11 research outputs found

    Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus

    Get PDF
    In the paper a decision procedure for S5 is presented which uses a cut-free sequent calculus with additional rules allowing a reduction to normal modal forms. It utilizes the fact that in S5 every formula is equivalent to some 1-degree formula, i.e. a modally-flat formula with modal functors having only boolean formulas in its scope. In contrast to many sequent calculi (SC) for S5 the presented system does not introduce any extra devices. Thus it is a standard version of SC but with some additional simple rewrite rules. The procedure combines the proces of saturation of sequents with reduction of their elements to some normal modal form

    A Deep Inference System for the Modal Logic S5

    Get PDF
    We present a cut-admissible system for the modal logic S5 in a formalism that makes explicit and intensive use of deep inference. Deep inference is induced by the methods applied so far in conceptually pure systems for this logic. The system enjoys systematicity and modularity, two important properties that should be satisfied by modal systems. Furthermore, it enjoys a simple and direct design: the rules are few and the modal rules are in exact correspondence to the modal axiom

    Hypersequent Calculi for S5: The Methods of Cut Elimination

    Get PDF
    S5 is one of the most important modal logic with nice syntactic, semantic and algebraic properties. In spite of that, a successful (i.e. cut-free) formalization of S5 on the ground of standard sequent calculus (SC) was problematic and led to the invention of numerous nonstandard, generalized forms of SC. One of the most interesting framework which was very often used for this aim is that of hypersequent calculi (HC). The paper is a survey of HC for S5 proposed by Pottinger, Avron, Restall, Poggiolesi, Lahav and Kurokawa. We are particularly interested in examining different methods which were used for proving the eliminability/admissibility of cut in these systems and present our own variant of a system which admits relatively simple proof of cut elimination

    Varieties of Relevant S5

    Get PDF
    In classically based modal logic, there are three common conceptions of necessity, the universal conception, the equivalence relation conception, and the axiomatic conception. They provide distinct presentations of the modal logic S5, all of which coincide in the basic modal language. We explore these different conceptions in the context of the relevant logic R, demonstrating where they come apart. This reveals that there are many options for being an S5-ish extension of R. It further reveals a divide between the universal conception of necessity on the one hand, and the axiomatic conception on the other: The latter is consistent with motivations for relevant logics while the former is not. For the committed relevant logician, necessity cannot be the truth in all possible worlds

    On a multilattice analogue of a hypersequent S5 calculus

    Get PDF
    In this paper, we present a logic MMLS5n which is a combination of multilattice logic and modal logic S5. MMLS5n is an extension of Kamide and Shramko鈥檚 modal multilattice logic which is a multilattice analogue of S4. We present a cut-free hypersequent calculus for MMLS5n in the spirit of Restall鈥檚 one for S5 and develop a Kripke semantics for MMLS5n, following Kamide and Shramko鈥檚 approach. Moreover, we prove theorems for embedding MMLS5n into S5 and vice versa. As a result, we obtain completeness, cut elimination, decidability, and interpolation theorems for MMLS5n. Besides, we show the duality principle for MMLS5n. Additionally, we introduce a modification of Kamide and Shramko鈥檚 sequent calculus for their multilattice version of S4 which (in contrast to Kamide and Shramko鈥檚 original one) proves the interdefinability of necessity and possibility operators. Last, but not least, we present Hilbert-style calculi for all the logics in question as well as for a larger class of modal multilattice logics

    Semantically informed methods in structural proof theory

    Get PDF

    Proof Analysis in Temporal Logic

    Get PDF
    The logic of time is one of the most interesting modal logics, and its importance is widely acknowledged both for philosophical and formal reasons. In this thesis, we apply the method of internalisation of Kripke-style semantics into the syntax of sequent calculus to the proof-theoretical analysis of temporal logics. Sequent systems for different flows of time are obtained as modular extensions of a basic temporal calculus, through the addition of appropriate mathematical rules that correspond to the properties of temporal frames: a general and uniform treatment is thus achieved for a wide range of temporal logics. All the calculi enjoy remarkable structural properties, in particular are contraction and cut free. Linear discrete time is analysed by means of two infinitary calculi. The first is obtained by means of a rule with infinitely many premises, and the second through a new definition of provability which admits, under certain conditions, derivation trees with infinite branches. The first calculus enjoys the desired structural properties, but the presence of an infinitary rule is harmful for proof analysis. Two finitary systems are identified by replacing the infinitary rule with a weaker finitary rule, and by bounding the number of its premises, respectively. Corresponding, somehow complementary, conservativity results are proved with respect to adequate fragments of the original calculus. The second calculus stems from a closure algorithm which exploits the fixed-point equations for temporal operators and gives saturated sets of closure formulas from a given formula. Finitisation is obtained in the form of an upper bound to the proof-search procedure, and decidability follows as a major consequence
    corecore