2,692 research outputs found

    A reconfigurable real-time morphological system for augmented vision

    Get PDF
    There is a significant number of visually impaired individuals who suffer sensitivity loss to high spatial frequencies, for whom current optical devices are limited in degree of visual aid and practical application. Digital image and video processing offers a variety of effective visual enhancement methods that can be utilised to obtain a practical augmented vision head-mounted display device. The high spatial frequencies of an image can be extracted by edge detection techniques and overlaid on top of the original image to improve visual perception among the visually impaired. Augmented visual aid devices require highly user-customisable algorithm designs for subjective configuration per task, where current digital image processing visual aids offer very little user-configurable options. This paper presents a highly user-reconfigurable morphological edge enhancement system on field-programmable gate array, where the morphological, internal and external edge gradients can be selected from the presented architecture with specified edge thickness and magnitude. In addition, the morphology architecture supports reconfigurable shape structuring elements and configurable morphological operations. The proposed morphology-based visual enhancement system introduces a high degree of user flexibility in addition to meeting real-time constraints capable of obtaining 93 fps for high-definition image resolution

    Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning

    Get PDF
    Exploiting photoplethysmography signals (PPG) for non-invasive blood pressure (BP) measurement is interesting for various reasons. First, PPG can easily be measured using fingerclip sensors. Second, camera based approaches allow to derive remote PPG (rPPG) signals similar to PPG and therefore provide the opportunity for non-invasive measurements of BP. Various methods relying on machine learning techniques have recently been published. Performances are often reported as the mean average error (MAE) on the data which is problematic. This work aims to analyze the PPG- and rPPG based BP prediction error with respect to the underlying data distribution. First, we train established neural network (NN) architectures and derive an appropriate parameterization of input segments drawn from continuous PPG signals. Second, we use this parameterization to train NNs with a larger PPG dataset and carry out a systematic evaluation of the predicted blood pressure. The analysis revealed a strong systematic increase of the prediction error towards less frequent BP values across NN architectures. Moreover, we tested different train/test set split configurations which underpin the importance of a careful subject-aware dataset assignment to prevent overly optimistic results. Third, we use transfer learning to train the NNs for rPPG based BP prediction. The resulting performances are similar to the PPG-only case. Finally, we apply different personalization techniques and retrain our NNs with subject-specific data for both the PPG-only and rPPG case. Whilst the particular technique is less important, personalization reduces the prediction errors significantly

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    The envirome and the connectome: exploring the structural noise in the human brain associated with socioeconomic deprivation

    Get PDF
    Complex cognitive functions are widely recognized to be the result of a number of brain regions working together as large-scale networks. Recently, complex network analysis has been used to characterize various structural properties of the large scale network organization of the brain. For example, the human brain has been found to have a modular architecture i.e. regions within the network form communities (modules) with more connections between regions within the community compared to regions outside it. The aim of this study was to examine the modular and overlapping modular architecture of the brain networks using complex network analysis. We also examined the association between neighborhood level deprivation and brain network structure – modularity and grey nodes. We compared network structure derived from anatomical MRI scans of 42 middle-aged neurologically healthy men from the least (LD) and the most deprived (MD) neighborhoods of Glasgow with their corresponding random networks. Cortical morphological covariance networks were constructed from the cortical thickness derived from the MRI scans of the brain. For a given modularity threshold, networks derived from the MD group showed similar number of modules compared to their corresponding random networks, while networks derived from the LD group had more modules compared to their corresponding random networks. The MD group also had fewer grey nodes – a measure of overlapping modular structure. These results suggest that apparent structural difference in brain networks may be driven by differences in cortical thicknesses between groups. This demonstrates a structural organization that is consistent with a system that is less robust and less efficient in information processing. These findings provide some evidence of the relationship between socioeconomic deprivation and brain network topology

    Synthesis of normal and abnormal heart sounds using Generative Adversarial Networks

    Get PDF
    En esta tesis doctoral se presentan diferentes métodos propuestos para el análisis y síntesis de sonidos cardíacos normales y anormales, logrando los siguientes aportes al estado del arte: i) Se implementó un algoritmo basado en la transformada wavelet empírica (EWT) y la energía promedio normalizada de Shannon (NASE) para mejorar la etapa de segmentación automática de los sonidos cardíacos; ii) Se implementaron diferentes técnicas de extracción de características para las señales cardíacas utilizando los coeficientes cepstrales de frecuencia Mel (MFCC), los coeficientes de predicción lineal (LPC) y los valores de potencia. Además, se probaron varios modelos de Machine Learning para la clasificación automática de sonidos cardíacos normales y anormales; iii) Se diseñó un modelo basado en Redes Adversarias Generativas (GAN) para generar sonidos cardíacos sintéticos normales. Además, se implementa un algoritmo de eliminación de ruido utilizando EWT, lo que permite una disminución en la cantidad de épocas y el costo computacional que requiere el modelo GAN; iv) Finalmente, se propone un modelo basado en la arquitectura GAN, que consiste en refinar señales cardíacas sintéticas obtenidas por un modelo matemático con características de señales cardíacas reales. Este modelo se ha denominado FeaturesGAN y no requiere una gran base de datos para generar diferentes tipos de sonidos cardíacos. Cada uno de estos aportes fueron validados con diferentes métodos objetivos y comparados con trabajos publicados en el estado del arte, obteniendo resultados favorables.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic

