1,054 research outputs found

    Reconfiguration for Fault Tolerance and Performance Analysis

    Get PDF
    Architecture reconfiguration, the ability of a system to alter the active interconnection among modules, has a history of different purposes and strategies. Its purposes develop from the relatively simple desire to formalize procedures that all processes have in common to reconfiguration for the improvement of fault-tolerance, to reconfiguration for performance enhancement, either through the simple maximizing of system use or by sophisticated notions of wedding topology to the specific needs of a given process. Strategies range from straightforward redundancy by means of an identical backup system to intricate structures employing multistage interconnection networks. The present discussion surveys the more important contributions to developments in reconfigurable architecture. The strategy here is in a sense to approach the field from an historical perspective, with the goal of developing a more coherent theory of reconfiguration. First, the Turing and von Neumann machines are discussed from the perspective of system reconfiguration, and it is seen that this early important theoretical work contains little that anticipates reconfiguration. Then some early developments in reconfiguration are analyzed, including the work of Estrin and associates on the fixed plus variable restructurable computer system, the attempt to theorize about configurable computers by Miller and Cocke, and the work of Reddi and Feustel on their restructable computer system. The discussion then focuses on the most sustained systems for fault tolerance and performance enhancement that have been proposed. An attempt will be made to define fault tolerance and to investigate some of the strategies used to achieve it. By investigating four different systems, the Tandern computer, the C.vmp system, the Extra Stage Cube, and the Gamma network, the move from dynamic redundancy to reconfiguration is observed. Then reconfiguration for performance enhancement is discussed. A survey of some proposals is attempted, then the discussion focuses on the most sustained systems that have been proposed: PASM, the DC architecture, the Star local network, and the NYU Ultracomputer. The discussion is organized around a comparison of control, scheduling, communication, and network topology. Finally, comparisons are drawn between fault tolerance and performance enhancement, in order to clarify the notion of reconfiguration and to reveal the common ground of fault tolerance and performance enhancement as well as the areas in which they diverge. An attempt is made in the conclusion to derive from this survey and analysis some observations on the nature of reconfiguration, as well as some remarks on necessary further areas of research

