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ABSTRACT Three-dimensional transesophageal echocardiography (3DTEE) is the recommended imaging
technique for the assessment of mitral valve (MV) morphology and lesions in case of mitral regurgitation
(MR) requiring surgical or transcatheter repair. Such assessment is key to thorough intervention planning
and to intraprocedural guidance. However, it requires segmentation from 3DTEE images, which is time-
consuming, operator-dependent, and often merely qualitative. In the present work, a novel workflow to
quantify the patient-specific MV geometry from 3DTEE is proposed. The developed approach relies on
a 3D multi-decoder residual convolutional neural network (CNN) with a U-Net architecture for multi-class
segmentation of MV annulus and leaflets. The CNN was trained and tested on a dataset comprising 55
3DTEE examinations of MR-affected patients. After training, the CNN is embedded into a fully automatic,
and hence fully repeatable, pipeline that refines the predicted segmentation, detects MV anatomical
landmarks and quantifies MV morphology. The trained 3D CNN achieves an average Dice score of 0.82 ±
0.06, mean surface distance of 0.43± 0.14 mm and 95%Hausdorff Distance (HD) of 3.57± 1.56 mm before
segmentation refinement, outperforming a state-of-the-art baseline residual U-Net architecture, and provides
an unprecedented multi-class segmentation of the annulus, anterior and posterior leaflet. The automatic
3D linear morphological measurements of the annulus and leaflets, specifically diameters and lengths,
exhibit differences of less than 1.45 mm when compared to ground truth values. These measurements also
demonstrate strong overall agreement with analyses conducted by semi-automated commercial software.
The whole process requires minimal user interaction and requires approximately 15 seconds.

INDEX TERMS 3D transesophageal echocardiography, mitral regurgitation, automatic segmentation,
convolutional neural network, mitral valve anatomy quantification, mitral valve.

I. INTRODUCTION
The mitral valve (MV) is a morphologically and functionally
complex structure located between the left atrium and the left

The associate editor coordinating the review of this manuscript and

approving it for publication was Marco Giannelli .

ventricle. It consists of two leaflets, whose bases are inserted
on a saddle-shaped annulus that silhouettes the valve orifice,
and whose free margins are connected to the myocardium of
the left ventricle by a set of collagenous chordae tendineae.
In physiologic conditions, during ventricular diastole the MV
allows for ventricular filling and plays a role in the generation
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of 3D toroidal vortices that contribute to optimizing the
energetics of diastolic intraventricular blood flow [1]. During
ventricular systole, the increase in transvalvular pressure
difference drive MV leaflet motion towards the atrium;
the synergistic function of all MV substructures allows for
leaflet coaptation and MV continence, thus preventing blood
backflow into the atrium. Also, the physiological shape of
MV leaflets in their closed configuration has been suggested
to contribute to reducing MV leaflet tissue stresses [2] and
to optimizing blood flow energetics during systolic ejection
through the aortic valve and into the aorta [3], [4].
A dysfunction of any MV substructure typically leads

to a loss of MV continence, i.e., to mitral regurgitation
(MR). MR induces ventricular volume overload [5] and
increases atrial pressure [6]. When MR is severe and remains
untreated, volume overload induces the enlargement of
the ventricular chamber, and hence excessive pre-load of
the myocardial fibers that is detrimental to their efficient
contraction, as explained by the Starling law [5]. On the
long run, this anomaly can lead to heart failure [7], [8].
In fact, in untreated patients affected by severe MR the
mortality rate at 5 years is 50%, and 90% of those who
survive are hospitalized because of heart failure [9]. On the
other hand, increased atrial pressure often leads to pulmonary
hypertension [10]. Of note, MR is the second most prevalent
heart valve disease, and its most common cause ismitral valve
prolapse (MVP), i.e., the invasion of the atrial volume by a
portion of MV leaflets with loss of coaptation. MVP alone
affects 2-3% of the general population [11]. The preferred
treatment for MR is MV repair, owing to its better short-term
results and to significantly better long-term survival rates in
the elderly population, as compared to MV replacement [12].
Moreover, percutaneous approaches for MV repair have
emerged as a valid alternative to open-chest MV surgery.
Among the available approaches, transcatheter edge-to-edge
repair (TEER) is the most widespread one and is supported
by the strongest evidence [13].
According to the guidelines of the European Society of

Cardiology (ESC) [14] and the American Heart Association
(AHA) [15], transthoracic echocardiography (TTE) is the
standard imaging modality to diagnose and quantify MR,
while transesophageal echocardiography (TEE) is used for
morphologic assessment of pathologic MV and to guide MV
procedures. Namely, three-dimensional TEE (3DTEE) allows
for a 3D view of the MV and its substructures. Thus, it is
widely used to identify and characterize anatomical defects
of regurgitant MV, to drive final decision and timing of
surgical treatment, and to intraoperatively support TEER
procedures by guiding the catheter into the left atrium and
ensuring proper placement of the device to be implanted.
However, accurate assessment ofMVmorphology by 3DTEE
typically relies on manual or semi-automatic segmentation,
making it time-consuming and affected by intra-operator
and inter-operator variability, hence hampering the reliability
of the resulting anatomical measurements. Precise MV

segmentation and identification of MV annulus and leaflets
from 3DTEE would facilitate accurate and quantitative
measurements of the regurgitant MV anatomy to support MR
diagnosis and MV surgical or transcatheter repair [16].
In recent years, several works have introduced semi- [17],

