75 research outputs found

    BEMDEC: An Adaptive and Robust Methodology for Digital Image Feature Extraction

    Get PDF
    The intriguing study of feature extraction, and edge detection in particular, has, as a result of the increased use of imagery, drawn even more attention not just from the field of computer science but also from a variety of scientific fields. However, various challenges surrounding the formulation of feature extraction operator, particularly of edges, which is capable of satisfying the necessary properties of low probability of error (i.e., failure of marking true edges), accuracy, and consistent response to a single edge, continue to persist. Moreover, it should be pointed out that most of the work in the area of feature extraction has been focused on improving many of the existing approaches rather than devising or adopting new ones. In the image processing subfield, where the needs constantly change, we must equally change the way we think. In this digital world where the use of images, for variety of purposes, continues to increase, researchers, if they are serious about addressing the aforementioned limitations, must be able to think outside the box and step away from the usual in order to overcome these challenges. In this dissertation, we propose an adaptive and robust, yet simple, digital image features detection methodology using bidimensional empirical mode decomposition (BEMD), a sifting process that decomposes a signal into its two-dimensional (2D) bidimensional intrinsic mode functions (BIMFs). The method is further extended to detect corners and curves, and as such, dubbed as BEMDEC, indicating its ability to detect edges, corners and curves. In addition to the application of BEMD, a unique combination of a flexible envelope estimation algorithm, stopping criteria and boundary adjustment made the realization of this multi-feature detector possible. Further application of two morphological operators of binarization and thinning adds to the quality of the operator

    Spline wavelet image coding and synthesis for a VLSI based difference engine

    Get PDF
    Bibliography: leaves 142-146.The efficiency of an image compression/synthesis system based on a spline multi-resolution analysis (MRA) is investigated. The proposed system uses a quadratic spline wavelet transform combined with minimum-mean squared error vector quantization to achieve image compression. Image synthesis is accomplished by utilizing the properties of the MRA and the architecture of a custom designed display processor, the Difference Engine. The latter is ideally suited to rendering images with polynomial intensity profiles, such as those generated by the proposed spline :V1RA. Based on these properties, an adaptive image synthesis system is developed which enables one to reduce the number of instruction cycles required to reproduce images compressed using the quadratic spline wavelet transform. This adaptive approach is computationally simple and fairly robust. In addition, there is little overhead involved in its implementation

    Development of Some Spatial-domain Preprocessing and Post-processing Algorithms for Better 2-D Up-scaling

