follow
a straight line (see Video 34.4).

Another PBVS scheme can be designed by using
s = (c

∗
tc, θu). In this case, we have s∗ = 0, e = s,

and

Le =

(
R 0
0 Lθu

)
. (34.24)

Note the decoupling between translational and rota-
tional motions, which allows us to obtain a simple
control scheme {

vc = −λR> c∗tc

ωc = −λ θu
. (34.25)

In this case, as can be seen in Fig. 34.10 and in
Video 34.5, if the pose parameters involved in (34.25)
are estimated perfectly, the camera trajectory is a
straight line, while the image trajectories are less sat-
isfactory than before. Some particular configurations
can be found which will lead to some points leaving
the camera field of view during the robot motion.

The stability properties of PBVS seem quite at-
tractive. Since Lθu given in (34.21) is nonsingular
when θ 6= 2kπ, ∀k ∈ Z∗, we obtain from (34.13)
the global asymptotic stability of the system since

LeL̂
−1
e = I6, under the strong hypothesis that all the

pose parameters are perfect. This is true for both
methods presented above, since the interaction ma-
trices given in (34.20) and (34.24) are full rank when
Lθu is nonsingular.

With regard to robustness, feedback is computed
using estimated quantities that are a function of the
image measurements and the system calibration pa-
rameters. For the first method presented in Sect. 34.3
(the analysis for the second method is analogous),
the interaction matrix given in (34.20) corresponds
to perfectly estimated pose parameters, while the real

one is unknown since the estimated pose parameters
may be biased due to calibration errors, or inaccurate
and unstable due to noise [13]. The true positivity
condition (34.13) should in fact be written:

LêL̂
−1
ê > 0 , (34.26)

where L̂−1ê is given by (34.22) but where Lê is un-
known, and not given by (34.20). Indeed, even small
errors in computing the position of points in the im-
age can lead to pose errors which will significantly
impact the accuracy and the stability of the system
(see Fig. 34.11).

34.4 Advanced Approaches

34.4.1 Hybrid VS

Suppose we have access to a control law for ωc, such
as the one used in PBVS [see (34.23) or (34.25)]:

ωc = −λ θu . (34.27)

How could we use this in conjunction with IBVS?
Considering a feature vector st and an error et de-

voted to control the translational degrees of freedom,
we can partition the interaction matrix as follows

ṡt = Lstvc

=
(
Lv Lω

)(vc
ωc

)
= Lvvc + Lωωc .

Now, setting ėt = −λet, we can solve for the desired
translational control input as

−λet = ėt = ṡt = Lvvc + Lωωc ,

⇒ vc = −L+
v (λet + Lωωc) . (34.28)

We can think of the quantity (λet + Lωωc) as
a modified error term, one that combines the orig-
inal error with the error that would be induced by
the rotational motion due to ωc. The translational
control input vc = −L+

v (λet + Lωωc) will drive this
error to zero. The method known as 2.5-D visual
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Figure 34.9: PBVS system behavior using s = (cto, θu)
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Figure 34.10: PBVS system behavior using s = (c
∗
tc, θu)
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Figure 34.11: Two different camera poses (a, c) that provide almost the same image of four coplanar points
shown overlaid in (b)
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servo [36] was the first to exploit such a partition-
ing in combining IBVS and PBVS. More precisely,
in [36], st has been selected as the coordinates of an
image point, and the logarithm of its depth, so that
Lv is a triangular always invertible matrix. More
precisely, we have st = (x, logZ), s∗t = (x∗, logZ∗),
et = (x− x∗, log ρZ) where ρZ = Z/Z∗, and

Lv =
1

Z∗ρZ

−1 0 x
0 −1 y
0 0 −1



Lω =

 xy −(1 + x2) y
1 + y2 −xy −x
−y x 0

 .

Note that the ratio ρZ can be obtained directly from
the partial pose estimation algorithm that will be de-
scribed in Sect. 34.6.

If we come back to the usual global representation
of visual servo control schemes, we have e = (et, θu)
and Le given by

Le =

(
Lv Lω
0 Lθu

)
,

from which we immediately obtain the control
law (34.27) and (34.28) by applying (34.5).