[18], [19] or fully automatic [20], [21], [22], [23], [24]
methods to detect and segment MV structures. Many early
methods proposed in the last decade are based on level
set [17] or graph cut method [18], which require human-in-
the-loop-interactions to work properly and reconstruct mitral
leaflets as an inner surface lacking the preservation of leaflet
thickness details. In [20], a 3D geometrical model of MV
was constructed by fitting key points identified by leveraging
machine learning algorithms and an extensive collection
of labelled images. In [19], a semi-automatic method to
segment mitral leaflets was described using multi-atlas joint
label fusion and a deformable model template. However,
abnormal morphologies typical of pathological MV anatomy
are often not accurately detected using a model fitting or
atlas-based approach. In the last few years, methods based
on deep learning, and in particular convolutional neural
networks (CNNs), have become increasingly popular for MV
segmentation. In [21], the authors proposed a method that
leverages 2D CNN-based predictions obtained on individual
image slices extracted from a 3DTEE volume to generate
a 3D annulus model through an iterative post-processing
algorithm. Similarly, Zhang et al. [22] applied a deep
reinforcement learning algorithm and a 2D CNN for annulus
landmark detection in combination with a spline fitting
algorithm to infer the 3Dmitral annulus from 3DTEE images.
In [23], Carnahan et al. proposed a fully automatic method
adopting a 3D CNN fed by 3DTEE images for segmentation
of MV leaflets in diastole, demonstrating the feasibility of
CNNs-based segmentation of 3DTEE images. In a recent
work, Chen et al. [24] developed an innovative pre-training
strategy aiming to classify the diastolic and the systolic
states of the MV. This classification allowed to initialize
the parameters of a 3D CNN for MV segmentation in the
entire cardiac cycle. Nevertheless, in all of these studies
which leverage deep learning methods, MV segmentation
was formulated as a single-class semantic segmentation
problem, detecting either the whole MV apparatus [23],
[24], or simply the annulus [21], [22]; hence, a solution to
distinguish among the different substructures of the MV is
still missing. In this context, the proposed work aimed to
improve the workflow for the extraction of complex patient-
specific MV geometric features from 3DTEE by discerning
among the annulus, anterior and posterior leaflets.

The system proposed in this study is a deep learning-based
fully automatic pipeline for MV substructure segmentation
and anatomical characterization. A novel multi-decoder
3D CNN was trained to separately segment the mitral
annulus, the anterior leaflet and the posterior leaflet from
3DTEE acquisitions, under the hypothesis that the use of
a multi-decoder architecture may improve performance in
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distinguishing spatially continuous structures within ultra-
sound images. The results of the automated segmentation
automatically feed a processing module devoted to quanti-
fying MV annulus and leaflets morphology.

The multi-class segmentation is aimed to obtain a more
comprehensive evaluation of MV anatomy and defects
as compared to previously proposed automated solutions.
In particular, segmenting the two leaflets separately would
enable the recostruction of the coaptation line, thus allowing
for more reliable and automated MR pre-procedural analysis
and intraprocedural support.

II. METHODS
A. DATA COLLECTION
Intraprocedural examinations were collected from 55 can-
didates to MV TEER by means of the MitraClip system
(Abbott) from IRCCS San Raffaele Hospital (Milan, Italy).
Acquisitions were performed using a Philips EPIQ CVx
scanner with an X8-2T transducer (Philips, Andover, MA,
USA). Image data were anonymized and exported in
Cartesian format using QLab software (Philips, Andover,
MA, USA). The study was approved by the local ethics
committee.

Midesophageal 4DTEE acquisitions zoomed on the MV
were selected from the collected examinations to construct
the dataset. For some patients, multiple acquisitions were
available and were included in the dataset. Acquisitions
with high shadowing and those that did not entirely capture
the MV in the field of view of the ultrasound beam were
excluded. The final dataset counted 115 3DTEE volumetric
and time-dependent data with a mean voxel spacing of 0.37
× 0.55 × 0.24 mm3 and a mean frame rate of 22 per cardiac
cycle. For each sequence, the end-systolic frame, identified as
the time frame just before aortic valve closure, was selected.

B. MANUAL ANNOTATION
3DTEE data weremanually annotated to generate the training
and test sets for the deep learningmodels.Manual annotations
were performed using 3D Slicer [25] by three independent
and experienced operators, ensuring an almost balanced
division of the dataset among them. Each operator followed
the same protocol, consisting in the following steps:

• selecting the end-systolic frame
• manually navigating the 3D data and identifying the
standard 2-chamber view plane, where the LV long-axis
is automatically generated

• automatically generating 12 long-axis view planes by
rotating the 2D-chamber view plane around the LV
long-axis so to span the [0;2π] range with a π/12 step

• manually tracing on each plane the two annular points,
identified as the hinge points of the MV leaflets
(Figure 1a, left). This step resulted in 24 annular points,
which were then fitted with a smooth curve using
the Slicer-Heart software [26] (Figure 1b, left) with a
contour radius of 1 mm

FIGURE 1. Intermediate and final result of the steps followed to manually
annotate 3DTEE images. (a) 3D rendering of the segmentation mask for
each step, and (b) corresponding cross-sectional view overlapped on the
3DTEE image.

• by manually adjusting the 2D-chamber view, obtaining
a long-axis view plane that approximately runs through
the annulus saddle horn (SH), i.e., the highest point on
the anterior side of the annular profile, and the centroid
of the annular profile

• manually navigating 3D data starting by shifting the
obtained view plane along its normal, which approx-
imately corresponded to the commissure-commissure
(CC) axis of the annulus. In this process a variable
number of mutually parallel image planes were gener-
ated so to i) span the whole MV orifice and ii) having
consecutive planes separated by a distance equal to at
least twice the minimum shift allowed for by 3D Slicer

• on each parallel long-axis view plane, manually seg-
menting the anterior and posterior leaflets, separated at
the coaptation zone (Figure 1a, right). This resulted in a
non-contiguous segmentation of the leaflets on several
long-axis slices (Figure 1b, center), which were then
interpolated (Figure 1b, right) using a morphological
contour interpolator filter [27].

C. ANALYSIS OF INTER-OPERATOR VARIABILITY
To obtain an unbiased assessment of the inter-operator
variability of MV segmentation using the protocol described
above, a randomly selected subset of 10 3DTEE volumes
belonging to 10 different patients from the dataset were
manually annotated by three independent and experienced
operators, named Op1, Op2 and Op3, respectively. All oper-
ators used 3D Slicer [25], exploiting the 3D Slicer extension
Slicer-Heart [26], and followed the protocol described in the
subsection II-B to perform the annotation. The average time
required by operators to perform the annotation was also
considered in the analysis.