    Anthropometric and genetic determinants of cardiac morphology and function

    Get PDF
    Background Cardiac structure and function result from complex interactions between genetic and environmental factors. Population-based studies have relied on 2-dimensional cardiovascular magnetic resonance as the gold-standard for phenotyping. However, this technique provides limited global metrics and is insensitive to regional or asymmetric changes in left ventricular (LV) morphology. High-resolution 3-dimensional cardiac magnetic resonance (3D-CMR) with computational quantitative phenotyping, might improve on traditional CMR by enabling the creation of detailed 3D statistical models of the variation in cardiac phenotypes for use in studies of genetic and/or environmental effects on cardiac form or function. Purpose To determine whether 3D-CMR is applicable at scale, and provides methodological and statistical advantages over conventional imaging for large-scale population studies and to apply 3D-CMR to anthropometric and genetic studies of the heart. Methods 1530 volunteers (54.8% females, 74.7% Caucasian, mean age 41.3±13.0 years) without self-reported cardiovascular disease were recruited prospectively to the Digital Heart Project. Using a cardiac atlas-based software, these images were computationally processed and quantitatively analysed. Parameters such as myocardial shape, curvature, wall thickness, relative wall thickness, end-systolic wall stress, fractional wall thickening and ventricular volumes were extracted at over 46,000 points in the model. The relationships between these parameters and systolic blood pressure (SBP), fat mass, lean mass and genetic variationswere analysed using 3D regression models adjusted for body surface area, gender, race, age and multiple testing. Targeted resequencing of titin (TTN), the largest human gene and the commonest genetic cause of dilated cardiomyopathy, was performed in 928 subjects while common variants (~700.000) were genotyped in 1346 subjects. Results Automatically segmented 3D images were more accurate than 2D images at defining cardiac surfaces, resulting in fewer subjects being required to detect a statistically significant 1 mm difference in wall thickness. 3D-CMR enabled the detection of a strong and distinct regionality of the effects of SBP, body composition and genetic variation on the heart. It shows that the precursors of the hypertensive heart phenotype can be traced to healthy normotensives and that different ratios of body composition are associated with particular gender-specific patterns of cardiac remodelling. In 17 asymptomatic subjects with genetic variations associated with dilated cardiomyopathy, early stages of ventricular impairment and wall thinning were identified, which were not apparent by 2D imaging. Conclusions 3D-CMR combined with computational modelling provides high-resolution insight into the earliest stages of heart disease. These methods show promise for population-based studies of the anthropometric, environmental and genetic determinants of LV form and function in health and disease.Open Acces

    Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery

    Get PDF
    Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques

    Combining Synthesis of Cardiorespiratory Signals and Artifacts with Deep Learning for Robust Vital Sign Estimation

    Get PDF
    Healthcare has been remarkably morphing on the account of Big Data. As Machine Learning (ML) consolidates its place in simpler clinical chores, more complex Deep Learning (DL) algorithms have struggled to keep up, despite their superior capabilities. This is mainly attributed to the need for large amounts of data for training, which the scientific community is unable to satisfy. The number of promising DL algorithms is considerable, although solutions directly targeting the shortage of data lack. Currently, dynamical generative models are the best bet, but focus on single, classical modalities and tend to complicate significantly with the amount of physiological effects they can simulate. This thesis aims at providing and validating a framework, specifically addressing the data deficit in the scope of cardiorespiratory signals. Firstly, a multimodal statistical synthesizer was designed to generate large, annotated artificial signals. By expressing data through coefficients of pre-defined, fitted functions and describing their dependence with Gaussian copulas, inter- and intra-modality associations were learned. Thereafter, new coefficients are sampled to generate artificial, multimodal signals with the original physiological dynamics. Moreover, normal and pathological beats along with artifacts were included by employing Markov models. Secondly, a convolutional neural network (CNN) was conceived with a novel sensor-fusion architecture and trained with synthesized data under real-world experimental conditions to evaluate how its performance is affected. Both the synthesizer and the CNN not only performed at state of the art level but also innovated with multiple types of generated data and detection error improvements, respectively. Cardiorespiratory data augmentation corrected performance drops when not enough data is available, enhanced the CNN’s ability to perform on noisy signals and to carry out new tasks when introduced to, otherwise unavailable, types of data. Ultimately, the framework was successfully validated showing potential to leverage future DL research on Cardiology into clinical standards

    A Deep Learning-Based Fully Automated Pipeline for Regurgitant Mitral Valve Anatomy Analysis From 3D Echocardiography

    Get PDF
    Three-dimensional transesophageal echocardiography (3DTEE) is the recommended imaging technique for the assessment of mitral valve (MV) morphology and lesions in case of mitral regurgitation (MR) requiring surgical or transcatheter repair. Such assessment is key to thorough intervention planning and to intraprocedural guidance. However, it requires segmentation from 3DTEE images, which is timeconsuming, operator-dependent, and often merely qualitative. In the present work, a novel workflow to quantify the patient-specific MV geometry from 3DTEE is proposed. The developed approach relies on a 3D multi-decoder residual convolutional neural network (CNN) with a U-Net architecture for multi-class segmentation of MV annulus and leaflets. The CNN was trained and tested on a dataset comprising 55 3DTEE examinations of MR-affected patients. After training, the CNN is embedded into a fully automatic, and hence fully repeatable, pipeline that refines the predicted segmentation, detects MV anatomical landmarks and quantifies MV morphology. The trained 3D CNN achieves an average Dice score of 0.82 +/- 0.06, mean surface distance of 0.43 +/- 0.14 mm and 95% Hausdorff Distance (HD) of 3.57 +/- 1.56 mm before segmentation refinement, outperforming a state-of-the-art baseline residual U-Net architecture, and provides an unprecedented multi-class segmentation of the annulus, anterior and posterior leaflet. The automatic 3D linear morphological measurements of the annulus and leaflets, specifically diameters and lengths, exhibit differences of less than 1.45 mm when compared to ground truth values. These measurements also demonstrate strong overall agreement with analyses conducted by semi-automated commercial software. The whole process requires minimal user interaction and requires approximately 15 seconds
    corecore