The behavior obtained using this choice for st is
shown in Fig. 34.12 and Video 34.6. Here, the point
that has been considered in st is the center of grav-
ity xg of the target. We note the image trajectory
of that point, which is a straight line as expected,
and the nice decreasing of the camera velocity com-
ponents, which makes this scheme very similar to the
first PBVS one.

As for stability, it is clear that this scheme is glob-
ally asymptotically stable in perfect conditions. Fur-
thermore, thanks to the triangular form of the inter-
action matrix Le, it is possible to analyze the stabil-
ity of this scheme in the presence of calibration errors
using the partial pose-estimation algorithm that will
be described in Sect. 34.6 [37]. Finally, the only un-
known constant parameter involved in this scheme,
that is Z∗, can be estimated online using adaptive
techniques [38].

Other hybrid schemes can be designed. For in-
stance, in [39], the third component of st is different
and has been selected so that all the target points
remain in the camera field of view as far as possi-
ble. Another example has been proposed in [40]. In
that case, s is selected as s = (c

∗
tc,xg, θuz) which

provides with a block-triangular interaction matrix
of the form:

Le =

(
R 0
L′v L′ω

)
where L′v and L′ω can easily be computed. This
scheme is such that, under perfect conditions, the
camera trajectory is a straight line (since c∗tc is a part
of s), and the image trajectory of the center of grav-
ity of the object is also a straight line (since xg is
also a part of s). The translational camera degrees
of freedom are devoted to realize the 3-D straight
line, while the rotational camera degrees of freedom
are devoted to realize the 2-D straight line and also
compensate the 2-D motion of xg due to the trans-
lational motion. As can be seen in Fig. 34.13 and
Video 34.7, this scheme is particularly satisfactory in
practice.

Finally, it is possible to combine 2-D and 3-D fea-
tures in different ways. For instance, in [41], it has
been proposed to use in s the 2-D homogeneous co-
ordinates of a set of image points expressed in pix-
els multiplied by their corresponding depth: s =
(u1Z1, v1Z1, Z1, · · · , unZn, vnZn, Zn). As for classi-
cal IBVS, we obtain in this case a set of redundant
features, since at least three points have to be used
to control the six camera degrees of freedom (here
k ≥ 9). However, it has been demonstrated in [42]
that this selection of redundant features is free of at-
tractive local minima.

34.4.2 Partitioned VS

The hybrid visual servo schemes described above have
been designed to decouple the rotational motions
from the translational ones by selecting adequate vi-
sual features defined in part in 2-D, and in part in
3-D (which is why they have been called 2.5-D visual
servoing). This work has inspired some researchers
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Figure 34.12: 2.5D VS system behavior using s = (xg, log (Zg), θu)
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Figure 34.13: 2.5D VS system behavior using s = (c
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tc,xg, θuz)
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to find features that exhibit similar decoupling prop-
erties but using only features expressed directly in
the image. More precisely, the goal is to find six fea-
tures such that each is related to only one degree of
freedom (in which case the interaction matrix is a di-
agonal matrix). The Grail is to find a diagonal inter-
action matrix whose elements are constant, as near
as possible to the identity matrix, leading to a pure,
direct, and simple linear control problem.

The first work in this area partitioned the inter-
action matrix to isolate motion related to the optic
axis [12]. Indeed, whatever the choice of s, we have

ṡ = Lsvc

= Lxyvxy + Lzvz

= ṡxy + ṡz

in which Lxy includes the first, second, fourth, and
fifth columns of Ls, and Lz includes the third and
sixth columns of Ls. Similarly, vxy = (vx, vy, ωx, ωy)
and vz = (vz, ωz). Here, ṡz = Lzvz gives the compo-
nent of ṡ due to the camera motion along and rotation
about the optic axis, while ṡxy = Lxyvxy gives the
component of ṡ due to velocity along and rotation
about the camera x and y axes.

Proceeding as above, by setting ė = −λe we obtain

−λe = ė = ṡ = Lxyvxy + Lzvz,

which leads to

vxy = −L+
xy[λe(t) + Lzvz] .