D. NEURAL NETWORK ARCHITECTURE AND TRAINING
The trained CNN was based on a modified 3D U-Net [28]
with encoding and decoding branches of 5 resolution levels
each, defined using residual units as shown in [29]. Each
residual unit consists of 2 convolutional blocks and an
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identity mapping. Each convolutional block included a
batch normalization layer, a parametric rectified linear unit
(PReLU) activation layer [30] and a 3 × 3 convolutional
layer with stride of 2. In addition, the number of decoding
branches was extended to three, one for each class detected
(i.e., mitral annulus, anterior leaflet and posterior leaflet).
This resulted in a multi-decoder version of the 3D residual
U-Net.

For the training of the neural network, the collected
data were randomly divided according to the number of
examinations (55). Specifically, 90% of the examinations
(50) were allocated to the training set, while the remaining
10% (5) were assigned to the test set. In the training set,
all the available volumes for each examination with the
corresponding ground truth (GT) annotations were consid-
ered, resulting in a total of 110 TEE volumes. To address
the limited amount of available data and ensure a robust
evaluation of the trained model, a 10-fold cross-validation
was performed on the training set. The 3D CNN architecture
was hence trained and evaluated ten times. Finally, the
resulting 10 trained models were combined by stacking them
together and taking the maximum predictions along each
detected class. A data augmentation routine was adopted to
increase the diversity of the data: transformations taken from
the MONAI framework [31] were used including, Gaussian
noise, cropping, flipping, rotation and elastic deformation;
transformations were applied randomly to the dataset. The
model was implemented using the Pytorch framework [32]
and it was trained on an NVIDIA A100 over 300 epochs
with batch size of 4. A Novograd optimizer [33] was used
with initial learning rate of 0.001, reduced by a factor
of 10 every 100 epochs. Intensity of the input images
was normalized with values ranging between 0 and 1.
A weighted-combination of Dice and Focal losses [34]
(with weight of 0.6 and 0.4, respectively) was computed at
the output block of each decoder branch. The sum of the
loss functions of the three decoders was used to train the
neural network. Each model needed around 5 hours to be
trained over 300 epochs and only the model with the best
validation accuracy for each fold was saved and used for
inference.

E. PIPELINE IMPLEMENTATION
A fully automatic pipeline (Figure 2) was implemented,
embedding the trained 3D CNN, for MV segmentation
and morphological characterization. The 3D CNN analyzes
3DTEE images at end-systole and segments the MV by
separately recognizing the mitral annulus, the anterior leaflet
and the posterior leaflet. Given the multi-class segmentation
mask provided by 3D CNN (Figure 2, Segmentation), the
implemented pipeline allows to (i) smooth and correct the
predicted segmentation (Figure 2, Refinement) (ii) build a
model of the coaptation line, (iii) detect MV anatomical
landmarks (Figure 2, extract MV features), and (iv) quantify
MV anatomy (Figure 2, Quantification of MV Anatomy).

FIGURE 2. Schematic representation of the implemented automatic
pipeline. SH = saddle horn, PAM = posterior annulus mid-point, MC =

medial commissure, LC = lateral commissure, DCC = inter-commissural
diameter, DAP = antero-posterior diameter, LA = annulus length, 0A =

annulus surface, Tips = leaflets tips LPL = posterior leaflet length, LAL =

anterior leaflet length, 0AL = anterior leaflet surface, 0PL = posterior
leaflet surface.

1) SMOOTHING AND CORRECTION
Amarching cubes algorithm [35] is applied to the multi-label
segmentation mask to extract three triangulated surface
meshes of the mitral annulus�A, and of the anterior�AL and
posterior leaflet �PL, respectively (Figure 2, Refinement).
The surface meshes are then smoothed using a windowed
sinc filter [36]. To correct for possible discontinuities in
annulus segmentation, the skeleton of �A is reconstructed
and processed to guarantee a closed profile. Briefly, the
valve orifice center xc is calculated by taking the average
of the coordinates xi = (xi, yi, zi) of the n points in �A.
Singular-value decomposition (SVD) on the set of directions
D : {d i = x i−xc, x i ∈ �MA} allows defining the principal
directions of the annulus geometry. The radial r and normal
n directions are identified through SVD as the direction of
highest and lowest variance, respectively. xc and n uniquely
identify a bounded plane 5, which is used to define the
MV orifice plane in the subsequent steps of the automated
pipeline. Successively, multiple-rotating planes are defined
around n evenly spaced out by an angle θoffset = 15◦. The
intersection between these planes and �A identifies a set
of 3D points S outlining the mitral annulus shape (Alg. 1).
Finally, these points are interpolated by a cubic spline that

5298 VOLUME 12, 2024



R. Munafò et al.: Deep Learning-Based Fully Automated Pipeline

Algorithm 1 Definition of Skeleton of the Mitral Annulus
From Segmentation Mask

Given �A and D
θoffset = 15◦, θ = 0◦

n and r← SVD(D)
while θ < 2π do
rθ ← Rotθoffset (r)
5← n× rθ

Find set of intersecting points S between 5 and �A
θ ← θoffset + θ

end while

FIGURE 3. Schematic representation of the algorithms for the annulus
reconstruction and coaptation line identification. (a) From the top left to
the bottom right, the three steps involved in the annulus reconstruction:
1) identification of intersecting points between �A (green) and the
multiple rotating planes (gray); 2) interpolation of the intersecting points
for the annulus skeleton (yellow) reconstruction; 3) radial expansion of
the annulus skeleton. (b) The reference plane 5⊥ and two representative
examples of the multiple rotating planes 530

⊥
and 5−30

⊥
(gray); the

intersecting points (green) between 5i
⊥

and �AL.

is expanded radially by 1 mm to obtain the refined version
of �A, consistently with the contour radius used for the GT
label (Figure 3a).