    Energy Saving and Virtualization Technologies in Switching

    Get PDF
    Switching is the key functionality for many devices like electronic Router and Switch, optical Router, Network on Chips (NoCs) and so on. Basically, switching is responsible for moving data unit from one port/location to another (or multiple) port(s)/location(s). In past years, the high capacity, low delay were the main concerns when designing high-end switching unit. As new demands, requests and technologies emerge, flexibility and low power cost switching design become to weight the same as throughput and delay. On one hand, highly flexible (i.e, programming ability) switching can cope with variable needs stem from new applications (i.e, VoIP) and popular user behavior (i.e, p2p downloading); on the other hand, reduce the energy and power dissipation for switching could not only save bills and build echo system but also expand components life time. Many research efforts have been devoted to increase switching flexibility and reduce its power cost. In this thesis work, we consider to exploit virtualization as the main technique to build flexible software router in the first part, then in the second part we draw our attention on energy saving in NoC (i.e, a switching fabric designed to handle the on chip data transmission) and software router. In the first part of the thesis, we consider the virtualization inside Software Routers (SRs). SR, i.e, routers running in commodity Personal Computers (PCs), become an appealing solution compared to traditional Proprietary Routing Devices (PRD) for various reasons such as cost (the multi-vendor hardware used by SRs can be cheap, while the equipment needed by PRDs is more expensive and their training cost is higher), openness (SRs can make use of a large number of open source networking applications, while PRDs are more closed) and flexibility. The forwarding performance provided by SRs has been an obstacle to their deployment in real networks. For this reason, we proposed to aggregate multiple routing units that form an powerful SR known as the Multistage Software Router (MSR) to overcome the performance limitation for a single SR. Our results show that the throughput can increase almost linearly as the number of the internal routing devices. But some other features related to flexibility (such as power saving, programmability, router migration or easy management) have been investigated less than performance previously. We noticed that virtualization techniques become reality thanks to the quick development of the PC architectures, which are now able to easily support several logical PCs running in parallel on the same hardware. Virtualization could provide many flexible features like hardware and software decoupling, encapsulation of virtual machine state, failure recovery and security, to name a few. Virtualization permits to build multiple SRs inside one physical host and a multistage architecture exploiting only logical devices. By doing so, physical resources can be used in a more efficient way, energy savings features (switching on and off device when needed) can be introduced and logical resources could be rented on-demand instead of being owned. Since virtualization techniques are still difficult to deploy, several challenges need to be faced when trying to integrate them into routers. The main aim of the first part in this thesis is to find out the feasibility of the virtualization approach, to build and test virtualized SR (VSR), to implement the MSR exploiting logical, i.e. virtualized, resources, to analyze virtualized routing performance and to propose improvement techniques to VSR and virtual MSR (VMSR). More specifically, we considered different virtualization solutions like VMware, XEN, KVM to build VSR and VMSR, being VMware a closed source solution but with higher performance and XEN/KVM open source solutions. Firstly we built and tested each single component of our multistage architecture (i.e, back-end router, load balancer )inside the virtual infrastructure, then and we extended the performance experiments with more complex scenarios like multiple Back-end Router (BR) or Load Balancer (LB) which cooperate to route packets. Our results show that virtualization could introduce 40~\% performance penalty compare with the hardware only solution. Keep the performance limitation in mind, we developed the whole VMSR and we obtained low throughput with 64B packet flow as expected. To increase the VMSR throughput, two directions could be considered, the first one is to improve the single component ( i.e, VSR) performance and the other is to work from the topology (i.e, best allocation of the VMs into the hardware ) point of view. For the first method, we considered to tune the VSR inside the KVM and we studied closely such as Linux driver, scheduler, interconnect methodology which could impact the performance significantly with proper configuration; then we proposed two ways for the VMs allocation into physical servers to enhance the VMSR performance. Our results show that with good tuning and allocation of VMs, we could minimize the virtualization penalty and get reasonable throughput for running SRs inside virtual infrastructure and add flexibility functionalities into SRs easily. In the second part of the thesis, we consider the energy efficient switching design problem and we focus on two main architecture, the NoC and MSR. As many research works suggest, the energy cost in the Communication Technologies ( ICT ) is constantly increasing. Among the main ICT sectors, a large portion of the energy consumption is contributed by the telecommunication infrastructure and their devices, i.e, router, switch, cell phone, ip TV settle box, storage home gateway etc. More in detail, the linecards, links, System on Chip (SoC) including the transmitter/receiver on these variate devices are the main power consuming units. We firstly present the work on the power reduction of the data transmission in SoC, which is carried out by the NoC. NoC is an approach to design the communication subsystem between different Processing Units (PEs) in a SoC. PEs could be different elements such as CPU, memory, digital signal/analog signal processor etc. Different PEs performs specific tasks depending on the applications running on the chip. Different tasks need to exchange data information among each other, thus flits ( chopped packet with limited header information ) are generated by PEs. The flits are injected into the NoC by the proper interface and routed until reach the destination PEs. For the whole procedure, the NoC behaves as a packet switch network. Studies show that in general the information processing in the PEs only consume 60~\% energy while the remaining 40~\% are consumed by the NoC. More importantly, as the current network designing principle, the NoC capacity is devised to handle the peak load. This is a clear sign for energy saving when the network load is low. In our work, we considered to exploit Dynamic Voltage and Frequency Scaling (DVFS) technique, which can jointly decrease or increase the system voltage and frequency when necessary, i.e, decrease the voltage and frequency at low load scenario to save energy and reduce power dissipation. More precisely, we studied two different NoC architectures for energy saving, namely single plane chip and multi-plane chip architecture. In both cases we have a very strict constraint to be that all the links and transmitter/receivers on the same plane work at the same frequency/voltage to avoid synchronization problem. This is the main difference with many existing works in the literature which usually assume different links can work at different frequency, that is hard to be implemented in reality. For the single plane NoC, we exploited different routing schemas combined with DVFS to reduce the power for the whole chip. Our results haven been compared with the optimal value obtained by modeling the power saving formally as a quadratic programming problem. Results suggest that just by using simple load balancing routing algorithm, we can save considerable energy for the single chip NoC architecture. Furthermore, we noticed that in the single plane NoC architecture, the bottleneck link could limit the DVFS effectiveness. Then we discovered that multiplane NoC architecture is fairly easy to be implemented and it could help with the energy saving. Thus we focus on the multiplane architecture and we found out that DVFS could be more efficient when we concentrate more traffic into one plane and send the remaining flows to other planes. We compared load concentration and load balancing with different power modeling and all simulation results show that load concentration is better compared with load balancing for multiplan NoC architecture. Finally, we also present one of the the energy efficient MSR design technique, which permits the MSR to follow the day-night traffic pattern more efficiently with our on-line energy saving algorithm