As before, we can consider [λe(t) + Lzvz] as a mod-
ified error that incorporates the original error while
taking into account the error that will be induced
by vz.

Given this result, all that remains is to choose s
and vz. As for basic IBVS, the coordinates of a col-
lection of image points can be used in s, while two
new image features can be defined to determine vz.

• Define α, with 0 ≤ α < 2π, as the angle between
the horizontal axis of the image plane and the
directed line segment joining two feature points.

It is clear that α is closely related to the
rotation around the optic axis.

• Define σ2 to be the area of the polygon defined
by these points. Similarly, σ2 is closely related
to the translation along the optic axis.

Using these features, vz has been defined in [12] as{
vz = λvz ln σ∗

σ ,

ωz = λωz (α∗ − α) .

34.5 Performance Optimiza-
tion and Planning

In some sense, partitioned methods represent an ef-
fort to optimize system performance by assigning dis-
tinct features and controllers to individual degrees of
freedom. In this way, the designer performs a sort
of offline optimization when allocating controllers to
degrees of freedom. It is also possible to explicitly
design controllers that optimize various system per-
formance measures. We describe a few of these in
this section.

34.5.1 Optimal Control and Redun-
dancy Framework

An example of such an approach is given in [43]
and [44], in which linear quadratic Gaussian (LQG)
control design is used to choose gains that minimize
a linear combination of state and control inputs. This
approach explicitly balances the trade-off between
tracking errors (since the controller attempts to drive
s − s∗ to zero) and robot motion. A similar control
approach is proposed in [45] where joint limit avoid-
ance is considered simultaneously with the position-
ing task.

It is also possible to formulate optimality criteria
that explicitly express the observability of robot mo-
tion in the image. For example, the singular value de-
composition of the interaction matrix reveals which
degrees of freedom are most apparent and can thus be
easily controlled, while the condition number of the
interaction matrix gives a kind of global measure of
the visibility of motion. This concept has been called
resolvability in [46] and motion perceptibility in [47].
By selecting features and designing controllers that
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maximize these measures, either along specific de-
grees of freedom or globally, the performance of the
visual servo system can be improved.

The constraints considered to design the control
scheme using the optimal control approach may be
contradictory in some cases, leading the system to fail
due to local minima in the objective function to be
minimized. For example, it may happen that the mo-
tion produced to move away from a robot joint limit
is exactly the opposite of the motion produced toward
the desired pose, which results in a zero global mo-
tion. To avoid this potential problem, it is possible to
use the gradient projection method, which is classical
in robotics. Applying this method to visual servoing
has been proposed in [1] and [19]. The approach con-
sists of projecting the secondary constraints es onto
the null space of the vision-based task e so that they
have no effect on the regulation of e to 0:

eg = L̂+
e e+ Pe es ,

where eg is the new global task considered and Pe =

(I6− L̂+
e L̂e) is such that L̂ePees = 0,∀es. Avoiding

the robot joint limits using this approach has been
presented in [48]. However, when the vision-based
task constrains all the camera degrees of freedom,
the secondary constraints cannot be considered since,

when L̂e is of full rank 6, we have Pees = 0,∀es.
In this case, it is necessary to insert the constraints
into a global objective function, such as navigation
functions that are free of local minima [49, 50].

34.5.2 Switching Schemes

The partitioned methods described previously at-
tempt to optimize performance by assigning individ-
ual controllers to specific degrees of freedom. An-
other way to use multiple controllers to optimize per-
formance is to design switching schemes that select
at each moment in time which controller to use based
on criteria to be optimized.

A simple switching controller can be designed us-
ing an IBVS and a PBVS controller as follows [51].
Let the system begin by using the IBVS controller.
Consider the Lyapunov function for the PBVS con-
troller given by LP = 1

2‖eP(t)‖2, with eP(t) = (cto−

c∗to, θu). If at any time the value of this Lyapunov
function exceeds a threshold γP, the system switches
to the PBVS controller. While using the PBVS con-
troller, if at any time the value of the Lyapunov func-
tion LI for the IBVS controller exceeds a threshold,
LI = 1

2‖eI(t)‖
2 > γI, the system switches to the IBVS

controller. With this scheme, when the Lyapunov
function for a particular controller exceeds a thresh-
old, that controller is invoked, which in turn reduces
the value of the corresponding Lyapunov function. If
the switching thresholds are selected appropriately,
the system is able to exploit the relative advantages
of IBVS and PBVS, while avoiding their shortcom-
ings.

