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1 Abstract 

 

Background  

Cardiac structure and function result from complex interactions between genetic and 

environmental factors. Population-based studies have relied on 2-dimensional cardiovascular 

magnetic resonance as the gold-standard for phenotyping. However, this technique provides 

limited global metrics and is insensitive to regional or asymmetric changes in left ventricular 

(LV) morphology.  

High-resolution 3-dimensional cardiac magnetic resonance (3D-CMR) with computational 

quantitative phenotyping, might improve on traditional CMR by enabling the creation of 

detailed 3D statistical models of the variation in cardiac phenotypes for use in studies of 

genetic and/or environmental effects on cardiac form or function. 

Purpose 

To determine whether 3D-CMR is applicable at scale, and provides methodological and 

statistical advantages over conventional imaging for large-scale population studies and to 

apply 3D-CMR to anthropometric and genetic studies of the heart. 

Methods 

1530 volunteers (54.8% females, 74.7% Caucasian, mean age 41.3±13.0 years) without self-

reported cardiovascular disease were recruited prospectively to the Digital Heart Project. 

Using a cardiac atlas-based software, these images were computationally processed and 

quantitatively analysed. Parameters such as myocardial shape, curvature, wall thickness, 

relative wall thickness, end-systolic wall stress, fractional wall thickening and ventricular 

volumes were extracted at over 46,000 points in the model. The relationships between these 

parameters and systolic blood pressure (SBP), fat mass, lean mass and genetic variations 
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were analysed using 3D regression models adjusted for body surface area, gender, race, age 

and multiple testing.   

Targeted resequencing of titin (TTN), the largest human gene and the commonest genetic 

cause of dilated cardiomyopathy, was performed in 928 subjects while common variants 

(~700.000) were genotyped in 1346 subjects.  

Results 

Automatically segmented 3D images were more accurate than 2D images at defining cardiac 

surfaces, resulting in fewer subjects being required to detect a statistically significant 1 mm 

difference in wall thickness.  3D-CMR enabled the detection of a strong and distinct 

regionality of the effects of SBP, body composition and genetic variation on the heart. It 

shows that the precursors of the hypertensive heart phenotype can be traced to healthy 

normotensives and that different ratios of body composition are associated with particular 

gender-specific patterns of cardiac remodelling. In 17 asymptomatic subjects with genetic 

variations associated with dilated cardiomyopathy, early stages of ventricular impairment and 

wall thinning were identified, which were not apparent by 2D imaging. 

Conclusions  

3D-CMR combined with computational modelling provides high-resolution insight into the 

earliest stages of heart disease. These methods show promise for population-based studies of 

the anthropometric, environmental and genetic determinants of LV form and function in 

health and disease.  
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8 Glossary of terms and abbreviations 

2D two dimensional 

3D three dimensional 

3D-CMR three-dimensional cardiac magnetic resonance 

Atlas it refers to an image that was manually labelled and curated and provides 

prior knowledge to guide automated analysis of new CMR images  

AV atrioventricular 

bp base pairs – the length of a (double-stranded) DNA sequence is reported in 

base pairs.  Standard prefixes are used to indicate larger units, such as kbp 

and Mbp 

BP blood pressure 

BMI body mass index 

BSA body surface area 

b-SSFP balanced Steady State Free Precession 

CAP Cardiac Atlas Project 

CI concentricity index (left ventricular mass / left ventricular end diastolic 

volume) 

CMR cardiac magnetic resonance 

DCM dilated cardiomyopathy – cardiomyopathy characterised by increased 

ventricular cavity size without increased wall thickness, often inherited 

DNA deoxyribonucleic acid 

Dominant inheritance pattern of inheritance in which one aberrant copy of a gene is sufficient for 

the disease or trait to develop 

ECG  electrocardiogram  

EDV / EDVI end diastolic volume / indexed end diastolic volume 

EF ejection fraction 

ESV / ESVI end systolic volume / indexed end diastolic volume 

Exon protein-coding portion of a gene 

FDR false discovery rate 
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FHS Framingham Heart Study 

FWT fractional wall thickening 

Genotyping the process of identifying genetic variation in an individual genome 

GWAS genome-wide association study 

HCM hypertrophic cardiomyopathy – cardiomyopathy characterised by increased 

ventricular wall thickness, without increased cavity size, usually inherited 

ICC inherited cardiac condition 

K-space ‘raw data space’ where the digitised MRI signal data is stored 

LV left ventricular 

LVH left ventricular hypertrophy 

LVM left ventricular mass 

MAF mean allele frequency 

MRI magnetic resonance imaging 

Mendelian  

 

a Mendelian trait is one that is controlled by a single locus that 

is inherited according to Mendel's laws 

MESA Multi-Ethnic Study of Atherosclerosis study 

NGS next generation sequencing 

NMR nuclear magnetic resonance 

NTP nucleoside triphosphate  

PCA principal component analysis 

Penetrance proportion of individuals carrying a particular variant of a gene (allele or 

genotype) that also expresses an associated phenotype 

Phenotype observable characteristics or traits, such as morphologic, biochemical or 

physiological properties and behaviour. A phenotype results from the 

expression of an organism's genes as well as the influence of environmental 

factors and the interactions between the two 

PSI proportion spliced-in (an estimate of the percentage of TTN transcripts that 

incorporate this exon based on RNAseq data) 

PWV pulse wave velocity 

Recessive inheritance pattern of inheritance in which both copies of a gene must be aberrant in 
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order for the disease or trait to develop 

RF radiofrequency 

ROI region of interest 

RV right ventricle  

RWT relative wall thickness 

SBP systolic blood pressure 

SCD sudden cardiac death 

SENSE SENSitivity Encoding - parallel imaging method for accelerating image 

acquisition 

SNP single nucleotide polymorphism 

SNR signal to noise ratio 

SSM statistical shape model 

SV / SVI stroke volume / index stroke volume 

TE echo time – time between excitation and echo 

TR repetition time – time between successive excitation pulses 

TTN Titin (gene or protein)  

WES  whole exome sequencing 

WGS whole genome sequencing 

WS wall stress 

WT wall thickness 
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9 Introduction 

 

The modern discipline of cardiology builds upon millennia of scientific discoveries and 

accrued knowledge (1). Even though medical historians tend to trace the speciality back to 

the pivotal work of William Harvey in the 17
th

 century (2), the first documented notion of the 

cardiac system can be found in the Smith Egyptian papyrus believed to be a copy of a work 

written in 3000 BC (3). Certainly by 1500 BC, when the Eber papyrus was written, the role of 

the heart as the centre of the body’s blood supply was understood (4). It has been this endless 

drive to improve and refine earlier contributions that led to the range of advanced diagnostic 

and therapeutic tools currently available to cardiologists. In recent years, this array of 

resources has vastly expanded due to the transformative changes ushered in by genetic 

sequencing technologies (5).  Indeed, our understanding of the fundamental genetic and 

environmental underpinnings of cardiac morphology and physiology is limited, at least in 

part, by our inability to phenotype the heart at an equivalent resolution.  

Leveraging all these technological advances, cardiovascular research must aim to further our 

knowledge of the elementary correlation between cardiac function and morphology, in health 

and in disease, for ‘function without structure cannot exist and structure has no meaning 

unless it serves a functional purpose’(1). 

The aim of this project was to define the anatomical and functional properties of the left 

ventricle associated with a variety of anthropometric and genetic variables. To achieve this, a 

novel high-throughput method, combining state-of-the-art cardiac imaging, with 

computational statistical analysis was developed, tested and validated in a large cohort of 

healthy volunteers. This work builds on the findings and achievements 
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of generations of clinicians and scientists and intends to provide greater insights into the 

biological pathways that determine cardiac morphology and function. 
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9.1 Left Ventricular Anatomy 

 

Fairly accurate anatomical descriptions of the heart and the great vessels can be found as far 

back as the Smith and Ebers papyri, the Bible and the Talmud (6). Galen of Pergamon (129-

201 AD) greatly contributed to medical progress by studying anatomy and physiology 

through experimentation and dissection. Erroneously, he believed that the circulatory system 

consisted of two separate one-way systems of distribution in which all the vessels connected 

to the heart were arteries and those connected to the liver were veins. Unfortunately, his  

work was so influential that it was considered to have been the result of divine inspiration and 

therefore infallible (7). It was not until the Renaissance, in the 15
th

 and 16
th

 centuries, that 

Galen’s findings were challenged. This work culminated in William Harvey’s definitive 

observations on the circulatory system in 1628. In his book titled De Motu Cordis, Harvey 

stated: ‘It has been shown by reason and experiment that by the beat of the ventricles blood 

flows through the lungs and it is pumped to the whole body. There it passes through pores in 

the flesh into the veins through which it returns from the periphery…finally coming to the 

vena cava and right auricle…It must then be concluded that the blood in the animal body 

moves around in a circle continuously, and that the action or function of the heart is to 

accomplish this by pumping. This is the only reason for the motion and beat of the heart’ (8). 

The human heart is a muscular organ that lies inside the thoracic cavity, above the diaphragm 

and in a space between the lungs, called the mediastinum. Its posterior border is near the 

vertebral column and its anterior border near the sternum. The upper part of the heart, 

conventionally described as the base, lies beneath the second rib. The distal end of the heart, 

the apex, is normally in line with the fifth intercostal space. The heart is enclosed by a 

double-layered, fibrous sac, called the pericardium that separates it from the other structures 
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in the mediastinum. The heart wall is formed by three distinct layers: the epicardium (the 

inner layer of the pericardium constituted mostly of connective tissue and abundant adipose 

tissue), the myocardium (striated muscle with intervening connective tissue, blood vessels 

and nerves) and the endocardium (endothelium on the surface with underlying collagenous 

and elastic tissue, as well as the specialised Purkinje fibres). The heart is divided into right 

and left sides by an obliquely placed, longitudinal septum. Each side consists of an atrium, 

which receives blood from the veins, and a ventricle, which propels the blood into the 

arteries. 

The normal left ventricle is a conical structure with its long axis in the thorax, from cardiac 

base to apex, directed leftward, anteriorly and inferiorly. It can be divided into three parts: the 

smooth inlet portion that contains the mitral valve apparatus, a smooth outlet portion leading 

to the aortic valve, and an apical portion characterised by a meshwork of thin muscle bundles 

called trabeculations (Figure 9.1). The medial wall of the left ventricle is the ventricular 

septum which curves and convexes into the right ventricle (RV). The remaining ventricular 

wall is referred to as the free wall of the left ventricle. When viewed from the anterior aspect 

of the body, most of the left ventricle hides behind the RV. 

Arising from the middle to the apical third of the left ventricular (LV) wall are usually two 

groups of papillary muscles that attach to the mitral valve: the anterolateral and the 

posteromedial. Occasionally other papillary muscles are present, arising from the free wall or 

from near the leaflet of the mitral valve. Overall there is a wide variability in the anatomy of 

these muscles. 

Blood flows in via the atrioventricular (AV) orifice lined by the mitral valve and flows out 

passing through the aortic valve into the aorta. The mitral valve has an area of 4 to 6 cm
2
 and 

is formed by the anterior and the posterior leaflets. Each leaflet is divided into three regions 
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split by commissures. In the normal valve, all parts of the leaflets usually have cords 

connecting the free edge to the papillary muscle. The aortic valve consists of three half-

moon-shaped cusps that are named through their association with the respective coronary 

ostia: left, right and posterior (non-coronary). 

 

Figure 9.1 – Left ventricular anatomy. Two parts of the same heart sectioned longitudinally. 

The broken lines divide the left ventricle into its three portions. RVOT = right ventricular 

outflow tract. (Figure courtesy of Professor Siew Hen Ho) 

 

 

In adults, the ventricular wall is thickest at the base and thins to only 1-2mm at the apex (9). 

Excluding trabeculations, the LV septal wall thickness is on average 7-12mm. The 

interventricular septum is triangular in shape, with the base of the triangle at the level of the 
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aortic valve. It is entirely muscular except for the small membranous septum, located 

superiorly and just below the right coronary and the posterior coronary cusps.  
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9.2 Left Ventricular Histology 

 

The myocardium is comprised primarily of fibroblasts (the most populous cell type), 

endothelial cells and cardiomyocytes, which measure ~30µm in diameter and ~120µm in 

length. Each myocyte is connected to adjacent myocytes by specialised structures called 

intercalated disks. These intercalated disks enable the cardiomyocytes to form a complex, 

three-dimensional network and to work as single functional organ (or syncytium). Gap 

junctions within the intercalated disks permit the passage of ions between cells and that 

allows electrochemically coordinated contraction across the heart (10).  

The LV wall is constituted by three interconnected layers of myocytes that have different 

spatial orientations: superficial (subepicardial), middle and deep (subendocardial). The 

myocytes in the superficial layer are arranged obliquely, in the middle strand 

circumferentially, while in the deep layer they follow a longitudinal plane (11).  

The circumferential layer tends to be the thickest in the normal heart (53-59% of wall 

thickness) and increases with age (12) . It is thickest near the base of the heart and tapers out 

towards the apex. In hypertension and heart failure the orientation of the fibres does not 

change although there is evidence of increase in the connective tissue content (13). 

The sarcomere is the basic repeating contractile unit of muscle and is formed by an array of 

overlapping thin and thick filaments that give the cardiac muscle its striated appearance. 

Sarcomeres are defined as the segments between two neighbouring Z-disks. Z-disks are one 

of the most complex macromolecular structures in biology (14). Among hundreds of different 

proteins, the core of a Z-disc consists of actin filaments coming from adjacent sarcomeres 

which are crosslinked by α actinin molecules (15). The Z-disk allows the transmission of 

tension during myocyte contraction. At the middle of the sarcomere lies the M-line which is 
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formed by cross-connecting elements of the cytoskeleton and allows the uniform distribution 

of tension (16). The region of the sarcomere containing the Z-disk and the part of the thin 

filaments not overlapping the thick filaments is the I-band (for isotropic). The remaining 

region containing the M-line and the entire length of the thick filaments is the A-band (for 

anisotropic). H-band is the zone of the thick filaments that is not superimposed by the thin 

filaments (Figure 9.2). 

The proteins of the cardiomyocyte can be broadly categorised as contractile, sarcomeric 

skeleton, membrane associated and proteins of the intercalated disk (17). The thin filaments 

are composed of actin and troponins C, T, and I. Sarcomere thick filament proteins include 

myosin heavy chain, myosin essential and regulatory light chains, myosin-binding protein-C 

and titin. The sarcomere is anchored through titin and actin interactions with Z disc proteins 

α-actinin, calsarcin-1, muscle LIM protein (MLP), telethonin (T-cap), and Z-band 

alternatively spliced PDZ-motif protein (ZASP) (Figure 9.2).  

 

Figure 9.2 – Diagram of a cardiac sarcomere. Mutations in the proteins highlighted in orange 

might lead to hypertrophic or dilated cardiomyopathies. (From Morita H, et al. Genetic 

causes of human heart failure. The Journal of clinical investigation. 2005) 
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The fundamental functions of heart cells are the generation of contractile force by the 

sarcomere and its transmission to the extracellular matrix. Inadequate performance in either 

component prompts cardiac remodelling in the form of LV hypertrophy (increased wall 

thickness without ventricular cavity expansion) or dilation (normal or thinned walls with 

enlarged ventricular cavity) (18).  

In hypertrophic cardiomyopathy (HCM, see section 9.6.1 below), the ventricular septum 

presents an asymmetric pattern of thickening (19). In particular there is an increase in the 

thickness of the longitudinal deep layer (20). Histologically, the middle circumferential layer 

is mostly destroyed at the junction between the ventricular septum and the right and left 

ventricular free walls and severely affected in the middle portion of the ventricular septum. 

The pathological process includes a combination of myocyte disarray and interstitial and 

focal fibrosis. In contrast, the LV free wall has a normal appearance of the midwall layer.  

In dilated cardiomyopathy (DCM, see section 9.6.2 below), the cross connections between 

myocytes are lost resulting in slippage and realignment of adjacent bundles of myocytes. 

Cardiac remodelling is driven on a histologic level by myocyte hypertrophy and apoptosis, 

fibroblast proliferation and interstitial fibrosis (21). The end result is LV wall thinning. 
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9.3 Left Ventricular Physiology 

 

Coordinated contraction of the cardiac muscle cells propels blood out of the atria into the 

ventricles and from the ventricles into the great vessels. The repetitive process of contraction 

and relaxation is referred to as the cardiac cycle. Pressure changes during the cycle are 

responsible for blood movement, as it travels from high pressure to low pressure areas. 

Systole is defined as the period from mitral valve closure to the aortic valve closure, when the 

LV ejects blood into the systemic arterial circulation. During diastole the ventricles relax and 

receive blood from the left atrium.  

Due to the spiral architecture of the cardiac myofibers, in addition to systolic myocardial 

shortening and thickening, there is left ventricular rotation and twist. When viewed from the 

LV apex, the base rotates clockwise while the apex rotates counter clockwise (22).  

Cardiac contraction is coordinated by specialised myocytes that form the conduction system 

of the heart. This system includes the sinoatrial (SA) node, the AV node, the AV bundle, 

right and left bundle branches and the Purkinje fibres. All these cells have the ability to 

produce spontaneous action potentials. Under normal conditions the electrical depolarisation 

of the heart begins at the SA node which is found in the right atrial wall near the orifice of the 

superior vena cava. The SA node generates action potentials at the rate of about 70 per 

minute. From the SA node, the action potential spreads throughout the atria, which initiates 

atrial contraction and active filling of the ventricles. The AV node is located at the boundary 

between the atria and ventricles and provides the only conducting path from the atria to the 

ventricles. If the AV node is not triggered with a higher pulse frequency originating from the 

SA node, it has an intrinsic frequency of about 50 per minute. From the AV node the action 

potential then travels down the AV bundle in the ventricular septum until it divides into left 
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and right bundle branches. From there the action potentials are carried by the Purkinje fibres 

to the ventricular myocytes. This is represented by the QRS complex of the 

electrocardiogram (ECG) and marks the start of ventricular systole. As pressure rises in the 

ventricle the mitral valve closes. When the cavity pressure rises above systemic diastolic 

pressure the aortic valve opens and blood is expelled into the aorta.  

By definition, the volume of blood within a ventricle immediately before a contraction is 

known as the end-diastolic volume (EDV).  Likewise, the volume of blood left in a ventricle 

at the end of contraction is end-systolic volume (ESV). Each time the heart beats, a volume of 

blood, known as the stroke volume (SV) is ejected to the aorta. The ability of the LV to 

empty can be quantified as the LV ejection fraction (EF). This is the ratio of stroke volume to 

end-diastolic volume: EF (%) = SV / EDV x 100. Cardiac output (CO) is calculated by 

multiplying the SV by the heart rate (HR): CO = SV x HR. 

Adenosine triphosphate (ATP), which transports chemical energy within cells for 

metabolism, is required in addition to calcium (Ca
2+

) as a cofactor for the contraction of 

muscle cells during the process of excitation-contraction coupling (23). Ca
2+ 

plays a key role 

in cardiac electrical activity and is the direct activator of the myocytes. In response to action 

potentials, Ca
2+

 enters the myocyte through depolarisation-activated Ca
2+

-channels. This 

triggers the release of Ca
2+

 from the sarcoplasmic reticulum (Ca
2+

-induced Ca
2+

-release). At 

rest, actin and myosin are prevented from contacting each other by tropomyosin and the 

troponin complex (troponin C, I and T). When the Ca
2+ 

concentration within the cell 

increases it binds to troponin C, which induces a conformational change of tropomyosin and 

allows the formation of strong cross bridges between actin and myosin. The myosin head acts 

as a lever, hydrolysis of ATP produces force and the relative movement of myosin along 

actin, shortens the sarcomere. Subsequent release from Troponin C and re-sequestration of 

calcium in the sarcoplasmic reticulum allows relaxation (24).  
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Myocytes are rich in mitochondria, which produce ATP at a rapid rate and are able to sustain 

the high energy requirements of cardiac muscle. Extensive capillary networks provide the 

muscle with adequate oxygen supply. 

When faced with a rising haemodynamic stress, the heart responds through one of 3 

mechanisms: increase cross bridge formation; increase in muscle mass or recruitment of 

neurohormonal mechanisms to increase contractility. Of these, only increase in LV mass 

plays a key long-term compensatory role (25). In an over-simplified model, pressure 

overload, such as the one seen in hypertension, leads to parallel addition of sarcomeres 

resulting in wall hypertrophy. Volume overload leads to myocyte lengthening by sarcomere 

replication in series, resulting in cavity dilatation and an eventual drop in the wall thickness 

to cavity size ratio.  

Left ventricular mass (LVM) is a highly heritable complex trait (26) and an independent risk 

factor for all-cause mortality, heart failure and sudden cardiac death (SCD) (27). The 

estimates of heritability of LVM in the general population vary from 20 to 70% (26, 28-31) . 

Variability in LVM arises from complex interactions between causal and modifier genes, 

environmental factors and the regulators of transcription and translation, including epigenetic 

factors, microRNAs and protein modifiers (32).  

The most highly significant and independent predictors of LVM, in both men and women are 

age, height, systolic blood pressure, body weight or body mass index (33, 34). Furthermore 

body weight changes have been found to be closely followed by reductions or increase in LV 

mass (35).  
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9.4 Blood Pressure 

 

It was Stephen Hales in 1773 that first measured blood pressure (BP) by inserting fine glass 

tubes into the arteries of animals and measuring the height to which the column of blood rose 

(36). Although several devices were proposed over the years to measure BP non-invasively, it 

was in 1896 that Scipione Riva-Rocci developed the forerunner of the modern mercury 

sphygmomanometer (1). Harvey Cushing led the clinical implementation of this device for 

the measurement of systolic blood pressure during surgery. It was in 1905, and thanks to 

Nikolai Korotkoff’s work on the characteristic sounds of blood flowing through arteries (37), 

that the modern technique of BP measurement was born and its widespread clinical use 

began. 

Blood pressure is defined as the force that blood exerts against the inner walls of blood 

vessels. Most commonly it refers to the pressure measured within the aorta or in the arteries 

supplied by the aortic braches. The maximum pressure, achieved during ventricular systole, is 

referred to as the systolic blood pressure (SBP). During diastole the pressure in the arteries 

falls and this is the diastolic blood pressure (DBP). Arterial pressure is measured in 

millimetres of mercury (mmHg).  

Hypertension is one of the most important preventable contributors to myocardial infarction, 

stroke, renal failure, and death (38). It is defined as SBP of 140 mmHg or above and a DBP 

equal or higher than 90 mmHg (39). 

Although for most of the 20th century, the medical community believed that the risks 

associated with hypertension were due to the level of DBP, this paradigm shifted in 1971, 

when the Framingham Heart Study reported (40, 41). One of the mains findings of the study 

into the contribution of SBP and DBP to the risk of coronary heart disease, was that SBP was 
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more strongly associated with the complications of hypertension (42). From the Fifth Report 

of the Joint National Committee on Detection, Evaluation, and Treatment of High Blood 

Pressure (JNC 5) in 1993, onwards, SBP was used to define hypertension in guidelines (43). 

The Prospective Collaborative Study Group meta-analysis of 61 observational studies, 

included more than 1 million people and showed SBP to be a significantly better predictor of 

strokes and coronary heart disease than DBP (44). The JNC 7, in 2003, again confirmed SBP 

as the primary focus of risk stratification and treatment goals (45). In 2014, the JCN 8 

guidelines continued to state that in patients over the age of 60 the most important 

cardiovascular risk factor is SBP (38). However, in subjects under 60, treating DBP to a level 

below 90mmHg was highlighted as the best approach to reduce cerebrovascular events, heart 

failure, and overall mortality. Despite this finding, the JCN 8 recommendations continue to 

support the treatment of SBP to a target under 140 mmHg. 

Afterload can be defined as the tension or stress developed in the wall of the LV during 

systole. In other words, it is the load against which the heart must eject blood. In the absence 

of aortic valve stenosis, afterload is very similar to SBP. Left ventricular wall stress (WS) is 

directly related to ventricular chamber radius (R) and SBP, but inversely related to ventricular 

wall thickness (WT). Thus, raised SBP or dilatation of the ventricle causes an increase in wall 

stress, while thickening of the ventricular wall leads to a reduction. WS is calculated as: Wall 

stress ∝ SBP ×  R/WT. Hypertrophy is thought to be the process by which the LV adapts to 

rising SBP (46).  
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9.5 Aortic Pulse Wave velocity 

 

Aortic pulse wave velocity (PWV) has been extensively used as a noninvasive measure of 

arterial stiffness and is strongly predictive of adverse cardiovascular outcomes and all-cause 

mortality both in the general population (47-51) and in specific aortic diseases (52-54). 

Importantly, aortic elastic function, as measured by PWV exerts its effects largely 

independently of other known cardiovascular risk factors (47, 48). This implies that there are 

other biological mechanisms of vascular risk that are, thus far, poorly understood.  

Assessment of the vascular phenotype using PWV enables subclinical vascular disease to be 

quantified even before the onset of systemic hypertension (55, 56). This makes it a 

particularly interesting cardiovascular phenotype when investigating healthy subjects with 

normal blood pressure. Although the association between obesity and adult cardiovascular 

disease has been extensively studied, there are fewer data available on the effects of body 

composition and aging on the vascular status of healthy adults. 

Traditionally, PWV was measured using a carotid-femoral technique (49). However, this 

approach is error prone as it incorporates disparate abdominal aorta, iliac and femoral vessel 

properties and uses a path length that is indirectly (and often inaccurately) measured (57). 

These limitations can be addressed by measuring aortic PWV from cardiovascular magnetic 

resonance (58). This is possible by analysing the transit time of blood flow curves between 

the ascending and descending aorta (∆t) and directly measuring the distance (∆d) between 

those two sections. PWV corresponds to the ratio of ∆d to ∆t (59). As is the case in other 

cardiovascular phenotypes, PWV is highly heritable with research in twins estimating it to be 

around 50% (60, 61). However, the exact genetic mechanisms underlying this are still 
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unknown. Genome wide association studies (GWAS) of PWV have detected a limited 

number of common genetic variants of very small effects sizes (62, 63). 
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9.6  Inherited Cardiac Conditions 

 

Inherited cardiac conditions (ICCcs) are a heterogeneous group of Mendelian disorders that 

involve the cardiovascular system. It includes arrhythmia syndromes, cardiomyopathies, 

arteriopathies, muscular dystrophies and disorders of lipid metabolism. As a group they affect 

around 340,000 individuals in the UK (64). ICCs are the commonest cause of sudden cardiac 

death (SCD) in the young and are also a major cause of death and disability across all age 

groups. Average annual risk of SCD is about 0.1% for long QT syndrome and under 1% in 

HCM (65), while in familial hypercholesterolaemia the annual average mortality is around 

0.1-0.5% but affects young individuals (64). Genetic testing for cardiac channelopathies and 

cardiomyopathies has developed substantially over the last couple of decades and is starting 

to inform prognosis and impact management at the ‘bedside’ (66, 67). In the matter of only a 

few years, genetic testing in clinical practice has moved from targeting individual genes in 

patients with affected family members to more comprehensive disease panels. Further 

technological improvements have led to reduced costs and sequencing time and therefore it 

can be expected that whole exome or genome sequencing will be widely used in the coming 

years. These developments, allied with more sophisticated imaging and statistical analysis 

methods have greatly increased our understanding of the complexity and diversity of the 

underlying genetic substrate, the clinical phenotype, natural history, and therefore approaches 

to the treatment of ICCs.  

The classification of cardiomyopathies has been updated frequently since, in 1980, the World 

Health Organisation (WHO) defined these conditions as ‘heart muscle diseases of unknown 

cause’ (68). A more contemporary definition from 2006 states: ‘cardiomyopathies are a 

heterogeneous group of diseases of the myocardium associated with mechanical and/or 
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electrical dysfunction that usually (but not invariably) exhibit inappropriate ventricular 

hypertrophy or dilatation and are due to a variety of causes that frequently are genetic. 

Cardiomyopathies either are confined to the heart or are part of generalized systemic 

disorders, often leading to cardiovascular death or progressive heart failure–related disability’ 

(69). 

 

9.6.1 Hypertrophic Cardiomyopathy 

 

Donald Teare, in 1957, was probably the first to describe the pathological appearance of 

HCM in young adults, and its close association with SCD (70). In this paper, Teare described 

8 cases of severe asymmetric septal hypertrophy with ‘bizarre and disorganized arrangement 

of muscle bundles associated with hypertrophy of individual muscle fibres and their nuclei’. 

In 7 out of the 8 cases these young adults died suddenly. Interestingly, Teare appears to 

suggest a genetic substrate to this condition by noting in an addendum, that the brother of one 

of the patients he reported on, also suffered from SCD and another sister was found to have 

clinical signs of HCM.  

The first HCM-associated gene was discovered in 1990 (71) and since then our understanding 

of the genetic basis of this cardiomyopathy has grown exponentially. HCM affects around 1 

in 500 individuals (72) and is defined as unexplained LV hypertrophy associated with non-

dilated ventricular cavity in the absence of another cardiac or systemic disease that could 

produce the magnitude of hypertrophy evident in a given patient (69). The systemic 

conditions that can account for a degree of hypertrophy include amyloidosis and glycogen 

storage diseases. The most common differential diagnoses for HCM are hypertensive heart 

disease and the physiological remodelling in response to exercise (‘athlete’s heart’). For 

diagnosis of HCM, the traditional maximal ventricular WT cut-off is ≥15mm. However, 
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recent guidelines highlight that any degree of WT is compatible with the diagnosis of HCM 

in the presence of disease causing genetic mutations within a family, the so-called genotype 

positive/phenotype negative individuals (72). The characteristic phenotypic diversity of HCM 

is attributable to the variety of disease-causing mutations and to the influence of modifier 

genes and environmental factors. 

HCM is caused by autosomal dominant mutations in genes that encode sarcomere proteins or 

sarcomere-associated proteins. Mutations in genes encoding β-cardiac myosin heavy chain 

(MYH7), cardiac myosin-binding protein-C (MYBPC3), cardiac troponin T (TNNT2), 

cardiac troponin I (TNNI3), essential myosin light chain (MYL3), regulatory myosin light 

chain (MYL2), α-tropomyosin (TPM1), cardiac actin (ACTC), and titin (TTN) are found in 

40-70% of HCM patients (71, 73-75). MYBPC3 and MYH7 mutations are the most frequent 

genetic causes of HCM.   

 

9.6.2 Dilated Cardiomyopathy  

 

DCM is a leading cause of heart failure and SCD and the most frequent indication for heart 

transplantation (76). The estimated prevalence of DCM is 1 in 250 (77) , although with recent 

guidelines recommending family screening and the widespread use of more sensitive 

diagnostic imaging such as CMR, the prevalence of DCM will certainly rise. 

DCM is defined by the European Society of Cardiology as LV dilatation and impaired EF in 

the absence of abnormal loading conditions, such as hypertension or valve disease, or 

coronary artery disease (CAD), sufficient to cause the level of systolic impairment observed 

(78). Impaired systolic function was defined as an EF more than 2 standard deviations below 

the mean and dilatation as LV end-diastolic diameter of more than 2 standard deviations 
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above the mean of the predicted after correction for age, gender and body surface area (79, 

80). Non-genetic causes of cardiac dilation and impairment include myocardial infarction, 

toxic insults (e.g. alcohol or certain chemotherapeutic drugs), metabolic imbalances (e.g. 

hypothyroidism) or infectious agents (e.g. Trypanosoma cruzi or HIV). 

DCM has a strong genetic basis exhibiting variable penetrance and expressivity, and mainly 

autosomal dominant inheritance, although autosomal recessive, X-linked and mitochondrial 

inheritance all occur (81, 82). The considerable phenotypic variability displayed by 

individual mutations points towards the existence of other factors that influence clinical 

progression and outcome (83). Although these genetic, epigenetic, and environmental 

modifiers seem to play an important role they are not yet well characterized or understood. 

This makes the interpretation of protein-altering variation of uncertain significance 

particularly challenging at the population level. 

In recent years, several approaches have expanded our understanding of the genetic basis of 

DCM, including family-based approaches such as linkage analysis and whole-exome 

sequencing (WES) (84-86), GWAS in large cohorts (87, 88) and broad gene-panel 

sequencing (50-90 genes) in DCM patients (89, 90). So far, more than 60 genes have been 

associated with DCM, including several also linked to other cardiomyopathies (76). These 

include: sarcomeric proteins (MYH7, TNNT2, TNNI3, TPM1, ACTC, and TTN), calcium 

cycling proteins (phospholamban and cardiac ryanodine receptor), cardiac ATP-sensitive 

potassium (KATP) channel, Z-disc proteins (MLP and telethonin), dystrophin-complex 

proteins (δ-sarcoglycan, β-sarcoglycan, and dystrophin), desmosome proteins (plakoglobin, 

desmoplakin, and plakophilin-2), lamin, desmin, cypher/ ZASP and metavinculin (18). DCM 

and heart failure that originate from sarcomere mutations are due to either a deficit of force 

production or a deficit of force transmission.  
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Truncating variants in TTN (TTNtv) have been reported to account for approximately 25% of 

familial and severe DCM (91), while all other DCM genes combined account for ~30% of 

cases, with individual genes typically contributing <1% (92).  

DCM may manifest at any age, in either sex and in any ethnic origin although it is more 

common in males and in blacks and typically presents in adulthood (93-96). 

 

9.6.2.1 Titin 

Titin is the largest protein in the human body and plays a key role in the sarcomere. Each 

molecule is more than 1µm long and spans half the sarcomere, with the N-terminus 

embedded in the Z-disk and the C-terminus in the M-line. TTN filaments form a contiguous 

system within myofibrils and interact with multiple proteins: with α-actinin and telethonin 

(T-cap) at the Z-disc, with calpain3 and obscurin at the I-band, and with MYBPC3, 

calmodulin, and calpain3 at the M-line region. 

At its N terminus, TTN is essential for myofibril assembly, stabilization and maintenance 

(97). The elastic I-band region behaves as a bidirectional spring, restoring sarcomeres to their 

resting length after systole and limiting their stretch in early diastole (98). The inextensible, 

thick filament binding A-band region is thought to be critical for biomechanical sensing and 

signalling. The M-band contains a kinase that may participate in strain-sensitive signalling 

and affect gene expression and cardiac remodelling in DCM (99). 

Several isoforms ranging in size from 5,604 amino acids (novex-3) to 34,350 amino acids 

(the "canonical" full length sequence) are produced through extensive alternative 

splicing from the 364 exons of TTN. The major isoforms expressed in the adult myocardium 

are the long N2BA isoform, which contains the N2A and N2B unique segment, and the short 
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N2B isoform that contains the N2B unique segment only. Isoform shift toward a higher 

N2BA/N2B ratio is typically seen in DCM (100). 