2) COAPTATION LINE IDENTIFICATION
To automatically identify the coaptation line in a repeatable
and robust way, the following steps are performed. First,
the SH is identified as the highest point of �A with respect
to 5. Then, a plane denoted 5⊥ is defined as the one
passing through SH and through xc, and perpendicular to
5. Subsequently, 5⊥ is iteratively rotated by 5◦ around
an axis passing through the SH and orthogonal to 5,
towards the medial and lateral portion of the valve until
a total angle of 30◦ is spanned for each portion of
the valve. This rotation identifies several rotating planes
around n denoted as 5i

⊥
, where i ranges from -30 to 30,

as exemplified in Figure 3b. The candidate points belonging
to the coaptation zone are the points with the maximum
distance to SH among the set of points identified by the
intersection between 5i

⊥
and �AL (Figure 3b, in green).

Finally, a least-square fit of the candidate points with 3th

degree polynomial is used to obtain a smooth and continuous
line.

FIGURE 4. Illustrative example of reconstructed MV model with
anatomical features and measurements extracted by the automatic
pipeline. (a) Reconstructed and refined mitral annulus (�A) together with
the annular anatomical landmarks (SH = saddle horn, PAM = posterior
annulus mid-point, MC = medial commissure, LC = lateral commissure),
the best fitting plane (5) and the unitary vector (n) normal to 5.
(b) Reconstructed mitral leaflets (�AL=anterior leaflet surface, in red;
�PL=posterior leaflet surface, in blue), main leaflet landmarks (Tips =

leaflets tips), and the reconstructed model of the coaptation line (green).
(c) Leaflet 3D middle surfaces (0AL, 0PL) and leaflet 3D measurements
(LPL = posterior leaflet length, LAL = anterior leaflet length).
(d) Color-coded 3D representation of the reconstructed MV representing
leaflet height. (e) 3D surface interpolating the non-planar annular profile
(0A) and defining the annular area, and annulus 3D measurements (DCC
= inter-commissural diameter, DAP = antero-posterior diameter, LA =

annulus length, HA = annulus height.)

3) DETECTION OF MITRAL VALVE ANATOMICAL
LANDMARKS
The pipeline automatically identifies the MV anatomical
landmarks commonly used to describe annulus and leaflet
anatomy. This is done using the reconstructed surface meshes
�A, �AL, and �PL.

On the annulus, SH is identified as described in the
previous subparagraph. The two commissures (LC, MC) are
identified as the closest points of the skeleton of �A with
respect to the two extremities of the reconstructed coaptation
line, while the posterior annular midpoint (PAM) is defined
as the point opposite to SH in the posterior portion of 0A
skeleton (Figure 4a).

A plane (5SH-PAM) is defined by intersecting SH and PAM
and being perpendicular to 5. This plane intersects with the
surfaces �AL and �PL, resulting in two sets of points on the
leaflet surface. Among these points, the leaflet tips, depicted
in Figure 4b, are identified as the two points farthest from SH
and PAM.

4) QUANTIFICATION OF MITRAL VALVE ANATOMY
The final step of the implemented pipeline consists in the
automatic computation of MV morphological metrics based
on the identified anatomical landmarks. For the annulus, the
anterior-posterior diameter (DAP) and the inter-commissural
diameter (DCC ) are computed as the Euclidean distance from
SH to PAM and fromMC to LC, respectively. Annular length
(LA) is defined as the length of the �MA skeleton. Finally,
the height of the annulus (HA) is defined as the height of
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the smallest hexahedral bounding box encompassing �MA.
Also, a 3D surface (0A) representing the non-planar MV
orifice is reconstructed using a thin plate radial basis function
interpolation [37] of �MA. Annular area is defined by as the
surface area of 0A (Figure 4e).

For the leaflets, the length is defined as the length of
the intersection between each leaflet and 5SH-PAM, spanning
from the SH to the anterior tip and from PAM to the posterior
tip, respectively. Two 3D middle surfaces 0AL and 0PL are
defined using a 5th order spline radial basis function (RBF)
interpolation [37] of �AL and �PL, respectively. Leaflet area
is defined as the surface area of0AL and0PL (Figure 4c). The
local height of the leaflets is computed as the signed distance
of 0AL and 0PL, respectively, from the 3D orifice surface 0A
(Figure 4d). Leaflet flail or prolapse would result in a greater
positive distance from 0A.

F. PERFORMANCE EVALUATION
For each of the ten validation sets (one for each cross-
validation fold), Dice score [38], mean surface distance
(MSD, in mm) and 95% Hausdorff Distance (95% HD,
in mm) [39] were computed for each label, i.e., anterior
leaflet, posterior leaflet, and annulus, and for the combined
segmentationmask, i.e., the valve as awhole. Given the points
p and p’ belonging to the GT surface (S) and to the surface
of the predicted segmentation (S’), respectively, MSD was
defined as:

MSD =
1

nS + nS ′
(
nS∑

D(p, S ′)+
nS′∑

D(p′, S)) (1)

where D(p, S ′) = minp′∈S ′ ∥p − p′∥ is the Euclidean norm.
In the results section, the average performance metrics of the
ten training-validation splits are shown.

The ten trained models were ensembled and evaluated
on an independent test set comprising 5 3DTEE volumes.
Dice score, MSD and 95% HD were calculated to evaluate
the performance of the ensemble models. The MSD and
95% HD were recomputed after applying the correction
algorithm (Figure 3 in Section II-E). The refinement module
within the proposed pipeline operates exclusively on the
surface extracted from the segmentation. Consequently, post-
refinement computation of the Dice score, reliant on image
analysis, becomes impractical. The ensembled model was
then integrated within the proposed pipeline to extract
the relevant anatomical features of the MV and quantify
its anatomy on the test set. To validate the proposed
automatic morphological analysis, results were compared
against measurements obtained using TomTec Image Arena,
a widely recognized commercial software known for its
semi-automated tool forMVmodelling (4DMVAssessment,
version 4.6). This software is extensively utilized in clinical
settings for evaluating the morphology of diseased MVs.
TomTec’s tool enables the creation of a MV leaflets
triangulated surface mesh from 3DTEE data, following