An example of such a system is shown in Fig. 34.14
for the case of a rotation by 160◦ about the optical
axis. Note that the system begins in IBVS mode and
the features initially move on straight lines toward
their goal positions in the image. However, as the
camera retreats, the system switches to PBVS, which
allows the camera to reach its desired position by
combining a rotational motion around its optic axis
and a forward translational motion, producing the
circular trajectories observed in the image.

Figure 34.14: Image feature trajectories for a rotation
of 160◦ about the optical axis using a switched control
scheme (initial point positions in blue, and desired
points position in red)
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Other examples of temporal switching schemes can
be found, such as the one developed in [52], to ensure
the visibility of the target observed.

34.5.3 Feature Trajectory Planning

It is also possible to treat the optimization problem
offline, during a planning stage, if we have sufficient
knowledge of the system and world. In this case,
several constraints can be taken into account simul-
taneously, such as obstacle avoidance [53], joint limit
and occlusions avoidance, and ensuring the visibil-
ity of the target [54]. The feature trajectories s∗(t)
that allow the camera to reach its desired pose while
ensuring that the constraints are satisfied are deter-
mined using path planning techniques, such as the
well-known potential field approach [54] or linear ma-
trix inequality optimizations [55].

Coupling path planning with trajectory following
also allows the robustness of the visual servo with re-
spect to modeling errors to be significantly improved.
Indeed, modeling errors may have large effects when
the error s − s∗ is large, but have little effect when
s−s∗ is small. Once the desired features trajectories
s∗(t) such that s∗(0) = s(0) have been designed dur-
ing the planning stage, it is easy to adapt the control
scheme to take into account the fact that s∗ is vary-
ing, and to make the error s−s∗ remain small. More
precisely, we now have

ė = ṡ− ṡ∗ = Levc − ṡ∗ ,

from which we deduce, by selecting as usual ė = −λe
as the desired behavior,

vc = −λL̂+
e e+ L̂+

e ṡ
∗ .

The new second term of this control law anticipates
the variation of s∗, removing the tracking error it
would produce. We will see in the Sect. 34.8 that the
form of the control law is similar when tracking of
a moving target is considered.

34.6 Estimation of 3-D Param-
eters

All the control schemes described in the previous sec-
tions use 3-D parameters that are not directly avail-
able from the image measurements. As for IBVS,
we recall that the range of the object with respect
to the camera appears in the coefficients of the in-
teraction matrix related to the translational degrees
of freedom. Noticeable exceptions are the schemes
based on a numerical estimation of Le or of L+

e

(see Sect. 34.2.9). Another exception is the IBVS

scheme that uses the constant matrix L̂+
e∗ in the con-

trol scheme, in which only the depth for the desired
pose is required, which is not so difficult to obtain in
practice. As for PBVS and hybrid schemes that com-
bine 2-D and 3-D data in e, 3-D parameters appear
both in the error e and in the interaction matrix.
A correct estimation of the 3-D parameters involved
is thus important for IBVS since they will have an
effect on the camera motion during the task execu-
tion (they appear in the stability conditions (34.13)
and (34.14)), while a correct estimation is crucial in
PBVS and hybrid schemes since they will have also
an effect on the accuracy of the pose reached after
convergence.