In our study of more than 5200 healthy and DCM subjects we found that TTNtv occur in 

~2% of the general population (9 out of 308 healthy volunteers and in 47 out of 3603 

community-based Framingham and Jackson Heart studies’ volunteers), in 13% of ambulatory 

unselected DCM patients (49 out of 374), and in 20% of end-stage DCM patients (34 out of 

155) (101). Nonsense, frameshift, and canonical splice site TTNtv, particularly those that 

truncate both principal isoforms of TTN and/or reside towards the C terminus (Figure 9.3), 

cause DCM with severely impaired LV function and life-threatening ventricular arrhythmias. 

TTNtv in the asymptomatic control subjects were more likely to affect minor TTN isoforms 

as compared with DCM cases, including novex-3, a low-abundance isoform that does not 

span the cardiac sarcomere. 

 

Figure 9.3 – The impact of TTNtv position on cardiac morphology and function. The 

relationships between TTNtv location and cardiac morphology and function assessed by 

CMR imaging in 43 unselected DCM patients with TTNtv. The TTNtv location (x axis) is 

plotted from the amino (N) to the carboxyl (C) end of the protein. Distal (C-terminal located 

in the M-band) TTNtv were associated with worse cardiac contractile performance, 
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specifically diminished indexed stroke volume and EF of both LV and RV as compared to 

proximal truncations. A regression line is shown for each variable. EDVi = indexed end-

diastolic volume; ESVi = indexed end-systolic volume; SVi = indexed stroke volume, EF = 

ejection fraction. (Adapted from Roberts AM, et al. Integrated allelic, transcriptional, and 

phenomic dissection of the cardiac effects of titin truncations in health and disease. Science 

translational medicine. 2015) 

 

Despite these advances in characterising the role of TTNtv in heart failure and DCM, 

relatively little is known about its expressivity and penetrance in populations without known 

disease. Table 1 summarises the cardiac magnetic resonance derived LV parameters from a 

subgroup of the longitudinal, community-based, Framingham Heart Study cohort subdivided 

by the presence of TTNtv. 

 

 TTNtv Negative 

(n=807) 

TTNtv Positive 

(n=12) 

P-value 

LVEDV / BSA (ml/m
2
) 66 ± 13 65 ± 16 0.35 

LVESV / BSA (ml/m
2
) 22 ± 8.4 21 ± 10.9 0.27 

LVSV / BSA (ml/m
2
) 44 ± 7.4 44 ± 9.0 0.56 

LVEF (%) 67 ± 6.9 68 ± 9.8 0.2 

LVSWT (mm) 7.9 ± 1.4 8.3 ± 1.4 0.39 

LVIWT (mm) 6.8 ± 1.3 7.0 ± 1.2 0.65 

LVM / BSA (g/m
2
) 55 ± 12 56 ± 11 0.82 

 

Table 1 – Framingham Heart Study CMR phenotype grouped by TTNtv presence.  BSA = body 

surface area; LVEDV = left ventricular end diastolic volume; LVESV = left ventricular end 

systolic volume; LVEF = left ventricular ejection fraction; LVSWT = Left ventricular septal wall 

thickness; LVIWT = Left ventricular inferior wall thickness; LVM = left ventricular mass. 

(Adapted from Roberts AM, et al. Integrated allelic, transcriptional, and phenomic dissection 

of the cardiac effects of titin truncations in health and disease. Science translational 

medicine. 2015) 
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9.7 Genetics, genotyping and sequencing 

 

Although Gregor Mendel is considered the ‘father of genetics’ through his work on the 

patterns of inheritance of ‘units of information’ (or genes as they eventually became known) 

in plants 1865, it was Friederich Miescher in 1868/9 that first identified nucleic acids (102). 

In 1944, Oswald Avery, Colin MacLeod and Maclyn McCarty demonstrated that 

deoxyribonucleic acid (DNA), and not proteins, as was previously thought, serves the 

purpose of carrying genetic information (103). In 1953 James Watson and Francis Crick 

proposed the double-helix model of DNA structure (104) based on experimental data from 

Rosalind Franklin and Maurice Wilkins. Crick, Watson and Wilkins were awarded the 1962 

Nobel Prize in Physiology or Medicine for what is regarded as one of the most significant 

scientific discoveries of the 20
th

 century. Sequencing of the complete human genome started 

in 1990 and a working draft was completed and published in 2001 at a cost of US$3billion 

(5). 

The human genome is at the same time an extremely simple and phenomenally complex 

macromolecule. It is simple, in that it is formed by only 4 repeating nucleotides: adenine (A), 

cytosine (C), guanine (G) and thymine (T). It is complex because the single DNA molecule is 

2 meters long and comprises roughly 3200000000 nucleotides, arranged in a seemingly 

random order, forming a three dimensional structure. The DNA molecule is formed by two 

polynucleotide strands winding around a helix axis in a right-handed spiral. The two 

polynucleotide chains run in opposite directions and are held together by weak 

thermodynamic forces: adenine forms 2 hydrogen bonds with thymine on the opposite strand 

while guanine forms 3 hydrogen bonds with cytosine on the opposite strand. Nucleotides are 

composed of a five-carbon sugar to which, one or more phosphate groups and a nitrogen-
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containing base, are attached. The nucleotides are covalently linked together in a chain 

through alternating sugars and phosphates. The polarity in a DNA chain is indicated by 

referring to one end as the 3′ end (hydroxyl) and the other as the 5′ end (phosphate). In 

protein-coding regions of the genome, each set of 3 nucleotides (a codon) corresponds to a 

specific amino acid used in protein synthesis.  A mutation refers to a change in an 

individual’s DNA sequence that may affect the product of a gene. Single nucleotide 

polymorphisms (SNPs) are base-pair differences in the DNA of individuals within a 

population (variability for a certain allele). 

Although it was thought that only 1-1.5% of the human genome had a functional activity 

(105) this topic has been intensely debated in recent years (106). The Encyclopedia of DNA 

Elements (ENCODE) project concluded that many sections of DNA have biochemical 

functions beyond protein encoding. In the 93% of the genomic bases they studied around 

80.4% participate in at least one biochemical RNA and/or chromatin associated event in at 

least one cell type (107). 

The definition of gene, as the basic unit of heredity, has been a controversial matter in recent 

years. A widely accepted version is from the Sequence Ontology Consortium that describes a 

gene as a ‘locatable region of genomic sequence, corresponding to a unit of inheritance, 

which is associated with regulatory regions, transcribed regions and/or other functional 

sequence regions’(108). A recent definition proposes a gene to stand for ‘a union of genomic 

sequences encoding a coherent set of potentially overlapping functional products’ (109). 

Several approaches have been employed to better understand the genetic determinants of 

human health and common and rare diseases. Common cardiovascular diseases and cardiac 

phenotypes in general are highly heritable (26, 110, 111). The genetic risk of developing a 

common cardiac disease  is thought to be mostly determined by several common loci (defined 
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as alleles with a population frequency of ≥0.05) (112). Individually these loci cause 

negligible effects on the phenotype on an individual (113), but when acting in concert their 

contribution to a given complex trait can be more substantial (114). This is known as the 

‘common disease – common variant’ hypothesis. This hypothesis supports the role of 

genomic research that aims to study all the genes and their cumulative and interactive effects 

on the organism. In GWAS subjects are genotyped for hundreds of thousands of common 

variants in an attempt to identify single nucleotide polymorphisms (SNPs) associated with 

cardiovascular phenotypes. However, common alleles identified so far in GWAS of common 

conditions such as hypertension and hyperlipidaemia, have only accounted for a small 

proportion of phenotypic variance – as little as 2% in total in some instances (115, 116). The 

‘missing heritability’ might be due to underpowered phenotyping or genotyping. Another 

possibility is that there might be rare (with minor allele frequency ≤0.01) , very rare or indeed 

private variants that cause large phenotypic changes (‘rare variant-common disease’ 

hypothesis) (117). Furthermore it is possible that several rare variants might collectively 

cause a significant phenotypic effect.  

At the other end of the disease prevalence spectrum, we have those rare conditions that are 

caused by extremely rare, or indeed private, variants in one or a few genes leading to large 

phenotypic effects (118). These conditions support the ‘rare disease – rare variant’ hypothesis 

that has historically been behind candidate gene and linkage studies.  

  



48 

 

9.7.1 DNA Sequencing Strategies 

 

9.7.1.1 Sanger Sequencing 

Since the late 1970’s, DNA sequencing has been dominated by an approach first proposed by 

Frederick Sanger (119, 120). Sanger sequencing, also referred to as chain-termination 

sequencing or dideoxy sequencing, is based on the use of dideoxynucleotides (ddNTPs) in 

addition to the normal nucleotides (deoxynucleotides, dNTPs) required for DNA synthesis. 

When compared to dNTPs, ddNTPs lack the hydroxyl group (OH) at the 3’ end. DNA 

polymerases copy single-stranded DNA templates by adding dNTPs to the 3' end of a primer. 

dNTPs added are selected by base-pair matching to the template. However, when DNA 

polymerases incorporate the ddNTPs, chain elongation is selectively terminated at A, C, G, or 

T. This occurs because a phosphodiester bond cannot form between the ddNTP and the next 

incoming dNTP, therefore terminating the DNA chain elongation. For high throughput 

Sanger sequencing, DNA segments need to be copied (or amplified) many times. Each of the 

four ddNTPs is labelled with a different fluorescent dye which makes automated 

identification possible. After many iterations of this process all the potential chain-

termination molecules are produced. The result is that copies of varying length are generated. 

By analysing the end nucleotide from all the DNA fragments, the original DNA sequence is 

discovered. Presently, instead of running a gel and manually reading it, DNA sequencers 

carry out capillary gel electrophoresis for size separation, detection and recording of dye 

fluorescence at each position (121). The Sanger method remains the gold standard for 

sequencing accuracy.  
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9.7.1.2 Next Generation Sequencing 

Since being introduced in 2005 (122), next generation sequencing (NGS) platforms that allow 

massively parallel DNA sequencing have revolutionised genomic research (123). The 

phenomenal reduction in costs and sequencing time when compared to the traditional Sanger 

approach have provided unprecedented opportunities for high-throughput functional genomic 

research including whole genome sequencing (WGS) and targeted resequencing. While 

modern high-throughput Sanger sequencing machines, such as the ones used to sequence the 

first human genome, read around 2 million bases of sequence per day (124, 125), NGS 

platforms can sequence up to ∼50 billion bases per day (126). 

NGS sequencing has been dominated by three platforms: Illumina (Genome Analyser and 

HiSeq), Applied Biosystems (SOLiD) and Roche (454).  Each platform uses a different 

approach to DNA sequencing and the technique varies if you are aiming to carry out WGS or 

targeting a certain subset of the genome. If targeting a subgenomic section two main methods 

are used for DNA enrichment: polymerase chain reaction (PCR) enrichment and 

hybridisation enrichment. In PCR enrichment, primer pairs are designed to bind to DNA 

areas either side of the target region. These target regions are then amplified by PCR and 

pooled to form a library ready for NGS sequencing. In hybridisation enrichment, the DNA is 

first fragmented and then hybridised to baits that are complementary to the regions of 

interest. The fragments of DNA attached to the baits are kept and all others are washed out. 

After selection of the regions of the DNA to be sequenced, these sections are attached to 

platform specific ‘adaptors’ that provide the sequencing start point. The DNA fragments are 

then either attached to a bead, which eventually is immobilised on a sequencing slide, or 

alternatively attached directly to a sequencing slide from the start. These segments are then 

clonally amplified via PCR, creating a spot with many copies of the same read. They are then 

separated into single strands to be sequenced. In the Illumina platform, DNA polymerases 
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and fluorescently labelled nucleotides (with a given colour corresponding to a specific 

nucleotide) are then added and DNA synthesis resumed. Each time a base is added, an image 

of the slide is taken, recording the fluorescent signal at each read location. The fluorophore 

‘label’ is then cleaved from the recently added nucleotide and the process repeated. The DNA 

sequence is read by decoding the sequence of fluorophores imaged at each physical position 

on the sequencing slide. These sequence fragments are computationally aligned with a 

reference sequence and mismatches identified (126). 

Current NGS systems have a typical accuracy rate of over 99.9%. However, to confirm 

variant calls it is essential either to perform a Sanger sequencing validation, or repeat the 

deep sequencing method while accepting only those variants that are reproduced. 

According to the National Human Genome Research Institute (127), the cost of sequencing a 

single human genome, using the automated Sanger approaches available in 2001 was 

US$100000000 while by mid-2014 it had fallen to around US$5000 using NGS methods. 

With the cost of a multi-gene targeted-sequencing panel estimated to be around US$2000-

10000 it is not surprising that many research and clinical institutions are considering moving 

towards routine WGS (128).  

 

9.7.2 Study designs used in genetic studies 

 

9.7.2.1 Candidate genes studies 

These studies are based on previous knowledge of disease pathology and of the role of a 

single gene, or relatively small number of genes, in causing a defined phenotype. These genes 

are then sequenced in well characterised cohorts leading to the identification of variants 
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present in the disease group and not in controls (129-131). As an example, it was this type of 

approach that led to the discovery of the alleles that influence the response to clopidogrel 

(CYP2C19) (132) and identification of the causative action of TTNtv in DCM (101). 

 

9.7.2.2 Linkage studies 

Linkage studies rely on linkage disequilibrium, recombination frequencies and genetic maps 

(133). Loci that are close together on the same chromosome segregate together much more 

often than do loci on different chromosomes. Indeed the further apart they are the more likely 

that, during meiosis, recombination occurs between them. The probability of recombination 

of two loci at meiosis is described as the recombination frequency (134). Two loci are in 

linkage disequilibrium if, across a given population they are found together on the same 

haplotype more often than expected. For linkage studies, pre-defined markers, regularly 

spaced across the genome (linkage maps) are genotyped and their segregation through 

pedigrees studied. The classic approach for Mendelian diseases looks for co-segregation of a 

disease phenotype with these genetic marker, indicating that such a marker is linked to a 

nearby disease allele (129). Once a candidate region is identified, it can be sequenced to 

identify the causative variant. 

 

9.7.2.3 Genome Wide Association Studies 

GWAS have been mostly used to identify common variants responsible for common complex 

traits (135-137). Using commercially available chips (e.g. Illumina HumanOmniExpress 

BeadChip) large scale case-control studies are carried out where many hundreds of thousands 

of SNPs are genotyped. Given the large number of subjects usually required, this approach 

has only been applied to ICCs in a couple of studies (87, 138). The power of a GWAS to 
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detect SNPs significantly associated to given phenotypes is directly related to the sample size, 

detectable phenotypic effect size and mean allele frequency (MAF). One of the major 

strengths of this approach is that it is unbiased by previous knowledge and can identify 

completely novel genes or biological pathways involved in the trait under investigation. A 

significant limitation of these studies is the lack of statistical power to detect significant 

associations, given the need for multiple testing corrections (139). However recent progress 

in statistical analysis has enabled us to progress from the traditional ultra-conservative 

Bonferroni correction for multiple testing. Using this method the level of significance (α)  is 

divided by the number of tests being carried out (n) to identify the family wise level of 

significance: p = α / n. Using this approach all tests are considered independent which is 

known not to be the case in the genome.   Computational intensive permutation testing and 

approaches that leverage Bayesian methods have shown great promise in enhancing the 

power of GWAS (140, 141).  SNPs identified in GWAS invariably need replication in other 

populations or experimental validation.  

 

9.7.2.4 Whole genome / whole exome sequencing 

WGS and whole exome sequencing (WES) have only become feasible approaches to identify 

single gene and multigene disorders since the advent of NGS. They combine the benefits of 

candidate gene studies in detecting known and novel variants in a certain sequence of DNA, 

with the unbiased nature of GWAS. Bioinformatics capacity to handle and interpret the huge 

amount of data generated is one of the main drawbacks of these approaches. In WGS all 

SNPs, coding or noncoding, are sequenced independently of the target capture technology 

used. Given that only <2% of the human genome is protein-coding, WES is an attractive 

alternative which significantly reduces the bioinformatics requirements and the burden of 

multiple testing.  In WES only the exons in the genome are captured, enriched and 
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sequenced. WES is dependent on the efficiency of capture of each exon and it has been 

reported that up to 20% of exons might not be robustly sequenced (113). A recent study 

found that although WGS might be slightly better at detecting variants than WES (3% coding 

variants not detected by WES) the sequencing and bioinformatics cost does not, for now, 

justify the widespread utilisation of WGS (142). 
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9.8 Cardiovascular Magnetic Resonance  

 

9.8.1  History, principles and techniques of Magnetic Resonance Imaging 

 

Cardiovascular magnetic resonance has evolved in the last few decades into a sophisticated 

and robust method for studying the cardiovascular system, in research and clinical practice. It 

builds however on over a century of scientific achievements in mathematics, physics, 

chemistry and medicine. This imaging modality represents, like few others, the power of 

collaborative and iterative work by scientists from diverse backgrounds and disciplines. So 

far, six Nobel Prizes have been awarded for breakthroughs related to the technique. 

In the early 20
th

 century, advances in spectroscopy led to the finding that the wavelength of 

visible light splits into two wavelengths when a substance is placed in a magnetic field. It was 

Wolfgang Pauli who first recognised, in 1924, that the splitting of the wavelength was caused 

by magnetic interactions between subatomic particles and that these interactions could be 

altered by an external magnetic field (143). During his career, Pauli postulated that atomic 

nuclei have two quantum mechanical properties: spin and magnetic moment. In nuclei with 

an odd number of nucleons, such as 
1
H or 

31
P, the spin will be non-zero and there is a 

magnetic moment (µ). Modern magnetic resonance imaging (MRI) relies mostly on the spin 

and small magnetic moment of the single proton in the hydrogen nucleus. Hydrogen is used 

because it is abundant in human tissue, water (H2O) and lipid (CH2) molecules. 

In 1933, Otto Stern and Walther Gerlach were able to measure the effect of the nuclear spin 

by deflection of a beam of hydrogen molecules through an inhomogeneous magnetic field. 

For this breakthrough Stern was awarded the 1943 Nobel Prize in physics. In 1937, Isidor 

Rabi, a former student of Stern, further developed the molecular beam method for measuring 
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nuclear magnetic moments and succeeded in detecting and measuring single states of rotation 

of atoms and molecules. He coined the term Nuclear Magnetic Resonance (NMR) and was 

awarded the Nobel Prize in physics of 1944.  In 1946, Felix Bloch and Edward Purcell, 

working independently, found that when nuclei were placed in a magnetic field they could 

absorb radiofrequency (RF) energy at a characteristic frequency, and re-emitted this energy 

when the nuclei returned to their original state (144). Both men were the Nobel laureates in 

physics in 1952. 

Through the pioneer work of these remarkable scientists, we know that when spins are placed 

in a magnetic field they precess around the direction of the field. They do not align with or 

against the direction of the field at first; they simply start precessing at whatever angle to the 

field they happen to be in. All nuclear magnetic moments cancel out because they point in 

any and all directions in the three dimensional space (an isotropic distribution). However, in 

the presence of a strong magnetic field (B0) spins exhibit a tendency to align either towards or 

against with B0. In the case of hydrogen, a small excess of spins aligns with B0 giving rise to 

a net magnetic field normally represented as M0. The greater the strength of B0 the larger this 

net magnetisation will be (145). At any instant the magnetisation can be split into two 

components, Mz and Mxy. The rotating Mxy component generates the detectable signal. At 

equilibrium, the spins precess around B0 at the resonant frequency of ω0 but with a random 

phase, giving a net transverse magnetisation Mxy=0 (i.e. no signal).  

Another significant development came in 1950, when Erwin Hahn introduced pulsed nuclear 

magnetic resonance. By this method, a sample is exposed to a pulse of RF utilising a wide 

range of frequencies. When an RF pulse is applied, M0 stops being completely aligned with 

B0 along the z-axis and makes an angle, known as the flip angle. The maximum detectable 

signal amplitude after a single RF pulse occurs when M0 lies entirely in the plane of the X 

and Y axes as this gives the largest Mxy component. This pulse has a 90° flip angle and is 
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referred to as a 90° RF pulse (146).  The precessing net magnetisation generates an 

oscillating magnetic field which can be measured in appropriately placed signal detection 

equipment. The amount of time that exists between successive pulse sequences applied to the 

same slice is called repetition time (TR).  

Joseph Larmor (1857-1942) is better known in the field of NMR by the frequency and 

equations that bear his name. The Larmor or precessional frequency refers to the rate of 

precession of the nuclear magnetic moment (ω) of the proton around the external magnetic 

field. This precessional frequency is directly proportional to the product of the magnetic field 

strength (B0) and the gyromagnetic ratio (γ) (147): ω0 = γ B0. The unit of the magnetic field is 

in tesla (T) while the gyromagnetic ratio is constant for each specific nucleus. For hydrogen, 

γ is 42.576 MHz T 
−1

. The Larmor equation is instrumental to MRI as it is the frequency of 

precession that determines the frequency at which the nucleus absorbs energy in a given 

magnetic field. 

After excitation, the spins gradually return to their resting state, resulting in an increase in Mz 

and a gradual decrease in Mxy. The rate at which the spins return to their equilibrium (M0 

parallel with B0) is described by the constant T1. A long T1 means there is a slow recovery, 

whereas a fast recovery is described a short T1. The gradual disappearance of Mxy due to spin-

spin interaction is described by the time constant T2. T1 is always longer than T2. 

Measurement of T1 and T2 relaxation in itself, is not enough to generate an image as it is not 

possible to determine where those signals are arising from in the imaged object. 

In 1973, Paul Lauterbur and Peter Mansfield, independently established the principles of 

NMR tomographic imaging and laid the foundations for MRI (148, 149). They described the 

use of magnetic field gradients for spatial localisation of NMR signals allowing the creation 

of 2D NMR images. Lauterbur created a 2D image by applying gradients at different angles 
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to produce 1D-projections. He then used a back-projection reconstruction technique to 

combine these projections into images. Mansfield devised a method to selectively excite a 

single slice using gradients which identify where to collect the signal from a 3D object.  

In MR, the static field (B0) is always present but gradients are not. When a gradient is 

applied, the magnetic field, and therefore also the precessional frequency of the spins, 

changes. In pulsed sequences, an RF pulse, with a limited bandwidth of frequencies, will 

excite only the spins with the corresponding resonant frequencies. At the same time a slice-

selective gradient is applied which results in only spins within a given slice to be excited 

(slice encoding). This gradient can be in any XYZ direction or indeed in a combination of 

those. This enables the creation of slices in any anatomical alignment (sagittal, coronal, 

transverse, oblique, etc). A second magnetic field gradient, known as phase encoding, is then 

applied, orthogonal to the slice encoding gradient. This causes the protons to precess at 

different frequencies according to their relative position along the gradient. Where the 

gradient increases the magnetic field, the protons acquire a higher frequency, while where the 

gradient decreases the magnetic field, the protons acquire a lower frequency of 

precession. Phase encoding is applied for a brief period before the readout and the strength of 

the gradient is changed incrementally between each RF pulse. When the gradient is switched 

off, the protons will have changed their relative phase by an amount depending on their 

position along the gradient. By changing the phase encoding gradient for each RF pulse a full 

two-dimensional matrix of data values can be obtained. A third and final gradient is then 

applied at a right angle to the previous gradients which causes the resonant frequencies of the 

spins to vary spatially (frequency encoding). The position of a given spin is now proportional 

to its frequency and the measured signal consists of the sum of magnetic moments with 

different frequencies. 
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Another pivotal development in MRI occurred in 1966, when Richard Ernst and Weston 

Anderson introduced the Fourier transformation to NMR spectroscopy (150, 151). Joseph 

Fourier, in 1822, had developed a general mathematical transformation method for analysis 

of heat transfer between solid bodies (144). Applied to NMR, the Fourier transform enables 

the separation of the frequencies which contribute to the signal emitted from the image slice. 

It also enables the measurement of the amplitude of those waves, which correspond to the 

signal intensity levels in an image. This mathematical method allows for rapid processing of 

the phase and frequency signals and the efficient utilisation of the information for image 

reconstruction. This was a much faster alternative to the back-projection technique. Due to 

the common mathematical use of the parameter ‘K’ in Fourier calculations, the raw data 

space is called the k-space (152) . In 1991 Richard Ernest was awarded the Nobel Prize in 

chemistry, for his work on the Fourier Transform and subsequent development of multi-

dimensional NMR techniques (151).  

K-space has a central role in MRI (153). MRI scanners collect data on the spatial frequencies 

of the imaged object. They are stored in a regular grid of values forming a data matrix known 

as k–space. A two-dimensional Fourier transform of this matrix produces the required image 

of the object within the slice. Each line point in k-space represents a single spatial 

frequency’s contribution across the whole image. Similarly, every MR voxel signal intensity 

is influenced by every spatial frequency in k-space. The low spatial frequency information 

(signal from the object and contrast information) is at the centre of k-space. High spatial 

frequencies (edges of the object and resolution information) are in the periphery of k-space. 

The number of points in k-space corresponds to the number of voxels in the image. The voxel 

size in the image is determined by the dimensions of k-space. Finally, the field of view 

(FOV) of the image is inversely related to the spacing between data points in k-space. 
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During image acquisition each voxel will contain a mixture of signal and noise. The MR 

signal is the electrical voltage induced in the receiver coil by the precession of the transverse 

component of the net magnetization (Mxy) around the longitudinal axis. The noise is due to 

unwanted random electrical fluctuations from other sources. These exist in all conducting 

materials, including MR receiver coils and human tissue. The signal to noise ratio (SNR) is 

calculated via: SNR = signal / noise. 

SNR increases with voxel volume and the number of signal samples (proportional to the 

number of phase encoding steps) but decreases with increasing receiver bandwidth. 

Thanks to advances in electronics, computing, signal summation and the development of 

high-strength superconducting magnets, the scene was finally set for the application of MRI 

in clinical practice. 

One of the first clinical applications of NMR was proposed by Raymond Damadian in 1971. 

After a series of experiments looking into the relaxation properties of water in bacteria and 

other organic tissues, he went on to measure the T1 and T2 of normal and cancerous cells in 

rats and humans. He stated that cancer cells had longer relaxation times than healthy cells and 

proposed NMR as a means of identifying malignancies in humans (154, 155). His team also 

carried out the first MRI of the human body in 1977 using a scanner with a field strength of 

0.05T (156). Given that the homogenous part of the field was very small, the patient’s table 

had to be moved to collect each voxel and it took around 4 hours to collect a single slice.  

Lauterbur and Mansfield were jointly awarded the 2003, Nobel Prize in physiology or 

medicine for their work leading up to MRI. The fact that Damadian was not also included in 

this award has caused much controversy in the field over the years (157). 
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From the mid 1970’s, the clinical use of MRI was obvious and development occurred rapidly. 

The prototype of the first commercial scanner (the ‘Neptune’ 0.15T superconductor system) 

was installed in 1981 by GE and Oxford Instruments at Hammersmith Hospital in London 

(158). By 1982 the first commercial MRI scanner, with a field strength of 1.5T, was being 

marketed by General Electric. According to the NHS England Imaging and Radiodiagnostic 

activity report 2012/2013, 2.4 million MRI scans took place in England that year. This 

number represented a 211% rise over a 10 year period. 

A modern magnetic resonance scanner is constituted by three components: magnet coils, 

gradient coils and an integral radiofrequency transmitter coil (Figure 9.4). These components 

create different magnetic fields: 

o The magnet coil generates a strong, constant magnetic field 

o The gradient coils generate a gradient magnetic field that can be quickly 

switched on and off 

o The RF transmitter coil generates an RF magnetic field that oscillates at a 

characteristic frequency 

When combined together these three components produce spatially encoded signals that are 

used to form the MR images.  

 

Figure 9.4 – Magnetic Resonance system components. Diagram showing the relative 

locations of the main magnet coils, x, y, and z gradient coils, integral RF transmitter body 
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coil and RF receiver coils. b) Typical arrangement for a cylindrical bore MR system showing 

the magnet bore and the reference coordinate axes with the static Bo field direction along 

the horizontal z axis. (Figure from Ridgway JP. Cardiovascular magnetic resonance physics 

for clinicians: part I. Journal of cardiovascular magnetic resonance. 2010) 

 

9.8.2 Cardiac Magnetic Resonance 

 

Although it is difficult to determine the timing of the first cardiac scan, in 1981, Rob Hawkes 

and colleagues published a paper dedicated to cardiac NMR (159). They highlighted the 

issues surrounding respiratory and cardiac motion and went as far as suggesting that the latter 

could be addressed by an electrocardiogram-linked trigger.  

In a 1983 study in canines, Paul Lauterbur’s team first described the electrocardiogram-gated 

CMR (160). Cardiac synchronisation is possible thanks to carbon monitoring electrodes that 

are attached to the patients’ chest wall. There are two types of electrocardiogram (ECG) 

gating – prospective and retrospective. 

In prospectively triggered sequences, software detects the ECG tracing, finds the QRS 

complex and generates a synchronisation pulse. This initiates the pulse sequence controller so 

that the pulse sequence is applied at a given time after the R wave. One line of k-space is 

acquired per each R-R interval. The image acquisition time is proportional to the repetition 

time (TR) and the number of k-space lines acquired (number of phase encoding steps (NPE)): 

image acquisition time = TR x NPE. Using this technique, a single image is generated at a 

single point in the cardiac cycle with the removal of the cardiac motion artefact. High 

resolution imaging is possible as the image is reconstructed from multiple cardiac cycles. In 

practice, prospective gating is not performed due to the long periods of time in which no data 
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is being acquired and because the length of the acquisition cannot be longer than the average 

R-R interval.  

A significantly more efficient approach is to acquire data continuously and then match this to 

the recorded ECG tracing – retrospective gating (161). During image reconstruction, a 

retrospective average heart rate is calculated and the image data is mapped onto a pre-

determined number of cardiac phases. Using this method all phases are imaged without 

wasted periods without data acquisition. Artefacts can occur when the differences in the 

length of the R-R interval are quite significant (e.g. cardiac dysrhythmias). Modern scanners 

will ignore data when the R–R interval lies outside a predetermined arrhythmia rejection 

window and continue acquiring phase–encoding steps. This may mean that patients with 

irregular heart rates have much longer breath–holds to perform. In extreme cases, prospective 

triggering might be useful in overcoming this challenge. 

Respiratory gating can also be used to complement cardiac gating. However, due to the 

length of the respiratory cycle this method is rarely used. Instead, cardiac acquisitions tend to 

take place during a period of breath-holding. 

There are two main families of sequences used in CMR – spin echo (SE) and gradient echo. 

Historically, SE was the first sequence to be used and became the benchmark for all 

subsequent developments, namely in terms of contrast.  

In short, SE sequences involve two RF pulses, one at 90° and one at 180°. Echo time (TE) is 

the time between the 90° RF pulse and the centre of the MR signal sampling window. The 

sequence starts with a 90° pulse that turns M0 into Mxy. After this pulse, Mxy begins to 

dephase and at around half of the desired TE, a 180° excitation pulse is applied.  This pulse 

rotates the magnetisation by 180° about the axis and results in a rephasing process of the 

dephased spins. Due to this rephasing process the signal reaches its maximum at TE, the so 
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called Spin echo. The 180° rephasing pulse compensates for the constant field heterogeneities 

to obtain an echo that is weighted in T2 and not in T2* (loss of signal strength due to non-

homogeneous magnetic field and patient’s magnetic susceptibility). The main benefit of the 

SE sequence is that it is relatively insensitive to magnetic field inhomogeneities and therefore 

less susceptible to produce artefacts. The major disadvantage is that in order to obtain 

maximum signal, Mxy needs to return to equilibrium before the TR is repeated. If T1 is long, 

this can prohibitively lengthen image acquisition. Also, TE needs to be quite long (80 to 140 

milliseconds) for improved T2 contrast.  One important issue surrounding SE sequences is the 

specific absorption rate (SAR) limit (145). When an RF pulse is applied, this energy (measure 

in watts) is deposited in the patient (per unit of tissue mass). SAR is proportional to the 

square of B0, the square of the flip angle and the duty cycle (percentage of time that a 

gradient is on). Therefore, SE sequences in which RF pulses are applied to cause flip angles 

of 90° and 180° are associated with a higher SAR. 

Sequences from the gradient-recalled echo (GRE) family represent the majority of those used 

in CMR due to its speed and versatility. The increased scanning speed is obtained through a 

reduction in TR (<10 milliseconds). However if the TR is very short there is not enough time 

for longitudinal recovery and the SNR is severely reduced. GRE pulsed sequences reduce the 

readout flip angle so that some magnetisation is maintained in M0, whilst some is measurable 

in Mxy. In this sequence, a slice-selective gradient is applied to the imaged object while an RF 

pulse produces a rotation angle that is less than 90°. A low flip angle reduces the T1 

weighting as the overall variation in longitudinal magnetisation is reduced. However, less 

Mxy results in a lower signal. A high flip angle increases T1 weighting, and if the TR is long 

enough, increases the signal that is generated. To read the signal, a frequency encoding signal 

is then applied. Spins will precess at different frequencies along this gradient and the 

transverse magnetisation will dephase. A second frequency encoding gradient is then applied 
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which has the same amplitude as the first but a gradient slope in the opposite direction. In 

practice this second gradient is applied for twice as long as the first so that the spins rephase 

into a maximum signal amplitude at the centre of the readout gradient (mid TE) and then 

dephase again generating a symmetrical gradient echo (signal) (146). GRE is limited by a 

higher susceptibility to magnetic field inhomogeneities.   

In practice, the flip angles used in GRE are so small that the TRs are shorter than the 

relaxation times of blood and myocardium. This means that when the next RF pulse is 

delivered the signal has not completely dephased. In the early 1980’s work was carried out by 

Rob Hawkes and Bill Moore on a modification of gradient echo imaging that came to be 

known as steady state free precession (SSFP) (144). SSFP is based on the finding that after 

several TRs in which an RF pulse is delivered on the altered magnetisation, a steady state of 

magnetisation is achieved. SFFP was not particularly successful at first due to low image 

quality when compared with other gradient echo sequences. It was only with the 

improvements in magnet field homogeneity and fast switching gradients, that SSFP rose to 

prominence in the last couple of decades (162). 