    Stone tools and the linguistic capabilities of earlier hominids

    Get PDF
    The evolution of human manipulative abilities may be clearly linked to the evolution of speech motor control Both creativity and complexity in vocal and manipulative gestures may be closely linked to a single dimension of brain evolution — the evolution of absolute brain size. Inferring the linguistic capabilities of earlier hominids from their lithic artefacts, however, required us to take account of domain-specific constraints on manipulative skill In this article we report on a pilot flint-knapping experiment designed to identify such constraints ‘in action’

    A survey on RF and microwave doherty power amplifier for mobile handset applications

    Get PDF
    This survey addresses the cutting-edge load modulation microwave and radio frequency power amplifiers for next-generation wireless communication standards. The basic operational principle of the Doherty amplifier and its defective behavior that has been originated by transistor characteristics will be presented. Moreover, advance design architectures for enhancing the Doherty power amplifier’s performance in terms of higher efficiency and wider bandwidth characteristics, as well as the compact design techniques of Doherty amplifier that meets the requirements of legacy 5G handset applications, will be discussed.Agencia Estatal de Investigación | Ref. TEC2017-88242-C3-2-RFundação para a Ciência e a Tecnologia | Ref. UIDP/50008/201

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    Topology Agnostic Methods for Routing, Reconfiguration and Virtualization of Interconnection Networks

    Get PDF
    Modern computing systems, such as supercomputers, data centers and multicore chips, generally require efficient communication between their different system units; tolerance towards component faults; flexibility to expand or merge; and a high utilization of their resources. Interconnection networks are used in a variety of such computing systems in order to enable communication between their diverse system units. Investigation and proposal of new or improved solutions to topology agnostic routing and reconfiguration of interconnection networks are main objectives of this thesis. In addition, topology agnostic routing and reconfiguration algorithms are utilized in the development of new and flexible approaches to processor allocation. The thesis aims to present versatile solutions that can be used for the interconnection networks of a number of different computing systems. No particular routing algorithm was specified for an interconnection network technology which is now incorporated in Dolphin Express. The thesis states a set of criteria for a suitable routing algorithm, evaluates a number of existing routing algorithms, and recommend that one of the algorithms – which fulfils all of the criteria – is used. Further investigations demonstrate how this routing algorithm inherently supports fault-tolerance, and how it can be optimized for some network topologies. These considerations are also relevant for the InfiniBand interconnection network technology. Reconfiguration of interconnection networks (change of routing function) is a deadlock prone process. Some existing reconfiguration strategies include deadlock avoidance mechanisms that significantly reduce the network service offered to running applications. The thesis expands the area of application for one of the most versatile and efficient reconfiguration algorithms available in the literature, and proposes an optimization of this algorithm that improves the network service offered to running applications. Moreover, a new reconfiguration algorithm is presented that supports a replacement of the routing function without causing performance penalties. Processor allocation strategies that guarantee traffic-containment commonly pose strict requirements on the shape of partitions, and thus achieve only a limited utilization of a system’s computing resources. The thesis introduces two new approaches that are more flexible. Both approaches utilize the properties of a topology agnostic routing algorithm in order to enforce traffic-containment within arbitrarily shaped partitions. Consequently, a high resource utilization as well as isolation of traffic between different partitions is achieved

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present

    Management: A bibliography for NASA managers

    Get PDF
    This bibliography lists 731 reports, articles and other documents introduced into the NASA Scientific and Technical Information System in 1990. Items are selected and grouped according to their usefulness to the manager as manager. Citations are grouped into ten subject categories: human factors and personnel issues; management theory and techniques; industrial management and manufacturing; robotics and expert systems; computers and information management; research and development; economics, costs and markets; logistics and operations management; reliability and quality control; and legality, legislation, and policy
    corecore