If a calibrated stereo vision system is used, all 3-
D parameters can be easily determined by triangu-
lation, as mentioned in Sect. 34.2.5 and described
in Chap. 032. Similarly, if a 3-D model of the ob-
ject is known, all 3-D parameters can be computed
from a pose-estimation algorithm. However, we re-
call that such an estimation can be quite unstable
due to image noise (see Sect. 34.3). As already said,
IBVS does not require full pose estimation, simply
the range of the object with respect to the camera.
When image points are involved in s, the range is
expressed as the scalar depth Z or distance R of the
corresponding world points, which appears in the in-
teraction matrix (34.12), (34.16) and (34.17). This
can be considered as a parameter estimation problem,
that is, estimating the 3-D parameters from knowl-
edge of the analytical form of the interaction matrix,
and measurements of camera motion and visual fea-
ture position and velocity [56, 57, 58].
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It is also possible to estimate 3-D parameters by
using the epipolar geometry that relates the images
of the same scene observed from different viewpoints.
Indeed, in visual servoing, two images are generally
available: the current one and the desired one. Given
a set of matches between the image measurements in
the current image and in the desired one, the funda-
mental matrix, or the essential matrix if the camera
is calibrated, can be recovered [6], and then used in
visual servoing [59]. Indeed, from the essential ma-
trix, the rotation and the translation up to a scalar
factor between the two views can be estimated. How-
ever, near the convergence of the visual servo, that
is, when the current and desired images are similar,
the epipolar geometry becomes degenerate and it is
not possible to estimate accurately the partial pose
between the two views. For this reason, using ho-
mography is generally preferred.

Let xi and x∗i denote the homogeneous image coor-
dinates for a point in the current and desired images.
Then xi is related to x∗i by

xi = Hix
∗
i

in which Hi is a homography matrix.
If all feature points lie on a 3-D plane, then there is

a single homography matrix H such that xi = Hx∗i
for all i. This homography can be estimated using
the position of four matched points in the desired and
the current images. If all the features points do not
belong to the same 3-D plane, then three points can
be used to define such a plane and five supplementary
points are needed to estimate H [60].

Once H is available, it can be decomposed as

H = R +
t

d∗
n∗> , (34.29)

in which R is the rotation matrix relating the ori-
entation of the current and desired camera frames,
n∗ is the normal to the chosen 3-D plane expressed
in the desired frame, d∗ is the distance to the 3-D
plane from the desired frame, and t is the translation
between current and desired frames. From H, it is
thus possible to recover R, t/d∗, and n. In fact, two
solutions for these quantities exist [62], but it is quite
easy to select the correct one using some knowledge

about the desired pose. It is also possible to estimate
the depth of any target point up to a common scale
factor [54]. The unknown depth of each point that
appears in classical IBVS can thus be expressed as
a function of a single, constant parameter whatever
the number of points. Similarly, the pose parameters
required by PBVS can be recovered up to a scalar fac-
tor as for the translation term. The PBVS schemes
described previously can thus be revisited using this
approach, with the new error defined as the trans-
lation up to a scalar factor and the angle/axis pa-
rameterization of the rotation. This approach has
also been used for the hybrid visual servoing schemes
described in Sect. 34.4.1. In that case, using such
homography estimation, it has been possible to an-
alyze the stability of hybrid visual servoing schemes
in the presence of calibration errors [36]. Finally, it
is also possible to directly use the homography in the
control scheme, avoiding thus its decomposition as a
partial pose [61].

34.7 Determining s∗ and
matching issues

All visual servo methods require knowledge of the
desired feature values s∗ which implicitly define con-
straints on the desired camera or robot pose with
respect to the target. Three common approaches are
employed. The first is when the task is directly speci-
fied as a desired value of some features to be reached.
This is the case for instance when a target has to be
centered in the image. This is also the case when the
task is specified as a particular pose to reach and a
PBVS is chosen. In that case however, the camera
will reach its desired pose only if the camera is per-
fectly calibrated. Indeed, a coarse camera calibration
will induce a biased estimation of the pose, which will
make the final pose different from the desired one.

For IBVS and hybrid schemes, the second approach
is to use knowledge of the object and camera pro-
jection models to compute s∗ for the desired relative
pose. Once again, the accuracy of the system directly
depends on the camera calibration, since the camera
intrinsic parameters are involved to compute s∗.
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Finally, the third approach is to simply record the
feature values s∗ when the camera or robot has the
desired pose with respect to the target. This is usu-
ally done during an off-line teaching step. When it
is possible in practice, this approach is very efficient
since the positioning accuracy does not depend any-
more on the camera calibration. This is still true for
PBVS since, even if the pose estimated from the de-
sired image is biased due to calibration errors, the
same biased posed will be estimated once the robot
will have converged so that the final image acquired
by the camera will be the desired one.