initialization steps provided by the user. The triangulated
surface mesh provided by TomTec is comprehensive of MV
3D shape, but it lacks information about leaflets’ thickness,
presenting the surface as a topological 2D object in a 3D
space.Morphological assessments of theMV are then derived
from this surface. Specifically, as described in [40], this tool
requires the user to perform a specific sequence of actions
to create a 3D surface mesh of the MV. Briefly, the user
must trace two points representing the annulus on each of
two automatically selected 2D views, i.e., the four-chamber
and the two-chamber view, which are on mutually orthogonal
planes. As a second step, the aortic valve must be identified
by manually orienting a long axis view; finally, once the
aortic valve is identified on the long axis view, the user
must trace the SH and the coaptation point in the same
long axis view. Based on this initialization, the software
automatically generates the model of MV leaflets surface and
of MV annulus, which can be manually refined by the user.
The software then automatically identifies the anatomical
landmarks commonly used to describe the anatomy of MV
annulus and leaflets, and based on these landmarks calculates
the corresponding measurements ( [40], [41]: diameters,
perimeter, 2D and 3D areas and height of the annulus;
length and surface area of the leaflets. Although it is widely
used in clinical settings, its reliance on manual inputs might
introduce some biases in the morphological measurements.
To address potential biases, morphological measurements
extracted by the proposed automatic morphological anal-
ysis from the GT segmentations were also considered.
The analysis was executed by comparing the morphology
measurements computed by our proposed method, based
on the surfaces of MV leaflets and annulus extracted
from the CNN-based segmentation after refinement, against
those provided by TomTec. Notably, no post-processing
was applied to TomTec-derived measurements before this
comparison.

To test the benefit brought by the proposed multi-decoder
U-Net architecture for MV segmentation from 3DTEE
images, a baseline Residual U-Net with an equivalent
encoder and a single decoder [23] was trained adopting
the same training strategy (10-fold cross validation and
model ensembling). The performance of the ensembled
models based on the two architectures were compared on
the test set, computing the Dice score, MSD and 95% HD.
Upon verifying the normal distribution of data through a
Shapiro-Wilk normality test, a two-sample t-test was run to
test the statistical significance of the difference in Dice Score,
MSD, and 95% HD between the proposed model and the
basic Residual U-Net. Differences were deemed statistically
significant for p-value<0.05. Because the available test set
was relatively small, the analysis was conducted on the
average of the results of the 10 validation folds to have
a statistically significant number of data, since a small
number of data limits the interpretation of this statistical
test.
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TABLE 1. Inter-operator variability analysis results. Dice score, MSD and
95% HD are computed for each pairwise comparison. Mean values ±

standard deviations are reported.

All performance metrics are expressed as mean value ±
standard deviation.

III. RESULTS
A. INTER-OPERATOR VARIABILITY
For the 10 randomly selected 3DTEE images, the MV
segmentations obtained by the three independent operators
was compared pairwise, in terms of Dice Score, MSD
and 95% HD considering the complete segmentation mask.
The results of this comparison are reported in Table 1.
Overall, good agreement was observed between the MV
segmentations by any two operators, with mean Dice score
values ranging from 0.75 to 0.83. On average, the proposed
protocol took 11.14 ± 3.04 min to segment MV in a single
3DTEE volume.

B. TEST SET RESULTS
Figure 5 illustrates the training and validation curves for
each of the 10 validation subsets. Among the first five
subsets (f0-f4), the models consistently exhibited behaviours
that do not suggest overfitting. However, in the remaining
subsets (f5-f9), the validation curves marginally surpassed
the training curves. This trend implies a potential lack
of generalization in these folds, likely stemming from the
constraints of our limited dataset. This observed behaviour
justifies the adoption of an ensemble strategy to evaluate
the test set. By amalgamating diverse perspectives from
individual models, the potential lack of generalization is
mitigated. The average evaluation metrics across these
subsets, encompassing annulus, anterior leaflet, posterior
leaflet, and the complete segmentation mask, are detailed in
Table 2.
The evaluation metrics achieved by the ensembled model

on the test set are reported in Table 3. Overall, looking at
the average values across the test set (Table 3, last row)
a significant improvement in the performance metrics was
obtained by ensembling the 10 models, especially in MSD
and 95% HD. The ensembled model was capable of accu-
rately extracting the MV substructures’ anatomy (as shown
in Figure 6). For all 5 volumes used for testing, the annulus,
and leaflets were successfully segmented in accordance
with the GT segmentation masks. Notably, the predicted
segmentation masks identified a coaptation defect (P0 in
Figure 6) and a MVP (P4 in Figure 6) in two test volumes,
respectively. In three test cases (P2, P3 and P4 in Figure 6) the
predicted mitral annulus presented discontinuities. Overall,
the predicted segmentation masks were in agreement with

TABLE 2. Average Dice score, MSD and 95% HD across the
training-validation splits of the 10-fold cross validation. Performance
metrics are reported for mitral annulus (Annulus), anterior leaflet
(Anterior), posterior leaflet (Posterior) and for complete segmentation
mask (Complete Mask). Mean values ± standard deviations are reported.

the corresponding evaluation metrics. Notably, the annulus
label was the most challenging substructure to identify with
accuracy, as reflected by the lower performance metrics with
respect to the anterior and posterior labels. Specifically, the
predicted annulus achieved an averaged Dice score of 0.40±
0.10, which was lower than the average Dice score of 0.81±
0.33 for the predicted anterior leaflet and 0.68 ± 0.07 for the
predicted posterior leaflet.

The recalculated MSD and 95% HD errors, post-
application of the refinement algorithm (Figure 3 in
Section II-E) for all five test volumes, are detailed in
Table 4. Upon comparing Table 3 with Table 4, there
were no significant improvements observed for the labels
corresponding to the leaflets and the complete segmentation
mask in terms of distance metrics, between pre- and post-
refinement. However, after refinement, the annulus label
exhibited an average MSD of 0.85 ± 0.35 mm and a 95%
HD of 3.68 ± 1.13 mm (as shown in Table 4). These values
signify an enhancement of 0.10 mm in theMSD and 2.97 mm
in the 95% HD when compared to the original measurements
listed in Table 3. In all five test volumes, the refinement of
the inferred annulus segmentations yielded coherent annular
profiles with respect to the GT annotations, also in those cases
where the raw annulus segmentation was discontinuous or
incomplete, and reduced the surface error (Figure 7).