    Get PDF
    Image super-resolution is an area of great interest in recent years and is extensively used in applications like video streaming, multimedia, internet technologies, consumer electronics, display and printing industries. Image super-resolution is a process of increasing the resolution of a given image without losing its integrity. Its most common application is to provide better visual effect after resizing a digital image for display or printing. One of the methods of improving the image resolution is through the employment of a 2-D interpolation. An up-scaled image should retain all the image details with very less degree of blurring meant for better visual quality. In literature, many efficient 2-D interpolation schemes are found that well preserve the image details in the up-scaled images; particularly at the regions with edges and fine details. Nevertheless, these existing interpolation schemes too give blurring effect in the up-scaled images due to the high frequency (HF) degradation during the up-sampling process. Hence, there is a scope to further improve their performance through the incorporation of various spatial domain pre-processing, post-processing and composite algorithms. Therefore, it is felt that there is sufficient scope to develop various efficient but simple pre-processing, post-processing and composite schemes to effectively restore the HF contents in the up-scaled images for various online and off-line applications. An efficient and widely used Lanczos-3 interpolation is taken for further performance improvement through the incorporation of various proposed algorithms. The various pre-processing algorithms developed in this thesis are summarized here. The term pre-processing refers to processing the low-resolution input image prior to image up-scaling. The various pre-processing algorithms proposed in this thesis are: Laplacian of Laplacian based global pre-processing (LLGP) scheme; Hybrid global pre-processing (HGP); Iterative Laplacian of Laplacian based global pre-processing (ILLGP); Unsharp masking based pre-processing (UMP); Iterative unsharp masking (IUM); Error based up-sampling(EU) scheme. The proposed algorithms: LLGP, HGP and ILLGP are three spatial domain preprocessing algorithms which are based on 4th, 6th and 8th order derivatives to alleviate nonuniform blurring in up-scaled images. These algorithms are used to obtain the high frequency (HF) extracts from an image by employing higher order derivatives and perform precise sharpening on a low resolution image to alleviate the blurring in its 2-D up-sampled counterpart. In case of unsharp masking based pre-processing (UMP) scheme, the blurred version of a low resolution image is used for HF extraction from the original version through image subtraction. The weighted version of the HF extracts are superimposed with the original image to produce a sharpened image prior to image up-scaling to counter blurring effectively. IUM makes use of many iterations to generate an unsharp mask which contains very high frequency (VHF) components. The VHF extract is the result of signal decomposition in terms of sub-bands using the concept of analysis filter bank. Since the degradation of VHF components is maximum, restoration of such components would produce much better restoration performance. EU is another pre-processing scheme in which the HF degradation due to image upscaling is extracted and is called prediction error. The prediction error contains the lost high frequency components. When this error is superimposed on the low resolution image prior to image up-sampling, blurring is considerably reduced in the up-scaled images. Various post-processing algorithms developed in this thesis are summarized in following. The term post-processing refers to processing the high resolution up-scaled image. The various post-processing algorithms proposed in this thesis are: Local adaptive Laplacian (LAL); Fuzzy weighted Laplacian (FWL); Legendre functional link artificial neural network(LFLANN). LAL is a non-fuzzy, local based scheme. The local regions of an up-scaled image with high variance are sharpened more than the region with moderate or low variance by employing a local adaptive Laplacian kernel. The weights of the LAL kernel are varied as per the normalized local variance so as to provide more degree of HF enhancement to high variance regions than the low variance counterpart to effectively counter the non-uniform blurring. Furthermore, FWL post-processing scheme with a higher degree of non-linearity is proposed to further improve the performance of LAL. FWL, being a fuzzy based mapping scheme, is highly nonlinear to resolve the blurring problem more effectively than LAL which employs a linear mapping. Another LFLANN based post-processing scheme is proposed here to minimize the cost function so as to reduce the blurring in a 2-D up-scaled image. Legendre polynomials are used for functional expansion of the input pattern-vector and provide high degree of nonlinearity. Therefore, the requirement of multiple layers can be replaced by single layer LFLANN architecture so as to reduce the cost function effectively for better restoration performance. With single layer architecture, it has reduced the computational complexity and hence is suitable for various real-time applications. There is a scope of further improvement of the stand-alone pre-processing and postprocessing schemes by combining them through composite schemes. Here, two spatial domain composite schemes, CS-I and CS-II are proposed to tackle non-uniform blurring in an up-scaled image. CS-I is developed by combining global iterative Laplacian (GIL) preprocessing scheme with LAL post-processing scheme. Another highly nonlinear composite scheme, CS-II is proposed which combines ILLGP scheme with a fuzzy weighted Laplacian post-processing scheme for more improved performance than the stand-alone schemes. Finally, it is observed that the proposed algorithms: ILLGP, IUM, FWL, LFLANN and CS-II are better algorithms in their respective categories for effectively reducing blurring in the up-scaled images