So far we have not commented on the matching
issues involved in visual servo methods. Two cases
can be differentiated in function of the nature of
the components of s. When some components of s
come from a pose estimation, it is necessary to match
the measurements in the image (usually some im-
age points) to the model of the object (usually some
world points). Incorrect association will lead to an
erroneous estimation of the pose. In all other cases,
the calculation of the error vector e defined in (34.1)
necessitates a matching between the measurements
m(t) in the current image and m∗ in the desired im-
age. For instance, in all IBVS examples presented
above, the camera observes four image points and we
need to determine which of the four desired points to
associate with each observed point so that the visual
features s are correctly associated to their desired
value s∗. Incorrect association will lead to incorrect
final camera pose and possibly a configuration which
can not be achieved from any real camera pose. If
we want to use the epipolar geometry or estimate
a homography matrix, a similar matching process is
necessary (see Sect. 34.6).

This matching process is a classical computer vi-
sion problem. Note that it may be particularly dif-
ficult for the very first image, especially when the
robot displacement to achieve is large, which gener-
ally implies large disparities between the initial and
desired images. Once the association has been cor-
rectly performed for the very first image, the match-
ing is greatly simplified since it transforms to a visual
tracking problem where the results obtained for the
previous image can be used as initialization for the
current one.

34.8 Target Tracking

We now consider the case of a moving target and
a constant desired value s∗ for the features, the gen-
eralization to varying desired features s∗(t) being im-
mediate. The time variation of the error is now given
by

ė = Levc +
∂e

∂t
, (34.30)

where the term ∂e
∂t expresses the time variation of

e due to the generally unknown target motion. If
the control law is still designed to try to ensure an
exponential decoupled decrease of e (that is, once
again ė = −λe), we now obtain using (34.30):

vc = −λL̂+
e e− L̂+

e
∂̂e

∂t
, (34.31)

where ∂̂e
∂t is an estimation or an approximation of ∂e∂t .

This term must be introduced into the control law to
compensate for the target motion.

Closing the loop, that is, inserting (34.31)
into (34.30), we obtain

ė = −λLeL̂+
e e− LeL̂

+
e
∂̂e

∂t
+
∂e

∂t
. (34.32)

Even if LeL̂
+
e > 0, the error will converge to zero

only if the estimation of ∂̂e∂t is sufficiently accurate so
that

LeL̂
+
e
∂̂e

∂t
=
∂e

∂t
, (34.33)

otherwise tracking errors will be observed. Indeed,
by just solving the scalar differential equation ė =
−λe+b, which is a simplification of (34.32), we obtain
e(t) = e(0) exp(−λt) + b/λ, which converges towards
b/λ. On one hand, setting a high gain λ will reduce
the tracking error, but on the other hand, setting the
gain too high can make the system unstable. It is
thus necessary to make b as small as possible.

Of course, if the system is known to be such that
∂e
∂t = 0 (that is, the camera observes a motionless
object, as described in Sect. 34.1), no tracking error
will appear with the most simple estimation given by
∂̂e
∂t = 0. Otherwise, a classical method in automatic
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control to cancel tracking errors consists of compen-
sating the target motion through an integral term in
the control law. In this case, we have

∂̂e

∂t
= µ

∑
j

e(j) ,

where µ is the integral gain that has to be tuned.
This scheme allows the tracking errors to be can-
celed only if the target has a constant velocity. Other
methods, based on feedforward control, estimate the

term ∂̂e
∂t directly through the image measurements

and the camera velocity, when it is available. Indeed,
from (34.30), we obtain

∂̂e

∂t
= ̂̇e− L̂ev̂c ,

where ̂̇e can, for instance, be obtained as ̂̇e(t) =
[e(t) − e(t − ∆t)]/∆t, ∆t being the duration of the
control loop. A Kalman filter [63] or more-elaborate
filtering methods [64] can then be used to improve
the estimated values obtained. If some knowledge
about the target velocity or the target trajectory is
available, it can of course be used to smooth or pre-
dict the motion [65, 66, 67]. For instance, in [68],
the periodic motion of the heart and breathing are
compensated for an application of visual servoing in
medical robotics. Finally, other methods have been
developed to remove the perturbations induced by
the target motion as fast as possible [43], using for
instance predictive controllers [69].