C. COMPARISON VS. SEMI-AUTOMATED MEASUREMENTS
Table 5 provides a comparative analysis of average mor-
phological measurements across the test set obtained by
the proposed method, alongside measurements derived from
GT segmentations and those generated by TomTec’s semi-
automated 4D MV Assessment tool. The table illustrates
the average differences between the GT and the proposed
method, as well as between the GT and TomTec. Overall,
good agreement was observed for geometric measurements
between the proposed method and the GT, consistent with the
findings in Tables 3 and 4. However, some small deviations
were noted: the proposed method slightly overestimated
the inter-commissural diameter, anteroposterior diameter,
anterior and posterior leaflet length, with the maximum
shift being 1.45 mm. The largest shift of 6.58 mm was
observed for the annulus length. Regarding area estima-
tions, overall consistency was observed, with the largest
bias of 105.64 mm2 for the anterior leaflet surface area.
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FIGURE 5. Training and validation loss curves for each validation subset (f0-f9) over the total amount of epochs. Continuous
line represents the training loss while the dashed line represents the validation loss.

TABLE 3. Dice score, MSD and 95% HD for each volume of test set. Performance metrics are reported for mitral annulus (Annulus), anterior leaflet
(Anterior), posterior leaflet (Posterior) and for complete segmentation mask (Complete Mask). Average value across the test set and standard deviation
are given in the last row.

TABLE 4. MSD and 95% HD for each volume of test set after applying the refinement module. Performance metrics are reported for mitral annulus
(Annulus), anterior leaflet (Anterior), posterior leaflet (Posterior) and for complete segmentation mask (Complete Mask). Average value across the test set
and standard deviation are given in the last row.

Comparatively, differences with TomTec’s measurements
were marginally higher in absolute terms, but no specific
trend was evident. TomTec tended to underestimate the
annulus area, exhibiting an average bias of 192.76 mm2

compared to the GT. In general, the commercial software
required considerable user interaction, taking about 3minutes
for an experienced user to process a single 3DTEE volume,
on average.

D. COMPARISON WITH BASELINE RESIDUAL U-NET
A baseline Residual U-Net architecture was trained by
adopting the same training strategy used for themulti-decoder
U-Net architecture (10-fold cross validation and model
ensembling). Table 6 compares the average performance
metrics obtained by the baseline Residual U-Net and the

multi-decoder U-Net on test set. The results indicate that
there was no significant difference in the average Dice
Score between the two architectures. On the other hand, the
proposed multi-decoder U-Net architecture achieved notable
improvements in terms of average MSD compared to the
baseline Residual U-Net. It resulted in an average MSD
reduction of 0.35 mm, 0.39 mm, and 0.30 mm for the
annulus, anterior leaflet, and posterior leaflet, respectively,
when compared to the average MSD achieved by the baseline
Residual U-Net (Table 6). Additionally, the 95% HD also
showed significant improvement when using the multi-
decoder U-Net, particularly for the annulus label, with a
reduction from 19.26 mm to 6.65 mm.

The p-values for Dice score, MSD and 95% HD for
the combined segmentation masks were 0.01, 0.03 and 0.2,
respectively. Although significant differences were observed
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TABLE 5. 3D MV morphology analysis. Comparison between the average measurements across the 5 3DTEE volumes in the test set of annulus and leaflet
geometry obtained with the proposed automated pipeline, the GT segmentation masks and TomTec. Mean differences (Bias) and 95% limits of agreement
are reported between the proposed method and GT and TomTec and GT.

FIGURE 6. Long-axis views of 3D TEE images and segmentation masks for
each volume in test set. In the first 3 rows the GT label is shown in green,
and predicted label (CNN) is shown in red for annulus, anterior leaflet
and posterior leaflet, respectively. In the fourth row, a 3D representation
of predicted raw segmentation mask is shown, using a color code to
distinguish annulus (A), anterior leaflet (AL) and posterior leaflet (PL).
Black arrows on 3D representations highlight leaflet defects (P0) or
prolapse (P4) correctly identified in the predicted segmentation masks.

FIGURE 7. Heatmaps of the distance of the annulus from the GT
reference for the 5 volumes of the testing set. Data are reported for the
annulus before (left column) and after (right column) the smoothing and
correction steps of the proposed pipeline.

only for Dice score and MSD, the multi-decoder U-Net
achieved a better value and lower for all the performance
metrics with respect to a baseline Residual U-Net. Overall,
although this comparison was made on a small dataset,
the results obtained suggest that the quality of multi-label
segmentation masks may benefit from the use of a multi-
decoder U-Net architecture.

TABLE 6. Dice score, MSD and 95% HD in mm computed on test set using
the Multi-decoder U-Net and the baseline Residual U-Net. Data are
expressed as mean value ± standard deviation.

E. INFERENCE TIME
The proposed 3D CNN model takes on average 2.94 ±
1.89 s to provide a raw multi-label segmentation mask
running on a GPU Nvidia RTX A4000. The ensemble of 10
3DCNN models had an impact in the speed performance of
the segmentation process, slightly increasing the inference
time required as compared to using a single model. The
automated pipeline takes on average 11.74 ± 0.91 s for
the morphometric characterization of the MV with 1.13 ±
0.91 s dedicated to refining the segmentation mask. This
computation is performed using a CPU-only implementation
on an Intel Xenon W-2235. Overall, the proposed pipeline
demonstrated to be faster than state-of-the-art commercial
software, requiring 14.68 s to process a single 3DTEE
volume, on average, whereas∼ 3minutes were required by an
experienced user utilizing the semi-automated tool provided
by TomTec Image Arena.

IV. DISCUSSION
A deep learning-based pipeline was presented to automat-
ically segment MV annulus and leaflets in end-systolic
configuration from 3DTEE images and extract the relevant
anatomical landmarks and features to quantitatively assess
MV anatomy.

