668 research outputs found

    Hippocampal sclerosis affects fMR-adaptation of lyrics and melodies in songs

    Get PDF
    Songs constitute a natural combination of lyrics and melodies, but it is unclear whether and how these two song components are integrated during the emergence of a memory trace. Network theories of memory suggest a prominent role of the hippocampus, together with unimodal sensory areas, in the build-up of conjunctive representations. The present study tested the modulatory influence of the hippocampus on neural adaptation to songs in lateral temporal areas. Patients with unilateral hippocampal sclerosis and healthy matched controls were presented with blocks of short songs in which lyrics and/or melodies were varied or repeated in a crossed factorial design. Neural adaptation effects were taken as correlates of incidental emergent memory traces. We hypothesized that hippocampal lesions, particularly in the left hemisphere, would weaken adaptation effects, especially the integration of lyrics and melodies. Results revealed that lateral temporal lobe regions showed weaker adaptation to repeated lyrics as well as a reduced interaction of the adaptation effects for lyrics and melodies in patients with left hippocampal sclerosis. This suggests a deficient build-up of a sensory memory trace for lyrics and a reduced integration of lyrics with melodies, compared to healthy controls. Patients with right hippocampal sclerosis showed a similar profile of results although the effects did not reach significance in this population. We highlight the finding that the integrated representation of lyrics and melodies typically shown in healthy participants is likely tied to the integrity of the left medial temporal lobe. This novel finding provides the first neuroimaging evidence for the role of the hippocampus during repetitive exposure to lyrics and melodies and their integration into a song

    AI Methods in Algorithmic Composition: A Comprehensive Survey

    Get PDF
    Algorithmic composition is the partial or total automation of the process of music composition by using computers. Since the 1950s, different computational techniques related to Artificial Intelligence have been used for algorithmic composition, including grammatical representations, probabilistic methods, neural networks, symbolic rule-based systems, constraint programming and evolutionary algorithms. This survey aims to be a comprehensive account of research on algorithmic composition, presenting a thorough view of the field for researchers in Artificial Intelligence.This study was partially supported by a grant for the MELOMICS project (IPT-300000-2010-010) from the Spanish Ministerio de Ciencia e Innovación, and a grant for the CAUCE project (TSI-090302-2011-8) from the Spanish Ministerio de Industria, Turismo y Comercio. The first author was supported by a grant for the GENEX project (P09-TIC- 5123) from the Consejería de Innovación y Ciencia de Andalucía

    Conceptual Representations for Computational Concept Creation

    Get PDF
    Computational creativity seeks to understand computational mechanisms that can be characterized as creative. The creation of new concepts is a central challenge for any creative system. In this article, we outline different approaches to computational concept creation and then review conceptual representations relevant to concept creation, and therefore to computational creativity. The conceptual representations are organized in accordance with two important perspectives on the distinctions between them. One distinction is between symbolic, spatial and connectionist representations. The other is between descriptive and procedural representations. Additionally, conceptual representations used in particular creative domains, such as language, music, image and emotion, are reviewed separately. For every representation reviewed, we cover the inference it affords, the computational means of building it, and its application in concept creation.Peer reviewe

    MIDI-VAE: Modeling Dynamics and Instrumentation of Music with Applications to Style Transfer

    Full text link
    We introduce MIDI-VAE, a neural network model based on Variational Autoencoders that is capable of handling polyphonic music with multiple instrument tracks, as well as modeling the dynamics of music by incorporating note durations and velocities. We show that MIDI-VAE can perform style transfer on symbolic music by automatically changing pitches, dynamics and instruments of a music piece from, e.g., a Classical to a Jazz style. We evaluate the efficacy of the style transfer by training separate style validation classifiers. Our model can also interpolate between short pieces of music, produce medleys and create mixtures of entire songs. The interpolations smoothly change pitches, dynamics and instrumentation to create a harmonic bridge between two music pieces. To the best of our knowledge, this work represents the first successful attempt at applying neural style transfer to complete musical compositions.Comment: Paper accepted at the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, Franc
    corecore