5 research outputs found

    JAMDER: JADE to MULTI-Agent Systems Development Resource

    Get PDF
    The semantic gap is distinguished by the difference between two descriptions generated using different representations. This difference has a negative impact on the developer productivity and probably, the quality of the written code. In software development context, the coding phase aims at coding the system consistent with the detailed project developed with a group of designed models. This paper presents an endeavor to consolidate different agent type definitions and implementation concepts for Multi-Agent Systems (MAS) involving the adaptation of the JADE framework regarding the theoretical concepts in MAS. Additionally, it contains a standardization of code generation. The main benefit of the proposed extension is to include the agent internal architectures, entities and relationships in an implementation framework and increase the productivity by code generation, ensuring the consistency between design and code. The applicability of the extension is illustrated by developing a multi-agent system for Moodle

    A DSL for the development of software agents working within a semantic web environment

    Get PDF
    Software agents became popular in the development of complex software systems,especially those requiring autonomous and proactive behavior. Agents interact with each other within a Multi-agent System (MAS), in order to perform certain defined tasks in a collaborative and/or selfish manner. However, the autonomous, proactive and interactive structure of MAS causes difficulties when developing such software systems. It is within this context,that the use of a Domain-specific Language (DSL) may support easier and quicker MAS development methodology. The impact of such DSL usage could beclearer when considering the development of MASs, especially those working on new challenging environments like the Semantic Web. Hence, this paper introduces a new DSL for Semantic Web enabled MASs. This new DSL is called Semantic web Enabled Agent Language (SEA_L). Both the SEA_L user-aspects and the way of implementing SEA_L are discussed in the paper. The practical use of SEA_L is also demonstrated using a case study which considers the modeling of a multi-agent based e-barter system. When considering the language implementation, we first discuss the syntax of SEA_L and we show how the specifications of SEA_L can be utilized during the code generation of real MAS implementations. The syntax of SEA_L is supported by textual modeling toolkits developed with Xtext. Code generation for the instance models are supplied with the Xpand tool

    Application of Model-driven engineering to multi-agent systems: a language to model behaviors of reactive agents

    Get PDF
    Many users of multi-agent systems (MAS) are very commonly disinclined to model and simulate using current MAS platforms. More specifically, modeling the dynamics of a system (in particular the agents' behaviors) is very often a challenge to MAS users. This issue is more often observed in the domain of socio-ecological systems (SES), because SES domain experts are rarely programmers. Indeed, the majority of MAS platforms were not conceived taking into consideration domain-experts who are non-programmers. Most current MAS tools are not dedicated to SES, or nor do they possess an easily understandable formalism to represent the behaviors of agents. Moreover, because it is platform-dependent, a model realized in a given MAS platform cannot be properly used on another platform due to incompatibility between MAS platforms. To overcome these limitations, we propose a domain-specific language (DSL) to describe the behaviors of reactive agents, regardless of the MAS platform used for simulation. To achieve this result, we used model-driven engineering (MDE), an approach that provides tools to develop DSLs from a meta-model (abstract syntax), textual editors with syntax highlighting (for the concrete syntax) and code generation capabilities (for source-code generation of a model). As a result, we implemented a language and a textual editor that allow SES domain experts to describe behaviors in three different ways that are close to their natural expression: as equations when they are familiar with these, as a sequence of activities close to natural language or as an activity diagram to represent decisions and a sequence of behaviors using a graphic formalism. To demonstrate interoperability, we also developed code generators targeting two different MAS platforms (Cormas and Netlogo). We tested the code generators by implementing two SES models with the developed DSL. The generated code was targeted to both MAS platforms (Cormas and Netlogo), and successfully simulated in one of them. We conclude that the MDE approach provides adequate tools to develop DSL and code generators to facilitate MAS modeling and simulation by non-programmers. Concerning the DSL developed, although the behavioral aspect of MAS simulation is part of the complexity of modeling in MAS, there are still other essential aspects of model and simulation of MAS that are yet to be explored, such as model initialization and points of view on the model simulated worl

    Agent-oriented domain-specific language for the development of intelligentdistributed non-axiomatic reasoning agents

    Get PDF
    У дисертацији је представљен прототип агентског, домен-оријентисаног језика ALAS. Основни мотиви развоја ALAS језика су подршка дистрибуираном не-аксиоматском резоновању као и омогућавање интероперабилности и хетерогене мобилности Siebog агената јер је приликом анализе постојећих агентских домен-оријентисаних језика утврђено да ни један језик не подржава ове захтеве. Побољшање у односу на сличне постојеће агентске, домен-оријентисане језике огледа се и у програмским конструктима које нуди ALAS језик а чија је основна сврха писање концизних агената који се извршавају у специфичним доменима.U disertaciji je predstavljen prototip agentskog, domen-orijentisanog jezika ALAS. Osnovni motivi razvoja ALAS jezika su podrška distribuiranom ne-aksiomatskom rezonovanju kao i omogućavanje interoperabilnosti i heterogene mobilnosti Siebog agenata jer je prilikom analize postojećih agentskih domen-orijentisanih jezika utvrđeno da ni jedan jezik ne podržava ove zahteve. Poboljšanje u odnosu na slične postojeće agentske, domen-orijentisane jezike ogleda se i u programskim konstruktima koje nudi ALAS jezik a čija je osnovna svrha pisanje konciznih agenata koji se izvršavaju u specifičnim domenima.The dissertation presents the prototype of an agent-oriented, domainspecific language ALAS. The basic motives for the development of the ALAS language are support for distributed non-axiomatic reasoning, as well as enabling the interoperability and heterogeneous mobility of agents, because it is concluded by analysing existing agent-oriented, domainspecific languages, that there is no language that supports these requirements. The improvement compared to similar existing agentoriented, domain-specific languages are also reflected in program constructs offered by ALAS language, whose the main purpose is to enable writing the concise agents that are executed in specific domains
    corecore