Balanced steady state free precession (b-SSFP) is a special type of SSFP that is currently the 

mainstay of cine-CMR (163). This sequence is also known as balanced fast field echo (b-

FFE), TrueFISP and Fast Imaging Employing Steady-state Acquisition (FIESTA), depending 

on the manufacturer of the scanner. Due to the low flip angles used in gradient echo it is 

possible to have such short TR that the transverse magnetisation in the Mxy direction has not 

fully dephased when the next RF pulse is applied. In b-SSFP this remaining magnetisation is 

maintained using additional rephasing and dephasing gradients. 

B-SSFP contrast is related to the tissue's T2/T1 ratio, with fluid and fat in particular 

appearing brighter than other tissues such as muscle (low T2/T1 ratio). B-SSFP has a high 
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SNR and the blood inflow enhancement effect, further improves the contrast between blood 

and the myocardium (Figure 9.5) (164). Allied to the fact that it is a relatively fast 

acquisition, it is well adapted for evaluation of wall motion and volumetric measurement.  

 

  

  
 

Figure 9.5 – Two-dimensional balanced steady state free precession of the heart. Top left – 

mid ventricular short axis; top right – 4 chamber view; bottom left – left ventricular outflow; 

bottom right – left ventricular long axis. B0 = 1.5T, slice thickness = 8mm; spacing between 

slices = 10 mm; repetition time = 3.0 ms; echo time = 1.5 ms; Flip angle = 60o; acquired pixel 

size, 2.0 x 2.2 mm; reconstructed voxel size, 1.2 x 1.2 x 8mm; number of sections, 10 – 12; 

cardiac phases, 30. 

 

SSFP technique is sensitive to areas of magnetic field inhomogeneity as the transverse 

magnetisation from different excitations can destructively cancel rather than add together in. 

This makes it prone to dark banding artefacts across the image. This can be addressed by 
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keeping the TRs short (3-6 ms) or through a patient specific process called dynamic 

shimming, in which shim coils are used to fine-tune the magnetic field. 

Cardiac cine images are short movies that are able to show heart motion in a single slice of 

the heart, throughout the cardiac cycle. Data are acquired at each phase of the cardiac cycle 

and assigned a separate k-space. Over several R-R intervals the full k-space is acquired. 

Cardiac cine imaging requires very short TRs to be used and therefore b-SSFP is used. 

Cine-imaging can also be used to quantify flowing blood through a vascular lumen (165). 

Velocity encoded gradient echo imaging (VENC), also known as phase contrast imaging, 

uses short-lived bipolar gradients which are equal in magnitude but opposite in direction. In 

stationary tissues, this results in a net phase of zero near the centre of the echo. However, for 

moving spins the effects of negative and positive gradients will not exactly cancel each other 

out and a net phase difference can be detected. This allows each point in the image to be 

encoded with a phase shift that is directly proportional to the velocity at that point. For 

analysis three images are necessary: a conventional magnitude image from which the 

anatomy can be delineated and two phase contrast images acquired at different flow 

sensitivities (166, 167). Magnetic field inhomogeneities and motion in the non-velocity 

encoding direction should remain constant for the two acquisitions. Subtraction of the two 

resulting phase images allows the quantitative assessment of the velocities of the underlying 

flow or motion (168). To increase the accuracy of measurements from a VENC image, a 

plane must be selected that is perpendicular to the path of the flowing blood and this is 

achieved by planning on two orthogonal views (169). The technique creates a velocity 

encoded image for multiple phases of the heart cycle, thus creating a cine. In the cine 

produced, stationary tissue appears grey while through–plane flow in the phase-encoding 

direction appears as white and in the opposite direction as black. The whiter or blacker each 

voxel is, the faster it is moving. A limitation of VENC arises from the pre-set velocity 
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encoding parameter (or maximum measurable velocity range). If the actual flow velocity 

exceeds this value, the image will become aliased in the opposite direction. However, 

increasing this parameter would results in a loss of sensitivity to slower velocities. 

Quantification of blood flow is performed by software that requires the user to outline the 

vessel of interest for each phase. The software produces time-area, time-velocity and time-

flow curves (Figure 9.6). This technique is valuable for evaluating valve pathology and flows 

in the systemic and pulmonary systems. One of the measurable phenotypes using this 

technique is aortic pulse wave velocity (PWV). PWV is calculated knowing the distance 

between two points (∆d) and transit time of the velocity wave front between the two sections 

(∆t): PWV = ∆d/∆t. Therefore, if velocity data are measured in the ascending and descending 

aorta, and the distance between those two sections, inclusive of the aortic arch, is measured 

then PWV can be calculated (Figure 9.6) The temporal resolution of b-SSFP can be further 

increased by a factor of 2 to 4 by combining it with parallel imaging approaches. These 

methods make use of coils with different elements (Figure 9.7) and considerably enhance the 

performance of CMR. One of these techniques is known as sensitivity encoding (SENSE) and 

was first proposed by Klaas Pruessmann in 1999 (171). SENSE enables a significant 

reduction in imaging time with only a small drop in SNR. When using SENSE, a reference 

scan is acquired prior to clinical data acquisition to measure coil sensitivity profiles. The full 

FOV is used but only the central lines of k-space are acquired. As the sensitivity of each 

separate coil element for a given object is different, this data can be used to reconstruct 

information without actively having to measure it. Accelerated data acquisition follows in 

which fewer and more spaced out lines in k-space are acquired. This results in a reduction in 

the FOV in the image domain. Because k-space is undersampled, an aliased image is 

produced. Unwrapping of the aliasing is performed in the image-domain (as opposed to on 
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the k-space data before Fourier transformation) using the sensitivity data from the reference 

scan to enable the separation of aliased pixels (172).  

  

 

 

 

 

Figure 9.6 – Aortic magnitude and velocity encoded acquisitions and pulse wave velocity 

measurement. Top left – Magnitude image with the ascending (anterior / top) and 

descending (posterior / bottom) aorta delineated. Top right – corresponding velocity 

encoded image. Bottom left – Area, velocity and flow curves in the ascending aorta over a 

single cardiac cycle. Bottom right - The length of the track along the aortic arch is measured 

by 3D spline interpolation of points placed along the midline of the aorta on a coronal 

acquisition (pictured), and the axial image seen in the top left picture. Measurements 

carried out using ArtFun software (170). 

 



69 

 

 
 

Figure 9.7 – A 32-elements cardiac-coil used to obtain high resolution imaging with high 

acceleration factors (Philips sensitivity enconding (SENSE) Cardiac coil for Achieva 1.5T). This 

type of coil enables 3D cine with full left ventricular coverage in a single breath-hold. 

 

 

Theoretically, the acceleration factor of a parallel-imaging scan is equal to the number of 

coils used. However, in practice, the degree of acceleration is limited by the change in SNR 

as calculated by: ΔSNR = 1/ (g√R). In this context R is the reduction in phase encoding steps 

(or SENSE factor) and g is the geometry factor which indicates the efficiency of the coil 

geometry for separating the aliased signals. 

Another technique used to reduce scan time is that of half Fourier (or halfscan). Using this 

approach, slightly more than half of the phase-encoding steps are acquired and the missing 

data are filled in by the complementary half of k-space. This reduces the scan time by half 

without affecting the resolution but does result in further SNR reduction (SNR being 

inversely proportional to the square root of the acceleration factor). This results in the 

acceleration factor being limited to between 2 and 3. K-space may also be undersampled in 

the frequency encoding direction (Partial Echo), again benefiting from the fact that k-space 

halves demonstrate Hermitian symmetry. The shortening in echo time is achieved by only 

acquiring partial echoes and therefore reducing the readout time. 
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Conventional CMR has many significant advantages over other forms of cardiac imaging, 

including the ability to acquire imaging slices in any orientation without moving the patient. 

However, standard 2D cardiac cine MR images comprise a stack of 8mm sections with 2mm 

gaps in the LV short axis plane which are acquired over at least five or six breath-holds (173). 

Variations in the position of the diaphragm with each breath-hold cause shifts in cardiac 

anatomy, leading to slice misregistration and contributing to analysis error (174). 

Furthermore, repeated breath-holds can lead to patient fatigue  and eventually to poor 

compliance with breath holding instructions (175). Another limitation of conventional 

imaging is related to the technical necessity to leave a gap between each acquired slice. In 

these gaps, tissue is not imaged and therefore localised or regional effects can be missed. This 

can be addressed by reducing the gaps between slices, although this would cause an 

unwanted increase in the number of required breath-holds. These challenges can be overcome 

by using a 3D b-SSFP sequence to acquire, at high-resolution, the whole cardiac volume in a 

single breath hold.  

3D b-SSFP enables the acquisition of very thin slices without gaps. When isotropic resolution 

is achieved, multiplanar reformatting is also possible, allowing complete freedom to re-slice 

the 3D volume in any orientation (Figure 9.8). This compares with the very blocky 

appearance that emerges when a 2D image is reformatted in another axis (staircase artefact) 

(Figure 9.9). Until recently, 3D b-SSFP sequences involved long acquisition times and were 

limited by patients’ breath-holding capacity. However, improvements in gradient 

performance, coil design and parallel imaging sequences have considerably improved image 

quality and acquisition time, allowing the full sequence to fit into a single breath-hold period 

(176). 3D b-SSFP, at a comparable spatial resolution to 2D sequences, has been shown to 

have similar accuracy for manual assessment of LV volumes and mass with favourable 

scanning times (177-187). 3D suffers however from lower in-plane SNR when compared 
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with an equivalent 2D b-SSFP sequence as can be seen by comparing Figure 9.8 with Figure 

9.9.  

  
 

Figure 9.8 – Three-dimensional balanced steady state free precession sequence of the heart. 

Left – mid ventricular short axis; right – left ventricular long axis reconstruction of short-axis 

cine; B0 = 1.5T, slice thickness = 2mm, 2 mm overlapping; repetition time = 3.0 ms; echo 

time = 1.5 ms; Flip angle = 50o; acquired pixel size, 2.0 x 2.0 mm; reconstructed voxel size, 

1.2 x 1.2 x 2mm; number of sections, 50 – 60; cardiac phases, 20; sensitivity encoding 

(SENSE) factor 2.0 anterior-posterior and 2.0 right-left direction. 

 

 

  
 

Figure 9.9 – Two-dimensional balanced steady state free precession sequence of the heart. 

Left – mid ventricular short axis; right – left ventricular long axis reconstruction of short-axis 

cine. B0 = 1.5T, slice thickness = 8mm; spacing between slices = 10 mm; repetition time = 3.0 

ms; echo time = 1.5 ms; Flip angle = 60o; acquired pixel size, 2.0 x 2.2 mm; reconstructed 

voxel size, 1.2 x 1.2 x 8mm; number of sections, 10 – 12; cardiac phases, 30. 
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9.8.3 Cardiac Magnetic Resonance in research 

 

 

CMR combines excellent spatial and temporal resolution with high contrast between the 

blood pool and the myocardium and it has established itself as a reliable non–invasive 

method of assessing cardiac morphology and function. In contrast with echocardiography, 

CMR is not limited by geometric assumptions in assessing ventricular volumes and image 

acquisition is less operator-dependent. This allows highly reproducible and accurate 

measurements to be made of global ventricular function and mass (188-190), making it the 

ideal modality for assessing differences between small groups (191). The fact that it does not 

make use of ionising radiation makes it particularly suitable for population and longitudinal 

studies. Limitations of CMR include claustrophobia, artefacts caused by arrhythmias and 

motion, metal implants / devices contraindicating CMR and patient’s size. CMR is currently 

considered the ‘gold-standard’ in cardiac phenotyping and its use in research has increased 

exponentially in recent years (Figure 9.10). 

 

Figure 9.10 – Number of annual publications on cardiac magnetic resonance identified by 

searching the US National Library of Medicine’s PubMed search engine for the terms: NMR 

and cardiac; NMR and heart; MRI and cardiac; or MRI and heart. 
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9.8.4 2D-CMR Imaging and Analysis 

 

Standardised Tomographic Imaging and Nomenclature 

In accordance with the international guidelines on tomographic imaging (192) a standardised 

approach to MRI image acquisition and display has been adopted. In CMR, the heart is 

orientated and displayed using the long axis of the left ventricle. This axis transects the apex 

of the heart and the centre of the mitral valve plane. Other selected planes are oriented at 90° 

angles relative to this long axis and are described as short axis, vertical long axis, 

and horizontal long axis. For analysis the myocardium can be divided into 17-segments 

(Figure 9.11) which are named and localised with reference to both the long axes of the 

ventricle and the 360° circumferential locations on the short-axis views (193). In relation to 

their position along the long axis of the heart, segments are described as basal, mid-cavity or 

apical. To locate the segments in the short axis plane, the basal and mi-cavity slices are 

divided into 6, 60° sections. The insertion points of the right ventricle onto the left ventricle 

separate the septum from the LV anterior and inferior wall. The circumferential locations in 

the basal and mid-cavity are: anterior, anteroseptal, inferoseptal, inferior, inferolateral, and 

anterolateral. Nearer the apex the LV tapers down so at this level there are only 4 segments: 

apical anterior, apical septal, apical inferior, and apical lateral. The seventeenth segment is 

the apex. 
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Figure 9.11 – The American Heart Association 17 segment model. Diagram of vertical long-

axis, horizontal long-axis, and short-axis (SA) planes showing the name, location, and 

anatomic landmarks for selection of the basal (tips of the mitral valve leaflets), mid-cavity 

(papillary muscles), and apical (beyond papillary muscles but before cavity ends) shortaxis 

slices. (Figure reproduced from Cerqueira MD, et al. Standardized myocardial segmentation 

and nomenclature for tomographic imaging of the heart. A statement for healthcare 

professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of 

the American Heart Association. Circulation. 2002). 

 

 

CMR imaging volumetric analysis 

To carry out the volumetric analysis of the heart from a cine image, two frames have to be 

identified: end-systole and end-diastole. The end-diastolic frame is usually acquired 

immediately after the R-wave. The end-sytolic frame is identified visually as that with the 
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smallest left and right ventricular cavity. In end-diastole both the epicardial and the 

endocardial borders need to be delineated. In end-systole only the endocardial border is 

traced. If only analysing the heart in the short axis plane, care needs to be taken in identifying 

the basal slice, as this is a potential source of error (194).To increase the accuracy of the 

measurements, the systolic descent of the mitral valve should be calculated by tracking the 

valve motion in two long axis cines (195). These data can then be used to correct for the loss 

of systolic LV volume due to AV ring descent (Figure 9.12). The acquisition of contiguous 

short axis slices allows a volumetric method to be used without the geometric assumptions of 

the modified Simpson method or other models (196).  

 

 

Figure 9.12 – Standard CMR volumetric analysis carried out using CMRtools (Cardiovascular 

Imaging Solutions, London, UK). Left image - Left ventricular short axis view with manually 

traced endocardial and epicardial borders. Semi-automated, signal intensity based 

thresholding technique used to include the papillary muscles in the blood pool. Right image 

- Mitral valve tracing in a four-chamber view of the heart and corresponding 3 dimensional 

mesh model. 

 

The inclusion or exclusion of trabeculae may have a significant effect on cardiac volumes and 

mass (197). Contouring of the endocardial wall, rather than the trabeculae, is a more  
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reproducible method for manually measuring chamber volumes (198). However, from a 

physiological viewpoint the trabeculae should be included in the mass measurement and 

excluded from the cavity volume. The development of semi-automated software for blood 

pool thresholding (Figure 9.12), greatly increased the reproducibility of the delineation of the 

papillary muscles while enabling gains in the speed of analysis. 

For the calculation of the myocardial mass the interventricular septum is included as part of 

the left ventricle. Myocardial mass is determined by multiplying the tissue volume by 1.05 

g/cm
3
 (specific density of myocardium).  

A technique involving long axis LV base identification, signal threshold-based detailed 

endocardial contouring, and automated identification of end-systole has higher intra-observer 

reproducibility than other approaches (195). 

To some extent the normal ranges of cardiac volumes are dependent on the CMR sequence 

used and the post processing software (199-201). The European Society of Cardiology / 

European Association of Cardiovascular Imaging reference values for adults were published 

in the Cardiovascular Magnetic Resonance 2013 Pocket Guide and can be found in Table 2 

and Table 3. 
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 Males 

(n=63) 

 Females 

(n=45) 

    

 <35 years 

(n=31) 

≥35 years 

(n=32) 

 <35 years 

(n=23) 

≥35 years 

(n=22) 

 

      

LVEDV (ml) 173 ± 29 (115 – 231) 149 ± 25 (99 – 199)  137 ± 25 (87 – 187) 128 ± 23 (82 – 174) 

LVESV (ml) 57 ± 15 (27 – 87) 43 ± 13 (17 – 69)  43 ± 11 (21 – 65) 40 ± 12 (16 – 64) 

LVSV (ml) 118 ± 18 (82 – 154) 106 ± 19 (68 – 144)  96 ± 18 (60 – 132) 89 ± 16 (57 – 121) 

LVEF (%) 67 ± 5 (57 – 77) 71 ± 6 (59 – 83)  69 ± 6 (57 – 81) 69 ± 6 (57 – 81) 

LVM (g) 131 ± 21 (89 – 173) 120 ± 23 (74 – 166)  92 ± 20 (52 – 132 92 ± 19 (54 – 130) 

 

LVEDV / BSA (ml/m
2
) 90 ± 11 (68 – 112) 75 ± 11 (53 – 97)  80 ± 9 (62 – 98) 73 ± 11 (51 – 95) 

LVESV / BSA (ml/m
2
) 30 ± 7 (16 – 44) 22 ± 6 (10 – 34)  25 ± 6 (13 – 37) 23 ± 6 (11 – 35) 

LVSV / BSA (ml/m
2
) 60 ± 8 (44 – 76) 53 ± 8 (37 – 69)  55 ± 6 (43 – 67) 51 ± 8 (35 – 67) 

LVM / BSA (g/m
2
) 67 ± 10 (47 – 87) 60 ± 9 (42 – 78)  53 ± 9 (35 – 71) 52 ± 9 (34 – 70) 

 

Table 2 – Published normal ranges of myocardial mass and function by age and gender. 

Values are given as mean ± SD; reference ranges in brackets, calculated as ± 2SD of the 

mean. BSA = body surface area; LVEDV = left ventricular end diastolic volume; LVESV = left 

ventricular end systolic volume; LVEF = left ventricular ejection fraction; LVM = left 

ventricular mass. (From Hudsmith LE, et al. Normal human left and right ventricular and left 

atrial dimensions using steady state free precession magnetic resonance imaging. Journal of 

cardiovascular magnetic resonance 2005) 
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 Mean ± SD  

(n = 108) 

Male  

(n = 63) 

Female  

(n = 45) 

    

Age (years) 38 ± 12   

Systolic BP (mmHg) 123 ± 17   

Diastolic BP (mmHg) 81 ± 16   

Height (cm) 174 ± 9   

Weight (kg) 73.4 ± 12.3   

Body surface area (m
2
 ) 1.88 ± 0.18   

LVEDV (ml) 150 ± 31 160 ± 29 (102 – 218) 135 ± 26 (83 – 187) 

LVESV (ml) 47 ± 15 50 ± 16 (18 – 82) 42 ± 12 (18 – 66) 

LVSV (ml) 104 ± 21 112 ± 19 (74 – 150) 91 ± 17 (57 – 125) 

LVEF (%) 69 ± 6 69 ± 6 (57 – 81) 69 ± 6 (57 – 81) 

LVM (g) 112 ± 27 123 ± 21 (81 – 165) 96 ± 27 (42 – 150) 

LVEDV / BSA (ml/m
2
) 80 ± 13 82 ± 13 (56 – 108) 78 ± 12 (54 – 102) 

LVESV / BSA (ml/m
2
) 25 ± 7 25 ± 8 (9 – 41) 24 ± 6 (12 – 36) 

LVSV / BSA (ml/m
2
) 55 ± 8 56 ± 8 (40 – 72) 54 ± 9 (36 – 72) 

LVM / BSA (g/m
2
) 59.2 ± 11 62.5 ± 9.0 (45 – 81) 54.6 ± 12 (31 – 79) 

Heart Rate (BPM) 65 ± 10   

 

Table 3 – Published normal CMR ranges and subject characteristics by gender. Values are 

given as mean ± SD; reference ranges in brackets, calculated as ± 2SD of the mean.  

BSA = body surface area; BP = blood pressure; LVEDV = left ventricular end diastolic volume; 

LVESV = left ventricular end systolic volume; LVEF = left ventricular ejection fraction; LVM = 

left ventricular mass; BPM = beats per minute. (Adapted from Hudsmith LE, et al. Normal 

human left and right ventricular and left atrial dimensions using steady state free precession 

magnetic resonance imaging. Journal of cardiovascular magnetic resonance 2005;7:775-82.) 
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9.8.5 Atlas-Based Segmentation of CMR 

 

Two-dimensional CMR has become the gold-standard for cardiac phenotyping in clinical 

practice and research. However, a significant limitation of this technique is that it only 

quantifies global descriptors of LV function and morphology (i.e. ventricular volumes and 

LVM). It is therefore insensitive to detect regional or asymmetric patterns of change in LV 

morphology in cohort studies, besides being dependent on visual qualitative assessment to 

detect subtle deviations from normality in a given individual. This is particularly relevant to 

large scale genetic studies such as GWAS, where the observable effects of common genetic 

variants are asymmetric and of small magnitude. Furthermore, in asymptomatic subjects, 

localised phenotypic changes long precede whole-organ involvement, that is characteristic of 

advanced disease. In addition, despite having a superior reproducibility when compared to 

other imaging techniques (188) 2D-CMR still suffers from significant intra- and inter-

observer variability (199). 

While neuroimaging benefits from automated analysis of high spatial resolution 3D magnetic 

resonance to detect anatomical variation in brain mapping studies (202-206), the statistical 

modelling of conventional 2D cardiac cine imaging is constrained by the low spatial 

resolution of each section and misalignment between breath-holds (207). Despite these 

limitations, computational approaches to phenotyping have been successfully used in 2D-

CMR and potential for epidemiological research in heart disease has been demonstrated (208, 

209).  

One of the most promising approaches for computational processing of CMR images is 

through the use of cardiac statistical atlases. These atlases encode anatomical and functional 

information from a population and provide a spatial framework for the analysis and mapping 
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of the functional and morphological characteristics of individuals or entire cohorts. These 

methods enable the alignment of the measured parameters from multiple subjects in a space 

with a common coordinate system (208). In this way, average physiological and anatomical 

parameters, and their variability in a population, can be calculated. In addition to the 

traditional mass and volume analysis, through the use of mathematical modelling, detailed 

evaluation of regional wall motion and shape characteristics can be carried out. Atlas 

approaches have been applied to both 2D-CMR (209, 210) and cardiac CT (211). While most 

studies have included only a small number of subjects, the Cardiac Atlas Project (CAP) 

makes use of 2D-CMR from over 2500 subjects from the longitudinal Multi-Ethnic Study of 

Atherosclerosis (MESA) and over 400 patients from the DEfibrillators to REduce Risk by 

Magnetic Resonance ImagiNg Evaluation (DETERMINE) study (209). 

To develop an atlas-based algorithm there is a need for a database of training sets which have 

to be carefully chosen to avoid bias. This library of images provides the a priori knowledge of 

the variation in anatomy in a cohort and usually consists of CMR images that have been 

manually labelled or annotated by experts. This manual annotation is a notoriously laborious, 

time-consuming undertaking. Although some approaches have been devised for automated 

atlas creation (212) these are not yet robust enough. In many cases manual landmarks have to 

be placed at certain anatomical points of a new target image to help define the position of an 

individual model in the standard coordinate system. Due to the wide anatomical variability 

most atlas-based approaches use affine transformations (such as scaling, rotation, translation, 

etc.) during the image processing. 

Many different types of atlases have been proposed but commonly they include a template 

surface mesh, which is used to describe the average shape of the object of interest and a 

template image, which is the average intensity image from all the subjects aligned to a 

common space. A probabilistic atlas may also be included, which encodes the anatomical 
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label information in the template space. Each voxel of the probabilistic atlas stores a vector 

value, representing the local probability to be a certain structure (e.g. the left ventricle, right 

ventricle or myocardium) (213). Sometimes, a simple label map is used, which is a manual 

segmentation of the template image without any probability information (214).  

Although many mathematical approaches are used in the processing of atlas data, the 

statistical shape model (SSM) is the most commonly used method to analyse shape as it 

provides a robust way in which to define the mean anatomy and its variability. SSM is 

essentially a point distribution model (PDM), which describes the probability distribution of 

the vertices of a surface mesh, such as the endocardium or the epicardium. Points which are 

aligned to match corresponding features in the shape (homologous landmarks) can then be 

used to derive the variation of cardiac shape using methods such as Principal Component 

Analysis (215) or Independent Component Analysis (216). More complex approaches include 

bilinear shape models in which the inter-subject variation and inter-phase variation are 

encoded separately in two dimensions (211) and a framework for merging multimodality 

models by spatial normalisation and eigenspace fusion (217). 

Atlases have multiple and promising uses in cardiac image analysis. They can provide prior 

knowledge to guide automated image analysis or segmentation (218), the SSM atlas can 

provide a common reference space for population-based shape analysis (211) and can be used 

to generate a personalised patient-specific mesh for biomechanical simulation (219). A four 

dimensional (space and time) probabilistic atlas was used to describe motion of the 

myocardium using the variation in shape across a cardiac cycle (215) and a fibre orientation 

atlas has also been adapted to enable cardiac electromechanical modelling (220). Despite 

their promise, most of these studies have included very small numbers of subjects in their 

training sets and their use in health and disease has not yet been demonstrated. 
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An important step in the automated analysis of CMR images using atlases is the selective 

labelling of parts of the image based on their different anatomy and location (e.g. 

myocardium or blood pool). One of the most popular methods of segmentation is based on 

multi-atlas label fusion (221, 222). The main components of these methods are atlas 

selection, atlas propagation and label fusion. 

In the atlas propagation step, affine or non-rigid registration algorithms are commonly used 

(223). The registration is frequently based on image intensity similarities and constrained to 

ensure one-to-one correspondences between the target image and the atlas. This restriction 

ensures a realistic deformation that preserves the topology of the atlas structures in the target 

image. However, it also limits the ability of the registration to capture large or local 

variations in shape. Several solutions have been proposed to relax the method's dependence 

on accurate registrations including the promising patch-based label fusion methods (224, 

225). These approaches compensate registration error by searching for correspondences 

between the target image and atlas within a limited search window. However, intensity (grey 

scale) based features, which are often used as patch selection criteria, can have ambiguous 

matches especially for larger search windows. PatchMatch (226) is a fast algorithm for 

computing approximate nearest neighbour correspondences between patches of two image 

regions. However, there is no intrinsic regularisation and the optimal matching patches, in 

terms of intensity features, may come from different anatomical regions around the heart. A 

method that could use PatchMatch to search for patch correspondences between the target 

image and atlases without any restriction of the search window size for the purpose of label 

fusion, with the robustness of traditional approaches to registration could prove a significant 

improvement to atlas based segmentation.  

Computational, atlas-based quantitative phenotyping of the heart may overcome the issues 

related to the reproducibility and repeatability of the manual / semi-automated analysis of 
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2D-CMR. Whole-organ, single-breath hold, high resolution 3D-CMR can encode more 

anatomical and physiological data than traditional CMR, without being limited by low spatial 

resolution of each section and misalignment between breath-holds. 3D-CMR coupled with 

automated analysis techniques might allow the creation of detailed 3D statistical models of 

the variation in cardiac morphology and function within a population. This could potentially 

be an efficient, reproducible and highly powered approach for large scale population-studies 

investigating the environmental, anthropometric and genetic determinants of cardiac 

morphology and function. 
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9.9 Phenomics and genomics: towards personalised medicine 

 

After decades of phenomenal developments in DNA sequencing, it is evident that our ability 

to characterise the cardiac phenotype significantly lags behind our ability to describe the 

human genotype (227). This mismatch between phenotyping and genotyping is limiting our 

understanding of the complex genotype-phenotype-environment interactions. In an attempt to 

overcome the lack of phenotypic power, population-based genetic studies have gradually 

increased in scale, from a few hundred to several hundreds of thousands of subjects. 

However, the pursuit of phenomics, an independent discipline dedicated to the development 

of large scale high-dimensional phenotyping, has been proposed in recent years (227-230). Its 

supporters believe that a drive to develop comprehensive phenotyping can bring a scientific 

step change as significant as the Human Genome Project. Initiatives such as the Physiome 

Project (http://physiomeproject.org), the Human Phenotype Ontology project 

(http://www.human-phenotype-ontology.org), the UK Biobank (http://www.ukbiobank.ac.uk) 

or the Cardiac Atlas Project (https://www.cardiacatlas.org/) are certainly steps in the right 

direction. 

Along the same lines, in the clinical front, personalised medicine is expected to revolutionise 

medical practice. Personalised medicine is defined as the tailored approach to patients that 

offers the most effective therapy to each individual, reduces risks and avoids unnecessary 

treatments or diagnostic interventions (231). The aim is the integration of molecular markers, 

genetic variants and structural and functional data to guide an individual’s care. Although 

great progress has been made in genetic diagnosis (e.g. TTN mutations in DCM) and in 

predicting therapy success (e.g. clopidogrel and genetic variation in the CYP2C19 isozyme), 

advances in phenotyping have led to less significant breakthroughs in screening, early 

http://physiomeproject.org/
http://www.human-phenotype-ontology.org/
http://www.ukbiobank.ac.uk/
https://www.cardiacatlas.org/
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diagnosis or assessment of therapy efficacy.  The dilemma of genotype positive / phenotype 

negative cardiomyopathies emphasises the need for detailed, ‘deep’ phenotypes in assisting 

clinical decision making (232). 
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10 Aims of the thesis 

 

1. To determine the feasibility of using 3D-CMR for phenotyping of a large cohort of 

healthy volunteers 

2. To use 3D-CMR to develop a high resolution atlas of the human heart   

3. To apply atlas-based computational and quantitative 3D-CMR to examine the 

population variation in anatomy and physiology and to compare its performance with 

conventional CMR imaging 

4. To use 3D-CMR with computational quantitative analysis to: 

- identify the anthropometric determinants of refined and/or previously 

unappreciated cardiovascular phenotypes; 

- establish the cardiac effect of rare variants in the titin gene on cardiac form and 

function in a large healthy population 

- explore the effects of common genetic variations on cardiac form and function  in 

a healthy population  
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11 Study methods and population characteristics assessed by 2D-CMR 

 

11.1 Introduction 

 

Cardiovascular magnetic resonance imaging (CMR) is the gold standard method for 

phenotyping cardiac structure and function due to its excellent accuracy and reproducibility 

(188). In particular, the balanced steady-state free precession (b-SSFP) sequence has been 

validated in animal models (189) and human cohorts (199, 200). In addition, CMR is free 

from the geometric assumptions or acoustic window dependencies that greatly limit 

echocardiographic phenotyping (233).  It is a well-tolerated, non-invasive technique without 

exposure to radiation and with no known side-effects. These characteristics make CMR 

ideally suited for cardiovascular population-based studies, particularly if longitudinal follow-

up is planned. However, even conventional two-dimensional CMR (2D-CMR) is limited by 

the fact that it incompletely samples the heart and that multiple breath-holds are associated 

with inter-slice misalignments. Furthermore, 2D-CMR provides limited global metrics and is 

insensitive to regional or asymmetric changes in left ventricular (LV) morphology. 3D cine 

sequences have shown promise for imaging the whole heart in a single breath hold (178-187). 

However, 3D imaging requires a longer breath-hold and whether it is applicable at scale has 

not been demonstrated. 

Left ventricular mass (LVM) is an independent predictor of mortality and adverse 

cardiovascular events (27, 234, 235). LVM is positively associated with weight, height and 

systolic blood pressure (33, 34, 236). Body composition has been demonstrated to be a risk 

factor for hypertrophy (237, 238). The relationship between age and LVM has been the 

source of debate with some studies reporting increases (239) and others decreases (240). 
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Although it is a highly heritable trait, genome wide association studies have not significantly 

enhanced our understanding of the wide variation in LVM (241). 

While 93% of the population of the United Kingdom is of European descent, the two other 

major ethnic subgroups are Black Africans (those from the Caribbean and West Africa) and 

South Asians (from the Indian Subcontinent). Between these three groups there are marked 

differences in the prevalence of cardiovascular disease, with Africans having the lowest 

prevalence of coronary heart disease and South Asians the highest (242). Although 

socioeconomic variables explain part of the difference, genetic factors certainly play a role. 

Race has been shown to be associated with differences in LV structure such as higher LVM, 

ventricular wall thickness and concentricity index (CI) in Africans (236, 243, 244), even 

when controlling for hemodynamic factors. Compared with other racial or ethnic subgroups, 

Africans experience a higher prevalence of hypertension and suffer from poorer overall blood 

pressure (BP) control (245). This translates to an increased risk of adverse, pressure-related 

consequences of hypertension, particularly premature onset of left ventricular (LV) 

hypertrophy in Africans. Race has also been shown to be associated with differences in body 

mass index (BMI), fat mass, fat free mass (244). Metabolic diseases have a higher impact on 

LV function in South Asians than in Caucasians (246). South Asians have lower LVM, CI 

and volumes than Caucasians (247). 

Although many approaches have been suggested for indexing cardiac parameters to 

anthropometric variables (e.g. weight, height, body surface area, height
2.7 

or height
2.13

), no 

one method is consistently superior (248, 249). Indexation to body surface area continues to 

be widely used in both clinical practice and research, using CMR and echocardiography (233, 

250).  
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The aim of the Digital Heart Project was to establish the anthropometric and genetic 

determinants of cardiovascular phenotypes in a large multi-ethnic cohort of healthy 

volunteers. To achieve this we used the current gold-standard for cardiac phenotyping, 

conventional multi-breath hold 2D-CMR, while testing the feasibility and tolerability of 3D 

cine imaging. In depth analysis of the 3D data is reported in section 12. Given the size of the 

population recruited we sought to redefine the normal ranges of cardiovascular parameters 

using b-SSFP for different gender, race and age groups. 

 

11.2 Methods 

 

Study Population 

In total 1530 volunteers (54.8% females; 74.8% Caucasian; age range: 18 – 81 years; mean 

age 41.3 ± 13.0 years) were recruited prospectively via advertisement to the Digital Heart 

Project at Imperial College London. At screening, participants that had known cardiovascular 

disease or were being treated for hypertension, diabetes or hypercholesterolemia, were 

excluded. Subjects taking prescription medicines were also not included in the study although 

simple analgesics, antihistamines and oral contraceptives were acceptable. Female subjects 

were excluded if they were pregnant or breastfeeding. Standard published safety 

contraindications to MR imaging were applied (251) including a weight limit of 120kg. All 

subjects provided written informed consent for participation in the study, which was 

approved by the local research ethics committee. 
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Participant phenotyping 

Biophysical assessment 

All measurements were performed by specially trained cardiology nurses at the study centre. 