From a methodological standpoint, the primary novelty of
the presented study is the development of a 3D CNN with
a multi-decoder residual U-Net architecture that provides
multi-structure end-to-end segmentation. The model was
trained based on a supervised training strategy where the
input data were meticulously labelled by three experienced
operators using 3DSlicer, all adhering to the same labelling
protocol (subsection II-B). An inter-operator variability
analysis was conducted on a randomly selected subset of the
available data, which revealed that the GT data exhibited
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relatively low variability (Dice score 0.85 Op1 vs. Op2,
0.79 Op1 vs. Op3, 0.75 Op2 vs. Op3). This evidence
suggests the repeatability and consistency of the proposed
protocol for generating GT data. The model was trained
using a 10-fold cross-validation approach and evaluated by
combining the outputs of the 10 trained models on an
independent test set. This ensembling technique was used
to improve the overall performance and reduce potential
bias. The ensemble of the CNN models achieved an average
Dice score of 0.82 (range 0.72-0.88) for the combined
segmentation mask, which is comparable to the Dice score
(0.81 ± 0.07) reported in [23] and slightly lower than the
Dice Score (0.877 ± 0.027) achieved by [24]. Nonetheless,
the results achieved in this work are overall consistent with
the level of agreement observed among manual operators.
However, determining the best method remains difficult
because of the potential influences of data annotation
standards, and of size and quality of datasets. It is worth
mentioning that Carnahan et al. [23] proposed a deep-learning
pipeline to segment MV leaflets in their open configuration,
whereas Chen et al. [24] aimed to achieve time-varying MV
segmentation. Nevertheless, none of the two studies managed
to discriminate between the different MV substructures. This
limitation inherently hinders the identification of the leaflet
coaptation line: a key anatomical feature for supporting the
identification of coaptation defects and a pivotal landmark
during TEER procedures, where the pose of the implantable
device that will enforce leaflet coaptation is set by the
operator based on the location of the coaptation defect
and on the local orientation of the coaptation line to be
restored [42]. The proposed ensembling strategy improved
the single model performance and increased the robustness of
the overall system, at the cost of a slight increase in inference
time. As shown in Figure 6, the predicted segmentation
masks given by the ensembled model were consistent with
the corresponding GT segmentations. The mitral annulus
is the label that showed the least overlap with the GT
datum, as suggested by the relatively low Dice score obtained
for this label. However, it should be pointed out that the
annulus is the thinnest structure; thus, small discrepancies
in annular profile may reflect in a notable decrease in Dice
score. On the other hand, the anterior and posterior leaflets
showed a good degree of overlap with the corresponding
GT segmentations (average Dice score of 0.81 ± 0.33 and
0.68 ± 0.07, respectively), especially along the coaptation
region. This result suggests that the presented automated
pipeline reliably identifies the coaptation line, coaptation
defects (P0 in Figure 6) or MVPs (P4 in Figure 6), which are
distinctive features of MVs considered for percutaneous MV
repair. The average surface distance to the GT data for the full
segmentation mask (0.43± 0.14 mm) was of the order of the
spatial resolution of the TEE volumes in the dataset (0.30-
0.70 mm/voxel). Furthermore, the reported distance was
almost equal to the inter-user variability typical of manual
segmentation, previously reported as 0.6± 0.17mm [43], and

compared favorably with previous semi-automatic (0.59 ±
0.49 mm [18] and 0.60± 0.20 mm [19]) and fully automated
methods (1.54 ± 1.17 mm [20], 0.59 ± 0.23 mm [23]
0.925 ± 0.392 [24]). The MSD and 95% HD were observed
to be slightly lower when computed for the complete mask
as compared to each label separately. This discrepancy can
be attributed to the absence of well-defined intensity-based
boundaries for MV structures in the 3DTEE images, which
makes it challenging to distinguish between them accurately.
As a result, any mis-labeled region within each substructure
can significantly affect the deterioration of this metric,
particularly for smaller structures like the mitral annulus.
Furthermore, the presented multi-decoder residual U-Net
architecture demonstrated superior performance metrics
when compared to a baseline residual U-Net for segmenting
MV from 3DTEE images. Specifically, the proposed method
achieved lower values of MSD and 95% HD for the annulus
and leaflets. However no significant difference in terms
of Dice score was observed in this comparison (Table 6).
While the improvement may not be substantial in absolute
terms, it is significant when compared to the order of
dimension of MV. This suggests that both architectures
perform similarly in terms of overall segmentation accuracy.
Nevertheless, the proposed method excels in distinguishing
between various structures by incorporating information from
multiple scales and levels of abstraction. It also captures
spatial relationships and distances within the data, which
is particularly valuable for morphological analysis of MV
structures in echocardiography. However, it is important to
note that this comparison was conducted using a relatively
small dataset, and further investigations are needed to validate
and confirm these findings.

The second key novelty of the study is the introduction
of an automatic pipeline that utilizes the CNN-based
segmentation mask to characterize the MV morphology
automatically. The pipeline offers several advantages and
achievements. Firstly, the implemented correction algorithm,
as illustrated in Figure 7, plays a crucial role in ensuring
a robust and complete reconstruction of the annulus. This
correction algorithm resulted in a significant improvement
in performance metrics. Specifically, the MSD and 95% HD
for the predicted annulus were measured at 0.85 ± 0.35 mm
and 3.68 ± 1.13 mm, respectively. This outperformed
the approaches proposed in [22] (2.74 mm) and [21]
(2 mm) for mitral annulus segmentation, showcasing the
superior performance of the proposed pipeline. Secondly,
the pipeline demonstrated consistent identification of MV
anatomical landmarks and reconstruction of anatomical
features extracted from the CNN-based MV segmentation.
The comparison between the proposed method and GT-based
morphological measurements revealed overall strong agree-
ment. The proposed method slightly overestimated 3D linear
measurements by less than 1.45 mm, except for the annulus
length, which displayed a 6.58 mm shift. Similarly, area
estimations exhibited consistent alignment. These findings
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align with the segmentation performance metrics discussed
earlier, affirming the robustness and accuracy of our proposed
method in delivering precise and repeatable MVmorphology
analysis. In contrast, differences with TomTec’s measure-
ments were marginally higher in absolute terms. Notably,
a bias of 192.76 mm2 was identified for the annulus area
estimation. This disparity stemmed from TomTec’s approach,
which delineates the mitral annulus as a closed line repre-
senting the outer borders of the mitral leaflets, considered
as a single surface. In contrast, the proposed automatic
solution represents the MV annulus and leaflets with finite
thickness, offering a more realistic MV depiction. The
observed differences in relation to TomTec’s measurements
can be attributed to the distinct data representation utilized
by each method. While TomTec operates on a simplified
triangulated surface, the proposed method incorporates a
more detailed representation, contributing to the nuanced
variations in results. As stated by Chen et al. [24], comparison
of morphological measurements extracted from an automat-
ically segmented MV model with results from commercial
software is further evidence of the accuracy and robustness
of the proposed segmentation method. However, unlike [24],
the proposed pipeline not only proved able to automate
the segmentation of MVs from 3DTEE images, but also
automates the morphological characterization of regurgitant
MVs. In this context, the comparison against the commercial
software served the purpose of validating the complete tool,
including both segmentation and morphological analysis
functionalities.