    Frequency domain Lamb wave analysis for damage detection

    Get PDF
    Non-Destructive Testing (NDT) techniques are prevalent in the aerospace, green energy and automotive industries. With the ability to identify defects in service or at the manufacturing stage, NDT is a vital tool in creating safe and efficient structures. Existing NDT methods face many limitations when working with advanced materials such as composites. Further limitations are met by conventional NDT methods in terms of resolution, measurement time and levels of access required to the structure for measurements to be taken. This work presents the development of a band-pass mode filtering technique in the frequency wavenumber domain for the purpose of damage detection. Data were captured in the temporal and spatial domain using a 3D Scanning Laser Doppler Vibrometer (SLDV) with piezoelectric transducers exciting the structure with a variety of steady-state signals ranging in frequency. A thickness map or damage map was created based on the frequency and wavelength of the A0 Lamb wave mode. The technique was first demonstrated on two aluminium specimens with dimensions of 400mm by 400mm with a thickness range of 0.5mm to 8mm with distinct geometric features. Using multi-frequency excitation combined with mode based filters, an estimation of thickness was achieved with a mean percentage thickness error of 15%. Circular thickness reductions with a diameter of 10mm were clearly identified at the maximum plate thickness of 8mm. The proposed mode filtering technique was furthered to work on highly non-isotropic composites using no prior knowledge of the material. Dispersion characteristics were taken from the measurement data and determined the shape of the mode filters. This method was demonstrated on three different composite specimens and was able to identify single ply changes in a fibre-glass specimen as well as a delamination defect in a carbon fibre plate. Multi-frequency steady-state excitation was also shown using multiple driving transducers on a single structure. Further work was completed to enable these techniques to function with wavefield data gained from non-developable surfaces. Through geometrical transforms of the wavefield it was shown that wave mode filtering could be completed on complex geometries. The application of wavenumber-based NDT was demonstrated to give highly accurate results with good spatial and depth resolution on parts with complex geometries, as well as composite and metallic parts. This work presented a new embodiment of wavenumber-based NDT that showed a significant step towards real world implementation and offers a number of advancements over existing technique

    Steering Angle Prediction Techniques for Autonomous Ground Vehicles: A Review

    Get PDF
    Unintentional lane departure accidents are one of the biggest reasons for the causalities that occur due to human errors. By incorporating lane-keeping features in vehicles, many accidents can be avoided. The lane-keeping system operates by auto-steering the vehicle in order to keep it within the desired lane, despite of changes in road conditions and other interferences. Accurate steering angle prediction is crucial to keep the vehicle within the road boundaries, which is a challenging task. The main difficulty in this regard is to identify the drivable road area on heterogeneous road types varying in color, texture, illumination conditions, and lane marking types. This strenuous problem can be addressed by two approaches, namely, 'computer-vision-based approach' and 'imitation-learning-based approach'. To the best of our knowledge, at present, there is no such detailed review study covering both the approaches and their related optimization techniques. This comprehensive review attempts to provide a clear picture of both approaches of steering angle prediction in the form of step by step procedures. The taxonomy of steering angle prediction has been presented in the paper for a better comprehension of the problem. We have also discussed open research problems at the end of the paper to help the researchers of this area to discover new research horizons

    Digital forensic techniques for the reverse engineering of image acquisition chains

    Get PDF
    In recent years a number of new methods have been developed to detect image forgery. Most forensic techniques use footprints left on images to predict the history of the images. The images, however, sometimes could have gone through a series of processing and modification through their lifetime. It is therefore difficult to detect image tampering as the footprints could be distorted or removed over a complex chain of operations. In this research we propose digital forensic techniques that allow us to reverse engineer and determine history of images that have gone through chains of image acquisition and reproduction. This thesis presents two different approaches to address the problem. In the first part we propose a novel theoretical framework for the reverse engineering of signal acquisition chains. Based on a simplified chain model, we describe how signals have gone in the chains at different stages using the theory of sampling signals with finite rate of innovation. Under particular conditions, our technique allows to detect whether a given signal has been reacquired through the chain. It also makes possible to predict corresponding important parameters of the chain using acquisition-reconstruction artefacts left on the signal. The second part of the thesis presents our new algorithm for image recapture detection based on edge blurriness. Two overcomplete dictionaries are trained using the K-SVD approach to learn distinctive blurring patterns from sets of single captured and recaptured images. An SVM classifier is then built using dictionary approximation errors and the mean edge spread width from the training images. The algorithm, which requires no user intervention, was tested on a database that included more than 2500 high quality recaptured images. Our results show that our method achieves a performance rate that exceeds 99% for recaptured images and 94% for single captured images.Open Acces

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing
    corecore