Height and weight were measured without shoes while wearing scrubs. Total body fat mass 

was measured with multi-frequency bioelectrical impedance analysis (InBody 230, BioSpace, 

Los Angeles, CA) (252) and expressed as a percentage of the participant’s total body weight. 

Body mass index (BMI) was calculated as the total weight (kg) divided by the height (m) 

squared. Body surface area (BSA) was calculated according to the Mosteller formula: BSA 

(m
2
) = (Height(cm) x Weight(kg) / 3600)

½
  (233). Each subject was fasted for 4 hours prior to 

the visit.  

In accordance with European Society of Hypertension guidelines (253), brachial BP 

measurement was performed following 5 minutes rest using a calibrated oscillometric device 

(Omron M7, Omron Corporation, Kyoto, Japan) that has been validated in both normal (254) 

and obese populations (255). The first of three measures was discarded and the second two 

values were averaged. Mean arterial pressure (MAP) was calculated as [(2×diastolic 

pressure)+systolic pressure]/3. An electrocardiogram (ECG) was undertaken during the visit.  

Volunteers self-reported their ethnic background as Caucasian, African, South Asians (Indian 

sub-continent), Chinese, Japanese, mixed or other/ unknown.  

 

Cardiac magnetic resonance imaging 

CMR was performed on a 1.5T Philips Achieva system (Best, Netherlands). The maximum 

gradient strength was 33 mT/m and the maximum slew rate 160 mT/m/ms. A 32 element 

cardiac phased-array coil was used for signal reception. Scout images were obtained and used 
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to plan standard 2D cine balanced steady-state free precession (b-SSFP) images in the left 

ventricular short axis (LVSA) plane from base to apex using the following parameters: field-

of-view=370 mm×370 mm, repetition time  /echo time  = 3.0/1.5msec; flip angle = 60°; 

bandwidth = 1250 Hz/pixel; acquired pixel size = 2.0 × 2.2 mm; section thickness = 8 mm 

with a 2 mm gap; reconstructed voxel size = 1.2 × 1.2 × 8 mm; number of sections = 10 – 12; 

cardiac phases = 30. A single breath hold 3D LVSA b-SSFP sequence was acquired in the 

same orientation using the following parameters = repetition time /echo time 3.0/1.5msec; 

flip angle = 50°; bandwidth = 1250 Hz/pixel; pixel size = 2.0 × 2.0 mm; section thickness = 2 

mm overlapping; reconstructed voxel size = 1.2 × 1.2 × 2 mm; number of sections = 50 – 60; 

cardiac phases = 20; sensitivity encoding (SENSE) factor = 2.0 anterior-posterior and 2.0 

right-left direction. Phase-contrast sequences were acquired at the level of the pulmonary 

bifurcation, perpendicular to both the ascending and the descending thoracic aorta, enabling 

simultaneous study of both vessels. The phase-contrast data were acquired using a 

retrospectively ECG-gated breath-hold sequence with a through-plane velocity-encoding 

gradient of 200 cm/s. The sequence parameters were as follows: field-of-view=370 mm×370 

mm, repetition time = 2.8 ms, echo time = 1.4 ms, flip angle = 15°, and voxel size =1.65 

mm× 1.92 mm × 10 mm, with a temporal resolution of 33ms. For the calculation of aortic 

length, ECG-gated balanced steady state–free precession images were acquired through the 

thoracic aorta using the following parameters: field-of-view= 320 mm×320 mm, repetition 

time = 3.4 ms, echo time = 1.7ms, flip angle = 60°, and voxel size = 1.65 mm×1.92 mm×10 

mm. Images were curated on an open-source image database (MRIdb, Imperial College 

London, UK) (256). 
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Cardiac magnetic resonance analysis 

Analysis of the 2D cine sequences was performed by a trained cardiologist with 3 years of 

experience in CMR, using commercially available semi-automated software (CMRtools, 

Cardiovascular Imaging Solutions, London, UK) and using a standard methodology (200). 

End-systole (ES) and end-diastole (ED) were identified as the smallest and largest ventricular 

frames at mid-ventricular level. For quantification of left ventricular function and volumes, 

endocardial and epicardial contours were delineated in all slices, in ED and ES. 

Measurements from each slice were summed using the method of disks. The LV base was 

identified using the long-axis images (four chamber and ventricular long axis) where the 

mitral valve position was traced in ES and ED.  The systolic descent and twist of the mitral 

valve was accounted for by tracking the valve motion on the long axis cines, therefore 

automatically correcting for loss of systolic LV volume due to atrioventricular (AV) ring 

descent. The papillary muscles were included in LVM and excluded from the blood pool 

using the signal-intensity driven, semi-automated threshold function. Thresholding level was 

manually adjusted until endocardial appearances correlated with visual assessment. LVM was 

calculated from the total myocardial volume multiplied by the specific gravity of the 

myocardium (1.05 g/mL). LVM and LV blood volumes were indexed when indicated by 

dividing the parameter by body surface area (e.g. LVM indexed = LVM / BSA). Cardiac 

output (CO) was calculated using the measured stroke volume (EDV – ESV) and the 

subject’s heart rate during the scan. Concentricity index (CI) was calculated by dividing 

LVM by end-diastolic volume (EDV). 

Aortic arch PWV (∆d /Δt) was calculated from the time-shift between the flow waveforms in 

the ascending and descending aorta using sigmoid curves fitted to the systolic up-slope of the 

normalized flow curves (170). The path length was calculated from spline interpolation using 
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points manually placed along the midline of the aortic arch in the “candy-cane” aortic view 

and the axial view taken at the level of the right pulmonary artery. 

 

Reliability 

To assess inter-study reproducibility 20 subjects had 2D and 3D LVSA imaging performed 

on two separate occasions. In each case the subject briefly got off the MR table and the study 

was then repeated with new pilot images. Inter-observer variability was assessed with a 

second reader of 10 years cardiac MR experience analysing both sets of 20 images using the 

same method. Inter-study variability was assessed by averaging the measurements of both 

observers for scan 1 and comparing it with the average of those parameters for scan 2. Both 

observers were blinded to the results of their first analyses.  

 

Statistical analysis 

Statistical analysis was carried out using RStudio Server version 0.98 (Boston, MA) (257). 

Continuous variables were expressed as mean ± standard deviation (SD) and categorical 

variables as percentages. Ranges were added to CMR derived parameters. The associations 

between variables and cardiac phenotypes were assessed in separate muliple linear regression 

models that included age, gender, race, BSA and systolic blood pressure. Race was dummy-

coded with the largest group, Caucasian, as the reference. To keep estimations conservative, 

non-parametric testing were used. When comparing two groups, Mann Whitney U tests were 

used. When assessing more than two groups a Kruskal-Wallis one-way analysis of variance 

was carried out. If overall group differences were significant a (Nemenyi) post-hoc pairwise 

analysis is reported. Test-retest reliability was assessed using an intraclass correlation 
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coefficient (ICC) with a two-way random model for absolute agreement (258). The 

coefficient of variability was calculated as the SD of the differences between the two sets of 

measurements divided by the mean value of the parameter under consideration. P values 

<0.05 were considered significant. 

 

11.3 Results 

 

All the volunteers included at screening completed the imaging protocol. The 3D sequence 

was also well tolerated and all datasets were used for analysis (reported in section 12). 

Baseline anthropometric and CMR data for the Digital Heart Project cohort, as well as 

separate values for males and females, are shown in Table 5. To facilitate comparison with 

current accepted normal ranges (found in Table 2), in Table 6, CMR parameters are shown 

for groups divided by age and gender. In Table 7 CMR data is presented in groups divided by 

Race. Summaries of the regression models using the conventional CMR data are shown in 

Table 8 for the whole cohort and separately for men and women in Table 9. 

 

Reliability 

Inter-observer and intra-study variability were low for ventricular volumes and mass and 

larger for EF (Table 4). 
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 Inter-observer Inter-study 

 ICC (95% CI) CoV  ICC (95% CI) CoV  

 

LVEDVI (ml/m
2
) 0.97 (0.93 - 0.99) 5.4 0.97 (0.93 – 0.99) 5.6 

LVESVI (ml/m
2
) 0.92 (0.79 – 0.97) 4.4 0.98  (0.96 – 0.99) 6.4 

LVSVI (ml/m
2
) 0.97 (0.92 – 0.99) 6.6 0.98 (0.95 – 0.99) 4.4 

LVEF (%) 0.87 (0.62 – 0.95) 5.5 0.96 (0.89 – 0.98) 3.3 

LVMI (g/m
2
) 0.98 (0.95 – 0.99) 5.81 0.99 (0.98 – 1.00) 3.4 

 

Table 4 – Reproducibility of CMR measurements. CI = confidence interval; CoV = Coefficient 

of Variability; ICC = Intraclass Correlation; LVEDV = left ventricular end diastolic volume; 

LVESV = left ventricular end systolic volume; LVEF = left ventricular ejection fraction; LVM = 

left ventricular mass. 

 

Influence of gender on subject characteristics  

There was no difference between males and females in terms of age or ethnic background. 

Females had significantly lower weight, height, SBP, DBP, PWV and BSA (for all p <0.001). 

Although the BMI of females was lower than that of males, the fat mass component of weight 

was significantly higher (p <0.001). Lean mass was higher in males (p <0.001) 
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 Full Cohort 

(n = 1530) 

Males 

(n =691) 

Females 

(n =839) 

 

p value 

Age (years) 41.3 ± 13.0 (18 – 81) 40.9 ± 12.5 (19 – 81) 41.5 ± 13.4 (18 – 75) 0.56 

Race / Ethnicity:    0.89 

Caucasian 1144 (74.8%) 518 (75.0%) 626 (74.6%)  

South Asian 194 (12.7%) 97 (14.0%) 97 (11.6%)  

African 104 (6.8%) 39 (5.6%) 65 (7.7%)  

Other 88 (5.8%) 37 (5.4%) 51 (6.1%)  

Systolic BP (mmHg) 118 ± 14 123 ± 13 114 ± 13 <0.001 

Diastolic BP (mmHg)  78 ± 9 80 ± 9 77 ± 9 <0.001 

PWV (m/s) 4.67  ± 1.66* 4.86 ± 1.56** 4.53 ± 1.72*** <0.001 

Height (cm) 170 ± 9 177 ± 7 164 ± 7 <0.001 

Weight (kg) 71 ± 13 79 ± 12 65.3 ± 11.2 <0.001 

BSA (m
2
 ) 1.8 ± 0.2 2.0 ± 0.2 1.7 ± 0.2 <0.001 

BMI (kg/m
2
) 24.7 ± 3.8 25.1 ± 3.3 24.3 ± 4.2 <0.001 

Fat Mass (kg) 18 ± 8 16 ± 7 20 ± 8 <0.001 

Lean Mass (kg) 53 ± 11 63 ± 8 45 ± 6 <0.001 

LVEDV (ml) 145 ± 32 (69 – 256) 165 ± 31 (85 – 256) 129 ± 22 (69 – 198) <0.001 

LVESV (ml) 51 ± 16 (17 – 127) 60 ± 16 (24 – 127) 43 ± 11 (17 – 97) <0.001 

LVSV (ml) 95 ± 19 (46 – 189) 106 ± 19 (51 – 189) 86 ± 14 (46 – 141) <0.001 

LVEF (%) 66 ± 5 (47 – 81) 64 ± 5 (47 – 80) 67 ± 5 (47 – 81) <0.001 

LVM (g) 114 ± 34 (40 – 270) 139 ± 31 (68 – 270) 93 ± 19 (40 – 184) <0.001 

LVEDV / BSA (ml/m
2
) 79 ± 13 (44 – 129) 84 ± 14 (46 – 129) 75 ± 11 (44 – 110) <0.001 

LVESV / BSA (ml/m
2
) 28 ± 8 (11 – 66) 30 ± 8 (12 – 66) 25 ± 6 (11 – 57) <0.001 

LVSV / BSA (ml/m
2
) 52 ± 8 (26 – 90) 54 ± 9 (26 – 90) 50 ± 7 (32 – 76) <0.001 

LVM / BSA (g/m
2
) 62 ± 14 (31 – 141) 71 ± 14 (31 – 141) 54 ± 10 (32 – 100) <0.001 

CI (g/ml) 0.8 ± 0.2 0.8 ± 0.2 0.7 ± 0.1 <0.001 

Cardiac Output (L) 6.1 ± 1.4 6.6 ± 1.5 5.6 ± 1.2 <0.001 

Heart Rate (BPM) 64 ± 10 63 ± 11 66 ± 9.5 <0.001 

 

Table 5 – Digital Heart Project subject characteristics and CMR parameters (n=1530). Values 

are in mean ± SD or percentage. CMR parameters include ranges in brackets. BMI = body 
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mass index; BP = blood pressure; BPM = beats per minute; BSA = body surface area; CI = 

concentricity index; LVEDV = left ventricular end diastolic volume; LVESV = left ventricular 

end systolic volume; LVSV = left ventricular stroke volume; LVEF = left ventricular ejection 

fraction; LVM = left ventricular mass; PWV = pulse wave velocity. * n= 1196; ** n = 528; *** 

n= 668 

 

 

 

 
Males 

(n=691) 
 

 

Females 

(n=839) 

 

 
<35 years 

(n=261) 

≥35 years 

(n=430) 
p   

<35 years 

(n=319) 

 

≥35 years 

(n=520) 

 

p 

        

LVEDV (ml) 172 ± 30 (108 – 256) 162 ± 31 (85 – 248) <0.001  132 ± 22 (72 – 198) 127 ± 21 (69 – 186) 0.005 

LVESV (ml) 63 ± 16 (24 – 127) 58 ± 16 (24 – 121) <0.001  46 ± 11 (20 – 97) 41 ± 11 (17 – 83) <0.001 

LVSV (ml) 109 ± 19 (68 – 165) 104 ± 19 (51 – 189) <0.001  86 ± 15 (46 – 136) 86 ± 14 (49 – 141) 0.83 

LVEF (%) 64 ± 5 (50 – 80) 64 ± 5 (47 – 79) 0.03  65 ± 5 (47 – 78) 68 ± 5 (53 – 81) <0.001 

LVM (g) 143 ± 30 (87 – 221) 136 ± 31 (68 – 270) 0.004  93 ± 19 (40 – 165) 93 ± 19 (54 – 184) 0.76 

LVEDVI (ml/m
2
) 88 ± 13 (58 – 126) 82 ± 14 (46 – 129) <0.001  78 ± 11 (52 – 110) 73 ± 11 (44 – 104) <0.001 

LVESVI (ml/m
2
) 32 ± 8 (12 – 57) 29 ± 8 (13 – 66) <0.001  27 ± 6 (13 – 57) 24 ± 6 (11 – 49) <0.001 

LVSVI(ml/m
2
) 56 ± 8 (36 – 79) 53 ± 9 (26 – 90) <0.001  51 ± 7 (34 – 76) 49 ± 7 (32 – 75) <0.001 

LVMI (g/m
2
) 73 ± 13 (44 – 119) 69 ± 14 (31 – 141) <0.001  55 ± 9 (33 – 87) 53 ± 10 (32 – 100) <0.001 

 

Table 6 – Digital Heart Project CMR-derived cardiac measurements by age and gender. 

Values are in mean ± SD or percentage. CMR parameters include ranges in brackets. 

Volumes and mass indexed to body surface area. LVEDV(I) = (indexed) left ventricular end 

diastolic volume; LVESV(I) = (indexed) left ventricular end systolic volume; LVSV(I) = 

(indexed) left ventricular stroke volume; LVEF = left ventricular ejection fraction; LVM(I) = 

(indexed) left ventricular mass.  
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     Post-hoc Nemenyi  p-Value 

 
Caucasians 

(n=1144) 

South Asians 

(n=430) 

Africans 

(n=104) 

KW 

p 

 

C vs SA C vs AF SA vs AF 

        

LVEDV (ml) 150 ± 32 (79 – 252) 126 ± 26 (69 – 220)  141 ± 26 (70 – 208) <0.001 <0.001 0.141 <0.001 

LVESV (ml) 52 ± 16 (17 – 121) 43 ± 13 (19 – 89) 49 ± 14 (21 -  96) <0.001 <0.001 0.407 <0.001 

LVSV (ml) 97 ± 20 (51 – 189) 83 ± 15 (46 – 136) 91 ± 16 (49 – 145) <0.001 <0.001 0.038 <0.001 

LVEF (%) 66 ± 5 (47 – 81) 66 ± 5 (53 – 80) 65 ± 5 (52 – 77) 0.473 -  - - 

LVM (g) 117 ± 34 (56 – 271) 98 ± 26 (40 – 191) 123 ± 36 (57 – 255) <0.001 <0.001 0.2 <0.001 

LVEDVI (ml/m
2
) 81 ± 13 (46 – 129) 71 ± 10 (44 – 112) 76  ± 11 (45 – 108) <0.001 <0.001 <0.001 <0.001 

LVESVI (ml/m
2
) 28 ± 8 (11 – 66) 24 ± 6 (12 – 43) 26 ± 7 (12 – 43) <0.001 <0.001 0.088 0.031 

LVSVI  (ml/m
2
) 53 ± 8 (26 – 90) 47 ± 6 ( 32 – 69) 49 ± 7 (32 – 82) <0.001 <0.001 <0.001 0.04 

LVMI (g/m
2
) 63 ± 14 (32 – 141) 55 ± 11 (33 – 90) 65 ± 15 (37 – 101) <0.001 <0.001 0.25 <0.001 

 

Table 7 – Digital Heart Project CMR-derived cardiac measurements by race. Values are in 

mean ± SD or percentage. CMR parameters include ranges in brackets. Volumes and mass 

indexed to body surface area. AF = African; C = Caucasian; KW = Kruskal-Wallis test; LVEDV(I) 

= (indexed) left ventricular end diastolic volume; LVESV(I) = (indexed) left ventricular end 

systolic volume; LVSV(I) = (indexed) left ventricular stroke volume; LVEF = left ventricular 

ejection fraction; LVM(I) = (indexed) left ventricular mass; SA = South Asian. 

 

Summary of linear regression models: 

  Standardised β p 

LVEDV   

 Gender 0.27 <0.001 

 Age -0.26 <0.001 

 Race: C v AF -0.07 <0.001 

 Race: C v SA -0.21 <0.001 

 Race: C v Other -0.04 0.007 

 Systolic BP 0.06 <0.001 

 BSA 0.45 <0.001 

LVESV    

 Gender 0.33 <0.001 

 Age -0.26 <0.001 

 Race: C v AF -0.04 0.032 

 Race: C v SA -0.18 <0.001 
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 Race: C v Other -0.02 0.238 

 Systolic BP -0.01 0.541 

 BSA 0.30 <0.001 

LVSV    

 Gender 0.17 <0.001 

 Age -0.21 <0.001 

 Race: C v AF -0.08 <0.001 

 Race: C v SA -0.19 <0.001 

 Race: C v Other -0.05 0.001 

 Systolic BP 0.12 <0.001 

 BSA 0.49 <0.001 

LVEF    

 Gender 0.05 <0.001 

 Age 0.05 <0.001 

 Race: C v AF 0.16 0.459 

 Race: C v SA 0.01 0.002 

 Race: C v Other -0.02 0.812 

 Systolic BP 0.17 <0.001 

 BSA 0.06 0.684 

LVM 

 Gender 0.39 <0.001 

 Age -0.18 <0.001 

 Race: C v AF 0.05 0.002 

 Race: C v SA -0.15 <0.001 

 Race: C v Other -0.05 0.002 

 Systolic BP 0.16 <0.001 

 BSA 0.38 <0.001 

Concentricity Index 

 Gender 0.31 <0.001 

 Age 0.05 0.041 

 Race: C v AF 0.15 <0.001 

 Race: C v SA 0.01 0.756 

 Race: C v Other -0.02 0.4784 

 Systolic BP 0.17 <0.001 

 BSA 0.06 0.028 

Cardiac Output 

 Gender 0.03 0.206 

 Age -0.22 <0.001 

 Race: C v AF -0.09 <0.001 

 Race: C v SA -0.14 <0.001 

 Race: C v Other -0.05 0.032 

 Systolic BP 0.19 <0.001 

 BSA 0.42 <0.001 

 

Table 8 – Summary of linear regression models for the whole cohort. R2 for LVEDV model: 

0.5665; R2 for LV ESV model: 0.42; R2 for LVSV: 0.52; R2 for LVEF model: 0.13; R2 for LVM 

model: 0.63; R2 for concentricity index model: 0.22; R2 for Cardiac Output model: 0.34. BP = 

blood pressure; BSA = body surface area; LVEDV = left ventricular end diastolic volume; 
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LVESV = left ventricular end systolic volume; LVSV = left ventricular stroke volume; LVEF = 

left ventricular ejection fraction; LVM = left ventricular mass; Race C = Caucasian; Race AF = 

African; Race SA = South Asian. 

 

  Males Females 

  Standardised β p Standardised β p 

LVEDV     

 Age -0.31 <0.001 -0.34 <0.001 

 Race: C v AF -0.11 <0.001 -0.06 0.029 

 Race: C v SA -0.28 <0.001 -0.23 <0.001 

 Race: C v Other -0.03 0.251 -0.07 0.010 

 Systolic BP 0.07 0.023 0.07 0.022 

 BSA 0.42 <0.001 0.48 <0.001 

LVESV     

 Age -0.28 <0.001 -0.34 <0.001 

 Race: C v AF -0.08 0.011 -0.00 0.961 

 Race: C v SA -0.23 <0.001 -0.19 <0.001 

 Race: C v Other -0.02 0.573 -0.03 0.363 

 Systolic BP -0.00 0.947 -0.04 0.294 

 BSA 0.29 <0.001 0.27 <0.001 

LVSV 

 Age -0.26 <0.001 -0.24 <0.001 

 Race: C v AF -0.10 0.001 -0.09 <0.001 

 Race: C v SA -0.26 <0.001 -0.19 <0.001 

 Race: C v Other -0.04 0.192 -0.08 0.001 

 Systolic BP 0.12 <0.001 0.14 <0.001 

 BSA 0.42 <0.001 0.52 <0.001 

LVEF     

 Age 0.15 <0.001 0.24 <0.001 

 Race: C v AF 0.02 0.546 -0.06 0.088 

 Race: C v SA 0.08 0.033 0.07 0.027 

 Race: C v Other 0.02 0.685 -0.02 0.469 

 Systolic BP 0.09 0.012 0.15 <0.001 

 BSA -0.01 0.747 0.04 0.299 

LVM   

 Age -0.23 <0.001 -0.24 <0.001 

 Race: C v AF 0.06 0.05 0.09 <0.001 

 Race: C v SA -0.26 <0.001 -0.15 <0.001 

 Race: C v Other -0.06 0.04 -0.05 0.048 

 Systolic BP 0.20 <0.001 0.20 <0.001 

 BSA 0.41 <0.001 0.43 <0.001 

Concentricity Index 

 Age 0.07 0.062 0.04 0.221 

 Race: C v AF 0.18 <0.001 0.17 <0.001 

 Race: C v SA -0.02 0.546 0.04 0.189 
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 Race: C v Other -0.04 0.326 0.00 0.945 

 Systolic BP 0.18 <0.001   0.18 <0.001 

 BSA 0.07 0.043 0.04 0.228 

Cardiac Output     

 Age -0.25 <0.001 -0.22 <0.001 

 Race: C v AF -0.09 0.006 -0.11 <0.001 

 Race: C v SA -0.17 <0.001 -0.14 <0.001 

 Race: C v Other -0.02 0.597 -0.07 0.011 

 Systolic BP 0.17 <0.001 0.19 <0.001 

 BSA 0.32 <0.001 0.42 <0.001 

 

Table 9 – Summary of linear regression models split by gender. R2 for LVEDV model: males - 

0.36, females - 0.37; R2 for LV ESV model: males - 0.21, females - 0.21; R2 for LVSV: males - 

0.34, females - 0.39; R2 for LVEF: males - 0.03, females - 0.11;  R2 for LV mass model: males - 

0.35, females - 0.34; R2 for concentricity model: males  - 0.08, females - 0.07; R2 for  Cardiac 

Output: males - 0.22, females - 0.27.  BP = blood pressure; BSA = body surface area; Race C = 

Caucasian; Race AF = African; Race SA = South Asian; LVEDV = left ventricular end diastolic 

volume; LVESV = left ventricular end systolic volume; LVSV = left ventricular stroke volume; 

LVEF = left ventricular ejection fraction; LVM = left ventricular mass. 

 

 

Influence of gender on LV parameters 

LV end-diastolic, end-systolic and stroke volume as well as LVM were markedly lower in 

females (p <0.001). However, EF was 3% higher in females (p <0.001). Even after adjusting 

the CMR derived parameters for BSA, ventricular volumes and mass were still significantly 

higher in the men (p <0.001). CI was higher in men as was CO (for both p <0.001). The 

difference in CO was driven by SV as women had a higher heart rate during scanning (p 

<0.001). 

In multiple regression analysis adjusted for BSA, Race, SBP and age, male gender was 

shown to be strongly associated with a higher LVEDV, LVESV, LVSV, LVM and CI (lowest 

β = 0.17 and all p <0.001). The effect size of gender on LVEF is smaller (β = 0.05, <0.001). 

There was no significant association between gender and CO after adjustment for other 

variables. 
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Influence of age on LV parameters 

When subdividing the genders by an age cut off of 35, in men and women, LVEDV, 

LVEDVI, LVESV and LVESVI were lower in the older subcohort (p <0.001). This contrasts 

with EF that rises with age in both males and females (p = 0.03 and p <0.001 respectively). 

Although LVM was lower in males in the older subgroup (p <0.001) there was no difference 

between age groups in females. If LVM is indexed to BSA, a reduction occurs in this 

parameter with rising age in both genders. 

Age was negatively associated with LVEDV, LVESV, LVSV, LVM and CO in both males 

and females (for all p <0.001). Age was associated in both genders with an increase in EF. 

There was a small positive association between CI and age that was borderline significant in 

the whole cohort (β = 0.05, p =0.04) but that was not present when analysing the genders 

separately.   

 

Influence of ethnicity on LV parameters 

Race ‘Other’ includes a heterogeneous ethnic background including Chinese, Japanese, 

mixed other / unknown which makes interpretation and extrapolation of results difficult. 

Caucasians had higher absolute and indexed LVEDV, LVESV and LVSV than South Asians 

(for all p <0.001). Between Caucasians and Africans the only significant differences were a 

lower LVSV (p=0.038), LVEDVI and LVESVI (for both p<0.001) in Africans. South Asians 

had smaller absolute and indexed LV volumes and mass than Africans (for all p<0.05). 

LVMI is lowest in South Asians than in Africans and Caucasians (p<0.001) and no difference 

was found between the latter two groups when comparing them without adjusting for other 
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variables. Plotting LVMI against SBP in each ethnic group indicates that there is a greater 

interaction between these variables in Caucasians and Asians than in Africans (Figure 11.1). 

 

 

Figure 11.1 – Scatterplot of indexed left ventricular mass against systolic blood pressure by 

Race. Linear regression fits with 95% confidence intervals are shown for Africans (AF, pink), 

Caucasians (C, green) and South Asians (SA, blue). 

 

 

Regression analyses adjusted for other variables showed that when compared to Caucasians, 

smaller LVEDV, LVSV and CO were associated with African ethnicity in both genders. 

LVESV was negatively associated with African ethnicity in males but no difference was 

found in females. African ethnicity has a higher positive association with LVM than 

Caucasian (males β = 0.06, p = 0.05; females β = 0.09, p <0.001). There was a strong positive 

association between being African and higher CI (males β = 0.18, p <0.001; females β = 0.17, 

p <0.001). Volunteers of South Asian descent showed a negative association with LVEDV, 
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LVESV, LVSV and LVM in both males and females (for all <0.001). CI was not 

significantly associated with South Asian ethnicity.  

 

Influence of systolic blood pressure on LV parameters 

Systolic blood pressure was associated with a higher LVEDV and LVSV in both genders.  

There was no significant association between LVESV and SBP. In both genders SBP was 

strongly positively associated with LVM (in both β = 0.20, p < 0.001) and CI (in both β = 

0.18, p < 0.001). 

 

Influence of body surface area on LV parameters 

BSA was strongly positively associated with LVEDV, LVESV, LVSV, LVM and CO in both 

genders (for all p <0.001). BSA was not associated with LVEF and only weakly positively 

associated with CI in men (β = 0.07, p =0.04) but not in women. 
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11.4 Discussion 

 

This was one of the largest studies of healthy adults phenotyped by CMR, only comparable in 

scale to projects such as the Framingham Heart Study (FHS) Offspring cohort (259), the 

Dallas Heart Study (244) or the Multi-Ethnic Study of Atherosclerosis (260). It was different 

from these in that the mean age in the cohort was lower (age range from FHS subjects with 

CMR (n=1547): 60 ± 9; age range from MESA (n=800): 45 – 84). Furthermore, in other 

population-based studies, participants had different degrees of subclinical and clinical 

cardiovascular disease while our cohort was self-proclaimed free from cardiovascular disease 

and drug-naïve. This study was the largest of a UK population using CMR. 

Our data showed that LV volumes and mass vary with gender, age and ethnic groups and 

were also significantly influenced by body surface area and systolic blood pressure. When 

compared with published normal ranges shown in Table 2 and Table 3 (199), the values we 

obtained were similar for LVEDV, LVESV and LVM in females (maximal difference in 

mean volumes: 5ml; maximal difference in mean mass: 1g). In our cohort females had a 

lower LVSV in the younger sub-cohort (difference in means: 10ml). The difference in LVSV 

in the older cohort was smaller (difference in means: 3ml). LVEF was also lower in our 

cohort of young females (difference in means: 4%). In men, our study found higher LVEDV 

in the older group (difference in means: 13ml) but equivalent results in the younger group. 

LVESV was also larger in our cohort than in that studied by Hudsmith and colleagues 

(difference in means <35 years: 6ml; ≥35 years: 15ml). In our cohort, LVM in men was 

considerably higher (difference in means <35 years: 12g; ≥35 years: 16g). After indexing for 

body surface area the differences followed a very similar trend. Dissimilarities between the 

studies can be potentially explained by small variations in the imaging analysis approaches.  
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In our method we defined the mitral valve in the long-axis planes, while Hudsmith and 

colleagues chose the basal slice when at least fifty percent of the blood volume was 

surrounded by myocardium (199). Furthermore, our large cohort was multi-ethnic while the 

racial background of their subjects is unclear.  

In terms of inter-observer and inter-study reproducibility, our study is comparable with other 

projects (188, 199, 260).While in our study, subjects were re-scanned immediately after the 

first scan, Hudsmith’s subjects had their second scan at least one week apart, which might 

have included physiological changes in their measure of inter-study variability (inter-observer 

CoV: LVEDVI – 2.7, LVEF – 3.3, LVM – 5.2; inter-study CoV: LVEDVI – 5.5; LVEF – 

7.5; LVM – 9.4). The MESA study reported similar inter-observer ICCs (LVEDV: 0.98; 

LVESV: 0.94, LVM: 0.98, LVEF: 0.81). Grothues and colleagues in their paper on 

reproducibility of CMR and echocardiography reported results almost identical to ours (inter-

study CoV: LVEDVI – 2.9; LVESVI – 6.5; LVSVI – 3.9; LVEF – 2.4%; LVMI – 2.8%). As 

in these studies the inter-observer ICC was lower for EF than for the other parameters.  

In contrast with the MESA cohort (260) and Hudsmith’s study we found that all cardiac 

parameters, indexed or not, were significantly different between men and women. These 

included LVSV and CI that were not different between genders in the MESA cohort and 

LVEF, LVEDVI, LVESVI and LVSVI for which Hudsmith et al. found no significant 

difference between men and women. LVEF was the only cardiac parameter that is higher in 

females than males. This was probably due to the fact that our subject sample was much 

larger than in previous studies. 

When analysing the effect of age on cardiac phenotypes by comparing gender subgroups 

dichotomised by age (using 35 years as a cut-off), increase in age past the cut-off point was 

associated with a reduction in cardiac volumes and mass in males. In females, LVSV and 
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LVM were not significantly different between the older and younger cohorts. Age was 

dichotomised to enable comparison with current European Society of Cardiology 

recommended normal ranges, based on the work of Hudsmith and colleagues (199). 

However, dichotomising continuous variables leads to a loss of statistical power to detect 

associations between variables and the outcomes and increases the risk of a positive result 

being a false positive (261). This was addressed by investigating the effect of age on cardiac 

phenotypes using regression modelling. Using this approach we found a negative association 

between age and LVEDV, LVESV, LVSV, LVM and CO in both males and females. LVEF 

was positively associated with age. Our findings are consistent with the MESA cohort (260) 

that also found a negative association between both volumes and LVM and age in men. 

However in their study in women, while LVEDV showed a negative association with age, 

LVESV showed only a trend towards negative association. They found no significant 

association between age and LVM in females and supported their finding with an autopsy 

study that showed a decrease in LV mass with age in men but not in women (262). In contrast 

with their findings, when we examine the association between LVM and age in females while 

adjusting for other variables, we found a highly significant negative association (β = -0.2, 

p<0.001). The fact that in their study, the effects of variables such as race or BP were not 

adjusted for, might help explain the differences between our findings. 

When directly comparing the ethnic sub-cohorts without adjusting for other variables, we 

found no difference in LVM between Caucasians and Africans even after indexing to body 

surface area. However in the regression analysis accounting for age, SBP and BSA a 

significant positive association between LVM and African ethnicity was found in both 

genders. This finding was in line with the Dallas Heart Study (CMR) (240) and the Coronary 

Artery Risk Development in Young Adults (263) study (echocardiography). It contrasts with 

the North Manhattan Stroke Study (NOMAS) (254) and the Hypertension Optimal Treatment 
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(HOT) study (255), both using echocardiography, as well as the MESA study using CMR 

(260) that reported no LVM difference between these two ethnicities. The reason underlying 

these inconsistencies is unclear. However we note that in the studies that found no association 

between LVM and African ethnicity, other clinical variables were not accounted for. 

Furthermore, although we found no difference in non-indexed absolute volumes and mass 

between Caucasians and Africans, Africans do have smaller LVEDVI and LVESVI. This 

suggests that our study might have been underpowered to detect absolute differences between 

Caucasians and Africans without adjustment for other variables. This might be due to the 

small number of African volunteers (n=104) and the fact that 62.5% of these were females. 