Finally, the proposed pipeline is fully automated and
requires no manual input at any of its steps. The resulting
segmentations and subsequent analyses are therefore be
more reproducible than those yielded by manual or semi-
automated approaches. The proposed pipeline provided a
full and refined MV model in 14.68 s on average (range
[11.83 s, 19.06 s]) along with a complete morphological
characterization; hence, it proved substantially faster than
the gold standard method herein considered for comparison,
which also required extensive user interaction, making the
proposed tool suitable to be used for large population
studies where end-to-end automation is a key enabling
feature.

To the best of our knowledge, none of the previously
proposed methods for MV segmentation integrated annu-
lus and leaflets quantitative characterization into a single
workflow like the pipeline herein presented. As compared
to previous CNN-based approaches for segmentation of TEE
images that focused only on mitral annulus [21], [22] or
leaflets segmentation [23], [24], the 3D CNN presented
in this work proved capable to segment and identify all
substructures of the MV. Moreover, the presented approach
addressed the challenging task of segmenting regurgitant
MVs at end-systole. The characterization of annulus and
leaflets anatomy at this time instant allows extracting
relevant information to support MR diagnosis and MV repair
planning.

A. LIMITATIONS AND FUTURE WORK
This study was limited by the difficulty of data collection and
labelling. The number of images counted in the dataset is
far from the huge dataset used in machine learning studies
dealing with natural images. However, the numerosity of the
dataset is comparable to that of previous works on automatic
echocardiography segmentation. For instance, Carnahan et al.
trained a residual U-Net on a set of 48 3DTEE images [23],
whereas in the work of Chen et al. the dataset consisted of
44 images [24]. Also, unlike Carnahan et al. [23], where
no data augmentation routine was applied during training,
in this study multiple random transformations were applied.
This inevitably contributed to increasing the variability of the
dataset adopted in this study.

The protocol adopted to create theGT data involved several
manual actions; it was hence time consuming and potentially
operator dependent. The second potential hurdle was assessed
through an inter-operator variability analysis. The results
revealed that the segmentations produced by the different
raters were not entirely congruent, underscoring the com-
plexity of the MV segmentation task from echocardiography
related to the inherent limitations of this imaging technique
such as noise, artifacts and absence of clear intensity-based
boundaries between intracardiac structures. However, the
analysis also revealed a relatively good level of agreement
among different operators, comparable to previous reported
manual segmentation inter-uses variability [43] and to the
level of precision reached by the proposed automatic method.
The process could be improved bymanually annotating fewer
annular points and exploiting an image registration approach
to automate part of the process. In addition, the user may
be asked to add an additional landmark on the aortic valve;
this extra information could be used to automatically reorient
the initial long-axis view to obtain a plane passing through
the saddle horn and the mid-point of the posterior annulus.
In this way, the end-user would segment the MV starting
always from the same cut-plane, thus making it easier to
recognize anatomical landmarks and making the process
more repeatable. Finally, the number of mutually parallel
image planes that span theMV could be set automatically, for
instance defining the shift between consecutive planes based
on the voxel size. Again, also this modification could improve
the repeatability of the process.

Even if the ensemble method adopted showed a significant
improvement in the segmentation performance, the reported
findings were limited to a small independent test set. The
small dimension of the available dataset prevented also
the application of the developed automated morphological
analysis for a more comprehensive characterization of the
MV anatomies in patients affected by MR, particularly
in terms of variability in coaptation defects. The use of
a larger dataset would enhance the pipeline’s capability
to efficiently and reliably analyze MR-related anatomical
characteristics of the MV. Moreover, extending the method
to a temporal segmentation problem could also help to
increase its accuracy, as well as provide a comprehensive
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assessment of MV anatomy over the entire cardiac cycle.
In fact, some MV substructures (e.g., the leaflets) are better
imaged at specific phases of the cardiac cycle. Enforcing
the anatomical continuity of segmented MV structures in
each frame during CNN training could enhance results and
overcome limitations due to image quality. The inference
time required by the proposed pipeline is still relatively high
for real-time usage. The time efficiency can be improved
by migrating all computational operations to GPU. Finally,
the proposed pipeline can be used for diagnostics, patient
selection and surgical treatment planning for transcatheter
MV repair. In the future, integration of the proposed
pipeline into commercial ultrasound scanners could facilitate
its validation in clinics and enable its use in cardiac
interventions as a guidance during percutaneous repair
of MV.

V. CONCLUSION
A fully automated, 3D CNN-based pipeline was introduced
for MV segmentation from 3DTEE and identification of
anatomical landmarks and relevant features in regurgitant
MVs. The designed pipeline improves the workflow for MV
segmentation and anatomical quantification of the mitral
annulus and leaflets, providing consistent and repeatable
results in a comprehensive and fast way. This pipeline will
potentially lead to a more reproducible and time-efficient
quantification of MV anatomy to support the diagnosis of
MR and planning of MV repair, with a potential future
extension to intraoperative support in transcatheterMV repair
surgeries.
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