34.9 Eye-in-Hand and Eye-to-
Hand Systems Controlled
in the Joint Space

In the previous sections, we have considered the six
components of the camera velocity as the input of the
robot controller. As soon as the robot is not able to
realize this motion, for instance, because it has fewer
than six degrees of freedom, the control scheme must
be expressed in the joint space. In this section, we
describe how this can be done, and in the process
develop a formulation for eye-to-hand systems.

In the joint space, the system equations for both
the eye-to-hand and eye-in-hand configurations have
the same form:

ṡ = Js q̇ +
∂e

∂t
. (34.34)

Here, Js ∈ Rk×n is the feature Jacobian matrix,
which can be linked to the interaction matrix, and
n is the number of robot joints.

For an eye-in-hand system (Fig. 34.15a), ∂e∂t is the
time variation of s due to a potential object motion,
and Js is given by

Js = Ls
cXNJ(q) , (34.35)

where

• cXN is the spatial motion transform matrix (as
defined in Chap. 002 and recalled in (34.15))
from the vision sensor frame to the end-effector
frame. It is usually a constant matrix (as long as
the vision sensor is rigidly attached to the end-
effector). Thanks to the robustness of closed-
loop control schemes, a coarse approximation of
this transform matrix is sufficient in visual ser-
voing. If needed, an accurate estimation is possi-
ble through classical hand–eye calibration meth-
ods [70].

• J(q) is the robot Jacobian expressed in the end-
effector frame (as defined in Chap. 002)

For an eye-to-hand system (Fig. 34.15b), ∂e∂t is now
the time variation of s due to a potential vision sensor
motion and Js can be expressed as:

Js = −Ls cXN
NJ(q) , (34.36)

= −Ls cX0
0J(q) . (34.37)

In (34.36), the classical robot Jacobian NJ(q) ex-
pressed in the end-effector frame is used but the spa-
tial motion transform matrix cXN from the vision
sensor frame to the end-effector frame changes all
along the robot motion, and it has to be estimated
at each iteration of the control scheme, usually using
pose-estimation methods.

In (34.37), the robot Jacobian 0J(q) is expressed
in the robot reference frame, and the spatial motion
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a) b)

Figure 34.15: (a) Eye-in-hand system, (b) eye-to-
hand system: system schematic (top) and opposite
image motion produced by the same robot motion
(bottom)

transform matrix cX0 from the vision sensor frame to
that reference frame is constant as long as the camera
does not move. In this case, which is convenient in
practice, a coarse approximation of cX0 is usually
sufficient.

Once the modeling step is finished, it is quite easy
to follow the procedure that has been used above to
design a control scheme expressed in the joint space,
and to determine the sufficient condition to ensure
the stability of the control scheme. We obtain, con-
sidering again e = s− s∗, and an exponential decou-
pled decrease of e:

q̇ = −λĴ+
e e− Ĵ+

e
∂̂e

∂t
. (34.38)

If k = n, considering as in Sect. 34.1 the Lyapunov
function L = 1

2‖e(t)‖2, a sufficient condition to en-
sure the global asymptotic stability is given by

JeĴ
+
e > 0 . (34.39)

If k > n, we obtain similarly to Sect. 34.1

Ĵ+
e Je > 0 (34.40)

to ensure the local asymptotic stability of the system.
Note that the actual extrinsic camera parameters ap-

pear in Je while the estimated ones are used in Ĵ+
e .

It is thus possible to analyze the robustness of the
control scheme with respect to the camera extrinsic
parameters. It is also possible to estimate directly
the numerical value of Je or J+

e using the methods
described in Sect. 34.2.9.

Finally, to remove tracking errors, we have to en-
sure that

JeĴ
+
e
∂̂e

∂t
=
∂e

∂t
.