Regression analysis shows that African ethnicity was associated with lower LV volumes and 

higher mass and CI.  The strong association between CI, SBP and African ethnicity may 

explain the increase risk of heart failure in Africans of all age groups (264). In Africans, 

increased prevalence of hypertension, obesity, smoking, alcohol consumption, as well as 

genetic factors have been proposed as the cause of the increased incidence of heart failure in 

this population (265, 266). 

Our finding that South Asians have smaller LVEDV, LVESV, LVSV and LVM was 

consistent with 3D echo results from the Left Ventricular Structure in the Southall and Brent 

Revisited (SABRE) study (247) and the MESA cohort (260). The cause of this is not known, 

although it has been suggested that it reflects inappropriate allometric indexation for body 

size. However, it may also represent a pathological process with implications on myocardial 

wall stress and oxygen demand leading to increased vulnerability to ischaemia and infarction 

(247).  

Although BSA, age, gender, race and systolic blood pressure are strong determinants of 

cardiovascular phenotypes, the proportion of total variation (R
2
) explained by the multiple 

regression models remains limited (R
2 

for LVEDV model: 0.57; R
2 

for LVESV model: 0.42; 
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R
2 

for LVSV: 0.52; R
2 

for LVEF model: 0.13;  R
2 

for LVM model: 0.63; R
2 

for concentricity 

model: 0.22; R
2
 for Cardiac Output: 0.34). This suggests that other environmental, 

anthropometric and / or genetic factors contribute to inter-individual variability.   

In this study we demonstrated that high resolution imaging of the whole heart in a single 

breath-hold, using 3D-CMR, is feasible and well tolerated in a healthy population. In depth 

analysis of these datasets can be found in section 12. 

This study, while the largest of its type in the UK, was limited by the small number of 

participants from African and other ethnic minorities, as well as by a lack of longitudinal 

outcome data. Metabolic profiling, smoking status and activity levels are also known to 

influence cardiac structure and were not included in this analysis although will be available in 

the future. The clear strength of our study is that it studied a large, well characterised healthy 

population with using gold-standard 2D-CMR. 
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11.5 Conclusions 

 

LV parameters were determined, in part, by age, systolic blood pressure, gender, ethnic 

background and body surface area. However, the variance in these cardiac phenotypes that 

can be explained by regression models including clinical variables thought to be important 

was moderate, suggesting that other unmeasured anthropometric, environmental and genetic 

factors, in addition to stochastic effects, also play a major role. Studies that assess the genetic 

determinants of cardiovascular function and structure may begin to better account for normal 

variations in cardiac form and function in this population. Furthermore, the power to detect 

the associations between variables and cardiac phenotypes might be limited by current 2D 

imaging approaches. These data may have significant clinical and research utility by 

providing gender, age and ethnicity specific normal ranges of b-SSFP derived CMR 

parameters in a large healthy population.  
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12 3D-CMR cardiac atlas and automated analysis methods 

 

12.1 Introduction 

 

The structure of the human heart is highly heritable (26) and influenced by complex 

interactions between genetic and environmental factors (32). Although left ventricular (LV) 

mass (LVM) is an important heritable trait which independently predicts the risk of heart 

failure, sudden death and all-cause mortality (27), the genes that regulate LVM remain 

elusive (241). Inherited cardiac conditions typically cause regional or asymmetric changes in 

LV structure (267, 268) and therefore total mass may be an insensitive indicator for detecting 

genetic influences. This is supported by the increasing numbers of the so called genotype-

positive, phenotype-negative subjects that are being identified through family screening of 

cardiomyopathy genes (269, 270). Whether this is due to incomplete penetrance or simply 

due to the fact that subtle phenotypic disease expression is currently undetectable by standard 

imaging approaches, has not yet been ascertained. Quantitative phenotyping of the heart may 

help overcome these limitations by creating detailed 3D statistical models of the variation in 

cardiac morphology and function within a population. These statistical models can be 

adjusted for known determinants of cardiac functional and structural phenotypes, which could 

further increase the power to detect genetic factors. Furthermore, automated approaches may 

also address the significant intra- and inter-observer variability that accompanies manual 

analysis of 2D cine imaging (199). 

A computational approach to phenotyping has been successfully used in brain mapping 

studies (202-206) and also has potential for epidemiological research in heart disease (208, 

209). While neuroimaging benefits from high spatial resolution 3D magnetic resonance (MR) 
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to detect anatomical variation, the statistical modelling of conventional 2D cardiac cine 

imaging is constrained by the low spatial resolution of each section and misalignment 

between breath-holds (207). Standard 2D cardiac cine MR images comprise a stack of 8mm 

sections with 2mm gaps in the LV short axis plane which are acquired over five or six breath-

holds (173). Three-dimensional cardiac magnetic resonance (3D-CMR), at a comparable 

spatial resolution to 2D sequences, has been shown to have similar accuracy for manual 

assessment of LV volumes and mass (178-187). Whole heart 3D coverage at greater spatial 

resolution, in a single breath-hold, is now possible with the use of high acceleration factors.  

Automatic approaches that use prior knowledge of inter-subject variability in cardiac 

anatomy (cardiac atlases) to analyse new target images have been used in cardiovascular 

research (225).  The main components of atlas-based analysis of CMR images are atlas 

selection, atlas propagation and label fusion. During the atlas propagation step, affine or non-

rigid registration methods are used (223, 271). Registration refers to the process through 

which different images are transformed into one common coordinate system. Image 

registration algorithms are classified according to the transformation models applied to the 

images. Linear transformations are global in nature and include translation, rotation, scaling 

and other affine transforms. They are insensitive to local variations between the images. 

Nonrigid transformations enable local warping of the target image to align it with the atlas.  

In neuroimaging research, algorithms that make use of multiple atlases have been shown to 

be superior to single atlas approaches (221, 222, 272). Using multiple atlases to inform 

automated anatomical labelling (segmentation), normally involves the combination of the 

multiple propagated labels to create consensus segmentation. Increasing the number of atlases 

results in higher accuracy of segmentation as more of the variability in anatomical shapes is 

accounted for. Furthermore, having more cardiac atlases enables segmentation errors caused 

by incorrect labelling driven by a single atlas to be ‘averaged’ out.  Another advantage of the 
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multi-atlas approach is that accuracy can be increased without necessarily increasing the 

computational cost. This can be achieved by selecting atlases within the pool which are most 

similar to the target image (273, 274).   

Registration between atlas and target has been traditionally constrained to ensure one-to-one 

correspondences based on intensity similarities. The main advantage of this restriction is that 

the topological characteristics of the atlas are preserved after deformation. However, a very 

significant limitation is that it limits the ability to detect local variations in shape in the target 

image. To reduce the dependency on accurate registration, a patch-based label fusion subtype 

of multi-atlas segmentation has been proposed (275). This PatchMatch segmentation 

algorithm divides the target and the atlas images into patches and searches for 

correspondences between them. Although some versions of PatchMatch limit the search 

window, it is plausible to assume that if a good match is found between two patches then 

there is an increased likelihood that neighbouring patches will also be similar. The level of 

similarity determines the weights for the label fusion process and segmentation (225).  

Alignment of a large number of segmentations in a space with a common coordinate system 

should enable the accurate modelling of cardiac parameters at corresponding points of the LV 

within a group of subjects. 

Having established the tolerability of high spatial resolution 3D-CMR in our population, our 

primary purpose in this study was to develop a high resolution 3D atlas of the human heart. 

Secondarily, we aimed to evaluate the feasibility and accuracy of an automated analysis 

technique, which makes use of a large number of 3D-CMR cardiac atlases to guide the 

segmentation of unseen cardiac images. Finally, we intended to determine if high resolution 

mapping of ventricular wall thickness enables a reduction in the sample size required for 

population-based research of myocardial hypertrophy.   
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12.2 General methods 

 

Study Population 

In total 1530 volunteers (54.8% females; age range: 18 – 81 years; mean age: 41.3 years) 

were recruited prospectively via advertisement to the Digital Heart Project at Imperial 

College London. Detailed descriptions of the full cohort, eligibility criteria and biophysical 

assessment methods can be found in section 11.3 above.  

A randomly selected sub-cohort of 138 volunteers (56.5% females; age range 18 – 65 years; 

mean age: 39.9 years) was used in the validation experiments of the cardiac atlas. Of these, 

twenty subjects were randomly selected to create the first set of cardiac atlases (50% females; 

age range: 24 – 59 years; mean age: 38 years), and 20 volunteers (45% females, age range: 18 

– 54 years; mean age: 36.5 years) were imaged on two separate occasions for assessment of 

reproducibility. To assess inter-study variability 1 male (age = 40 years) and 1 female (age = 

27 years) subjects were scanned on 8 separate occasions over a period of 18 months. 

 

Imaging Protocol 

CMR was performed on a 1.5T Philips Achieva system (Best, Netherlands).  Full details of 

the imaging protocol can be found in section 11.3 above. In this study we used the 2D cine 

balanced steady-state free precession (b-SSFP) images, as well as the single breath-hold 3D 

left ventricular short axis (LVSA) b-SSFP sequence. 
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Image quality assessment 

Two readers with 10 and 6 years of experience in cardiac MR respectively, who were blinded 

to the imaging protocol, independently assessed the image quality of the 2D and 3D LVSA 

images in 20 subjects. The overall image quality of each technique was assessed on a four-

point scale (score 1, severe artefact or poor image quality making the myocardium not 

evaluable; score 2, fair delineation of the myocardium with moderate artefact affecting the 

heart; score 3, good delineation of the myocardium with mild artefact affecting the heart; and 

score 4, excellent delineation of the myocardium and no artefacts within the heart). 

To account for spatial variation in image noise on the undersampled images the contrast on 

2D and 3D cine images was assessed by measuring contrast ratios (276). A contrast ratio 

(CR) was calculated using the following equation: CR = SI1 − SI2/√(SD1
2
 + SD2

2
), where SI1 

and SI2 are the mean signal intensities of relatively homogeneous areas of the myocardium 

and blood pool and SD1 and SD2 are their respective standard deviations. 

 

Statistical analysis 

Data was analysed using RStudio Server version 0.98 (Boston, MA) (257) and SigmaPlot 

(Systat Software, San Jose, CA). Normally distributed data were reported as mean ± one 

standard deviation (SD) or otherwise as median and interquartile range (IQR). Comparison 

between methods was made using Bland-Altman plots (277). CRs were compared using a 

two-sided paired t-test and reported with 95% confidence interval (CI) for the difference of 

the mean. Image quality scores were compared with the Wilcoxon signed-rank test. Test-

retest reliability was assessed using an intraclass correlation coefficient (ICC) with a two-way 

random model for absolute agreement (258). Voxelwise comparisons between the 2D and 3D 
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techniques were made using the Wilcoxon signed rank test. The sample size required for 

automated segmentation of 2D and 3D techniques to detect a 1mm difference in wall 

thickness at each point across the myocardium was calculated from the voxelwise interstudy 

variances (see appendix) (188). A P value <0.05 was considered significant and Bonferroni 

correction was made for multiple comparisons in all voxelwise tests. 

 

Reliability 

Twenty subjects had 2D and 3D LVSA imaging performed on two separate occasions. In 

each case the subject briefly got off the MR table and the study was then repeated with new 

pilot images. An independent reader of 10 years cardiac MR experience manually analysed 

the 2D LVSA datasets using cardiac analysis software (Extended WorkSpace, Philips, Best, 

Netherlands). Endocardial and epicardial borders were defined on the left ventricular cine 

images using a standard methodology to derive LVEDVI and LVMI (200). Trabeculae and 

papillary muscles were excluded from the mass measurement and included in the cavity 

volume. 
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12.3 3D cardiac atlas method 

 

For the creation of the first set of cardiac atlases, the 3D LVSA images from 20 randomly 

selected subjects had each voxel manually labelled as LV cavity, myocardium or right 

ventricular blood pool in end-diastole and end-systole (Figure 12.1). Manual segmentations 

were carried out by two readers using freely available software (ITKsnap, National Library of 

Medicine's Insight Segmentation and Registration Toolkit, http://www.itk.org) (278). On 

average there were ~50000 voxels labelled as LV cavity, ~30000 as myocardium and ~60000 

as right ventricular blood pool. The atlases were quality controlled by a reader of 10 years 

cardiac CMR experience. These atlases provided baseline information about the inter-subject 

variability in cardiac anatomy within the population (225). Given the large variability in 

papillary muscle anatomy within the cohort these were not labelled independently and were 

instead included in the blood pool. 

 

Figure 12.1 – One of the initial 20 cardiac atlases with each voxel from the three-

dimensional balanced steady-state free precession LV short axis cine sequence, manually 
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labelled in end-diastole as LV blood pool (in red), LV myocardium (green) and right 

ventricular blood pool (yellow). Top left – mid ventricular short axis; top and bottom right – 

left ventricular long axis reconstructions of the short-axis cine; bottom left – 3D model of 

the labelled voxels.  

 

12.4 Automated segmentation method 

 

To initiate the atlas-based segmentation algorithm, six manual landmarks were placed in a 

new target image. This enabled a landmark-based registration between the target image and 

the atlases images. Subsequently, non-rigid image registration was performed between the 

target image and the atlas images, following which the atlas segmentations were warped onto 

the target image space. A multi-atlas PatchMatch algorithm (279) was then used to find 

correspondences between “patches” of neighbouring voxels (5 x 5 x 5 mm) within the atlases 

and target images, without any restriction of the search window size for the purpose of label 

fusion (Figure 12.2).  

 

Figure 12.2 – The PatchMatch automated cardiac segmentation method looked for 

similarities between cubic patches in the pool of atlases and each new target image. It then 

assigned the labels of the atlas image patches onto the matching target image patches 

forming the segmentation result 
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Each selected atlas patch was given a weighting according to its similarity and distance to the 

target patch. Labels from all the atlas patches were then combined to produce a final 

segmentation. This segmentation was then registered to the template in the common space 

ensuring that each spatial coordinate in the 3D model was consistent between all subjects. 

The registrations were performed using the IRTK software package (280). A probabilistic 

atlas was computed by averaging all the segmentations. A label map was created by selecting 

the label with the maximum probability at each voxel. The template image was created by 

averaging the intensity images after all the subjects were registered to the common reference 

space. The template image can be regarded as the average heart size, position and orientation. 

This method is summarised in Figure 12.3 . 

 

Figure 12.3 – Flow chart for atlas construction. 

 

Through a process of surface rendering, meaningful information can be extracted from 

segmentation volume data into a surface representation. This was achieved here using a 
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marching cubes algorithm (281-283). This algorithm enables the generation of high quality 

images by approximating a surface of interest by a mesh of polygons. It is based on a division 

of a data volume into elementary cubes, followed by a standard triangulation inside each 

cube. Each volume cell (or cube) is analysed at a time, hence the term marching cubes. The 

mesh was smoothed using a Laplacian smoothing filter. The end result of this process was the 

reconstruction of endocardial and epicardial mesh surfaces with 19185 and 27623 points 

respectively. All data were represented in a standard coordinate system and visualized on the 

3D myocardial template. 

Although the segmentation algorithm was automated, it was initialised by manually placing 6 

pre-defined landmarks on each target image: LV lateral wall, right ventricular free wall, and 

right ventricle (RV) insertion points at the level of the papillary muscles (Figure 12.4), as 

well as at the LV apex and mid cavity at the level of the mitral valve. These landmarks enable 

an initial alignment between atlases and target images.  

 

Figure 12.4 – Diagram of a left ventricular short axis image at the level to the papillary 

muscles. Location of the typical landmarks used to initiate the segmentation algorithm, are 

represented by the red crosses. 
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Numerous iterations of the automated segmentation algorithm were tested on the initial 20 

cardiac atlases using a leave-one-out approach (using 19 atlases to segment the remaining). 

Two independent readers assessed the quality of the automated segmentations by comparing 

them to the manual labels (Figure 12.5).  

 

Figure 12.5 – Rendering of the automated segmentation (white contours) and the manual 

label map used to assess the accuracy of segmentation during the initial stages of 

development of the PatchMatch algorithm. 

 

Variations in the number and location of manual landmarks were systematically tested 

including the use of no landmarks, landmarks in the long axis only (apex and mitral valve), 

landmarks in the short axis only (many iterations with the number of markers varying from 1 

in the mid-cavity to >10 at multiple positions in the LV and RV walls) and combinations of 

long and short axis landmarks. The no-landmarks approach was associated with a high 

number of failed segmentations (structures outside the heart being labelled as the LV) and 
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was quickly abandoned (Figure 12.6). The absence of long axis markers led to a high 

incidence of voxels in left atrium and outflow tract being incorrectly labelled as LV blood 

pool and / or LV myocardium (Figure 12.7). In similar fashion, LV only landmarks led to 

frequent LV / RV incorrect labelling. Increasing the number of landmarks in the short axis 

above 4 led to significant inter-observer variability in the placement of these markers. This 

was due to the fact that these points were not associated with easily definable and consistent 

cardiac anatomy. Overall a number of landmarks above 6 did not contribute to increased 

accuracy. 

 

  

  
 

Figure 12.6 – Example of a failed automated segmentation of a 3D left ventricular short axis 
cine sequence using a no-landmark approach to initiate the algorithm.  The mismatch 
between the automated labels and the target grey-scale image is evident with a high 
number of voxels outside the heart being attributed cardiac labels.  
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Figure 12.7 - Example of two failed automated segmentations of 3D left ventricular short 

axis cine sequences using no long axis landmarks. A high number of voxels in the outflow 

tract were labelled as left ventricular blood and wall.  

 

Once the segmentation algorithm was optimised using the leave-one-out approach, new target 

images were segmented. The resulting segmentations were then visually inspected against the 

grey-scale target image (Figure 12.8). Failed segmentations remained in the ‘targets’ cohort 

while accurate segmentations were added to the atlas pool. Those images that were almost 

correctly labelled were manually adjusted and then added to the atlas library. All additions to 

the atlas pool were supervised by an experienced reader in CMR. This process was repeated 

until the atlas pool included 1093 atlases. As the pool of atlases increased, an additional atlas 

selection step was added in which the 40 atlases most similar to the target image were chosen 

to guide segmentation. 
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Figure 12.8 – Automated segmentation superimposed on a 3D-CMR image of one of the 

Digital Heart Project’s volunteers. Yellow contours represent the borders of the myocardial 

segmentation of the left ventricle (endocardium and epicardium) from which the 3D 

dimensional models are derived. All images are manually quality controlled by visual 

inspection of the correspondence between the labels and the greyscale image. 

 

Analysis was performed using numerical computing software (Matlab, Natick, MA). For the 

atlas construction and initial segmentation experiments a workstation (Xeon quad-core 2.4 

GHz with 8GB of random access memory; Intel, Santa Clara, CA) was used. When the 

segmentation method was applied to the whole cohort (n=1530) a high performance server 

(Dell, Round Rock, TX) was required. 

To enable an unbiased evaluation, the 2D LVSA images were compared to the corresponding 

manually-labelled atlas down-sampled to the equivalent spatial resolution. For the 3D and 2D 

LVSA data the distance between each epicardial and endocardial point on the segmentations 

and its corresponding point on the labelled atlas was measured. The accuracy of segmentation 
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was also assessed by the proportion of concordant voxels in the target images and the 

corresponding manually labelled atlas. This agreement was expressed using the Dice 

similarity coefficient where 0 indicates no overlap and a value of 1 indicates perfect 

agreement (284). 

 

12.5 3D-CMR derived phenotypes 

 

The following phenotypes can be derived from the each individual segmentation: 

LV mass and blood volumes: 

The volume of the voxels labelled as left ventricle cavity and myocardium were used to 

calculate LV end-diastolic volumes and mass which were then indexed to body surface area 

(LVEDVI and LVMI respectively). Myocardial density was assumed to be 1.05 g/mL (285). 

Wall Thickness: 

Wall thickness (WT) was measured perpendicular to a midwall plane equidistant to the 

endocardial and epicardial surfaces (in mm).  

3D Relative Wall Thickness: 

To adjust the 3D derived cardiac parameters to cardiac size a computational approach was 

adopted. A registration between the patient specific LV myocardial model and the reference 

model was performed using a 7 degrees of freedom transformation including translation, 

rotation and scaling. The translation and rotation transform the model into reference space 

and scaling does the normalisation.  
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Fractional wall thickening: 

Fractional wall thickening (FWT) was calculated as (end-diastolic WT – end-systolic 

WT)/end-diastolic WT x 100. 

Ventricular geometry: 

Variation in the position of the endocardial and epicardial surfaces was assessed by the 

distance and direction required to translate each point on the heart to the coregistered average 

cardiac shape. 

Wall Stress: 

Three-dimensional models of the heart provide an unparalleled opportunity to measure 

cardiac phenotypes such as LV wall stress at every point in the heart. For wall stress 

calculations, it is necessary to measure the radius of the ventricle or the local curvature. At 

any point on a curve, the line that best approximates the curve is the tangent line. In the same 

way, the best approximating circle that passes through this point and is tangent to the curve, 

can be identified. The reciprocal of the radius of this circle is the curvature of the curve at this 

point. As the circle that passes through this point may lie to the left or to the right of the 

curve, a sign is attributed by convention (286) (Figure 12.9). This value can then be used to 

calculated local wall stress through: ∝SBP ×  R/WT (287). 

   
Figure 12.9 – Curvature of a surface. Red is assigned to a positive value of Gaussian 

curvature, green is assigned to zero Gaussian curvature, and blue to a negative value of 
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Gaussian curvature. Left - A positive Gaussian curvature value means the surface is bowl-

like. Middle - A negative value means the surface is saddle-like. Right - A zero value means 

the surface is flat in at least one direction. (Planes, cylinders, and cones have zero Gaussian 

curvature). 

 

12.6 Results 

 

All of the 1530 healthy volunteers successfully completed the imaging protocol. Of these 20 

subjects had their 3D LVSA cine images manually labelled and a further 1072 were added to 

the atlas pool after automated segmentation. Subject characteristics are shown in Table 5. 

The 2D LVSA data acquisition required 5 or 6 breath holds of 12 – 15 secs each while the 

typical breath hold for the 3D LVSA cine typically lasted 20 – 25 secs depending on heart 

rate and number of sections acquired.  

 

3D Cardiac Atlas 

A high resolution cardiac atlas was created from the 3D-CMR images of 1092 volunteers of 

the Digital Heart Project. The atlas includes template images, label maps and surface meshes 

in end-diastole and end-systole (Figure 12.10, Figure 12.11 and Figure 12.12). 

 

Image quality 

The mean CR between blood pool and myocardium was greater on the 20 2D images 

compared to 3D 12.2±2.5 vs 8.7±1.9 (95% CI: 2.2 – 4.9; P<0.0001).  The image quality 

ratings for 2D imaging were slightly higher than for 3D imaging (median 4.0 vs 3.5, P = 

0.002), but all images were interpretable. 



128 

 

Figure 12.10 – The Digital Heart Project cardiac atlas in end-diastole (top panel) and end-

systole (bottom panel). 

 

 

Figure 12.11 – End-diastolic template from 1092 volunteers of the Digital Heart Project. 

 

    

End-diastolic template End-diastolic mean label map 

End-diastolic surface mesh 

( facing the septum) 

End-diastolic surface mesh  

(facing the lateral wall) 

 

    

    

End-systolic template End-systolic mean label map 
End-systolic surface mesh 

(facing the septum) 

End-systolic surface mesh 

(facing the lateral wall) 
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Figure 12.12 – End-diastolic template from 1092 subjects of the Digital Heart Project with 

the corresponding 3D surface mesh: endocardium (pink), epicardium (red) and the right 

ventricle (blue) 

 

Accuracy of the automated 3D segmentations 

In the initial validation study with 20 manually labelled atlases, the accuracy of automated 

segmentation progressively improved as the number of cardiac atlases was increased, but 

there was modest benefit beyond 10 atlases (Figure 12.13). There was better segmentation 

accuracy of the 3D LVSA compared to 2D LVSA for both the endocardium, 0.952 vs 0.927 

(P<0.001) and epicardium, 0.952 vs 0.928 (P<0.001) using the Dice overlap coefficients 

(Figure 12.14). 

 

Figure 12.13 – The accuracy of cardiac segmentation measured with the Dice coefficient 

improved as a larger number of 3D atlases were included in the analysis.   
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Figure 12.14 – Left ventricular long axis reconstructions of short-axis cine MR images at end-

diastole in a healthy volunteer. Automated segmentation of the myocardium is shown in 

green and the cavity in red. Data from a conventional 2D LVSA is shown in a) compared to a 

high-spatial resolution 3D LVSA in b). 

 

The mean distance between the surfaces of the segmentation and the manually labelled 

reference was less for the 3D LVSA compared to the 2D LVSA for both endocardium: 1.09 

mm±1.07 vs 2.02 mm±1.45 (95% CI: 0.74 mm – 1.12 mm; P<0.001), and epicardium: 1.29 

mm ±1.32 vs 2.23 mm±1.64 (95% CI: 0.73 – 1.14 mm; P<0.001). An example of wall 

thickness mapping in one individual using 3D and 2D LVSA images is shown in Figure 

12.15 where the effect of thinner sections using 3D imaging is most apparent at the base and 

apex of the LV. 
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Figure 12.15 – Segmentations of the myocardium in a healthy volunteer with wall thickness 

shown as a colour-scale. Data from 2D (a) and 3D (b) LVSA cine images are presented with 

the right ventricle depicted as a mesh. Step artefact due to lower spatial resolution of 2D 

imaging is visible at the base and apex of the left ventricle (arrows). 

 

Comparison of the 3D LVSA automated segmentations with the respective manually-labelled 

atlas showed that there was no bias introduced by the segmentation process for calculating 

LVEDI and LVMI (Figure 12.16). Comparison of the automated 3D segmentation with 

manual volumetry of the corresponding 2D images demonstrated that there was also no bias 

due to the different imaging techniques for calculating LVEDI and LVMI (Figure 12.17).  
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Figure 12.16 – Comparison of automated 3D-LVSA segmentations to their respective 
manually labelled cardiac atlas in 20 volunteers demonstrating no bias for calculating LVEDI 
(a) or LVMI (b). 

 

 

Figure 12.17 - Comparison of automated 3D-LVSA segmentations to manual volumetry of 

the corresponding 2D LVSA images in 20 volunteers demonstrating no bias for calculating 

LVEDI (a) or LVMI (b). 

 

The power calculations, performed at each point on the co-registered myocardial surfaces, 

showed that overall fewer subjects were required for 3D imaging to detect a 1mm difference 

in wall thickness than 2D imaging (56 IQR: 39 – 78  vs 72 IQR: 49 – 104, P<0.001). The 

voxelwise reduction in sample size over the surface of the LV is shown in Figure 12.18.  
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Figure 12.18 – The reduction in sample size required for 3D LVSA segmentations to detect a 

1mm difference in left ventricular wall thickness compared to 2D LVSA segmentations is 

shown using reproducibility data from 20 healthy subjects. The right ventricle is depicted as 

a mesh. The hot colours show where 3D imaging has the largest effect on reducing sample 

size which is predominantly at the basal and apical regions. (Values of ±90% are shown). 

 

Reliability 

The overall test-retest reliability of both 3D automated analysis and 2D manual analysis for 

global LV volumes and mass was high. The ICC between 3D LVSA segmentations was 0.97 

(95% CI: 0.93 – 0.99, P<.0001) for LVEDI and 0.93 (95% CI: 0.82 – 0.97; P<.0001) for 

LVMI. The ICC between manual analyses of 2D LVSA images was 0.98 (95% CI: 0.95 – 

0.99; P<.0001) for LVEDVI and 0.97 (95% CI: 0.91 – 0.99; P<.0001) for LVMI. 

The inter-study variability in wall thickness measurements in the 2 subjects scanned on 8 

separate occasions was small in both the male (mean standard deviation across the LV = 

0.61mm ± 0.21; SD <1mm in 95% of the area) and female (subject mean standard deviation 

across the LV = 0.56mm ± 0.26; SD <1mm in 95% of the area) participants (Figure 12.19). 
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Figure 12.19 – Inter-study variability in wall thickness measurements in a subject scanned 

on 8 separate occasions over a period of 18 months. In this model standard deviations are 

plotted (in mm) at each point. SD = standard deviation. 

 

Population mapping of wall thickness 

The images of 100 subjects were segmented with a mean unsupervised automated analysis 

time of 46 minutes per 3D sequence and 12 minutes for 2D.  There were no failures of the 

segmentation algorithm in the cohort. Non-parametric comparison between 2D and 3D LVSA 

mapping of wall thickness is shown as a significance map in Figure 12.20.  

 

Figure 12.20 – Voxelwise comparisons between LV wall thickness on 2D and 3D LVSA 

myocardial segmentations in 100 healthy volunteers is shown. The right ventricle is depicted 

as a mesh. A significance level of 5% corresponds to a value of 12.7 on the scale. Differences 

in wall thickness between the imaging techniques are apparent at highly curved regions of 

the base, interventricular septum and apex. 
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12.7 Discussion 

 

In this study we successfully created a high resolution cardiac atlas using 3D-CMR cine 

images of 1093 healthy volunteers. This is one of the largest cardiac atlases ever reported. 

Our cohort is smaller than the number of images available in the Cardiac Atlas Project (CAP) 

database (approximately n=2864 from the MESA study + n=470 myocardial infarction 

patients from the DETERMINE cohort) (288). From these only a sub-cohort of 1991 MESA 

subjects has been included in an atlas based study (289). Our study is however different from 

the CAP in that we used high resolution 3D b-SSFP (reconstructed voxel size = 1.2 x 1.2 x 

2mm) whereas the CAP dataset was acquired using a standard 2D cine SSFP sequence 

(spatial resolution of the images varies from 1.4 x1.4 x 6 mm to 2.5 x 2.5 x 6 mm) (289). In 

addition to higher spatial resolution, our single breath hold 3D-CMR is not limited by inter-

slice shifts that occur in multi-breath hold sequences. The fact that all are images were 

acquired in the same scanner, with the same imaging sequence also facilitates consistent 

analysis. 

The results of this study indicate that automated segmentation of high spatial resolution 3D 

cardiac imaging is a feasible technique for population phenotyping which provides greater 

accuracy for mapping ventricular wall thickness than conventional 2D cine MR. The greater 

statistical power to detect changes in wall thickness within the LV promises a significant 

reduction in sample size for epidemiological and genetic studies into the causes of 

myocardial hypertrophy and may also have applications in experimental medicine research 

and interventional trials. 

Left ventricular hypertrophy (LVH) is an important cardiac phenotype which is associated 

with adverse cardiovascular outcomes. In order to explore the genetic and environmental 
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determinants of LVH large populations are required to reach statistical significance when 

conventional cardiac MR is used to measure total LV mass (290-292). Although manual 

assessment of global LV parameters with MR requires a smaller sample size to detect a given 

change in mass and volume than echocardiography (188), this approach does not extract the 

regional variations in ventricular wall thickness and function that are characteristic of both 

hypertrophic and hypertensive cardiomyopathies (293, 294). Cardiac atlases address this 

problem by creating computational models of phenotypic variation within a population by 

segmenting and co-registering each subject’s MR images (208). Previous studies have relied 

on conventional 2D cardiac MR but its low through-plane spatial resolution sets intrinsic 

limitations on evaluating ventricular thickness and cardiac motion especially at the base and 

apex of the LV (295, 296).    

Three dimensional single breath-hold imaging of the LV has shown promise as a method to 

reduce total acquisition times and avoid section misalignment which provides good 

agreement for volumes and mass compared to 2D techniques (178-187). These techniques 

have in general used parallel imaging or exploited temporal correlations in k-space to reduce 

acquisition time to a single breath hold. In our study we took advantage of the 3D acquisition 

to use SENSE in two spatial directions simultaneously (183) which significantly reduces 

geometry-related noise enhancement compared to 1-dimensional parallel imaging (297). This 

enabled us to acquire high spatial resolution 3D cine images with an acceptable reduction in 

contrast and image quality compared to 2D imaging. Future studies in patient groups may 

also benefit from improvement in myocardium to blood pool contrast by using intravenous 

contrast medium (298). 

As 3D imaging generates between 50 to 60 sections per cardiac phase manual analysis of the 

images is impractical and also does not fully exploit the advantages of whole organ imaging. 

Many approaches have been used for automated cardiac segmentation (299) and in our study 
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we developed a multi-atlas technique which uses prior data from a set of manually-labelled 

high spatial resolution cardiac images. By finding correspondences between anatomical 

patches in the target images and each of the 20 twenty atlases we were able to achieve an 

accurate segmentation that was tolerant of lower image contrast and was not biased by any 

single atlas. We found a good agreement between our segmented data and conventional 2D 

volumetric quantification. However, the greatest advantage in 3D imaging was shown to be 

in assessing regional variations in wall thickness where partial volume effects at the base, 

septum and apex were significantly reduced compared to 2D imaging. 

The ability to anatomically co-register each point in the heart throughout a large study 

population offers a powerful technique for extracting phenotypic data (208). It allows the 

creation of statistical models of whole-heart physiology and anatomy that can be adjusted for 

anthropometric or environmental covariates. Neuroimaging studies have modelled the 

statistical power of 3D imaging (300) and our calculations indicate a significant reduction in 

sample size is possible over most of the myocardium for detecting differences in wall 

thickness. The primary application of this technique will be to allow prospective imaging-

genetics association studies to be conducted more efficiently and reach statistical significance 

with fewer patients. Studies such as the enhanced phase of UK Biobank will collect cardiac 

MR data from large cohorts of unselected participants and these techniques will enable 

comprehensive, efficient and statistically powerful computational modelling of the biological 

effects of environment and genetic effects on cardiac structure and function  (301). Based on 

the 1093 segmented datasets so far included in the atlas pool we have computed a statistical 

shape model that encodes the normal variation in cardiac anatomy. Our healthy atlas model 

has the potential to be used in studies of disease cohorts and help determine the likelihood 

that a given phenotype is normal or pathological. The integration of high-resolution imaging 

with multiparametric “-omics” data may also have a role in “precision medicine” where 
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diagnostic, prognostic, and therapeutic strategies are specifically tailored to each patient's 

requirements (302). 

As we did not include subjects with known cardiovascular disease we have not tested if the 

imaging sequence or segmentation methods will be transferable to all patient groups. 

However, even within our healthy population the phenotypic variability was considerable. 

Furthermore, we note that despite the wide age range and heterogeneous levels of physical 

fitness all our participants successfully completed the imaging protocol. Our power 

calculations were conservative and did not model the more plausible biological effects of 

concentric or localised asymmetric changes in wall thickness. Translating these approaches to 

genetic studies will require the development of regression models which address the potential 

problem of multiple testing within large imaging datasets.  

 

12.8 Conclusions 

 

In this study we have used an automated approach to segment 3D-CMR images and created a 

high resolution atlas of the human heart.  We have demonstrated that automated segmentation 

of high spatial resolution single breath-hold 3D cine MR imaging was more accurate than 

conventional 2D imaging for mapping LV anatomy and offered a reduction in the sample size 

required for epidemiological and genetic studies of heart disease.  
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12.10 Appendix 

 

For simplicity we consider each of the P = 46808 points across the myocardium 

independently and assume that the difference in wall thickness is normally distributed. This 

allows us to compute the sample size required to detect a change in wall thickness of δ at 

point j given a significance level α, power p and variance 𝜎𝑗
2 as: 

𝑁𝑗 =  
2𝑓(𝛼, 𝑝)𝜎𝑗

2

𝛿2
 

where 𝑓(𝛼, 𝑝) = (𝑢𝛼 +  𝑢2(1−𝑝)) where 𝑢𝛾 is the value of the standard Normal distribution 

(mean 0 and variance 1) such that the probability of lying between  −𝑢𝛾 and  𝑢𝛾 is 1 – 𝛾 

(303). Here, α and p can be set accordingly; typical values are α = 0.05 and p ∈ [0.8, 0.9], and 

here we use p = 0.9. In order to conservatively account for the multiple comparisons in 

considering all P points independently, we use the Bonferroni adjusted significance level of 

α/P instead of simply α. Then 𝑓(𝛼/𝑃, 𝑝) = 38.04. 

Two myocardium images were obtained for each of N = 20 control subjects at the two time-

points; 2D segmentations denoted {𝑥𝑖𝑗
2𝐷} and {𝑦𝑖𝑗

2𝐷}, and 3D segmentations denoted  {𝑥𝑖𝑗
3𝐷}  

and {𝑦𝑖𝑗
3𝐷} for i =1,…,N and j = 1,…,P. For the 2D and 3D segmentations, the differences in 

wall thickness between time-points at each point across the myocardium are given by 

{𝑑𝑖𝑗
2𝐷} =  {𝑥𝑖𝑗

2𝐷 − 𝑦𝑖𝑗
2𝐷} and {𝑑𝑖𝑗

3𝐷} = {𝑥𝑖𝑗
3𝐷 −  𝑦𝑖𝑗

3𝐷} respectively.  We note that for both the 2D 

and 3D segmentations, the differences do not exhibit non-normal behaviour (Shapiro test p-

values are greater than the Bonferroni adjusted 5% significance level of 0.05/46808). Hence 
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the assumption of normality of the differences which is required to use the above sample size 

formula is valid. 

 

The variance of the differences at each of the P points of the 2D and 3D segmentations are 

computed and denoted (𝜎2)𝑗
2𝐷 and (𝜎2)𝑗

3𝐷. These can then be inserted in place of 𝜎𝑗
2 in the 

above sample size formula. In particular, the sample size required to detect a change in wall 

thickness of δ = 1 at point j with 𝑓(𝛼/𝑃, 𝑝) = 38.04 (α = 0.05/46808 and p = 0.9) for the 2D 

and 3D segmentations can then be obtained via 

𝑁𝑗
2𝐷 = 75.99 × (𝜎2)𝑗

2𝐷 and 𝑁𝑗
3𝐷 = 38.04 × (𝜎2)𝑗

3𝐷 

respectively. The percentage decrease in sample size in using a 3D segmentation over a 2D 

segmentation can be computed at each point as 

(
𝑁𝑗

2𝐷 −  𝑁𝑗
3𝐷

𝑁𝑗
2𝐷 ) × 100 
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13 Blood pressure as a determinant of left ventricular morphology and 

function 

 

13.1 Introduction 

 

At least a quarter of the world’s adult population has hypertension and the increasing burden 

of disease has prompted efforts to search for earlier interventions and more effective 

therapeutic targets (304). Adverse structural and functional adaptations of the heart are of 

crucial relevance to the heightened cardiovascular risk associated with systemic hypertension, 

are frequently already established by the time therapy has been initiated (305-307), and are 

independent determinants of all-cause mortality (308-310). It remains uncertain what 

determines the onset and pattern of left ventricular (LV) remodelling but the duration and 

severity of elevated blood pressure (BP) as well as genetic, metabolic and environmental 

factors are all likely to be important (311). Although LV remodelling is known to begin at 

below-hypertensive levels there is little data on how untreated healthy subjects adapt to rising 

BP, at what stage adverse LV changes are initiated, the true nature of remodelling at high-

resolution and what mechanical factors drive hypertrophy (236, 312). 

Our knowledge of the natural history of hypertensive heart disease in human populations has 

been developed from volume and mass measurements derived using conventional 2-

dimensional (2D) echocardiography and cardiac magnetic resonance (CMR) imaging. These 

2D methods have intrinsic limitations as they incompletely sample the heart, rely on 

geometric assumptions and are poorly equipped to assess regional variations. Three-

dimensional CMR (3D-CMR) combined with computational cardiac-atlas based phenotyping 

of the heart has advantages over conventional imaging as it enables quantitative whole-heart 
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assessment of cardiac physiology and non-invasive modelling of the predictors of LV 

morphology, function and wall stress. Furthermore, we have shown increased accuracy for 

mapping ventricular wall thickness when compared to conventional 2D cine MR. This 

provides greater statistical power to detect changes in LV wall thickness making this 

technique particularly suited for studies in which global phenotypes, typical of advanced 

disease, are unlikely to be prevalent. 

In this study we used an automated algorithm based on the Digital Heart Project’s cardiac 

atlas to analyse 3D-CMRs in a large cohort. Our primary purpose was to define the 

relationship between SBP and region-specific LV adaptations in a population of healthy 

adults not taking anti-hypertensive medications. 

 

13.2 Methods 

 

Study population 

1530 volunteers (54.8% females; 74.8% Caucasian; age range: 18 – 81 years; mean age 41.3 

± 13.0 years) were recruited prospectively via advertisement to the Digital Heart Project at 

Imperial College London. Detailed descriptions of the full cohort, eligibility criteria and 

biophysical assessment methods can be found in section 11.3 above.  

 

Imaging Protocol 

CMR was performed on a 1.5T Philips Achieva system (Best, Netherlands).  Full details of 

the imaging protocol can be found in section 11.3 above. In this study we used the 2D cine 
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balanced steady-state free precession (b-SSFP) images, as well as the single breath-hold 3D 

left ventricular short axis (LVSA) b-SSFP sequence. 

 

Cardiac magnetic resonance analysis 

Volumetric analysis of 2D LV cine images was performed using CMRtools (Cardiovascular 

Imaging Solutions, London, UK) as described in section 11.2. Cardiac volumes and mass 

were indexed to body surface area (BSA). 

 

Three dimensional assessment of ventricular structure and function 

Atlas-based automated segmentation of the 3D-CMR images was used to extract the 

myocardial shape and quantify phenotypic parameters as was described in section 12.4 

(Figure 13.1). Segmentation was implemented using Matlab (Mathworks, Natick, MA) and 

performed on a high performance server (Dell, Round Rock, TX). Each subject’s dataset was 

co-registered to Digital Heart Project cardiac atlas spatial template ensuring that every point 

in the statistical model had the same anatomic correspondence throughout the population.  

LV wall parameters were calculated at 19185 points in the endocardium and 27623 points in 

the epicardium. Wall thickness (WT) was measured perpendicular to a midwall plane 

equidistant to the endocardial and epicardial surfaces. Conventionally relative wall thickness 

(RWT) is calculated by adjusting for LV end-diastolic volume (LVEDV) or cavity radius. 

However, taking advantage of whole organ phenotyping, here we applied the computational 

3D spatial normalisation approach described in section 12.5 to correct each wall thickness 

measurement for heart size. Variation in the position of the endocardial and epicardial 

surfaces was assessed by the distance and direction required to translate each point on the 
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heart to the coregistered average cardiac shape. Fractional wall thickening (FWT) was 

calculated as (end-diastolic WT – end-systolic WT)/end-diastolic WT x 100. 

 

Figure 13.1 – 3D-CMR atlas-based automated method used to build 3D statistical models of 

how anthropometric, environmental or genetic factors influence left ventricular phenotype. 

This paradigm allows the adaptations of whole-heart structure and function in response to a 

stimulus to be explored. 

 

The definitions of LV geometry used in conventional assessment of chamber size were 

adapted for 3D datasets (313). A regional hypertrophic response by the myocardium was 

defined as a positive regression coefficient between WT and SBP. A concentric pattern was 
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present if there was a positive SBP correlation with RWT and a negative correlation with 

endocardial volume. Conversely, an eccentric pattern was indicated by a positive SBP 

correlation with endocardial volume and a negative correlation with RWT. 

Regional end-systolic wall stress (WS) was determined at each point in the left ventricle from 

the 3D endocardial radius of curvature (R) on the endocardial surface and myocardial WT 

and calculated as follows (287):  

𝑊𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 ∝ 𝑆𝐵𝑃 × 
𝑅

𝑊𝑇
 

 

Statistical analysis 

Data were analysed using RStudio Server version 0.98 (Boston, MA). Continuous variables 

are expressed as mean ± standard deviation (SD) and categorical variables as percentages. 

Ranges have been included for CMR derived parameters. Data from more than two groups 

were analysed using a Kruskal-Wallis one-way analysis of variance test. When significant 

differences were detected a Nemenyi post-hoc test was applied for pairwise multiple 

comparisons. The associations between variables and cardiac phenotypes were assessed in 

separate multiple linear regression models that included age, gender, race, BSA and systolic 

blood pressure. Race was dummy-coded with the largest group, Caucasian, as the reference. 

The associations between morphological and functional parameters for each point in the 3D 

datasets were assessed using a regression model adjusted for age, gender, race and BSA with 

correction to control the false discovery rate (314). Contiguous regions of the left ventricle 

where the association between variables was significant (p < 0.05) were identified and the 

relationship with SBP reported as the mean of the standardized β coefficients within that area.  
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13.3 Results 

 

Study population characteristics 

A summary of subject characteristics for the whole cohort and by gender is shown in Table 

5. In Table 10 the same data were split by levels of systolic blood pressure (SBP) according 

to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, 

and Treatment of High Blood Pressure (JNC-7) criteria (315). Of the 1530 volunteers, 7.1% 

had stage 1 or 2 systolic hypertension (SBP≥140 mmHg), 37.1% had systolic pre-

hypertension (SBP 120 – 139 mmHg) and 55.8 % had systolic normotension (SBP <120 

mmHg) as shown in Figure 13.2. Summary of the linear regression models can be found in 

Table 8 for the whole cohort and in Table 9 for males and females separately. 

   

Two dimensional imaging 

After adjusting for Age, Race and BSA, SBP was positively associated with LVEDV in 

males (β=0.07, p=0.023) and females (β=0.07, p=0.022). In both genders there is a positive 

association between SBP and LV stroke volume (LVSV; women: β=0.12, p<0.001; men: 

β=0.12, p<0.001). No association was found between SBP and LV end systolic volume 

(LVESV) in either gender or with LV ejection fraction (LVEF) in males. In females LVEF is 

positively associated to SBP (β=0.15, p<0.001). SBP is strongly positively associated in both 

genders with Concentricity index (males and females: β=0.18, p<0.001) and LV mass (males 

and females: β=0.20, p<0.001). Finally, cardiac output and SBP are positively associated in 

both males (β=0.17, p<0.001) and females (β=0.17, p<0.001). 
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Figure 13.2 – Density plot showing the distribution of blood pressure readings in the cohort. 

The thresholds applied are those recommended in the Seventh Report of the Joint National 

Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure 

(JNC-7) within our cohort (n=1530). HTN = hypertension; Pre-HTN = pre-hypertension; NT = 

normotension. 

 

There was a significantly higher number of females in the normontensive cohort than in the 

two other groups which were very similar in gender composition. Indeed, as we can see from 

Table 5, SBP was consistently higher in males than in females (Figure 13.3). Hypertensives 

were significantly older than members of the other cohorts. No difference was found between 

the groups in terms of racial background. As expected, SBP, Pulse wave velocity and 

diastolic blood pressure are closely associated and rise in tandem. While there were no 

differences between pre-hypertensives and hypertensives in terms of height, weight, body 

surface area (BSA), body mass index (BMI), fat mass and lean mass, subjects from the 

normotensive group had lower indices of all these variables than the other two groups. 
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K-W  

P-Value 
Post-hoc Nemenyi p -Value 

 
NT 

n=854 (55.8%) 
Pre-HTN 

n=567 (37.1%) 
HTN 

n=109 (7.1 %) 
 

NT vs 

PHTN 

NT vs 

HTN 

PHTN vs 

HTN 

Gender    <0.001 <0.001 <0.001 0.94 

Males (%) 275 (32.2%) 347 (61.2%) 69 (63.3%)     

Females (%) 579 (67.8%) 220 (38.8%) 40 (36.7%)     

Age (years) 38.3 ± 11.9 43.6 ± 13.1 52 ± 12.2 <0.001 <0.001 <0.001 <0.001 

Race / Ethnicity:    0.24 - - - 

Caucasian 610 (71.4%) 441 (77.8%) 93 (85.3%)     

South Asian 125 (14.6%) 59 (10.4%) 10 (9.2%)     

African 63 (7.4%) 36 (6.3%) 5 (4.6%)     

Other 56 (6.6%) 31 (5.5%) 1 (0.9%)     

Systolic BP (mmHg) 108.4 ± 7.4 127.6 ± 5.3 147.8 ± 9.1     

Diastolic BP (mmHg) 73.2 ± 6.7 83.3 ± 7.3 93.2 ± 8.7 <0.001 <0.001 <0.001 <0.001 

PWV (m/s) 
4.2 ± 1.2* 

(* n=682) 

5.1 ± 1.7 ** 

(**n=436) 

6.6 ± 2.6*** 

(*** n=78) 
<0.001 <0.001 <0.001 <0.001 

Height (cm) 168.4 ± 9.0 171.8 ± 9.2 171.7 ± 10.8 <0.001 <0.001 0.003 0.90 

Weight (kg) 67.9 ± 12.4 75.2 ± 12.6 78.0 ± 14.4 <0.001 <0.001 <0.001 0.38 

Body Surface Area (m
2
) 1.8 ± 0.2 1.9 ± 0.2 1.9 ± 0.2 <0.001 <0.001 <0.001 0.59 

BMI (kg/m
2
) 23.9 ± 3.7 25.4 ± 3.8 26.4 ± 4.1 <0.001 <0.001 <0.001 0.10 

Fat Mass (kg) 17.8 ± 7.7 18.7 ± 8.8 20.4 ± 9.2 0.03 0.37 0.03 0.17 

Lean Mass (kg) 50 ± 10.6 56.5 ± 10.9 57.6 ± 12.7 <0.001 <0.001 <0.001 0.93 
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Table 10 - Subject characteristics and CMR-derived cardiac measurements by SBP group (n=1530). Values are in mean ± SD or percentage. CMR 

parameters include ranges. Kruskal-Wallis tests were carried for each variable to determine if difference between groups (NT, PHT and HT) 

were significant. P-values are for pairwise comparisons. NT = normotension; PHTN = pre-hypertension; HTN = hypertension; BMI = body mass 

index; BP = blood pressure; BPM = beats per minute; CI = concentricity index; LVEDV(I) = (indexed) left ventricular end diastolic volume; 

LVESV(I) = (indexed) left ventricular end systolic volume; LVEF = left ventricular ejection fraction; LVM(I) = (indexed) left ventricular mass; PWV 

= pulse wave velocity

LVEDV (ml) 140 ± 30 (69 – 256) 152 ± 32 (79 – 251) 154 ± 37 (82 – 252) <0.001 <0.001 <0.001 0.99 

LVESV (ml) 49 ± 15 (19 – 127) 53 ± 17 (19 – 121) 52 ± 19 (17 – 111) <0.001 <0.001 0.47 0.53 

LVSV (ml) 91 ± 18 (46 – 189) 99 ± 19 (57 – 172) 102 ± 23 (61 – 168)  <0.001 <0.001 <0.001 0.85 

LVEF (%) 65 ± 5 (47 – 80) 66 ± 6 (47 – 81) 67 ± 6 (51 – 80) 0.001 0.18 0.001 0.04 

LVM (g) 105 ± 30 (40 – 270) 123 ± 33 (56 – 255) 134 ± 41 (68 - 245) <0.001 <0.001 <0.001 0.18 

LVEDVI (ml/m
2
) 78 ± 12 (44 – 126)   80 ± 14 (48 – 129) 80 ± 14 (48 -117) 0.04 0.03 0.858 0.715 

LVESVI (ml/m
2
) 27 ± 7 (12 – 57) 28 ± 8 (11 – 66) 27 ± 8 (11 – 49) 0.22 - - - 

LVSVI (ml/m
2
) 51 ± 7 (26 – 90) 53 ± 8 (34 – 88)  53 ± 9 (35 – 74) <0.001 <0.001 0.14 0.99 

LVMI (g/m
2
) 59 ± 13 (33 – 182) 65 ± 14 (31 – 112) 69 ± 18 (38 – 141) <0.001 <0.001 <0.001 0.16 

CI (g/ml) 0.8 ± 0.1 0.8 ± 0.2 0.9 ± 0.2 <0.001 <0.001 <0.001 0.003 

Cardiac Output (L) 5.7 ± 1.2 6.4 ± 1.5 6.6 ± 1.7 <0.001 <0.001 <0.001 0.68 

Heart rate (BPM) 63.9 ± 9.6 65.1 ± 10.8 65.8 ± 12.0 0.11 - - - 
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Figure 13.3 – Scatterplot of age against systolic blood pressure by gender with a linear 

regression fit (with 95% confidence intervals). F = Female; M = Male) 

 

 

In terms of cardiac parameters normotensives had lower LVEDV, LVESV, LVSV and LVM 

than in the groups with higher blood pressure. After indexation those with SBP <120mmHg 

still had the lowest LVEDVI, LVSVI and LVMI. There was no difference between the 

groups in terms of LVESVI. Concentricity index was progressively higher in subgroups with 

higher SBP. 

 

Three dimensional LV geometry  

The regression model explained more of the variability in WT within the septum and anterior 

walls than the lateral wall (Figure 13.4). The pattern of LV hypertrophy and remodeling 

observed with respect to each of the phenotypic variables is illustrated in Figure 13.5.  
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Figure 13.4 – Three dimensional R2 for the regression model of systolic blood pressure vs 

wall thickness in the whole cohort. Spatial variation in the R2 coefficient is shown within the 

left ventricle for the regression model of systolic blood pressure vs wall thickness adjusted 

for body surface area, gender, race and age. Left ventricular projections in each panel: Left = 

facing the septum; Right = facing the lateral wall. 

 

 

Figure 13.5 – Three dimensional model of the regional changes in left ventricular geometry 

associated with systolic blood pressure. A long-axis section of the 3D-CMR-derived fitted 

regression model taken at systolic blood pressures of 100 mmHg (red filled contour) and 

180 mmHg (black outline) shows how LV geometry varies between these two blood 

pressures. Arrows indicates the relationship between each coefficient and systolic blood 

pressure. 

 

In normotensives the 3D regression models revealed a positive relationship bewteen SBP and 

WT throughout the left ventricle (β = 0.08, significant area = 99%) with the strongest effect 
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observed in the septum and anterior wall. Controlling for ventricular volume, a positive 

relationship was also found between SBP and RWT that was strongest in the mid-ventricular 

anterior and septal walls (β = 0.06, significant area = 32%) but was not observed in basal or 

lateral walls Figure 13.6). 

 

 
 

  

 

 
 

  

 

    

Normotensive Pre-hypertensive Hypertensive 

 

Figure 13.6- Three dimensional regression models of the association between systolic blood 

pressure and left ventricular relative wall thickness in normotensives, pre-hypertensives and 

hypertensives. The regression coefficients between systolic blood pressure and left 

ventricular relative wall thickness are shown for subjects categorized by JNC-7 thresholds. 

Positive coefficients indicate concentric hypertrophy and negative coefficients eccentric 

hypertrophy. Contour lines indicate significant regions (p < 0.05) before (white border) and 

after (yellow border) correction for multiple testing respectively. Left ventricular projections 

in each panel: Left = facing the septum; Right = facing the lateral wall. 

 

In pre-hypertensives, WT was positively related to SBP throughout the septal and anterior 

walls including the apico-anterior and lateral walls β = 0.11, significant area = 15%. The 

greatest hypertrophic response in RWT was observed in the mid-ventricular anterior and 

septal walls (β = 0.08, significant area = 8%) with negative coefficients elsewhere.  

In hypertensives, there was a strong and asymmetric association between SBP and both WT 

(β = 0.41, significant area = 0.7%) and RWT (β = 21.5, significant area = 14.4%) that was 

observed in the basal septal and anterior walls, with a negative association in the lateral wall.  
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To determine the nature of the LV remodeling we examined the effects of SBP on both the 

epicardial and endocardial surfaces. Overall, there was a global increase in LV epicardial 

volume associated with SBP (β = 0.09, significant area = 92%). The majority of the LV 

endocardial surface also showed an outward expansion in response to (β = 0.06, significant 

area = 51%). Taken together, these data show a predominant eccentric hypertophic pattern in 

response to SBP. However, in a region from the basal anteroseptal wall to the mid-ventricular 

anterolateral wall the increase in WT had an inwards component (β = -0.02, significant area = 

4.6%)  at the expense of the LV cavity (Figure 13.7). Considering the changes in both RWT 

and endocardial volume, increasing SBP is chracterized by a pattern of regional concentric 

hypertrophy in the septum and anterolateral wall and eccentric hypertrophy elsewhere. 

 

 

Figure 13.7 - Three dimensional regression models of the association between systolic blood 

pressure and left ventricular geometry across the cohort. The regression coefficients 

between systolic blood pressure and left ventricular shape are shown for the epicardial (left 

panel) and endocardial (right panel) surfaces. A positive coefficient indicates an outward 

expansion of the surface and a negative coefficient an inward contraction. Contour lines 

indicate significant regions (p<0.05) before (white border) and after (yellow border) 

correction for multiple testing. When no lines are visible all points are significant. While the 

majority of the left ventricle exhibits eccentric hypertrophy, the septum and anterior wall 

undergo concentric hypertrophy. Left ventricular projections in each panel: Left = facing the 

septum; Right = facing the lateral wall. 
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We then assessed the effect of sex and found a significant interaction between gender and the 

hypertrophic response to SBP with males having larger coefficients at the mid-ventricular 

anterior and septal walls (interaction β = 0.67, significant area = 8.5%).  

 

Three dimensional LV function 

In normotensives, FWT was positively associated with SBP in the anterior and septal walls 

and lateral wall (β = 0.10, significant area = 25.2%) indicating preserved or hyperdynamic 

radial function across SBP in normotension. In pre-hypertensives the positive relationship 

between SBP and FWT was limited to the mid-ventricular lateral and inferior walls (β =0.09, 

significant area = 15.7%) with negative coefficents in the basal septum and anterior walls. In 

hypertensives FWT had stronger negative association with SBP which was localised to the 

basal and mid-ventricular septum (β =-0.23, significant area = 3.2%) revealing reduced radial 

function co-localised to the area of greatest hypertrophic response. When analysing the whole 

cohort, FWT was positively associated with SBP throughout most of the LV. However in the 

septum there is either no association on negative association between SBP and FWT. This 

occurs in the areas where the most significant hypertrophy in response to SBP was observed 

(Figure 13.8). 

 

 

Figure 13.8 - Three dimensional regression models of the association between systolic blood 

pressure and fractional wall thickening across the cohort. The regression coefficients 
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between systolic blood pressure and fractional wall thickening are shown in the epicardial 

surface. Yellow contour lines indicate significant regions (p<0.05) and after correction for 

multiple testing. While fractional wall thickening in positively associated with SBP in the 

majority of the left ventricle it is either not associated or negatively associated with SBP in 

the septum. This occurs in the regions where the most significant hypertrophy occurs. Left 

ventricular projections in each panel: Left = facing the septum; Right = facing the lateral 

wall. 

 

Three dimensional wall stress 

Across the full cohort WS was strongly positively associated with SBP (β = 0.34, significant 

area = 91%) in the majority of LV, demonstrating an uncompensated increase in WS. 

However, in the basal anteroseptum and mid-ventricular anterior wall there was no 

significant association between WS and SBP. This demonstrates that only in these regions 

was the increase in blood-pressure dependent WS compensated for by proportionate 

concentric hypertrophy (Figure 13.9). 

 

 

Figure 13.9 - Three dimensional regression models of the association between systolic blood 

pressure and regional end-systolic wall stress (WS) across the cohort. The regression 

coefficients are shown in the endocardial surface with positive coefficients indicating 

increased WS with rising SBP. Yellow contour lines indicate significant regions (p < 0.05) 

after correction for multiple testing. In areas of septal concentric hypertrophy the increase 

in WS in matched by an increase in WT, however elsewhere there is a significant increase in 
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WS in response to rising SBP. Left ventricular projections: Left = facing the septum; Right = 

facing the lateral wall. 

 

13.4 Discussion 

 

This study provides new insights into the effects of SBP on LV morphology and function 

using advanced cardiovascular phenotyping and computational modelling. This approach 

provides new opportunities for understanding the regulation of LV hypertrophy in humans 

and can be applied to large population-level datasets for mechanistic or interventional studies 

(316, 317). Our findings show that the precursors of the hypertensive heart phenotype can be 

traced to healthy normotensive adults and that an independent and continuous relationship 

exists between adverse LV remodelling and SBP in a low-risk population. 

The invasive multimodality assessment of cardiac remodelling performed by Grossman et al 

in 1975 continues to raise unanswered questions about the distinction between adaptive and 

maladaptive hypertrophy in LV pressure overload (318). This seminal study advanced the 

hypothesis that pressure overload causes elevated WS, which stimulates a concentric pattern 

of compensatory hypertrophy that is a central dogma of physiology and medical teaching 

(319). However, such responses are not purely compensatory as load-induced hypertrophy 

does not always have adaptive value (320) and an augmented contractile state can occur 

without hypertrophy (321). Both LV mass (306) and SBP (322) show a continuous and 

independent relationship to disease risk, but the mechanisms underlying these associations 

remain elusive. 

Biomechanical stress is thought to induce compensatory concentric hypertrophy and this 

premise underpins well-established experimental models of pressure overload (323). 



158 

 

However, our findings in a large cohort challenge a simplistic Laplacian relationship between 

WS and hypertrophy in humans (320). In contrast to conventional classifications of 

remodelling, we have demonstrated that there is a strong and distinct regionality to the 

homeostatic response of myocardium in the face of rising SBP in which concentric and 

eccentric adaptations occur concurrently (324-327). We observed that rising SBP is 

associated with a normalization of WS in the septum where concentric hypertrophy is 

predominant. However, in the majority of the left ventricle the increase in WS with rising 

SBP was not balanced by a proportionate increase in RWT. High WS without signs of 

decompensation has been reported in uncomplicated hypertension due to an increase 

myocardial contractility in the early stages of disease (328, 329). In keeping with this, we 

observed preserved or hyperdynamic radial function in normotensives with rising SBP, 

despite early geometric changes. However, in hypertensives this relationship was reversed 

and function was most diminished in the regions exhibiting the greatest hypertrophy. 

This study may begin to address a key unresolved question by showing BP-induced regional 

ventricular dilatation can occur in low-risk adults without clinical evidence of myocardial 

infarction and without a change in LV end-diastolic volume (330-332). The mechanisms 

underlying this anatomic asymmetry of hypertensive hypertrophy and remodelling is only 

partly-understood but may reflect the spiral trajectory of subepicardial fibre architecture, the 

influence of titin isoform expression on myocardial compliance, embryonic origins of 

myocardial regions and local variations in both mechanoreceptors and mechanical loading 

(333-335). Histological studies suggest a gradient of fibrosis within the lateral wall of 

hypertensive hearts that may, in part, be related to the features described in the current study 

(336). 

Prognostically adverse cardiovascular features, including LV hypertrophy and increased 

vascular stiffness, have been observed in pre-hypertensives with a high prevalence of obesity 
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and diabetes (337).  Our data show that a “hypertensive pattern” of remodelling is also 

observed in asymptomatic normotensive adults. This suggests that rising SBP may have a 

much earlier impact on cardiac structure and function than previously recognised and point 

towards a nuanced relationship between homeostasis and cardiovascular risk. It was notable 

that with rising SBP the increase in septal RWT is progressively more pronounced. The 

mechanism for increasing hypertrophic sensitivity in response to rising SBP remains to be 

determined. However, this observation suggests a positive feedback in the septum between 

cardiac myocyte hypertrophy and vascular, mechanical and/or neurohormonal factors that 

contribute to the acceleration in the regional RWT increase as SBP rises (338-340). 

Longitudinal studies have shown that increased WT is associated with a progression to 

hypertension and we propose that this may be linked to initiation of an adverse hypertrophic 

phenotype amongst normotensives with rising SBP (341). 

Genetic, epigenetic and environmental factors are influential in determining the pattern of 

hypertrophic response (342). Our data show that LV remodelling is variable in nature and 

region-specific thus providing a compelling rationale for using whole-heart techniques in 

genetic association studies. Despite the strong heritability of LV mass conventional 

association studies of the heart using 2D data have failed to find strong genetic associations, 

perhaps in part due to the regional effects shown here (292, 343). 

We categorized subjects according to JNC-7 thresholds as more recent guidelines have not 

addressed the definitions of hypertension or prehypertension (38). We did not assess peak 

systolic WS as segmentations were performed at end-diastole and end-systole. We did not 

assess subjects for insulin resistance or sub-clinical diabetes which is thought to influence the 

pattern of LV remodelling although findings have been inconsistent (331). We controlled for 

racial group, but did not explore ethnic differences in LV remodelling  (244). Voxelwise 
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significance thresholds were used as a conservative approach and statistical associations may 

have been underestimated.  

  

13.5 Conclusions 

 

These data define LV remodelling in a drug-naïve population and reveal that SBP is 

associated with a continuous progression towards the hypertensive cardiac phenotype. Rising 

SBP is associated with concentric hypertrophy of the septum and eccentric remodelling of the 

lateral wall, which exhibits elevated WS. These findings challenge conventional models of 

compensated cardiac hypertrophy in pressure overload. 
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14 Body composition as a determinant of left ventricular morphology and 

function 

 

14.1 Introduction 

 

More than a third of US adults are obese and obesity-related conditions are some of the 

leading causes of preventable death (344). An increased incidence of cardiovascular disease 

is driven not only by diabetes and hypertension but also by subclinical myocardial injury, left 

ventricular (LV) hypertrophy and diastolic dysfunction (345, 346). Adiposity is thought to 

influence these factors via both hemodynamic and metabolic effects (347) with the 

cumulative exposure to obesity being a major predisposing factor (348). While a distinct 

cardiomyopathy of obesity is controversial, recent studies have pointed towards a pattern of 

concentric remodelling or hypertrophy in obese subjects even in the absence of hypertension 

(349). As LV hypertrophy is independently associated with all-cause morbidity and mortality 

(350), the interaction between obesity and cardiac geometry is critical for understanding the 

influence of this modifiable risk factor on cardiovascular health (309, 351). 

While research has focussed on those with clinical obesity (body mass index ≥30) less is 

known about how changes in the body composition of healthy adults initiate early adaptations 

of LV structure and function, and how gender affects prognostically adverse cardiovascular 

remodelling. Cohort studies have conventionally relied on assessing LV mass-to-volume ratio 

to determine geometric concentricity and risk stratify cardiac phenotypes. However standard 

2D imaging is poorly equipped to understand the complex relationship between body 

composition and LV structure. We have used computational approaches to cardiac 

phenotyping to unravel distinct regional variations of hypertrophy and remodelling within the 
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left ventricle in response to systolic blood pressure. In this study we applied our automated 

algorithm based on the Digital Heart Project’s cardiac atlas, on the 3D-CMR images from our 

large cohort free from known cardiovascular disease. Our main purpose was to define how 

the heart adapts to increasing body fat in a healthy adult population and understand how 

prognostically important gender differences emerge. 

 

14.2 Methods 

 

The prospective cohort of 1530 volunteers (54.8% females; 74.8% Caucasian; age range: 18 

– 81 years; mean age 41.3 ± 13.0 years) of the Digital Heart Project at Imperial College 

London was used in this study. Details of the study population, CMR imaging protocol, as 

well as imaging analysis methods were described in section 11.2 above. 3D-CMR automated 

quantitative analysis was carried out as described in sections 12 and 13.2. 

In this study, the association between 3D phenotypic parameters and either lean mass or fat 

mass was assessed using a regression model adjusted for age, gender, race and height with 

correction to control the false discovery rate. Contiguous regional effects in the left ventricle 

were identified where the association between variables was significant (p < 0.05) and are 

reported as the mean of the standardized β coefficients within that area. Comparison between 

groups and regression models was performed using analysis of variance, corrected for 

covariates 
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14.3 Results 

Summary statistics for the main variables across the cohort as a whole, as well as split by 

gender are shown in Table 5. Summaries of the regression models using the conventional 

CMR data are shown in Table 11 for the whole cohort and separately for men and women in 

Table 12.  