Let us note that, even if the robot has six degrees
of freedom, it is generally not equivalent to first com-
pute vc using (34.5) and then deduce q̇ using the
robot inverse Jacobian, and to compute directly q̇
using (34.38). Indeed, it may occur that the robot
Jacobian J(q) is singular while the feature Jacobian
Js is not (that may occur when k < n). Furthermore,
the properties of the pseudo-inverse ensure that us-
ing (34.5), ‖vc‖ is minimal while using (34.38), ‖q̇‖
is minimal. As soon as J+

e 6= J+(q)NXcL
+
e , the con-

trol schemes will be different and will induce different
robot trajectories. The choice of the state space is
thus important.

34.10 Under actuated robots

Many useful robots are under actuated, that is, they
cannot move instantaneously in all directions because
of the number or configuration of their actuators (see
Chap. 052). For instance, a quadrotor flying robot is
under actuated since it has only four actuators while
the dimension of its configuration space is six. Many
other useful robots are subject to non-holonomic con-
straints (see Chap. 049), leading to similar motion
inability. A car for instance has only two degrees of
freedom (for velocity and steering) while the dimen-
sion of its configuration space is three (position and
orientation in the ground plane).

A consequence of under actuation is that time vary-
ing manoeuvres may be required in order to achieve
particular goal states. For example, if a quadrotor
has to move forward, it must first change its attitude,
pitching down, so that a component of its thrust vec-
tor is able to accelerates the vehicle forward. For a
visual servo system this can be problematic since the
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initial attitude change will affect the value of the vi-
sual features even before the vehicle has moved. In
fact the attitude change increases the error and this
is ultimately destabilising.

A common and expedient solution [71] is to de-
rotate the image, that is, to use information from
a non-vision attitude sensor such as an IMU (see
Chap. 029) to correct the feature coordinates as if
they had been viewed by a virtual camera whose op-
tical axis has a constant orientation in space, typ-
ically, straight down. As discussed in Sect. 34.2.8,
the spherical projection model is well suited for such
image transformation, thanks to its invariance prop-
erties with respect to rotational motion.

For a non-holonomic vehicle, there are several so-
lutions. In the non-general case where the vehicle
is able to follow a smooth path from its initial to
goal configuration, a controller based on visually esti-
mated relative pose (range, heading angle and lateral
offset) can be used (see Chap. 049), following a PBVS
strategy. Particular controllers based on the epipolar
geometry or the trifocal tensor have also been de-
signed [72, 73]. For the more general case, switch-
ing control laws can be used. If possible in prac-
tice, another common solution is to add a controlled
DOF between the vehicle and the camera in order to
bypass the non-holonomic constraint through redun-
dancy. It is thus possible to control the full camera
configuration, but not the robot one.

34.11 Applications

Applications of visual servoing in robotics are numer-
ous. It can be used as soon as a vision sensor is avail-
able and a task is assigned to a dynamic system to
control its motion. A non exhaustive list of examples
are (see Figure 34.16):

• the control of a pan-tilt-zoom camera for target
tracking;

• grasping using a robot arm;

• locomotion and dextrous manipulation with a
humanoid robot;

• micro or nano manipulation of MEMS or biolog-
ical cells;

• pipe inspection by an underwater autonomous
vehicle;

• autonomous navigation of a mobile robot in in-
door or outdoor environment;

• aircraft landing;

• autonomous satellite rendezvous;

• biopsy using ultrasound probes or heart motion
compensation in medical robotics;

• virtual cinematography in animation.

34.12 Conclusions

In this chapter we have only considered velocity con-
trollers, which are convenient for most classical robot
arms. However, the dynamics of the robot must of
course be taken into account for high-speed tasks.
Features related to the image motion [74], image
intensity [75], or coming from other vision sensors
(RGB-D sensors, ultrasonic probes [76], etc.) neces-
sitate reconsideration of the modeling issues to se-
lect adequate visual features. Finally, fusing visual
features with data coming from other sensors (force
sensor, proximity sensors, etc.) at the level of the
control scheme will allow new research topics to be
addressed. The end of fruitful research in the field of
visual servo is thus nowhere yet in sight.
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Figure 34.16: Few applications of visual servoing: gaze control for target tracking, navigation of a mobile
robot to follow a wall using an omnidirectional vision sensor, grasping a ball with a humanoid robot, assembly
of MEMS and film of a dialogue within the constraints of a script in animation.
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