 

  Standardised β   p 

LVEDV    

 Age -0.20 <0.001 

 Gender -0.007 0.95 

 Race: C v AF -0.07 <0.001 

 Race: C v SA -0.15 <0.001 

 Race: C v Other -0.03 0.06 

 Systolic BP 0.07 <0.001 

 Height 0.12 <0.001 

 Lean Mass 0.55 <0.001 

 Fat Mass 0.09 <0.001 

 Gender X Lean Mass 0.23 0.11 

 Gender X Fat Mass -0.19 <0.001 

LVSV   

 Age -0.15 <0.001 

 Gender 0.08 0.52 

 Race: C v AF -0.08 <0.001 

 Race: C v SA -0.14 <0.001 

 Race: C v Other -0.04 0.01 

 Systolic BP 0.12 <0.001 

 Height 0.14 <0.001 

 Lean Mass 0.60 <0.001 

 Fat Mass 0.13 <0.001 

 Gender X Lean Mass 0.03 0.86 

 Gender X Fat Mass -0.20 <0.001 

LVM   

 Age -0.14 <0.001 

 Gender -0.05 

 

0.69 

 Race: C v AF 0.04 0.005 

 Race: C v SA -0.11 <0.001 

 Race: C v Other -0.04 0.01 

 Systolic BP 0.15 <0.001 

 Height -0.03 0.24 

 Lean Mass 0.53 <0.001 

 Fat Mass 0.06 0.003 
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 Gender X Lean Mass 0.37 0.005 

 Gender X Fat Mass -0.08 0.02 

Concentricity Index    

 Age 0.03 0.24 

 Gender 0.27 0.12 

 Race: C v AF 0.14 <0.001 

 Race: C v SA -0.003 0.90 

 Race: C v Other -0.02 0.41 

 Systolic BP 0.16 <0.001 

 Height -0.17 <0.001 

 Lean Mass 0.23 0.001 

 Fat Mass -0.007 0.82 

 Gender X Lean Mass -0.09 0.65 

 Gender X Fat Mass 0.12 0.03 

Cardiac Output 

 Age -0.19 <0.001 

 Gender 0.21 0.20 

 Race: C v AF -0.09 <0.001 

 Race: C v SA -0.11 <0.001 

 Race: C v Other -0.04 0.06 

 Systolic BP 0.19 <0.001 

 Height 0.19 <0.001 

 Lean Mass 0.40 <0.001 

 Fat Mass 0.17 <0.001 

 Gender X Lean Mass -0.25 0.19 

 Gender X Fat Mass -0.08 0.09 

Heart Rate 

 Age -0.08 0.004 

 Gender 0.02 0.91 

 Race: C v AF -0.03 0.18 

 Race: C v SA 0.01 0.76 

 Race: C v Other -0.01 0.83 

 Systolic BP 0.13 <0.001 

 Height 0.07 0.17 

 Lean Mass -0.20 0.01 

 Fat Mass 0.08 0.02 

 Gender X Lean Mass -0.16 0.48 

 Gender X Fat Mass 0.12 0.04 

 

Table 11 – Linear regression models using body composition data. R2 for LVEDV model: 0.63, 

R2 for LVSV model: 0.58, R2 for LVM model: 0.68; R2 for concentricity model: 0.24; R2 for 

heart rate model: 0.05. BP = blood pressure; Concentricity Index = LVM / LVEDV, LVEDV = 

left ventricular end diastolic volume; LVSV = left ventricular stroke volume; LVM = left 

ventricular mass; Race C = Caucasian; Race AF = African; Race SA = South Asian. 
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  Males Females 

  Standardised β p Standardised β p 

LVEDV     

 Age -0.21 <0.001 -0.27 <0.001 

 Race: C v AF -0.11 <0.001 -0.06 0.03 

 Race: C v SA -0.20 <0.001 -0.15 <0.001 

 Race: C v Other -0.02 0.55 -0.06 0.03 

 Systolic BP 0.07 0.01 0.08 0.01 

 Height 0.07 0.08 0.14 <0.001 

 Lean Mass 0.49 <0.001 0.43 <0.001 

 Fat Mass -0.07 0.02 0.13 <0.001 

LVSV     

 Age -0.17 <0.001 -0.19 <0.001 

 Race: C v AF -0.10 <0.001 -0.10 <0.001 

 Race: C v SA -0.18 <0.001 -0.13 <0.001 

 Race: C v Other -0.02 0.42 -0.08 0.004 

 Systolic BP 0.12 <0.001 0.14 <0.001 

 Height 0.11 0.01 0.13 <0.001 

 Lean Mass 0.44 <0.001 0.46 <0.001 

 Fat Mass -0.04 0.23 0.17 <0.001 

LVM     

 Age -0.17 <0.001 -0.21 <0.001 

 Race: C v AF 0.05 0.13 0.08 0.004 

 Race: C v SA -0.20 <0.001 -0.09 0.002 

 Race: C v Other -0.05 0.08 -0.05 0.08 

 Systolic BP 0.19 <0.001 0.19 <0.001 

 Height -0.05 0.27 -0.01 0.70 

 Lean Mass 0.53 <0.001 0.51 <0.001 

 Fat Mass -0.01 0.82 0.11 <0.001 

Concentricity Index 

 Age 0.04 0.30 0.03 0.50 

 Race: C v AF 0.17 <0.001 0.15 <0.001 

 Race: C v SA -0.04 0.26 0.05 0.20 

 Race: C v Other -0.04 0.25 0.001 0.99 

 Systolic BP 0.17 <0.001 0.16 <0.001 

 Height -0.11 0.04 -0.16 <0.001 

 Lean Mass 0.11 0.03 0.19 <0.001 

 Fat Mass 0.09 0.03 -0.0004 0.99 

Cardiac Output   

 Age -0.22 <0.001 -0.19 <0.001 

 Race: C v AF -0.08 0.01 -0.11 <0.001 

 Race: C v SA -0.14 <0.001 -0.10 0.001 

 Race: C v Other -0.01 0.74 -0.07 0.02 

 Systolic BP 0.18 <0.001 0.20 <0.001 

 Height 0.17 <0.001 0.13 0.001 

 Lean Mass 0.18 <0.001 0.29 <0.001 

 Fat Mass 0.10 0.006 0.20 <0.001 

Heart Rate   
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 Age -0.11 0.005 -0.06 0.16 

 Race: C v AF -0.02 0.64 -0.05 0.17 

 Race: C v SA 0.004 0.92 0.01 0.80 

 Race: C v Other 0.009 0.81 -0.02 0.66 

 Systolic BP 0.11 0.005 0.13 0.001 

 Height 0.07 0.17 0.03 0.54 

 Lean Mass -0.20 <0.001 -0.10 0.04 

 Fat Mass 0.17 <0.001 0.08 0.04 

 

Table 12 – Linear regression models using body composition data split by gender.  R2 for LV 

mass models: men = 0.42, women = 0.43. R2 for LV EDV models: men = 0.47, women = 0.45 

R2 for concentricity models: men = 0.10, women = 0.10. R2 for stroke volume models: men = 

0.42, women = 0.45, R2 for heart rate models: men = 0.06, women = 0.02, R2 for cardiac 

output models: men = 0.24, women = 0.29. BP = blood pressure; Concentricity Index = LVM / 

LVEDV; LVEDV = left ventricular end diastolic volume; LVSV = left ventricular stroke volume; 

LVM = left ventricular mass; Race C = Caucasian; Race AF = African; Race SA = South Asian. 

 

 

Two dimensional imaging 

Fat mass was positively associated with LVM in women, but not in men (females β = 0.11, p 

<0.001; males β = -0.01, p = 0.82; p for interaction = 0.02). In women, increasing fat mass 

was associated with increased LVEDV, whereas men showed the opposite relationship – 

smaller LV cavity volume with increasing fat mass (females β = 0.13, p < 0.001; males β = -

0.07, p = 0.02; p for interaction <0.001). In contrast, men showed increased LV concentricity 

index (CI, LVM / LVEDV) with increasing adiposity, a relationship absent in women 

(females β = -0.00, p = 0.99; males β = 0.09, p = 0.03; p for interaction = 0.03).   

SV increased with fat mass in women but not in males (females β = 0.17, p < 0.001; males β 

= -0.04, p = 0.23; p for interaction <0.0001). In contrast, heart rate increased with adiposity in 

both sexes but the relationship was significantly stronger in males (females β = 0.08, p = .04; 

males β = 0.17, p = <0.0001; p for interaction =0 .04). As a result, cardiac output was 

positively associated with fat mass in males and females but with a trend towards a stronger 
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relationship in women (females β = 0.20, p < 0.001; males β = 0.10, p = 0.006; p for 

interaction = 0.09). 

In both genders, lean mass is strongly positively associated with LVEDV, LVSV, LVM, CI 

and cardiac output (for all p<0.03). Heart rate was negatively associated with lean mass 

(females β = -0.10, p = 0.04; males β = -0.20, p<0.001). 

  

Three dimensional LV geometry  

Consistent with the global LVEDV results, high resolution analysis using 3D-CMR showed 

that, in males, fat mass was associated with a decrease in LV cavity volume except for a 

small area in the basal anterolateral wall (β = -0.22, significant area = 91%). In females, 

explaining the rise in LVEDV detected by 2D analysis, the LV cavity expanded across the 

basal anterior and lateral walls in association with fat mass (β = 0.07, significant area = 22%). 

Across the rest of the heart the cavity volume decreased (Figure 14.1). Lean mass was 

strongly associated, in males and females, with a global pattern of LV cavity expansion that 

was significant throughout the endocardial surface. 

Demonstrating a similar trend to the LVM analysis using 2D, 3D WT was positively 

associated with fat mass throughout most of the left ventricle apart from the basal lateral wall, 

with similar findings in both sexes (females β = 0.25, significant area = 94%, males β = 0.31, 

significant area = 95%). Lean mass was also associated with global thickening of the LV in 

men (β = 0.23, significant area = 96%) and women (β = 0.21, significant area = 90%). 
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    Males Females 

 

  
   

  

 

 

 

 

 
 

Figure 14.1 – Three dimensional regression models of the association between fat mass and 

endocardial left ventricular geometry. The regression coefficients between fat mass (upper 

row) and lean mass (lower row) and endocardial shape are shown for subjects split by 

gender. A positive coefficient indicates an outward expansion of the surface and a negative 

coefficient an inward contraction. Contour lines indicate significant regions (p<0.05) before 

(white border) and after (yellow border) correction for multiple testing respectively. When 

no lines are visible all points are significant. Left ventricular projections in each panel: Left = 

facing the septum; Right = facing the lateral wall. 

 

 

In males, RWT results (Figure 14.2) demonstrated that fat mass was strongly associated with 

concentric remodelling throughout most of the left ventricle (β = 0.36, significant area = 

98%) apart from a small area in the mid lateral wall (β = -0.03, significant area = 1.7%). In 

females, overall there was a significant positive relationship between RWT and fat mass but 

this was weaker than in males and more asymmetric, with a large area of negative association 

Lean Mass 

Fat Mass 
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in the lateral wall (β in lateral wall  = -0.11, significant area = 7%; β in rest of the heart = 

0.27 , significant area = 85%).  

The relationship between RWT and lean mass was more complex (Figure 14.2).  There was 

increased septal RWT in both genders but the effect was larger and over a bigger area in 

females (β in septum = 0.11, significant area = 13.4%) than in males (β in septum = 0.10, 

significant area = 2%). Although there was a reduction in RWT in the basal anterolateral wall 

associated with lean mass in both genders this was more pronounced in females (females: β 

in basal anterolateral wall  = -0.14, significant area = 9%; males: β in basal anterolateral wall  

= -0.18 , significant area = 0.6% ).  

     Males   Females 

 

  
  

 

 

 

 

 
 

Figure 14.2 - Three dimensional regression models of the association between relative wall 

thickness and body composition. The regression coefficients between fat mass (upper row) 

and lean mass (lower row) and left ventricular relative wall thickness are shown for subjects 

split by gender. Positive coefficients indicate concentric hypertrophy and negative 

Lean Mass 

Fat Mass 
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coefficients eccentric hypertrophy. Contour lines indicate significant regions (p<0.05) before 

(white border) and after (yellow border) correction for multiple testing respectively. FM = 

fat mass; LM = lean mass; S2S = surface to surface (i.e. signed distance between template 

surface and observed surface). Left ventricular projections in each panel: Left = facing the 

septum; Right = facing the lateral wall. 

 

In summary, 3D-CMR uncovered an asymmetric cavity size change in response to fat mass 

increases. This explained that the higher LVEDV found by 2D-CMR in females associated 

with fat mass is due to anterolateral chamber dilatation. While the concentricity index had no 

association with fat mass in our 2D analysis of women, 3D-CMR demonstrated that this was 

due to regional opposing effects: concentric hypertrophy across most of septum while in the 

lateral there was eccentric hypertrophy. In men fat mass was associated with concentric 

remodelling throughout most of the LV.  

 

14.4 Discussion 

 

Variation in the body composition of healthy adults is associated with distinctive adaptive 

patterns of LV hypertrophy and remodelling that are revealed with 3D cardiovascular 

imaging.  Fat mass is associated with concentric remodelling throughout most of the left 

ventricle with the strongest response seen in septum. However, there are gender differences 

as females show a weaker concentric response to increasing body fat than males with a more 

asymmetrical geometry. Furthermore, women show a stronger LV dilatatory response to 

increasing fat mass which is most pronounced in the lateral wall. As concentric hypertrophy 

has been linked to cardiovascular mortality, these observations may help explain the greater 

risk of cardiovascular death observed in obese males compared to females (352, 353). Our 
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data show that fat mass is associated with increased stroke volume, and thus circulating 

volume, in women but with increased heart rate predominately in males, suggesting that 

gender-specific hemodynamic responses to increasing adiposity may underpin the observed 

differences in LV remodelling. 

We show that unadjusted wall thickness is increased throughout the LV with increasing fat 

mass, similarly for both males and females, but that relative wall thickness and LV 

mass/volume (i.e. measures of concentricity) are significantly more related to fat mass in 

males. These findings broadly concur with other large studies using CMR. In a multi-ethnic 

cohort, the MESA group found that BMI was associated with LV mass/volume in males but 

not females (349). In a smaller cohort of exclusively normotensive subjects, LV mass/volume 

was associated with BMI and fat mass in both sexes but with a stronger relationship for males 

(353).  

Automated quantitative phenotyping of 3D-CMR uncovered, previously unknown, regional 

relationships between fat mass and LV geometry. There was a strong concentric remodelling 

response throughout the majority of the LV in males but a weaker, more asymmetrical 

response in women. The strongest increases in RWT with fat mass were in the septum and 

the weakest in the lateral wall. The reasons for this asymmetry are currently unclear but it is 

interesting that we also found a regional response to blood pressure in our study described in 

section 13.  Causative mechanisms for this asymmetry may include the spiral trajectory of 

subepicardial fibre architecture, the influence of titin isoform expression on myocardial 

compliance and local variations in both mechanoreceptors and mechanical loading (333-335). 

It is possible that gender and body composition may influence these factors, thereby 

producing the asymmetry in LV remodelling we have observed in this study. 
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We also found a gender-specific relationship between fat mass and LV cavity dilatation such 

that fat mass was independently associated with increased LV cavity volume for females but 

decreased cavity volume for males.  Rider et al. found corresponding results in their study of 

a healthy cohort; BMI was associated with LVEDV for females only (353). In the MESA 

study, estimated fat mass was positively associated with LV EDV for females; in males there 

was a trend towards a negative association (349). Our 3D-CMR data confirm these findings 

and provide novel insights into the regional variation of these changes: males show an 

essentially symmetrical reduction in volume with increasing fat mass; females demonstrate 

eccentric remodelling predominately in the lateral wall of the LV.  

We found that fat mass was associated with increased SV in females but not males; the 

association with HR, in contrast, was more pronounced in males. This suggests gender 

differences in the hemodynamic response to increasing fat mass, which may underpin the 

differences we observed in LV remodelling.  

Adipose tissue is known to increase circulating volume and the resulting increase in SV over 

time is a plausible stimulus for eccentric remodelling (354). In the Strong Heart Study cohort, 

fat mass was associated with increased SV in both sexes, but the strength of the association 

was stronger in females (355). The same is true for the association of BMI with stroke 

volume in the MESA cohort (349). To date, no studies have looked for gender differences in 

the augmentation of circulating volume with increasing adiposity - we hypothesise that this 

response would be proportionally greater in females. A possible mechanism for this differing 

hemodynamic response may relate to gender differences in the renin-angiotensin-aldosterone 

(RAAS) system, which is involved in fluid volume homeostasis. Sex differences in RAAS 

activity are well documented (356, 357) but recent work suggests these gender effects can be 

modulated by adiposity. For example, intra-renal RAAS activity is higher in obese human 
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females than males (358) and C57BL/6 mice show tissue-specific modulation of components 

of the RAAS by gender and adiposity (359).  

Increasing adiposity has been linked to changes in the autonomic nervous system (360); in 

particular sympathetic activity has been shown to be related to BMI in males but not in 

females (361). The stronger relationship we observed between fat mass and HR in males may 

therefore reflect an enhanced sympathetic response in males to increasing adiposity. Of note, 

increased visceral body fat, a pattern of adiposity observed predominately in males (361), has 

been linked to increased heart rate (362) and muscle sympathetic nerve activity (363, 364). 

As well as via effects on blood pressure, sympathetic nerve activity has been linked to 

concentric remodelling through increasing insulin resistance (365), which itself has stronger 

links to BMI in males than in females (366, 367). Therefore, it is possible that in females 

adiposity predominately produces increases in circulating volume, whereas in males there is a 

predominate increase in sympathetic tone, resulting ultimately in gender-differences in LV 

remodelling.  

Males tend to store body fat in a central, visceral pattern, females in a more peripheral 

distribution (368). These gender differences may partly explain the observed differences in 

LV remodelling with adiposity. An analysis of the Dallas Heart Study found that visceral fat 

was associated with higher concentricity and lower LV EDV, whereas lower body fat was 

associated with the opposite pattern (369). Furthermore, lower body fat was associated with 

higher cardiac output (369) and other studies show that HR and other markers of sympathetic 

activation are associated with a central pattern of adiposity (362-364). Of note, central 

obesity has recently been found to be an independent risk factor for sudden cardiac death 

(370) – it may be postulated that this is mediated through increased likelihood of concentric 

LV remodelling.  
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We note that although measured body composition using bioimpedence is a well validated 

method of assessing body fat (371), dual energy X-ray absorptiometry and whole body MRI 

may be more accurate in defining the distribution of fat, the pattern of which may have 

hemodynamic consequences (369). This study on body composition would have been 

strengthened by adjustment for the metabolic profile and physical activity levels of the 

participants, as well as by longitudinal data. 

 

14.5 Conclusions 

Fat mass is associated with concentric remodelling of the left ventricle, with the strongest 

response seen in septal regions and the least strong response seen in the lateral wall. 

However, there are gender differences, with a predominately concentric remodelling pattern 

in males but a mixed eccentric and concentric remodelling pattern in females. These gender 

effects may relate to differences in the hemodynamic response to obesity.  As concentric 

hypertrophy has been linked to cardiovascular mortality, these observations may help explain 

the greater risk of cardiovascular death observed in obese males compared to females (352).  
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15 Truncating variants in titin as a determinant of cardiac morphology 

and function in a healthy population 

 

15.1 Introduction 

 

A major objective of human genetic research is the identification of genetic variation 

underlying phenotypes, in health and in disease. Current imaging techniques, particularly 

since the introduction of cardiac magnetic resonance (CMR), have aided in the identification 

of several genes associated with extreme cardiac morphology and function. This is evident in 

hypertrophic cardiomyopathy (HCM), where mutations in genes encoding sarcomeric 

proteins were found in 40-70% of HCM patients (71, 73-75), and also in dilated 

cardiomyopathy (DCM) where more than 60 genes have been associated with the condition 

(76). Furthermore, enhanced phenotyping with CMR has improved our prognostic ability in 

disease cohorts (372-374), leading to the inclusion of CMR-derived metrics in recent 

guidelines for the management of cardiomyopathies (e.g. ejection fraction cut-offs for the 

insertion of implantable cardioverter defibrillators). However, both echocardiography and 

2D-CMR rely on global mass and volumetric assessment to summarise the complexity of 

cardiac anatomy and physiology. This is a particularly relevant limitation in the study of 

cardiomyopathies, which are known to cause variable and asymmetric patterns of regional 

LV remodelling (267, 268). Furthermore, in genetically susceptible individuals, cardiac 

phenotypes associated with end-stage cardiomyopathies are often either not present or latent 

using standard imaging. This presents an increasingly common clinical dilemma, as more 

subjects are being identified through family genetic screening (genotype-positive), which 

have global phenotypes within the normal ranges (phenotype-negative) (269, 270). The 
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apparent lack of a phenotype in an affected individual may be due to incomplete penetrance 

of a given mutation, sub-clinical disease or late-onset disease manifestations but equally may 

reflect incomplete phenotypic assessment. Overall, our understanding of genotype-phenotype 

associations in the wider population, and our ability to predict disease progression from a 

given genotype has been limited by a lack of a comprehensive, accurate, specific and high-

resolution approach to cardiac phenotyping (230, 375). Having demonstrated the increased 

power of quantitative phenotyping using three-dimensional CMR (3D-CMR) to uncover the 

regionality of effects of anthropometric factors on cardiac phenotypes, this approach might 

also be superior to standard imaging in population-based genetic studies. 

Titin (TTN), the largest protein in the human body, is abundant in the cardiac sarcomere and 

plays a key role in biomechanical sensing and signalling, as well as in sarcomeric structure 

and function. Heterozygous truncating variants in TTN (TTNtv) account for approximately 

25% of familial and severe DCM (91), while all other DCM genes combined are likely to 

account for ~20% of cases (92). TTNtv are thought to affect ~2% of the general population 

but whether the apparent absence of phenotypic differences between TTNtv negative and 

positive subjects (Table 1) is due to low penetrance and / or limited expressivity or caused by 

underpowered phenotypic approaches has not been fully ascertained. This has hindered our 

ability to completely understand the mechanisms underlying DCM due to TTNtv (376) and 

has led to discussion on whether or not TTNtv are disease causing or disease modifying.  In 

our previous work, we integrated DNA, RNA and protein analysis, in large DCM and 

population cohorts and showed that there is diverse TTN isoform expression in the heart 

(101). The two major TTN isoforms, N2BA and N2B, span the entire sarcomere and are 

robustly expressed along with the less abundant, shorter isoforms such as Novex-3. 

Furthermore, we suggested that the location of TTNtv in the gene is likely to help us predict 

the pathogenicity of the mutation. Nonsense, frameshift, and canonical splice site TTNtv 



177 

 

affecting highly expressed exons were strongly associated with DCM. In contrast, truncations 

that occur in exons with low proportion spliced-in (PSI), including novex isoforms, were less 

likely to be pathological. Finally, TTNtv were located more distally in DCM that in controls 

with A-band and distal I-band enrichment. 

The recent advent of next-generation sequencing (NGS) approaches has enabled high-

throughput sequencing at a reduced cost. Targeted sequencing and whole exome sequencing 

are both efficient approaches for the study of monogenic disorders (377). NGS has been 

shown to have a very high sensitivity, consistently reported to be at least 99.5% at read depth 

of 20 or over (378). This approach can be supplemented by Sanger sequencing, to provide 

robust validation to the genotyping of TTN.  

In this preliminary analysis of a subset of the Digital Heart Project cohort, we used NGS 

approaches to sequence TTN, with the purpose of determining the prevalence of truncating 

variants in a self-proclaimed healthy population. We added these findings to our previous 

data on TTN in large DCM and longitudinal cohorts (101) to identify any differences in the 

distribution of TTNtv between the general population and those with DCM. Finally, we used 

2D and 3D-CMR to uncover genotype-phenotype correlations in our population, testing the 

hypothesis that high-resolution mapping of cardiac phenotypes using 3D-CMR provides 

greater insights into the biological mechanisms that underpin the earliest stages of DCM. 
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15.2 Methods 

 

Study Population 

The first 928 prospectively recruited volunteers to the Digital Heart Project at Imperial 

College London were included in this study (54.3% females; 76.7% Caucasian; age range: 20 

– 81 years; mean age 42.3 ± 13.2 years). One volunteer was excluded from the genotype-

phenotype analyses presented here as for technical reasons his CMR images were lost during 

upload to the database and the volunteer was lost to follow up. Detailed descriptions of the 

eligibility criteria and biophysical assessment methods can be found in section 10.3 above.  

In the results section, in addition to data from the Digital Heart Project, genetic sequencing 

results on disease and longitudinal cohorts are shown for comparison. This data has been 

previously published in our study (101), which includes detailed information on cohort 

specific phenotyping and genotyping. In brief these cohorts are: 374 unselected DCM 

patients from the Royal Brompton Hospital (RBH); 155 end-stage non-ischemic DCM 

patients who were listed for cardiac transplantation and/or LV device implantation between 

1993 and 2011 at RBH; 163 DCM patients who were referred to the genetics research 

program at St Vincent’s Hospital and Victor Chang Cardiovascular Institute; 1623 

participants of the Framingham Heart Study; 1980 participants of the Jackson Heart Study 

and 667 participants of the Women’s Health Initiative. 

 

Imaging Protocol 

CMR was performed on a 1.5T Philips Achieva system (Best, Netherlands).  Full details of 

the imaging protocol can be found in section 11.3. In this study we used the 2D cine balanced 
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steady-state free precession (b-SSFP) images, as well as the single breath-hold 3D left 

ventricular short axis (LVSA) b-SSFP sequence. 
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Statistical analysis 

Data was analysed using RStudio Server version 0.98 (Boston, MA) (257). Normally 

distributed data were reported as mean ± standard deviation (SD) and categorical variables as 

percentages. Ranges were added to CMR derived parameters. The associations between 

anthropometric data and cardiac phenotypes were assessed in separate multiple regression 

models, with adjustment for age, gender, race, BSA and systolic blood pressure. In addition 

to the base models, whether a subject had TTNtv was added. These final models were then 

compared to the base models to assess the significance of the TTNtv term by bootstrapping 

the coefficients (repetitions = 100000). When comparing two groups, Mann Whitney U tests 

were used. P values < 0.05 were considered significant.  

The associations between morphological and functional parameters for each point in the 3D 

datasets were assessed using a regression model adjusted for age, gender, race, systolic blood 

pressure and BSA with correction to control the false discovery rate (314). Contiguous 

regions of the left ventricle where the association between variables was significant (p<0.05) 

were identified and the relationship with SBP reported as the mean of the standardized β 

coefficients within that area. 

 

Two dimensional cardiac magnetic resonance analysis 

Analysis of the 2D cine sequences was performed using commercially available semi-

automated software (CMRtools, Cardiovascular Imaging Solutions, London, UK) and using a 

standard methodology (200) as described in section 11.2. Cardiac volumes and mass were 

indexed to body surface area (BSA). 
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Three dimensional assessment of ventricular structure and function 

Automated segmentation of the 3D-CMR images was carried out using the methods 

described 12.4 and 13.2 using Matlab (Mathworks, Natick, MA) and performed on a high 

performance server (Dell, Round Rock, TX). 

  

Genetic sequencing of titin 

In total, 409 subjects underwent targeted sequencing of 201 genes associated with inherited 

cardiac conditions, including TTN, using custom hybridization capture probes. RNA baits 

were designed using Agilent’s eArray platform. Baits targeted all exons of all Ensembl 

version 54 TTN transcripts, including untranslated regions, with a 100 base pair (bp) 

extension into adjacent introns, and 1.25 kb of upstream sequence (379). DNA library 

preparation and target capture were performed according to the manufacturers’ protocols 

before paired-end sequencing on the SOLiD 5500xl (Life Technologies). Reads were 

demultiplexed and aligned to the human reference genome (hg19) in colour space using 

LifeScope v2.5.1 “targeted.reseq.pe” pipeline. SOLiD Accuracy Enhancement Tool (SAET) 

was used to improve colour call accuracy before mapping. All other LifeScope parameters 

were used as default. Duplicate reads and those mapping with a quality score <8 were 

removed. Variant calling was performed with diBayes (SNPs) and small indels modules, as 

well as GATK v1.5-2.7 (380) and SAMtools v0.1.18 (381). Variants called by any of these 

methods were taken forward for Sanger validation. Alignment and coverage metrics were 

calculated using Picard v1.40 (http://picard.sourceforge.net), BEDTools v2.12 (382), and in-

house Perl scripts. GATK CallableLoci Walker was used to identify target genomic regions 

covered sufficiently for variant calling (minimum depth >4 with base quality >20 and 

mapping quality >10). 
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An additional 519 participants underwent WES that was carried out using the Nextera Rapid 

Capture 37MB Whole Exome kit and sequenced on a HiSeq 2500 (Illumina). Illumina paired-

end reads were demultiplexed with HiSeq Control software and reads quality checked using 

FastQC v.0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low quality 

(<20) reads/bases were trimmed using PrinSeq v0.20.4 (383) and the good quality reads were 

aligned into hg19 reference using BWA v0.7.9 (384). Marking duplicate reads, local 

realignment around known indels and base quality score recalibration process were 

performed in Picard v1.115 (http://picard.sourceforge.net) and GATK v3.1-1 (380). 

Alignment summary metrics, callability and coverage report were calculated using Picard, 

Samtools v0.1.18, Bedtools v2.11.2 and RBH genetics and genomics laboratory in house Perl 

scripts. A subset file was created (ontarget), based on reads mapping quality > 8 and use this 

“ontarget” file to make consistent variant calls in GATK HaplotypeCaller. Bases covered by 

at least 4 reads with a mapping quality ≥10 and base quality ≥20 were denoted as “callable” 

(i.e. adequately covered for variant calling within recommended GATK parameters). Variants 

were functionally annotated using the Ensembl VEP v75_37 and HGMD Professional version 

2014.1 (385) to predict the effect of variant in protein function. Putative TTNtv that passed 

quality control analysis were taken forward for Sanger validation. To facilitate standardised 

variant annotation in accordance with international guidelines we report our results using the 

Locus Reference Genomic (LRG) sequence for TTN developed in collaboration with the 

European Bioinformatics Institute (386). 
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15.3  Results 

 

Of the 928 subjects, 29 truncating variants in the gene titin were detected by NGS. Of these 

18 were validated through Sanger sequencing and are presented in Table 13. Figure 15.1 

provides a schematic of TTN with the sarcomeric regions demarcated, as well as the 

distribution of TTNtv in our cohort and in DCM and longitudinal populations. In Table 14, a 

summary of subject characteristics is shown with the cohort split by the presence (TTNtv) or 

absence (TTNtv negative). No difference was found between the cohorts in terms of 

anthropometric variables. 

 

 

Figure 15.1 – Schematic of the TTN meta-transcript with sarcomeric regions demarcated. 

Exon usage for the two principal adult cardiac isoforms, N2BA and N2B, is shown, although 

exon usage in vivo is variable. Exon usage in the human left ventricle is depicted as the 

proportion spliced-in (PSI) (range, 0 to 1; grey bars): the proportion of transcripts that 

include a given exon. TTNtv are located more distally in subjects with DCM compared with 

the Digital Heart Project volunteers (represented as healthy volunteers in the top row).  

There is A-band enrichment in end-stage (n = 155) and unselected DCM patients (n = 374), 

and corresponding depletion in the population (n = 3603) and healthy volunteers (n = 927) 

cohorts.  
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Sample 

identification 

Hg19 genomic 

start position 

LRG genomic 

start position 

Transcript effect Protein effect Exon 

number 

Median 

exon 

PSI 

Present 

in 

N2BA 

Present 

in 

N2B 

Present 

in 

Novex-3 

Variant type 

14AG01422 179647533 52997 c.3100G>A p.Val1034Met 18 1.00 Y Y Y Splice variant prediction 

14SS01830 179621351 79179 c.10852C>T p.Gln3618X 46 0.07    Nonsense 

14AO01372 179620947 79583 c.11254+2T>C  46 

 

0.07    Splice donor variant 

 
14RH01353 179620947 79583 c.11254+2T>C  46 

 

0.07    Splice donor variant 

 
14ZN01340 179595884 104646 c.17508dupA p.Gly5837ArgfsX9 61 0.41 Y   Frameshift 

 
14JD01896 * 179588844 111686 c.21142C>T p.Arg7048X 74 0.36 Y   Nonsense 

14EC01433 179560998 139532 c.30803-2A>G  115 0.84 Y   Splice acceptor variant 

 
14KN01429 179553775 146755 c.32095+5G>A  126 0.22 Y   Splice variant prediction 

14AH01539 179549632 150898 c.32554+1G>C  131 0.17 Y   Splice donor variant 

 
14RM02225 179529171 

 

171359 

 

c.36267_36280+16del

TGTACCTGTCAAA

GGTACATTCTTAA

CTGT 

 169 

 

0.02    Splice donor variant / 

Frameshift 

 

14AJ02284 179523083 177447 

 

c.37628-1G>A  186 

 

0.11    Splice acceptor variant 

 
14CB02200 179506963 193567 

 

c.40558+1G>A  220 1.00 Y Y  Splice donor variant 

14HB02599 179495671 204859 

 

c.44015-1G>T  239 1.00 Y Y  Splice acceptor variant 

 
14MO01427 179486054 214476 c.45391delA p.Ile15131TyrfsX46 247 1.00 Y Y  Frameshift 

14RS02105 

 

179479631 220899 

 

c.48703C>T p.Gln16235X 261 1.00 Y Y  Nonsense 

14JM01448 179444855 255675 c.67159delA p.Ile22387X 319 1.00 Y Y  Nonsense 

14SM01546 179444666 

 

255864 

 

c.67348C>T p.Gln22450X 319 1.00 Y Y  Nonsense 

14JC01930 179404286 296244 

 

c.98506C>T p.Arg32836X 353 1.00 Y Y  Nonsense 

 
 

Table 13 - Titin truncating variants identified in 18 out of 928 volunteers. LRG = Locus Reference Genomic sequence for TTN; HG19 = human 

reference genome against which reads were aligned; N2BA, N2B and Novex-3 = titin isoforms; PSI = proportion spliced in. * patient excluded 

from genotype-phenotype analysis due to loss of imaging dataset. 
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 TTNtv Negative 

 (n =910) 

TTNtv 

(n =17) 

Mann-Whitney U test 

p-value 

Age (years) 42.3 ± 13.2 (20 – 81) 43.0 ± 13.7 (24 – 72) 0.86 

Gender   0.38 

Males (%) 418 (45.9%) 6 (35.3%)  

Females (%) 492 (54.1%) 11 (64.7%)  

Race / Ethnicity:   0.99 

Caucasian 698 (76.7%) 13 (76.5%)  

South Asian 109 (12.0%) 1 (5.9%)  

African 55 (6.0%) 2 (11.8%)  

Other 48 (5.3%) 1 (5.9%)  

Systolic BP (mmHg) 120 ± 14 125 ± 17.9 0.17 

Diastolic BP (mmHg)  79 ± 10 83.5 ± 11.1 0.05 

PWV (m/s)  4.79 ± 1.73 * 5.31 ± 2.05** 0.43 

Height (cm) 170.0 ± 9.5 165.9 ± 6.3 0.07 

Weight (kg) 71.7 ± 13.3 69.1 ± 16.2 0.28 

Body surface area (m
2
 ) 1.8 ± 0.2 1.8 ± 0.2 0.21 

BMI (kg/m
2
) 24.8 ± 3.8 25.0 ± 5.3 0.74 

Fat Mass (kg) 18.5 ± 8.3 21.2 ± 10.9 0.45 

Lean Mass (kg) 53.0 ± 11.4 48.0 ± 9.7 0.11 

LVEDV (ml) 146 ± 32 (70 – 252) 145 ± 22 (103 – 188) 0.84 

LVESV (ml) 51 ± 17 (17 – 121) 53 ± 12 (37 – 85) 0.41 

LVSV (ml) 95 ± 19 (49 – 168) 92 ± 14 (66 – 117) 0.58 

LVEF (%) 65 ± 5 (47 – 81) 64 ± 5 (55 – 72) 0.12 

LVM (g) 115 ± 33 (56 – 255) 113 ±  26 (71 – 157) 0.98 

LVEDVI(ml/m
2
) 80 ± 13 (45 – 129) 82 ± 8 (61 – 93) 0.24 

LVESVI (ml/m
2
) 28 ± 8 (11 – 66) 30 ± 6 (21 – 42) 0.14 

LVSVI (ml/m
2
) 52 ± 8 (32 – 81) 52 ± 6 (39 – 62) 0.70 

LVMI(g/m
2
) 62 ± 14 (32 – 141) 64 ± 13 (42 – 84) 0.56 

CI (g/ml) 0.8 ± 0.2 0.8 ± 0.1 0.93 

Cardiac Output (L) 6.1 ± 1.4 6.2 ± 1.4 0.46 

Heart Rate (BPM) 64.8 ± 10.6 67.8 ± 10.6 0.1 

 

Table 14 – Subject characteristics and CMR-derived cardiac measurements split by the 

presence (TTNtv) or absence (TTNtv negative) of titin truncating variants. P-values are for 

pairwise comparisons. BMI = body mass index; BP = blood pressure; BPM = beats per 
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minute; CI = concentricity index; LVEDVI = indexed left ventricular end diastolic volume; 

LVESVI = indexed left ventricular end systolic volume; LVEF = left ventricular ejection 

fraction; LVMI = indexed left ventricular mass; PWV = pulse wave velocity. * n=688; ** n=8. 

 

 

 

Two dimensional imaging 

In absolute terms and after indexing to BSA, there was no statistically significant difference 

between the TTNtv positive and negative sub-groups (Table 14, Figure 15.2). However, 

when adjusting the effect of TTNtv for other clinical variables we found that the regression 

model for LVEF with the added TTNtv variable was significantly improved from the one that 

did not include genotype information.  LVEF was negatively associated with the presence of 

TTNtv (β = -0.06, p = 0.02, Table 15). 

  

  
 

Figure 15.2 – Box plot of cardiac parameters by gender in TTNtv positive and negative sub-

cohorts. Differences between groups do not reach significance. 0 = titin truncating variants 
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negative; 1 = titin truncating variants positive; F = Females; M = Males; LVEDVI = indexed left 

ventricular end-diastolic volume; LVESVI = indexed left ventricular end-systolic volume; 

LVMI = indexed left ventricular mass. 

 

 
Phenotype Model terms Adjusted R

2
 P value of 

comparison 

Bootstrapped 

Coefficient of the 

added covariate 

LVEDV Age, Sex, SBP, Race, BSA 0.52   

 + TTNtv 0.52 0.37 0.02 

LVSEV Age, Sex, SBP, Race, BSA 0.38   

+ TTNtv 0.38 0.07 0.04 

LVEF Age, Sex, SBP, Race, BSA 0.14   

 + TTNtv 0.15 0.02 -0.06 

LVM Age, Sex, SBP, Race, BSA 0.59   

 + TTNtv 0.59 0.39 0.01 

 

Table 15 – Linear modelling of the relationship between the TTN genotype and cardiac 

phenotypes. Linear regression models were built to adjust for the contribution of 

anthropometric variables to morphologic and functional parameters. In addition to the base 

models, whether a subject had a TTNtv was added. These final models were then compared 

to the base models to assess the significance of the TTNtv term by bootstrapping the 

coefficients (100000 repetitions). 

 

 

 

Three dimensional imaging 

Three dimensional regression models adjust for age, gender, race and systolic blood pressure 

demonstrated that TTNtv were associated with a small area of mid anterior wall thickening (β 

= 0.11, sigfinicant area = 1.8%, Figure 15.3). When adjusting for ventricular size, 3D relative 

wall thickness showed a small area of negative association with TTNtv in the anterior basal 

wall (β = 0.03, significant area = 4%). 
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Figure 15.3 – Three dimensional regression models of the association between TTNtv and 

left ventricular wall thickness. The regression coefficients between wall thickness and the 

presence of TTNtv are shown. Positive coefficient indicate thickening and negative 

coefficients indicate thinning. Contour lines indicate significant regions (p < 0.05) before 

(white border) and after (yellow border) correction for multiple testing respectively. Left 

ventricular projections: Left = facing the septum; Middle = facing the lateral wall, Right = 

facing the anterior wall with the right ventricle represented by a mesh. 

 

  

Figure 15.4 – Three dimensional regression models of the association between TTNtv and 

relative ventricular wall thickness. The regression coefficients between relative wall 

thickness and the presence of TTNtv are shown. Contour lines indicate significant regions (p 

<0.05). Left ventricular projections: Left = facing the septum; Middle = facing the lateral 

wall, Right = facing the anterior wall with the right ventricle represented by a mesh.  

 

 

When analysing the association between the endocardial and epicardial shape and TTNtv our 

data shows that in end-diastole, the epicardium expanded in the septum and in the basal 

lateral wall (β = 0.06, significant area = 13%) in the presence of truncating variants (Figure 

15.5). TTNtv was associated with an expansion of the end-diastolic endocardial surface in the 
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basal lateral wall (β =0.05, significant area = 7%). In end-systole the effect was similar with a 

basal antero-lateral cavity expansion (β =0.06, significant area = 11%). 

In summary, 3D-CMR analysis showed that the presence of TTNtv was associated with an 

expansion of the LV cavity in the basal lateral wall in both systole and diastole, and that this 

was associated with a reduction in RWT in the basal anterior wall. Although the areas 

reaching significance were small they were surrounded by large contiguous patches that 

demonstrated similar effect trend.  

 

  

  
 

Figure 15.5 – Three dimensional regression models of the association between TTNtv and 

epicardial and endocardial left ventricular geometry. The regression coefficients between 

epicardial (upper row) and endocardial (lower row) shape and TTNtv are shown for subjects 

split by gender. A positive coefficient indicates an outward expansion of the surface and a 

negative coefficient an inward contraction. Contour lines indicate significant regions 

(p<0.05). Left ventricular projections: Left = facing the septum; Middle = facing the lateral 

wall, Right = facing the anterior wall with the right ventricle represented by a mesh. 
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15.4 Discussion 

The prevalence of TTNtv in our cohort was 1.9%, in line with our previous work on 

population cohorts (101). Compared to our published data, in this study we found a larger 

number of asymptomatic volunteers with TTNtv in the distal I-band that were located mainly 

in exons with low PSI. This suggests that enrichment in the A-band alone might be the main 

driver behind the DCM phenotype. A potential limitation of using PSI data was that this exon 

usage information was derived from DCM hearts (n=84), and it is plausible to expect 

different expression profiles between end-stage heart failure patients and those from 

asymptomatic subjects. Nonetheless, this added information on the frequency of TTNtv in the 

population will assist in the interpretation of clinical genotypes and in DCM disease 

stratification. 

When analysing the unadjusted 2D-CMR derived parameters, similarly to the Framingham 

Heart Study (Table 1) data, we found no difference in cardiac parameters between the TTNtv 

negative and positive cohorts. When adjusting the analysis for other clinical covariates we 

found that LVEF was negatively associated with the presence of TTNtv. The difference in the 

mean EF between the two subgroups was 1.9%, being lower in TTNtv. 3D-CMR analysis 

suggests a reduction in basal anterior RWT and expansion of the blood cavity in end diastole 

and end-systole. Although only very small areas in the model reached significance we can 

observe that they are surrounded by large, contiguous areas of the LV that followed similar 

trends. This might indicate that TTNtv are associated with LV cavity dilatation in the septum, 

basal anterior and lateral wall. RWT appeared to increase in the septum but reduced across 

the rest of the heart. Again noting that statistical significance was not reached, LVESV 

demonstrated a tendency to be larger in TTNtv positive subjects (β = 0.04, p = 0.07), when 

accounting for other variables. We know from case-control studies that DCM subjects have 

lower LVEF and wall thickness and higher LVEDVI, LVESVI and LVMI. Furthermore 
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previous studies have found that regional variation in LV function was present in DCM in 

addition to global reduction in EF and a disproportionate increase in LV cavity in relation to 

wall thickening (decrease in RWT) (387, 388). 

Our statistical approach for the analysis of 3D-CMR was chosen to be robust and 

conservative during the validation studies of this novel method. At each point in the LV 

model an effect was considered independently from the all the points that surround it. For 

each of the 46808 LV points a linear regression model was carried out and the association 

between a given variable and the cardiac parameter was tested for significance. We then 

addressed the multiple comparison problem (probability of a type I error increasing with the 

number of tests), by considering significant only those points whose p-values were under a 

corrected level of significance. Initially we used the ultra-conservative Bonferroni method (α 

= 0.05 / 46808 = 1.06 x 10
-6

) which greatly increased the proportion of false negatives. The 

Benjamini-Hochberg false discovery rate (FDR) procedure allowed an increase power while 

maintaining stringent control on multiple testing. Instead of focusing on excluding all points 

that might be falsely declared significant (like Bonferroni), this method controlled the rate at 

which declarations of significance were false. This means that when we predefined our 

tolerance to false discovery to 5%, this method ensured that fewer than 5% of those points 

deemed significant were incorrectly defined. This takes into consideration the fact that p-

values are not equally distributed (by ranking them in order from high to low). FDR then 

adjusts each p-value taking into consideration their rank: the highest p-value is corrected for 

the FDR α, while each of the following is corrected for ever decreasing criterion; the lowest 

p-value is corrected for a Bonferroni α. The FDR approach is well suited to datasets where 

effects are large and easily detectable. By considering all tests independently, FDR ‘protects’ 

against positively correlated data. This is a significant limitation of this approach in our 

dataset, as parameters across the LV are likely to be highly correlated. Given 3D-CMR’s high 
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sensitivity to detect changes in LV phenotypes, the larger effect sizes associated to variables 

such as systolic blood pressure or body composition remained significant even after 

voxelwise correction. However, in this study of a small subcohort (n=17), in which subtler 

effects of genetic variants on phenotype were being investigated, the voxelwise significance 

testing was perhaps too conservative and associations may well have been underestimated. In 

support of this, we note that large numbers of points in contiguous, biologically plausible 

areas, demonstrated similar direction of effect. It is unlikely that randomly distributed ‘noise’ 

would follow homogenous patterns over extended areas. Furthermore, although highly 

correlated, when the different 2D and 3D-CMR acquisitions were analysed using different 

techniques and they showed similar ‘trends’ in the association between TTNtv and cardiac 

phenotypes. 

Neuroimaging research has encountered similar problems in the analysis of high resolution 

brain phenotypes, in particular in the field of functional MRI (fMRI) and addressed these 

challenges through different approaches. 25-30% of fMRI studies reported using arbitrary 

thresholds such an uncorrected p<0.001 in 10 or more contiguous voxels (389). Such 

approaches have been shown to be more sensitive to detect true signal than approaches, such 

as ours, that use voxelwise thresholds (390). However, these methods are limited by the need 

to arbitrarily set a threshold that defines cluster-formation (size of effect and or/area of the 

cluster). The guidelines for threshold-setting are vague, subjective and very dependent on 

each data-set: “broader signals are best detected by low thresholds and sharp focal signals are 

best detected by high thresholds” (391). Furthermore, this approach might be flawed as in a 

study comparing multiple testing correction methods (Gaussian Random Field Theory, 

Bonferroni, FDR, Šidák and permutation) it was found that in only 8 out of 11 published 

fMRI and positron emission tomography (PET) studies, were the differences between voxels 

truly significant (392). In other words, in 3 of these 11 studies false positive voxels were 
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declared true. Another frequently used method that avoids the need to correct for multiple 

testing is to perform region of interest (ROI) analysis therefore excluding the need for 

multiple correction (only one test is carried out) (393-395). This approach is biased to look 

for differences in specific anatomical segments and might not be adequate in discovery 

studies, such as ours, in which no physiological or anatomical correlation with a given 

variable is assumed. Yet another method that has been validated in neuroimaging studies and 

that makes use of spatial neighbouring information to boost belief in extended areas of signal 

is Threshold-Free Cluster Enhancement (TFCE) (396, 397). This method is designed to keep 

the sensitivity of cluster-based thresholding while avoiding the bias described above. Briefly, 

TFCE automatically enhances voxels that are ‘supported’ by neighbouring voxels which 

demonstrate similar effect changes and uses permutation testing to control for multiple 

comparison errors. In studies of fMRI this approach was found to be more sensitive than 

voxelwise methods in identifying broad, small effects, as well as focal large effects. TFCE 

might allow us to increase the sensitivity of our method to detect small changes in cardiac 

phenotypes and therefore confidently interpret some of the ‘trends’ that we can currently 

observe. 

Targeted and whole exome sequences enable the detection of rare and novel variants in 

candidate genes such as TTN. Exome sequencing is not without limitations. By its very 

design, it targets only the coding region of the genome and bypasses many other genetic 

variants that may be important for controlling gene transcriptional regulation or splicing. 

Whole exome sequence is superior to targeted sequencing in that the large amount of 

sequencing data produced provides the substrate for an unbiased examination of the exome.  

This genetic study was designed to maximise sensitivity in detecting TTNtv. The potential 

loss in specificity was addressed by Sanger validation of the mutations found. Despite the 

high sensitivity of the sequencing techniques, certain regions of the TTN exon were not 
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adequately enriched and / or reads were not mapped uniquely to the genome. Work carried 

out in our group demonstrated that the assay used in this cohort provides over 97% sequence 

capture reliability across the TTN gene. Five per cent of the gene’s coding sequence was 

poorly captured.  This was most likely due to the fact that TTN has exons with a high degree 

of homology (or repetitive sequence) which are technically challenging to sequence. 

The exact mechanisms of TTNtv driven DCM remain unclear but the position dependent 

functional effects that we have reported suggest a dominant negative effect. This has been 

questioned given the high proportion of sporadic cases in which no affected family members 

have been identified. However, it is plausible that many of these phenotype-negative family 

members have subclinical disease instead of silent mutations. 

At a molecular level, the exact mechanism through which TTNtv cause DCM has not yet 

been established. This might result from deficits in force generation, force transmission or 

indeed through other biological mechanisms. This has significant impact on our ability to 

identify therapeutic targets. Being able to document the earliest pathological changes caused 

by TTNtv in humans might provide important insights into the molecular and cellular 

changes that precede overt disease and help guide mechanistic ‘bench-side’ studies. 

Although volunteers in this study did not have self-reported cardiovascular disease, we have 

not corrected our findings for other clinical variables known to cause DCM, alcohol intake 

being perhaps one of the most relevant. This preliminary analysis might have been 

underpowered to detect true genotype-phenotype associations. Sequencing and CMR data 

will soon be available on the remaining ~900 subjects of the Digital Heart Project, nearly 

doubling the sample size. In this enlarged cohort, analysing the correlation between wall 

stress and TTNtv would be relevant given the known pathological progression in DCM from 

myocyte failure and cystoskeletal uncoupling to chamber dilatation without concomitant 
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increase in wall thickness. Given the small number of TTNtv subjects, no sub-group analysis 

was carried out. However the inclusion of 5 volunteers with TTNtv in low PSI exons (29% of 

the total cohort) might have contributed to a dilution of the phenotypic signal. Future studies 

would be improved by the inclusion of genotypic data from other DCM associated genes. 

This would help segregate true controls from early DCM subjects. Longitudinal follow-up 

would greatly strengthen our ability to extrapolate our findings, in particular our predictions 

of pathogenicity.  

 

15.5 Conclusions 

The prevalence of TTNtv is the general population was confirmed to be ~1.9%. When 

compared to the DCM cohorts, TTNtv in our asymptomatic volunteers were located more 

proximally and more often in exons with low PSI. Based on data from disease cohorts, both 

of these features were associated with better prognosis. However, two dimensional and 3D-

CMR imaging data seem to suggest that the presence of TTNtv was associated with larger 

volumes and decreased function. These differences were however small, making biological 

interpretation of these findings difficult. It is possible that the voxelwise significance testing 

used in this study was too conservative and associations may well have been underestimated. 

The sensitivity of 3D-CMR to detected phenotypic changes may be increased by the use of 

statistical approaches that reward the spatial correlation of points across the LV model. 
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16 Future work - 3D genome-wide association study 

 

16.1 Introduction  

Left ventricular mass (LVM) is, in part, under genetic control with estimates of heritability 

ranging from 17-59% (28, 30, 398, 399). LVM is a complex trait influenced by variants in 

multiple genes in interaction with environmental and anthropometric variables. A genome 

wide association study (GWAS) is a commonly used study design in research into the 

common genetic variants that underlie complex traits. Typical GWAS examine hundreds of 

thousands to millions of single nucleotide polymorphisms (SNPs), testing their statistical 

association with discrete outcomes (‘case-control’ such as DCM vs. controls) or continuous 

outcomes (quantitative traits such as LVM or gene expression levels). Its main advantages are 

that it is unbiased by prior knowledge (or belief) of associations between certain genes and 

certain phenotypes (as are candidate genes studies) and it is powered to find associations 

between genome wide common variants and complex traits (unlike linkage studies) (400) . A 

GWAS is based, at population level, on the principle of linkage disequilibrium (LD) that 

underpins linkage studies within pedigrees: the association between alleles at different loci is 

not random and those loci that are closer together in the chromosome are more likely to be 

segregated together; two loci are in LD if they are found together across a population more 

often that it would be expected (therefore nearby loci are more likely to be in LD that those 

further apart). Therefore markers across the genome can be used to identify which genomic 

regions are associated with a given trait. The main limitation of GWAS stems from the fact 

that the huge number of statistical tests being performed carries the risk for large number of 

false positive results (401). In response to this, traditional multiple testing correction 

approaches have been used, which resulted in a lack of statistical power to detect genotype-

phenotype associations (139). This has been addressed by recruiting larger cohorts and by 
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refining the statistical analysis methods, replacing the traditional Bonferroni correction for 

Bayesian or permutation-based methods (140, 141). GWAS of LVM have so far failed to 

uncover more than a handful of common variants associated with this phenotype (241, 292, 

402) and non have been replicated. Given the high sensitivity and accuracy of current 

genotyping techniques it is plausible that the lack of positive findings is, at least partially, due 

to the lack of high-fidelity, high-resolution comprehensive phenotypes (227-230). The 

motivation to combine the accurate quantitative phenotyping of 3D-CMR with a GWAS is 

clear and the potential increase in power quite significant. However, there are many 

challenges to overcome mainly with regards to the statistical approaches to be used. 

Traditional statistics study the relationships between small numbers of predictor variables and 

single outcomes. Our 3D-CMR data however, is formed by voxelwise phenotypes at 46808 

points across the LV. Therefore we have a huge number of phenotypes (p) in a large sample 

of the population (n~1800). This creates a problem described as ‘large p, small n’ in which 

the number of variables measured outstrips the number of subjects being studied. 

Furthermore, testing independent associations between these high resolution phenotypes and 

millions of SNPs from over 1800 subjects using traditional statistical approaches, would be 

computationally expensive, prohibitively lengthy and result in a huge loss of power via the 

required correction for multiple testing. A possible approach to this problem could be to 

reduce the number of variables before analysis by choosing a subset of features to represent 

the high-dimensional phenotype. This could be achieved with methods such as principal 

component analysis (PCA). PCA is a descriptive statistical technique that summarises the 

variance observed in the dataset via linearly uncorrelated (orthogonal) variables (414).The 

lower dimensional descriptors (principal components) can then be more efficiently processed 

and used for subsequent modelling of genetic and environmental effects (413). However, 

PCA is a linear method for dimensionality reduction that would neglect the spatial correlation 
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between our 3D-CMR phenotypes. Furthermore, such methods have been criticised as they 

might lead to the loss of biologically relevant information if certain features are selected or 

discarded a priori (227). 

Bayesian latent factor analysis, and in particular the ‘probabilistic estimation of expression 

residual’ (PEER) algorithm seem, in theory, well suited to our dataset. PEER is a software 

package that combines a collection of Bayesian approaches to explore genotype-phenotype 

associations. It was initially designed for the analysis of gene expression as the complex 

high-dimensional phenotype. Into the model a large number of additional information can be 

added such as anthropometric, environmental and experimental variables (Figure 16.1). 

PEER also accounts for spatial correlation within the dataset which can be supplied to the 

model as prior information (403, 404). Our 3D-CMR data replaces gene expression as the 

phenotype and the variability in our dataset is accounted for by the computed ‘hidden 

factors’. These lower dimension ‘hidden factors’ are then used as single traits to carry out 

genotype-phenotype association studies. 

 

Figure 16.1 – PEER is a Bayesian latent factor analysis framework for understanding sources 

of variation in high-dimensional data. The expression level (in our case the 3D-CMR derived 

parameters) can be distilled into an a priori defined number of hidden factors taking into 

consideration a large set of known anthropometric and environmental factors. (Figure 

reproduced from Stegle O, et al. A Bayesian framework to account for complex non-genetic 

factors in gene expression levels greatly increases power in eQTL studies. PLoS 

computational biology 2010) 
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In this preliminary study we genotyped common variants in a large healthy population and 

performed a GWAS using phenotypes derived from 2D and 3D-CMR. The main purpose of 

this experiment was to test the applicability of PEER to our high dimensional dataset and to 

explore if this approach of dimensionality reduction shows potential to increase the power of 

GWAS to detect genotype-phenotype associations. 

 

16.2 Preliminary methods  

 

Genotyping of common variants in 1346 volunteers recruited into the Digital Heart Project 

was carried out using the Illumina HumanOmniExpress-12v1-1 SNP array (Sanger Institute, 

Cambridge). SNPs were subsequently called via the GenCall software for clustering, calling 

and scoring of genotypes (405). The quality of the genotypes was evaluated both on a per-

individual and per-marker level following an adapted version of a published quality control 

(QC) protocol (406). Unless stated otherwise, the PLINK software (407) was used for all QC 

analyses.  

In brief, the per-individual QC included the identification of individuals with discordant sex 

information, missing SNP rates and outlying heterozygosity rates. Related individuals were 

excluded from the sample cohort in order to remove bias towards genotypes shared within a 

family and to accurately represent the allele frequency of the entire population. Relatedness 

was estimated by the proportion of SNPs shared between two individuals and subsequent 

calculation of identity by descent. Population substructures arising due to different ethnical 

origins of samples were examined by comparison of sample genotypes to genotypes of the 

HapMap Phase III study (408) from four ethnic populations (determined by principal 
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component analysis; program: EIGENSTRAT/smartpca (409). Cohort samples clustering 

with HapMap III individuals of Caucasian ancestry were kept for further analyses. 

The per-marker QC included filtering of SNPs with a minor allele frequency of less than 1%, 

SNPs with missing call rate in more than 1% of the samples and SNPs which significantly 

deviate from Hardy-Weinberg equilibrium (p > 0.001). After applying these QC filters and 

population based filtering (only keeping Caucasians for further analyses), 438 males and 509 

females remained in the sample cohort. The total genotyping rate in these individuals was 

0.997. After frequency and genotyping pruning, there were 618153 SNPs (99201excluded). 

 

Phasing and imputation  

Phasing, i.e. inferring the samples' haplotypes from their genotypes, and imputation, i.e. 

prediction of genome-wide SNPs in the samples based on SNP information of a reference 

dataset, were conducted in two separate steps. The SHAPEIT software (version 2) (410, 411) 

was used to generate a set of estimated haplotypes based on the combined 1000 Genomes 

(412)  and UK10K (UK10K Project, http://www.uk10k.org) reference panel as genetic map. 

The same reference panel was used for the imputation of the samples' genome-wide SNP 

genotypes via the IMPUTE2 software (version 2.3.0) (413, 414). SNPs with a certainty score 

of less than 0.4 were excluded from further analyses. IMPUTE2 yields imputed genotypes 

encoded in triplets of posterior probabilities for the possible allele combinations (AA, AB, 

BB). These genotypes were converted into an expected genotype G by the dosage model 

(415): G = 0 * p(AA) + 1 * p(AB) = 2 * p(BB). 
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16.3 Preliminary 3D-GWAS experiments 

After imputation, 9.45 million common variants from 947 from Caucasian individuals (by 

genotype rather than self-reported as previously in this thesis) were used in these genome-

wide association experiments. We used a Bayesian latent factor analysis software (PEER) to 

reduce the dimensions of our 3D-CMR wall thickness datasets, while preserving the spatial 

information. The PEER model included gender, age, height and weight. The software 

returned 100 hidden factors, which accounted for the variability in the dataset, as well as the 

effect of the factors on each original wall thickness measure (factor weights). These factors 

were then treated as single traits in a linear mixed model analysis using LIMIX 

(https://github.com/PMBio/limix). Associations were adjusted for multiple testing using the 

false discovery rate method, and SNPs which passed the genome-wide significance threshold 

were identified. The genotype of these significant SNPs across the cohort was then fed into a 

linear regression model that included as dependent variables: ‘hidden factor’ x associated 

weights at each point and the original wall thickness measurements. The strength of the 

association of the significant SNPs with these two phenotype measures at each position, was 

calculated as the goodness of fit (R
2
) multiplied by the sign of the effect size (β). The strength 

of association was then plotted back into the 3D space to further explore the physiological 

significance of the association (Figure 16.2). In this preliminary analysis the number of SNPs 

that achieved statistical significant was vastly higher than when the data was used explored 

using the 2D-CMR derived LVM (Figure 16.3). 
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Figure 16.2 – Bayesian factor analysis was used to project the high dimensional wall 

thickness 3D-CMR data from the whole cohort into a lower dimensional ‘hidden factor’ 

space after correction for variables such as age, gender, height and weight. These hidden 

factors account for the variability in the dataset. Each factor is then used as a single trait to 

model SNP-phenotype effect. This is adjusted for multiple testing to identify SNPs which 

pass genome-wide significance. In this figure the strength of association between wall 

thickness and one of these SNPs is plotted. 

 

 

Figure 16.3 – Preliminary data of the Digital Heart Project genome-wide association study 

for 2D left ventricular mass in 947 Caucasian individuals. Manhattan plot showing the 

genome-wide −log10 (p values) for the interrogated 9.4 million variants across the 22 

autosomal chromosomes for left ventricular mass (LVM). Conventional genome-wide levels 

of significance (p<5 x 10−8) is represented by the red line. The blue line is a threshold for 

“suggestive” association (p≤1 x 10-5). 
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16.4 Conclusions 

Bayesian latent factor analysis of 3D-CMR datasets shows great promise in increasing the 

power of GWAS to detect significant associations between common genetic variants and 

cardiac phenotypes. If confirmed and replicated in other cohorts, this methodology might 

provide an invaluable, unbiased discovery process for exploring the common genetic 

determinants of cardiac structure and function. 
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17 Overview of thesis 

 

Through the work described in this thesis, the feasibility of high-resolution, single breath-

hold whole organ 3D-CMR, was established in a large healthy population. The longer breath-

holds were well tolerated and the reduction in signal-to-noise, when compared to equivalent 

2D b-SSFP, did not hinder the analysis of the 3D datasets. Some of the advantages derived 

from this technique include the ability to phenotype the whole heart at a much higher 

resolution, without being limited by inter-slice gaps and inter-slice misalignments 

characteristic of 2D imaging. While the longer breath holds were well tolerated and our large 

population included a wide range of ages, cardiac phenotypes and levels of physical fitness, 

in future studies the applicability of this technique in disease cohorts needs to be investigated. 

A probable higher prevalence of arrhythmias, metallic implants and intracardiac devices 

might somewhat limit its use in subjects with severe cardiovascular disease.  

Using 3D-CMR images of over 1000 subjects we successfully created the first high 

resolution atlas of the human heart. Using this atlas we were able to compute a statistical 

model that encodes the normal variation in anatomy within a multi-ethnic healthy population. 

The first 20 of these atlases were manually created and used to provide baseline information 

about the inter-subject variability in cardiac structure. Based on these datasets, we developed 

a multi-atlas PatchMatch algorithm to automatically segment new target images. Through an 

iterative process, correctly labelled images were added to the atlas pool, each providing some 

extra anatomical information and reducing the potential bias from any given atlas. This 

expanding pool of atlases was used to guide increasingly accurate segmentations. Registering 

each individual’s cardiac phenotype to a template in a common coordinate system, ensured 

that each point in the 3D model was consistent between all subjects.  We measured a series of 
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cardiac phenotypes at over 46000 points in the cardiac model including wall thickness, wall 

stress and ventricular geometry.  

We went on to demonstrate that there was good agreement between 2D and 3D-CMR 

volumetric analysis but that the automated atlas-based segmentation of 3D-CMR provided 

greater accuracy in mapping ventricular wall thickness particularly in the cardiac base and 

apex. This increased accuracy provided a reduction in the sample size required to detect 

statistically significant differences in wall thickness. 

To explore the association between LV parameters and clinical variables we created linear 

regression models at each point in the 3D model, correcting for other covariates and for 

multiple testing. This approach enabled us to identify previously unappreciated associations 

between anthropometric variables and regional cardiac phenotypes. The use of linear 

regressions when some of its assumptions (normal distribution of the error; linear relationship 

between dependent and independent variables; constant variance of the errors) were violated, 

might have some impact on the precision of the p-values of the tests for some points in the 

model. However, linear models do help explain most of the differences and trends observed 

in the data. Furthermore, linear regression is the most commonly used statistical method in 

biomedical research and applying this simple approach to our otherwise novel method 

allowed for better comparison with previous studies. Some of the data presented throughout 

(e.g. pulse wave velocity) could have been transformed to improve statistical analysis. 

However, using non-transformed data allowed us to keep the focus of our interpretation on 

the originally measured parameters. In the words of the famous statistician George Box: ‘all 

models are wrong, but some are useful’(416). In future work, methods such as nonparametric 

permutation testing and Bayesian procedures should be investigated. These are based on 

weaker assumptions of the characteristics of the data and might at the same time be helpful in 

addressing the multiple testing problem. 
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In this thesis, cardiac parameters were indexed to body surface area (BSA), in line with most 

published research. However, height, height
2.7 

or height
2.13

 may perhaps account for more of 

the variance in cardiac phenotypes, as was suggested by comparing the R
2 

of the regression 

models using BSA in our study of blood pressure, with the R
2 

using height, lean mass and fat 

mass in our study of body composition. 

In our study of systolic blood pressure (SBP), 3D-CMR supplemented the 2D finding that left 

ventricular mass and concentricity index are positively associated with SBP, by 

demonstrating a strong and distinct regionality of response across the LV. Our data showed 

that in response to rising SBP there is concentric hypertrophy of the septum and eccentric 

remodelling of the lateral wall. Furthermore, our findings challenged the conventional models 

of compensated hypertrophy by demonstrating a normalisation of wall stress in the areas of 

concentric hypertrophy, while detecting elevated wall stress elsewhere in the LV that was not 

balanced by a proportionate rise in wall thickness.  

When we studied the association between different ratios of body composition and LV 

phenotypes, 3D-CMR was instrumental to reveal gender specific patterns of remodelling. In 

males, the association between fat mass and concentric remodelling was much stronger than 

in females and this might help explain the increased cardiovascular risk observed in men. 

These interesting findings could be strengthened by the addition of metabolic profiling and 

physical activity levels to our models and this will be done in the near future. 

To explore the effects of rare and disruptive variants in titin on cardiac morphology and 

function within our healthy population, we combined high resolution phenotypes with 

genotyping data. Using next-generation sequencing approaches we identified and validated 

titin truncating variants (TTNtv) in 17 subjects within a sub-cohort of 927 volunteers. The 

rare variants we identified were located more proximally in our asymptomatic population 
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than in DCM patients, and were more often located in the I-band than in the A-band. 

Furthermore, a significant proportion of TTNtv were in exons that are expressed at very low 

levels in the heart. Based on our previous work, this would suggest that these TTNtv are less 

likely to be pathogenic. However, 2D-CMR analysis indicated a reduction in ejection fraction 

in the cohort with TTNtv. Using 3D-CMR a pattern of asymmetric LV cavity dilatation and 

wall thinning was apparent. Although the areas that remain statistically significant after 

correction for multiple testing are small, it is possible that the observed ‘trends’ would reach 

significance if a statistical approach that rewards extended areas of signal was used. These 

methodological improvements and the sequencing of another ~900 subjects might provide 

additional power to confirm our preliminary findings. If these are confirmed there are 

potentially significant implications for understanding TTNtv effects and disease pathobiology 

in addition to patient stratification. 

Initial work on a 3D-GWAS has demonstrated the promise of Bayesian approaches to 

summarise the variability in our highly spatially correlated LV voxelwise phenotypes. Early 

data indicates that the use of PEER-derived low dimension factors in single trait analysis, 

greatly increases the power to detect associations between common genetic variants and 

cardiac phenotypes, when compared to traditional GWAS approaches. The fact that we are 

able to visualise the location and strength of effect of these associations on the 3D model 

might provide a clearer biological context for interpreting the downstream functional and 

morphological effects of genetic variation. However, some of the associations we detected in 

our preliminary analyses show very complex patterns of wall thickness variation across the 

LV and the true physiological relevance of these ‘structures’ is currently unclear. We will 

begin to address this and refine our findings by re-analysing our data once the full cohort is 

genotyped and phenotyped, as well as by comparing the 3D and 2D GWAS. It is expected 

that the SNPs associated with the most significant global changes across the LV to also be 
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detected by 2D imaging when tested at the level of the single, most strongly 3D-parameter 

associated lead SNP. Any significant variants will be subjected to replication in additional 

cohorts as standard practice for GWAS. An interesting avenue might be to carry out targeted 

genotyping of key variants identified in our 3D discovery study, in large 2D-CMR population 

based-cohorts such as the UK Biobank or the Framingham cohorts.  

In summary, the next stage in this work will involve refining the statistical analysis methods 

and testing the technique’s feasibility in disease cohorts. Any significant genotype-phenotype 

associations will have to be replicated in other populations and validated in ‘bench-side’ 

mechanistic studies. As more genotype, phenotype and longitudinal data become available, 

machine learning approaches might assist in the development of genotype-phenotype specific 

risk calculators, moving us closer to personalised medicine. 

 

Conclusions 

This thesis demonstrates that 3D-CMR combined with computational analysis methods 

provides high-resolution insight into the earliest stages of heart disease. These methods show 

promise for population-based studies of the anthropometric, environmental and genetic 

determinants of LV structure and function in health and disease.  
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